10b57cec5SDimitry Andric //===- InterleavedLoadCombine.cpp - Combine Interleaved Loads ---*- C++ -*-===// 20b57cec5SDimitry Andric // 30b57cec5SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 40b57cec5SDimitry Andric // See https://llvm.org/LICENSE.txt for license information. 50b57cec5SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 60b57cec5SDimitry Andric // 70b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 80b57cec5SDimitry Andric // 90b57cec5SDimitry Andric // \file 100b57cec5SDimitry Andric // 110b57cec5SDimitry Andric // This file defines the interleaved-load-combine pass. The pass searches for 120b57cec5SDimitry Andric // ShuffleVectorInstruction that execute interleaving loads. If a matching 130b57cec5SDimitry Andric // pattern is found, it adds a combined load and further instructions in a 140b57cec5SDimitry Andric // pattern that is detectable by InterleavedAccesPass. The old instructions are 150b57cec5SDimitry Andric // left dead to be removed later. The pass is specifically designed to be 160b57cec5SDimitry Andric // executed just before InterleavedAccesPass to find any left-over instances 170b57cec5SDimitry Andric // that are not detected within former passes. 180b57cec5SDimitry Andric // 190b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 200b57cec5SDimitry Andric 210b57cec5SDimitry Andric #include "llvm/ADT/Statistic.h" 220b57cec5SDimitry Andric #include "llvm/Analysis/MemorySSA.h" 230b57cec5SDimitry Andric #include "llvm/Analysis/MemorySSAUpdater.h" 240b57cec5SDimitry Andric #include "llvm/Analysis/OptimizationRemarkEmitter.h" 250b57cec5SDimitry Andric #include "llvm/Analysis/TargetTransformInfo.h" 265f757f3fSDimitry Andric #include "llvm/CodeGen/InterleavedLoadCombine.h" 270b57cec5SDimitry Andric #include "llvm/CodeGen/Passes.h" 280b57cec5SDimitry Andric #include "llvm/CodeGen/TargetLowering.h" 290b57cec5SDimitry Andric #include "llvm/CodeGen/TargetPassConfig.h" 300b57cec5SDimitry Andric #include "llvm/CodeGen/TargetSubtargetInfo.h" 310b57cec5SDimitry Andric #include "llvm/IR/DataLayout.h" 320b57cec5SDimitry Andric #include "llvm/IR/Dominators.h" 330b57cec5SDimitry Andric #include "llvm/IR/Function.h" 34fe6060f1SDimitry Andric #include "llvm/IR/IRBuilder.h" 3581ad6265SDimitry Andric #include "llvm/IR/Instructions.h" 360b57cec5SDimitry Andric #include "llvm/IR/Module.h" 37480093f4SDimitry Andric #include "llvm/InitializePasses.h" 380b57cec5SDimitry Andric #include "llvm/Pass.h" 390b57cec5SDimitry Andric #include "llvm/Support/Debug.h" 400b57cec5SDimitry Andric #include "llvm/Support/ErrorHandling.h" 410b57cec5SDimitry Andric #include "llvm/Support/raw_ostream.h" 420b57cec5SDimitry Andric #include "llvm/Target/TargetMachine.h" 430b57cec5SDimitry Andric 440b57cec5SDimitry Andric #include <algorithm> 450b57cec5SDimitry Andric #include <cassert> 460b57cec5SDimitry Andric #include <list> 470b57cec5SDimitry Andric 480b57cec5SDimitry Andric using namespace llvm; 490b57cec5SDimitry Andric 500b57cec5SDimitry Andric #define DEBUG_TYPE "interleaved-load-combine" 510b57cec5SDimitry Andric 520b57cec5SDimitry Andric namespace { 530b57cec5SDimitry Andric 540b57cec5SDimitry Andric /// Statistic counter 550b57cec5SDimitry Andric STATISTIC(NumInterleavedLoadCombine, "Number of combined loads"); 560b57cec5SDimitry Andric 570b57cec5SDimitry Andric /// Option to disable the pass 580b57cec5SDimitry Andric static cl::opt<bool> DisableInterleavedLoadCombine( 590b57cec5SDimitry Andric "disable-" DEBUG_TYPE, cl::init(false), cl::Hidden, 600b57cec5SDimitry Andric cl::desc("Disable combining of interleaved loads")); 610b57cec5SDimitry Andric 620b57cec5SDimitry Andric struct VectorInfo; 630b57cec5SDimitry Andric 640b57cec5SDimitry Andric struct InterleavedLoadCombineImpl { 650b57cec5SDimitry Andric public: 660b57cec5SDimitry Andric InterleavedLoadCombineImpl(Function &F, DominatorTree &DT, MemorySSA &MSSA, 67*0fca6ea1SDimitry Andric const TargetTransformInfo &TTI, 685f757f3fSDimitry Andric const TargetMachine &TM) 690b57cec5SDimitry Andric : F(F), DT(DT), MSSA(MSSA), 70*0fca6ea1SDimitry Andric TLI(*TM.getSubtargetImpl(F)->getTargetLowering()), TTI(TTI) {} 710b57cec5SDimitry Andric 720b57cec5SDimitry Andric /// Scan the function for interleaved load candidates and execute the 730b57cec5SDimitry Andric /// replacement if applicable. 740b57cec5SDimitry Andric bool run(); 750b57cec5SDimitry Andric 760b57cec5SDimitry Andric private: 770b57cec5SDimitry Andric /// Function this pass is working on 780b57cec5SDimitry Andric Function &F; 790b57cec5SDimitry Andric 800b57cec5SDimitry Andric /// Dominator Tree Analysis 810b57cec5SDimitry Andric DominatorTree &DT; 820b57cec5SDimitry Andric 830b57cec5SDimitry Andric /// Memory Alias Analyses 840b57cec5SDimitry Andric MemorySSA &MSSA; 850b57cec5SDimitry Andric 860b57cec5SDimitry Andric /// Target Lowering Information 870b57cec5SDimitry Andric const TargetLowering &TLI; 880b57cec5SDimitry Andric 890b57cec5SDimitry Andric /// Target Transform Information 90*0fca6ea1SDimitry Andric const TargetTransformInfo &TTI; 910b57cec5SDimitry Andric 920b57cec5SDimitry Andric /// Find the instruction in sets LIs that dominates all others, return nullptr 930b57cec5SDimitry Andric /// if there is none. 940b57cec5SDimitry Andric LoadInst *findFirstLoad(const std::set<LoadInst *> &LIs); 950b57cec5SDimitry Andric 960b57cec5SDimitry Andric /// Replace interleaved load candidates. It does additional 970b57cec5SDimitry Andric /// analyses if this makes sense. Returns true on success and false 980b57cec5SDimitry Andric /// of nothing has been changed. 990b57cec5SDimitry Andric bool combine(std::list<VectorInfo> &InterleavedLoad, 1000b57cec5SDimitry Andric OptimizationRemarkEmitter &ORE); 1010b57cec5SDimitry Andric 1020b57cec5SDimitry Andric /// Given a set of VectorInfo containing candidates for a given interleave 1030b57cec5SDimitry Andric /// factor, find a set that represents a 'factor' interleaved load. 1040b57cec5SDimitry Andric bool findPattern(std::list<VectorInfo> &Candidates, 1050b57cec5SDimitry Andric std::list<VectorInfo> &InterleavedLoad, unsigned Factor, 1060b57cec5SDimitry Andric const DataLayout &DL); 1070b57cec5SDimitry Andric }; // InterleavedLoadCombine 1080b57cec5SDimitry Andric 1090b57cec5SDimitry Andric /// First Order Polynomial on an n-Bit Integer Value 1100b57cec5SDimitry Andric /// 1110b57cec5SDimitry Andric /// Polynomial(Value) = Value * B + A + E*2^(n-e) 1120b57cec5SDimitry Andric /// 1130b57cec5SDimitry Andric /// A and B are the coefficients. E*2^(n-e) is an error within 'e' most 1140b57cec5SDimitry Andric /// significant bits. It is introduced if an exact computation cannot be proven 1150b57cec5SDimitry Andric /// (e.q. division by 2). 1160b57cec5SDimitry Andric /// 1170b57cec5SDimitry Andric /// As part of this optimization multiple loads will be combined. It necessary 1180b57cec5SDimitry Andric /// to prove that loads are within some relative offset to each other. This 1190b57cec5SDimitry Andric /// class is used to prove relative offsets of values loaded from memory. 1200b57cec5SDimitry Andric /// 1210b57cec5SDimitry Andric /// Representing an integer in this form is sound since addition in two's 1220b57cec5SDimitry Andric /// complement is associative (trivial) and multiplication distributes over the 1230b57cec5SDimitry Andric /// addition (see Proof(1) in Polynomial::mul). Further, both operations 1240b57cec5SDimitry Andric /// commute. 1250b57cec5SDimitry Andric // 1260b57cec5SDimitry Andric // Example: 1270b57cec5SDimitry Andric // declare @fn(i64 %IDX, <4 x float>* %PTR) { 1280b57cec5SDimitry Andric // %Pa1 = add i64 %IDX, 2 1290b57cec5SDimitry Andric // %Pa2 = lshr i64 %Pa1, 1 1300b57cec5SDimitry Andric // %Pa3 = getelementptr inbounds <4 x float>, <4 x float>* %PTR, i64 %Pa2 1310b57cec5SDimitry Andric // %Va = load <4 x float>, <4 x float>* %Pa3 1320b57cec5SDimitry Andric // 1330b57cec5SDimitry Andric // %Pb1 = add i64 %IDX, 4 1340b57cec5SDimitry Andric // %Pb2 = lshr i64 %Pb1, 1 1350b57cec5SDimitry Andric // %Pb3 = getelementptr inbounds <4 x float>, <4 x float>* %PTR, i64 %Pb2 1360b57cec5SDimitry Andric // %Vb = load <4 x float>, <4 x float>* %Pb3 1370b57cec5SDimitry Andric // ... } 1380b57cec5SDimitry Andric // 1390b57cec5SDimitry Andric // The goal is to prove that two loads load consecutive addresses. 1400b57cec5SDimitry Andric // 1410b57cec5SDimitry Andric // In this case the polynomials are constructed by the following 1420b57cec5SDimitry Andric // steps. 1430b57cec5SDimitry Andric // 1440b57cec5SDimitry Andric // The number tag #e specifies the error bits. 1450b57cec5SDimitry Andric // 1460b57cec5SDimitry Andric // Pa_0 = %IDX #0 1470b57cec5SDimitry Andric // Pa_1 = %IDX + 2 #0 | add 2 1480b57cec5SDimitry Andric // Pa_2 = %IDX/2 + 1 #1 | lshr 1 1490b57cec5SDimitry Andric // Pa_3 = %IDX/2 + 1 #1 | GEP, step signext to i64 1500b57cec5SDimitry Andric // Pa_4 = (%IDX/2)*16 + 16 #0 | GEP, multiply index by sizeof(4) for floats 1510b57cec5SDimitry Andric // Pa_5 = (%IDX/2)*16 + 16 #0 | GEP, add offset of leading components 1520b57cec5SDimitry Andric // 1530b57cec5SDimitry Andric // Pb_0 = %IDX #0 1540b57cec5SDimitry Andric // Pb_1 = %IDX + 4 #0 | add 2 1550b57cec5SDimitry Andric // Pb_2 = %IDX/2 + 2 #1 | lshr 1 1560b57cec5SDimitry Andric // Pb_3 = %IDX/2 + 2 #1 | GEP, step signext to i64 1570b57cec5SDimitry Andric // Pb_4 = (%IDX/2)*16 + 32 #0 | GEP, multiply index by sizeof(4) for floats 1580b57cec5SDimitry Andric // Pb_5 = (%IDX/2)*16 + 16 #0 | GEP, add offset of leading components 1590b57cec5SDimitry Andric // 1600b57cec5SDimitry Andric // Pb_5 - Pa_5 = 16 #0 | subtract to get the offset 1610b57cec5SDimitry Andric // 1620b57cec5SDimitry Andric // Remark: %PTR is not maintained within this class. So in this instance the 1630b57cec5SDimitry Andric // offset of 16 can only be assumed if the pointers are equal. 1640b57cec5SDimitry Andric // 1650b57cec5SDimitry Andric class Polynomial { 1660b57cec5SDimitry Andric /// Operations on B 1670b57cec5SDimitry Andric enum BOps { 1680b57cec5SDimitry Andric LShr, 1690b57cec5SDimitry Andric Mul, 1700b57cec5SDimitry Andric SExt, 1710b57cec5SDimitry Andric Trunc, 1720b57cec5SDimitry Andric }; 1730b57cec5SDimitry Andric 1740b57cec5SDimitry Andric /// Number of Error Bits e 17581ad6265SDimitry Andric unsigned ErrorMSBs = (unsigned)-1; 1760b57cec5SDimitry Andric 1770b57cec5SDimitry Andric /// Value 17881ad6265SDimitry Andric Value *V = nullptr; 1790b57cec5SDimitry Andric 1800b57cec5SDimitry Andric /// Coefficient B 1810b57cec5SDimitry Andric SmallVector<std::pair<BOps, APInt>, 4> B; 1820b57cec5SDimitry Andric 1830b57cec5SDimitry Andric /// Coefficient A 1840b57cec5SDimitry Andric APInt A; 1850b57cec5SDimitry Andric 1860b57cec5SDimitry Andric public: 18781ad6265SDimitry Andric Polynomial(Value *V) : V(V) { 1880b57cec5SDimitry Andric IntegerType *Ty = dyn_cast<IntegerType>(V->getType()); 1890b57cec5SDimitry Andric if (Ty) { 1900b57cec5SDimitry Andric ErrorMSBs = 0; 1910b57cec5SDimitry Andric this->V = V; 1920b57cec5SDimitry Andric A = APInt(Ty->getBitWidth(), 0); 1930b57cec5SDimitry Andric } 1940b57cec5SDimitry Andric } 1950b57cec5SDimitry Andric 1960b57cec5SDimitry Andric Polynomial(const APInt &A, unsigned ErrorMSBs = 0) 19781ad6265SDimitry Andric : ErrorMSBs(ErrorMSBs), A(A) {} 1980b57cec5SDimitry Andric 1990b57cec5SDimitry Andric Polynomial(unsigned BitWidth, uint64_t A, unsigned ErrorMSBs = 0) 20081ad6265SDimitry Andric : ErrorMSBs(ErrorMSBs), A(BitWidth, A) {} 2010b57cec5SDimitry Andric 20281ad6265SDimitry Andric Polynomial() = default; 2030b57cec5SDimitry Andric 2040b57cec5SDimitry Andric /// Increment and clamp the number of undefined bits. 2050b57cec5SDimitry Andric void incErrorMSBs(unsigned amt) { 2060b57cec5SDimitry Andric if (ErrorMSBs == (unsigned)-1) 2070b57cec5SDimitry Andric return; 2080b57cec5SDimitry Andric 2090b57cec5SDimitry Andric ErrorMSBs += amt; 2100b57cec5SDimitry Andric if (ErrorMSBs > A.getBitWidth()) 2110b57cec5SDimitry Andric ErrorMSBs = A.getBitWidth(); 2120b57cec5SDimitry Andric } 2130b57cec5SDimitry Andric 2140b57cec5SDimitry Andric /// Decrement and clamp the number of undefined bits. 2150b57cec5SDimitry Andric void decErrorMSBs(unsigned amt) { 2160b57cec5SDimitry Andric if (ErrorMSBs == (unsigned)-1) 2170b57cec5SDimitry Andric return; 2180b57cec5SDimitry Andric 2190b57cec5SDimitry Andric if (ErrorMSBs > amt) 2200b57cec5SDimitry Andric ErrorMSBs -= amt; 2210b57cec5SDimitry Andric else 2220b57cec5SDimitry Andric ErrorMSBs = 0; 2230b57cec5SDimitry Andric } 2240b57cec5SDimitry Andric 2250b57cec5SDimitry Andric /// Apply an add on the polynomial 2260b57cec5SDimitry Andric Polynomial &add(const APInt &C) { 2270b57cec5SDimitry Andric // Note: Addition is associative in two's complement even when in case of 2280b57cec5SDimitry Andric // signed overflow. 2290b57cec5SDimitry Andric // 2300b57cec5SDimitry Andric // Error bits can only propagate into higher significant bits. As these are 2310b57cec5SDimitry Andric // already regarded as undefined, there is no change. 2320b57cec5SDimitry Andric // 2330b57cec5SDimitry Andric // Theorem: Adding a constant to a polynomial does not change the error 2340b57cec5SDimitry Andric // term. 2350b57cec5SDimitry Andric // 2360b57cec5SDimitry Andric // Proof: 2370b57cec5SDimitry Andric // 2380b57cec5SDimitry Andric // Since the addition is associative and commutes: 2390b57cec5SDimitry Andric // 2400b57cec5SDimitry Andric // (B + A + E*2^(n-e)) + C = B + (A + C) + E*2^(n-e) 2410b57cec5SDimitry Andric // [qed] 2420b57cec5SDimitry Andric 2430b57cec5SDimitry Andric if (C.getBitWidth() != A.getBitWidth()) { 2440b57cec5SDimitry Andric ErrorMSBs = (unsigned)-1; 2450b57cec5SDimitry Andric return *this; 2460b57cec5SDimitry Andric } 2470b57cec5SDimitry Andric 2480b57cec5SDimitry Andric A += C; 2490b57cec5SDimitry Andric return *this; 2500b57cec5SDimitry Andric } 2510b57cec5SDimitry Andric 2520b57cec5SDimitry Andric /// Apply a multiplication onto the polynomial. 2530b57cec5SDimitry Andric Polynomial &mul(const APInt &C) { 2540b57cec5SDimitry Andric // Note: Multiplication distributes over the addition 2550b57cec5SDimitry Andric // 2560b57cec5SDimitry Andric // Theorem: Multiplication distributes over the addition 2570b57cec5SDimitry Andric // 2580b57cec5SDimitry Andric // Proof(1): 2590b57cec5SDimitry Andric // 2600b57cec5SDimitry Andric // (B+A)*C =- 2610b57cec5SDimitry Andric // = (B + A) + (B + A) + .. {C Times} 2620b57cec5SDimitry Andric // addition is associative and commutes, hence 2630b57cec5SDimitry Andric // = B + B + .. {C Times} .. + A + A + .. {C times} 2640b57cec5SDimitry Andric // = B*C + A*C 2650b57cec5SDimitry Andric // (see (function add) for signed values and overflows) 2660b57cec5SDimitry Andric // [qed] 2670b57cec5SDimitry Andric // 2680b57cec5SDimitry Andric // Theorem: If C has c trailing zeros, errors bits in A or B are shifted out 2690b57cec5SDimitry Andric // to the left. 2700b57cec5SDimitry Andric // 2710b57cec5SDimitry Andric // Proof(2): 2720b57cec5SDimitry Andric // 2730b57cec5SDimitry Andric // Let B' and A' be the n-Bit inputs with some unknown errors EA, 2740b57cec5SDimitry Andric // EB at e leading bits. B' and A' can be written down as: 2750b57cec5SDimitry Andric // 2760b57cec5SDimitry Andric // B' = B + 2^(n-e)*EB 2770b57cec5SDimitry Andric // A' = A + 2^(n-e)*EA 2780b57cec5SDimitry Andric // 2790b57cec5SDimitry Andric // Let C' be an input with c trailing zero bits. C' can be written as 2800b57cec5SDimitry Andric // 2810b57cec5SDimitry Andric // C' = C*2^c 2820b57cec5SDimitry Andric // 2830b57cec5SDimitry Andric // Therefore we can compute the result by using distributivity and 2840b57cec5SDimitry Andric // commutativity. 2850b57cec5SDimitry Andric // 2860b57cec5SDimitry Andric // (B'*C' + A'*C') = [B + 2^(n-e)*EB] * C' + [A + 2^(n-e)*EA] * C' = 2870b57cec5SDimitry Andric // = [B + 2^(n-e)*EB + A + 2^(n-e)*EA] * C' = 2880b57cec5SDimitry Andric // = (B'+A') * C' = 2890b57cec5SDimitry Andric // = [B + 2^(n-e)*EB + A + 2^(n-e)*EA] * C' = 2900b57cec5SDimitry Andric // = [B + A + 2^(n-e)*EB + 2^(n-e)*EA] * C' = 2910b57cec5SDimitry Andric // = (B + A) * C' + [2^(n-e)*EB + 2^(n-e)*EA)] * C' = 2920b57cec5SDimitry Andric // = (B + A) * C' + [2^(n-e)*EB + 2^(n-e)*EA)] * C*2^c = 2930b57cec5SDimitry Andric // = (B + A) * C' + C*(EB + EA)*2^(n-e)*2^c = 2940b57cec5SDimitry Andric // 2950b57cec5SDimitry Andric // Let EC be the final error with EC = C*(EB + EA) 2960b57cec5SDimitry Andric // 2970b57cec5SDimitry Andric // = (B + A)*C' + EC*2^(n-e)*2^c = 2980b57cec5SDimitry Andric // = (B + A)*C' + EC*2^(n-(e-c)) 2990b57cec5SDimitry Andric // 3000b57cec5SDimitry Andric // Since EC is multiplied by 2^(n-(e-c)) the resulting error contains c 3010b57cec5SDimitry Andric // less error bits than the input. c bits are shifted out to the left. 3020b57cec5SDimitry Andric // [qed] 3030b57cec5SDimitry Andric 3040b57cec5SDimitry Andric if (C.getBitWidth() != A.getBitWidth()) { 3050b57cec5SDimitry Andric ErrorMSBs = (unsigned)-1; 3060b57cec5SDimitry Andric return *this; 3070b57cec5SDimitry Andric } 3080b57cec5SDimitry Andric 3090b57cec5SDimitry Andric // Multiplying by one is a no-op. 310349cc55cSDimitry Andric if (C.isOne()) { 3110b57cec5SDimitry Andric return *this; 3120b57cec5SDimitry Andric } 3130b57cec5SDimitry Andric 3140b57cec5SDimitry Andric // Multiplying by zero removes the coefficient B and defines all bits. 315349cc55cSDimitry Andric if (C.isZero()) { 3160b57cec5SDimitry Andric ErrorMSBs = 0; 3170b57cec5SDimitry Andric deleteB(); 3180b57cec5SDimitry Andric } 3190b57cec5SDimitry Andric 3200b57cec5SDimitry Andric // See Proof(2): Trailing zero bits indicate a left shift. This removes 3210b57cec5SDimitry Andric // leading bits from the result even if they are undefined. 32206c3fb27SDimitry Andric decErrorMSBs(C.countr_zero()); 3230b57cec5SDimitry Andric 3240b57cec5SDimitry Andric A *= C; 3250b57cec5SDimitry Andric pushBOperation(Mul, C); 3260b57cec5SDimitry Andric return *this; 3270b57cec5SDimitry Andric } 3280b57cec5SDimitry Andric 3290b57cec5SDimitry Andric /// Apply a logical shift right on the polynomial 3300b57cec5SDimitry Andric Polynomial &lshr(const APInt &C) { 3310b57cec5SDimitry Andric // Theorem(1): (B + A + E*2^(n-e)) >> 1 => (B >> 1) + (A >> 1) + E'*2^(n-e') 3320b57cec5SDimitry Andric // where 3330b57cec5SDimitry Andric // e' = e + 1, 3340b57cec5SDimitry Andric // E is a e-bit number, 3350b57cec5SDimitry Andric // E' is a e'-bit number, 3360b57cec5SDimitry Andric // holds under the following precondition: 3370b57cec5SDimitry Andric // pre(1): A % 2 = 0 3380b57cec5SDimitry Andric // pre(2): e < n, (see Theorem(2) for the trivial case with e=n) 3390b57cec5SDimitry Andric // where >> expresses a logical shift to the right, with adding zeros. 3400b57cec5SDimitry Andric // 3410b57cec5SDimitry Andric // We need to show that for every, E there is a E' 3420b57cec5SDimitry Andric // 3430b57cec5SDimitry Andric // B = b_h * 2^(n-1) + b_m * 2 + b_l 3440b57cec5SDimitry Andric // A = a_h * 2^(n-1) + a_m * 2 (pre(1)) 3450b57cec5SDimitry Andric // 3460b57cec5SDimitry Andric // where a_h, b_h, b_l are single bits, and a_m, b_m are (n-2) bit numbers 3470b57cec5SDimitry Andric // 3480b57cec5SDimitry Andric // Let X = (B + A + E*2^(n-e)) >> 1 3490b57cec5SDimitry Andric // Let Y = (B >> 1) + (A >> 1) + E*2^(n-e) >> 1 3500b57cec5SDimitry Andric // 3510b57cec5SDimitry Andric // X = [B + A + E*2^(n-e)] >> 1 = 3520b57cec5SDimitry Andric // = [ b_h * 2^(n-1) + b_m * 2 + b_l + 3530b57cec5SDimitry Andric // + a_h * 2^(n-1) + a_m * 2 + 3540b57cec5SDimitry Andric // + E * 2^(n-e) ] >> 1 = 3550b57cec5SDimitry Andric // 3560b57cec5SDimitry Andric // The sum is built by putting the overflow of [a_m + b+n] into the term 3570b57cec5SDimitry Andric // 2^(n-1). As there are no more bits beyond 2^(n-1) the overflow within 3580b57cec5SDimitry Andric // this bit is discarded. This is expressed by % 2. 3590b57cec5SDimitry Andric // 3600b57cec5SDimitry Andric // The bit in position 0 cannot overflow into the term (b_m + a_m). 3610b57cec5SDimitry Andric // 3620b57cec5SDimitry Andric // = [ ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-1) + 3630b57cec5SDimitry Andric // + ((b_m + a_m) % 2^(n-2)) * 2 + 3640b57cec5SDimitry Andric // + b_l + E * 2^(n-e) ] >> 1 = 3650b57cec5SDimitry Andric // 3660b57cec5SDimitry Andric // The shift is computed by dividing the terms by 2 and by cutting off 3670b57cec5SDimitry Andric // b_l. 3680b57cec5SDimitry Andric // 3690b57cec5SDimitry Andric // = ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) + 3700b57cec5SDimitry Andric // + ((b_m + a_m) % 2^(n-2)) + 3710b57cec5SDimitry Andric // + E * 2^(n-(e+1)) = 3720b57cec5SDimitry Andric // 3730b57cec5SDimitry Andric // by the definition in the Theorem e+1 = e' 3740b57cec5SDimitry Andric // 3750b57cec5SDimitry Andric // = ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) + 3760b57cec5SDimitry Andric // + ((b_m + a_m) % 2^(n-2)) + 3770b57cec5SDimitry Andric // + E * 2^(n-e') = 3780b57cec5SDimitry Andric // 3790b57cec5SDimitry Andric // Compute Y by applying distributivity first 3800b57cec5SDimitry Andric // 3810b57cec5SDimitry Andric // Y = (B >> 1) + (A >> 1) + E*2^(n-e') = 3820b57cec5SDimitry Andric // = (b_h * 2^(n-1) + b_m * 2 + b_l) >> 1 + 3830b57cec5SDimitry Andric // + (a_h * 2^(n-1) + a_m * 2) >> 1 + 3840b57cec5SDimitry Andric // + E * 2^(n-e) >> 1 = 3850b57cec5SDimitry Andric // 3860b57cec5SDimitry Andric // Again, the shift is computed by dividing the terms by 2 and by cutting 3870b57cec5SDimitry Andric // off b_l. 3880b57cec5SDimitry Andric // 3890b57cec5SDimitry Andric // = b_h * 2^(n-2) + b_m + 3900b57cec5SDimitry Andric // + a_h * 2^(n-2) + a_m + 3910b57cec5SDimitry Andric // + E * 2^(n-(e+1)) = 3920b57cec5SDimitry Andric // 3930b57cec5SDimitry Andric // Again, the sum is built by putting the overflow of [a_m + b+n] into 3940b57cec5SDimitry Andric // the term 2^(n-1). But this time there is room for a second bit in the 3950b57cec5SDimitry Andric // term 2^(n-2) we add this bit to a new term and denote it o_h in a 3960b57cec5SDimitry Andric // second step. 3970b57cec5SDimitry Andric // 3980b57cec5SDimitry Andric // = ([b_h + a_h + (b_m + a_m) >> (n-2)] >> 1) * 2^(n-1) + 3990b57cec5SDimitry Andric // + ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) + 4000b57cec5SDimitry Andric // + ((b_m + a_m) % 2^(n-2)) + 4010b57cec5SDimitry Andric // + E * 2^(n-(e+1)) = 4020b57cec5SDimitry Andric // 4030b57cec5SDimitry Andric // Let o_h = [b_h + a_h + (b_m + a_m) >> (n-2)] >> 1 4040b57cec5SDimitry Andric // Further replace e+1 by e'. 4050b57cec5SDimitry Andric // 4060b57cec5SDimitry Andric // = o_h * 2^(n-1) + 4070b57cec5SDimitry Andric // + ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) + 4080b57cec5SDimitry Andric // + ((b_m + a_m) % 2^(n-2)) + 4090b57cec5SDimitry Andric // + E * 2^(n-e') = 4100b57cec5SDimitry Andric // 4110b57cec5SDimitry Andric // Move o_h into the error term and construct E'. To ensure that there is 4120b57cec5SDimitry Andric // no 2^x with negative x, this step requires pre(2) (e < n). 4130b57cec5SDimitry Andric // 4140b57cec5SDimitry Andric // = ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) + 4150b57cec5SDimitry Andric // + ((b_m + a_m) % 2^(n-2)) + 4160b57cec5SDimitry Andric // + o_h * 2^(e'-1) * 2^(n-e') + | pre(2), move 2^(e'-1) 4170b57cec5SDimitry Andric // | out of the old exponent 4180b57cec5SDimitry Andric // + E * 2^(n-e') = 4190b57cec5SDimitry Andric // = ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) + 4200b57cec5SDimitry Andric // + ((b_m + a_m) % 2^(n-2)) + 4210b57cec5SDimitry Andric // + [o_h * 2^(e'-1) + E] * 2^(n-e') + | move 2^(e'-1) out of 4220b57cec5SDimitry Andric // | the old exponent 4230b57cec5SDimitry Andric // 4240b57cec5SDimitry Andric // Let E' = o_h * 2^(e'-1) + E 4250b57cec5SDimitry Andric // 4260b57cec5SDimitry Andric // = ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) + 4270b57cec5SDimitry Andric // + ((b_m + a_m) % 2^(n-2)) + 4280b57cec5SDimitry Andric // + E' * 2^(n-e') 4290b57cec5SDimitry Andric // 4300b57cec5SDimitry Andric // Because X and Y are distinct only in there error terms and E' can be 4310b57cec5SDimitry Andric // constructed as shown the theorem holds. 4320b57cec5SDimitry Andric // [qed] 4330b57cec5SDimitry Andric // 4340b57cec5SDimitry Andric // For completeness in case of the case e=n it is also required to show that 4350b57cec5SDimitry Andric // distributivity can be applied. 4360b57cec5SDimitry Andric // 4370b57cec5SDimitry Andric // In this case Theorem(1) transforms to (the pre-condition on A can also be 4380b57cec5SDimitry Andric // dropped) 4390b57cec5SDimitry Andric // 4400b57cec5SDimitry Andric // Theorem(2): (B + A + E) >> 1 => (B >> 1) + (A >> 1) + E' 4410b57cec5SDimitry Andric // where 4420b57cec5SDimitry Andric // A, B, E, E' are two's complement numbers with the same bit 4430b57cec5SDimitry Andric // width 4440b57cec5SDimitry Andric // 4450b57cec5SDimitry Andric // Let A + B + E = X 4460b57cec5SDimitry Andric // Let (B >> 1) + (A >> 1) = Y 4470b57cec5SDimitry Andric // 4480b57cec5SDimitry Andric // Therefore we need to show that for every X and Y there is an E' which 4490b57cec5SDimitry Andric // makes the equation 4500b57cec5SDimitry Andric // 4510b57cec5SDimitry Andric // X = Y + E' 4520b57cec5SDimitry Andric // 4530b57cec5SDimitry Andric // hold. This is trivially the case for E' = X - Y. 4540b57cec5SDimitry Andric // 4550b57cec5SDimitry Andric // [qed] 4560b57cec5SDimitry Andric // 4570b57cec5SDimitry Andric // Remark: Distributing lshr with and arbitrary number n can be expressed as 4580b57cec5SDimitry Andric // ((((B + A) lshr 1) lshr 1) ... ) {n times}. 4590b57cec5SDimitry Andric // This construction induces n additional error bits at the left. 4600b57cec5SDimitry Andric 4610b57cec5SDimitry Andric if (C.getBitWidth() != A.getBitWidth()) { 4620b57cec5SDimitry Andric ErrorMSBs = (unsigned)-1; 4630b57cec5SDimitry Andric return *this; 4640b57cec5SDimitry Andric } 4650b57cec5SDimitry Andric 466349cc55cSDimitry Andric if (C.isZero()) 4670b57cec5SDimitry Andric return *this; 4680b57cec5SDimitry Andric 4690b57cec5SDimitry Andric // Test if the result will be zero 4700b57cec5SDimitry Andric unsigned shiftAmt = C.getZExtValue(); 4710b57cec5SDimitry Andric if (shiftAmt >= C.getBitWidth()) 4720b57cec5SDimitry Andric return mul(APInt(C.getBitWidth(), 0)); 4730b57cec5SDimitry Andric 4740b57cec5SDimitry Andric // The proof that shiftAmt LSBs are zero for at least one summand is only 4750b57cec5SDimitry Andric // possible for the constant number. 4760b57cec5SDimitry Andric // 4770b57cec5SDimitry Andric // If this can be proven add shiftAmt to the error counter 4780b57cec5SDimitry Andric // `ErrorMSBs`. Otherwise set all bits as undefined. 47906c3fb27SDimitry Andric if (A.countr_zero() < shiftAmt) 4800b57cec5SDimitry Andric ErrorMSBs = A.getBitWidth(); 4810b57cec5SDimitry Andric else 4820b57cec5SDimitry Andric incErrorMSBs(shiftAmt); 4830b57cec5SDimitry Andric 4840b57cec5SDimitry Andric // Apply the operation. 4850b57cec5SDimitry Andric pushBOperation(LShr, C); 4860b57cec5SDimitry Andric A = A.lshr(shiftAmt); 4870b57cec5SDimitry Andric 4880b57cec5SDimitry Andric return *this; 4890b57cec5SDimitry Andric } 4900b57cec5SDimitry Andric 4910b57cec5SDimitry Andric /// Apply a sign-extend or truncate operation on the polynomial. 4920b57cec5SDimitry Andric Polynomial &sextOrTrunc(unsigned n) { 4930b57cec5SDimitry Andric if (n < A.getBitWidth()) { 4940b57cec5SDimitry Andric // Truncate: Clearly undefined Bits on the MSB side are removed 4950b57cec5SDimitry Andric // if there are any. 4960b57cec5SDimitry Andric decErrorMSBs(A.getBitWidth() - n); 4970b57cec5SDimitry Andric A = A.trunc(n); 4980b57cec5SDimitry Andric pushBOperation(Trunc, APInt(sizeof(n) * 8, n)); 4990b57cec5SDimitry Andric } 5000b57cec5SDimitry Andric if (n > A.getBitWidth()) { 5010b57cec5SDimitry Andric // Extend: Clearly extending first and adding later is different 5020b57cec5SDimitry Andric // to adding first and extending later in all extended bits. 5030b57cec5SDimitry Andric incErrorMSBs(n - A.getBitWidth()); 5040b57cec5SDimitry Andric A = A.sext(n); 5050b57cec5SDimitry Andric pushBOperation(SExt, APInt(sizeof(n) * 8, n)); 5060b57cec5SDimitry Andric } 5070b57cec5SDimitry Andric 5080b57cec5SDimitry Andric return *this; 5090b57cec5SDimitry Andric } 5100b57cec5SDimitry Andric 5110b57cec5SDimitry Andric /// Test if there is a coefficient B. 5120b57cec5SDimitry Andric bool isFirstOrder() const { return V != nullptr; } 5130b57cec5SDimitry Andric 5140b57cec5SDimitry Andric /// Test coefficient B of two Polynomials are equal. 5150b57cec5SDimitry Andric bool isCompatibleTo(const Polynomial &o) const { 5160b57cec5SDimitry Andric // The polynomial use different bit width. 5170b57cec5SDimitry Andric if (A.getBitWidth() != o.A.getBitWidth()) 5180b57cec5SDimitry Andric return false; 5190b57cec5SDimitry Andric 5200b57cec5SDimitry Andric // If neither Polynomial has the Coefficient B. 5210b57cec5SDimitry Andric if (!isFirstOrder() && !o.isFirstOrder()) 5220b57cec5SDimitry Andric return true; 5230b57cec5SDimitry Andric 5240b57cec5SDimitry Andric // The index variable is different. 5250b57cec5SDimitry Andric if (V != o.V) 5260b57cec5SDimitry Andric return false; 5270b57cec5SDimitry Andric 5280b57cec5SDimitry Andric // Check the operations. 5290b57cec5SDimitry Andric if (B.size() != o.B.size()) 5300b57cec5SDimitry Andric return false; 5310b57cec5SDimitry Andric 532fcaf7f86SDimitry Andric auto *ob = o.B.begin(); 533fcaf7f86SDimitry Andric for (const auto &b : B) { 5340b57cec5SDimitry Andric if (b != *ob) 5350b57cec5SDimitry Andric return false; 5360b57cec5SDimitry Andric ob++; 5370b57cec5SDimitry Andric } 5380b57cec5SDimitry Andric 5390b57cec5SDimitry Andric return true; 5400b57cec5SDimitry Andric } 5410b57cec5SDimitry Andric 5420b57cec5SDimitry Andric /// Subtract two polynomials, return an undefined polynomial if 5430b57cec5SDimitry Andric /// subtraction is not possible. 5440b57cec5SDimitry Andric Polynomial operator-(const Polynomial &o) const { 5450b57cec5SDimitry Andric // Return an undefined polynomial if incompatible. 5460b57cec5SDimitry Andric if (!isCompatibleTo(o)) 5470b57cec5SDimitry Andric return Polynomial(); 5480b57cec5SDimitry Andric 5490b57cec5SDimitry Andric // If the polynomials are compatible (meaning they have the same 5500b57cec5SDimitry Andric // coefficient on B), B is eliminated. Thus a polynomial solely 5510b57cec5SDimitry Andric // containing A is returned 5520b57cec5SDimitry Andric return Polynomial(A - o.A, std::max(ErrorMSBs, o.ErrorMSBs)); 5530b57cec5SDimitry Andric } 5540b57cec5SDimitry Andric 5550b57cec5SDimitry Andric /// Subtract a constant from a polynomial, 5560b57cec5SDimitry Andric Polynomial operator-(uint64_t C) const { 5570b57cec5SDimitry Andric Polynomial Result(*this); 5580b57cec5SDimitry Andric Result.A -= C; 5590b57cec5SDimitry Andric return Result; 5600b57cec5SDimitry Andric } 5610b57cec5SDimitry Andric 5620b57cec5SDimitry Andric /// Add a constant to a polynomial, 5630b57cec5SDimitry Andric Polynomial operator+(uint64_t C) const { 5640b57cec5SDimitry Andric Polynomial Result(*this); 5650b57cec5SDimitry Andric Result.A += C; 5660b57cec5SDimitry Andric return Result; 5670b57cec5SDimitry Andric } 5680b57cec5SDimitry Andric 5690b57cec5SDimitry Andric /// Returns true if it can be proven that two Polynomials are equal. 5700b57cec5SDimitry Andric bool isProvenEqualTo(const Polynomial &o) { 5710b57cec5SDimitry Andric // Subtract both polynomials and test if it is fully defined and zero. 5720b57cec5SDimitry Andric Polynomial r = *this - o; 573349cc55cSDimitry Andric return (r.ErrorMSBs == 0) && (!r.isFirstOrder()) && (r.A.isZero()); 5740b57cec5SDimitry Andric } 5750b57cec5SDimitry Andric 5760b57cec5SDimitry Andric /// Print the polynomial into a stream. 5770b57cec5SDimitry Andric void print(raw_ostream &OS) const { 5780b57cec5SDimitry Andric OS << "[{#ErrBits:" << ErrorMSBs << "} "; 5790b57cec5SDimitry Andric 5800b57cec5SDimitry Andric if (V) { 5810b57cec5SDimitry Andric for (auto b : B) 5820b57cec5SDimitry Andric OS << "("; 5830b57cec5SDimitry Andric OS << "(" << *V << ") "; 5840b57cec5SDimitry Andric 5850b57cec5SDimitry Andric for (auto b : B) { 5860b57cec5SDimitry Andric switch (b.first) { 5870b57cec5SDimitry Andric case LShr: 5880b57cec5SDimitry Andric OS << "LShr "; 5890b57cec5SDimitry Andric break; 5900b57cec5SDimitry Andric case Mul: 5910b57cec5SDimitry Andric OS << "Mul "; 5920b57cec5SDimitry Andric break; 5930b57cec5SDimitry Andric case SExt: 5940b57cec5SDimitry Andric OS << "SExt "; 5950b57cec5SDimitry Andric break; 5960b57cec5SDimitry Andric case Trunc: 5970b57cec5SDimitry Andric OS << "Trunc "; 5980b57cec5SDimitry Andric break; 5990b57cec5SDimitry Andric } 6000b57cec5SDimitry Andric 6010b57cec5SDimitry Andric OS << b.second << ") "; 6020b57cec5SDimitry Andric } 6030b57cec5SDimitry Andric } 6040b57cec5SDimitry Andric 6050b57cec5SDimitry Andric OS << "+ " << A << "]"; 6060b57cec5SDimitry Andric } 6070b57cec5SDimitry Andric 6080b57cec5SDimitry Andric private: 6090b57cec5SDimitry Andric void deleteB() { 6100b57cec5SDimitry Andric V = nullptr; 6110b57cec5SDimitry Andric B.clear(); 6120b57cec5SDimitry Andric } 6130b57cec5SDimitry Andric 6140b57cec5SDimitry Andric void pushBOperation(const BOps Op, const APInt &C) { 6150b57cec5SDimitry Andric if (isFirstOrder()) { 6160b57cec5SDimitry Andric B.push_back(std::make_pair(Op, C)); 6170b57cec5SDimitry Andric return; 6180b57cec5SDimitry Andric } 6190b57cec5SDimitry Andric } 6200b57cec5SDimitry Andric }; 6210b57cec5SDimitry Andric 6220b57cec5SDimitry Andric #ifndef NDEBUG 6230b57cec5SDimitry Andric static raw_ostream &operator<<(raw_ostream &OS, const Polynomial &S) { 6240b57cec5SDimitry Andric S.print(OS); 6250b57cec5SDimitry Andric return OS; 6260b57cec5SDimitry Andric } 6270b57cec5SDimitry Andric #endif 6280b57cec5SDimitry Andric 6290b57cec5SDimitry Andric /// VectorInfo stores abstract the following information for each vector 6300b57cec5SDimitry Andric /// element: 6310b57cec5SDimitry Andric /// 6325f757f3fSDimitry Andric /// 1) The memory address loaded into the element as Polynomial 6330b57cec5SDimitry Andric /// 2) a set of load instruction necessary to construct the vector, 6340b57cec5SDimitry Andric /// 3) a set of all other instructions that are necessary to create the vector and 6350b57cec5SDimitry Andric /// 4) a pointer value that can be used as relative base for all elements. 6360b57cec5SDimitry Andric struct VectorInfo { 6370b57cec5SDimitry Andric private: 6380b57cec5SDimitry Andric VectorInfo(const VectorInfo &c) : VTy(c.VTy) { 6390b57cec5SDimitry Andric llvm_unreachable( 6400b57cec5SDimitry Andric "Copying VectorInfo is neither implemented nor necessary,"); 6410b57cec5SDimitry Andric } 6420b57cec5SDimitry Andric 6430b57cec5SDimitry Andric public: 6440b57cec5SDimitry Andric /// Information of a Vector Element 6450b57cec5SDimitry Andric struct ElementInfo { 6460b57cec5SDimitry Andric /// Offset Polynomial. 6470b57cec5SDimitry Andric Polynomial Ofs; 6480b57cec5SDimitry Andric 6490b57cec5SDimitry Andric /// The Load Instruction used to Load the entry. LI is null if the pointer 6500b57cec5SDimitry Andric /// of the load instruction does not point on to the entry 6510b57cec5SDimitry Andric LoadInst *LI; 6520b57cec5SDimitry Andric 6530b57cec5SDimitry Andric ElementInfo(Polynomial Offset = Polynomial(), LoadInst *LI = nullptr) 6540b57cec5SDimitry Andric : Ofs(Offset), LI(LI) {} 6550b57cec5SDimitry Andric }; 6560b57cec5SDimitry Andric 6570b57cec5SDimitry Andric /// Basic-block the load instructions are within 6581fd87a68SDimitry Andric BasicBlock *BB = nullptr; 6590b57cec5SDimitry Andric 6600b57cec5SDimitry Andric /// Pointer value of all participation load instructions 6611fd87a68SDimitry Andric Value *PV = nullptr; 6620b57cec5SDimitry Andric 6630b57cec5SDimitry Andric /// Participating load instructions 6640b57cec5SDimitry Andric std::set<LoadInst *> LIs; 6650b57cec5SDimitry Andric 6660b57cec5SDimitry Andric /// Participating instructions 6670b57cec5SDimitry Andric std::set<Instruction *> Is; 6680b57cec5SDimitry Andric 6690b57cec5SDimitry Andric /// Final shuffle-vector instruction 6701fd87a68SDimitry Andric ShuffleVectorInst *SVI = nullptr; 6710b57cec5SDimitry Andric 6720b57cec5SDimitry Andric /// Information of the offset for each vector element 6730b57cec5SDimitry Andric ElementInfo *EI; 6740b57cec5SDimitry Andric 6750b57cec5SDimitry Andric /// Vector Type 6765ffd83dbSDimitry Andric FixedVectorType *const VTy; 6770b57cec5SDimitry Andric 6781fd87a68SDimitry Andric VectorInfo(FixedVectorType *VTy) : VTy(VTy) { 6790b57cec5SDimitry Andric EI = new ElementInfo[VTy->getNumElements()]; 6800b57cec5SDimitry Andric } 6810b57cec5SDimitry Andric 68206c3fb27SDimitry Andric VectorInfo &operator=(const VectorInfo &other) = delete; 68306c3fb27SDimitry Andric 6840b57cec5SDimitry Andric virtual ~VectorInfo() { delete[] EI; } 6850b57cec5SDimitry Andric 6860b57cec5SDimitry Andric unsigned getDimension() const { return VTy->getNumElements(); } 6870b57cec5SDimitry Andric 6880b57cec5SDimitry Andric /// Test if the VectorInfo can be part of an interleaved load with the 6890b57cec5SDimitry Andric /// specified factor. 6900b57cec5SDimitry Andric /// 6910b57cec5SDimitry Andric /// \param Factor of the interleave 6920b57cec5SDimitry Andric /// \param DL Targets Datalayout 6930b57cec5SDimitry Andric /// 6940b57cec5SDimitry Andric /// \returns true if this is possible and false if not 6950b57cec5SDimitry Andric bool isInterleaved(unsigned Factor, const DataLayout &DL) const { 6960b57cec5SDimitry Andric unsigned Size = DL.getTypeAllocSize(VTy->getElementType()); 6970b57cec5SDimitry Andric for (unsigned i = 1; i < getDimension(); i++) { 6980b57cec5SDimitry Andric if (!EI[i].Ofs.isProvenEqualTo(EI[0].Ofs + i * Factor * Size)) { 6990b57cec5SDimitry Andric return false; 7000b57cec5SDimitry Andric } 7010b57cec5SDimitry Andric } 7020b57cec5SDimitry Andric return true; 7030b57cec5SDimitry Andric } 7040b57cec5SDimitry Andric 7050b57cec5SDimitry Andric /// Recursively computes the vector information stored in V. 7060b57cec5SDimitry Andric /// 7070b57cec5SDimitry Andric /// This function delegates the work to specialized implementations 7080b57cec5SDimitry Andric /// 7090b57cec5SDimitry Andric /// \param V Value to operate on 7100b57cec5SDimitry Andric /// \param Result Result of the computation 7110b57cec5SDimitry Andric /// 7120b57cec5SDimitry Andric /// \returns false if no sensible information can be gathered. 7130b57cec5SDimitry Andric static bool compute(Value *V, VectorInfo &Result, const DataLayout &DL) { 7140b57cec5SDimitry Andric ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V); 7150b57cec5SDimitry Andric if (SVI) 7160b57cec5SDimitry Andric return computeFromSVI(SVI, Result, DL); 7170b57cec5SDimitry Andric LoadInst *LI = dyn_cast<LoadInst>(V); 7180b57cec5SDimitry Andric if (LI) 7190b57cec5SDimitry Andric return computeFromLI(LI, Result, DL); 7200b57cec5SDimitry Andric BitCastInst *BCI = dyn_cast<BitCastInst>(V); 7210b57cec5SDimitry Andric if (BCI) 7220b57cec5SDimitry Andric return computeFromBCI(BCI, Result, DL); 7230b57cec5SDimitry Andric return false; 7240b57cec5SDimitry Andric } 7250b57cec5SDimitry Andric 7260b57cec5SDimitry Andric /// BitCastInst specialization to compute the vector information. 7270b57cec5SDimitry Andric /// 7280b57cec5SDimitry Andric /// \param BCI BitCastInst to operate on 7290b57cec5SDimitry Andric /// \param Result Result of the computation 7300b57cec5SDimitry Andric /// 7310b57cec5SDimitry Andric /// \returns false if no sensible information can be gathered. 7320b57cec5SDimitry Andric static bool computeFromBCI(BitCastInst *BCI, VectorInfo &Result, 7330b57cec5SDimitry Andric const DataLayout &DL) { 7340b57cec5SDimitry Andric Instruction *Op = dyn_cast<Instruction>(BCI->getOperand(0)); 7350b57cec5SDimitry Andric 7360b57cec5SDimitry Andric if (!Op) 7370b57cec5SDimitry Andric return false; 7380b57cec5SDimitry Andric 7395ffd83dbSDimitry Andric FixedVectorType *VTy = dyn_cast<FixedVectorType>(Op->getType()); 7400b57cec5SDimitry Andric if (!VTy) 7410b57cec5SDimitry Andric return false; 7420b57cec5SDimitry Andric 7430b57cec5SDimitry Andric // We can only cast from large to smaller vectors 7440b57cec5SDimitry Andric if (Result.VTy->getNumElements() % VTy->getNumElements()) 7450b57cec5SDimitry Andric return false; 7460b57cec5SDimitry Andric 7470b57cec5SDimitry Andric unsigned Factor = Result.VTy->getNumElements() / VTy->getNumElements(); 7480b57cec5SDimitry Andric unsigned NewSize = DL.getTypeAllocSize(Result.VTy->getElementType()); 7490b57cec5SDimitry Andric unsigned OldSize = DL.getTypeAllocSize(VTy->getElementType()); 7500b57cec5SDimitry Andric 7510b57cec5SDimitry Andric if (NewSize * Factor != OldSize) 7520b57cec5SDimitry Andric return false; 7530b57cec5SDimitry Andric 7540b57cec5SDimitry Andric VectorInfo Old(VTy); 7550b57cec5SDimitry Andric if (!compute(Op, Old, DL)) 7560b57cec5SDimitry Andric return false; 7570b57cec5SDimitry Andric 7580b57cec5SDimitry Andric for (unsigned i = 0; i < Result.VTy->getNumElements(); i += Factor) { 7590b57cec5SDimitry Andric for (unsigned j = 0; j < Factor; j++) { 7600b57cec5SDimitry Andric Result.EI[i + j] = 7610b57cec5SDimitry Andric ElementInfo(Old.EI[i / Factor].Ofs + j * NewSize, 7620b57cec5SDimitry Andric j == 0 ? Old.EI[i / Factor].LI : nullptr); 7630b57cec5SDimitry Andric } 7640b57cec5SDimitry Andric } 7650b57cec5SDimitry Andric 7660b57cec5SDimitry Andric Result.BB = Old.BB; 7670b57cec5SDimitry Andric Result.PV = Old.PV; 7680b57cec5SDimitry Andric Result.LIs.insert(Old.LIs.begin(), Old.LIs.end()); 7690b57cec5SDimitry Andric Result.Is.insert(Old.Is.begin(), Old.Is.end()); 7700b57cec5SDimitry Andric Result.Is.insert(BCI); 7710b57cec5SDimitry Andric Result.SVI = nullptr; 7720b57cec5SDimitry Andric 7730b57cec5SDimitry Andric return true; 7740b57cec5SDimitry Andric } 7750b57cec5SDimitry Andric 7760b57cec5SDimitry Andric /// ShuffleVectorInst specialization to compute vector information. 7770b57cec5SDimitry Andric /// 7780b57cec5SDimitry Andric /// \param SVI ShuffleVectorInst to operate on 7790b57cec5SDimitry Andric /// \param Result Result of the computation 7800b57cec5SDimitry Andric /// 7810b57cec5SDimitry Andric /// Compute the left and the right side vector information and merge them by 7820b57cec5SDimitry Andric /// applying the shuffle operation. This function also ensures that the left 7830b57cec5SDimitry Andric /// and right side have compatible loads. This means that all loads are with 7840b57cec5SDimitry Andric /// in the same basic block and are based on the same pointer. 7850b57cec5SDimitry Andric /// 7860b57cec5SDimitry Andric /// \returns false if no sensible information can be gathered. 7870b57cec5SDimitry Andric static bool computeFromSVI(ShuffleVectorInst *SVI, VectorInfo &Result, 7880b57cec5SDimitry Andric const DataLayout &DL) { 7895ffd83dbSDimitry Andric FixedVectorType *ArgTy = 7905ffd83dbSDimitry Andric cast<FixedVectorType>(SVI->getOperand(0)->getType()); 7910b57cec5SDimitry Andric 7920b57cec5SDimitry Andric // Compute the left hand vector information. 7930b57cec5SDimitry Andric VectorInfo LHS(ArgTy); 7940b57cec5SDimitry Andric if (!compute(SVI->getOperand(0), LHS, DL)) 7950b57cec5SDimitry Andric LHS.BB = nullptr; 7960b57cec5SDimitry Andric 7970b57cec5SDimitry Andric // Compute the right hand vector information. 7980b57cec5SDimitry Andric VectorInfo RHS(ArgTy); 7990b57cec5SDimitry Andric if (!compute(SVI->getOperand(1), RHS, DL)) 8000b57cec5SDimitry Andric RHS.BB = nullptr; 8010b57cec5SDimitry Andric 8020b57cec5SDimitry Andric // Neither operand produced sensible results? 8030b57cec5SDimitry Andric if (!LHS.BB && !RHS.BB) 8040b57cec5SDimitry Andric return false; 8050b57cec5SDimitry Andric // Only RHS produced sensible results? 8060b57cec5SDimitry Andric else if (!LHS.BB) { 8070b57cec5SDimitry Andric Result.BB = RHS.BB; 8080b57cec5SDimitry Andric Result.PV = RHS.PV; 8090b57cec5SDimitry Andric } 8100b57cec5SDimitry Andric // Only LHS produced sensible results? 8110b57cec5SDimitry Andric else if (!RHS.BB) { 8120b57cec5SDimitry Andric Result.BB = LHS.BB; 8130b57cec5SDimitry Andric Result.PV = LHS.PV; 8140b57cec5SDimitry Andric } 8150b57cec5SDimitry Andric // Both operands produced sensible results? 8160b57cec5SDimitry Andric else if ((LHS.BB == RHS.BB) && (LHS.PV == RHS.PV)) { 8170b57cec5SDimitry Andric Result.BB = LHS.BB; 8180b57cec5SDimitry Andric Result.PV = LHS.PV; 8190b57cec5SDimitry Andric } 8200b57cec5SDimitry Andric // Both operands produced sensible results but they are incompatible. 8210b57cec5SDimitry Andric else { 8220b57cec5SDimitry Andric return false; 8230b57cec5SDimitry Andric } 8240b57cec5SDimitry Andric 8250b57cec5SDimitry Andric // Merge and apply the operation on the offset information. 8260b57cec5SDimitry Andric if (LHS.BB) { 8270b57cec5SDimitry Andric Result.LIs.insert(LHS.LIs.begin(), LHS.LIs.end()); 8280b57cec5SDimitry Andric Result.Is.insert(LHS.Is.begin(), LHS.Is.end()); 8290b57cec5SDimitry Andric } 8300b57cec5SDimitry Andric if (RHS.BB) { 8310b57cec5SDimitry Andric Result.LIs.insert(RHS.LIs.begin(), RHS.LIs.end()); 8320b57cec5SDimitry Andric Result.Is.insert(RHS.Is.begin(), RHS.Is.end()); 8330b57cec5SDimitry Andric } 8340b57cec5SDimitry Andric Result.Is.insert(SVI); 8350b57cec5SDimitry Andric Result.SVI = SVI; 8360b57cec5SDimitry Andric 8370b57cec5SDimitry Andric int j = 0; 8380b57cec5SDimitry Andric for (int i : SVI->getShuffleMask()) { 8390b57cec5SDimitry Andric assert((i < 2 * (signed)ArgTy->getNumElements()) && 8400b57cec5SDimitry Andric "Invalid ShuffleVectorInst (index out of bounds)"); 8410b57cec5SDimitry Andric 8420b57cec5SDimitry Andric if (i < 0) 8430b57cec5SDimitry Andric Result.EI[j] = ElementInfo(); 8440b57cec5SDimitry Andric else if (i < (signed)ArgTy->getNumElements()) { 8450b57cec5SDimitry Andric if (LHS.BB) 8460b57cec5SDimitry Andric Result.EI[j] = LHS.EI[i]; 8470b57cec5SDimitry Andric else 8480b57cec5SDimitry Andric Result.EI[j] = ElementInfo(); 8490b57cec5SDimitry Andric } else { 8500b57cec5SDimitry Andric if (RHS.BB) 8510b57cec5SDimitry Andric Result.EI[j] = RHS.EI[i - ArgTy->getNumElements()]; 8520b57cec5SDimitry Andric else 8530b57cec5SDimitry Andric Result.EI[j] = ElementInfo(); 8540b57cec5SDimitry Andric } 8550b57cec5SDimitry Andric j++; 8560b57cec5SDimitry Andric } 8570b57cec5SDimitry Andric 8580b57cec5SDimitry Andric return true; 8590b57cec5SDimitry Andric } 8600b57cec5SDimitry Andric 8610b57cec5SDimitry Andric /// LoadInst specialization to compute vector information. 8620b57cec5SDimitry Andric /// 8630b57cec5SDimitry Andric /// This function also acts as abort condition to the recursion. 8640b57cec5SDimitry Andric /// 8650b57cec5SDimitry Andric /// \param LI LoadInst to operate on 8660b57cec5SDimitry Andric /// \param Result Result of the computation 8670b57cec5SDimitry Andric /// 8680b57cec5SDimitry Andric /// \returns false if no sensible information can be gathered. 8690b57cec5SDimitry Andric static bool computeFromLI(LoadInst *LI, VectorInfo &Result, 8700b57cec5SDimitry Andric const DataLayout &DL) { 8710b57cec5SDimitry Andric Value *BasePtr; 8720b57cec5SDimitry Andric Polynomial Offset; 8730b57cec5SDimitry Andric 8740b57cec5SDimitry Andric if (LI->isVolatile()) 8750b57cec5SDimitry Andric return false; 8760b57cec5SDimitry Andric 8770b57cec5SDimitry Andric if (LI->isAtomic()) 8780b57cec5SDimitry Andric return false; 8790b57cec5SDimitry Andric 8803a079333SDimitry Andric if (!DL.typeSizeEqualsStoreSize(Result.VTy->getElementType())) 8813a079333SDimitry Andric return false; 8823a079333SDimitry Andric 8830b57cec5SDimitry Andric // Get the base polynomial 8840b57cec5SDimitry Andric computePolynomialFromPointer(*LI->getPointerOperand(), Offset, BasePtr, DL); 8850b57cec5SDimitry Andric 8860b57cec5SDimitry Andric Result.BB = LI->getParent(); 8870b57cec5SDimitry Andric Result.PV = BasePtr; 8880b57cec5SDimitry Andric Result.LIs.insert(LI); 8890b57cec5SDimitry Andric Result.Is.insert(LI); 8900b57cec5SDimitry Andric 8910b57cec5SDimitry Andric for (unsigned i = 0; i < Result.getDimension(); i++) { 8920b57cec5SDimitry Andric Value *Idx[2] = { 8930b57cec5SDimitry Andric ConstantInt::get(Type::getInt32Ty(LI->getContext()), 0), 8940b57cec5SDimitry Andric ConstantInt::get(Type::getInt32Ty(LI->getContext()), i), 8950b57cec5SDimitry Andric }; 896*0fca6ea1SDimitry Andric int64_t Ofs = DL.getIndexedOffsetInType(Result.VTy, Idx); 8970b57cec5SDimitry Andric Result.EI[i] = ElementInfo(Offset + Ofs, i == 0 ? LI : nullptr); 8980b57cec5SDimitry Andric } 8990b57cec5SDimitry Andric 9000b57cec5SDimitry Andric return true; 9010b57cec5SDimitry Andric } 9020b57cec5SDimitry Andric 9030b57cec5SDimitry Andric /// Recursively compute polynomial of a value. 9040b57cec5SDimitry Andric /// 9050b57cec5SDimitry Andric /// \param BO Input binary operation 9060b57cec5SDimitry Andric /// \param Result Result polynomial 9070b57cec5SDimitry Andric static void computePolynomialBinOp(BinaryOperator &BO, Polynomial &Result) { 9080b57cec5SDimitry Andric Value *LHS = BO.getOperand(0); 9090b57cec5SDimitry Andric Value *RHS = BO.getOperand(1); 9100b57cec5SDimitry Andric 9110b57cec5SDimitry Andric // Find the RHS Constant if any 9120b57cec5SDimitry Andric ConstantInt *C = dyn_cast<ConstantInt>(RHS); 9130b57cec5SDimitry Andric if ((!C) && BO.isCommutative()) { 9140b57cec5SDimitry Andric C = dyn_cast<ConstantInt>(LHS); 9150b57cec5SDimitry Andric if (C) 9160b57cec5SDimitry Andric std::swap(LHS, RHS); 9170b57cec5SDimitry Andric } 9180b57cec5SDimitry Andric 9190b57cec5SDimitry Andric switch (BO.getOpcode()) { 9200b57cec5SDimitry Andric case Instruction::Add: 9210b57cec5SDimitry Andric if (!C) 9220b57cec5SDimitry Andric break; 9230b57cec5SDimitry Andric 9240b57cec5SDimitry Andric computePolynomial(*LHS, Result); 9250b57cec5SDimitry Andric Result.add(C->getValue()); 9260b57cec5SDimitry Andric return; 9270b57cec5SDimitry Andric 9280b57cec5SDimitry Andric case Instruction::LShr: 9290b57cec5SDimitry Andric if (!C) 9300b57cec5SDimitry Andric break; 9310b57cec5SDimitry Andric 9320b57cec5SDimitry Andric computePolynomial(*LHS, Result); 9330b57cec5SDimitry Andric Result.lshr(C->getValue()); 9340b57cec5SDimitry Andric return; 9350b57cec5SDimitry Andric 9360b57cec5SDimitry Andric default: 9370b57cec5SDimitry Andric break; 9380b57cec5SDimitry Andric } 9390b57cec5SDimitry Andric 9400b57cec5SDimitry Andric Result = Polynomial(&BO); 9410b57cec5SDimitry Andric } 9420b57cec5SDimitry Andric 9430b57cec5SDimitry Andric /// Recursively compute polynomial of a value 9440b57cec5SDimitry Andric /// 9450b57cec5SDimitry Andric /// \param V input value 9460b57cec5SDimitry Andric /// \param Result result polynomial 9470b57cec5SDimitry Andric static void computePolynomial(Value &V, Polynomial &Result) { 9488bcb0991SDimitry Andric if (auto *BO = dyn_cast<BinaryOperator>(&V)) 9498bcb0991SDimitry Andric computePolynomialBinOp(*BO, Result); 9500b57cec5SDimitry Andric else 9510b57cec5SDimitry Andric Result = Polynomial(&V); 9520b57cec5SDimitry Andric } 9530b57cec5SDimitry Andric 9540b57cec5SDimitry Andric /// Compute the Polynomial representation of a Pointer type. 9550b57cec5SDimitry Andric /// 9560b57cec5SDimitry Andric /// \param Ptr input pointer value 9570b57cec5SDimitry Andric /// \param Result result polynomial 9580b57cec5SDimitry Andric /// \param BasePtr pointer the polynomial is based on 9590b57cec5SDimitry Andric /// \param DL Datalayout of the target machine 9600b57cec5SDimitry Andric static void computePolynomialFromPointer(Value &Ptr, Polynomial &Result, 9610b57cec5SDimitry Andric Value *&BasePtr, 9620b57cec5SDimitry Andric const DataLayout &DL) { 9630b57cec5SDimitry Andric // Not a pointer type? Return an undefined polynomial 9640b57cec5SDimitry Andric PointerType *PtrTy = dyn_cast<PointerType>(Ptr.getType()); 9650b57cec5SDimitry Andric if (!PtrTy) { 9660b57cec5SDimitry Andric Result = Polynomial(); 9670b57cec5SDimitry Andric BasePtr = nullptr; 9680b57cec5SDimitry Andric return; 9690b57cec5SDimitry Andric } 9700b57cec5SDimitry Andric unsigned PointerBits = 9710b57cec5SDimitry Andric DL.getIndexSizeInBits(PtrTy->getPointerAddressSpace()); 9720b57cec5SDimitry Andric 9730b57cec5SDimitry Andric /// Skip pointer casts. Return Zero polynomial otherwise 9740b57cec5SDimitry Andric if (isa<CastInst>(&Ptr)) { 9750b57cec5SDimitry Andric CastInst &CI = *cast<CastInst>(&Ptr); 9760b57cec5SDimitry Andric switch (CI.getOpcode()) { 9770b57cec5SDimitry Andric case Instruction::BitCast: 9780b57cec5SDimitry Andric computePolynomialFromPointer(*CI.getOperand(0), Result, BasePtr, DL); 9790b57cec5SDimitry Andric break; 9800b57cec5SDimitry Andric default: 9810b57cec5SDimitry Andric BasePtr = &Ptr; 9820b57cec5SDimitry Andric Polynomial(PointerBits, 0); 9830b57cec5SDimitry Andric break; 9840b57cec5SDimitry Andric } 9850b57cec5SDimitry Andric } 9860b57cec5SDimitry Andric /// Resolve GetElementPtrInst. 9870b57cec5SDimitry Andric else if (isa<GetElementPtrInst>(&Ptr)) { 9880b57cec5SDimitry Andric GetElementPtrInst &GEP = *cast<GetElementPtrInst>(&Ptr); 9890b57cec5SDimitry Andric 9900b57cec5SDimitry Andric APInt BaseOffset(PointerBits, 0); 9910b57cec5SDimitry Andric 9920b57cec5SDimitry Andric // Check if we can compute the Offset with accumulateConstantOffset 9930b57cec5SDimitry Andric if (GEP.accumulateConstantOffset(DL, BaseOffset)) { 9940b57cec5SDimitry Andric Result = Polynomial(BaseOffset); 9950b57cec5SDimitry Andric BasePtr = GEP.getPointerOperand(); 9960b57cec5SDimitry Andric return; 9970b57cec5SDimitry Andric } else { 9980b57cec5SDimitry Andric // Otherwise we allow that the last index operand of the GEP is 9990b57cec5SDimitry Andric // non-constant. 10000b57cec5SDimitry Andric unsigned idxOperand, e; 10010b57cec5SDimitry Andric SmallVector<Value *, 4> Indices; 10020b57cec5SDimitry Andric for (idxOperand = 1, e = GEP.getNumOperands(); idxOperand < e; 10030b57cec5SDimitry Andric idxOperand++) { 10040b57cec5SDimitry Andric ConstantInt *IDX = dyn_cast<ConstantInt>(GEP.getOperand(idxOperand)); 10050b57cec5SDimitry Andric if (!IDX) 10060b57cec5SDimitry Andric break; 10070b57cec5SDimitry Andric Indices.push_back(IDX); 10080b57cec5SDimitry Andric } 10090b57cec5SDimitry Andric 10100b57cec5SDimitry Andric // It must also be the last operand. 10110b57cec5SDimitry Andric if (idxOperand + 1 != e) { 10120b57cec5SDimitry Andric Result = Polynomial(); 10130b57cec5SDimitry Andric BasePtr = nullptr; 10140b57cec5SDimitry Andric return; 10150b57cec5SDimitry Andric } 10160b57cec5SDimitry Andric 10170b57cec5SDimitry Andric // Compute the polynomial of the index operand. 10180b57cec5SDimitry Andric computePolynomial(*GEP.getOperand(idxOperand), Result); 10190b57cec5SDimitry Andric 10200b57cec5SDimitry Andric // Compute base offset from zero based index, excluding the last 10210b57cec5SDimitry Andric // variable operand. 10220b57cec5SDimitry Andric BaseOffset = 10230b57cec5SDimitry Andric DL.getIndexedOffsetInType(GEP.getSourceElementType(), Indices); 10240b57cec5SDimitry Andric 10250b57cec5SDimitry Andric // Apply the operations of GEP to the polynomial. 10260b57cec5SDimitry Andric unsigned ResultSize = DL.getTypeAllocSize(GEP.getResultElementType()); 10270b57cec5SDimitry Andric Result.sextOrTrunc(PointerBits); 10280b57cec5SDimitry Andric Result.mul(APInt(PointerBits, ResultSize)); 10290b57cec5SDimitry Andric Result.add(BaseOffset); 10300b57cec5SDimitry Andric BasePtr = GEP.getPointerOperand(); 10310b57cec5SDimitry Andric } 10320b57cec5SDimitry Andric } 10330b57cec5SDimitry Andric // All other instructions are handled by using the value as base pointer and 10340b57cec5SDimitry Andric // a zero polynomial. 10350b57cec5SDimitry Andric else { 10360b57cec5SDimitry Andric BasePtr = &Ptr; 10370b57cec5SDimitry Andric Polynomial(DL.getIndexSizeInBits(PtrTy->getPointerAddressSpace()), 0); 10380b57cec5SDimitry Andric } 10390b57cec5SDimitry Andric } 10400b57cec5SDimitry Andric 10410b57cec5SDimitry Andric #ifndef NDEBUG 10420b57cec5SDimitry Andric void print(raw_ostream &OS) const { 10430b57cec5SDimitry Andric if (PV) 10440b57cec5SDimitry Andric OS << *PV; 10450b57cec5SDimitry Andric else 10460b57cec5SDimitry Andric OS << "(none)"; 10470b57cec5SDimitry Andric OS << " + "; 10480b57cec5SDimitry Andric for (unsigned i = 0; i < getDimension(); i++) 10490b57cec5SDimitry Andric OS << ((i == 0) ? "[" : ", ") << EI[i].Ofs; 10500b57cec5SDimitry Andric OS << "]"; 10510b57cec5SDimitry Andric } 10520b57cec5SDimitry Andric #endif 10530b57cec5SDimitry Andric }; 10540b57cec5SDimitry Andric 10550b57cec5SDimitry Andric } // anonymous namespace 10560b57cec5SDimitry Andric 10570b57cec5SDimitry Andric bool InterleavedLoadCombineImpl::findPattern( 10580b57cec5SDimitry Andric std::list<VectorInfo> &Candidates, std::list<VectorInfo> &InterleavedLoad, 10590b57cec5SDimitry Andric unsigned Factor, const DataLayout &DL) { 10600b57cec5SDimitry Andric for (auto C0 = Candidates.begin(), E0 = Candidates.end(); C0 != E0; ++C0) { 10610b57cec5SDimitry Andric unsigned i; 10620b57cec5SDimitry Andric // Try to find an interleaved load using the front of Worklist as first line 10630b57cec5SDimitry Andric unsigned Size = DL.getTypeAllocSize(C0->VTy->getElementType()); 10640b57cec5SDimitry Andric 10650b57cec5SDimitry Andric // List containing iterators pointing to the VectorInfos of the candidates 10660b57cec5SDimitry Andric std::vector<std::list<VectorInfo>::iterator> Res(Factor, Candidates.end()); 10670b57cec5SDimitry Andric 10680b57cec5SDimitry Andric for (auto C = Candidates.begin(), E = Candidates.end(); C != E; C++) { 10690b57cec5SDimitry Andric if (C->VTy != C0->VTy) 10700b57cec5SDimitry Andric continue; 10710b57cec5SDimitry Andric if (C->BB != C0->BB) 10720b57cec5SDimitry Andric continue; 10730b57cec5SDimitry Andric if (C->PV != C0->PV) 10740b57cec5SDimitry Andric continue; 10750b57cec5SDimitry Andric 10760b57cec5SDimitry Andric // Check the current value matches any of factor - 1 remaining lines 10770b57cec5SDimitry Andric for (i = 1; i < Factor; i++) { 10780b57cec5SDimitry Andric if (C->EI[0].Ofs.isProvenEqualTo(C0->EI[0].Ofs + i * Size)) { 10790b57cec5SDimitry Andric Res[i] = C; 10800b57cec5SDimitry Andric } 10810b57cec5SDimitry Andric } 10820b57cec5SDimitry Andric 10830b57cec5SDimitry Andric for (i = 1; i < Factor; i++) { 10840b57cec5SDimitry Andric if (Res[i] == Candidates.end()) 10850b57cec5SDimitry Andric break; 10860b57cec5SDimitry Andric } 10870b57cec5SDimitry Andric if (i == Factor) { 10880b57cec5SDimitry Andric Res[0] = C0; 10890b57cec5SDimitry Andric break; 10900b57cec5SDimitry Andric } 10910b57cec5SDimitry Andric } 10920b57cec5SDimitry Andric 10930b57cec5SDimitry Andric if (Res[0] != Candidates.end()) { 10940b57cec5SDimitry Andric // Move the result into the output 10950b57cec5SDimitry Andric for (unsigned i = 0; i < Factor; i++) { 10960b57cec5SDimitry Andric InterleavedLoad.splice(InterleavedLoad.end(), Candidates, Res[i]); 10970b57cec5SDimitry Andric } 10980b57cec5SDimitry Andric 10990b57cec5SDimitry Andric return true; 11000b57cec5SDimitry Andric } 11010b57cec5SDimitry Andric } 11020b57cec5SDimitry Andric return false; 11030b57cec5SDimitry Andric } 11040b57cec5SDimitry Andric 11050b57cec5SDimitry Andric LoadInst * 11060b57cec5SDimitry Andric InterleavedLoadCombineImpl::findFirstLoad(const std::set<LoadInst *> &LIs) { 11070b57cec5SDimitry Andric assert(!LIs.empty() && "No load instructions given."); 11080b57cec5SDimitry Andric 11090b57cec5SDimitry Andric // All LIs are within the same BB. Select the first for a reference. 11100b57cec5SDimitry Andric BasicBlock *BB = (*LIs.begin())->getParent(); 1111e8d8bef9SDimitry Andric BasicBlock::iterator FLI = llvm::find_if( 1112e8d8bef9SDimitry Andric *BB, [&LIs](Instruction &I) -> bool { return is_contained(LIs, &I); }); 11130b57cec5SDimitry Andric assert(FLI != BB->end()); 11140b57cec5SDimitry Andric 11150b57cec5SDimitry Andric return cast<LoadInst>(FLI); 11160b57cec5SDimitry Andric } 11170b57cec5SDimitry Andric 11180b57cec5SDimitry Andric bool InterleavedLoadCombineImpl::combine(std::list<VectorInfo> &InterleavedLoad, 11190b57cec5SDimitry Andric OptimizationRemarkEmitter &ORE) { 11200b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "Checking interleaved load\n"); 11210b57cec5SDimitry Andric 11220b57cec5SDimitry Andric // The insertion point is the LoadInst which loads the first values. The 11230b57cec5SDimitry Andric // following tests are used to proof that the combined load can be inserted 11240b57cec5SDimitry Andric // just before InsertionPoint. 11250b57cec5SDimitry Andric LoadInst *InsertionPoint = InterleavedLoad.front().EI[0].LI; 11260b57cec5SDimitry Andric 11270b57cec5SDimitry Andric // Test if the offset is computed 11280b57cec5SDimitry Andric if (!InsertionPoint) 11290b57cec5SDimitry Andric return false; 11300b57cec5SDimitry Andric 11310b57cec5SDimitry Andric std::set<LoadInst *> LIs; 11320b57cec5SDimitry Andric std::set<Instruction *> Is; 11330b57cec5SDimitry Andric std::set<Instruction *> SVIs; 11340b57cec5SDimitry Andric 1135e8d8bef9SDimitry Andric InstructionCost InterleavedCost; 1136e8d8bef9SDimitry Andric InstructionCost InstructionCost = 0; 1137349cc55cSDimitry Andric const TTI::TargetCostKind CostKind = TTI::TCK_SizeAndLatency; 11380b57cec5SDimitry Andric 11390b57cec5SDimitry Andric // Get the interleave factor 11400b57cec5SDimitry Andric unsigned Factor = InterleavedLoad.size(); 11410b57cec5SDimitry Andric 11420b57cec5SDimitry Andric // Merge all input sets used in analysis 11430b57cec5SDimitry Andric for (auto &VI : InterleavedLoad) { 11440b57cec5SDimitry Andric // Generate a set of all load instructions to be combined 11450b57cec5SDimitry Andric LIs.insert(VI.LIs.begin(), VI.LIs.end()); 11460b57cec5SDimitry Andric 11470b57cec5SDimitry Andric // Generate a set of all instructions taking part in load 11480b57cec5SDimitry Andric // interleaved. This list excludes the instructions necessary for the 11490b57cec5SDimitry Andric // polynomial construction. 11500b57cec5SDimitry Andric Is.insert(VI.Is.begin(), VI.Is.end()); 11510b57cec5SDimitry Andric 11520b57cec5SDimitry Andric // Generate the set of the final ShuffleVectorInst. 11530b57cec5SDimitry Andric SVIs.insert(VI.SVI); 11540b57cec5SDimitry Andric } 11550b57cec5SDimitry Andric 11560b57cec5SDimitry Andric // There is nothing to combine. 11570b57cec5SDimitry Andric if (LIs.size() < 2) 11580b57cec5SDimitry Andric return false; 11590b57cec5SDimitry Andric 11600b57cec5SDimitry Andric // Test if all participating instruction will be dead after the 11610b57cec5SDimitry Andric // transformation. If intermediate results are used, no performance gain can 11620b57cec5SDimitry Andric // be expected. Also sum the cost of the Instructions beeing left dead. 1163fcaf7f86SDimitry Andric for (const auto &I : Is) { 11640b57cec5SDimitry Andric // Compute the old cost 1165349cc55cSDimitry Andric InstructionCost += TTI.getInstructionCost(I, CostKind); 11660b57cec5SDimitry Andric 11670b57cec5SDimitry Andric // The final SVIs are allowed not to be dead, all uses will be replaced 11680b57cec5SDimitry Andric if (SVIs.find(I) != SVIs.end()) 11690b57cec5SDimitry Andric continue; 11700b57cec5SDimitry Andric 11710b57cec5SDimitry Andric // If there are users outside the set to be eliminated, we abort the 11720b57cec5SDimitry Andric // transformation. No gain can be expected. 1173480093f4SDimitry Andric for (auto *U : I->users()) { 11740b57cec5SDimitry Andric if (Is.find(dyn_cast<Instruction>(U)) == Is.end()) 11750b57cec5SDimitry Andric return false; 11760b57cec5SDimitry Andric } 11770b57cec5SDimitry Andric } 11780b57cec5SDimitry Andric 1179e8d8bef9SDimitry Andric // We need to have a valid cost in order to proceed. 1180e8d8bef9SDimitry Andric if (!InstructionCost.isValid()) 1181e8d8bef9SDimitry Andric return false; 1182e8d8bef9SDimitry Andric 11830b57cec5SDimitry Andric // We know that all LoadInst are within the same BB. This guarantees that 11840b57cec5SDimitry Andric // either everything or nothing is loaded. 11850b57cec5SDimitry Andric LoadInst *First = findFirstLoad(LIs); 11860b57cec5SDimitry Andric 11870b57cec5SDimitry Andric // To be safe that the loads can be combined, iterate over all loads and test 11880b57cec5SDimitry Andric // that the corresponding defining access dominates first LI. This guarantees 11890b57cec5SDimitry Andric // that there are no aliasing stores in between the loads. 11900b57cec5SDimitry Andric auto FMA = MSSA.getMemoryAccess(First); 1191fcaf7f86SDimitry Andric for (auto *LI : LIs) { 11920b57cec5SDimitry Andric auto MADef = MSSA.getMemoryAccess(LI)->getDefiningAccess(); 11930b57cec5SDimitry Andric if (!MSSA.dominates(MADef, FMA)) 11940b57cec5SDimitry Andric return false; 11950b57cec5SDimitry Andric } 11960b57cec5SDimitry Andric assert(!LIs.empty() && "There are no LoadInst to combine"); 11970b57cec5SDimitry Andric 11980b57cec5SDimitry Andric // It is necessary that insertion point dominates all final ShuffleVectorInst. 11990b57cec5SDimitry Andric for (auto &VI : InterleavedLoad) { 12000b57cec5SDimitry Andric if (!DT.dominates(InsertionPoint, VI.SVI)) 12010b57cec5SDimitry Andric return false; 12020b57cec5SDimitry Andric } 12030b57cec5SDimitry Andric 12040b57cec5SDimitry Andric // All checks are done. Add instructions detectable by InterleavedAccessPass 12050b57cec5SDimitry Andric // The old instruction will are left dead. 12060b57cec5SDimitry Andric IRBuilder<> Builder(InsertionPoint); 12070b57cec5SDimitry Andric Type *ETy = InterleavedLoad.front().SVI->getType()->getElementType(); 12080b57cec5SDimitry Andric unsigned ElementsPerSVI = 12095ffd83dbSDimitry Andric cast<FixedVectorType>(InterleavedLoad.front().SVI->getType()) 12105ffd83dbSDimitry Andric ->getNumElements(); 12115ffd83dbSDimitry Andric FixedVectorType *ILTy = FixedVectorType::get(ETy, Factor * ElementsPerSVI); 12120b57cec5SDimitry Andric 121381ad6265SDimitry Andric auto Indices = llvm::to_vector<4>(llvm::seq<unsigned>(0, Factor)); 12140b57cec5SDimitry Andric InterleavedCost = TTI.getInterleavedMemoryOpCost( 12155ffd83dbSDimitry Andric Instruction::Load, ILTy, Factor, Indices, InsertionPoint->getAlign(), 1216349cc55cSDimitry Andric InsertionPoint->getPointerAddressSpace(), CostKind); 12170b57cec5SDimitry Andric 12180b57cec5SDimitry Andric if (InterleavedCost >= InstructionCost) { 12190b57cec5SDimitry Andric return false; 12200b57cec5SDimitry Andric } 12210b57cec5SDimitry Andric 12220b57cec5SDimitry Andric // Create the wide load and update the MemorySSA. 12235f757f3fSDimitry Andric auto Ptr = InsertionPoint->getPointerOperand(); 12245f757f3fSDimitry Andric auto LI = Builder.CreateAlignedLoad(ILTy, Ptr, InsertionPoint->getAlign(), 12250b57cec5SDimitry Andric "interleaved.wide.load"); 12260b57cec5SDimitry Andric auto MSSAU = MemorySSAUpdater(&MSSA); 12270b57cec5SDimitry Andric MemoryUse *MSSALoad = cast<MemoryUse>(MSSAU.createMemoryAccessBefore( 12280b57cec5SDimitry Andric LI, nullptr, MSSA.getMemoryAccess(InsertionPoint))); 122981ad6265SDimitry Andric MSSAU.insertUse(MSSALoad, /*RenameUses=*/ true); 12300b57cec5SDimitry Andric 12310b57cec5SDimitry Andric // Create the final SVIs and replace all uses. 12320b57cec5SDimitry Andric int i = 0; 12330b57cec5SDimitry Andric for (auto &VI : InterleavedLoad) { 12345ffd83dbSDimitry Andric SmallVector<int, 4> Mask; 12350b57cec5SDimitry Andric for (unsigned j = 0; j < ElementsPerSVI; j++) 12360b57cec5SDimitry Andric Mask.push_back(i + j * Factor); 12370b57cec5SDimitry Andric 12380b57cec5SDimitry Andric Builder.SetInsertPoint(VI.SVI); 1239e8d8bef9SDimitry Andric auto SVI = Builder.CreateShuffleVector(LI, Mask, "interleaved.shuffle"); 12400b57cec5SDimitry Andric VI.SVI->replaceAllUsesWith(SVI); 12410b57cec5SDimitry Andric i++; 12420b57cec5SDimitry Andric } 12430b57cec5SDimitry Andric 12440b57cec5SDimitry Andric NumInterleavedLoadCombine++; 12450b57cec5SDimitry Andric ORE.emit([&]() { 12460b57cec5SDimitry Andric return OptimizationRemark(DEBUG_TYPE, "Combined Interleaved Load", LI) 12470b57cec5SDimitry Andric << "Load interleaved combined with factor " 12480b57cec5SDimitry Andric << ore::NV("Factor", Factor); 12490b57cec5SDimitry Andric }); 12500b57cec5SDimitry Andric 12510b57cec5SDimitry Andric return true; 12520b57cec5SDimitry Andric } 12530b57cec5SDimitry Andric 12540b57cec5SDimitry Andric bool InterleavedLoadCombineImpl::run() { 12550b57cec5SDimitry Andric OptimizationRemarkEmitter ORE(&F); 12560b57cec5SDimitry Andric bool changed = false; 12570b57cec5SDimitry Andric unsigned MaxFactor = TLI.getMaxSupportedInterleaveFactor(); 12580b57cec5SDimitry Andric 1259*0fca6ea1SDimitry Andric auto &DL = F.getDataLayout(); 12600b57cec5SDimitry Andric 12610b57cec5SDimitry Andric // Start with the highest factor to avoid combining and recombining. 12620b57cec5SDimitry Andric for (unsigned Factor = MaxFactor; Factor >= 2; Factor--) { 12630b57cec5SDimitry Andric std::list<VectorInfo> Candidates; 12640b57cec5SDimitry Andric 12650b57cec5SDimitry Andric for (BasicBlock &BB : F) { 12660b57cec5SDimitry Andric for (Instruction &I : BB) { 12670b57cec5SDimitry Andric if (auto SVI = dyn_cast<ShuffleVectorInst>(&I)) { 12685ffd83dbSDimitry Andric // We don't support scalable vectors in this pass. 12695ffd83dbSDimitry Andric if (isa<ScalableVectorType>(SVI->getType())) 12705ffd83dbSDimitry Andric continue; 12710b57cec5SDimitry Andric 12725ffd83dbSDimitry Andric Candidates.emplace_back(cast<FixedVectorType>(SVI->getType())); 12730b57cec5SDimitry Andric 12740b57cec5SDimitry Andric if (!VectorInfo::computeFromSVI(SVI, Candidates.back(), DL)) { 12750b57cec5SDimitry Andric Candidates.pop_back(); 12760b57cec5SDimitry Andric continue; 12770b57cec5SDimitry Andric } 12780b57cec5SDimitry Andric 12790b57cec5SDimitry Andric if (!Candidates.back().isInterleaved(Factor, DL)) { 12800b57cec5SDimitry Andric Candidates.pop_back(); 12810b57cec5SDimitry Andric } 12820b57cec5SDimitry Andric } 12830b57cec5SDimitry Andric } 12840b57cec5SDimitry Andric } 12850b57cec5SDimitry Andric 12860b57cec5SDimitry Andric std::list<VectorInfo> InterleavedLoad; 12870b57cec5SDimitry Andric while (findPattern(Candidates, InterleavedLoad, Factor, DL)) { 12880b57cec5SDimitry Andric if (combine(InterleavedLoad, ORE)) { 12890b57cec5SDimitry Andric changed = true; 12900b57cec5SDimitry Andric } else { 12910b57cec5SDimitry Andric // Remove the first element of the Interleaved Load but put the others 12920b57cec5SDimitry Andric // back on the list and continue searching 12930b57cec5SDimitry Andric Candidates.splice(Candidates.begin(), InterleavedLoad, 12940b57cec5SDimitry Andric std::next(InterleavedLoad.begin()), 12950b57cec5SDimitry Andric InterleavedLoad.end()); 12960b57cec5SDimitry Andric } 12970b57cec5SDimitry Andric InterleavedLoad.clear(); 12980b57cec5SDimitry Andric } 12990b57cec5SDimitry Andric } 13000b57cec5SDimitry Andric 13010b57cec5SDimitry Andric return changed; 13020b57cec5SDimitry Andric } 13030b57cec5SDimitry Andric 13040b57cec5SDimitry Andric namespace { 13050b57cec5SDimitry Andric /// This pass combines interleaved loads into a pattern detectable by 13060b57cec5SDimitry Andric /// InterleavedAccessPass. 13070b57cec5SDimitry Andric struct InterleavedLoadCombine : public FunctionPass { 13080b57cec5SDimitry Andric static char ID; 13090b57cec5SDimitry Andric 13100b57cec5SDimitry Andric InterleavedLoadCombine() : FunctionPass(ID) { 13110b57cec5SDimitry Andric initializeInterleavedLoadCombinePass(*PassRegistry::getPassRegistry()); 13120b57cec5SDimitry Andric } 13130b57cec5SDimitry Andric 13140b57cec5SDimitry Andric StringRef getPassName() const override { 13150b57cec5SDimitry Andric return "Interleaved Load Combine Pass"; 13160b57cec5SDimitry Andric } 13170b57cec5SDimitry Andric 13180b57cec5SDimitry Andric bool runOnFunction(Function &F) override { 13190b57cec5SDimitry Andric if (DisableInterleavedLoadCombine) 13200b57cec5SDimitry Andric return false; 13210b57cec5SDimitry Andric 13220b57cec5SDimitry Andric auto *TPC = getAnalysisIfAvailable<TargetPassConfig>(); 13230b57cec5SDimitry Andric if (!TPC) 13240b57cec5SDimitry Andric return false; 13250b57cec5SDimitry Andric 13260b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "*** " << getPassName() << ": " << F.getName() 13270b57cec5SDimitry Andric << "\n"); 13280b57cec5SDimitry Andric 13290b57cec5SDimitry Andric return InterleavedLoadCombineImpl( 13300b57cec5SDimitry Andric F, getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 13310b57cec5SDimitry Andric getAnalysis<MemorySSAWrapperPass>().getMSSA(), 1332*0fca6ea1SDimitry Andric getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F), 13330b57cec5SDimitry Andric TPC->getTM<TargetMachine>()) 13340b57cec5SDimitry Andric .run(); 13350b57cec5SDimitry Andric } 13360b57cec5SDimitry Andric 13370b57cec5SDimitry Andric void getAnalysisUsage(AnalysisUsage &AU) const override { 13380b57cec5SDimitry Andric AU.addRequired<MemorySSAWrapperPass>(); 13390b57cec5SDimitry Andric AU.addRequired<DominatorTreeWrapperPass>(); 1340*0fca6ea1SDimitry Andric AU.addRequired<TargetTransformInfoWrapperPass>(); 13410b57cec5SDimitry Andric FunctionPass::getAnalysisUsage(AU); 13420b57cec5SDimitry Andric } 13430b57cec5SDimitry Andric 13440b57cec5SDimitry Andric private: 13450b57cec5SDimitry Andric }; 13460b57cec5SDimitry Andric } // anonymous namespace 13470b57cec5SDimitry Andric 13485f757f3fSDimitry Andric PreservedAnalyses 13495f757f3fSDimitry Andric InterleavedLoadCombinePass::run(Function &F, FunctionAnalysisManager &FAM) { 13505f757f3fSDimitry Andric 13515f757f3fSDimitry Andric auto &DT = FAM.getResult<DominatorTreeAnalysis>(F); 13525f757f3fSDimitry Andric auto &MemSSA = FAM.getResult<MemorySSAAnalysis>(F).getMSSA(); 1353*0fca6ea1SDimitry Andric auto &TTI = FAM.getResult<TargetIRAnalysis>(F); 1354*0fca6ea1SDimitry Andric bool Changed = InterleavedLoadCombineImpl(F, DT, MemSSA, TTI, *TM).run(); 13555f757f3fSDimitry Andric return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all(); 13565f757f3fSDimitry Andric } 13575f757f3fSDimitry Andric 13580b57cec5SDimitry Andric char InterleavedLoadCombine::ID = 0; 13590b57cec5SDimitry Andric 13600b57cec5SDimitry Andric INITIALIZE_PASS_BEGIN( 13610b57cec5SDimitry Andric InterleavedLoadCombine, DEBUG_TYPE, 13620b57cec5SDimitry Andric "Combine interleaved loads into wide loads and shufflevector instructions", 13630b57cec5SDimitry Andric false, false) 13640b57cec5SDimitry Andric INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 13650b57cec5SDimitry Andric INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 1366*0fca6ea1SDimitry Andric INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 13670b57cec5SDimitry Andric INITIALIZE_PASS_END( 13680b57cec5SDimitry Andric InterleavedLoadCombine, DEBUG_TYPE, 13690b57cec5SDimitry Andric "Combine interleaved loads into wide loads and shufflevector instructions", 13700b57cec5SDimitry Andric false, false) 13710b57cec5SDimitry Andric 13720b57cec5SDimitry Andric FunctionPass * 13730b57cec5SDimitry Andric llvm::createInterleavedLoadCombinePass() { 13740b57cec5SDimitry Andric auto P = new InterleavedLoadCombine(); 13750b57cec5SDimitry Andric return P; 13760b57cec5SDimitry Andric } 1377