xref: /freebsd-src/contrib/llvm-project/llvm/lib/CodeGen/LiveDebugValues/InstrRefBasedImpl.cpp (revision 5e801ac66d24704442eba426ed13c3effb8a34e7)
1 //===- InstrRefBasedImpl.cpp - Tracking Debug Value MIs -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file InstrRefBasedImpl.cpp
9 ///
10 /// This is a separate implementation of LiveDebugValues, see
11 /// LiveDebugValues.cpp and VarLocBasedImpl.cpp for more information.
12 ///
13 /// This pass propagates variable locations between basic blocks, resolving
14 /// control flow conflicts between them. The problem is SSA construction, where
15 /// each debug instruction assigns the *value* that a variable has, and every
16 /// instruction where the variable is in scope uses that variable. The resulting
17 /// map of instruction-to-value is then translated into a register (or spill)
18 /// location for each variable over each instruction.
19 ///
20 /// The primary difference from normal SSA construction is that we cannot
21 /// _create_ PHI values that contain variable values. CodeGen has already
22 /// completed, and we can't alter it just to make debug-info complete. Thus:
23 /// we can identify function positions where we would like a PHI value for a
24 /// variable, but must search the MachineFunction to see whether such a PHI is
25 /// available. If no such PHI exists, the variable location must be dropped.
26 ///
27 /// To achieve this, we perform two kinds of analysis. First, we identify
28 /// every value defined by every instruction (ignoring those that only move
29 /// another value), then re-compute an SSA-form representation of the
30 /// MachineFunction, using value propagation to eliminate any un-necessary
31 /// PHI values. This gives us a map of every value computed in the function,
32 /// and its location within the register file / stack.
33 ///
34 /// Secondly, for each variable we perform the same analysis, where each debug
35 /// instruction is considered a def, and every instruction where the variable
36 /// is in lexical scope as a use. Value propagation is used again to eliminate
37 /// any un-necessary PHIs. This gives us a map of each variable to the value
38 /// it should have in a block.
39 ///
40 /// Once both are complete, we have two maps for each block:
41 ///  * Variables to the values they should have,
42 ///  * Values to the register / spill slot they are located in.
43 /// After which we can marry-up variable values with a location, and emit
44 /// DBG_VALUE instructions specifying those locations. Variable locations may
45 /// be dropped in this process due to the desired variable value not being
46 /// resident in any machine location, or because there is no PHI value in any
47 /// location that accurately represents the desired value.  The building of
48 /// location lists for each block is left to DbgEntityHistoryCalculator.
49 ///
50 /// This pass is kept efficient because the size of the first SSA problem
51 /// is proportional to the working-set size of the function, which the compiler
52 /// tries to keep small. (It's also proportional to the number of blocks).
53 /// Additionally, we repeatedly perform the second SSA problem analysis with
54 /// only the variables and blocks in a single lexical scope, exploiting their
55 /// locality.
56 ///
57 /// ### Terminology
58 ///
59 /// A machine location is a register or spill slot, a value is something that's
60 /// defined by an instruction or PHI node, while a variable value is the value
61 /// assigned to a variable. A variable location is a machine location, that must
62 /// contain the appropriate variable value. A value that is a PHI node is
63 /// occasionally called an mphi.
64 ///
65 /// The first SSA problem is the "machine value location" problem,
66 /// because we're determining which machine locations contain which values.
67 /// The "locations" are constant: what's unknown is what value they contain.
68 ///
69 /// The second SSA problem (the one for variables) is the "variable value
70 /// problem", because it's determining what values a variable has, rather than
71 /// what location those values are placed in.
72 ///
73 /// TODO:
74 ///   Overlapping fragments
75 ///   Entry values
76 ///   Add back DEBUG statements for debugging this
77 ///   Collect statistics
78 ///
79 //===----------------------------------------------------------------------===//
80 
81 #include "llvm/ADT/DenseMap.h"
82 #include "llvm/ADT/PostOrderIterator.h"
83 #include "llvm/ADT/STLExtras.h"
84 #include "llvm/ADT/SmallPtrSet.h"
85 #include "llvm/ADT/SmallSet.h"
86 #include "llvm/ADT/SmallVector.h"
87 #include "llvm/ADT/Statistic.h"
88 #include "llvm/Analysis/IteratedDominanceFrontier.h"
89 #include "llvm/CodeGen/LexicalScopes.h"
90 #include "llvm/CodeGen/MachineBasicBlock.h"
91 #include "llvm/CodeGen/MachineDominators.h"
92 #include "llvm/CodeGen/MachineFrameInfo.h"
93 #include "llvm/CodeGen/MachineFunction.h"
94 #include "llvm/CodeGen/MachineFunctionPass.h"
95 #include "llvm/CodeGen/MachineInstr.h"
96 #include "llvm/CodeGen/MachineInstrBuilder.h"
97 #include "llvm/CodeGen/MachineInstrBundle.h"
98 #include "llvm/CodeGen/MachineMemOperand.h"
99 #include "llvm/CodeGen/MachineOperand.h"
100 #include "llvm/CodeGen/PseudoSourceValue.h"
101 #include "llvm/CodeGen/RegisterScavenging.h"
102 #include "llvm/CodeGen/TargetFrameLowering.h"
103 #include "llvm/CodeGen/TargetInstrInfo.h"
104 #include "llvm/CodeGen/TargetLowering.h"
105 #include "llvm/CodeGen/TargetPassConfig.h"
106 #include "llvm/CodeGen/TargetRegisterInfo.h"
107 #include "llvm/CodeGen/TargetSubtargetInfo.h"
108 #include "llvm/Config/llvm-config.h"
109 #include "llvm/IR/DIBuilder.h"
110 #include "llvm/IR/DebugInfoMetadata.h"
111 #include "llvm/IR/DebugLoc.h"
112 #include "llvm/IR/Function.h"
113 #include "llvm/IR/Module.h"
114 #include "llvm/InitializePasses.h"
115 #include "llvm/MC/MCRegisterInfo.h"
116 #include "llvm/Pass.h"
117 #include "llvm/Support/Casting.h"
118 #include "llvm/Support/Compiler.h"
119 #include "llvm/Support/Debug.h"
120 #include "llvm/Support/TypeSize.h"
121 #include "llvm/Support/raw_ostream.h"
122 #include "llvm/Target/TargetMachine.h"
123 #include "llvm/Transforms/Utils/SSAUpdaterImpl.h"
124 #include <algorithm>
125 #include <cassert>
126 #include <cstdint>
127 #include <functional>
128 #include <limits.h>
129 #include <limits>
130 #include <queue>
131 #include <tuple>
132 #include <utility>
133 #include <vector>
134 
135 #include "InstrRefBasedImpl.h"
136 #include "LiveDebugValues.h"
137 
138 using namespace llvm;
139 using namespace LiveDebugValues;
140 
141 // SSAUpdaterImple sets DEBUG_TYPE, change it.
142 #undef DEBUG_TYPE
143 #define DEBUG_TYPE "livedebugvalues"
144 
145 // Act more like the VarLoc implementation, by propagating some locations too
146 // far and ignoring some transfers.
147 static cl::opt<bool> EmulateOldLDV("emulate-old-livedebugvalues", cl::Hidden,
148                                    cl::desc("Act like old LiveDebugValues did"),
149                                    cl::init(false));
150 
151 /// Tracker for converting machine value locations and variable values into
152 /// variable locations (the output of LiveDebugValues), recorded as DBG_VALUEs
153 /// specifying block live-in locations and transfers within blocks.
154 ///
155 /// Operating on a per-block basis, this class takes a (pre-loaded) MLocTracker
156 /// and must be initialized with the set of variable values that are live-in to
157 /// the block. The caller then repeatedly calls process(). TransferTracker picks
158 /// out variable locations for the live-in variable values (if there _is_ a
159 /// location) and creates the corresponding DBG_VALUEs. Then, as the block is
160 /// stepped through, transfers of values between machine locations are
161 /// identified and if profitable, a DBG_VALUE created.
162 ///
163 /// This is where debug use-before-defs would be resolved: a variable with an
164 /// unavailable value could materialize in the middle of a block, when the
165 /// value becomes available. Or, we could detect clobbers and re-specify the
166 /// variable in a backup location. (XXX these are unimplemented).
167 class TransferTracker {
168 public:
169   const TargetInstrInfo *TII;
170   const TargetLowering *TLI;
171   /// This machine location tracker is assumed to always contain the up-to-date
172   /// value mapping for all machine locations. TransferTracker only reads
173   /// information from it. (XXX make it const?)
174   MLocTracker *MTracker;
175   MachineFunction &MF;
176   bool ShouldEmitDebugEntryValues;
177 
178   /// Record of all changes in variable locations at a block position. Awkwardly
179   /// we allow inserting either before or after the point: MBB != nullptr
180   /// indicates it's before, otherwise after.
181   struct Transfer {
182     MachineBasicBlock::instr_iterator Pos; /// Position to insert DBG_VALUes
183     MachineBasicBlock *MBB; /// non-null if we should insert after.
184     SmallVector<MachineInstr *, 4> Insts; /// Vector of DBG_VALUEs to insert.
185   };
186 
187   struct LocAndProperties {
188     LocIdx Loc;
189     DbgValueProperties Properties;
190   };
191 
192   /// Collection of transfers (DBG_VALUEs) to be inserted.
193   SmallVector<Transfer, 32> Transfers;
194 
195   /// Local cache of what-value-is-in-what-LocIdx. Used to identify differences
196   /// between TransferTrackers view of variable locations and MLocTrackers. For
197   /// example, MLocTracker observes all clobbers, but TransferTracker lazily
198   /// does not.
199   SmallVector<ValueIDNum, 32> VarLocs;
200 
201   /// Map from LocIdxes to which DebugVariables are based that location.
202   /// Mantained while stepping through the block. Not accurate if
203   /// VarLocs[Idx] != MTracker->LocIdxToIDNum[Idx].
204   DenseMap<LocIdx, SmallSet<DebugVariable, 4>> ActiveMLocs;
205 
206   /// Map from DebugVariable to it's current location and qualifying meta
207   /// information. To be used in conjunction with ActiveMLocs to construct
208   /// enough information for the DBG_VALUEs for a particular LocIdx.
209   DenseMap<DebugVariable, LocAndProperties> ActiveVLocs;
210 
211   /// Temporary cache of DBG_VALUEs to be entered into the Transfers collection.
212   SmallVector<MachineInstr *, 4> PendingDbgValues;
213 
214   /// Record of a use-before-def: created when a value that's live-in to the
215   /// current block isn't available in any machine location, but it will be
216   /// defined in this block.
217   struct UseBeforeDef {
218     /// Value of this variable, def'd in block.
219     ValueIDNum ID;
220     /// Identity of this variable.
221     DebugVariable Var;
222     /// Additional variable properties.
223     DbgValueProperties Properties;
224   };
225 
226   /// Map from instruction index (within the block) to the set of UseBeforeDefs
227   /// that become defined at that instruction.
228   DenseMap<unsigned, SmallVector<UseBeforeDef, 1>> UseBeforeDefs;
229 
230   /// The set of variables that are in UseBeforeDefs and can become a location
231   /// once the relevant value is defined. An element being erased from this
232   /// collection prevents the use-before-def materializing.
233   DenseSet<DebugVariable> UseBeforeDefVariables;
234 
235   const TargetRegisterInfo &TRI;
236   const BitVector &CalleeSavedRegs;
237 
238   TransferTracker(const TargetInstrInfo *TII, MLocTracker *MTracker,
239                   MachineFunction &MF, const TargetRegisterInfo &TRI,
240                   const BitVector &CalleeSavedRegs, const TargetPassConfig &TPC)
241       : TII(TII), MTracker(MTracker), MF(MF), TRI(TRI),
242         CalleeSavedRegs(CalleeSavedRegs) {
243     TLI = MF.getSubtarget().getTargetLowering();
244     auto &TM = TPC.getTM<TargetMachine>();
245     ShouldEmitDebugEntryValues = TM.Options.ShouldEmitDebugEntryValues();
246   }
247 
248   /// Load object with live-in variable values. \p mlocs contains the live-in
249   /// values in each machine location, while \p vlocs the live-in variable
250   /// values. This method picks variable locations for the live-in variables,
251   /// creates DBG_VALUEs and puts them in #Transfers, then prepares the other
252   /// object fields to track variable locations as we step through the block.
253   /// FIXME: could just examine mloctracker instead of passing in \p mlocs?
254   void loadInlocs(MachineBasicBlock &MBB, ValueIDNum *MLocs,
255                   SmallVectorImpl<std::pair<DebugVariable, DbgValue>> &VLocs,
256                   unsigned NumLocs) {
257     ActiveMLocs.clear();
258     ActiveVLocs.clear();
259     VarLocs.clear();
260     VarLocs.reserve(NumLocs);
261     UseBeforeDefs.clear();
262     UseBeforeDefVariables.clear();
263 
264     auto isCalleeSaved = [&](LocIdx L) {
265       unsigned Reg = MTracker->LocIdxToLocID[L];
266       if (Reg >= MTracker->NumRegs)
267         return false;
268       for (MCRegAliasIterator RAI(Reg, &TRI, true); RAI.isValid(); ++RAI)
269         if (CalleeSavedRegs.test(*RAI))
270           return true;
271       return false;
272     };
273 
274     // Map of the preferred location for each value.
275     std::map<ValueIDNum, LocIdx> ValueToLoc;
276     ActiveMLocs.reserve(VLocs.size());
277     ActiveVLocs.reserve(VLocs.size());
278 
279     // Produce a map of value numbers to the current machine locs they live
280     // in. When emulating VarLocBasedImpl, there should only be one
281     // location; when not, we get to pick.
282     for (auto Location : MTracker->locations()) {
283       LocIdx Idx = Location.Idx;
284       ValueIDNum &VNum = MLocs[Idx.asU64()];
285       VarLocs.push_back(VNum);
286       auto it = ValueToLoc.find(VNum);
287       // In order of preference, pick:
288       //  * Callee saved registers,
289       //  * Other registers,
290       //  * Spill slots.
291       if (it == ValueToLoc.end() || MTracker->isSpill(it->second) ||
292           (!isCalleeSaved(it->second) && isCalleeSaved(Idx.asU64()))) {
293         // Insert, or overwrite if insertion failed.
294         auto PrefLocRes = ValueToLoc.insert(std::make_pair(VNum, Idx));
295         if (!PrefLocRes.second)
296           PrefLocRes.first->second = Idx;
297       }
298     }
299 
300     // Now map variables to their picked LocIdxes.
301     for (auto Var : VLocs) {
302       if (Var.second.Kind == DbgValue::Const) {
303         PendingDbgValues.push_back(
304             emitMOLoc(*Var.second.MO, Var.first, Var.second.Properties));
305         continue;
306       }
307 
308       // If the value has no location, we can't make a variable location.
309       const ValueIDNum &Num = Var.second.ID;
310       auto ValuesPreferredLoc = ValueToLoc.find(Num);
311       if (ValuesPreferredLoc == ValueToLoc.end()) {
312         // If it's a def that occurs in this block, register it as a
313         // use-before-def to be resolved as we step through the block.
314         if (Num.getBlock() == (unsigned)MBB.getNumber() && !Num.isPHI())
315           addUseBeforeDef(Var.first, Var.second.Properties, Num);
316         else
317           recoverAsEntryValue(Var.first, Var.second.Properties, Num);
318         continue;
319       }
320 
321       LocIdx M = ValuesPreferredLoc->second;
322       auto NewValue = LocAndProperties{M, Var.second.Properties};
323       auto Result = ActiveVLocs.insert(std::make_pair(Var.first, NewValue));
324       if (!Result.second)
325         Result.first->second = NewValue;
326       ActiveMLocs[M].insert(Var.first);
327       PendingDbgValues.push_back(
328           MTracker->emitLoc(M, Var.first, Var.second.Properties));
329     }
330     flushDbgValues(MBB.begin(), &MBB);
331   }
332 
333   /// Record that \p Var has value \p ID, a value that becomes available
334   /// later in the function.
335   void addUseBeforeDef(const DebugVariable &Var,
336                        const DbgValueProperties &Properties, ValueIDNum ID) {
337     UseBeforeDef UBD = {ID, Var, Properties};
338     UseBeforeDefs[ID.getInst()].push_back(UBD);
339     UseBeforeDefVariables.insert(Var);
340   }
341 
342   /// After the instruction at index \p Inst and position \p pos has been
343   /// processed, check whether it defines a variable value in a use-before-def.
344   /// If so, and the variable value hasn't changed since the start of the
345   /// block, create a DBG_VALUE.
346   void checkInstForNewValues(unsigned Inst, MachineBasicBlock::iterator pos) {
347     auto MIt = UseBeforeDefs.find(Inst);
348     if (MIt == UseBeforeDefs.end())
349       return;
350 
351     for (auto &Use : MIt->second) {
352       LocIdx L = Use.ID.getLoc();
353 
354       // If something goes very wrong, we might end up labelling a COPY
355       // instruction or similar with an instruction number, where it doesn't
356       // actually define a new value, instead it moves a value. In case this
357       // happens, discard.
358       if (MTracker->readMLoc(L) != Use.ID)
359         continue;
360 
361       // If a different debug instruction defined the variable value / location
362       // since the start of the block, don't materialize this use-before-def.
363       if (!UseBeforeDefVariables.count(Use.Var))
364         continue;
365 
366       PendingDbgValues.push_back(MTracker->emitLoc(L, Use.Var, Use.Properties));
367     }
368     flushDbgValues(pos, nullptr);
369   }
370 
371   /// Helper to move created DBG_VALUEs into Transfers collection.
372   void flushDbgValues(MachineBasicBlock::iterator Pos, MachineBasicBlock *MBB) {
373     if (PendingDbgValues.size() == 0)
374       return;
375 
376     // Pick out the instruction start position.
377     MachineBasicBlock::instr_iterator BundleStart;
378     if (MBB && Pos == MBB->begin())
379       BundleStart = MBB->instr_begin();
380     else
381       BundleStart = getBundleStart(Pos->getIterator());
382 
383     Transfers.push_back({BundleStart, MBB, PendingDbgValues});
384     PendingDbgValues.clear();
385   }
386 
387   bool isEntryValueVariable(const DebugVariable &Var,
388                             const DIExpression *Expr) const {
389     if (!Var.getVariable()->isParameter())
390       return false;
391 
392     if (Var.getInlinedAt())
393       return false;
394 
395     if (Expr->getNumElements() > 0)
396       return false;
397 
398     return true;
399   }
400 
401   bool isEntryValueValue(const ValueIDNum &Val) const {
402     // Must be in entry block (block number zero), and be a PHI / live-in value.
403     if (Val.getBlock() || !Val.isPHI())
404       return false;
405 
406     // Entry values must enter in a register.
407     if (MTracker->isSpill(Val.getLoc()))
408       return false;
409 
410     Register SP = TLI->getStackPointerRegisterToSaveRestore();
411     Register FP = TRI.getFrameRegister(MF);
412     Register Reg = MTracker->LocIdxToLocID[Val.getLoc()];
413     return Reg != SP && Reg != FP;
414   }
415 
416   bool recoverAsEntryValue(const DebugVariable &Var, DbgValueProperties &Prop,
417                            const ValueIDNum &Num) {
418     // Is this variable location a candidate to be an entry value. First,
419     // should we be trying this at all?
420     if (!ShouldEmitDebugEntryValues)
421       return false;
422 
423     // Is the variable appropriate for entry values (i.e., is a parameter).
424     if (!isEntryValueVariable(Var, Prop.DIExpr))
425       return false;
426 
427     // Is the value assigned to this variable still the entry value?
428     if (!isEntryValueValue(Num))
429       return false;
430 
431     // Emit a variable location using an entry value expression.
432     DIExpression *NewExpr =
433         DIExpression::prepend(Prop.DIExpr, DIExpression::EntryValue);
434     Register Reg = MTracker->LocIdxToLocID[Num.getLoc()];
435     MachineOperand MO = MachineOperand::CreateReg(Reg, false);
436 
437     PendingDbgValues.push_back(emitMOLoc(MO, Var, {NewExpr, Prop.Indirect}));
438     return true;
439   }
440 
441   /// Change a variable value after encountering a DBG_VALUE inside a block.
442   void redefVar(const MachineInstr &MI) {
443     DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
444                       MI.getDebugLoc()->getInlinedAt());
445     DbgValueProperties Properties(MI);
446 
447     const MachineOperand &MO = MI.getOperand(0);
448 
449     // Ignore non-register locations, we don't transfer those.
450     if (!MO.isReg() || MO.getReg() == 0) {
451       auto It = ActiveVLocs.find(Var);
452       if (It != ActiveVLocs.end()) {
453         ActiveMLocs[It->second.Loc].erase(Var);
454         ActiveVLocs.erase(It);
455      }
456       // Any use-before-defs no longer apply.
457       UseBeforeDefVariables.erase(Var);
458       return;
459     }
460 
461     Register Reg = MO.getReg();
462     LocIdx NewLoc = MTracker->getRegMLoc(Reg);
463     redefVar(MI, Properties, NewLoc);
464   }
465 
466   /// Handle a change in variable location within a block. Terminate the
467   /// variables current location, and record the value it now refers to, so
468   /// that we can detect location transfers later on.
469   void redefVar(const MachineInstr &MI, const DbgValueProperties &Properties,
470                 Optional<LocIdx> OptNewLoc) {
471     DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
472                       MI.getDebugLoc()->getInlinedAt());
473     // Any use-before-defs no longer apply.
474     UseBeforeDefVariables.erase(Var);
475 
476     // Erase any previous location,
477     auto It = ActiveVLocs.find(Var);
478     if (It != ActiveVLocs.end())
479       ActiveMLocs[It->second.Loc].erase(Var);
480 
481     // If there _is_ no new location, all we had to do was erase.
482     if (!OptNewLoc)
483       return;
484     LocIdx NewLoc = *OptNewLoc;
485 
486     // Check whether our local copy of values-by-location in #VarLocs is out of
487     // date. Wipe old tracking data for the location if it's been clobbered in
488     // the meantime.
489     if (MTracker->readMLoc(NewLoc) != VarLocs[NewLoc.asU64()]) {
490       for (auto &P : ActiveMLocs[NewLoc]) {
491         ActiveVLocs.erase(P);
492       }
493       ActiveMLocs[NewLoc.asU64()].clear();
494       VarLocs[NewLoc.asU64()] = MTracker->readMLoc(NewLoc);
495     }
496 
497     ActiveMLocs[NewLoc].insert(Var);
498     if (It == ActiveVLocs.end()) {
499       ActiveVLocs.insert(
500           std::make_pair(Var, LocAndProperties{NewLoc, Properties}));
501     } else {
502       It->second.Loc = NewLoc;
503       It->second.Properties = Properties;
504     }
505   }
506 
507   /// Account for a location \p mloc being clobbered. Examine the variable
508   /// locations that will be terminated: and try to recover them by using
509   /// another location. Optionally, given \p MakeUndef, emit a DBG_VALUE to
510   /// explicitly terminate a location if it can't be recovered.
511   void clobberMloc(LocIdx MLoc, MachineBasicBlock::iterator Pos,
512                    bool MakeUndef = true) {
513     auto ActiveMLocIt = ActiveMLocs.find(MLoc);
514     if (ActiveMLocIt == ActiveMLocs.end())
515       return;
516 
517     // What was the old variable value?
518     ValueIDNum OldValue = VarLocs[MLoc.asU64()];
519     VarLocs[MLoc.asU64()] = ValueIDNum::EmptyValue;
520 
521     // Examine the remaining variable locations: if we can find the same value
522     // again, we can recover the location.
523     Optional<LocIdx> NewLoc = None;
524     for (auto Loc : MTracker->locations())
525       if (Loc.Value == OldValue)
526         NewLoc = Loc.Idx;
527 
528     // If there is no location, and we weren't asked to make the variable
529     // explicitly undef, then stop here.
530     if (!NewLoc && !MakeUndef) {
531       // Try and recover a few more locations with entry values.
532       for (auto &Var : ActiveMLocIt->second) {
533         auto &Prop = ActiveVLocs.find(Var)->second.Properties;
534         recoverAsEntryValue(Var, Prop, OldValue);
535       }
536       flushDbgValues(Pos, nullptr);
537       return;
538     }
539 
540     // Examine all the variables based on this location.
541     DenseSet<DebugVariable> NewMLocs;
542     for (auto &Var : ActiveMLocIt->second) {
543       auto ActiveVLocIt = ActiveVLocs.find(Var);
544       // Re-state the variable location: if there's no replacement then NewLoc
545       // is None and a $noreg DBG_VALUE will be created. Otherwise, a DBG_VALUE
546       // identifying the alternative location will be emitted.
547       const DIExpression *Expr = ActiveVLocIt->second.Properties.DIExpr;
548       DbgValueProperties Properties(Expr, false);
549       PendingDbgValues.push_back(MTracker->emitLoc(NewLoc, Var, Properties));
550 
551       // Update machine locations <=> variable locations maps. Defer updating
552       // ActiveMLocs to avoid invalidaing the ActiveMLocIt iterator.
553       if (!NewLoc) {
554         ActiveVLocs.erase(ActiveVLocIt);
555       } else {
556         ActiveVLocIt->second.Loc = *NewLoc;
557         NewMLocs.insert(Var);
558       }
559     }
560 
561     // Commit any deferred ActiveMLoc changes.
562     if (!NewMLocs.empty())
563       for (auto &Var : NewMLocs)
564         ActiveMLocs[*NewLoc].insert(Var);
565 
566     // We lazily track what locations have which values; if we've found a new
567     // location for the clobbered value, remember it.
568     if (NewLoc)
569       VarLocs[NewLoc->asU64()] = OldValue;
570 
571     flushDbgValues(Pos, nullptr);
572 
573     // Re-find ActiveMLocIt, iterator could have been invalidated.
574     ActiveMLocIt = ActiveMLocs.find(MLoc);
575     ActiveMLocIt->second.clear();
576   }
577 
578   /// Transfer variables based on \p Src to be based on \p Dst. This handles
579   /// both register copies as well as spills and restores. Creates DBG_VALUEs
580   /// describing the movement.
581   void transferMlocs(LocIdx Src, LocIdx Dst, MachineBasicBlock::iterator Pos) {
582     // Does Src still contain the value num we expect? If not, it's been
583     // clobbered in the meantime, and our variable locations are stale.
584     if (VarLocs[Src.asU64()] != MTracker->readMLoc(Src))
585       return;
586 
587     // assert(ActiveMLocs[Dst].size() == 0);
588     //^^^ Legitimate scenario on account of un-clobbered slot being assigned to?
589 
590     // Move set of active variables from one location to another.
591     auto MovingVars = ActiveMLocs[Src];
592     ActiveMLocs[Dst] = MovingVars;
593     VarLocs[Dst.asU64()] = VarLocs[Src.asU64()];
594 
595     // For each variable based on Src; create a location at Dst.
596     for (auto &Var : MovingVars) {
597       auto ActiveVLocIt = ActiveVLocs.find(Var);
598       assert(ActiveVLocIt != ActiveVLocs.end());
599       ActiveVLocIt->second.Loc = Dst;
600 
601       MachineInstr *MI =
602           MTracker->emitLoc(Dst, Var, ActiveVLocIt->second.Properties);
603       PendingDbgValues.push_back(MI);
604     }
605     ActiveMLocs[Src].clear();
606     flushDbgValues(Pos, nullptr);
607 
608     // XXX XXX XXX "pretend to be old LDV" means dropping all tracking data
609     // about the old location.
610     if (EmulateOldLDV)
611       VarLocs[Src.asU64()] = ValueIDNum::EmptyValue;
612   }
613 
614   MachineInstrBuilder emitMOLoc(const MachineOperand &MO,
615                                 const DebugVariable &Var,
616                                 const DbgValueProperties &Properties) {
617     DebugLoc DL = DILocation::get(Var.getVariable()->getContext(), 0, 0,
618                                   Var.getVariable()->getScope(),
619                                   const_cast<DILocation *>(Var.getInlinedAt()));
620     auto MIB = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE));
621     MIB.add(MO);
622     if (Properties.Indirect)
623       MIB.addImm(0);
624     else
625       MIB.addReg(0);
626     MIB.addMetadata(Var.getVariable());
627     MIB.addMetadata(Properties.DIExpr);
628     return MIB;
629   }
630 };
631 
632 //===----------------------------------------------------------------------===//
633 //            Implementation
634 //===----------------------------------------------------------------------===//
635 
636 ValueIDNum ValueIDNum::EmptyValue = {UINT_MAX, UINT_MAX, UINT_MAX};
637 ValueIDNum ValueIDNum::TombstoneValue = {UINT_MAX, UINT_MAX, UINT_MAX - 1};
638 
639 #ifndef NDEBUG
640 void DbgValue::dump(const MLocTracker *MTrack) const {
641   if (Kind == Const) {
642     MO->dump();
643   } else if (Kind == NoVal) {
644     dbgs() << "NoVal(" << BlockNo << ")";
645   } else if (Kind == VPHI) {
646     dbgs() << "VPHI(" << BlockNo << "," << MTrack->IDAsString(ID) << ")";
647   } else {
648     assert(Kind == Def);
649     dbgs() << MTrack->IDAsString(ID);
650   }
651   if (Properties.Indirect)
652     dbgs() << " indir";
653   if (Properties.DIExpr)
654     dbgs() << " " << *Properties.DIExpr;
655 }
656 #endif
657 
658 MLocTracker::MLocTracker(MachineFunction &MF, const TargetInstrInfo &TII,
659                          const TargetRegisterInfo &TRI,
660                          const TargetLowering &TLI)
661     : MF(MF), TII(TII), TRI(TRI), TLI(TLI),
662       LocIdxToIDNum(ValueIDNum::EmptyValue), LocIdxToLocID(0) {
663   NumRegs = TRI.getNumRegs();
664   reset();
665   LocIDToLocIdx.resize(NumRegs, LocIdx::MakeIllegalLoc());
666   assert(NumRegs < (1u << NUM_LOC_BITS)); // Detect bit packing failure
667 
668   // Always track SP. This avoids the implicit clobbering caused by regmasks
669   // from affectings its values. (LiveDebugValues disbelieves calls and
670   // regmasks that claim to clobber SP).
671   Register SP = TLI.getStackPointerRegisterToSaveRestore();
672   if (SP) {
673     unsigned ID = getLocID(SP);
674     (void)lookupOrTrackRegister(ID);
675 
676     for (MCRegAliasIterator RAI(SP, &TRI, true); RAI.isValid(); ++RAI)
677       SPAliases.insert(*RAI);
678   }
679 
680   // Build some common stack positions -- full registers being spilt to the
681   // stack.
682   StackSlotIdxes.insert({{8, 0}, 0});
683   StackSlotIdxes.insert({{16, 0}, 1});
684   StackSlotIdxes.insert({{32, 0}, 2});
685   StackSlotIdxes.insert({{64, 0}, 3});
686   StackSlotIdxes.insert({{128, 0}, 4});
687   StackSlotIdxes.insert({{256, 0}, 5});
688   StackSlotIdxes.insert({{512, 0}, 6});
689 
690   // Traverse all the subregister idxes, and ensure there's an index for them.
691   // Duplicates are no problem: we're interested in their position in the
692   // stack slot, we don't want to type the slot.
693   for (unsigned int I = 1; I < TRI.getNumSubRegIndices(); ++I) {
694     unsigned Size = TRI.getSubRegIdxSize(I);
695     unsigned Offs = TRI.getSubRegIdxOffset(I);
696     unsigned Idx = StackSlotIdxes.size();
697 
698     // Some subregs have -1, -2 and so forth fed into their fields, to mean
699     // special backend things. Ignore those.
700     if (Size > 60000 || Offs > 60000)
701       continue;
702 
703     StackSlotIdxes.insert({{Size, Offs}, Idx});
704   }
705 
706   for (auto &Idx : StackSlotIdxes)
707     StackIdxesToPos[Idx.second] = Idx.first;
708 
709   NumSlotIdxes = StackSlotIdxes.size();
710 }
711 
712 LocIdx MLocTracker::trackRegister(unsigned ID) {
713   assert(ID != 0);
714   LocIdx NewIdx = LocIdx(LocIdxToIDNum.size());
715   LocIdxToIDNum.grow(NewIdx);
716   LocIdxToLocID.grow(NewIdx);
717 
718   // Default: it's an mphi.
719   ValueIDNum ValNum = {CurBB, 0, NewIdx};
720   // Was this reg ever touched by a regmask?
721   for (const auto &MaskPair : reverse(Masks)) {
722     if (MaskPair.first->clobbersPhysReg(ID)) {
723       // There was an earlier def we skipped.
724       ValNum = {CurBB, MaskPair.second, NewIdx};
725       break;
726     }
727   }
728 
729   LocIdxToIDNum[NewIdx] = ValNum;
730   LocIdxToLocID[NewIdx] = ID;
731   return NewIdx;
732 }
733 
734 void MLocTracker::writeRegMask(const MachineOperand *MO, unsigned CurBB,
735                                unsigned InstID) {
736   // Def any register we track have that isn't preserved. The regmask
737   // terminates the liveness of a register, meaning its value can't be
738   // relied upon -- we represent this by giving it a new value.
739   for (auto Location : locations()) {
740     unsigned ID = LocIdxToLocID[Location.Idx];
741     // Don't clobber SP, even if the mask says it's clobbered.
742     if (ID < NumRegs && !SPAliases.count(ID) && MO->clobbersPhysReg(ID))
743       defReg(ID, CurBB, InstID);
744   }
745   Masks.push_back(std::make_pair(MO, InstID));
746 }
747 
748 SpillLocationNo MLocTracker::getOrTrackSpillLoc(SpillLoc L) {
749   SpillLocationNo SpillID(SpillLocs.idFor(L));
750   if (SpillID.id() == 0) {
751     // Spill location is untracked: create record for this one, and all
752     // subregister slots too.
753     SpillID = SpillLocationNo(SpillLocs.insert(L));
754     for (unsigned StackIdx = 0; StackIdx < NumSlotIdxes; ++StackIdx) {
755       unsigned L = getSpillIDWithIdx(SpillID, StackIdx);
756       LocIdx Idx = LocIdx(LocIdxToIDNum.size()); // New idx
757       LocIdxToIDNum.grow(Idx);
758       LocIdxToLocID.grow(Idx);
759       LocIDToLocIdx.push_back(Idx);
760       LocIdxToLocID[Idx] = L;
761       // Initialize to PHI value; corresponds to the location's live-in value
762       // during transfer function construction.
763       LocIdxToIDNum[Idx] = ValueIDNum(CurBB, 0, Idx);
764     }
765   }
766   return SpillID;
767 }
768 
769 std::string MLocTracker::LocIdxToName(LocIdx Idx) const {
770   unsigned ID = LocIdxToLocID[Idx];
771   if (ID >= NumRegs) {
772     StackSlotPos Pos = locIDToSpillIdx(ID);
773     ID -= NumRegs;
774     unsigned Slot = ID / NumSlotIdxes;
775     return Twine("slot ")
776         .concat(Twine(Slot).concat(Twine(" sz ").concat(Twine(Pos.first)
777         .concat(Twine(" offs ").concat(Twine(Pos.second))))))
778         .str();
779   } else {
780     return TRI.getRegAsmName(ID).str();
781   }
782 }
783 
784 std::string MLocTracker::IDAsString(const ValueIDNum &Num) const {
785   std::string DefName = LocIdxToName(Num.getLoc());
786   return Num.asString(DefName);
787 }
788 
789 #ifndef NDEBUG
790 LLVM_DUMP_METHOD void MLocTracker::dump() {
791   for (auto Location : locations()) {
792     std::string MLocName = LocIdxToName(Location.Value.getLoc());
793     std::string DefName = Location.Value.asString(MLocName);
794     dbgs() << LocIdxToName(Location.Idx) << " --> " << DefName << "\n";
795   }
796 }
797 
798 LLVM_DUMP_METHOD void MLocTracker::dump_mloc_map() {
799   for (auto Location : locations()) {
800     std::string foo = LocIdxToName(Location.Idx);
801     dbgs() << "Idx " << Location.Idx.asU64() << " " << foo << "\n";
802   }
803 }
804 #endif
805 
806 MachineInstrBuilder MLocTracker::emitLoc(Optional<LocIdx> MLoc,
807                                          const DebugVariable &Var,
808                                          const DbgValueProperties &Properties) {
809   DebugLoc DL = DILocation::get(Var.getVariable()->getContext(), 0, 0,
810                                 Var.getVariable()->getScope(),
811                                 const_cast<DILocation *>(Var.getInlinedAt()));
812   auto MIB = BuildMI(MF, DL, TII.get(TargetOpcode::DBG_VALUE));
813 
814   const DIExpression *Expr = Properties.DIExpr;
815   if (!MLoc) {
816     // No location -> DBG_VALUE $noreg
817     MIB.addReg(0);
818     MIB.addReg(0);
819   } else if (LocIdxToLocID[*MLoc] >= NumRegs) {
820     unsigned LocID = LocIdxToLocID[*MLoc];
821     SpillLocationNo SpillID = locIDToSpill(LocID);
822     StackSlotPos StackIdx = locIDToSpillIdx(LocID);
823     unsigned short Offset = StackIdx.second;
824 
825     // TODO: support variables that are located in spill slots, with non-zero
826     // offsets from the start of the spill slot. It would require some more
827     // complex DIExpression calculations. This doesn't seem to be produced by
828     // LLVM right now, so don't try and support it.
829     // Accept no-subregister slots and subregisters where the offset is zero.
830     // The consumer should already have type information to work out how large
831     // the variable is.
832     if (Offset == 0) {
833       const SpillLoc &Spill = SpillLocs[SpillID.id()];
834       Expr = TRI.prependOffsetExpression(Expr, DIExpression::ApplyOffset,
835                                          Spill.SpillOffset);
836       unsigned Base = Spill.SpillBase;
837       MIB.addReg(Base);
838       MIB.addImm(0);
839     } else {
840       // This is a stack location with a weird subregister offset: emit an undef
841       // DBG_VALUE instead.
842       MIB.addReg(0);
843       MIB.addReg(0);
844     }
845   } else {
846     // Non-empty, non-stack slot, must be a plain register.
847     unsigned LocID = LocIdxToLocID[*MLoc];
848     MIB.addReg(LocID);
849     if (Properties.Indirect)
850       MIB.addImm(0);
851     else
852       MIB.addReg(0);
853   }
854 
855   MIB.addMetadata(Var.getVariable());
856   MIB.addMetadata(Expr);
857   return MIB;
858 }
859 
860 /// Default construct and initialize the pass.
861 InstrRefBasedLDV::InstrRefBasedLDV() {}
862 
863 bool InstrRefBasedLDV::isCalleeSaved(LocIdx L) const {
864   unsigned Reg = MTracker->LocIdxToLocID[L];
865   for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
866     if (CalleeSavedRegs.test(*RAI))
867       return true;
868   return false;
869 }
870 
871 //===----------------------------------------------------------------------===//
872 //            Debug Range Extension Implementation
873 //===----------------------------------------------------------------------===//
874 
875 #ifndef NDEBUG
876 // Something to restore in the future.
877 // void InstrRefBasedLDV::printVarLocInMBB(..)
878 #endif
879 
880 SpillLocationNo
881 InstrRefBasedLDV::extractSpillBaseRegAndOffset(const MachineInstr &MI) {
882   assert(MI.hasOneMemOperand() &&
883          "Spill instruction does not have exactly one memory operand?");
884   auto MMOI = MI.memoperands_begin();
885   const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue();
886   assert(PVal->kind() == PseudoSourceValue::FixedStack &&
887          "Inconsistent memory operand in spill instruction");
888   int FI = cast<FixedStackPseudoSourceValue>(PVal)->getFrameIndex();
889   const MachineBasicBlock *MBB = MI.getParent();
890   Register Reg;
891   StackOffset Offset = TFI->getFrameIndexReference(*MBB->getParent(), FI, Reg);
892   return MTracker->getOrTrackSpillLoc({Reg, Offset});
893 }
894 
895 Optional<LocIdx> InstrRefBasedLDV::findLocationForMemOperand(const MachineInstr &MI) {
896   SpillLocationNo SpillLoc =  extractSpillBaseRegAndOffset(MI);
897 
898   // Where in the stack slot is this value defined -- i.e., what size of value
899   // is this? An important question, because it could be loaded into a register
900   // from the stack at some point. Happily the memory operand will tell us
901   // the size written to the stack.
902   auto *MemOperand = *MI.memoperands_begin();
903   unsigned SizeInBits = MemOperand->getSizeInBits();
904 
905   // Find that position in the stack indexes we're tracking.
906   auto IdxIt = MTracker->StackSlotIdxes.find({SizeInBits, 0});
907   if (IdxIt == MTracker->StackSlotIdxes.end())
908     // That index is not tracked. This is suprising, and unlikely to ever
909     // occur, but the safe action is to indicate the variable is optimised out.
910     return None;
911 
912   unsigned SpillID = MTracker->getSpillIDWithIdx(SpillLoc, IdxIt->second);
913   return MTracker->getSpillMLoc(SpillID);
914 }
915 
916 /// End all previous ranges related to @MI and start a new range from @MI
917 /// if it is a DBG_VALUE instr.
918 bool InstrRefBasedLDV::transferDebugValue(const MachineInstr &MI) {
919   if (!MI.isDebugValue())
920     return false;
921 
922   const DILocalVariable *Var = MI.getDebugVariable();
923   const DIExpression *Expr = MI.getDebugExpression();
924   const DILocation *DebugLoc = MI.getDebugLoc();
925   const DILocation *InlinedAt = DebugLoc->getInlinedAt();
926   assert(Var->isValidLocationForIntrinsic(DebugLoc) &&
927          "Expected inlined-at fields to agree");
928 
929   DebugVariable V(Var, Expr, InlinedAt);
930   DbgValueProperties Properties(MI);
931 
932   // If there are no instructions in this lexical scope, do no location tracking
933   // at all, this variable shouldn't get a legitimate location range.
934   auto *Scope = LS.findLexicalScope(MI.getDebugLoc().get());
935   if (Scope == nullptr)
936     return true; // handled it; by doing nothing
937 
938   // For now, ignore DBG_VALUE_LISTs when extending ranges. Allow it to
939   // contribute to locations in this block, but don't propagate further.
940   // Interpret it like a DBG_VALUE $noreg.
941   if (MI.isDebugValueList()) {
942     if (VTracker)
943       VTracker->defVar(MI, Properties, None);
944     if (TTracker)
945       TTracker->redefVar(MI, Properties, None);
946     return true;
947   }
948 
949   const MachineOperand &MO = MI.getOperand(0);
950 
951   // MLocTracker needs to know that this register is read, even if it's only
952   // read by a debug inst.
953   if (MO.isReg() && MO.getReg() != 0)
954     (void)MTracker->readReg(MO.getReg());
955 
956   // If we're preparing for the second analysis (variables), the machine value
957   // locations are already solved, and we report this DBG_VALUE and the value
958   // it refers to to VLocTracker.
959   if (VTracker) {
960     if (MO.isReg()) {
961       // Feed defVar the new variable location, or if this is a
962       // DBG_VALUE $noreg, feed defVar None.
963       if (MO.getReg())
964         VTracker->defVar(MI, Properties, MTracker->readReg(MO.getReg()));
965       else
966         VTracker->defVar(MI, Properties, None);
967     } else if (MI.getOperand(0).isImm() || MI.getOperand(0).isFPImm() ||
968                MI.getOperand(0).isCImm()) {
969       VTracker->defVar(MI, MI.getOperand(0));
970     }
971   }
972 
973   // If performing final tracking of transfers, report this variable definition
974   // to the TransferTracker too.
975   if (TTracker)
976     TTracker->redefVar(MI);
977   return true;
978 }
979 
980 bool InstrRefBasedLDV::transferDebugInstrRef(MachineInstr &MI,
981                                              ValueIDNum **MLiveOuts,
982                                              ValueIDNum **MLiveIns) {
983   if (!MI.isDebugRef())
984     return false;
985 
986   // Only handle this instruction when we are building the variable value
987   // transfer function.
988   if (!VTracker)
989     return false;
990 
991   unsigned InstNo = MI.getOperand(0).getImm();
992   unsigned OpNo = MI.getOperand(1).getImm();
993 
994   const DILocalVariable *Var = MI.getDebugVariable();
995   const DIExpression *Expr = MI.getDebugExpression();
996   const DILocation *DebugLoc = MI.getDebugLoc();
997   const DILocation *InlinedAt = DebugLoc->getInlinedAt();
998   assert(Var->isValidLocationForIntrinsic(DebugLoc) &&
999          "Expected inlined-at fields to agree");
1000 
1001   DebugVariable V(Var, Expr, InlinedAt);
1002 
1003   auto *Scope = LS.findLexicalScope(MI.getDebugLoc().get());
1004   if (Scope == nullptr)
1005     return true; // Handled by doing nothing. This variable is never in scope.
1006 
1007   const MachineFunction &MF = *MI.getParent()->getParent();
1008 
1009   // Various optimizations may have happened to the value during codegen,
1010   // recorded in the value substitution table. Apply any substitutions to
1011   // the instruction / operand number in this DBG_INSTR_REF, and collect
1012   // any subregister extractions performed during optimization.
1013 
1014   // Create dummy substitution with Src set, for lookup.
1015   auto SoughtSub =
1016       MachineFunction::DebugSubstitution({InstNo, OpNo}, {0, 0}, 0);
1017 
1018   SmallVector<unsigned, 4> SeenSubregs;
1019   auto LowerBoundIt = llvm::lower_bound(MF.DebugValueSubstitutions, SoughtSub);
1020   while (LowerBoundIt != MF.DebugValueSubstitutions.end() &&
1021          LowerBoundIt->Src == SoughtSub.Src) {
1022     std::tie(InstNo, OpNo) = LowerBoundIt->Dest;
1023     SoughtSub.Src = LowerBoundIt->Dest;
1024     if (unsigned Subreg = LowerBoundIt->Subreg)
1025       SeenSubregs.push_back(Subreg);
1026     LowerBoundIt = llvm::lower_bound(MF.DebugValueSubstitutions, SoughtSub);
1027   }
1028 
1029   // Default machine value number is <None> -- if no instruction defines
1030   // the corresponding value, it must have been optimized out.
1031   Optional<ValueIDNum> NewID = None;
1032 
1033   // Try to lookup the instruction number, and find the machine value number
1034   // that it defines. It could be an instruction, or a PHI.
1035   auto InstrIt = DebugInstrNumToInstr.find(InstNo);
1036   auto PHIIt = std::lower_bound(DebugPHINumToValue.begin(),
1037                                 DebugPHINumToValue.end(), InstNo);
1038   if (InstrIt != DebugInstrNumToInstr.end()) {
1039     const MachineInstr &TargetInstr = *InstrIt->second.first;
1040     uint64_t BlockNo = TargetInstr.getParent()->getNumber();
1041 
1042     // Pick out the designated operand. It might be a memory reference, if
1043     // a register def was folded into a stack store.
1044     if (OpNo == MachineFunction::DebugOperandMemNumber &&
1045         TargetInstr.hasOneMemOperand()) {
1046       Optional<LocIdx> L = findLocationForMemOperand(TargetInstr);
1047       if (L)
1048         NewID = ValueIDNum(BlockNo, InstrIt->second.second, *L);
1049     } else if (OpNo != MachineFunction::DebugOperandMemNumber) {
1050       assert(OpNo < TargetInstr.getNumOperands());
1051       const MachineOperand &MO = TargetInstr.getOperand(OpNo);
1052 
1053       // Today, this can only be a register.
1054       assert(MO.isReg() && MO.isDef());
1055 
1056       unsigned LocID = MTracker->getLocID(MO.getReg());
1057       LocIdx L = MTracker->LocIDToLocIdx[LocID];
1058       NewID = ValueIDNum(BlockNo, InstrIt->second.second, L);
1059     }
1060     // else: NewID is left as None.
1061   } else if (PHIIt != DebugPHINumToValue.end() && PHIIt->InstrNum == InstNo) {
1062     // It's actually a PHI value. Which value it is might not be obvious, use
1063     // the resolver helper to find out.
1064     NewID = resolveDbgPHIs(*MI.getParent()->getParent(), MLiveOuts, MLiveIns,
1065                            MI, InstNo);
1066   }
1067 
1068   // Apply any subregister extractions, in reverse. We might have seen code
1069   // like this:
1070   //    CALL64 @foo, implicit-def $rax
1071   //    %0:gr64 = COPY $rax
1072   //    %1:gr32 = COPY %0.sub_32bit
1073   //    %2:gr16 = COPY %1.sub_16bit
1074   //    %3:gr8  = COPY %2.sub_8bit
1075   // In which case each copy would have been recorded as a substitution with
1076   // a subregister qualifier. Apply those qualifiers now.
1077   if (NewID && !SeenSubregs.empty()) {
1078     unsigned Offset = 0;
1079     unsigned Size = 0;
1080 
1081     // Look at each subregister that we passed through, and progressively
1082     // narrow in, accumulating any offsets that occur. Substitutions should
1083     // only ever be the same or narrower width than what they read from;
1084     // iterate in reverse order so that we go from wide to small.
1085     for (unsigned Subreg : reverse(SeenSubregs)) {
1086       unsigned ThisSize = TRI->getSubRegIdxSize(Subreg);
1087       unsigned ThisOffset = TRI->getSubRegIdxOffset(Subreg);
1088       Offset += ThisOffset;
1089       Size = (Size == 0) ? ThisSize : std::min(Size, ThisSize);
1090     }
1091 
1092     // If that worked, look for an appropriate subregister with the register
1093     // where the define happens. Don't look at values that were defined during
1094     // a stack write: we can't currently express register locations within
1095     // spills.
1096     LocIdx L = NewID->getLoc();
1097     if (NewID && !MTracker->isSpill(L)) {
1098       // Find the register class for the register where this def happened.
1099       // FIXME: no index for this?
1100       Register Reg = MTracker->LocIdxToLocID[L];
1101       const TargetRegisterClass *TRC = nullptr;
1102       for (auto *TRCI : TRI->regclasses())
1103         if (TRCI->contains(Reg))
1104           TRC = TRCI;
1105       assert(TRC && "Couldn't find target register class?");
1106 
1107       // If the register we have isn't the right size or in the right place,
1108       // Try to find a subregister inside it.
1109       unsigned MainRegSize = TRI->getRegSizeInBits(*TRC);
1110       if (Size != MainRegSize || Offset) {
1111         // Enumerate all subregisters, searching.
1112         Register NewReg = 0;
1113         for (MCSubRegIterator SRI(Reg, TRI, false); SRI.isValid(); ++SRI) {
1114           unsigned Subreg = TRI->getSubRegIndex(Reg, *SRI);
1115           unsigned SubregSize = TRI->getSubRegIdxSize(Subreg);
1116           unsigned SubregOffset = TRI->getSubRegIdxOffset(Subreg);
1117           if (SubregSize == Size && SubregOffset == Offset) {
1118             NewReg = *SRI;
1119             break;
1120           }
1121         }
1122 
1123         // If we didn't find anything: there's no way to express our value.
1124         if (!NewReg) {
1125           NewID = None;
1126         } else {
1127           // Re-state the value as being defined within the subregister
1128           // that we found.
1129           LocIdx NewLoc = MTracker->lookupOrTrackRegister(NewReg);
1130           NewID = ValueIDNum(NewID->getBlock(), NewID->getInst(), NewLoc);
1131         }
1132       }
1133     } else {
1134       // If we can't handle subregisters, unset the new value.
1135       NewID = None;
1136     }
1137   }
1138 
1139   // We, we have a value number or None. Tell the variable value tracker about
1140   // it. The rest of this LiveDebugValues implementation acts exactly the same
1141   // for DBG_INSTR_REFs as DBG_VALUEs (just, the former can refer to values that
1142   // aren't immediately available).
1143   DbgValueProperties Properties(Expr, false);
1144   VTracker->defVar(MI, Properties, NewID);
1145 
1146   // If we're on the final pass through the function, decompose this INSTR_REF
1147   // into a plain DBG_VALUE.
1148   if (!TTracker)
1149     return true;
1150 
1151   // Pick a location for the machine value number, if such a location exists.
1152   // (This information could be stored in TransferTracker to make it faster).
1153   Optional<LocIdx> FoundLoc = None;
1154   for (auto Location : MTracker->locations()) {
1155     LocIdx CurL = Location.Idx;
1156     ValueIDNum ID = MTracker->readMLoc(CurL);
1157     if (NewID && ID == NewID) {
1158       // If this is the first location with that value, pick it. Otherwise,
1159       // consider whether it's a "longer term" location.
1160       if (!FoundLoc) {
1161         FoundLoc = CurL;
1162         continue;
1163       }
1164 
1165       if (MTracker->isSpill(CurL))
1166         FoundLoc = CurL; // Spills are a longer term location.
1167       else if (!MTracker->isSpill(*FoundLoc) &&
1168                !MTracker->isSpill(CurL) &&
1169                !isCalleeSaved(*FoundLoc) &&
1170                isCalleeSaved(CurL))
1171         FoundLoc = CurL; // Callee saved regs are longer term than normal.
1172     }
1173   }
1174 
1175   // Tell transfer tracker that the variable value has changed.
1176   TTracker->redefVar(MI, Properties, FoundLoc);
1177 
1178   // If there was a value with no location; but the value is defined in a
1179   // later instruction in this block, this is a block-local use-before-def.
1180   if (!FoundLoc && NewID && NewID->getBlock() == CurBB &&
1181       NewID->getInst() > CurInst)
1182     TTracker->addUseBeforeDef(V, {MI.getDebugExpression(), false}, *NewID);
1183 
1184   // Produce a DBG_VALUE representing what this DBG_INSTR_REF meant.
1185   // This DBG_VALUE is potentially a $noreg / undefined location, if
1186   // FoundLoc is None.
1187   // (XXX -- could morph the DBG_INSTR_REF in the future).
1188   MachineInstr *DbgMI = MTracker->emitLoc(FoundLoc, V, Properties);
1189   TTracker->PendingDbgValues.push_back(DbgMI);
1190   TTracker->flushDbgValues(MI.getIterator(), nullptr);
1191   return true;
1192 }
1193 
1194 bool InstrRefBasedLDV::transferDebugPHI(MachineInstr &MI) {
1195   if (!MI.isDebugPHI())
1196     return false;
1197 
1198   // Analyse these only when solving the machine value location problem.
1199   if (VTracker || TTracker)
1200     return true;
1201 
1202   // First operand is the value location, either a stack slot or register.
1203   // Second is the debug instruction number of the original PHI.
1204   const MachineOperand &MO = MI.getOperand(0);
1205   unsigned InstrNum = MI.getOperand(1).getImm();
1206 
1207   if (MO.isReg()) {
1208     // The value is whatever's currently in the register. Read and record it,
1209     // to be analysed later.
1210     Register Reg = MO.getReg();
1211     ValueIDNum Num = MTracker->readReg(Reg);
1212     auto PHIRec = DebugPHIRecord(
1213         {InstrNum, MI.getParent(), Num, MTracker->lookupOrTrackRegister(Reg)});
1214     DebugPHINumToValue.push_back(PHIRec);
1215 
1216     // Ensure this register is tracked.
1217     for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI)
1218       MTracker->lookupOrTrackRegister(*RAI);
1219   } else {
1220     // The value is whatever's in this stack slot.
1221     assert(MO.isFI());
1222     unsigned FI = MO.getIndex();
1223 
1224     // If the stack slot is dead, then this was optimized away.
1225     // FIXME: stack slot colouring should account for slots that get merged.
1226     if (MFI->isDeadObjectIndex(FI))
1227       return true;
1228 
1229     // Identify this spill slot, ensure it's tracked.
1230     Register Base;
1231     StackOffset Offs = TFI->getFrameIndexReference(*MI.getMF(), FI, Base);
1232     SpillLoc SL = {Base, Offs};
1233     SpillLocationNo SpillNo = MTracker->getOrTrackSpillLoc(SL);
1234 
1235     // Problem: what value should we extract from the stack? LLVM does not
1236     // record what size the last store to the slot was, and it would become
1237     // sketchy after stack slot colouring anyway. Take a look at what values
1238     // are stored on the stack, and pick the largest one that wasn't def'd
1239     // by a spill (i.e., the value most likely to have been def'd in a register
1240     // and then spilt.
1241     std::array<unsigned, 4> CandidateSizes = {64, 32, 16, 8};
1242     Optional<ValueIDNum> Result = None;
1243     Optional<LocIdx> SpillLoc = None;
1244     for (unsigned int I = 0; I < CandidateSizes.size(); ++I) {
1245       unsigned SpillID = MTracker->getLocID(SpillNo, {CandidateSizes[I], 0});
1246       SpillLoc = MTracker->getSpillMLoc(SpillID);
1247       ValueIDNum Val = MTracker->readMLoc(*SpillLoc);
1248       // If this value was defined in it's own position, then it was probably
1249       // an aliasing index of a small value that was spilt.
1250       if (Val.getLoc() != SpillLoc->asU64()) {
1251         Result = Val;
1252         break;
1253       }
1254     }
1255 
1256     // If we didn't find anything, we're probably looking at a PHI, or a memory
1257     // store folded into an instruction. FIXME: Take a guess that's it's 64
1258     // bits. This isn't ideal, but tracking the size that the spill is
1259     // "supposed" to be is more complex, and benefits a small number of
1260     // locations.
1261     if (!Result) {
1262       unsigned SpillID = MTracker->getLocID(SpillNo, {64, 0});
1263       SpillLoc = MTracker->getSpillMLoc(SpillID);
1264       Result = MTracker->readMLoc(*SpillLoc);
1265     }
1266 
1267     // Record this DBG_PHI for later analysis.
1268     auto DbgPHI = DebugPHIRecord({InstrNum, MI.getParent(), *Result, *SpillLoc});
1269     DebugPHINumToValue.push_back(DbgPHI);
1270   }
1271 
1272   return true;
1273 }
1274 
1275 void InstrRefBasedLDV::transferRegisterDef(MachineInstr &MI) {
1276   // Meta Instructions do not affect the debug liveness of any register they
1277   // define.
1278   if (MI.isImplicitDef()) {
1279     // Except when there's an implicit def, and the location it's defining has
1280     // no value number. The whole point of an implicit def is to announce that
1281     // the register is live, without be specific about it's value. So define
1282     // a value if there isn't one already.
1283     ValueIDNum Num = MTracker->readReg(MI.getOperand(0).getReg());
1284     // Has a legitimate value -> ignore the implicit def.
1285     if (Num.getLoc() != 0)
1286       return;
1287     // Otherwise, def it here.
1288   } else if (MI.isMetaInstruction())
1289     return;
1290 
1291   // Find the regs killed by MI, and find regmasks of preserved regs.
1292   // Max out the number of statically allocated elements in `DeadRegs`, as this
1293   // prevents fallback to std::set::count() operations.
1294   SmallSet<uint32_t, 32> DeadRegs;
1295   SmallVector<const uint32_t *, 4> RegMasks;
1296   SmallVector<const MachineOperand *, 4> RegMaskPtrs;
1297   for (const MachineOperand &MO : MI.operands()) {
1298     // Determine whether the operand is a register def.
1299     if (MO.isReg() && MO.isDef() && MO.getReg() &&
1300         Register::isPhysicalRegister(MO.getReg()) &&
1301         !(MI.isCall() && MTracker->SPAliases.count(MO.getReg()))) {
1302       // Remove ranges of all aliased registers.
1303       for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI)
1304         // FIXME: Can we break out of this loop early if no insertion occurs?
1305         DeadRegs.insert(*RAI);
1306     } else if (MO.isRegMask()) {
1307       RegMasks.push_back(MO.getRegMask());
1308       RegMaskPtrs.push_back(&MO);
1309     }
1310   }
1311 
1312   // Tell MLocTracker about all definitions, of regmasks and otherwise.
1313   for (uint32_t DeadReg : DeadRegs)
1314     MTracker->defReg(DeadReg, CurBB, CurInst);
1315 
1316   for (auto *MO : RegMaskPtrs)
1317     MTracker->writeRegMask(MO, CurBB, CurInst);
1318 
1319   // If this instruction writes to a spill slot, def that slot.
1320   if (hasFoldedStackStore(MI)) {
1321     SpillLocationNo SpillNo = extractSpillBaseRegAndOffset(MI);
1322     for (unsigned int I = 0; I < MTracker->NumSlotIdxes; ++I) {
1323       unsigned SpillID = MTracker->getSpillIDWithIdx(SpillNo, I);
1324       LocIdx L = MTracker->getSpillMLoc(SpillID);
1325       MTracker->setMLoc(L, ValueIDNum(CurBB, CurInst, L));
1326     }
1327   }
1328 
1329   if (!TTracker)
1330     return;
1331 
1332   // When committing variable values to locations: tell transfer tracker that
1333   // we've clobbered things. It may be able to recover the variable from a
1334   // different location.
1335 
1336   // Inform TTracker about any direct clobbers.
1337   for (uint32_t DeadReg : DeadRegs) {
1338     LocIdx Loc = MTracker->lookupOrTrackRegister(DeadReg);
1339     TTracker->clobberMloc(Loc, MI.getIterator(), false);
1340   }
1341 
1342   // Look for any clobbers performed by a register mask. Only test locations
1343   // that are actually being tracked.
1344   for (auto L : MTracker->locations()) {
1345     // Stack locations can't be clobbered by regmasks.
1346     if (MTracker->isSpill(L.Idx))
1347       continue;
1348 
1349     Register Reg = MTracker->LocIdxToLocID[L.Idx];
1350     for (auto *MO : RegMaskPtrs)
1351       if (MO->clobbersPhysReg(Reg))
1352         TTracker->clobberMloc(L.Idx, MI.getIterator(), false);
1353   }
1354 
1355   // Tell TTracker about any folded stack store.
1356   if (hasFoldedStackStore(MI)) {
1357     SpillLocationNo SpillNo = extractSpillBaseRegAndOffset(MI);
1358     for (unsigned int I = 0; I < MTracker->NumSlotIdxes; ++I) {
1359       unsigned SpillID = MTracker->getSpillIDWithIdx(SpillNo, I);
1360       LocIdx L = MTracker->getSpillMLoc(SpillID);
1361       TTracker->clobberMloc(L, MI.getIterator(), true);
1362     }
1363   }
1364 }
1365 
1366 void InstrRefBasedLDV::performCopy(Register SrcRegNum, Register DstRegNum) {
1367   // In all circumstances, re-def all aliases. It's definitely a new value now.
1368   for (MCRegAliasIterator RAI(DstRegNum, TRI, true); RAI.isValid(); ++RAI)
1369     MTracker->defReg(*RAI, CurBB, CurInst);
1370 
1371   ValueIDNum SrcValue = MTracker->readReg(SrcRegNum);
1372   MTracker->setReg(DstRegNum, SrcValue);
1373 
1374   // Copy subregisters from one location to another.
1375   for (MCSubRegIndexIterator SRI(SrcRegNum, TRI); SRI.isValid(); ++SRI) {
1376     unsigned SrcSubReg = SRI.getSubReg();
1377     unsigned SubRegIdx = SRI.getSubRegIndex();
1378     unsigned DstSubReg = TRI->getSubReg(DstRegNum, SubRegIdx);
1379     if (!DstSubReg)
1380       continue;
1381 
1382     // Do copy. There are two matching subregisters, the source value should
1383     // have been def'd when the super-reg was, the latter might not be tracked
1384     // yet.
1385     // This will force SrcSubReg to be tracked, if it isn't yet. Will read
1386     // mphi values if it wasn't tracked.
1387     LocIdx SrcL = MTracker->lookupOrTrackRegister(SrcSubReg);
1388     LocIdx DstL = MTracker->lookupOrTrackRegister(DstSubReg);
1389     (void)SrcL;
1390     (void)DstL;
1391     ValueIDNum CpyValue = MTracker->readReg(SrcSubReg);
1392 
1393     MTracker->setReg(DstSubReg, CpyValue);
1394   }
1395 }
1396 
1397 bool InstrRefBasedLDV::isSpillInstruction(const MachineInstr &MI,
1398                                           MachineFunction *MF) {
1399   // TODO: Handle multiple stores folded into one.
1400   if (!MI.hasOneMemOperand())
1401     return false;
1402 
1403   // Reject any memory operand that's aliased -- we can't guarantee its value.
1404   auto MMOI = MI.memoperands_begin();
1405   const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue();
1406   if (PVal->isAliased(MFI))
1407     return false;
1408 
1409   if (!MI.getSpillSize(TII) && !MI.getFoldedSpillSize(TII))
1410     return false; // This is not a spill instruction, since no valid size was
1411                   // returned from either function.
1412 
1413   return true;
1414 }
1415 
1416 bool InstrRefBasedLDV::isLocationSpill(const MachineInstr &MI,
1417                                        MachineFunction *MF, unsigned &Reg) {
1418   if (!isSpillInstruction(MI, MF))
1419     return false;
1420 
1421   int FI;
1422   Reg = TII->isStoreToStackSlotPostFE(MI, FI);
1423   return Reg != 0;
1424 }
1425 
1426 Optional<SpillLocationNo>
1427 InstrRefBasedLDV::isRestoreInstruction(const MachineInstr &MI,
1428                                        MachineFunction *MF, unsigned &Reg) {
1429   if (!MI.hasOneMemOperand())
1430     return None;
1431 
1432   // FIXME: Handle folded restore instructions with more than one memory
1433   // operand.
1434   if (MI.getRestoreSize(TII)) {
1435     Reg = MI.getOperand(0).getReg();
1436     return extractSpillBaseRegAndOffset(MI);
1437   }
1438   return None;
1439 }
1440 
1441 bool InstrRefBasedLDV::transferSpillOrRestoreInst(MachineInstr &MI) {
1442   // XXX -- it's too difficult to implement VarLocBasedImpl's  stack location
1443   // limitations under the new model. Therefore, when comparing them, compare
1444   // versions that don't attempt spills or restores at all.
1445   if (EmulateOldLDV)
1446     return false;
1447 
1448   // Strictly limit ourselves to plain loads and stores, not all instructions
1449   // that can access the stack.
1450   int DummyFI = -1;
1451   if (!TII->isStoreToStackSlotPostFE(MI, DummyFI) &&
1452       !TII->isLoadFromStackSlotPostFE(MI, DummyFI))
1453     return false;
1454 
1455   MachineFunction *MF = MI.getMF();
1456   unsigned Reg;
1457 
1458   LLVM_DEBUG(dbgs() << "Examining instruction: "; MI.dump(););
1459 
1460   // Strictly limit ourselves to plain loads and stores, not all instructions
1461   // that can access the stack.
1462   int FIDummy;
1463   if (!TII->isStoreToStackSlotPostFE(MI, FIDummy) &&
1464       !TII->isLoadFromStackSlotPostFE(MI, FIDummy))
1465     return false;
1466 
1467   // First, if there are any DBG_VALUEs pointing at a spill slot that is
1468   // written to, terminate that variable location. The value in memory
1469   // will have changed. DbgEntityHistoryCalculator doesn't try to detect this.
1470   if (isSpillInstruction(MI, MF)) {
1471     SpillLocationNo Loc = extractSpillBaseRegAndOffset(MI);
1472 
1473     // Un-set this location and clobber, so that earlier locations don't
1474     // continue past this store.
1475     for (unsigned SlotIdx = 0; SlotIdx < MTracker->NumSlotIdxes; ++SlotIdx) {
1476       unsigned SpillID = MTracker->getSpillIDWithIdx(Loc, SlotIdx);
1477       Optional<LocIdx> MLoc = MTracker->getSpillMLoc(SpillID);
1478       if (!MLoc)
1479         continue;
1480 
1481       // We need to over-write the stack slot with something (here, a def at
1482       // this instruction) to ensure no values are preserved in this stack slot
1483       // after the spill. It also prevents TTracker from trying to recover the
1484       // location and re-installing it in the same place.
1485       ValueIDNum Def(CurBB, CurInst, *MLoc);
1486       MTracker->setMLoc(*MLoc, Def);
1487       if (TTracker)
1488         TTracker->clobberMloc(*MLoc, MI.getIterator());
1489     }
1490   }
1491 
1492   // Try to recognise spill and restore instructions that may transfer a value.
1493   if (isLocationSpill(MI, MF, Reg)) {
1494     SpillLocationNo Loc = extractSpillBaseRegAndOffset(MI);
1495 
1496     auto DoTransfer = [&](Register SrcReg, unsigned SpillID) {
1497       auto ReadValue = MTracker->readReg(SrcReg);
1498       LocIdx DstLoc = MTracker->getSpillMLoc(SpillID);
1499       MTracker->setMLoc(DstLoc, ReadValue);
1500 
1501       if (TTracker) {
1502         LocIdx SrcLoc = MTracker->getRegMLoc(SrcReg);
1503         TTracker->transferMlocs(SrcLoc, DstLoc, MI.getIterator());
1504       }
1505     };
1506 
1507     // Then, transfer subreg bits.
1508     for (MCSubRegIterator SRI(Reg, TRI, false); SRI.isValid(); ++SRI) {
1509       // Ensure this reg is tracked,
1510       (void)MTracker->lookupOrTrackRegister(*SRI);
1511       unsigned SubregIdx = TRI->getSubRegIndex(Reg, *SRI);
1512       unsigned SpillID = MTracker->getLocID(Loc, SubregIdx);
1513       DoTransfer(*SRI, SpillID);
1514     }
1515 
1516     // Directly lookup size of main source reg, and transfer.
1517     unsigned Size = TRI->getRegSizeInBits(Reg, *MRI);
1518     unsigned SpillID = MTracker->getLocID(Loc, {Size, 0});
1519     DoTransfer(Reg, SpillID);
1520   } else {
1521     Optional<SpillLocationNo> OptLoc = isRestoreInstruction(MI, MF, Reg);
1522     if (!OptLoc)
1523       return false;
1524     SpillLocationNo Loc = *OptLoc;
1525 
1526     // Assumption: we're reading from the base of the stack slot, not some
1527     // offset into it. It seems very unlikely LLVM would ever generate
1528     // restores where this wasn't true. This then becomes a question of what
1529     // subregisters in the destination register line up with positions in the
1530     // stack slot.
1531 
1532     // Def all registers that alias the destination.
1533     for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
1534       MTracker->defReg(*RAI, CurBB, CurInst);
1535 
1536     // Now find subregisters within the destination register, and load values
1537     // from stack slot positions.
1538     auto DoTransfer = [&](Register DestReg, unsigned SpillID) {
1539       LocIdx SrcIdx = MTracker->getSpillMLoc(SpillID);
1540       auto ReadValue = MTracker->readMLoc(SrcIdx);
1541       MTracker->setReg(DestReg, ReadValue);
1542 
1543       if (TTracker) {
1544         LocIdx DstLoc = MTracker->getRegMLoc(DestReg);
1545         TTracker->transferMlocs(SrcIdx, DstLoc, MI.getIterator());
1546       }
1547     };
1548 
1549     for (MCSubRegIterator SRI(Reg, TRI, false); SRI.isValid(); ++SRI) {
1550       unsigned Subreg = TRI->getSubRegIndex(Reg, *SRI);
1551       unsigned SpillID = MTracker->getLocID(Loc, Subreg);
1552       DoTransfer(*SRI, SpillID);
1553     }
1554 
1555     // Directly look up this registers slot idx by size, and transfer.
1556     unsigned Size = TRI->getRegSizeInBits(Reg, *MRI);
1557     unsigned SpillID = MTracker->getLocID(Loc, {Size, 0});
1558     DoTransfer(Reg, SpillID);
1559   }
1560   return true;
1561 }
1562 
1563 bool InstrRefBasedLDV::transferRegisterCopy(MachineInstr &MI) {
1564   auto DestSrc = TII->isCopyInstr(MI);
1565   if (!DestSrc)
1566     return false;
1567 
1568   const MachineOperand *DestRegOp = DestSrc->Destination;
1569   const MachineOperand *SrcRegOp = DestSrc->Source;
1570 
1571   auto isCalleeSavedReg = [&](unsigned Reg) {
1572     for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
1573       if (CalleeSavedRegs.test(*RAI))
1574         return true;
1575     return false;
1576   };
1577 
1578   Register SrcReg = SrcRegOp->getReg();
1579   Register DestReg = DestRegOp->getReg();
1580 
1581   // Ignore identity copies. Yep, these make it as far as LiveDebugValues.
1582   if (SrcReg == DestReg)
1583     return true;
1584 
1585   // For emulating VarLocBasedImpl:
1586   // We want to recognize instructions where destination register is callee
1587   // saved register. If register that could be clobbered by the call is
1588   // included, there would be a great chance that it is going to be clobbered
1589   // soon. It is more likely that previous register, which is callee saved, is
1590   // going to stay unclobbered longer, even if it is killed.
1591   //
1592   // For InstrRefBasedImpl, we can track multiple locations per value, so
1593   // ignore this condition.
1594   if (EmulateOldLDV && !isCalleeSavedReg(DestReg))
1595     return false;
1596 
1597   // InstrRefBasedImpl only followed killing copies.
1598   if (EmulateOldLDV && !SrcRegOp->isKill())
1599     return false;
1600 
1601   // Copy MTracker info, including subregs if available.
1602   InstrRefBasedLDV::performCopy(SrcReg, DestReg);
1603 
1604   // Only produce a transfer of DBG_VALUE within a block where old LDV
1605   // would have. We might make use of the additional value tracking in some
1606   // other way, later.
1607   if (TTracker && isCalleeSavedReg(DestReg) && SrcRegOp->isKill())
1608     TTracker->transferMlocs(MTracker->getRegMLoc(SrcReg),
1609                             MTracker->getRegMLoc(DestReg), MI.getIterator());
1610 
1611   // VarLocBasedImpl would quit tracking the old location after copying.
1612   if (EmulateOldLDV && SrcReg != DestReg)
1613     MTracker->defReg(SrcReg, CurBB, CurInst);
1614 
1615   // Finally, the copy might have clobbered variables based on the destination
1616   // register. Tell TTracker about it, in case a backup location exists.
1617   if (TTracker) {
1618     for (MCRegAliasIterator RAI(DestReg, TRI, true); RAI.isValid(); ++RAI) {
1619       LocIdx ClobberedLoc = MTracker->getRegMLoc(*RAI);
1620       TTracker->clobberMloc(ClobberedLoc, MI.getIterator(), false);
1621     }
1622   }
1623 
1624   return true;
1625 }
1626 
1627 /// Accumulate a mapping between each DILocalVariable fragment and other
1628 /// fragments of that DILocalVariable which overlap. This reduces work during
1629 /// the data-flow stage from "Find any overlapping fragments" to "Check if the
1630 /// known-to-overlap fragments are present".
1631 /// \param MI A previously unprocessed DEBUG_VALUE instruction to analyze for
1632 ///           fragment usage.
1633 void InstrRefBasedLDV::accumulateFragmentMap(MachineInstr &MI) {
1634   DebugVariable MIVar(MI.getDebugVariable(), MI.getDebugExpression(),
1635                       MI.getDebugLoc()->getInlinedAt());
1636   FragmentInfo ThisFragment = MIVar.getFragmentOrDefault();
1637 
1638   // If this is the first sighting of this variable, then we are guaranteed
1639   // there are currently no overlapping fragments either. Initialize the set
1640   // of seen fragments, record no overlaps for the current one, and return.
1641   auto SeenIt = SeenFragments.find(MIVar.getVariable());
1642   if (SeenIt == SeenFragments.end()) {
1643     SmallSet<FragmentInfo, 4> OneFragment;
1644     OneFragment.insert(ThisFragment);
1645     SeenFragments.insert({MIVar.getVariable(), OneFragment});
1646 
1647     OverlapFragments.insert({{MIVar.getVariable(), ThisFragment}, {}});
1648     return;
1649   }
1650 
1651   // If this particular Variable/Fragment pair already exists in the overlap
1652   // map, it has already been accounted for.
1653   auto IsInOLapMap =
1654       OverlapFragments.insert({{MIVar.getVariable(), ThisFragment}, {}});
1655   if (!IsInOLapMap.second)
1656     return;
1657 
1658   auto &ThisFragmentsOverlaps = IsInOLapMap.first->second;
1659   auto &AllSeenFragments = SeenIt->second;
1660 
1661   // Otherwise, examine all other seen fragments for this variable, with "this"
1662   // fragment being a previously unseen fragment. Record any pair of
1663   // overlapping fragments.
1664   for (auto &ASeenFragment : AllSeenFragments) {
1665     // Does this previously seen fragment overlap?
1666     if (DIExpression::fragmentsOverlap(ThisFragment, ASeenFragment)) {
1667       // Yes: Mark the current fragment as being overlapped.
1668       ThisFragmentsOverlaps.push_back(ASeenFragment);
1669       // Mark the previously seen fragment as being overlapped by the current
1670       // one.
1671       auto ASeenFragmentsOverlaps =
1672           OverlapFragments.find({MIVar.getVariable(), ASeenFragment});
1673       assert(ASeenFragmentsOverlaps != OverlapFragments.end() &&
1674              "Previously seen var fragment has no vector of overlaps");
1675       ASeenFragmentsOverlaps->second.push_back(ThisFragment);
1676     }
1677   }
1678 
1679   AllSeenFragments.insert(ThisFragment);
1680 }
1681 
1682 void InstrRefBasedLDV::process(MachineInstr &MI, ValueIDNum **MLiveOuts,
1683                                ValueIDNum **MLiveIns) {
1684   // Try to interpret an MI as a debug or transfer instruction. Only if it's
1685   // none of these should we interpret it's register defs as new value
1686   // definitions.
1687   if (transferDebugValue(MI))
1688     return;
1689   if (transferDebugInstrRef(MI, MLiveOuts, MLiveIns))
1690     return;
1691   if (transferDebugPHI(MI))
1692     return;
1693   if (transferRegisterCopy(MI))
1694     return;
1695   if (transferSpillOrRestoreInst(MI))
1696     return;
1697   transferRegisterDef(MI);
1698 }
1699 
1700 void InstrRefBasedLDV::produceMLocTransferFunction(
1701     MachineFunction &MF, SmallVectorImpl<MLocTransferMap> &MLocTransfer,
1702     unsigned MaxNumBlocks) {
1703   // Because we try to optimize around register mask operands by ignoring regs
1704   // that aren't currently tracked, we set up something ugly for later: RegMask
1705   // operands that are seen earlier than the first use of a register, still need
1706   // to clobber that register in the transfer function. But this information
1707   // isn't actively recorded. Instead, we track each RegMask used in each block,
1708   // and accumulated the clobbered but untracked registers in each block into
1709   // the following bitvector. Later, if new values are tracked, we can add
1710   // appropriate clobbers.
1711   SmallVector<BitVector, 32> BlockMasks;
1712   BlockMasks.resize(MaxNumBlocks);
1713 
1714   // Reserve one bit per register for the masks described above.
1715   unsigned BVWords = MachineOperand::getRegMaskSize(TRI->getNumRegs());
1716   for (auto &BV : BlockMasks)
1717     BV.resize(TRI->getNumRegs(), true);
1718 
1719   // Step through all instructions and inhale the transfer function.
1720   for (auto &MBB : MF) {
1721     // Object fields that are read by trackers to know where we are in the
1722     // function.
1723     CurBB = MBB.getNumber();
1724     CurInst = 1;
1725 
1726     // Set all machine locations to a PHI value. For transfer function
1727     // production only, this signifies the live-in value to the block.
1728     MTracker->reset();
1729     MTracker->setMPhis(CurBB);
1730 
1731     // Step through each instruction in this block.
1732     for (auto &MI : MBB) {
1733       process(MI);
1734       // Also accumulate fragment map.
1735       if (MI.isDebugValue())
1736         accumulateFragmentMap(MI);
1737 
1738       // Create a map from the instruction number (if present) to the
1739       // MachineInstr and its position.
1740       if (uint64_t InstrNo = MI.peekDebugInstrNum()) {
1741         auto InstrAndPos = std::make_pair(&MI, CurInst);
1742         auto InsertResult =
1743             DebugInstrNumToInstr.insert(std::make_pair(InstrNo, InstrAndPos));
1744 
1745         // There should never be duplicate instruction numbers.
1746         assert(InsertResult.second);
1747         (void)InsertResult;
1748       }
1749 
1750       ++CurInst;
1751     }
1752 
1753     // Produce the transfer function, a map of machine location to new value. If
1754     // any machine location has the live-in phi value from the start of the
1755     // block, it's live-through and doesn't need recording in the transfer
1756     // function.
1757     for (auto Location : MTracker->locations()) {
1758       LocIdx Idx = Location.Idx;
1759       ValueIDNum &P = Location.Value;
1760       if (P.isPHI() && P.getLoc() == Idx.asU64())
1761         continue;
1762 
1763       // Insert-or-update.
1764       auto &TransferMap = MLocTransfer[CurBB];
1765       auto Result = TransferMap.insert(std::make_pair(Idx.asU64(), P));
1766       if (!Result.second)
1767         Result.first->second = P;
1768     }
1769 
1770     // Accumulate any bitmask operands into the clobberred reg mask for this
1771     // block.
1772     for (auto &P : MTracker->Masks) {
1773       BlockMasks[CurBB].clearBitsNotInMask(P.first->getRegMask(), BVWords);
1774     }
1775   }
1776 
1777   // Compute a bitvector of all the registers that are tracked in this block.
1778   BitVector UsedRegs(TRI->getNumRegs());
1779   for (auto Location : MTracker->locations()) {
1780     unsigned ID = MTracker->LocIdxToLocID[Location.Idx];
1781     // Ignore stack slots, and aliases of the stack pointer.
1782     if (ID >= TRI->getNumRegs() || MTracker->SPAliases.count(ID))
1783       continue;
1784     UsedRegs.set(ID);
1785   }
1786 
1787   // Check that any regmask-clobber of a register that gets tracked, is not
1788   // live-through in the transfer function. It needs to be clobbered at the
1789   // very least.
1790   for (unsigned int I = 0; I < MaxNumBlocks; ++I) {
1791     BitVector &BV = BlockMasks[I];
1792     BV.flip();
1793     BV &= UsedRegs;
1794     // This produces all the bits that we clobber, but also use. Check that
1795     // they're all clobbered or at least set in the designated transfer
1796     // elem.
1797     for (unsigned Bit : BV.set_bits()) {
1798       unsigned ID = MTracker->getLocID(Bit);
1799       LocIdx Idx = MTracker->LocIDToLocIdx[ID];
1800       auto &TransferMap = MLocTransfer[I];
1801 
1802       // Install a value representing the fact that this location is effectively
1803       // written to in this block. As there's no reserved value, instead use
1804       // a value number that is never generated. Pick the value number for the
1805       // first instruction in the block, def'ing this location, which we know
1806       // this block never used anyway.
1807       ValueIDNum NotGeneratedNum = ValueIDNum(I, 1, Idx);
1808       auto Result =
1809         TransferMap.insert(std::make_pair(Idx.asU64(), NotGeneratedNum));
1810       if (!Result.second) {
1811         ValueIDNum &ValueID = Result.first->second;
1812         if (ValueID.getBlock() == I && ValueID.isPHI())
1813           // It was left as live-through. Set it to clobbered.
1814           ValueID = NotGeneratedNum;
1815       }
1816     }
1817   }
1818 }
1819 
1820 bool InstrRefBasedLDV::mlocJoin(
1821     MachineBasicBlock &MBB, SmallPtrSet<const MachineBasicBlock *, 16> &Visited,
1822     ValueIDNum **OutLocs, ValueIDNum *InLocs) {
1823   LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n");
1824   bool Changed = false;
1825 
1826   // Handle value-propagation when control flow merges on entry to a block. For
1827   // any location without a PHI already placed, the location has the same value
1828   // as its predecessors. If a PHI is placed, test to see whether it's now a
1829   // redundant PHI that we can eliminate.
1830 
1831   SmallVector<const MachineBasicBlock *, 8> BlockOrders;
1832   for (auto Pred : MBB.predecessors())
1833     BlockOrders.push_back(Pred);
1834 
1835   // Visit predecessors in RPOT order.
1836   auto Cmp = [&](const MachineBasicBlock *A, const MachineBasicBlock *B) {
1837     return BBToOrder.find(A)->second < BBToOrder.find(B)->second;
1838   };
1839   llvm::sort(BlockOrders, Cmp);
1840 
1841   // Skip entry block.
1842   if (BlockOrders.size() == 0)
1843     return false;
1844 
1845   // Step through all machine locations, look at each predecessor and test
1846   // whether we can eliminate redundant PHIs.
1847   for (auto Location : MTracker->locations()) {
1848     LocIdx Idx = Location.Idx;
1849 
1850     // Pick out the first predecessors live-out value for this location. It's
1851     // guaranteed to not be a backedge, as we order by RPO.
1852     ValueIDNum FirstVal = OutLocs[BlockOrders[0]->getNumber()][Idx.asU64()];
1853 
1854     // If we've already eliminated a PHI here, do no further checking, just
1855     // propagate the first live-in value into this block.
1856     if (InLocs[Idx.asU64()] != ValueIDNum(MBB.getNumber(), 0, Idx)) {
1857       if (InLocs[Idx.asU64()] != FirstVal) {
1858         InLocs[Idx.asU64()] = FirstVal;
1859         Changed |= true;
1860       }
1861       continue;
1862     }
1863 
1864     // We're now examining a PHI to see whether it's un-necessary. Loop around
1865     // the other live-in values and test whether they're all the same.
1866     bool Disagree = false;
1867     for (unsigned int I = 1; I < BlockOrders.size(); ++I) {
1868       const MachineBasicBlock *PredMBB = BlockOrders[I];
1869       const ValueIDNum &PredLiveOut =
1870           OutLocs[PredMBB->getNumber()][Idx.asU64()];
1871 
1872       // Incoming values agree, continue trying to eliminate this PHI.
1873       if (FirstVal == PredLiveOut)
1874         continue;
1875 
1876       // We can also accept a PHI value that feeds back into itself.
1877       if (PredLiveOut == ValueIDNum(MBB.getNumber(), 0, Idx))
1878         continue;
1879 
1880       // Live-out of a predecessor disagrees with the first predecessor.
1881       Disagree = true;
1882     }
1883 
1884     // No disagreement? No PHI. Otherwise, leave the PHI in live-ins.
1885     if (!Disagree) {
1886       InLocs[Idx.asU64()] = FirstVal;
1887       Changed |= true;
1888     }
1889   }
1890 
1891   // TODO: Reimplement NumInserted and NumRemoved.
1892   return Changed;
1893 }
1894 
1895 void InstrRefBasedLDV::findStackIndexInterference(
1896     SmallVectorImpl<unsigned> &Slots) {
1897   // We could spend a bit of time finding the exact, minimal, set of stack
1898   // indexes that interfere with each other, much like reg units. Or, we can
1899   // rely on the fact that:
1900   //  * The smallest / lowest index will interfere with everything at zero
1901   //    offset, which will be the largest set of registers,
1902   //  * Most indexes with non-zero offset will end up being interference units
1903   //    anyway.
1904   // So just pick those out and return them.
1905 
1906   // We can rely on a single-byte stack index existing already, because we
1907   // initialize them in MLocTracker.
1908   auto It = MTracker->StackSlotIdxes.find({8, 0});
1909   assert(It != MTracker->StackSlotIdxes.end());
1910   Slots.push_back(It->second);
1911 
1912   // Find anything that has a non-zero offset and add that too.
1913   for (auto &Pair : MTracker->StackSlotIdxes) {
1914     // Is offset zero? If so, ignore.
1915     if (!Pair.first.second)
1916       continue;
1917     Slots.push_back(Pair.second);
1918   }
1919 }
1920 
1921 void InstrRefBasedLDV::placeMLocPHIs(
1922     MachineFunction &MF, SmallPtrSetImpl<MachineBasicBlock *> &AllBlocks,
1923     ValueIDNum **MInLocs, SmallVectorImpl<MLocTransferMap> &MLocTransfer) {
1924   SmallVector<unsigned, 4> StackUnits;
1925   findStackIndexInterference(StackUnits);
1926 
1927   // To avoid repeatedly running the PHI placement algorithm, leverage the
1928   // fact that a def of register MUST also def its register units. Find the
1929   // units for registers, place PHIs for them, and then replicate them for
1930   // aliasing registers. Some inputs that are never def'd (DBG_PHIs of
1931   // arguments) don't lead to register units being tracked, just place PHIs for
1932   // those registers directly. Stack slots have their own form of "unit",
1933   // store them to one side.
1934   SmallSet<Register, 32> RegUnitsToPHIUp;
1935   SmallSet<LocIdx, 32> NormalLocsToPHI;
1936   SmallSet<SpillLocationNo, 32> StackSlots;
1937   for (auto Location : MTracker->locations()) {
1938     LocIdx L = Location.Idx;
1939     if (MTracker->isSpill(L)) {
1940       StackSlots.insert(MTracker->locIDToSpill(MTracker->LocIdxToLocID[L]));
1941       continue;
1942     }
1943 
1944     Register R = MTracker->LocIdxToLocID[L];
1945     SmallSet<Register, 8> FoundRegUnits;
1946     bool AnyIllegal = false;
1947     for (MCRegUnitIterator RUI(R.asMCReg(), TRI); RUI.isValid(); ++RUI) {
1948       for (MCRegUnitRootIterator URoot(*RUI, TRI); URoot.isValid(); ++URoot){
1949         if (!MTracker->isRegisterTracked(*URoot)) {
1950           // Not all roots were loaded into the tracking map: this register
1951           // isn't actually def'd anywhere, we only read from it. Generate PHIs
1952           // for this reg, but don't iterate units.
1953           AnyIllegal = true;
1954         } else {
1955           FoundRegUnits.insert(*URoot);
1956         }
1957       }
1958     }
1959 
1960     if (AnyIllegal) {
1961       NormalLocsToPHI.insert(L);
1962       continue;
1963     }
1964 
1965     RegUnitsToPHIUp.insert(FoundRegUnits.begin(), FoundRegUnits.end());
1966   }
1967 
1968   // Lambda to fetch PHIs for a given location, and write into the PHIBlocks
1969   // collection.
1970   SmallVector<MachineBasicBlock *, 32> PHIBlocks;
1971   auto CollectPHIsForLoc = [&](LocIdx L) {
1972     // Collect the set of defs.
1973     SmallPtrSet<MachineBasicBlock *, 32> DefBlocks;
1974     for (unsigned int I = 0; I < OrderToBB.size(); ++I) {
1975       MachineBasicBlock *MBB = OrderToBB[I];
1976       const auto &TransferFunc = MLocTransfer[MBB->getNumber()];
1977       if (TransferFunc.find(L) != TransferFunc.end())
1978         DefBlocks.insert(MBB);
1979     }
1980 
1981     // The entry block defs the location too: it's the live-in / argument value.
1982     // Only insert if there are other defs though; everything is trivially live
1983     // through otherwise.
1984     if (!DefBlocks.empty())
1985       DefBlocks.insert(&*MF.begin());
1986 
1987     // Ask the SSA construction algorithm where we should put PHIs. Clear
1988     // anything that might have been hanging around from earlier.
1989     PHIBlocks.clear();
1990     BlockPHIPlacement(AllBlocks, DefBlocks, PHIBlocks);
1991   };
1992 
1993   auto InstallPHIsAtLoc = [&PHIBlocks, &MInLocs](LocIdx L) {
1994     for (const MachineBasicBlock *MBB : PHIBlocks)
1995       MInLocs[MBB->getNumber()][L.asU64()] = ValueIDNum(MBB->getNumber(), 0, L);
1996   };
1997 
1998   // For locations with no reg units, just place PHIs.
1999   for (LocIdx L : NormalLocsToPHI) {
2000     CollectPHIsForLoc(L);
2001     // Install those PHI values into the live-in value array.
2002     InstallPHIsAtLoc(L);
2003   }
2004 
2005   // For stack slots, calculate PHIs for the equivalent of the units, then
2006   // install for each index.
2007   for (SpillLocationNo Slot : StackSlots) {
2008     for (unsigned Idx : StackUnits) {
2009       unsigned SpillID = MTracker->getSpillIDWithIdx(Slot, Idx);
2010       LocIdx L = MTracker->getSpillMLoc(SpillID);
2011       CollectPHIsForLoc(L);
2012       InstallPHIsAtLoc(L);
2013 
2014       // Find anything that aliases this stack index, install PHIs for it too.
2015       unsigned Size, Offset;
2016       std::tie(Size, Offset) = MTracker->StackIdxesToPos[Idx];
2017       for (auto &Pair : MTracker->StackSlotIdxes) {
2018         unsigned ThisSize, ThisOffset;
2019         std::tie(ThisSize, ThisOffset) = Pair.first;
2020         if (ThisSize + ThisOffset <= Offset || Size + Offset <= ThisOffset)
2021           continue;
2022 
2023         unsigned ThisID = MTracker->getSpillIDWithIdx(Slot, Pair.second);
2024         LocIdx ThisL = MTracker->getSpillMLoc(ThisID);
2025         InstallPHIsAtLoc(ThisL);
2026       }
2027     }
2028   }
2029 
2030   // For reg units, place PHIs, and then place them for any aliasing registers.
2031   for (Register R : RegUnitsToPHIUp) {
2032     LocIdx L = MTracker->lookupOrTrackRegister(R);
2033     CollectPHIsForLoc(L);
2034 
2035     // Install those PHI values into the live-in value array.
2036     InstallPHIsAtLoc(L);
2037 
2038     // Now find aliases and install PHIs for those.
2039     for (MCRegAliasIterator RAI(R, TRI, true); RAI.isValid(); ++RAI) {
2040       // Super-registers that are "above" the largest register read/written by
2041       // the function will alias, but will not be tracked.
2042       if (!MTracker->isRegisterTracked(*RAI))
2043         continue;
2044 
2045       LocIdx AliasLoc = MTracker->lookupOrTrackRegister(*RAI);
2046       InstallPHIsAtLoc(AliasLoc);
2047     }
2048   }
2049 }
2050 
2051 void InstrRefBasedLDV::buildMLocValueMap(
2052     MachineFunction &MF, ValueIDNum **MInLocs, ValueIDNum **MOutLocs,
2053     SmallVectorImpl<MLocTransferMap> &MLocTransfer) {
2054   std::priority_queue<unsigned int, std::vector<unsigned int>,
2055                       std::greater<unsigned int>>
2056       Worklist, Pending;
2057 
2058   // We track what is on the current and pending worklist to avoid inserting
2059   // the same thing twice. We could avoid this with a custom priority queue,
2060   // but this is probably not worth it.
2061   SmallPtrSet<MachineBasicBlock *, 16> OnPending, OnWorklist;
2062 
2063   // Initialize worklist with every block to be visited. Also produce list of
2064   // all blocks.
2065   SmallPtrSet<MachineBasicBlock *, 32> AllBlocks;
2066   for (unsigned int I = 0; I < BBToOrder.size(); ++I) {
2067     Worklist.push(I);
2068     OnWorklist.insert(OrderToBB[I]);
2069     AllBlocks.insert(OrderToBB[I]);
2070   }
2071 
2072   // Initialize entry block to PHIs. These represent arguments.
2073   for (auto Location : MTracker->locations())
2074     MInLocs[0][Location.Idx.asU64()] = ValueIDNum(0, 0, Location.Idx);
2075 
2076   MTracker->reset();
2077 
2078   // Start by placing PHIs, using the usual SSA constructor algorithm. Consider
2079   // any machine-location that isn't live-through a block to be def'd in that
2080   // block.
2081   placeMLocPHIs(MF, AllBlocks, MInLocs, MLocTransfer);
2082 
2083   // Propagate values to eliminate redundant PHIs. At the same time, this
2084   // produces the table of Block x Location => Value for the entry to each
2085   // block.
2086   // The kind of PHIs we can eliminate are, for example, where one path in a
2087   // conditional spills and restores a register, and the register still has
2088   // the same value once control flow joins, unbeknowns to the PHI placement
2089   // code. Propagating values allows us to identify such un-necessary PHIs and
2090   // remove them.
2091   SmallPtrSet<const MachineBasicBlock *, 16> Visited;
2092   while (!Worklist.empty() || !Pending.empty()) {
2093     // Vector for storing the evaluated block transfer function.
2094     SmallVector<std::pair<LocIdx, ValueIDNum>, 32> ToRemap;
2095 
2096     while (!Worklist.empty()) {
2097       MachineBasicBlock *MBB = OrderToBB[Worklist.top()];
2098       CurBB = MBB->getNumber();
2099       Worklist.pop();
2100 
2101       // Join the values in all predecessor blocks.
2102       bool InLocsChanged;
2103       InLocsChanged = mlocJoin(*MBB, Visited, MOutLocs, MInLocs[CurBB]);
2104       InLocsChanged |= Visited.insert(MBB).second;
2105 
2106       // Don't examine transfer function if we've visited this loc at least
2107       // once, and inlocs haven't changed.
2108       if (!InLocsChanged)
2109         continue;
2110 
2111       // Load the current set of live-ins into MLocTracker.
2112       MTracker->loadFromArray(MInLocs[CurBB], CurBB);
2113 
2114       // Each element of the transfer function can be a new def, or a read of
2115       // a live-in value. Evaluate each element, and store to "ToRemap".
2116       ToRemap.clear();
2117       for (auto &P : MLocTransfer[CurBB]) {
2118         if (P.second.getBlock() == CurBB && P.second.isPHI()) {
2119           // This is a movement of whatever was live in. Read it.
2120           ValueIDNum NewID = MTracker->readMLoc(P.second.getLoc());
2121           ToRemap.push_back(std::make_pair(P.first, NewID));
2122         } else {
2123           // It's a def. Just set it.
2124           assert(P.second.getBlock() == CurBB);
2125           ToRemap.push_back(std::make_pair(P.first, P.second));
2126         }
2127       }
2128 
2129       // Commit the transfer function changes into mloc tracker, which
2130       // transforms the contents of the MLocTracker into the live-outs.
2131       for (auto &P : ToRemap)
2132         MTracker->setMLoc(P.first, P.second);
2133 
2134       // Now copy out-locs from mloc tracker into out-loc vector, checking
2135       // whether changes have occurred. These changes can have come from both
2136       // the transfer function, and mlocJoin.
2137       bool OLChanged = false;
2138       for (auto Location : MTracker->locations()) {
2139         OLChanged |= MOutLocs[CurBB][Location.Idx.asU64()] != Location.Value;
2140         MOutLocs[CurBB][Location.Idx.asU64()] = Location.Value;
2141       }
2142 
2143       MTracker->reset();
2144 
2145       // No need to examine successors again if out-locs didn't change.
2146       if (!OLChanged)
2147         continue;
2148 
2149       // All successors should be visited: put any back-edges on the pending
2150       // list for the next pass-through, and any other successors to be
2151       // visited this pass, if they're not going to be already.
2152       for (auto s : MBB->successors()) {
2153         // Does branching to this successor represent a back-edge?
2154         if (BBToOrder[s] > BBToOrder[MBB]) {
2155           // No: visit it during this dataflow iteration.
2156           if (OnWorklist.insert(s).second)
2157             Worklist.push(BBToOrder[s]);
2158         } else {
2159           // Yes: visit it on the next iteration.
2160           if (OnPending.insert(s).second)
2161             Pending.push(BBToOrder[s]);
2162         }
2163       }
2164     }
2165 
2166     Worklist.swap(Pending);
2167     std::swap(OnPending, OnWorklist);
2168     OnPending.clear();
2169     // At this point, pending must be empty, since it was just the empty
2170     // worklist
2171     assert(Pending.empty() && "Pending should be empty");
2172   }
2173 
2174   // Once all the live-ins don't change on mlocJoin(), we've eliminated all
2175   // redundant PHIs.
2176 }
2177 
2178 // Boilerplate for feeding MachineBasicBlocks into IDF calculator. Provide
2179 // template specialisations for graph traits and a successor enumerator.
2180 namespace llvm {
2181 template <> struct GraphTraits<MachineBasicBlock> {
2182   using NodeRef = MachineBasicBlock *;
2183   using ChildIteratorType = MachineBasicBlock::succ_iterator;
2184 
2185   static NodeRef getEntryNode(MachineBasicBlock *BB) { return BB; }
2186   static ChildIteratorType child_begin(NodeRef N) { return N->succ_begin(); }
2187   static ChildIteratorType child_end(NodeRef N) { return N->succ_end(); }
2188 };
2189 
2190 template <> struct GraphTraits<const MachineBasicBlock> {
2191   using NodeRef = const MachineBasicBlock *;
2192   using ChildIteratorType = MachineBasicBlock::const_succ_iterator;
2193 
2194   static NodeRef getEntryNode(const MachineBasicBlock *BB) { return BB; }
2195   static ChildIteratorType child_begin(NodeRef N) { return N->succ_begin(); }
2196   static ChildIteratorType child_end(NodeRef N) { return N->succ_end(); }
2197 };
2198 
2199 using MachineDomTreeBase = DomTreeBase<MachineBasicBlock>::NodeType;
2200 using MachineDomTreeChildGetter =
2201     typename IDFCalculatorDetail::ChildrenGetterTy<MachineDomTreeBase, false>;
2202 
2203 namespace IDFCalculatorDetail {
2204 template <>
2205 typename MachineDomTreeChildGetter::ChildrenTy
2206 MachineDomTreeChildGetter::get(const NodeRef &N) {
2207   return {N->succ_begin(), N->succ_end()};
2208 }
2209 } // namespace IDFCalculatorDetail
2210 } // namespace llvm
2211 
2212 void InstrRefBasedLDV::BlockPHIPlacement(
2213     const SmallPtrSetImpl<MachineBasicBlock *> &AllBlocks,
2214     const SmallPtrSetImpl<MachineBasicBlock *> &DefBlocks,
2215     SmallVectorImpl<MachineBasicBlock *> &PHIBlocks) {
2216   // Apply IDF calculator to the designated set of location defs, storing
2217   // required PHIs into PHIBlocks. Uses the dominator tree stored in the
2218   // InstrRefBasedLDV object.
2219   IDFCalculatorDetail::ChildrenGetterTy<MachineDomTreeBase, false> foo;
2220   IDFCalculatorBase<MachineDomTreeBase, false> IDF(DomTree->getBase(), foo);
2221 
2222   IDF.setLiveInBlocks(AllBlocks);
2223   IDF.setDefiningBlocks(DefBlocks);
2224   IDF.calculate(PHIBlocks);
2225 }
2226 
2227 Optional<ValueIDNum> InstrRefBasedLDV::pickVPHILoc(
2228     const MachineBasicBlock &MBB, const DebugVariable &Var,
2229     const LiveIdxT &LiveOuts, ValueIDNum **MOutLocs,
2230     const SmallVectorImpl<const MachineBasicBlock *> &BlockOrders) {
2231   // Collect a set of locations from predecessor where its live-out value can
2232   // be found.
2233   SmallVector<SmallVector<LocIdx, 4>, 8> Locs;
2234   SmallVector<const DbgValueProperties *, 4> Properties;
2235   unsigned NumLocs = MTracker->getNumLocs();
2236 
2237   // No predecessors means no PHIs.
2238   if (BlockOrders.empty())
2239     return None;
2240 
2241   for (auto p : BlockOrders) {
2242     unsigned ThisBBNum = p->getNumber();
2243     auto OutValIt = LiveOuts.find(p);
2244     if (OutValIt == LiveOuts.end())
2245       // If we have a predecessor not in scope, we'll never find a PHI position.
2246       return None;
2247     const DbgValue &OutVal = *OutValIt->second;
2248 
2249     if (OutVal.Kind == DbgValue::Const || OutVal.Kind == DbgValue::NoVal)
2250       // Consts and no-values cannot have locations we can join on.
2251       return None;
2252 
2253     Properties.push_back(&OutVal.Properties);
2254 
2255     // Create new empty vector of locations.
2256     Locs.resize(Locs.size() + 1);
2257 
2258     // If the live-in value is a def, find the locations where that value is
2259     // present. Do the same for VPHIs where we know the VPHI value.
2260     if (OutVal.Kind == DbgValue::Def ||
2261         (OutVal.Kind == DbgValue::VPHI && OutVal.BlockNo != MBB.getNumber() &&
2262          OutVal.ID != ValueIDNum::EmptyValue)) {
2263       ValueIDNum ValToLookFor = OutVal.ID;
2264       // Search the live-outs of the predecessor for the specified value.
2265       for (unsigned int I = 0; I < NumLocs; ++I) {
2266         if (MOutLocs[ThisBBNum][I] == ValToLookFor)
2267           Locs.back().push_back(LocIdx(I));
2268       }
2269     } else {
2270       assert(OutVal.Kind == DbgValue::VPHI);
2271       // For VPHIs where we don't know the location, we definitely can't find
2272       // a join loc.
2273       if (OutVal.BlockNo != MBB.getNumber())
2274         return None;
2275 
2276       // Otherwise: this is a VPHI on a backedge feeding back into itself, i.e.
2277       // a value that's live-through the whole loop. (It has to be a backedge,
2278       // because a block can't dominate itself). We can accept as a PHI location
2279       // any location where the other predecessors agree, _and_ the machine
2280       // locations feed back into themselves. Therefore, add all self-looping
2281       // machine-value PHI locations.
2282       for (unsigned int I = 0; I < NumLocs; ++I) {
2283         ValueIDNum MPHI(MBB.getNumber(), 0, LocIdx(I));
2284         if (MOutLocs[ThisBBNum][I] == MPHI)
2285           Locs.back().push_back(LocIdx(I));
2286       }
2287     }
2288   }
2289 
2290   // We should have found locations for all predecessors, or returned.
2291   assert(Locs.size() == BlockOrders.size());
2292 
2293   // Check that all properties are the same. We can't pick a location if they're
2294   // not.
2295   const DbgValueProperties *Properties0 = Properties[0];
2296   for (auto *Prop : Properties)
2297     if (*Prop != *Properties0)
2298       return None;
2299 
2300   // Starting with the first set of locations, take the intersection with
2301   // subsequent sets.
2302   SmallVector<LocIdx, 4> CandidateLocs = Locs[0];
2303   for (unsigned int I = 1; I < Locs.size(); ++I) {
2304     auto &LocVec = Locs[I];
2305     SmallVector<LocIdx, 4> NewCandidates;
2306     std::set_intersection(CandidateLocs.begin(), CandidateLocs.end(),
2307                           LocVec.begin(), LocVec.end(), std::inserter(NewCandidates, NewCandidates.begin()));
2308     CandidateLocs = NewCandidates;
2309   }
2310   if (CandidateLocs.empty())
2311     return None;
2312 
2313   // We now have a set of LocIdxes that contain the right output value in
2314   // each of the predecessors. Pick the lowest; if there's a register loc,
2315   // that'll be it.
2316   LocIdx L = *CandidateLocs.begin();
2317 
2318   // Return a PHI-value-number for the found location.
2319   ValueIDNum PHIVal = {(unsigned)MBB.getNumber(), 0, L};
2320   return PHIVal;
2321 }
2322 
2323 bool InstrRefBasedLDV::vlocJoin(
2324     MachineBasicBlock &MBB, LiveIdxT &VLOCOutLocs,
2325     SmallPtrSet<const MachineBasicBlock *, 8> &InScopeBlocks,
2326     SmallPtrSet<const MachineBasicBlock *, 8> &BlocksToExplore,
2327     DbgValue &LiveIn) {
2328   // To emulate VarLocBasedImpl, process this block if it's not in scope but
2329   // _does_ assign a variable value. No live-ins for this scope are transferred
2330   // in though, so we can return immediately.
2331   if (InScopeBlocks.count(&MBB) == 0 && !ArtificialBlocks.count(&MBB))
2332     return false;
2333 
2334   LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n");
2335   bool Changed = false;
2336 
2337   // Order predecessors by RPOT order, for exploring them in that order.
2338   SmallVector<MachineBasicBlock *, 8> BlockOrders(MBB.predecessors());
2339 
2340   auto Cmp = [&](MachineBasicBlock *A, MachineBasicBlock *B) {
2341     return BBToOrder[A] < BBToOrder[B];
2342   };
2343 
2344   llvm::sort(BlockOrders, Cmp);
2345 
2346   unsigned CurBlockRPONum = BBToOrder[&MBB];
2347 
2348   // Collect all the incoming DbgValues for this variable, from predecessor
2349   // live-out values.
2350   SmallVector<InValueT, 8> Values;
2351   bool Bail = false;
2352   int BackEdgesStart = 0;
2353   for (auto p : BlockOrders) {
2354     // If the predecessor isn't in scope / to be explored, we'll never be
2355     // able to join any locations.
2356     if (!BlocksToExplore.contains(p)) {
2357       Bail = true;
2358       break;
2359     }
2360 
2361     // All Live-outs will have been initialized.
2362     DbgValue &OutLoc = *VLOCOutLocs.find(p)->second;
2363 
2364     // Keep track of where back-edges begin in the Values vector. Relies on
2365     // BlockOrders being sorted by RPO.
2366     unsigned ThisBBRPONum = BBToOrder[p];
2367     if (ThisBBRPONum < CurBlockRPONum)
2368       ++BackEdgesStart;
2369 
2370     Values.push_back(std::make_pair(p, &OutLoc));
2371   }
2372 
2373   // If there were no values, or one of the predecessors couldn't have a
2374   // value, then give up immediately. It's not safe to produce a live-in
2375   // value. Leave as whatever it was before.
2376   if (Bail || Values.size() == 0)
2377     return false;
2378 
2379   // All (non-entry) blocks have at least one non-backedge predecessor.
2380   // Pick the variable value from the first of these, to compare against
2381   // all others.
2382   const DbgValue &FirstVal = *Values[0].second;
2383 
2384   // If the old live-in value is not a PHI then either a) no PHI is needed
2385   // here, or b) we eliminated the PHI that was here. If so, we can just
2386   // propagate in the first parent's incoming value.
2387   if (LiveIn.Kind != DbgValue::VPHI || LiveIn.BlockNo != MBB.getNumber()) {
2388     Changed = LiveIn != FirstVal;
2389     if (Changed)
2390       LiveIn = FirstVal;
2391     return Changed;
2392   }
2393 
2394   // Scan for variable values that can never be resolved: if they have
2395   // different DIExpressions, different indirectness, or are mixed constants /
2396   // non-constants.
2397   for (auto &V : Values) {
2398     if (V.second->Properties != FirstVal.Properties)
2399       return false;
2400     if (V.second->Kind == DbgValue::NoVal)
2401       return false;
2402     if (V.second->Kind == DbgValue::Const && FirstVal.Kind != DbgValue::Const)
2403       return false;
2404   }
2405 
2406   // Try to eliminate this PHI. Do the incoming values all agree?
2407   bool Disagree = false;
2408   for (auto &V : Values) {
2409     if (*V.second == FirstVal)
2410       continue; // No disagreement.
2411 
2412     // Eliminate if a backedge feeds a VPHI back into itself.
2413     if (V.second->Kind == DbgValue::VPHI &&
2414         V.second->BlockNo == MBB.getNumber() &&
2415         // Is this a backedge?
2416         std::distance(Values.begin(), &V) >= BackEdgesStart)
2417       continue;
2418 
2419     Disagree = true;
2420   }
2421 
2422   // No disagreement -> live-through value.
2423   if (!Disagree) {
2424     Changed = LiveIn != FirstVal;
2425     if (Changed)
2426       LiveIn = FirstVal;
2427     return Changed;
2428   } else {
2429     // Otherwise use a VPHI.
2430     DbgValue VPHI(MBB.getNumber(), FirstVal.Properties, DbgValue::VPHI);
2431     Changed = LiveIn != VPHI;
2432     if (Changed)
2433       LiveIn = VPHI;
2434     return Changed;
2435   }
2436 }
2437 
2438 void InstrRefBasedLDV::buildVLocValueMap(const DILocation *DILoc,
2439     const SmallSet<DebugVariable, 4> &VarsWeCareAbout,
2440     SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks, LiveInsT &Output,
2441     ValueIDNum **MOutLocs, ValueIDNum **MInLocs,
2442     SmallVectorImpl<VLocTracker> &AllTheVLocs) {
2443   // This method is much like buildMLocValueMap: but focuses on a single
2444   // LexicalScope at a time. Pick out a set of blocks and variables that are
2445   // to have their value assignments solved, then run our dataflow algorithm
2446   // until a fixedpoint is reached.
2447   std::priority_queue<unsigned int, std::vector<unsigned int>,
2448                       std::greater<unsigned int>>
2449       Worklist, Pending;
2450   SmallPtrSet<MachineBasicBlock *, 16> OnWorklist, OnPending;
2451 
2452   // The set of blocks we'll be examining.
2453   SmallPtrSet<const MachineBasicBlock *, 8> BlocksToExplore;
2454 
2455   // The order in which to examine them (RPO).
2456   SmallVector<MachineBasicBlock *, 8> BlockOrders;
2457 
2458   // RPO ordering function.
2459   auto Cmp = [&](MachineBasicBlock *A, MachineBasicBlock *B) {
2460     return BBToOrder[A] < BBToOrder[B];
2461   };
2462 
2463   LS.getMachineBasicBlocks(DILoc, BlocksToExplore);
2464 
2465   // A separate container to distinguish "blocks we're exploring" versus
2466   // "blocks that are potentially in scope. See comment at start of vlocJoin.
2467   SmallPtrSet<const MachineBasicBlock *, 8> InScopeBlocks = BlocksToExplore;
2468 
2469   // Old LiveDebugValues tracks variable locations that come out of blocks
2470   // not in scope, where DBG_VALUEs occur. This is something we could
2471   // legitimately ignore, but lets allow it for now.
2472   if (EmulateOldLDV)
2473     BlocksToExplore.insert(AssignBlocks.begin(), AssignBlocks.end());
2474 
2475   // We also need to propagate variable values through any artificial blocks
2476   // that immediately follow blocks in scope.
2477   DenseSet<const MachineBasicBlock *> ToAdd;
2478 
2479   // Helper lambda: For a given block in scope, perform a depth first search
2480   // of all the artificial successors, adding them to the ToAdd collection.
2481   auto AccumulateArtificialBlocks =
2482       [this, &ToAdd, &BlocksToExplore,
2483        &InScopeBlocks](const MachineBasicBlock *MBB) {
2484         // Depth-first-search state: each node is a block and which successor
2485         // we're currently exploring.
2486         SmallVector<std::pair<const MachineBasicBlock *,
2487                               MachineBasicBlock::const_succ_iterator>,
2488                     8>
2489             DFS;
2490 
2491         // Find any artificial successors not already tracked.
2492         for (auto *succ : MBB->successors()) {
2493           if (BlocksToExplore.count(succ) || InScopeBlocks.count(succ))
2494             continue;
2495           if (!ArtificialBlocks.count(succ))
2496             continue;
2497           ToAdd.insert(succ);
2498           DFS.push_back(std::make_pair(succ, succ->succ_begin()));
2499         }
2500 
2501         // Search all those blocks, depth first.
2502         while (!DFS.empty()) {
2503           const MachineBasicBlock *CurBB = DFS.back().first;
2504           MachineBasicBlock::const_succ_iterator &CurSucc = DFS.back().second;
2505           // Walk back if we've explored this blocks successors to the end.
2506           if (CurSucc == CurBB->succ_end()) {
2507             DFS.pop_back();
2508             continue;
2509           }
2510 
2511           // If the current successor is artificial and unexplored, descend into
2512           // it.
2513           if (!ToAdd.count(*CurSucc) && ArtificialBlocks.count(*CurSucc)) {
2514             ToAdd.insert(*CurSucc);
2515             DFS.push_back(std::make_pair(*CurSucc, (*CurSucc)->succ_begin()));
2516             continue;
2517           }
2518 
2519           ++CurSucc;
2520         }
2521       };
2522 
2523   // Search in-scope blocks and those containing a DBG_VALUE from this scope
2524   // for artificial successors.
2525   for (auto *MBB : BlocksToExplore)
2526     AccumulateArtificialBlocks(MBB);
2527   for (auto *MBB : InScopeBlocks)
2528     AccumulateArtificialBlocks(MBB);
2529 
2530   BlocksToExplore.insert(ToAdd.begin(), ToAdd.end());
2531   InScopeBlocks.insert(ToAdd.begin(), ToAdd.end());
2532 
2533   // Single block scope: not interesting! No propagation at all. Note that
2534   // this could probably go above ArtificialBlocks without damage, but
2535   // that then produces output differences from original-live-debug-values,
2536   // which propagates from a single block into many artificial ones.
2537   if (BlocksToExplore.size() == 1)
2538     return;
2539 
2540   // Convert a const set to a non-const set. LexicalScopes
2541   // getMachineBasicBlocks returns const MBB pointers, IDF wants mutable ones.
2542   // (Neither of them mutate anything).
2543   SmallPtrSet<MachineBasicBlock *, 8> MutBlocksToExplore;
2544   for (const auto *MBB : BlocksToExplore)
2545     MutBlocksToExplore.insert(const_cast<MachineBasicBlock *>(MBB));
2546 
2547   // Picks out relevants blocks RPO order and sort them.
2548   for (auto *MBB : BlocksToExplore)
2549     BlockOrders.push_back(const_cast<MachineBasicBlock *>(MBB));
2550 
2551   llvm::sort(BlockOrders, Cmp);
2552   unsigned NumBlocks = BlockOrders.size();
2553 
2554   // Allocate some vectors for storing the live ins and live outs. Large.
2555   SmallVector<DbgValue, 32> LiveIns, LiveOuts;
2556   LiveIns.reserve(NumBlocks);
2557   LiveOuts.reserve(NumBlocks);
2558 
2559   // Initialize all values to start as NoVals. This signifies "it's live
2560   // through, but we don't know what it is".
2561   DbgValueProperties EmptyProperties(EmptyExpr, false);
2562   for (unsigned int I = 0; I < NumBlocks; ++I) {
2563     DbgValue EmptyDbgValue(I, EmptyProperties, DbgValue::NoVal);
2564     LiveIns.push_back(EmptyDbgValue);
2565     LiveOuts.push_back(EmptyDbgValue);
2566   }
2567 
2568   // Produce by-MBB indexes of live-in/live-outs, to ease lookup within
2569   // vlocJoin.
2570   LiveIdxT LiveOutIdx, LiveInIdx;
2571   LiveOutIdx.reserve(NumBlocks);
2572   LiveInIdx.reserve(NumBlocks);
2573   for (unsigned I = 0; I < NumBlocks; ++I) {
2574     LiveOutIdx[BlockOrders[I]] = &LiveOuts[I];
2575     LiveInIdx[BlockOrders[I]] = &LiveIns[I];
2576   }
2577 
2578   // Loop over each variable and place PHIs for it, then propagate values
2579   // between blocks. This keeps the locality of working on one lexical scope at
2580   // at time, but avoids re-processing variable values because some other
2581   // variable has been assigned.
2582   for (auto &Var : VarsWeCareAbout) {
2583     // Re-initialize live-ins and live-outs, to clear the remains of previous
2584     // variables live-ins / live-outs.
2585     for (unsigned int I = 0; I < NumBlocks; ++I) {
2586       DbgValue EmptyDbgValue(I, EmptyProperties, DbgValue::NoVal);
2587       LiveIns[I] = EmptyDbgValue;
2588       LiveOuts[I] = EmptyDbgValue;
2589     }
2590 
2591     // Place PHIs for variable values, using the LLVM IDF calculator.
2592     // Collect the set of blocks where variables are def'd.
2593     SmallPtrSet<MachineBasicBlock *, 32> DefBlocks;
2594     for (const MachineBasicBlock *ExpMBB : BlocksToExplore) {
2595       auto &TransferFunc = AllTheVLocs[ExpMBB->getNumber()].Vars;
2596       if (TransferFunc.find(Var) != TransferFunc.end())
2597         DefBlocks.insert(const_cast<MachineBasicBlock *>(ExpMBB));
2598     }
2599 
2600     SmallVector<MachineBasicBlock *, 32> PHIBlocks;
2601 
2602     // Request the set of PHIs we should insert for this variable.
2603     BlockPHIPlacement(MutBlocksToExplore, DefBlocks, PHIBlocks);
2604 
2605     // Insert PHIs into the per-block live-in tables for this variable.
2606     for (MachineBasicBlock *PHIMBB : PHIBlocks) {
2607       unsigned BlockNo = PHIMBB->getNumber();
2608       DbgValue *LiveIn = LiveInIdx[PHIMBB];
2609       *LiveIn = DbgValue(BlockNo, EmptyProperties, DbgValue::VPHI);
2610     }
2611 
2612     for (auto *MBB : BlockOrders) {
2613       Worklist.push(BBToOrder[MBB]);
2614       OnWorklist.insert(MBB);
2615     }
2616 
2617     // Iterate over all the blocks we selected, propagating the variables value.
2618     // This loop does two things:
2619     //  * Eliminates un-necessary VPHIs in vlocJoin,
2620     //  * Evaluates the blocks transfer function (i.e. variable assignments) and
2621     //    stores the result to the blocks live-outs.
2622     // Always evaluate the transfer function on the first iteration, and when
2623     // the live-ins change thereafter.
2624     bool FirstTrip = true;
2625     while (!Worklist.empty() || !Pending.empty()) {
2626       while (!Worklist.empty()) {
2627         auto *MBB = OrderToBB[Worklist.top()];
2628         CurBB = MBB->getNumber();
2629         Worklist.pop();
2630 
2631         auto LiveInsIt = LiveInIdx.find(MBB);
2632         assert(LiveInsIt != LiveInIdx.end());
2633         DbgValue *LiveIn = LiveInsIt->second;
2634 
2635         // Join values from predecessors. Updates LiveInIdx, and writes output
2636         // into JoinedInLocs.
2637         bool InLocsChanged =
2638             vlocJoin(*MBB, LiveOutIdx, InScopeBlocks, BlocksToExplore, *LiveIn);
2639 
2640         SmallVector<const MachineBasicBlock *, 8> Preds;
2641         for (const auto *Pred : MBB->predecessors())
2642           Preds.push_back(Pred);
2643 
2644         // If this block's live-in value is a VPHI, try to pick a machine-value
2645         // for it. This makes the machine-value available and propagated
2646         // through all blocks by the time value propagation finishes. We can't
2647         // do this any earlier as it needs to read the block live-outs.
2648         if (LiveIn->Kind == DbgValue::VPHI && LiveIn->BlockNo == (int)CurBB) {
2649           // There's a small possibility that on a preceeding path, a VPHI is
2650           // eliminated and transitions from VPHI-with-location to
2651           // live-through-value. As a result, the selected location of any VPHI
2652           // might change, so we need to re-compute it on each iteration.
2653           Optional<ValueIDNum> ValueNum =
2654               pickVPHILoc(*MBB, Var, LiveOutIdx, MOutLocs, Preds);
2655 
2656           if (ValueNum) {
2657             InLocsChanged |= LiveIn->ID != *ValueNum;
2658             LiveIn->ID = *ValueNum;
2659           }
2660         }
2661 
2662         if (!InLocsChanged && !FirstTrip)
2663           continue;
2664 
2665         DbgValue *LiveOut = LiveOutIdx[MBB];
2666         bool OLChanged = false;
2667 
2668         // Do transfer function.
2669         auto &VTracker = AllTheVLocs[MBB->getNumber()];
2670         auto TransferIt = VTracker.Vars.find(Var);
2671         if (TransferIt != VTracker.Vars.end()) {
2672           // Erase on empty transfer (DBG_VALUE $noreg).
2673           if (TransferIt->second.Kind == DbgValue::Undef) {
2674             DbgValue NewVal(MBB->getNumber(), EmptyProperties, DbgValue::NoVal);
2675             if (*LiveOut != NewVal) {
2676               *LiveOut = NewVal;
2677               OLChanged = true;
2678             }
2679           } else {
2680             // Insert new variable value; or overwrite.
2681             if (*LiveOut != TransferIt->second) {
2682               *LiveOut = TransferIt->second;
2683               OLChanged = true;
2684             }
2685           }
2686         } else {
2687           // Just copy live-ins to live-outs, for anything not transferred.
2688           if (*LiveOut != *LiveIn) {
2689             *LiveOut = *LiveIn;
2690             OLChanged = true;
2691           }
2692         }
2693 
2694         // If no live-out value changed, there's no need to explore further.
2695         if (!OLChanged)
2696           continue;
2697 
2698         // We should visit all successors. Ensure we'll visit any non-backedge
2699         // successors during this dataflow iteration; book backedge successors
2700         // to be visited next time around.
2701         for (auto s : MBB->successors()) {
2702           // Ignore out of scope / not-to-be-explored successors.
2703           if (LiveInIdx.find(s) == LiveInIdx.end())
2704             continue;
2705 
2706           if (BBToOrder[s] > BBToOrder[MBB]) {
2707             if (OnWorklist.insert(s).second)
2708               Worklist.push(BBToOrder[s]);
2709           } else if (OnPending.insert(s).second && (FirstTrip || OLChanged)) {
2710             Pending.push(BBToOrder[s]);
2711           }
2712         }
2713       }
2714       Worklist.swap(Pending);
2715       std::swap(OnWorklist, OnPending);
2716       OnPending.clear();
2717       assert(Pending.empty());
2718       FirstTrip = false;
2719     }
2720 
2721     // Save live-ins to output vector. Ignore any that are still marked as being
2722     // VPHIs with no location -- those are variables that we know the value of,
2723     // but are not actually available in the register file.
2724     for (auto *MBB : BlockOrders) {
2725       DbgValue *BlockLiveIn = LiveInIdx[MBB];
2726       if (BlockLiveIn->Kind == DbgValue::NoVal)
2727         continue;
2728       if (BlockLiveIn->Kind == DbgValue::VPHI &&
2729           BlockLiveIn->ID == ValueIDNum::EmptyValue)
2730         continue;
2731       if (BlockLiveIn->Kind == DbgValue::VPHI)
2732         BlockLiveIn->Kind = DbgValue::Def;
2733       Output[MBB->getNumber()].push_back(std::make_pair(Var, *BlockLiveIn));
2734     }
2735   } // Per-variable loop.
2736 
2737   BlockOrders.clear();
2738   BlocksToExplore.clear();
2739 }
2740 
2741 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2742 void InstrRefBasedLDV::dump_mloc_transfer(
2743     const MLocTransferMap &mloc_transfer) const {
2744   for (auto &P : mloc_transfer) {
2745     std::string foo = MTracker->LocIdxToName(P.first);
2746     std::string bar = MTracker->IDAsString(P.second);
2747     dbgs() << "Loc " << foo << " --> " << bar << "\n";
2748   }
2749 }
2750 #endif
2751 
2752 void InstrRefBasedLDV::emitLocations(
2753     MachineFunction &MF, LiveInsT SavedLiveIns, ValueIDNum **MOutLocs,
2754     ValueIDNum **MInLocs, DenseMap<DebugVariable, unsigned> &AllVarsNumbering,
2755     const TargetPassConfig &TPC) {
2756   TTracker = new TransferTracker(TII, MTracker, MF, *TRI, CalleeSavedRegs, TPC);
2757   unsigned NumLocs = MTracker->getNumLocs();
2758 
2759   // For each block, load in the machine value locations and variable value
2760   // live-ins, then step through each instruction in the block. New DBG_VALUEs
2761   // to be inserted will be created along the way.
2762   for (MachineBasicBlock &MBB : MF) {
2763     unsigned bbnum = MBB.getNumber();
2764     MTracker->reset();
2765     MTracker->loadFromArray(MInLocs[bbnum], bbnum);
2766     TTracker->loadInlocs(MBB, MInLocs[bbnum], SavedLiveIns[MBB.getNumber()],
2767                          NumLocs);
2768 
2769     CurBB = bbnum;
2770     CurInst = 1;
2771     for (auto &MI : MBB) {
2772       process(MI, MOutLocs, MInLocs);
2773       TTracker->checkInstForNewValues(CurInst, MI.getIterator());
2774       ++CurInst;
2775     }
2776   }
2777 
2778   // We have to insert DBG_VALUEs in a consistent order, otherwise they appeaer
2779   // in DWARF in different orders. Use the order that they appear when walking
2780   // through each block / each instruction, stored in AllVarsNumbering.
2781   auto OrderDbgValues = [&](const MachineInstr *A,
2782                             const MachineInstr *B) -> bool {
2783     DebugVariable VarA(A->getDebugVariable(), A->getDebugExpression(),
2784                        A->getDebugLoc()->getInlinedAt());
2785     DebugVariable VarB(B->getDebugVariable(), B->getDebugExpression(),
2786                        B->getDebugLoc()->getInlinedAt());
2787     return AllVarsNumbering.find(VarA)->second <
2788            AllVarsNumbering.find(VarB)->second;
2789   };
2790 
2791   // Go through all the transfers recorded in the TransferTracker -- this is
2792   // both the live-ins to a block, and any movements of values that happen
2793   // in the middle.
2794   for (auto &P : TTracker->Transfers) {
2795     // Sort them according to appearance order.
2796     llvm::sort(P.Insts, OrderDbgValues);
2797     // Insert either before or after the designated point...
2798     if (P.MBB) {
2799       MachineBasicBlock &MBB = *P.MBB;
2800       for (auto *MI : P.Insts) {
2801         MBB.insert(P.Pos, MI);
2802       }
2803     } else {
2804       // Terminators, like tail calls, can clobber things. Don't try and place
2805       // transfers after them.
2806       if (P.Pos->isTerminator())
2807         continue;
2808 
2809       MachineBasicBlock &MBB = *P.Pos->getParent();
2810       for (auto *MI : P.Insts) {
2811         MBB.insertAfterBundle(P.Pos, MI);
2812       }
2813     }
2814   }
2815 }
2816 
2817 void InstrRefBasedLDV::initialSetup(MachineFunction &MF) {
2818   // Build some useful data structures.
2819 
2820   LLVMContext &Context = MF.getFunction().getContext();
2821   EmptyExpr = DIExpression::get(Context, {});
2822 
2823   auto hasNonArtificialLocation = [](const MachineInstr &MI) -> bool {
2824     if (const DebugLoc &DL = MI.getDebugLoc())
2825       return DL.getLine() != 0;
2826     return false;
2827   };
2828   // Collect a set of all the artificial blocks.
2829   for (auto &MBB : MF)
2830     if (none_of(MBB.instrs(), hasNonArtificialLocation))
2831       ArtificialBlocks.insert(&MBB);
2832 
2833   // Compute mappings of block <=> RPO order.
2834   ReversePostOrderTraversal<MachineFunction *> RPOT(&MF);
2835   unsigned int RPONumber = 0;
2836   for (MachineBasicBlock *MBB : RPOT) {
2837     OrderToBB[RPONumber] = MBB;
2838     BBToOrder[MBB] = RPONumber;
2839     BBNumToRPO[MBB->getNumber()] = RPONumber;
2840     ++RPONumber;
2841   }
2842 
2843   // Order value substitutions by their "source" operand pair, for quick lookup.
2844   llvm::sort(MF.DebugValueSubstitutions);
2845 
2846 #ifdef EXPENSIVE_CHECKS
2847   // As an expensive check, test whether there are any duplicate substitution
2848   // sources in the collection.
2849   if (MF.DebugValueSubstitutions.size() > 2) {
2850     for (auto It = MF.DebugValueSubstitutions.begin();
2851          It != std::prev(MF.DebugValueSubstitutions.end()); ++It) {
2852       assert(It->Src != std::next(It)->Src && "Duplicate variable location "
2853                                               "substitution seen");
2854     }
2855   }
2856 #endif
2857 }
2858 
2859 /// Calculate the liveness information for the given machine function and
2860 /// extend ranges across basic blocks.
2861 bool InstrRefBasedLDV::ExtendRanges(MachineFunction &MF,
2862                                     MachineDominatorTree *DomTree,
2863                                     TargetPassConfig *TPC,
2864                                     unsigned InputBBLimit,
2865                                     unsigned InputDbgValLimit) {
2866   // No subprogram means this function contains no debuginfo.
2867   if (!MF.getFunction().getSubprogram())
2868     return false;
2869 
2870   LLVM_DEBUG(dbgs() << "\nDebug Range Extension\n");
2871   this->TPC = TPC;
2872 
2873   this->DomTree = DomTree;
2874   TRI = MF.getSubtarget().getRegisterInfo();
2875   MRI = &MF.getRegInfo();
2876   TII = MF.getSubtarget().getInstrInfo();
2877   TFI = MF.getSubtarget().getFrameLowering();
2878   TFI->getCalleeSaves(MF, CalleeSavedRegs);
2879   MFI = &MF.getFrameInfo();
2880   LS.initialize(MF);
2881 
2882   MTracker =
2883       new MLocTracker(MF, *TII, *TRI, *MF.getSubtarget().getTargetLowering());
2884   VTracker = nullptr;
2885   TTracker = nullptr;
2886 
2887   SmallVector<MLocTransferMap, 32> MLocTransfer;
2888   SmallVector<VLocTracker, 8> vlocs;
2889   LiveInsT SavedLiveIns;
2890 
2891   int MaxNumBlocks = -1;
2892   for (auto &MBB : MF)
2893     MaxNumBlocks = std::max(MBB.getNumber(), MaxNumBlocks);
2894   assert(MaxNumBlocks >= 0);
2895   ++MaxNumBlocks;
2896 
2897   MLocTransfer.resize(MaxNumBlocks);
2898   vlocs.resize(MaxNumBlocks);
2899   SavedLiveIns.resize(MaxNumBlocks);
2900 
2901   initialSetup(MF);
2902 
2903   produceMLocTransferFunction(MF, MLocTransfer, MaxNumBlocks);
2904 
2905   // Allocate and initialize two array-of-arrays for the live-in and live-out
2906   // machine values. The outer dimension is the block number; while the inner
2907   // dimension is a LocIdx from MLocTracker.
2908   ValueIDNum **MOutLocs = new ValueIDNum *[MaxNumBlocks];
2909   ValueIDNum **MInLocs = new ValueIDNum *[MaxNumBlocks];
2910   unsigned NumLocs = MTracker->getNumLocs();
2911   for (int i = 0; i < MaxNumBlocks; ++i) {
2912     // These all auto-initialize to ValueIDNum::EmptyValue
2913     MOutLocs[i] = new ValueIDNum[NumLocs];
2914     MInLocs[i] = new ValueIDNum[NumLocs];
2915   }
2916 
2917   // Solve the machine value dataflow problem using the MLocTransfer function,
2918   // storing the computed live-ins / live-outs into the array-of-arrays. We use
2919   // both live-ins and live-outs for decision making in the variable value
2920   // dataflow problem.
2921   buildMLocValueMap(MF, MInLocs, MOutLocs, MLocTransfer);
2922 
2923   // Patch up debug phi numbers, turning unknown block-live-in values into
2924   // either live-through machine values, or PHIs.
2925   for (auto &DBG_PHI : DebugPHINumToValue) {
2926     // Identify unresolved block-live-ins.
2927     ValueIDNum &Num = DBG_PHI.ValueRead;
2928     if (!Num.isPHI())
2929       continue;
2930 
2931     unsigned BlockNo = Num.getBlock();
2932     LocIdx LocNo = Num.getLoc();
2933     Num = MInLocs[BlockNo][LocNo.asU64()];
2934   }
2935   // Later, we'll be looking up ranges of instruction numbers.
2936   llvm::sort(DebugPHINumToValue);
2937 
2938   // Walk back through each block / instruction, collecting DBG_VALUE
2939   // instructions and recording what machine value their operands refer to.
2940   for (auto &OrderPair : OrderToBB) {
2941     MachineBasicBlock &MBB = *OrderPair.second;
2942     CurBB = MBB.getNumber();
2943     VTracker = &vlocs[CurBB];
2944     VTracker->MBB = &MBB;
2945     MTracker->loadFromArray(MInLocs[CurBB], CurBB);
2946     CurInst = 1;
2947     for (auto &MI : MBB) {
2948       process(MI, MOutLocs, MInLocs);
2949       ++CurInst;
2950     }
2951     MTracker->reset();
2952   }
2953 
2954   // Number all variables in the order that they appear, to be used as a stable
2955   // insertion order later.
2956   DenseMap<DebugVariable, unsigned> AllVarsNumbering;
2957 
2958   // Map from one LexicalScope to all the variables in that scope.
2959   DenseMap<const LexicalScope *, SmallSet<DebugVariable, 4>> ScopeToVars;
2960 
2961   // Map from One lexical scope to all blocks in that scope.
2962   DenseMap<const LexicalScope *, SmallPtrSet<MachineBasicBlock *, 4>>
2963       ScopeToBlocks;
2964 
2965   // Store a DILocation that describes a scope.
2966   DenseMap<const LexicalScope *, const DILocation *> ScopeToDILocation;
2967 
2968   // To mirror old LiveDebugValues, enumerate variables in RPOT order. Otherwise
2969   // the order is unimportant, it just has to be stable.
2970   unsigned VarAssignCount = 0;
2971   for (unsigned int I = 0; I < OrderToBB.size(); ++I) {
2972     auto *MBB = OrderToBB[I];
2973     auto *VTracker = &vlocs[MBB->getNumber()];
2974     // Collect each variable with a DBG_VALUE in this block.
2975     for (auto &idx : VTracker->Vars) {
2976       const auto &Var = idx.first;
2977       const DILocation *ScopeLoc = VTracker->Scopes[Var];
2978       assert(ScopeLoc != nullptr);
2979       auto *Scope = LS.findLexicalScope(ScopeLoc);
2980 
2981       // No insts in scope -> shouldn't have been recorded.
2982       assert(Scope != nullptr);
2983 
2984       AllVarsNumbering.insert(std::make_pair(Var, AllVarsNumbering.size()));
2985       ScopeToVars[Scope].insert(Var);
2986       ScopeToBlocks[Scope].insert(VTracker->MBB);
2987       ScopeToDILocation[Scope] = ScopeLoc;
2988       ++VarAssignCount;
2989     }
2990   }
2991 
2992   bool Changed = false;
2993 
2994   // If we have an extremely large number of variable assignments and blocks,
2995   // bail out at this point. We've burnt some time doing analysis already,
2996   // however we should cut our losses.
2997   if ((unsigned)MaxNumBlocks > InputBBLimit &&
2998       VarAssignCount > InputDbgValLimit) {
2999     LLVM_DEBUG(dbgs() << "Disabling InstrRefBasedLDV: " << MF.getName()
3000                       << " has " << MaxNumBlocks << " basic blocks and "
3001                       << VarAssignCount
3002                       << " variable assignments, exceeding limits.\n");
3003   } else {
3004     // Compute the extended ranges, iterating over scopes. There might be
3005     // something to be said for ordering them by size/locality, but that's for
3006     // the future. For each scope, solve the variable value problem, producing
3007     // a map of variables to values in SavedLiveIns.
3008     for (auto &P : ScopeToVars) {
3009       buildVLocValueMap(ScopeToDILocation[P.first], P.second,
3010                    ScopeToBlocks[P.first], SavedLiveIns, MOutLocs, MInLocs,
3011                    vlocs);
3012     }
3013 
3014     // Using the computed value locations and variable values for each block,
3015     // create the DBG_VALUE instructions representing the extended variable
3016     // locations.
3017     emitLocations(MF, SavedLiveIns, MOutLocs, MInLocs, AllVarsNumbering, *TPC);
3018 
3019     // Did we actually make any changes? If we created any DBG_VALUEs, then yes.
3020     Changed = TTracker->Transfers.size() != 0;
3021   }
3022 
3023   // Common clean-up of memory.
3024   for (int Idx = 0; Idx < MaxNumBlocks; ++Idx) {
3025     delete[] MOutLocs[Idx];
3026     delete[] MInLocs[Idx];
3027   }
3028   delete[] MOutLocs;
3029   delete[] MInLocs;
3030 
3031   delete MTracker;
3032   delete TTracker;
3033   MTracker = nullptr;
3034   VTracker = nullptr;
3035   TTracker = nullptr;
3036 
3037   ArtificialBlocks.clear();
3038   OrderToBB.clear();
3039   BBToOrder.clear();
3040   BBNumToRPO.clear();
3041   DebugInstrNumToInstr.clear();
3042   DebugPHINumToValue.clear();
3043 
3044   return Changed;
3045 }
3046 
3047 LDVImpl *llvm::makeInstrRefBasedLiveDebugValues() {
3048   return new InstrRefBasedLDV();
3049 }
3050 
3051 namespace {
3052 class LDVSSABlock;
3053 class LDVSSAUpdater;
3054 
3055 // Pick a type to identify incoming block values as we construct SSA. We
3056 // can't use anything more robust than an integer unfortunately, as SSAUpdater
3057 // expects to zero-initialize the type.
3058 typedef uint64_t BlockValueNum;
3059 
3060 /// Represents an SSA PHI node for the SSA updater class. Contains the block
3061 /// this PHI is in, the value number it would have, and the expected incoming
3062 /// values from parent blocks.
3063 class LDVSSAPhi {
3064 public:
3065   SmallVector<std::pair<LDVSSABlock *, BlockValueNum>, 4> IncomingValues;
3066   LDVSSABlock *ParentBlock;
3067   BlockValueNum PHIValNum;
3068   LDVSSAPhi(BlockValueNum PHIValNum, LDVSSABlock *ParentBlock)
3069       : ParentBlock(ParentBlock), PHIValNum(PHIValNum) {}
3070 
3071   LDVSSABlock *getParent() { return ParentBlock; }
3072 };
3073 
3074 /// Thin wrapper around a block predecessor iterator. Only difference from a
3075 /// normal block iterator is that it dereferences to an LDVSSABlock.
3076 class LDVSSABlockIterator {
3077 public:
3078   MachineBasicBlock::pred_iterator PredIt;
3079   LDVSSAUpdater &Updater;
3080 
3081   LDVSSABlockIterator(MachineBasicBlock::pred_iterator PredIt,
3082                       LDVSSAUpdater &Updater)
3083       : PredIt(PredIt), Updater(Updater) {}
3084 
3085   bool operator!=(const LDVSSABlockIterator &OtherIt) const {
3086     return OtherIt.PredIt != PredIt;
3087   }
3088 
3089   LDVSSABlockIterator &operator++() {
3090     ++PredIt;
3091     return *this;
3092   }
3093 
3094   LDVSSABlock *operator*();
3095 };
3096 
3097 /// Thin wrapper around a block for SSA Updater interface. Necessary because
3098 /// we need to track the PHI value(s) that we may have observed as necessary
3099 /// in this block.
3100 class LDVSSABlock {
3101 public:
3102   MachineBasicBlock &BB;
3103   LDVSSAUpdater &Updater;
3104   using PHIListT = SmallVector<LDVSSAPhi, 1>;
3105   /// List of PHIs in this block. There should only ever be one.
3106   PHIListT PHIList;
3107 
3108   LDVSSABlock(MachineBasicBlock &BB, LDVSSAUpdater &Updater)
3109       : BB(BB), Updater(Updater) {}
3110 
3111   LDVSSABlockIterator succ_begin() {
3112     return LDVSSABlockIterator(BB.succ_begin(), Updater);
3113   }
3114 
3115   LDVSSABlockIterator succ_end() {
3116     return LDVSSABlockIterator(BB.succ_end(), Updater);
3117   }
3118 
3119   /// SSAUpdater has requested a PHI: create that within this block record.
3120   LDVSSAPhi *newPHI(BlockValueNum Value) {
3121     PHIList.emplace_back(Value, this);
3122     return &PHIList.back();
3123   }
3124 
3125   /// SSAUpdater wishes to know what PHIs already exist in this block.
3126   PHIListT &phis() { return PHIList; }
3127 };
3128 
3129 /// Utility class for the SSAUpdater interface: tracks blocks, PHIs and values
3130 /// while SSAUpdater is exploring the CFG. It's passed as a handle / baton to
3131 // SSAUpdaterTraits<LDVSSAUpdater>.
3132 class LDVSSAUpdater {
3133 public:
3134   /// Map of value numbers to PHI records.
3135   DenseMap<BlockValueNum, LDVSSAPhi *> PHIs;
3136   /// Map of which blocks generate Undef values -- blocks that are not
3137   /// dominated by any Def.
3138   DenseMap<MachineBasicBlock *, BlockValueNum> UndefMap;
3139   /// Map of machine blocks to our own records of them.
3140   DenseMap<MachineBasicBlock *, LDVSSABlock *> BlockMap;
3141   /// Machine location where any PHI must occur.
3142   LocIdx Loc;
3143   /// Table of live-in machine value numbers for blocks / locations.
3144   ValueIDNum **MLiveIns;
3145 
3146   LDVSSAUpdater(LocIdx L, ValueIDNum **MLiveIns) : Loc(L), MLiveIns(MLiveIns) {}
3147 
3148   void reset() {
3149     for (auto &Block : BlockMap)
3150       delete Block.second;
3151 
3152     PHIs.clear();
3153     UndefMap.clear();
3154     BlockMap.clear();
3155   }
3156 
3157   ~LDVSSAUpdater() { reset(); }
3158 
3159   /// For a given MBB, create a wrapper block for it. Stores it in the
3160   /// LDVSSAUpdater block map.
3161   LDVSSABlock *getSSALDVBlock(MachineBasicBlock *BB) {
3162     auto it = BlockMap.find(BB);
3163     if (it == BlockMap.end()) {
3164       BlockMap[BB] = new LDVSSABlock(*BB, *this);
3165       it = BlockMap.find(BB);
3166     }
3167     return it->second;
3168   }
3169 
3170   /// Find the live-in value number for the given block. Looks up the value at
3171   /// the PHI location on entry.
3172   BlockValueNum getValue(LDVSSABlock *LDVBB) {
3173     return MLiveIns[LDVBB->BB.getNumber()][Loc.asU64()].asU64();
3174   }
3175 };
3176 
3177 LDVSSABlock *LDVSSABlockIterator::operator*() {
3178   return Updater.getSSALDVBlock(*PredIt);
3179 }
3180 
3181 #ifndef NDEBUG
3182 
3183 raw_ostream &operator<<(raw_ostream &out, const LDVSSAPhi &PHI) {
3184   out << "SSALDVPHI " << PHI.PHIValNum;
3185   return out;
3186 }
3187 
3188 #endif
3189 
3190 } // namespace
3191 
3192 namespace llvm {
3193 
3194 /// Template specialization to give SSAUpdater access to CFG and value
3195 /// information. SSAUpdater calls methods in these traits, passing in the
3196 /// LDVSSAUpdater object, to learn about blocks and the values they define.
3197 /// It also provides methods to create PHI nodes and track them.
3198 template <> class SSAUpdaterTraits<LDVSSAUpdater> {
3199 public:
3200   using BlkT = LDVSSABlock;
3201   using ValT = BlockValueNum;
3202   using PhiT = LDVSSAPhi;
3203   using BlkSucc_iterator = LDVSSABlockIterator;
3204 
3205   // Methods to access block successors -- dereferencing to our wrapper class.
3206   static BlkSucc_iterator BlkSucc_begin(BlkT *BB) { return BB->succ_begin(); }
3207   static BlkSucc_iterator BlkSucc_end(BlkT *BB) { return BB->succ_end(); }
3208 
3209   /// Iterator for PHI operands.
3210   class PHI_iterator {
3211   private:
3212     LDVSSAPhi *PHI;
3213     unsigned Idx;
3214 
3215   public:
3216     explicit PHI_iterator(LDVSSAPhi *P) // begin iterator
3217         : PHI(P), Idx(0) {}
3218     PHI_iterator(LDVSSAPhi *P, bool) // end iterator
3219         : PHI(P), Idx(PHI->IncomingValues.size()) {}
3220 
3221     PHI_iterator &operator++() {
3222       Idx++;
3223       return *this;
3224     }
3225     bool operator==(const PHI_iterator &X) const { return Idx == X.Idx; }
3226     bool operator!=(const PHI_iterator &X) const { return !operator==(X); }
3227 
3228     BlockValueNum getIncomingValue() { return PHI->IncomingValues[Idx].second; }
3229 
3230     LDVSSABlock *getIncomingBlock() { return PHI->IncomingValues[Idx].first; }
3231   };
3232 
3233   static inline PHI_iterator PHI_begin(PhiT *PHI) { return PHI_iterator(PHI); }
3234 
3235   static inline PHI_iterator PHI_end(PhiT *PHI) {
3236     return PHI_iterator(PHI, true);
3237   }
3238 
3239   /// FindPredecessorBlocks - Put the predecessors of BB into the Preds
3240   /// vector.
3241   static void FindPredecessorBlocks(LDVSSABlock *BB,
3242                                     SmallVectorImpl<LDVSSABlock *> *Preds) {
3243     for (MachineBasicBlock *Pred : BB->BB.predecessors())
3244       Preds->push_back(BB->Updater.getSSALDVBlock(Pred));
3245   }
3246 
3247   /// GetUndefVal - Normally creates an IMPLICIT_DEF instruction with a new
3248   /// register. For LiveDebugValues, represents a block identified as not having
3249   /// any DBG_PHI predecessors.
3250   static BlockValueNum GetUndefVal(LDVSSABlock *BB, LDVSSAUpdater *Updater) {
3251     // Create a value number for this block -- it needs to be unique and in the
3252     // "undef" collection, so that we know it's not real. Use a number
3253     // representing a PHI into this block.
3254     BlockValueNum Num = ValueIDNum(BB->BB.getNumber(), 0, Updater->Loc).asU64();
3255     Updater->UndefMap[&BB->BB] = Num;
3256     return Num;
3257   }
3258 
3259   /// CreateEmptyPHI - Create a (representation of a) PHI in the given block.
3260   /// SSAUpdater will populate it with information about incoming values. The
3261   /// value number of this PHI is whatever the  machine value number problem
3262   /// solution determined it to be. This includes non-phi values if SSAUpdater
3263   /// tries to create a PHI where the incoming values are identical.
3264   static BlockValueNum CreateEmptyPHI(LDVSSABlock *BB, unsigned NumPreds,
3265                                    LDVSSAUpdater *Updater) {
3266     BlockValueNum PHIValNum = Updater->getValue(BB);
3267     LDVSSAPhi *PHI = BB->newPHI(PHIValNum);
3268     Updater->PHIs[PHIValNum] = PHI;
3269     return PHIValNum;
3270   }
3271 
3272   /// AddPHIOperand - Add the specified value as an operand of the PHI for
3273   /// the specified predecessor block.
3274   static void AddPHIOperand(LDVSSAPhi *PHI, BlockValueNum Val, LDVSSABlock *Pred) {
3275     PHI->IncomingValues.push_back(std::make_pair(Pred, Val));
3276   }
3277 
3278   /// ValueIsPHI - Check if the instruction that defines the specified value
3279   /// is a PHI instruction.
3280   static LDVSSAPhi *ValueIsPHI(BlockValueNum Val, LDVSSAUpdater *Updater) {
3281     auto PHIIt = Updater->PHIs.find(Val);
3282     if (PHIIt == Updater->PHIs.end())
3283       return nullptr;
3284     return PHIIt->second;
3285   }
3286 
3287   /// ValueIsNewPHI - Like ValueIsPHI but also check if the PHI has no source
3288   /// operands, i.e., it was just added.
3289   static LDVSSAPhi *ValueIsNewPHI(BlockValueNum Val, LDVSSAUpdater *Updater) {
3290     LDVSSAPhi *PHI = ValueIsPHI(Val, Updater);
3291     if (PHI && PHI->IncomingValues.size() == 0)
3292       return PHI;
3293     return nullptr;
3294   }
3295 
3296   /// GetPHIValue - For the specified PHI instruction, return the value
3297   /// that it defines.
3298   static BlockValueNum GetPHIValue(LDVSSAPhi *PHI) { return PHI->PHIValNum; }
3299 };
3300 
3301 } // end namespace llvm
3302 
3303 Optional<ValueIDNum> InstrRefBasedLDV::resolveDbgPHIs(MachineFunction &MF,
3304                                                       ValueIDNum **MLiveOuts,
3305                                                       ValueIDNum **MLiveIns,
3306                                                       MachineInstr &Here,
3307                                                       uint64_t InstrNum) {
3308   // Pick out records of DBG_PHI instructions that have been observed. If there
3309   // are none, then we cannot compute a value number.
3310   auto RangePair = std::equal_range(DebugPHINumToValue.begin(),
3311                                     DebugPHINumToValue.end(), InstrNum);
3312   auto LowerIt = RangePair.first;
3313   auto UpperIt = RangePair.second;
3314 
3315   // No DBG_PHI means there can be no location.
3316   if (LowerIt == UpperIt)
3317     return None;
3318 
3319   // If there's only one DBG_PHI, then that is our value number.
3320   if (std::distance(LowerIt, UpperIt) == 1)
3321     return LowerIt->ValueRead;
3322 
3323   auto DBGPHIRange = make_range(LowerIt, UpperIt);
3324 
3325   // Pick out the location (physreg, slot) where any PHIs must occur. It's
3326   // technically possible for us to merge values in different registers in each
3327   // block, but highly unlikely that LLVM will generate such code after register
3328   // allocation.
3329   LocIdx Loc = LowerIt->ReadLoc;
3330 
3331   // We have several DBG_PHIs, and a use position (the Here inst). All each
3332   // DBG_PHI does is identify a value at a program position. We can treat each
3333   // DBG_PHI like it's a Def of a value, and the use position is a Use of a
3334   // value, just like SSA. We use the bulk-standard LLVM SSA updater class to
3335   // determine which Def is used at the Use, and any PHIs that happen along
3336   // the way.
3337   // Adapted LLVM SSA Updater:
3338   LDVSSAUpdater Updater(Loc, MLiveIns);
3339   // Map of which Def or PHI is the current value in each block.
3340   DenseMap<LDVSSABlock *, BlockValueNum> AvailableValues;
3341   // Set of PHIs that we have created along the way.
3342   SmallVector<LDVSSAPhi *, 8> CreatedPHIs;
3343 
3344   // Each existing DBG_PHI is a Def'd value under this model. Record these Defs
3345   // for the SSAUpdater.
3346   for (const auto &DBG_PHI : DBGPHIRange) {
3347     LDVSSABlock *Block = Updater.getSSALDVBlock(DBG_PHI.MBB);
3348     const ValueIDNum &Num = DBG_PHI.ValueRead;
3349     AvailableValues.insert(std::make_pair(Block, Num.asU64()));
3350   }
3351 
3352   LDVSSABlock *HereBlock = Updater.getSSALDVBlock(Here.getParent());
3353   const auto &AvailIt = AvailableValues.find(HereBlock);
3354   if (AvailIt != AvailableValues.end()) {
3355     // Actually, we already know what the value is -- the Use is in the same
3356     // block as the Def.
3357     return ValueIDNum::fromU64(AvailIt->second);
3358   }
3359 
3360   // Otherwise, we must use the SSA Updater. It will identify the value number
3361   // that we are to use, and the PHIs that must happen along the way.
3362   SSAUpdaterImpl<LDVSSAUpdater> Impl(&Updater, &AvailableValues, &CreatedPHIs);
3363   BlockValueNum ResultInt = Impl.GetValue(Updater.getSSALDVBlock(Here.getParent()));
3364   ValueIDNum Result = ValueIDNum::fromU64(ResultInt);
3365 
3366   // We have the number for a PHI, or possibly live-through value, to be used
3367   // at this Use. There are a number of things we have to check about it though:
3368   //  * Does any PHI use an 'Undef' (like an IMPLICIT_DEF) value? If so, this
3369   //    Use was not completely dominated by DBG_PHIs and we should abort.
3370   //  * Are the Defs or PHIs clobbered in a block? SSAUpdater isn't aware that
3371   //    we've left SSA form. Validate that the inputs to each PHI are the
3372   //    expected values.
3373   //  * Is a PHI we've created actually a merging of values, or are all the
3374   //    predecessor values the same, leading to a non-PHI machine value number?
3375   //    (SSAUpdater doesn't know that either). Remap validated PHIs into the
3376   //    the ValidatedValues collection below to sort this out.
3377   DenseMap<LDVSSABlock *, ValueIDNum> ValidatedValues;
3378 
3379   // Define all the input DBG_PHI values in ValidatedValues.
3380   for (const auto &DBG_PHI : DBGPHIRange) {
3381     LDVSSABlock *Block = Updater.getSSALDVBlock(DBG_PHI.MBB);
3382     const ValueIDNum &Num = DBG_PHI.ValueRead;
3383     ValidatedValues.insert(std::make_pair(Block, Num));
3384   }
3385 
3386   // Sort PHIs to validate into RPO-order.
3387   SmallVector<LDVSSAPhi *, 8> SortedPHIs;
3388   for (auto &PHI : CreatedPHIs)
3389     SortedPHIs.push_back(PHI);
3390 
3391   std::sort(
3392       SortedPHIs.begin(), SortedPHIs.end(), [&](LDVSSAPhi *A, LDVSSAPhi *B) {
3393         return BBToOrder[&A->getParent()->BB] < BBToOrder[&B->getParent()->BB];
3394       });
3395 
3396   for (auto &PHI : SortedPHIs) {
3397     ValueIDNum ThisBlockValueNum =
3398         MLiveIns[PHI->ParentBlock->BB.getNumber()][Loc.asU64()];
3399 
3400     // Are all these things actually defined?
3401     for (auto &PHIIt : PHI->IncomingValues) {
3402       // Any undef input means DBG_PHIs didn't dominate the use point.
3403       if (Updater.UndefMap.find(&PHIIt.first->BB) != Updater.UndefMap.end())
3404         return None;
3405 
3406       ValueIDNum ValueToCheck;
3407       ValueIDNum *BlockLiveOuts = MLiveOuts[PHIIt.first->BB.getNumber()];
3408 
3409       auto VVal = ValidatedValues.find(PHIIt.first);
3410       if (VVal == ValidatedValues.end()) {
3411         // We cross a loop, and this is a backedge. LLVMs tail duplication
3412         // happens so late that DBG_PHI instructions should not be able to
3413         // migrate into loops -- meaning we can only be live-through this
3414         // loop.
3415         ValueToCheck = ThisBlockValueNum;
3416       } else {
3417         // Does the block have as a live-out, in the location we're examining,
3418         // the value that we expect? If not, it's been moved or clobbered.
3419         ValueToCheck = VVal->second;
3420       }
3421 
3422       if (BlockLiveOuts[Loc.asU64()] != ValueToCheck)
3423         return None;
3424     }
3425 
3426     // Record this value as validated.
3427     ValidatedValues.insert({PHI->ParentBlock, ThisBlockValueNum});
3428   }
3429 
3430   // All the PHIs are valid: we can return what the SSAUpdater said our value
3431   // number was.
3432   return Result;
3433 }
3434