1 //===- InlineSpiller.cpp - Insert spills and restores inline --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // The inline spiller modifies the machine function directly instead of 10 // inserting spills and restores in VirtRegMap. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "Spiller.h" 15 #include "SplitKit.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/MapVector.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/Analysis/AliasAnalysis.h" 26 #include "llvm/CodeGen/LiveInterval.h" 27 #include "llvm/CodeGen/LiveIntervals.h" 28 #include "llvm/CodeGen/LiveRangeCalc.h" 29 #include "llvm/CodeGen/LiveRangeEdit.h" 30 #include "llvm/CodeGen/LiveStacks.h" 31 #include "llvm/CodeGen/MachineBasicBlock.h" 32 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 33 #include "llvm/CodeGen/MachineDominators.h" 34 #include "llvm/CodeGen/MachineFunction.h" 35 #include "llvm/CodeGen/MachineFunctionPass.h" 36 #include "llvm/CodeGen/MachineInstr.h" 37 #include "llvm/CodeGen/MachineInstrBuilder.h" 38 #include "llvm/CodeGen/MachineInstrBundle.h" 39 #include "llvm/CodeGen/MachineLoopInfo.h" 40 #include "llvm/CodeGen/MachineOperand.h" 41 #include "llvm/CodeGen/MachineRegisterInfo.h" 42 #include "llvm/CodeGen/SlotIndexes.h" 43 #include "llvm/CodeGen/TargetInstrInfo.h" 44 #include "llvm/CodeGen/TargetOpcodes.h" 45 #include "llvm/CodeGen/TargetRegisterInfo.h" 46 #include "llvm/CodeGen/TargetSubtargetInfo.h" 47 #include "llvm/CodeGen/VirtRegMap.h" 48 #include "llvm/Config/llvm-config.h" 49 #include "llvm/Support/BlockFrequency.h" 50 #include "llvm/Support/BranchProbability.h" 51 #include "llvm/Support/CommandLine.h" 52 #include "llvm/Support/Compiler.h" 53 #include "llvm/Support/Debug.h" 54 #include "llvm/Support/ErrorHandling.h" 55 #include "llvm/Support/raw_ostream.h" 56 #include <cassert> 57 #include <iterator> 58 #include <tuple> 59 #include <utility> 60 #include <vector> 61 62 using namespace llvm; 63 64 #define DEBUG_TYPE "regalloc" 65 66 STATISTIC(NumSpilledRanges, "Number of spilled live ranges"); 67 STATISTIC(NumSnippets, "Number of spilled snippets"); 68 STATISTIC(NumSpills, "Number of spills inserted"); 69 STATISTIC(NumSpillsRemoved, "Number of spills removed"); 70 STATISTIC(NumReloads, "Number of reloads inserted"); 71 STATISTIC(NumReloadsRemoved, "Number of reloads removed"); 72 STATISTIC(NumFolded, "Number of folded stack accesses"); 73 STATISTIC(NumFoldedLoads, "Number of folded loads"); 74 STATISTIC(NumRemats, "Number of rematerialized defs for spilling"); 75 76 static cl::opt<bool> DisableHoisting("disable-spill-hoist", cl::Hidden, 77 cl::desc("Disable inline spill hoisting")); 78 static cl::opt<bool> 79 RestrictStatepointRemat("restrict-statepoint-remat", 80 cl::init(false), cl::Hidden, 81 cl::desc("Restrict remat for statepoint operands")); 82 83 namespace { 84 85 class HoistSpillHelper : private LiveRangeEdit::Delegate { 86 MachineFunction &MF; 87 LiveIntervals &LIS; 88 LiveStacks &LSS; 89 AliasAnalysis *AA; 90 MachineDominatorTree &MDT; 91 MachineLoopInfo &Loops; 92 VirtRegMap &VRM; 93 MachineRegisterInfo &MRI; 94 const TargetInstrInfo &TII; 95 const TargetRegisterInfo &TRI; 96 const MachineBlockFrequencyInfo &MBFI; 97 98 InsertPointAnalysis IPA; 99 100 // Map from StackSlot to the LiveInterval of the original register. 101 // Note the LiveInterval of the original register may have been deleted 102 // after it is spilled. We keep a copy here to track the range where 103 // spills can be moved. 104 DenseMap<int, std::unique_ptr<LiveInterval>> StackSlotToOrigLI; 105 106 // Map from pair of (StackSlot and Original VNI) to a set of spills which 107 // have the same stackslot and have equal values defined by Original VNI. 108 // These spills are mergeable and are hoist candiates. 109 using MergeableSpillsMap = 110 MapVector<std::pair<int, VNInfo *>, SmallPtrSet<MachineInstr *, 16>>; 111 MergeableSpillsMap MergeableSpills; 112 113 /// This is the map from original register to a set containing all its 114 /// siblings. To hoist a spill to another BB, we need to find out a live 115 /// sibling there and use it as the source of the new spill. 116 DenseMap<unsigned, SmallSetVector<unsigned, 16>> Virt2SiblingsMap; 117 118 bool isSpillCandBB(LiveInterval &OrigLI, VNInfo &OrigVNI, 119 MachineBasicBlock &BB, unsigned &LiveReg); 120 121 void rmRedundantSpills( 122 SmallPtrSet<MachineInstr *, 16> &Spills, 123 SmallVectorImpl<MachineInstr *> &SpillsToRm, 124 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill); 125 126 void getVisitOrders( 127 MachineBasicBlock *Root, SmallPtrSet<MachineInstr *, 16> &Spills, 128 SmallVectorImpl<MachineDomTreeNode *> &Orders, 129 SmallVectorImpl<MachineInstr *> &SpillsToRm, 130 DenseMap<MachineDomTreeNode *, unsigned> &SpillsToKeep, 131 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill); 132 133 void runHoistSpills(LiveInterval &OrigLI, VNInfo &OrigVNI, 134 SmallPtrSet<MachineInstr *, 16> &Spills, 135 SmallVectorImpl<MachineInstr *> &SpillsToRm, 136 DenseMap<MachineBasicBlock *, unsigned> &SpillsToIns); 137 138 public: 139 HoistSpillHelper(MachineFunctionPass &pass, MachineFunction &mf, 140 VirtRegMap &vrm) 141 : MF(mf), LIS(pass.getAnalysis<LiveIntervals>()), 142 LSS(pass.getAnalysis<LiveStacks>()), 143 AA(&pass.getAnalysis<AAResultsWrapperPass>().getAAResults()), 144 MDT(pass.getAnalysis<MachineDominatorTree>()), 145 Loops(pass.getAnalysis<MachineLoopInfo>()), VRM(vrm), 146 MRI(mf.getRegInfo()), TII(*mf.getSubtarget().getInstrInfo()), 147 TRI(*mf.getSubtarget().getRegisterInfo()), 148 MBFI(pass.getAnalysis<MachineBlockFrequencyInfo>()), 149 IPA(LIS, mf.getNumBlockIDs()) {} 150 151 void addToMergeableSpills(MachineInstr &Spill, int StackSlot, 152 unsigned Original); 153 bool rmFromMergeableSpills(MachineInstr &Spill, int StackSlot); 154 void hoistAllSpills(); 155 void LRE_DidCloneVirtReg(unsigned, unsigned) override; 156 }; 157 158 class InlineSpiller : public Spiller { 159 MachineFunction &MF; 160 LiveIntervals &LIS; 161 LiveStacks &LSS; 162 AliasAnalysis *AA; 163 MachineDominatorTree &MDT; 164 MachineLoopInfo &Loops; 165 VirtRegMap &VRM; 166 MachineRegisterInfo &MRI; 167 const TargetInstrInfo &TII; 168 const TargetRegisterInfo &TRI; 169 const MachineBlockFrequencyInfo &MBFI; 170 171 // Variables that are valid during spill(), but used by multiple methods. 172 LiveRangeEdit *Edit; 173 LiveInterval *StackInt; 174 int StackSlot; 175 unsigned Original; 176 177 // All registers to spill to StackSlot, including the main register. 178 SmallVector<unsigned, 8> RegsToSpill; 179 180 // All COPY instructions to/from snippets. 181 // They are ignored since both operands refer to the same stack slot. 182 SmallPtrSet<MachineInstr*, 8> SnippetCopies; 183 184 // Values that failed to remat at some point. 185 SmallPtrSet<VNInfo*, 8> UsedValues; 186 187 // Dead defs generated during spilling. 188 SmallVector<MachineInstr*, 8> DeadDefs; 189 190 // Object records spills information and does the hoisting. 191 HoistSpillHelper HSpiller; 192 193 ~InlineSpiller() override = default; 194 195 public: 196 InlineSpiller(MachineFunctionPass &pass, MachineFunction &mf, VirtRegMap &vrm) 197 : MF(mf), LIS(pass.getAnalysis<LiveIntervals>()), 198 LSS(pass.getAnalysis<LiveStacks>()), 199 AA(&pass.getAnalysis<AAResultsWrapperPass>().getAAResults()), 200 MDT(pass.getAnalysis<MachineDominatorTree>()), 201 Loops(pass.getAnalysis<MachineLoopInfo>()), VRM(vrm), 202 MRI(mf.getRegInfo()), TII(*mf.getSubtarget().getInstrInfo()), 203 TRI(*mf.getSubtarget().getRegisterInfo()), 204 MBFI(pass.getAnalysis<MachineBlockFrequencyInfo>()), 205 HSpiller(pass, mf, vrm) {} 206 207 void spill(LiveRangeEdit &) override; 208 void postOptimization() override; 209 210 private: 211 bool isSnippet(const LiveInterval &SnipLI); 212 void collectRegsToSpill(); 213 214 bool isRegToSpill(unsigned Reg) { return is_contained(RegsToSpill, Reg); } 215 216 bool isSibling(unsigned Reg); 217 bool hoistSpillInsideBB(LiveInterval &SpillLI, MachineInstr &CopyMI); 218 void eliminateRedundantSpills(LiveInterval &LI, VNInfo *VNI); 219 220 void markValueUsed(LiveInterval*, VNInfo*); 221 bool canGuaranteeAssignmentAfterRemat(unsigned VReg, MachineInstr &MI); 222 bool reMaterializeFor(LiveInterval &, MachineInstr &MI); 223 void reMaterializeAll(); 224 225 bool coalesceStackAccess(MachineInstr *MI, unsigned Reg); 226 bool foldMemoryOperand(ArrayRef<std::pair<MachineInstr *, unsigned>>, 227 MachineInstr *LoadMI = nullptr); 228 void insertReload(unsigned VReg, SlotIndex, MachineBasicBlock::iterator MI); 229 void insertSpill(unsigned VReg, bool isKill, MachineBasicBlock::iterator MI); 230 231 void spillAroundUses(unsigned Reg); 232 void spillAll(); 233 }; 234 235 } // end anonymous namespace 236 237 Spiller::~Spiller() = default; 238 239 void Spiller::anchor() {} 240 241 Spiller *llvm::createInlineSpiller(MachineFunctionPass &pass, 242 MachineFunction &mf, 243 VirtRegMap &vrm) { 244 return new InlineSpiller(pass, mf, vrm); 245 } 246 247 //===----------------------------------------------------------------------===// 248 // Snippets 249 //===----------------------------------------------------------------------===// 250 251 // When spilling a virtual register, we also spill any snippets it is connected 252 // to. The snippets are small live ranges that only have a single real use, 253 // leftovers from live range splitting. Spilling them enables memory operand 254 // folding or tightens the live range around the single use. 255 // 256 // This minimizes register pressure and maximizes the store-to-load distance for 257 // spill slots which can be important in tight loops. 258 259 /// isFullCopyOf - If MI is a COPY to or from Reg, return the other register, 260 /// otherwise return 0. 261 static unsigned isFullCopyOf(const MachineInstr &MI, unsigned Reg) { 262 if (!MI.isFullCopy()) 263 return 0; 264 if (MI.getOperand(0).getReg() == Reg) 265 return MI.getOperand(1).getReg(); 266 if (MI.getOperand(1).getReg() == Reg) 267 return MI.getOperand(0).getReg(); 268 return 0; 269 } 270 271 /// isSnippet - Identify if a live interval is a snippet that should be spilled. 272 /// It is assumed that SnipLI is a virtual register with the same original as 273 /// Edit->getReg(). 274 bool InlineSpiller::isSnippet(const LiveInterval &SnipLI) { 275 unsigned Reg = Edit->getReg(); 276 277 // A snippet is a tiny live range with only a single instruction using it 278 // besides copies to/from Reg or spills/fills. We accept: 279 // 280 // %snip = COPY %Reg / FILL fi# 281 // %snip = USE %snip 282 // %Reg = COPY %snip / SPILL %snip, fi# 283 // 284 if (SnipLI.getNumValNums() > 2 || !LIS.intervalIsInOneMBB(SnipLI)) 285 return false; 286 287 MachineInstr *UseMI = nullptr; 288 289 // Check that all uses satisfy our criteria. 290 for (MachineRegisterInfo::reg_instr_nodbg_iterator 291 RI = MRI.reg_instr_nodbg_begin(SnipLI.reg), 292 E = MRI.reg_instr_nodbg_end(); RI != E; ) { 293 MachineInstr &MI = *RI++; 294 295 // Allow copies to/from Reg. 296 if (isFullCopyOf(MI, Reg)) 297 continue; 298 299 // Allow stack slot loads. 300 int FI; 301 if (SnipLI.reg == TII.isLoadFromStackSlot(MI, FI) && FI == StackSlot) 302 continue; 303 304 // Allow stack slot stores. 305 if (SnipLI.reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot) 306 continue; 307 308 // Allow a single additional instruction. 309 if (UseMI && &MI != UseMI) 310 return false; 311 UseMI = &MI; 312 } 313 return true; 314 } 315 316 /// collectRegsToSpill - Collect live range snippets that only have a single 317 /// real use. 318 void InlineSpiller::collectRegsToSpill() { 319 unsigned Reg = Edit->getReg(); 320 321 // Main register always spills. 322 RegsToSpill.assign(1, Reg); 323 SnippetCopies.clear(); 324 325 // Snippets all have the same original, so there can't be any for an original 326 // register. 327 if (Original == Reg) 328 return; 329 330 for (MachineRegisterInfo::reg_instr_iterator 331 RI = MRI.reg_instr_begin(Reg), E = MRI.reg_instr_end(); RI != E; ) { 332 MachineInstr &MI = *RI++; 333 unsigned SnipReg = isFullCopyOf(MI, Reg); 334 if (!isSibling(SnipReg)) 335 continue; 336 LiveInterval &SnipLI = LIS.getInterval(SnipReg); 337 if (!isSnippet(SnipLI)) 338 continue; 339 SnippetCopies.insert(&MI); 340 if (isRegToSpill(SnipReg)) 341 continue; 342 RegsToSpill.push_back(SnipReg); 343 LLVM_DEBUG(dbgs() << "\talso spill snippet " << SnipLI << '\n'); 344 ++NumSnippets; 345 } 346 } 347 348 bool InlineSpiller::isSibling(unsigned Reg) { 349 return Register::isVirtualRegister(Reg) && VRM.getOriginal(Reg) == Original; 350 } 351 352 /// It is beneficial to spill to earlier place in the same BB in case 353 /// as follows: 354 /// There is an alternative def earlier in the same MBB. 355 /// Hoist the spill as far as possible in SpillMBB. This can ease 356 /// register pressure: 357 /// 358 /// x = def 359 /// y = use x 360 /// s = copy x 361 /// 362 /// Hoisting the spill of s to immediately after the def removes the 363 /// interference between x and y: 364 /// 365 /// x = def 366 /// spill x 367 /// y = use killed x 368 /// 369 /// This hoist only helps when the copy kills its source. 370 /// 371 bool InlineSpiller::hoistSpillInsideBB(LiveInterval &SpillLI, 372 MachineInstr &CopyMI) { 373 SlotIndex Idx = LIS.getInstructionIndex(CopyMI); 374 #ifndef NDEBUG 375 VNInfo *VNI = SpillLI.getVNInfoAt(Idx.getRegSlot()); 376 assert(VNI && VNI->def == Idx.getRegSlot() && "Not defined by copy"); 377 #endif 378 379 Register SrcReg = CopyMI.getOperand(1).getReg(); 380 LiveInterval &SrcLI = LIS.getInterval(SrcReg); 381 VNInfo *SrcVNI = SrcLI.getVNInfoAt(Idx); 382 LiveQueryResult SrcQ = SrcLI.Query(Idx); 383 MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(SrcVNI->def); 384 if (DefMBB != CopyMI.getParent() || !SrcQ.isKill()) 385 return false; 386 387 // Conservatively extend the stack slot range to the range of the original 388 // value. We may be able to do better with stack slot coloring by being more 389 // careful here. 390 assert(StackInt && "No stack slot assigned yet."); 391 LiveInterval &OrigLI = LIS.getInterval(Original); 392 VNInfo *OrigVNI = OrigLI.getVNInfoAt(Idx); 393 StackInt->MergeValueInAsValue(OrigLI, OrigVNI, StackInt->getValNumInfo(0)); 394 LLVM_DEBUG(dbgs() << "\tmerged orig valno " << OrigVNI->id << ": " 395 << *StackInt << '\n'); 396 397 // We are going to spill SrcVNI immediately after its def, so clear out 398 // any later spills of the same value. 399 eliminateRedundantSpills(SrcLI, SrcVNI); 400 401 MachineBasicBlock *MBB = LIS.getMBBFromIndex(SrcVNI->def); 402 MachineBasicBlock::iterator MII; 403 if (SrcVNI->isPHIDef()) 404 MII = MBB->SkipPHIsLabelsAndDebug(MBB->begin()); 405 else { 406 MachineInstr *DefMI = LIS.getInstructionFromIndex(SrcVNI->def); 407 assert(DefMI && "Defining instruction disappeared"); 408 MII = DefMI; 409 ++MII; 410 } 411 // Insert spill without kill flag immediately after def. 412 TII.storeRegToStackSlot(*MBB, MII, SrcReg, false, StackSlot, 413 MRI.getRegClass(SrcReg), &TRI); 414 --MII; // Point to store instruction. 415 LIS.InsertMachineInstrInMaps(*MII); 416 LLVM_DEBUG(dbgs() << "\thoisted: " << SrcVNI->def << '\t' << *MII); 417 418 HSpiller.addToMergeableSpills(*MII, StackSlot, Original); 419 ++NumSpills; 420 return true; 421 } 422 423 /// eliminateRedundantSpills - SLI:VNI is known to be on the stack. Remove any 424 /// redundant spills of this value in SLI.reg and sibling copies. 425 void InlineSpiller::eliminateRedundantSpills(LiveInterval &SLI, VNInfo *VNI) { 426 assert(VNI && "Missing value"); 427 SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList; 428 WorkList.push_back(std::make_pair(&SLI, VNI)); 429 assert(StackInt && "No stack slot assigned yet."); 430 431 do { 432 LiveInterval *LI; 433 std::tie(LI, VNI) = WorkList.pop_back_val(); 434 unsigned Reg = LI->reg; 435 LLVM_DEBUG(dbgs() << "Checking redundant spills for " << VNI->id << '@' 436 << VNI->def << " in " << *LI << '\n'); 437 438 // Regs to spill are taken care of. 439 if (isRegToSpill(Reg)) 440 continue; 441 442 // Add all of VNI's live range to StackInt. 443 StackInt->MergeValueInAsValue(*LI, VNI, StackInt->getValNumInfo(0)); 444 LLVM_DEBUG(dbgs() << "Merged to stack int: " << *StackInt << '\n'); 445 446 // Find all spills and copies of VNI. 447 for (MachineRegisterInfo::use_instr_nodbg_iterator 448 UI = MRI.use_instr_nodbg_begin(Reg), E = MRI.use_instr_nodbg_end(); 449 UI != E; ) { 450 MachineInstr &MI = *UI++; 451 if (!MI.isCopy() && !MI.mayStore()) 452 continue; 453 SlotIndex Idx = LIS.getInstructionIndex(MI); 454 if (LI->getVNInfoAt(Idx) != VNI) 455 continue; 456 457 // Follow sibling copies down the dominator tree. 458 if (unsigned DstReg = isFullCopyOf(MI, Reg)) { 459 if (isSibling(DstReg)) { 460 LiveInterval &DstLI = LIS.getInterval(DstReg); 461 VNInfo *DstVNI = DstLI.getVNInfoAt(Idx.getRegSlot()); 462 assert(DstVNI && "Missing defined value"); 463 assert(DstVNI->def == Idx.getRegSlot() && "Wrong copy def slot"); 464 WorkList.push_back(std::make_pair(&DstLI, DstVNI)); 465 } 466 continue; 467 } 468 469 // Erase spills. 470 int FI; 471 if (Reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot) { 472 LLVM_DEBUG(dbgs() << "Redundant spill " << Idx << '\t' << MI); 473 // eliminateDeadDefs won't normally remove stores, so switch opcode. 474 MI.setDesc(TII.get(TargetOpcode::KILL)); 475 DeadDefs.push_back(&MI); 476 ++NumSpillsRemoved; 477 if (HSpiller.rmFromMergeableSpills(MI, StackSlot)) 478 --NumSpills; 479 } 480 } 481 } while (!WorkList.empty()); 482 } 483 484 //===----------------------------------------------------------------------===// 485 // Rematerialization 486 //===----------------------------------------------------------------------===// 487 488 /// markValueUsed - Remember that VNI failed to rematerialize, so its defining 489 /// instruction cannot be eliminated. See through snippet copies 490 void InlineSpiller::markValueUsed(LiveInterval *LI, VNInfo *VNI) { 491 SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList; 492 WorkList.push_back(std::make_pair(LI, VNI)); 493 do { 494 std::tie(LI, VNI) = WorkList.pop_back_val(); 495 if (!UsedValues.insert(VNI).second) 496 continue; 497 498 if (VNI->isPHIDef()) { 499 MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def); 500 for (MachineBasicBlock *P : MBB->predecessors()) { 501 VNInfo *PVNI = LI->getVNInfoBefore(LIS.getMBBEndIdx(P)); 502 if (PVNI) 503 WorkList.push_back(std::make_pair(LI, PVNI)); 504 } 505 continue; 506 } 507 508 // Follow snippet copies. 509 MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def); 510 if (!SnippetCopies.count(MI)) 511 continue; 512 LiveInterval &SnipLI = LIS.getInterval(MI->getOperand(1).getReg()); 513 assert(isRegToSpill(SnipLI.reg) && "Unexpected register in copy"); 514 VNInfo *SnipVNI = SnipLI.getVNInfoAt(VNI->def.getRegSlot(true)); 515 assert(SnipVNI && "Snippet undefined before copy"); 516 WorkList.push_back(std::make_pair(&SnipLI, SnipVNI)); 517 } while (!WorkList.empty()); 518 } 519 520 bool InlineSpiller::canGuaranteeAssignmentAfterRemat(unsigned VReg, 521 MachineInstr &MI) { 522 if (!RestrictStatepointRemat) 523 return true; 524 // Here's a quick explanation of the problem we're trying to handle here: 525 // * There are some pseudo instructions with more vreg uses than there are 526 // physical registers on the machine. 527 // * This is normally handled by spilling the vreg, and folding the reload 528 // into the user instruction. (Thus decreasing the number of used vregs 529 // until the remainder can be assigned to physregs.) 530 // * However, since we may try to spill vregs in any order, we can end up 531 // trying to spill each operand to the instruction, and then rematting it 532 // instead. When that happens, the new live intervals (for the remats) are 533 // expected to be trivially assignable (i.e. RS_Done). However, since we 534 // may have more remats than physregs, we're guaranteed to fail to assign 535 // one. 536 // At the moment, we only handle this for STATEPOINTs since they're the only 537 // psuedo op where we've seen this. If we start seeing other instructions 538 // with the same problem, we need to revisit this. 539 return (MI.getOpcode() != TargetOpcode::STATEPOINT); 540 } 541 542 /// reMaterializeFor - Attempt to rematerialize before MI instead of reloading. 543 bool InlineSpiller::reMaterializeFor(LiveInterval &VirtReg, MachineInstr &MI) { 544 // Analyze instruction 545 SmallVector<std::pair<MachineInstr *, unsigned>, 8> Ops; 546 MIBundleOperands::VirtRegInfo RI = 547 MIBundleOperands(MI).analyzeVirtReg(VirtReg.reg, &Ops); 548 549 if (!RI.Reads) 550 return false; 551 552 SlotIndex UseIdx = LIS.getInstructionIndex(MI).getRegSlot(true); 553 VNInfo *ParentVNI = VirtReg.getVNInfoAt(UseIdx.getBaseIndex()); 554 555 if (!ParentVNI) { 556 LLVM_DEBUG(dbgs() << "\tadding <undef> flags: "); 557 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 558 MachineOperand &MO = MI.getOperand(i); 559 if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg) 560 MO.setIsUndef(); 561 } 562 LLVM_DEBUG(dbgs() << UseIdx << '\t' << MI); 563 return true; 564 } 565 566 if (SnippetCopies.count(&MI)) 567 return false; 568 569 LiveInterval &OrigLI = LIS.getInterval(Original); 570 VNInfo *OrigVNI = OrigLI.getVNInfoAt(UseIdx); 571 LiveRangeEdit::Remat RM(ParentVNI); 572 RM.OrigMI = LIS.getInstructionFromIndex(OrigVNI->def); 573 574 if (!Edit->canRematerializeAt(RM, OrigVNI, UseIdx, false)) { 575 markValueUsed(&VirtReg, ParentVNI); 576 LLVM_DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << MI); 577 return false; 578 } 579 580 // If the instruction also writes VirtReg.reg, it had better not require the 581 // same register for uses and defs. 582 if (RI.Tied) { 583 markValueUsed(&VirtReg, ParentVNI); 584 LLVM_DEBUG(dbgs() << "\tcannot remat tied reg: " << UseIdx << '\t' << MI); 585 return false; 586 } 587 588 // Before rematerializing into a register for a single instruction, try to 589 // fold a load into the instruction. That avoids allocating a new register. 590 if (RM.OrigMI->canFoldAsLoad() && 591 foldMemoryOperand(Ops, RM.OrigMI)) { 592 Edit->markRematerialized(RM.ParentVNI); 593 ++NumFoldedLoads; 594 return true; 595 } 596 597 // If we can't guarantee that we'll be able to actually assign the new vreg, 598 // we can't remat. 599 if (!canGuaranteeAssignmentAfterRemat(VirtReg.reg, MI)) { 600 markValueUsed(&VirtReg, ParentVNI); 601 LLVM_DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << MI); 602 return false; 603 } 604 605 // Allocate a new register for the remat. 606 unsigned NewVReg = Edit->createFrom(Original); 607 608 // Finally we can rematerialize OrigMI before MI. 609 SlotIndex DefIdx = 610 Edit->rematerializeAt(*MI.getParent(), MI, NewVReg, RM, TRI); 611 612 // We take the DebugLoc from MI, since OrigMI may be attributed to a 613 // different source location. 614 auto *NewMI = LIS.getInstructionFromIndex(DefIdx); 615 NewMI->setDebugLoc(MI.getDebugLoc()); 616 617 (void)DefIdx; 618 LLVM_DEBUG(dbgs() << "\tremat: " << DefIdx << '\t' 619 << *LIS.getInstructionFromIndex(DefIdx)); 620 621 // Replace operands 622 for (const auto &OpPair : Ops) { 623 MachineOperand &MO = OpPair.first->getOperand(OpPair.second); 624 if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg) { 625 MO.setReg(NewVReg); 626 MO.setIsKill(); 627 } 628 } 629 LLVM_DEBUG(dbgs() << "\t " << UseIdx << '\t' << MI << '\n'); 630 631 ++NumRemats; 632 return true; 633 } 634 635 /// reMaterializeAll - Try to rematerialize as many uses as possible, 636 /// and trim the live ranges after. 637 void InlineSpiller::reMaterializeAll() { 638 if (!Edit->anyRematerializable(AA)) 639 return; 640 641 UsedValues.clear(); 642 643 // Try to remat before all uses of snippets. 644 bool anyRemat = false; 645 for (unsigned Reg : RegsToSpill) { 646 LiveInterval &LI = LIS.getInterval(Reg); 647 for (MachineRegisterInfo::reg_bundle_iterator 648 RegI = MRI.reg_bundle_begin(Reg), E = MRI.reg_bundle_end(); 649 RegI != E; ) { 650 MachineInstr &MI = *RegI++; 651 652 // Debug values are not allowed to affect codegen. 653 if (MI.isDebugValue()) 654 continue; 655 656 assert(!MI.isDebugInstr() && "Did not expect to find a use in debug " 657 "instruction that isn't a DBG_VALUE"); 658 659 anyRemat |= reMaterializeFor(LI, MI); 660 } 661 } 662 if (!anyRemat) 663 return; 664 665 // Remove any values that were completely rematted. 666 for (unsigned Reg : RegsToSpill) { 667 LiveInterval &LI = LIS.getInterval(Reg); 668 for (LiveInterval::vni_iterator I = LI.vni_begin(), E = LI.vni_end(); 669 I != E; ++I) { 670 VNInfo *VNI = *I; 671 if (VNI->isUnused() || VNI->isPHIDef() || UsedValues.count(VNI)) 672 continue; 673 MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def); 674 MI->addRegisterDead(Reg, &TRI); 675 if (!MI->allDefsAreDead()) 676 continue; 677 LLVM_DEBUG(dbgs() << "All defs dead: " << *MI); 678 DeadDefs.push_back(MI); 679 } 680 } 681 682 // Eliminate dead code after remat. Note that some snippet copies may be 683 // deleted here. 684 if (DeadDefs.empty()) 685 return; 686 LLVM_DEBUG(dbgs() << "Remat created " << DeadDefs.size() << " dead defs.\n"); 687 Edit->eliminateDeadDefs(DeadDefs, RegsToSpill, AA); 688 689 // LiveRangeEdit::eliminateDeadDef is used to remove dead define instructions 690 // after rematerialization. To remove a VNI for a vreg from its LiveInterval, 691 // LiveIntervals::removeVRegDefAt is used. However, after non-PHI VNIs are all 692 // removed, PHI VNI are still left in the LiveInterval. 693 // So to get rid of unused reg, we need to check whether it has non-dbg 694 // reference instead of whether it has non-empty interval. 695 unsigned ResultPos = 0; 696 for (unsigned Reg : RegsToSpill) { 697 if (MRI.reg_nodbg_empty(Reg)) { 698 Edit->eraseVirtReg(Reg); 699 continue; 700 } 701 702 assert(LIS.hasInterval(Reg) && 703 (!LIS.getInterval(Reg).empty() || !MRI.reg_nodbg_empty(Reg)) && 704 "Empty and not used live-range?!"); 705 706 RegsToSpill[ResultPos++] = Reg; 707 } 708 RegsToSpill.erase(RegsToSpill.begin() + ResultPos, RegsToSpill.end()); 709 LLVM_DEBUG(dbgs() << RegsToSpill.size() 710 << " registers to spill after remat.\n"); 711 } 712 713 //===----------------------------------------------------------------------===// 714 // Spilling 715 //===----------------------------------------------------------------------===// 716 717 /// If MI is a load or store of StackSlot, it can be removed. 718 bool InlineSpiller::coalesceStackAccess(MachineInstr *MI, unsigned Reg) { 719 int FI = 0; 720 unsigned InstrReg = TII.isLoadFromStackSlot(*MI, FI); 721 bool IsLoad = InstrReg; 722 if (!IsLoad) 723 InstrReg = TII.isStoreToStackSlot(*MI, FI); 724 725 // We have a stack access. Is it the right register and slot? 726 if (InstrReg != Reg || FI != StackSlot) 727 return false; 728 729 if (!IsLoad) 730 HSpiller.rmFromMergeableSpills(*MI, StackSlot); 731 732 LLVM_DEBUG(dbgs() << "Coalescing stack access: " << *MI); 733 LIS.RemoveMachineInstrFromMaps(*MI); 734 MI->eraseFromParent(); 735 736 if (IsLoad) { 737 ++NumReloadsRemoved; 738 --NumReloads; 739 } else { 740 ++NumSpillsRemoved; 741 --NumSpills; 742 } 743 744 return true; 745 } 746 747 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 748 LLVM_DUMP_METHOD 749 // Dump the range of instructions from B to E with their slot indexes. 750 static void dumpMachineInstrRangeWithSlotIndex(MachineBasicBlock::iterator B, 751 MachineBasicBlock::iterator E, 752 LiveIntervals const &LIS, 753 const char *const header, 754 unsigned VReg =0) { 755 char NextLine = '\n'; 756 char SlotIndent = '\t'; 757 758 if (std::next(B) == E) { 759 NextLine = ' '; 760 SlotIndent = ' '; 761 } 762 763 dbgs() << '\t' << header << ": " << NextLine; 764 765 for (MachineBasicBlock::iterator I = B; I != E; ++I) { 766 SlotIndex Idx = LIS.getInstructionIndex(*I).getRegSlot(); 767 768 // If a register was passed in and this instruction has it as a 769 // destination that is marked as an early clobber, print the 770 // early-clobber slot index. 771 if (VReg) { 772 MachineOperand *MO = I->findRegisterDefOperand(VReg); 773 if (MO && MO->isEarlyClobber()) 774 Idx = Idx.getRegSlot(true); 775 } 776 777 dbgs() << SlotIndent << Idx << '\t' << *I; 778 } 779 } 780 #endif 781 782 /// foldMemoryOperand - Try folding stack slot references in Ops into their 783 /// instructions. 784 /// 785 /// @param Ops Operand indices from analyzeVirtReg(). 786 /// @param LoadMI Load instruction to use instead of stack slot when non-null. 787 /// @return True on success. 788 bool InlineSpiller:: 789 foldMemoryOperand(ArrayRef<std::pair<MachineInstr *, unsigned>> Ops, 790 MachineInstr *LoadMI) { 791 if (Ops.empty()) 792 return false; 793 // Don't attempt folding in bundles. 794 MachineInstr *MI = Ops.front().first; 795 if (Ops.back().first != MI || MI->isBundled()) 796 return false; 797 798 bool WasCopy = MI->isCopy(); 799 unsigned ImpReg = 0; 800 801 // Spill subregs if the target allows it. 802 // We always want to spill subregs for stackmap/patchpoint pseudos. 803 bool SpillSubRegs = TII.isSubregFoldable() || 804 MI->getOpcode() == TargetOpcode::STATEPOINT || 805 MI->getOpcode() == TargetOpcode::PATCHPOINT || 806 MI->getOpcode() == TargetOpcode::STACKMAP; 807 808 // TargetInstrInfo::foldMemoryOperand only expects explicit, non-tied 809 // operands. 810 SmallVector<unsigned, 8> FoldOps; 811 for (const auto &OpPair : Ops) { 812 unsigned Idx = OpPair.second; 813 assert(MI == OpPair.first && "Instruction conflict during operand folding"); 814 MachineOperand &MO = MI->getOperand(Idx); 815 if (MO.isImplicit()) { 816 ImpReg = MO.getReg(); 817 continue; 818 } 819 820 if (!SpillSubRegs && MO.getSubReg()) 821 return false; 822 // We cannot fold a load instruction into a def. 823 if (LoadMI && MO.isDef()) 824 return false; 825 // Tied use operands should not be passed to foldMemoryOperand. 826 if (!MI->isRegTiedToDefOperand(Idx)) 827 FoldOps.push_back(Idx); 828 } 829 830 // If we only have implicit uses, we won't be able to fold that. 831 // Moreover, TargetInstrInfo::foldMemoryOperand will assert if we try! 832 if (FoldOps.empty()) 833 return false; 834 835 MachineInstrSpan MIS(MI, MI->getParent()); 836 837 MachineInstr *FoldMI = 838 LoadMI ? TII.foldMemoryOperand(*MI, FoldOps, *LoadMI, &LIS) 839 : TII.foldMemoryOperand(*MI, FoldOps, StackSlot, &LIS, &VRM); 840 if (!FoldMI) 841 return false; 842 843 // Remove LIS for any dead defs in the original MI not in FoldMI. 844 for (MIBundleOperands MO(*MI); MO.isValid(); ++MO) { 845 if (!MO->isReg()) 846 continue; 847 Register Reg = MO->getReg(); 848 if (!Reg || Register::isVirtualRegister(Reg) || MRI.isReserved(Reg)) { 849 continue; 850 } 851 // Skip non-Defs, including undef uses and internal reads. 852 if (MO->isUse()) 853 continue; 854 MIBundleOperands::PhysRegInfo RI = 855 MIBundleOperands(*FoldMI).analyzePhysReg(Reg, &TRI); 856 if (RI.FullyDefined) 857 continue; 858 // FoldMI does not define this physreg. Remove the LI segment. 859 assert(MO->isDead() && "Cannot fold physreg def"); 860 SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot(); 861 LIS.removePhysRegDefAt(Reg, Idx); 862 } 863 864 int FI; 865 if (TII.isStoreToStackSlot(*MI, FI) && 866 HSpiller.rmFromMergeableSpills(*MI, FI)) 867 --NumSpills; 868 LIS.ReplaceMachineInstrInMaps(*MI, *FoldMI); 869 if (MI->isCall()) 870 MI->getMF()->moveCallSiteInfo(MI, FoldMI); 871 MI->eraseFromParent(); 872 873 // Insert any new instructions other than FoldMI into the LIS maps. 874 assert(!MIS.empty() && "Unexpected empty span of instructions!"); 875 for (MachineInstr &MI : MIS) 876 if (&MI != FoldMI) 877 LIS.InsertMachineInstrInMaps(MI); 878 879 // TII.foldMemoryOperand may have left some implicit operands on the 880 // instruction. Strip them. 881 if (ImpReg) 882 for (unsigned i = FoldMI->getNumOperands(); i; --i) { 883 MachineOperand &MO = FoldMI->getOperand(i - 1); 884 if (!MO.isReg() || !MO.isImplicit()) 885 break; 886 if (MO.getReg() == ImpReg) 887 FoldMI->RemoveOperand(i - 1); 888 } 889 890 LLVM_DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MIS.end(), LIS, 891 "folded")); 892 893 if (!WasCopy) 894 ++NumFolded; 895 else if (Ops.front().second == 0) { 896 ++NumSpills; 897 HSpiller.addToMergeableSpills(*FoldMI, StackSlot, Original); 898 } else 899 ++NumReloads; 900 return true; 901 } 902 903 void InlineSpiller::insertReload(unsigned NewVReg, 904 SlotIndex Idx, 905 MachineBasicBlock::iterator MI) { 906 MachineBasicBlock &MBB = *MI->getParent(); 907 908 MachineInstrSpan MIS(MI, &MBB); 909 TII.loadRegFromStackSlot(MBB, MI, NewVReg, StackSlot, 910 MRI.getRegClass(NewVReg), &TRI); 911 912 LIS.InsertMachineInstrRangeInMaps(MIS.begin(), MI); 913 914 LLVM_DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MI, LIS, "reload", 915 NewVReg)); 916 ++NumReloads; 917 } 918 919 /// Check if \p Def fully defines a VReg with an undefined value. 920 /// If that's the case, that means the value of VReg is actually 921 /// not relevant. 922 static bool isFullUndefDef(const MachineInstr &Def) { 923 if (!Def.isImplicitDef()) 924 return false; 925 assert(Def.getNumOperands() == 1 && 926 "Implicit def with more than one definition"); 927 // We can say that the VReg defined by Def is undef, only if it is 928 // fully defined by Def. Otherwise, some of the lanes may not be 929 // undef and the value of the VReg matters. 930 return !Def.getOperand(0).getSubReg(); 931 } 932 933 /// insertSpill - Insert a spill of NewVReg after MI. 934 void InlineSpiller::insertSpill(unsigned NewVReg, bool isKill, 935 MachineBasicBlock::iterator MI) { 936 MachineBasicBlock &MBB = *MI->getParent(); 937 938 MachineInstrSpan MIS(MI, &MBB); 939 bool IsRealSpill = true; 940 if (isFullUndefDef(*MI)) { 941 // Don't spill undef value. 942 // Anything works for undef, in particular keeping the memory 943 // uninitialized is a viable option and it saves code size and 944 // run time. 945 BuildMI(MBB, std::next(MI), MI->getDebugLoc(), TII.get(TargetOpcode::KILL)) 946 .addReg(NewVReg, getKillRegState(isKill)); 947 IsRealSpill = false; 948 } else 949 TII.storeRegToStackSlot(MBB, std::next(MI), NewVReg, isKill, StackSlot, 950 MRI.getRegClass(NewVReg), &TRI); 951 952 LIS.InsertMachineInstrRangeInMaps(std::next(MI), MIS.end()); 953 954 LLVM_DEBUG(dumpMachineInstrRangeWithSlotIndex(std::next(MI), MIS.end(), LIS, 955 "spill")); 956 ++NumSpills; 957 if (IsRealSpill) 958 HSpiller.addToMergeableSpills(*std::next(MI), StackSlot, Original); 959 } 960 961 /// spillAroundUses - insert spill code around each use of Reg. 962 void InlineSpiller::spillAroundUses(unsigned Reg) { 963 LLVM_DEBUG(dbgs() << "spillAroundUses " << printReg(Reg) << '\n'); 964 LiveInterval &OldLI = LIS.getInterval(Reg); 965 966 // Iterate over instructions using Reg. 967 for (MachineRegisterInfo::reg_bundle_iterator 968 RegI = MRI.reg_bundle_begin(Reg), E = MRI.reg_bundle_end(); 969 RegI != E; ) { 970 MachineInstr *MI = &*(RegI++); 971 972 // Debug values are not allowed to affect codegen. 973 if (MI->isDebugValue()) { 974 // Modify DBG_VALUE now that the value is in a spill slot. 975 MachineBasicBlock *MBB = MI->getParent(); 976 LLVM_DEBUG(dbgs() << "Modifying debug info due to spill:\t" << *MI); 977 buildDbgValueForSpill(*MBB, MI, *MI, StackSlot); 978 MBB->erase(MI); 979 continue; 980 } 981 982 assert(!MI->isDebugInstr() && "Did not expect to find a use in debug " 983 "instruction that isn't a DBG_VALUE"); 984 985 // Ignore copies to/from snippets. We'll delete them. 986 if (SnippetCopies.count(MI)) 987 continue; 988 989 // Stack slot accesses may coalesce away. 990 if (coalesceStackAccess(MI, Reg)) 991 continue; 992 993 // Analyze instruction. 994 SmallVector<std::pair<MachineInstr*, unsigned>, 8> Ops; 995 MIBundleOperands::VirtRegInfo RI = 996 MIBundleOperands(*MI).analyzeVirtReg(Reg, &Ops); 997 998 // Find the slot index where this instruction reads and writes OldLI. 999 // This is usually the def slot, except for tied early clobbers. 1000 SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot(); 1001 if (VNInfo *VNI = OldLI.getVNInfoAt(Idx.getRegSlot(true))) 1002 if (SlotIndex::isSameInstr(Idx, VNI->def)) 1003 Idx = VNI->def; 1004 1005 // Check for a sibling copy. 1006 unsigned SibReg = isFullCopyOf(*MI, Reg); 1007 if (SibReg && isSibling(SibReg)) { 1008 // This may actually be a copy between snippets. 1009 if (isRegToSpill(SibReg)) { 1010 LLVM_DEBUG(dbgs() << "Found new snippet copy: " << *MI); 1011 SnippetCopies.insert(MI); 1012 continue; 1013 } 1014 if (RI.Writes) { 1015 if (hoistSpillInsideBB(OldLI, *MI)) { 1016 // This COPY is now dead, the value is already in the stack slot. 1017 MI->getOperand(0).setIsDead(); 1018 DeadDefs.push_back(MI); 1019 continue; 1020 } 1021 } else { 1022 // This is a reload for a sib-reg copy. Drop spills downstream. 1023 LiveInterval &SibLI = LIS.getInterval(SibReg); 1024 eliminateRedundantSpills(SibLI, SibLI.getVNInfoAt(Idx)); 1025 // The COPY will fold to a reload below. 1026 } 1027 } 1028 1029 // Attempt to fold memory ops. 1030 if (foldMemoryOperand(Ops)) 1031 continue; 1032 1033 // Create a new virtual register for spill/fill. 1034 // FIXME: Infer regclass from instruction alone. 1035 unsigned NewVReg = Edit->createFrom(Reg); 1036 1037 if (RI.Reads) 1038 insertReload(NewVReg, Idx, MI); 1039 1040 // Rewrite instruction operands. 1041 bool hasLiveDef = false; 1042 for (const auto &OpPair : Ops) { 1043 MachineOperand &MO = OpPair.first->getOperand(OpPair.second); 1044 MO.setReg(NewVReg); 1045 if (MO.isUse()) { 1046 if (!OpPair.first->isRegTiedToDefOperand(OpPair.second)) 1047 MO.setIsKill(); 1048 } else { 1049 if (!MO.isDead()) 1050 hasLiveDef = true; 1051 } 1052 } 1053 LLVM_DEBUG(dbgs() << "\trewrite: " << Idx << '\t' << *MI << '\n'); 1054 1055 // FIXME: Use a second vreg if instruction has no tied ops. 1056 if (RI.Writes) 1057 if (hasLiveDef) 1058 insertSpill(NewVReg, true, MI); 1059 } 1060 } 1061 1062 /// spillAll - Spill all registers remaining after rematerialization. 1063 void InlineSpiller::spillAll() { 1064 // Update LiveStacks now that we are committed to spilling. 1065 if (StackSlot == VirtRegMap::NO_STACK_SLOT) { 1066 StackSlot = VRM.assignVirt2StackSlot(Original); 1067 StackInt = &LSS.getOrCreateInterval(StackSlot, MRI.getRegClass(Original)); 1068 StackInt->getNextValue(SlotIndex(), LSS.getVNInfoAllocator()); 1069 } else 1070 StackInt = &LSS.getInterval(StackSlot); 1071 1072 if (Original != Edit->getReg()) 1073 VRM.assignVirt2StackSlot(Edit->getReg(), StackSlot); 1074 1075 assert(StackInt->getNumValNums() == 1 && "Bad stack interval values"); 1076 for (unsigned Reg : RegsToSpill) 1077 StackInt->MergeSegmentsInAsValue(LIS.getInterval(Reg), 1078 StackInt->getValNumInfo(0)); 1079 LLVM_DEBUG(dbgs() << "Merged spilled regs: " << *StackInt << '\n'); 1080 1081 // Spill around uses of all RegsToSpill. 1082 for (unsigned Reg : RegsToSpill) 1083 spillAroundUses(Reg); 1084 1085 // Hoisted spills may cause dead code. 1086 if (!DeadDefs.empty()) { 1087 LLVM_DEBUG(dbgs() << "Eliminating " << DeadDefs.size() << " dead defs\n"); 1088 Edit->eliminateDeadDefs(DeadDefs, RegsToSpill, AA); 1089 } 1090 1091 // Finally delete the SnippetCopies. 1092 for (unsigned Reg : RegsToSpill) { 1093 for (MachineRegisterInfo::reg_instr_iterator 1094 RI = MRI.reg_instr_begin(Reg), E = MRI.reg_instr_end(); 1095 RI != E; ) { 1096 MachineInstr &MI = *(RI++); 1097 assert(SnippetCopies.count(&MI) && "Remaining use wasn't a snippet copy"); 1098 // FIXME: Do this with a LiveRangeEdit callback. 1099 LIS.RemoveMachineInstrFromMaps(MI); 1100 MI.eraseFromParent(); 1101 } 1102 } 1103 1104 // Delete all spilled registers. 1105 for (unsigned Reg : RegsToSpill) 1106 Edit->eraseVirtReg(Reg); 1107 } 1108 1109 void InlineSpiller::spill(LiveRangeEdit &edit) { 1110 ++NumSpilledRanges; 1111 Edit = &edit; 1112 assert(!Register::isStackSlot(edit.getReg()) && 1113 "Trying to spill a stack slot."); 1114 // Share a stack slot among all descendants of Original. 1115 Original = VRM.getOriginal(edit.getReg()); 1116 StackSlot = VRM.getStackSlot(Original); 1117 StackInt = nullptr; 1118 1119 LLVM_DEBUG(dbgs() << "Inline spilling " 1120 << TRI.getRegClassName(MRI.getRegClass(edit.getReg())) 1121 << ':' << edit.getParent() << "\nFrom original " 1122 << printReg(Original) << '\n'); 1123 assert(edit.getParent().isSpillable() && 1124 "Attempting to spill already spilled value."); 1125 assert(DeadDefs.empty() && "Previous spill didn't remove dead defs"); 1126 1127 collectRegsToSpill(); 1128 reMaterializeAll(); 1129 1130 // Remat may handle everything. 1131 if (!RegsToSpill.empty()) 1132 spillAll(); 1133 1134 Edit->calculateRegClassAndHint(MF, Loops, MBFI); 1135 } 1136 1137 /// Optimizations after all the reg selections and spills are done. 1138 void InlineSpiller::postOptimization() { HSpiller.hoistAllSpills(); } 1139 1140 /// When a spill is inserted, add the spill to MergeableSpills map. 1141 void HoistSpillHelper::addToMergeableSpills(MachineInstr &Spill, int StackSlot, 1142 unsigned Original) { 1143 BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator(); 1144 LiveInterval &OrigLI = LIS.getInterval(Original); 1145 // save a copy of LiveInterval in StackSlotToOrigLI because the original 1146 // LiveInterval may be cleared after all its references are spilled. 1147 if (StackSlotToOrigLI.find(StackSlot) == StackSlotToOrigLI.end()) { 1148 auto LI = std::make_unique<LiveInterval>(OrigLI.reg, OrigLI.weight); 1149 LI->assign(OrigLI, Allocator); 1150 StackSlotToOrigLI[StackSlot] = std::move(LI); 1151 } 1152 SlotIndex Idx = LIS.getInstructionIndex(Spill); 1153 VNInfo *OrigVNI = StackSlotToOrigLI[StackSlot]->getVNInfoAt(Idx.getRegSlot()); 1154 std::pair<int, VNInfo *> MIdx = std::make_pair(StackSlot, OrigVNI); 1155 MergeableSpills[MIdx].insert(&Spill); 1156 } 1157 1158 /// When a spill is removed, remove the spill from MergeableSpills map. 1159 /// Return true if the spill is removed successfully. 1160 bool HoistSpillHelper::rmFromMergeableSpills(MachineInstr &Spill, 1161 int StackSlot) { 1162 auto It = StackSlotToOrigLI.find(StackSlot); 1163 if (It == StackSlotToOrigLI.end()) 1164 return false; 1165 SlotIndex Idx = LIS.getInstructionIndex(Spill); 1166 VNInfo *OrigVNI = It->second->getVNInfoAt(Idx.getRegSlot()); 1167 std::pair<int, VNInfo *> MIdx = std::make_pair(StackSlot, OrigVNI); 1168 return MergeableSpills[MIdx].erase(&Spill); 1169 } 1170 1171 /// Check BB to see if it is a possible target BB to place a hoisted spill, 1172 /// i.e., there should be a living sibling of OrigReg at the insert point. 1173 bool HoistSpillHelper::isSpillCandBB(LiveInterval &OrigLI, VNInfo &OrigVNI, 1174 MachineBasicBlock &BB, unsigned &LiveReg) { 1175 SlotIndex Idx; 1176 unsigned OrigReg = OrigLI.reg; 1177 MachineBasicBlock::iterator MI = IPA.getLastInsertPointIter(OrigLI, BB); 1178 if (MI != BB.end()) 1179 Idx = LIS.getInstructionIndex(*MI); 1180 else 1181 Idx = LIS.getMBBEndIdx(&BB).getPrevSlot(); 1182 SmallSetVector<unsigned, 16> &Siblings = Virt2SiblingsMap[OrigReg]; 1183 assert(OrigLI.getVNInfoAt(Idx) == &OrigVNI && "Unexpected VNI"); 1184 1185 for (auto const SibReg : Siblings) { 1186 LiveInterval &LI = LIS.getInterval(SibReg); 1187 VNInfo *VNI = LI.getVNInfoAt(Idx); 1188 if (VNI) { 1189 LiveReg = SibReg; 1190 return true; 1191 } 1192 } 1193 return false; 1194 } 1195 1196 /// Remove redundant spills in the same BB. Save those redundant spills in 1197 /// SpillsToRm, and save the spill to keep and its BB in SpillBBToSpill map. 1198 void HoistSpillHelper::rmRedundantSpills( 1199 SmallPtrSet<MachineInstr *, 16> &Spills, 1200 SmallVectorImpl<MachineInstr *> &SpillsToRm, 1201 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill) { 1202 // For each spill saw, check SpillBBToSpill[] and see if its BB already has 1203 // another spill inside. If a BB contains more than one spill, only keep the 1204 // earlier spill with smaller SlotIndex. 1205 for (const auto CurrentSpill : Spills) { 1206 MachineBasicBlock *Block = CurrentSpill->getParent(); 1207 MachineDomTreeNode *Node = MDT.getBase().getNode(Block); 1208 MachineInstr *PrevSpill = SpillBBToSpill[Node]; 1209 if (PrevSpill) { 1210 SlotIndex PIdx = LIS.getInstructionIndex(*PrevSpill); 1211 SlotIndex CIdx = LIS.getInstructionIndex(*CurrentSpill); 1212 MachineInstr *SpillToRm = (CIdx > PIdx) ? CurrentSpill : PrevSpill; 1213 MachineInstr *SpillToKeep = (CIdx > PIdx) ? PrevSpill : CurrentSpill; 1214 SpillsToRm.push_back(SpillToRm); 1215 SpillBBToSpill[MDT.getBase().getNode(Block)] = SpillToKeep; 1216 } else { 1217 SpillBBToSpill[MDT.getBase().getNode(Block)] = CurrentSpill; 1218 } 1219 } 1220 for (const auto SpillToRm : SpillsToRm) 1221 Spills.erase(SpillToRm); 1222 } 1223 1224 /// Starting from \p Root find a top-down traversal order of the dominator 1225 /// tree to visit all basic blocks containing the elements of \p Spills. 1226 /// Redundant spills will be found and put into \p SpillsToRm at the same 1227 /// time. \p SpillBBToSpill will be populated as part of the process and 1228 /// maps a basic block to the first store occurring in the basic block. 1229 /// \post SpillsToRm.union(Spills\@post) == Spills\@pre 1230 void HoistSpillHelper::getVisitOrders( 1231 MachineBasicBlock *Root, SmallPtrSet<MachineInstr *, 16> &Spills, 1232 SmallVectorImpl<MachineDomTreeNode *> &Orders, 1233 SmallVectorImpl<MachineInstr *> &SpillsToRm, 1234 DenseMap<MachineDomTreeNode *, unsigned> &SpillsToKeep, 1235 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill) { 1236 // The set contains all the possible BB nodes to which we may hoist 1237 // original spills. 1238 SmallPtrSet<MachineDomTreeNode *, 8> WorkSet; 1239 // Save the BB nodes on the path from the first BB node containing 1240 // non-redundant spill to the Root node. 1241 SmallPtrSet<MachineDomTreeNode *, 8> NodesOnPath; 1242 // All the spills to be hoisted must originate from a single def instruction 1243 // to the OrigReg. It means the def instruction should dominate all the spills 1244 // to be hoisted. We choose the BB where the def instruction is located as 1245 // the Root. 1246 MachineDomTreeNode *RootIDomNode = MDT[Root]->getIDom(); 1247 // For every node on the dominator tree with spill, walk up on the dominator 1248 // tree towards the Root node until it is reached. If there is other node 1249 // containing spill in the middle of the path, the previous spill saw will 1250 // be redundant and the node containing it will be removed. All the nodes on 1251 // the path starting from the first node with non-redundant spill to the Root 1252 // node will be added to the WorkSet, which will contain all the possible 1253 // locations where spills may be hoisted to after the loop below is done. 1254 for (const auto Spill : Spills) { 1255 MachineBasicBlock *Block = Spill->getParent(); 1256 MachineDomTreeNode *Node = MDT[Block]; 1257 MachineInstr *SpillToRm = nullptr; 1258 while (Node != RootIDomNode) { 1259 // If Node dominates Block, and it already contains a spill, the spill in 1260 // Block will be redundant. 1261 if (Node != MDT[Block] && SpillBBToSpill[Node]) { 1262 SpillToRm = SpillBBToSpill[MDT[Block]]; 1263 break; 1264 /// If we see the Node already in WorkSet, the path from the Node to 1265 /// the Root node must already be traversed by another spill. 1266 /// Then no need to repeat. 1267 } else if (WorkSet.count(Node)) { 1268 break; 1269 } else { 1270 NodesOnPath.insert(Node); 1271 } 1272 Node = Node->getIDom(); 1273 } 1274 if (SpillToRm) { 1275 SpillsToRm.push_back(SpillToRm); 1276 } else { 1277 // Add a BB containing the original spills to SpillsToKeep -- i.e., 1278 // set the initial status before hoisting start. The value of BBs 1279 // containing original spills is set to 0, in order to descriminate 1280 // with BBs containing hoisted spills which will be inserted to 1281 // SpillsToKeep later during hoisting. 1282 SpillsToKeep[MDT[Block]] = 0; 1283 WorkSet.insert(NodesOnPath.begin(), NodesOnPath.end()); 1284 } 1285 NodesOnPath.clear(); 1286 } 1287 1288 // Sort the nodes in WorkSet in top-down order and save the nodes 1289 // in Orders. Orders will be used for hoisting in runHoistSpills. 1290 unsigned idx = 0; 1291 Orders.push_back(MDT.getBase().getNode(Root)); 1292 do { 1293 MachineDomTreeNode *Node = Orders[idx++]; 1294 const std::vector<MachineDomTreeNode *> &Children = Node->getChildren(); 1295 unsigned NumChildren = Children.size(); 1296 for (unsigned i = 0; i != NumChildren; ++i) { 1297 MachineDomTreeNode *Child = Children[i]; 1298 if (WorkSet.count(Child)) 1299 Orders.push_back(Child); 1300 } 1301 } while (idx != Orders.size()); 1302 assert(Orders.size() == WorkSet.size() && 1303 "Orders have different size with WorkSet"); 1304 1305 #ifndef NDEBUG 1306 LLVM_DEBUG(dbgs() << "Orders size is " << Orders.size() << "\n"); 1307 SmallVector<MachineDomTreeNode *, 32>::reverse_iterator RIt = Orders.rbegin(); 1308 for (; RIt != Orders.rend(); RIt++) 1309 LLVM_DEBUG(dbgs() << "BB" << (*RIt)->getBlock()->getNumber() << ","); 1310 LLVM_DEBUG(dbgs() << "\n"); 1311 #endif 1312 } 1313 1314 /// Try to hoist spills according to BB hotness. The spills to removed will 1315 /// be saved in \p SpillsToRm. The spills to be inserted will be saved in 1316 /// \p SpillsToIns. 1317 void HoistSpillHelper::runHoistSpills( 1318 LiveInterval &OrigLI, VNInfo &OrigVNI, 1319 SmallPtrSet<MachineInstr *, 16> &Spills, 1320 SmallVectorImpl<MachineInstr *> &SpillsToRm, 1321 DenseMap<MachineBasicBlock *, unsigned> &SpillsToIns) { 1322 // Visit order of dominator tree nodes. 1323 SmallVector<MachineDomTreeNode *, 32> Orders; 1324 // SpillsToKeep contains all the nodes where spills are to be inserted 1325 // during hoisting. If the spill to be inserted is an original spill 1326 // (not a hoisted one), the value of the map entry is 0. If the spill 1327 // is a hoisted spill, the value of the map entry is the VReg to be used 1328 // as the source of the spill. 1329 DenseMap<MachineDomTreeNode *, unsigned> SpillsToKeep; 1330 // Map from BB to the first spill inside of it. 1331 DenseMap<MachineDomTreeNode *, MachineInstr *> SpillBBToSpill; 1332 1333 rmRedundantSpills(Spills, SpillsToRm, SpillBBToSpill); 1334 1335 MachineBasicBlock *Root = LIS.getMBBFromIndex(OrigVNI.def); 1336 getVisitOrders(Root, Spills, Orders, SpillsToRm, SpillsToKeep, 1337 SpillBBToSpill); 1338 1339 // SpillsInSubTreeMap keeps the map from a dom tree node to a pair of 1340 // nodes set and the cost of all the spills inside those nodes. 1341 // The nodes set are the locations where spills are to be inserted 1342 // in the subtree of current node. 1343 using NodesCostPair = 1344 std::pair<SmallPtrSet<MachineDomTreeNode *, 16>, BlockFrequency>; 1345 DenseMap<MachineDomTreeNode *, NodesCostPair> SpillsInSubTreeMap; 1346 1347 // Iterate Orders set in reverse order, which will be a bottom-up order 1348 // in the dominator tree. Once we visit a dom tree node, we know its 1349 // children have already been visited and the spill locations in the 1350 // subtrees of all the children have been determined. 1351 SmallVector<MachineDomTreeNode *, 32>::reverse_iterator RIt = Orders.rbegin(); 1352 for (; RIt != Orders.rend(); RIt++) { 1353 MachineBasicBlock *Block = (*RIt)->getBlock(); 1354 1355 // If Block contains an original spill, simply continue. 1356 if (SpillsToKeep.find(*RIt) != SpillsToKeep.end() && !SpillsToKeep[*RIt]) { 1357 SpillsInSubTreeMap[*RIt].first.insert(*RIt); 1358 // SpillsInSubTreeMap[*RIt].second contains the cost of spill. 1359 SpillsInSubTreeMap[*RIt].second = MBFI.getBlockFreq(Block); 1360 continue; 1361 } 1362 1363 // Collect spills in subtree of current node (*RIt) to 1364 // SpillsInSubTreeMap[*RIt].first. 1365 const std::vector<MachineDomTreeNode *> &Children = (*RIt)->getChildren(); 1366 unsigned NumChildren = Children.size(); 1367 for (unsigned i = 0; i != NumChildren; ++i) { 1368 MachineDomTreeNode *Child = Children[i]; 1369 if (SpillsInSubTreeMap.find(Child) == SpillsInSubTreeMap.end()) 1370 continue; 1371 // The stmt "SpillsInSubTree = SpillsInSubTreeMap[*RIt].first" below 1372 // should be placed before getting the begin and end iterators of 1373 // SpillsInSubTreeMap[Child].first, or else the iterators may be 1374 // invalidated when SpillsInSubTreeMap[*RIt] is seen the first time 1375 // and the map grows and then the original buckets in the map are moved. 1376 SmallPtrSet<MachineDomTreeNode *, 16> &SpillsInSubTree = 1377 SpillsInSubTreeMap[*RIt].first; 1378 BlockFrequency &SubTreeCost = SpillsInSubTreeMap[*RIt].second; 1379 SubTreeCost += SpillsInSubTreeMap[Child].second; 1380 auto BI = SpillsInSubTreeMap[Child].first.begin(); 1381 auto EI = SpillsInSubTreeMap[Child].first.end(); 1382 SpillsInSubTree.insert(BI, EI); 1383 SpillsInSubTreeMap.erase(Child); 1384 } 1385 1386 SmallPtrSet<MachineDomTreeNode *, 16> &SpillsInSubTree = 1387 SpillsInSubTreeMap[*RIt].first; 1388 BlockFrequency &SubTreeCost = SpillsInSubTreeMap[*RIt].second; 1389 // No spills in subtree, simply continue. 1390 if (SpillsInSubTree.empty()) 1391 continue; 1392 1393 // Check whether Block is a possible candidate to insert spill. 1394 unsigned LiveReg = 0; 1395 if (!isSpillCandBB(OrigLI, OrigVNI, *Block, LiveReg)) 1396 continue; 1397 1398 // If there are multiple spills that could be merged, bias a little 1399 // to hoist the spill. 1400 BranchProbability MarginProb = (SpillsInSubTree.size() > 1) 1401 ? BranchProbability(9, 10) 1402 : BranchProbability(1, 1); 1403 if (SubTreeCost > MBFI.getBlockFreq(Block) * MarginProb) { 1404 // Hoist: Move spills to current Block. 1405 for (const auto SpillBB : SpillsInSubTree) { 1406 // When SpillBB is a BB contains original spill, insert the spill 1407 // to SpillsToRm. 1408 if (SpillsToKeep.find(SpillBB) != SpillsToKeep.end() && 1409 !SpillsToKeep[SpillBB]) { 1410 MachineInstr *SpillToRm = SpillBBToSpill[SpillBB]; 1411 SpillsToRm.push_back(SpillToRm); 1412 } 1413 // SpillBB will not contain spill anymore, remove it from SpillsToKeep. 1414 SpillsToKeep.erase(SpillBB); 1415 } 1416 // Current Block is the BB containing the new hoisted spill. Add it to 1417 // SpillsToKeep. LiveReg is the source of the new spill. 1418 SpillsToKeep[*RIt] = LiveReg; 1419 LLVM_DEBUG({ 1420 dbgs() << "spills in BB: "; 1421 for (const auto Rspill : SpillsInSubTree) 1422 dbgs() << Rspill->getBlock()->getNumber() << " "; 1423 dbgs() << "were promoted to BB" << (*RIt)->getBlock()->getNumber() 1424 << "\n"; 1425 }); 1426 SpillsInSubTree.clear(); 1427 SpillsInSubTree.insert(*RIt); 1428 SubTreeCost = MBFI.getBlockFreq(Block); 1429 } 1430 } 1431 // For spills in SpillsToKeep with LiveReg set (i.e., not original spill), 1432 // save them to SpillsToIns. 1433 for (const auto Ent : SpillsToKeep) { 1434 if (Ent.second) 1435 SpillsToIns[Ent.first->getBlock()] = Ent.second; 1436 } 1437 } 1438 1439 /// For spills with equal values, remove redundant spills and hoist those left 1440 /// to less hot spots. 1441 /// 1442 /// Spills with equal values will be collected into the same set in 1443 /// MergeableSpills when spill is inserted. These equal spills are originated 1444 /// from the same defining instruction and are dominated by the instruction. 1445 /// Before hoisting all the equal spills, redundant spills inside in the same 1446 /// BB are first marked to be deleted. Then starting from the spills left, walk 1447 /// up on the dominator tree towards the Root node where the define instruction 1448 /// is located, mark the dominated spills to be deleted along the way and 1449 /// collect the BB nodes on the path from non-dominated spills to the define 1450 /// instruction into a WorkSet. The nodes in WorkSet are the candidate places 1451 /// where we are considering to hoist the spills. We iterate the WorkSet in 1452 /// bottom-up order, and for each node, we will decide whether to hoist spills 1453 /// inside its subtree to that node. In this way, we can get benefit locally 1454 /// even if hoisting all the equal spills to one cold place is impossible. 1455 void HoistSpillHelper::hoistAllSpills() { 1456 SmallVector<unsigned, 4> NewVRegs; 1457 LiveRangeEdit Edit(nullptr, NewVRegs, MF, LIS, &VRM, this); 1458 1459 for (unsigned i = 0, e = MRI.getNumVirtRegs(); i != e; ++i) { 1460 unsigned Reg = Register::index2VirtReg(i); 1461 unsigned Original = VRM.getPreSplitReg(Reg); 1462 if (!MRI.def_empty(Reg)) 1463 Virt2SiblingsMap[Original].insert(Reg); 1464 } 1465 1466 // Each entry in MergeableSpills contains a spill set with equal values. 1467 for (auto &Ent : MergeableSpills) { 1468 int Slot = Ent.first.first; 1469 LiveInterval &OrigLI = *StackSlotToOrigLI[Slot]; 1470 VNInfo *OrigVNI = Ent.first.second; 1471 SmallPtrSet<MachineInstr *, 16> &EqValSpills = Ent.second; 1472 if (Ent.second.empty()) 1473 continue; 1474 1475 LLVM_DEBUG({ 1476 dbgs() << "\nFor Slot" << Slot << " and VN" << OrigVNI->id << ":\n" 1477 << "Equal spills in BB: "; 1478 for (const auto spill : EqValSpills) 1479 dbgs() << spill->getParent()->getNumber() << " "; 1480 dbgs() << "\n"; 1481 }); 1482 1483 // SpillsToRm is the spill set to be removed from EqValSpills. 1484 SmallVector<MachineInstr *, 16> SpillsToRm; 1485 // SpillsToIns is the spill set to be newly inserted after hoisting. 1486 DenseMap<MachineBasicBlock *, unsigned> SpillsToIns; 1487 1488 runHoistSpills(OrigLI, *OrigVNI, EqValSpills, SpillsToRm, SpillsToIns); 1489 1490 LLVM_DEBUG({ 1491 dbgs() << "Finally inserted spills in BB: "; 1492 for (const auto Ispill : SpillsToIns) 1493 dbgs() << Ispill.first->getNumber() << " "; 1494 dbgs() << "\nFinally removed spills in BB: "; 1495 for (const auto Rspill : SpillsToRm) 1496 dbgs() << Rspill->getParent()->getNumber() << " "; 1497 dbgs() << "\n"; 1498 }); 1499 1500 // Stack live range update. 1501 LiveInterval &StackIntvl = LSS.getInterval(Slot); 1502 if (!SpillsToIns.empty() || !SpillsToRm.empty()) 1503 StackIntvl.MergeValueInAsValue(OrigLI, OrigVNI, 1504 StackIntvl.getValNumInfo(0)); 1505 1506 // Insert hoisted spills. 1507 for (auto const Insert : SpillsToIns) { 1508 MachineBasicBlock *BB = Insert.first; 1509 unsigned LiveReg = Insert.second; 1510 MachineBasicBlock::iterator MI = IPA.getLastInsertPointIter(OrigLI, *BB); 1511 TII.storeRegToStackSlot(*BB, MI, LiveReg, false, Slot, 1512 MRI.getRegClass(LiveReg), &TRI); 1513 LIS.InsertMachineInstrRangeInMaps(std::prev(MI), MI); 1514 ++NumSpills; 1515 } 1516 1517 // Remove redundant spills or change them to dead instructions. 1518 NumSpills -= SpillsToRm.size(); 1519 for (auto const RMEnt : SpillsToRm) { 1520 RMEnt->setDesc(TII.get(TargetOpcode::KILL)); 1521 for (unsigned i = RMEnt->getNumOperands(); i; --i) { 1522 MachineOperand &MO = RMEnt->getOperand(i - 1); 1523 if (MO.isReg() && MO.isImplicit() && MO.isDef() && !MO.isDead()) 1524 RMEnt->RemoveOperand(i - 1); 1525 } 1526 } 1527 Edit.eliminateDeadDefs(SpillsToRm, None, AA); 1528 } 1529 } 1530 1531 /// For VirtReg clone, the \p New register should have the same physreg or 1532 /// stackslot as the \p old register. 1533 void HoistSpillHelper::LRE_DidCloneVirtReg(unsigned New, unsigned Old) { 1534 if (VRM.hasPhys(Old)) 1535 VRM.assignVirt2Phys(New, VRM.getPhys(Old)); 1536 else if (VRM.getStackSlot(Old) != VirtRegMap::NO_STACK_SLOT) 1537 VRM.assignVirt2StackSlot(New, VRM.getStackSlot(Old)); 1538 else 1539 llvm_unreachable("VReg should be assigned either physreg or stackslot"); 1540 } 1541