1 //===- IfConversion.cpp - Machine code if conversion pass -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the machine instruction level if-conversion pass, which 10 // tries to convert conditional branches into predicated instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "BranchFolding.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/ScopeExit.h" 17 #include "llvm/ADT/SmallSet.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/SparseSet.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/ADT/iterator_range.h" 22 #include "llvm/CodeGen/LivePhysRegs.h" 23 #include "llvm/CodeGen/MachineBasicBlock.h" 24 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 25 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 26 #include "llvm/CodeGen/MachineFunction.h" 27 #include "llvm/CodeGen/MachineFunctionPass.h" 28 #include "llvm/CodeGen/MachineInstr.h" 29 #include "llvm/CodeGen/MachineInstrBuilder.h" 30 #include "llvm/CodeGen/MachineModuleInfo.h" 31 #include "llvm/CodeGen/MachineOperand.h" 32 #include "llvm/CodeGen/MachineRegisterInfo.h" 33 #include "llvm/CodeGen/TargetInstrInfo.h" 34 #include "llvm/CodeGen/TargetLowering.h" 35 #include "llvm/CodeGen/TargetRegisterInfo.h" 36 #include "llvm/CodeGen/TargetSchedule.h" 37 #include "llvm/CodeGen/TargetSubtargetInfo.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/MC/MCRegisterInfo.h" 40 #include "llvm/Pass.h" 41 #include "llvm/Support/BranchProbability.h" 42 #include "llvm/Support/CommandLine.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/raw_ostream.h" 46 #include <algorithm> 47 #include <cassert> 48 #include <functional> 49 #include <iterator> 50 #include <memory> 51 #include <utility> 52 #include <vector> 53 54 using namespace llvm; 55 56 #define DEBUG_TYPE "if-converter" 57 58 // Hidden options for help debugging. 59 static cl::opt<int> IfCvtFnStart("ifcvt-fn-start", cl::init(-1), cl::Hidden); 60 static cl::opt<int> IfCvtFnStop("ifcvt-fn-stop", cl::init(-1), cl::Hidden); 61 static cl::opt<int> IfCvtLimit("ifcvt-limit", cl::init(-1), cl::Hidden); 62 static cl::opt<bool> DisableSimple("disable-ifcvt-simple", 63 cl::init(false), cl::Hidden); 64 static cl::opt<bool> DisableSimpleF("disable-ifcvt-simple-false", 65 cl::init(false), cl::Hidden); 66 static cl::opt<bool> DisableTriangle("disable-ifcvt-triangle", 67 cl::init(false), cl::Hidden); 68 static cl::opt<bool> DisableTriangleR("disable-ifcvt-triangle-rev", 69 cl::init(false), cl::Hidden); 70 static cl::opt<bool> DisableTriangleF("disable-ifcvt-triangle-false", 71 cl::init(false), cl::Hidden); 72 static cl::opt<bool> DisableTriangleFR("disable-ifcvt-triangle-false-rev", 73 cl::init(false), cl::Hidden); 74 static cl::opt<bool> DisableDiamond("disable-ifcvt-diamond", 75 cl::init(false), cl::Hidden); 76 static cl::opt<bool> DisableForkedDiamond("disable-ifcvt-forked-diamond", 77 cl::init(false), cl::Hidden); 78 static cl::opt<bool> IfCvtBranchFold("ifcvt-branch-fold", 79 cl::init(true), cl::Hidden); 80 81 STATISTIC(NumSimple, "Number of simple if-conversions performed"); 82 STATISTIC(NumSimpleFalse, "Number of simple (F) if-conversions performed"); 83 STATISTIC(NumTriangle, "Number of triangle if-conversions performed"); 84 STATISTIC(NumTriangleRev, "Number of triangle (R) if-conversions performed"); 85 STATISTIC(NumTriangleFalse,"Number of triangle (F) if-conversions performed"); 86 STATISTIC(NumTriangleFRev, "Number of triangle (F/R) if-conversions performed"); 87 STATISTIC(NumDiamonds, "Number of diamond if-conversions performed"); 88 STATISTIC(NumForkedDiamonds, "Number of forked-diamond if-conversions performed"); 89 STATISTIC(NumIfConvBBs, "Number of if-converted blocks"); 90 STATISTIC(NumDupBBs, "Number of duplicated blocks"); 91 STATISTIC(NumUnpred, "Number of true blocks of diamonds unpredicated"); 92 93 namespace { 94 95 class IfConverter : public MachineFunctionPass { 96 enum IfcvtKind { 97 ICNotClassfied, // BB data valid, but not classified. 98 ICSimpleFalse, // Same as ICSimple, but on the false path. 99 ICSimple, // BB is entry of an one split, no rejoin sub-CFG. 100 ICTriangleFRev, // Same as ICTriangleFalse, but false path rev condition. 101 ICTriangleRev, // Same as ICTriangle, but true path rev condition. 102 ICTriangleFalse, // Same as ICTriangle, but on the false path. 103 ICTriangle, // BB is entry of a triangle sub-CFG. 104 ICDiamond, // BB is entry of a diamond sub-CFG. 105 ICForkedDiamond // BB is entry of an almost diamond sub-CFG, with a 106 // common tail that can be shared. 107 }; 108 109 /// One per MachineBasicBlock, this is used to cache the result 110 /// if-conversion feasibility analysis. This includes results from 111 /// TargetInstrInfo::analyzeBranch() (i.e. TBB, FBB, and Cond), and its 112 /// classification, and common tail block of its successors (if it's a 113 /// diamond shape), its size, whether it's predicable, and whether any 114 /// instruction can clobber the 'would-be' predicate. 115 /// 116 /// IsDone - True if BB is not to be considered for ifcvt. 117 /// IsBeingAnalyzed - True if BB is currently being analyzed. 118 /// IsAnalyzed - True if BB has been analyzed (info is still valid). 119 /// IsEnqueued - True if BB has been enqueued to be ifcvt'ed. 120 /// IsBrAnalyzable - True if analyzeBranch() returns false. 121 /// HasFallThrough - True if BB may fallthrough to the following BB. 122 /// IsUnpredicable - True if BB is known to be unpredicable. 123 /// ClobbersPred - True if BB could modify predicates (e.g. has 124 /// cmp, call, etc.) 125 /// NonPredSize - Number of non-predicated instructions. 126 /// ExtraCost - Extra cost for multi-cycle instructions. 127 /// ExtraCost2 - Some instructions are slower when predicated 128 /// BB - Corresponding MachineBasicBlock. 129 /// TrueBB / FalseBB- See analyzeBranch(). 130 /// BrCond - Conditions for end of block conditional branches. 131 /// Predicate - Predicate used in the BB. 132 struct BBInfo { 133 bool IsDone : 1; 134 bool IsBeingAnalyzed : 1; 135 bool IsAnalyzed : 1; 136 bool IsEnqueued : 1; 137 bool IsBrAnalyzable : 1; 138 bool IsBrReversible : 1; 139 bool HasFallThrough : 1; 140 bool IsUnpredicable : 1; 141 bool CannotBeCopied : 1; 142 bool ClobbersPred : 1; 143 unsigned NonPredSize = 0; 144 unsigned ExtraCost = 0; 145 unsigned ExtraCost2 = 0; 146 MachineBasicBlock *BB = nullptr; 147 MachineBasicBlock *TrueBB = nullptr; 148 MachineBasicBlock *FalseBB = nullptr; 149 SmallVector<MachineOperand, 4> BrCond; 150 SmallVector<MachineOperand, 4> Predicate; 151 152 BBInfo() : IsDone(false), IsBeingAnalyzed(false), 153 IsAnalyzed(false), IsEnqueued(false), IsBrAnalyzable(false), 154 IsBrReversible(false), HasFallThrough(false), 155 IsUnpredicable(false), CannotBeCopied(false), 156 ClobbersPred(false) {} 157 }; 158 159 /// Record information about pending if-conversions to attempt: 160 /// BBI - Corresponding BBInfo. 161 /// Kind - Type of block. See IfcvtKind. 162 /// NeedSubsumption - True if the to-be-predicated BB has already been 163 /// predicated. 164 /// NumDups - Number of instructions that would be duplicated due 165 /// to this if-conversion. (For diamonds, the number of 166 /// identical instructions at the beginnings of both 167 /// paths). 168 /// NumDups2 - For diamonds, the number of identical instructions 169 /// at the ends of both paths. 170 struct IfcvtToken { 171 BBInfo &BBI; 172 IfcvtKind Kind; 173 unsigned NumDups; 174 unsigned NumDups2; 175 bool NeedSubsumption : 1; 176 bool TClobbersPred : 1; 177 bool FClobbersPred : 1; 178 179 IfcvtToken(BBInfo &b, IfcvtKind k, bool s, unsigned d, unsigned d2 = 0, 180 bool tc = false, bool fc = false) 181 : BBI(b), Kind(k), NumDups(d), NumDups2(d2), NeedSubsumption(s), 182 TClobbersPred(tc), FClobbersPred(fc) {} 183 }; 184 185 /// Results of if-conversion feasibility analysis indexed by basic block 186 /// number. 187 std::vector<BBInfo> BBAnalysis; 188 TargetSchedModel SchedModel; 189 190 const TargetLoweringBase *TLI; 191 const TargetInstrInfo *TII; 192 const TargetRegisterInfo *TRI; 193 const MachineBranchProbabilityInfo *MBPI; 194 MachineRegisterInfo *MRI; 195 196 LivePhysRegs Redefs; 197 198 bool PreRegAlloc; 199 bool MadeChange; 200 int FnNum = -1; 201 std::function<bool(const MachineFunction &)> PredicateFtor; 202 203 public: 204 static char ID; 205 206 IfConverter(std::function<bool(const MachineFunction &)> Ftor = nullptr) 207 : MachineFunctionPass(ID), PredicateFtor(std::move(Ftor)) { 208 initializeIfConverterPass(*PassRegistry::getPassRegistry()); 209 } 210 211 void getAnalysisUsage(AnalysisUsage &AU) const override { 212 AU.addRequired<MachineBlockFrequencyInfo>(); 213 AU.addRequired<MachineBranchProbabilityInfo>(); 214 MachineFunctionPass::getAnalysisUsage(AU); 215 } 216 217 bool runOnMachineFunction(MachineFunction &MF) override; 218 219 MachineFunctionProperties getRequiredProperties() const override { 220 return MachineFunctionProperties().set( 221 MachineFunctionProperties::Property::NoVRegs); 222 } 223 224 private: 225 bool reverseBranchCondition(BBInfo &BBI) const; 226 bool ValidSimple(BBInfo &TrueBBI, unsigned &Dups, 227 BranchProbability Prediction) const; 228 bool ValidTriangle(BBInfo &TrueBBI, BBInfo &FalseBBI, 229 bool FalseBranch, unsigned &Dups, 230 BranchProbability Prediction) const; 231 bool CountDuplicatedInstructions( 232 MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB, 233 MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE, 234 unsigned &Dups1, unsigned &Dups2, 235 MachineBasicBlock &TBB, MachineBasicBlock &FBB, 236 bool SkipUnconditionalBranches) const; 237 bool ValidDiamond(BBInfo &TrueBBI, BBInfo &FalseBBI, 238 unsigned &Dups1, unsigned &Dups2, 239 BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const; 240 bool ValidForkedDiamond(BBInfo &TrueBBI, BBInfo &FalseBBI, 241 unsigned &Dups1, unsigned &Dups2, 242 BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const; 243 void AnalyzeBranches(BBInfo &BBI); 244 void ScanInstructions(BBInfo &BBI, 245 MachineBasicBlock::iterator &Begin, 246 MachineBasicBlock::iterator &End, 247 bool BranchUnpredicable = false) const; 248 bool RescanInstructions( 249 MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB, 250 MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE, 251 BBInfo &TrueBBI, BBInfo &FalseBBI) const; 252 void AnalyzeBlock(MachineBasicBlock &MBB, 253 std::vector<std::unique_ptr<IfcvtToken>> &Tokens); 254 bool FeasibilityAnalysis(BBInfo &BBI, SmallVectorImpl<MachineOperand> &Pred, 255 bool isTriangle = false, bool RevBranch = false, 256 bool hasCommonTail = false); 257 void AnalyzeBlocks(MachineFunction &MF, 258 std::vector<std::unique_ptr<IfcvtToken>> &Tokens); 259 void InvalidatePreds(MachineBasicBlock &MBB); 260 bool IfConvertSimple(BBInfo &BBI, IfcvtKind Kind); 261 bool IfConvertTriangle(BBInfo &BBI, IfcvtKind Kind); 262 bool IfConvertDiamondCommon(BBInfo &BBI, BBInfo &TrueBBI, BBInfo &FalseBBI, 263 unsigned NumDups1, unsigned NumDups2, 264 bool TClobbersPred, bool FClobbersPred, 265 bool RemoveBranch, bool MergeAddEdges); 266 bool IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind, 267 unsigned NumDups1, unsigned NumDups2, 268 bool TClobbers, bool FClobbers); 269 bool IfConvertForkedDiamond(BBInfo &BBI, IfcvtKind Kind, 270 unsigned NumDups1, unsigned NumDups2, 271 bool TClobbers, bool FClobbers); 272 void PredicateBlock(BBInfo &BBI, 273 MachineBasicBlock::iterator E, 274 SmallVectorImpl<MachineOperand> &Cond, 275 SmallSet<MCPhysReg, 4> *LaterRedefs = nullptr); 276 void CopyAndPredicateBlock(BBInfo &ToBBI, BBInfo &FromBBI, 277 SmallVectorImpl<MachineOperand> &Cond, 278 bool IgnoreBr = false); 279 void MergeBlocks(BBInfo &ToBBI, BBInfo &FromBBI, bool AddEdges = true); 280 281 bool MeetIfcvtSizeLimit(MachineBasicBlock &BB, 282 unsigned Cycle, unsigned Extra, 283 BranchProbability Prediction) const { 284 return Cycle > 0 && TII->isProfitableToIfCvt(BB, Cycle, Extra, 285 Prediction); 286 } 287 288 bool MeetIfcvtSizeLimit(BBInfo &TBBInfo, BBInfo &FBBInfo, 289 MachineBasicBlock &CommBB, unsigned Dups, 290 BranchProbability Prediction, bool Forked) const { 291 const MachineFunction &MF = *TBBInfo.BB->getParent(); 292 if (MF.getFunction().hasMinSize()) { 293 MachineBasicBlock::iterator TIB = TBBInfo.BB->begin(); 294 MachineBasicBlock::iterator FIB = FBBInfo.BB->begin(); 295 MachineBasicBlock::iterator TIE = TBBInfo.BB->end(); 296 MachineBasicBlock::iterator FIE = FBBInfo.BB->end(); 297 298 unsigned Dups1, Dups2; 299 if (!CountDuplicatedInstructions(TIB, FIB, TIE, FIE, Dups1, Dups2, 300 *TBBInfo.BB, *FBBInfo.BB, 301 /*SkipUnconditionalBranches*/ true)) 302 llvm_unreachable("should already have been checked by ValidDiamond"); 303 304 unsigned BranchBytes = 0; 305 unsigned CommonBytes = 0; 306 307 // Count common instructions at the start of the true and false blocks. 308 for (auto &I : make_range(TBBInfo.BB->begin(), TIB)) { 309 LLVM_DEBUG(dbgs() << "Common inst: " << I); 310 CommonBytes += TII->getInstSizeInBytes(I); 311 } 312 for (auto &I : make_range(FBBInfo.BB->begin(), FIB)) { 313 LLVM_DEBUG(dbgs() << "Common inst: " << I); 314 CommonBytes += TII->getInstSizeInBytes(I); 315 } 316 317 // Count instructions at the end of the true and false blocks, after 318 // the ones we plan to predicate. Analyzable branches will be removed 319 // (unless this is a forked diamond), and all other instructions are 320 // common between the two blocks. 321 for (auto &I : make_range(TIE, TBBInfo.BB->end())) { 322 if (I.isBranch() && TBBInfo.IsBrAnalyzable && !Forked) { 323 LLVM_DEBUG(dbgs() << "Saving branch: " << I); 324 BranchBytes += TII->predictBranchSizeForIfCvt(I); 325 } else { 326 LLVM_DEBUG(dbgs() << "Common inst: " << I); 327 CommonBytes += TII->getInstSizeInBytes(I); 328 } 329 } 330 for (auto &I : make_range(FIE, FBBInfo.BB->end())) { 331 if (I.isBranch() && FBBInfo.IsBrAnalyzable && !Forked) { 332 LLVM_DEBUG(dbgs() << "Saving branch: " << I); 333 BranchBytes += TII->predictBranchSizeForIfCvt(I); 334 } else { 335 LLVM_DEBUG(dbgs() << "Common inst: " << I); 336 CommonBytes += TII->getInstSizeInBytes(I); 337 } 338 } 339 for (auto &I : CommBB.terminators()) { 340 if (I.isBranch()) { 341 LLVM_DEBUG(dbgs() << "Saving branch: " << I); 342 BranchBytes += TII->predictBranchSizeForIfCvt(I); 343 } 344 } 345 346 // The common instructions in one branch will be eliminated, halving 347 // their code size. 348 CommonBytes /= 2; 349 350 // Count the instructions which we need to predicate. 351 unsigned NumPredicatedInstructions = 0; 352 for (auto &I : make_range(TIB, TIE)) { 353 if (!I.isDebugInstr()) { 354 LLVM_DEBUG(dbgs() << "Predicating: " << I); 355 NumPredicatedInstructions++; 356 } 357 } 358 for (auto &I : make_range(FIB, FIE)) { 359 if (!I.isDebugInstr()) { 360 LLVM_DEBUG(dbgs() << "Predicating: " << I); 361 NumPredicatedInstructions++; 362 } 363 } 364 365 // Even though we're optimising for size at the expense of performance, 366 // avoid creating really long predicated blocks. 367 if (NumPredicatedInstructions > 15) 368 return false; 369 370 // Some targets (e.g. Thumb2) need to insert extra instructions to 371 // start predicated blocks. 372 unsigned ExtraPredicateBytes = TII->extraSizeToPredicateInstructions( 373 MF, NumPredicatedInstructions); 374 375 LLVM_DEBUG(dbgs() << "MeetIfcvtSizeLimit(BranchBytes=" << BranchBytes 376 << ", CommonBytes=" << CommonBytes 377 << ", NumPredicatedInstructions=" 378 << NumPredicatedInstructions 379 << ", ExtraPredicateBytes=" << ExtraPredicateBytes 380 << ")\n"); 381 return (BranchBytes + CommonBytes) > ExtraPredicateBytes; 382 } else { 383 unsigned TCycle = TBBInfo.NonPredSize + TBBInfo.ExtraCost - Dups; 384 unsigned FCycle = FBBInfo.NonPredSize + FBBInfo.ExtraCost - Dups; 385 bool Res = TCycle > 0 && FCycle > 0 && 386 TII->isProfitableToIfCvt( 387 *TBBInfo.BB, TCycle, TBBInfo.ExtraCost2, *FBBInfo.BB, 388 FCycle, FBBInfo.ExtraCost2, Prediction); 389 LLVM_DEBUG(dbgs() << "MeetIfcvtSizeLimit(TCycle=" << TCycle 390 << ", FCycle=" << FCycle 391 << ", TExtra=" << TBBInfo.ExtraCost2 << ", FExtra=" 392 << FBBInfo.ExtraCost2 << ") = " << Res << "\n"); 393 return Res; 394 } 395 } 396 397 /// Returns true if Block ends without a terminator. 398 bool blockAlwaysFallThrough(BBInfo &BBI) const { 399 return BBI.IsBrAnalyzable && BBI.TrueBB == nullptr; 400 } 401 402 /// Used to sort if-conversion candidates. 403 static bool IfcvtTokenCmp(const std::unique_ptr<IfcvtToken> &C1, 404 const std::unique_ptr<IfcvtToken> &C2) { 405 int Incr1 = (C1->Kind == ICDiamond) 406 ? -(int)(C1->NumDups + C1->NumDups2) : (int)C1->NumDups; 407 int Incr2 = (C2->Kind == ICDiamond) 408 ? -(int)(C2->NumDups + C2->NumDups2) : (int)C2->NumDups; 409 if (Incr1 > Incr2) 410 return true; 411 else if (Incr1 == Incr2) { 412 // Favors subsumption. 413 if (!C1->NeedSubsumption && C2->NeedSubsumption) 414 return true; 415 else if (C1->NeedSubsumption == C2->NeedSubsumption) { 416 // Favors diamond over triangle, etc. 417 if ((unsigned)C1->Kind < (unsigned)C2->Kind) 418 return true; 419 else if (C1->Kind == C2->Kind) 420 return C1->BBI.BB->getNumber() < C2->BBI.BB->getNumber(); 421 } 422 } 423 return false; 424 } 425 }; 426 427 } // end anonymous namespace 428 429 char IfConverter::ID = 0; 430 431 char &llvm::IfConverterID = IfConverter::ID; 432 433 INITIALIZE_PASS_BEGIN(IfConverter, DEBUG_TYPE, "If Converter", false, false) 434 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 435 INITIALIZE_PASS_END(IfConverter, DEBUG_TYPE, "If Converter", false, false) 436 437 bool IfConverter::runOnMachineFunction(MachineFunction &MF) { 438 if (skipFunction(MF.getFunction()) || (PredicateFtor && !PredicateFtor(MF))) 439 return false; 440 441 const TargetSubtargetInfo &ST = MF.getSubtarget(); 442 TLI = ST.getTargetLowering(); 443 TII = ST.getInstrInfo(); 444 TRI = ST.getRegisterInfo(); 445 BranchFolder::MBFIWrapper MBFI(getAnalysis<MachineBlockFrequencyInfo>()); 446 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 447 MRI = &MF.getRegInfo(); 448 SchedModel.init(&ST); 449 450 if (!TII) return false; 451 452 PreRegAlloc = MRI->isSSA(); 453 454 bool BFChange = false; 455 if (!PreRegAlloc) { 456 // Tail merge tend to expose more if-conversion opportunities. 457 BranchFolder BF(true, false, MBFI, *MBPI); 458 auto *MMIWP = getAnalysisIfAvailable<MachineModuleInfoWrapperPass>(); 459 BFChange = BF.OptimizeFunction( 460 MF, TII, ST.getRegisterInfo(), 461 MMIWP ? &MMIWP->getMMI() : nullptr); 462 } 463 464 LLVM_DEBUG(dbgs() << "\nIfcvt: function (" << ++FnNum << ") \'" 465 << MF.getName() << "\'"); 466 467 if (FnNum < IfCvtFnStart || (IfCvtFnStop != -1 && FnNum > IfCvtFnStop)) { 468 LLVM_DEBUG(dbgs() << " skipped\n"); 469 return false; 470 } 471 LLVM_DEBUG(dbgs() << "\n"); 472 473 MF.RenumberBlocks(); 474 BBAnalysis.resize(MF.getNumBlockIDs()); 475 476 std::vector<std::unique_ptr<IfcvtToken>> Tokens; 477 MadeChange = false; 478 unsigned NumIfCvts = NumSimple + NumSimpleFalse + NumTriangle + 479 NumTriangleRev + NumTriangleFalse + NumTriangleFRev + NumDiamonds; 480 while (IfCvtLimit == -1 || (int)NumIfCvts < IfCvtLimit) { 481 // Do an initial analysis for each basic block and find all the potential 482 // candidates to perform if-conversion. 483 bool Change = false; 484 AnalyzeBlocks(MF, Tokens); 485 while (!Tokens.empty()) { 486 std::unique_ptr<IfcvtToken> Token = std::move(Tokens.back()); 487 Tokens.pop_back(); 488 BBInfo &BBI = Token->BBI; 489 IfcvtKind Kind = Token->Kind; 490 unsigned NumDups = Token->NumDups; 491 unsigned NumDups2 = Token->NumDups2; 492 493 // If the block has been evicted out of the queue or it has already been 494 // marked dead (due to it being predicated), then skip it. 495 if (BBI.IsDone) 496 BBI.IsEnqueued = false; 497 if (!BBI.IsEnqueued) 498 continue; 499 500 BBI.IsEnqueued = false; 501 502 bool RetVal = false; 503 switch (Kind) { 504 default: llvm_unreachable("Unexpected!"); 505 case ICSimple: 506 case ICSimpleFalse: { 507 bool isFalse = Kind == ICSimpleFalse; 508 if ((isFalse && DisableSimpleF) || (!isFalse && DisableSimple)) break; 509 LLVM_DEBUG(dbgs() << "Ifcvt (Simple" 510 << (Kind == ICSimpleFalse ? " false" : "") 511 << "): " << printMBBReference(*BBI.BB) << " (" 512 << ((Kind == ICSimpleFalse) ? BBI.FalseBB->getNumber() 513 : BBI.TrueBB->getNumber()) 514 << ") "); 515 RetVal = IfConvertSimple(BBI, Kind); 516 LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n"); 517 if (RetVal) { 518 if (isFalse) ++NumSimpleFalse; 519 else ++NumSimple; 520 } 521 break; 522 } 523 case ICTriangle: 524 case ICTriangleRev: 525 case ICTriangleFalse: 526 case ICTriangleFRev: { 527 bool isFalse = Kind == ICTriangleFalse; 528 bool isRev = (Kind == ICTriangleRev || Kind == ICTriangleFRev); 529 if (DisableTriangle && !isFalse && !isRev) break; 530 if (DisableTriangleR && !isFalse && isRev) break; 531 if (DisableTriangleF && isFalse && !isRev) break; 532 if (DisableTriangleFR && isFalse && isRev) break; 533 LLVM_DEBUG(dbgs() << "Ifcvt (Triangle"); 534 if (isFalse) 535 LLVM_DEBUG(dbgs() << " false"); 536 if (isRev) 537 LLVM_DEBUG(dbgs() << " rev"); 538 LLVM_DEBUG(dbgs() << "): " << printMBBReference(*BBI.BB) 539 << " (T:" << BBI.TrueBB->getNumber() 540 << ",F:" << BBI.FalseBB->getNumber() << ") "); 541 RetVal = IfConvertTriangle(BBI, Kind); 542 LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n"); 543 if (RetVal) { 544 if (isFalse) { 545 if (isRev) ++NumTriangleFRev; 546 else ++NumTriangleFalse; 547 } else { 548 if (isRev) ++NumTriangleRev; 549 else ++NumTriangle; 550 } 551 } 552 break; 553 } 554 case ICDiamond: 555 if (DisableDiamond) break; 556 LLVM_DEBUG(dbgs() << "Ifcvt (Diamond): " << printMBBReference(*BBI.BB) 557 << " (T:" << BBI.TrueBB->getNumber() 558 << ",F:" << BBI.FalseBB->getNumber() << ") "); 559 RetVal = IfConvertDiamond(BBI, Kind, NumDups, NumDups2, 560 Token->TClobbersPred, 561 Token->FClobbersPred); 562 LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n"); 563 if (RetVal) ++NumDiamonds; 564 break; 565 case ICForkedDiamond: 566 if (DisableForkedDiamond) break; 567 LLVM_DEBUG(dbgs() << "Ifcvt (Forked Diamond): " 568 << printMBBReference(*BBI.BB) 569 << " (T:" << BBI.TrueBB->getNumber() 570 << ",F:" << BBI.FalseBB->getNumber() << ") "); 571 RetVal = IfConvertForkedDiamond(BBI, Kind, NumDups, NumDups2, 572 Token->TClobbersPred, 573 Token->FClobbersPred); 574 LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n"); 575 if (RetVal) ++NumForkedDiamonds; 576 break; 577 } 578 579 if (RetVal && MRI->tracksLiveness()) 580 recomputeLivenessFlags(*BBI.BB); 581 582 Change |= RetVal; 583 584 NumIfCvts = NumSimple + NumSimpleFalse + NumTriangle + NumTriangleRev + 585 NumTriangleFalse + NumTriangleFRev + NumDiamonds; 586 if (IfCvtLimit != -1 && (int)NumIfCvts >= IfCvtLimit) 587 break; 588 } 589 590 if (!Change) 591 break; 592 MadeChange |= Change; 593 } 594 595 Tokens.clear(); 596 BBAnalysis.clear(); 597 598 if (MadeChange && IfCvtBranchFold) { 599 BranchFolder BF(false, false, MBFI, *MBPI); 600 auto *MMIWP = getAnalysisIfAvailable<MachineModuleInfoWrapperPass>(); 601 BF.OptimizeFunction( 602 MF, TII, MF.getSubtarget().getRegisterInfo(), 603 MMIWP ? &MMIWP->getMMI() : nullptr); 604 } 605 606 MadeChange |= BFChange; 607 return MadeChange; 608 } 609 610 /// BB has a fallthrough. Find its 'false' successor given its 'true' successor. 611 static MachineBasicBlock *findFalseBlock(MachineBasicBlock *BB, 612 MachineBasicBlock *TrueBB) { 613 for (MachineBasicBlock *SuccBB : BB->successors()) { 614 if (SuccBB != TrueBB) 615 return SuccBB; 616 } 617 return nullptr; 618 } 619 620 /// Reverse the condition of the end of the block branch. Swap block's 'true' 621 /// and 'false' successors. 622 bool IfConverter::reverseBranchCondition(BBInfo &BBI) const { 623 DebugLoc dl; // FIXME: this is nowhere 624 if (!TII->reverseBranchCondition(BBI.BrCond)) { 625 TII->removeBranch(*BBI.BB); 626 TII->insertBranch(*BBI.BB, BBI.FalseBB, BBI.TrueBB, BBI.BrCond, dl); 627 std::swap(BBI.TrueBB, BBI.FalseBB); 628 return true; 629 } 630 return false; 631 } 632 633 /// Returns the next block in the function blocks ordering. If it is the end, 634 /// returns NULL. 635 static inline MachineBasicBlock *getNextBlock(MachineBasicBlock &MBB) { 636 MachineFunction::iterator I = MBB.getIterator(); 637 MachineFunction::iterator E = MBB.getParent()->end(); 638 if (++I == E) 639 return nullptr; 640 return &*I; 641 } 642 643 /// Returns true if the 'true' block (along with its predecessor) forms a valid 644 /// simple shape for ifcvt. It also returns the number of instructions that the 645 /// ifcvt would need to duplicate if performed in Dups. 646 bool IfConverter::ValidSimple(BBInfo &TrueBBI, unsigned &Dups, 647 BranchProbability Prediction) const { 648 Dups = 0; 649 if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone) 650 return false; 651 652 if (TrueBBI.IsBrAnalyzable) 653 return false; 654 655 if (TrueBBI.BB->pred_size() > 1) { 656 if (TrueBBI.CannotBeCopied || 657 !TII->isProfitableToDupForIfCvt(*TrueBBI.BB, TrueBBI.NonPredSize, 658 Prediction)) 659 return false; 660 Dups = TrueBBI.NonPredSize; 661 } 662 663 return true; 664 } 665 666 /// Returns true if the 'true' and 'false' blocks (along with their common 667 /// predecessor) forms a valid triangle shape for ifcvt. If 'FalseBranch' is 668 /// true, it checks if 'true' block's false branch branches to the 'false' block 669 /// rather than the other way around. It also returns the number of instructions 670 /// that the ifcvt would need to duplicate if performed in 'Dups'. 671 bool IfConverter::ValidTriangle(BBInfo &TrueBBI, BBInfo &FalseBBI, 672 bool FalseBranch, unsigned &Dups, 673 BranchProbability Prediction) const { 674 Dups = 0; 675 if (TrueBBI.BB == FalseBBI.BB) 676 return false; 677 678 if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone) 679 return false; 680 681 if (TrueBBI.BB->pred_size() > 1) { 682 if (TrueBBI.CannotBeCopied) 683 return false; 684 685 unsigned Size = TrueBBI.NonPredSize; 686 if (TrueBBI.IsBrAnalyzable) { 687 if (TrueBBI.TrueBB && TrueBBI.BrCond.empty()) 688 // Ends with an unconditional branch. It will be removed. 689 --Size; 690 else { 691 MachineBasicBlock *FExit = FalseBranch 692 ? TrueBBI.TrueBB : TrueBBI.FalseBB; 693 if (FExit) 694 // Require a conditional branch 695 ++Size; 696 } 697 } 698 if (!TII->isProfitableToDupForIfCvt(*TrueBBI.BB, Size, Prediction)) 699 return false; 700 Dups = Size; 701 } 702 703 MachineBasicBlock *TExit = FalseBranch ? TrueBBI.FalseBB : TrueBBI.TrueBB; 704 if (!TExit && blockAlwaysFallThrough(TrueBBI)) { 705 MachineFunction::iterator I = TrueBBI.BB->getIterator(); 706 if (++I == TrueBBI.BB->getParent()->end()) 707 return false; 708 TExit = &*I; 709 } 710 return TExit && TExit == FalseBBI.BB; 711 } 712 713 /// Count duplicated instructions and move the iterators to show where they 714 /// are. 715 /// @param TIB True Iterator Begin 716 /// @param FIB False Iterator Begin 717 /// These two iterators initially point to the first instruction of the two 718 /// blocks, and finally point to the first non-shared instruction. 719 /// @param TIE True Iterator End 720 /// @param FIE False Iterator End 721 /// These two iterators initially point to End() for the two blocks() and 722 /// finally point to the first shared instruction in the tail. 723 /// Upon return [TIB, TIE), and [FIB, FIE) mark the un-duplicated portions of 724 /// two blocks. 725 /// @param Dups1 count of duplicated instructions at the beginning of the 2 726 /// blocks. 727 /// @param Dups2 count of duplicated instructions at the end of the 2 blocks. 728 /// @param SkipUnconditionalBranches if true, Don't make sure that 729 /// unconditional branches at the end of the blocks are the same. True is 730 /// passed when the blocks are analyzable to allow for fallthrough to be 731 /// handled. 732 /// @return false if the shared portion prevents if conversion. 733 bool IfConverter::CountDuplicatedInstructions( 734 MachineBasicBlock::iterator &TIB, 735 MachineBasicBlock::iterator &FIB, 736 MachineBasicBlock::iterator &TIE, 737 MachineBasicBlock::iterator &FIE, 738 unsigned &Dups1, unsigned &Dups2, 739 MachineBasicBlock &TBB, MachineBasicBlock &FBB, 740 bool SkipUnconditionalBranches) const { 741 while (TIB != TIE && FIB != FIE) { 742 // Skip dbg_value instructions. These do not count. 743 TIB = skipDebugInstructionsForward(TIB, TIE); 744 FIB = skipDebugInstructionsForward(FIB, FIE); 745 if (TIB == TIE || FIB == FIE) 746 break; 747 if (!TIB->isIdenticalTo(*FIB)) 748 break; 749 // A pred-clobbering instruction in the shared portion prevents 750 // if-conversion. 751 std::vector<MachineOperand> PredDefs; 752 if (TII->DefinesPredicate(*TIB, PredDefs)) 753 return false; 754 // If we get all the way to the branch instructions, don't count them. 755 if (!TIB->isBranch()) 756 ++Dups1; 757 ++TIB; 758 ++FIB; 759 } 760 761 // Check for already containing all of the block. 762 if (TIB == TIE || FIB == FIE) 763 return true; 764 // Now, in preparation for counting duplicate instructions at the ends of the 765 // blocks, switch to reverse_iterators. Note that getReverse() returns an 766 // iterator that points to the same instruction, unlike std::reverse_iterator. 767 // We have to do our own shifting so that we get the same range. 768 MachineBasicBlock::reverse_iterator RTIE = std::next(TIE.getReverse()); 769 MachineBasicBlock::reverse_iterator RFIE = std::next(FIE.getReverse()); 770 const MachineBasicBlock::reverse_iterator RTIB = std::next(TIB.getReverse()); 771 const MachineBasicBlock::reverse_iterator RFIB = std::next(FIB.getReverse()); 772 773 if (!TBB.succ_empty() || !FBB.succ_empty()) { 774 if (SkipUnconditionalBranches) { 775 while (RTIE != RTIB && RTIE->isUnconditionalBranch()) 776 ++RTIE; 777 while (RFIE != RFIB && RFIE->isUnconditionalBranch()) 778 ++RFIE; 779 } 780 } 781 782 // Count duplicate instructions at the ends of the blocks. 783 while (RTIE != RTIB && RFIE != RFIB) { 784 // Skip dbg_value instructions. These do not count. 785 // Note that these are reverse iterators going forward. 786 RTIE = skipDebugInstructionsForward(RTIE, RTIB); 787 RFIE = skipDebugInstructionsForward(RFIE, RFIB); 788 if (RTIE == RTIB || RFIE == RFIB) 789 break; 790 if (!RTIE->isIdenticalTo(*RFIE)) 791 break; 792 // We have to verify that any branch instructions are the same, and then we 793 // don't count them toward the # of duplicate instructions. 794 if (!RTIE->isBranch()) 795 ++Dups2; 796 ++RTIE; 797 ++RFIE; 798 } 799 TIE = std::next(RTIE.getReverse()); 800 FIE = std::next(RFIE.getReverse()); 801 return true; 802 } 803 804 /// RescanInstructions - Run ScanInstructions on a pair of blocks. 805 /// @param TIB - True Iterator Begin, points to first non-shared instruction 806 /// @param FIB - False Iterator Begin, points to first non-shared instruction 807 /// @param TIE - True Iterator End, points past last non-shared instruction 808 /// @param FIE - False Iterator End, points past last non-shared instruction 809 /// @param TrueBBI - BBInfo to update for the true block. 810 /// @param FalseBBI - BBInfo to update for the false block. 811 /// @returns - false if either block cannot be predicated or if both blocks end 812 /// with a predicate-clobbering instruction. 813 bool IfConverter::RescanInstructions( 814 MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB, 815 MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE, 816 BBInfo &TrueBBI, BBInfo &FalseBBI) const { 817 bool BranchUnpredicable = true; 818 TrueBBI.IsUnpredicable = FalseBBI.IsUnpredicable = false; 819 ScanInstructions(TrueBBI, TIB, TIE, BranchUnpredicable); 820 if (TrueBBI.IsUnpredicable) 821 return false; 822 ScanInstructions(FalseBBI, FIB, FIE, BranchUnpredicable); 823 if (FalseBBI.IsUnpredicable) 824 return false; 825 if (TrueBBI.ClobbersPred && FalseBBI.ClobbersPred) 826 return false; 827 return true; 828 } 829 830 #ifndef NDEBUG 831 static void verifySameBranchInstructions( 832 MachineBasicBlock *MBB1, 833 MachineBasicBlock *MBB2) { 834 const MachineBasicBlock::reverse_iterator B1 = MBB1->rend(); 835 const MachineBasicBlock::reverse_iterator B2 = MBB2->rend(); 836 MachineBasicBlock::reverse_iterator E1 = MBB1->rbegin(); 837 MachineBasicBlock::reverse_iterator E2 = MBB2->rbegin(); 838 while (E1 != B1 && E2 != B2) { 839 skipDebugInstructionsForward(E1, B1); 840 skipDebugInstructionsForward(E2, B2); 841 if (E1 == B1 && E2 == B2) 842 break; 843 844 if (E1 == B1) { 845 assert(!E2->isBranch() && "Branch mis-match, one block is empty."); 846 break; 847 } 848 if (E2 == B2) { 849 assert(!E1->isBranch() && "Branch mis-match, one block is empty."); 850 break; 851 } 852 853 if (E1->isBranch() || E2->isBranch()) 854 assert(E1->isIdenticalTo(*E2) && 855 "Branch mis-match, branch instructions don't match."); 856 else 857 break; 858 ++E1; 859 ++E2; 860 } 861 } 862 #endif 863 864 /// ValidForkedDiamond - Returns true if the 'true' and 'false' blocks (along 865 /// with their common predecessor) form a diamond if a common tail block is 866 /// extracted. 867 /// While not strictly a diamond, this pattern would form a diamond if 868 /// tail-merging had merged the shared tails. 869 /// EBB 870 /// _/ \_ 871 /// | | 872 /// TBB FBB 873 /// / \ / \ 874 /// FalseBB TrueBB FalseBB 875 /// Currently only handles analyzable branches. 876 /// Specifically excludes actual diamonds to avoid overlap. 877 bool IfConverter::ValidForkedDiamond( 878 BBInfo &TrueBBI, BBInfo &FalseBBI, 879 unsigned &Dups1, unsigned &Dups2, 880 BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const { 881 Dups1 = Dups2 = 0; 882 if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone || 883 FalseBBI.IsBeingAnalyzed || FalseBBI.IsDone) 884 return false; 885 886 if (!TrueBBI.IsBrAnalyzable || !FalseBBI.IsBrAnalyzable) 887 return false; 888 // Don't IfConvert blocks that can't be folded into their predecessor. 889 if (TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1) 890 return false; 891 892 // This function is specifically looking for conditional tails, as 893 // unconditional tails are already handled by the standard diamond case. 894 if (TrueBBI.BrCond.size() == 0 || 895 FalseBBI.BrCond.size() == 0) 896 return false; 897 898 MachineBasicBlock *TT = TrueBBI.TrueBB; 899 MachineBasicBlock *TF = TrueBBI.FalseBB; 900 MachineBasicBlock *FT = FalseBBI.TrueBB; 901 MachineBasicBlock *FF = FalseBBI.FalseBB; 902 903 if (!TT) 904 TT = getNextBlock(*TrueBBI.BB); 905 if (!TF) 906 TF = getNextBlock(*TrueBBI.BB); 907 if (!FT) 908 FT = getNextBlock(*FalseBBI.BB); 909 if (!FF) 910 FF = getNextBlock(*FalseBBI.BB); 911 912 if (!TT || !TF) 913 return false; 914 915 // Check successors. If they don't match, bail. 916 if (!((TT == FT && TF == FF) || (TF == FT && TT == FF))) 917 return false; 918 919 bool FalseReversed = false; 920 if (TF == FT && TT == FF) { 921 // If the branches are opposing, but we can't reverse, don't do it. 922 if (!FalseBBI.IsBrReversible) 923 return false; 924 FalseReversed = true; 925 reverseBranchCondition(FalseBBI); 926 } 927 auto UnReverseOnExit = make_scope_exit([&]() { 928 if (FalseReversed) 929 reverseBranchCondition(FalseBBI); 930 }); 931 932 // Count duplicate instructions at the beginning of the true and false blocks. 933 MachineBasicBlock::iterator TIB = TrueBBI.BB->begin(); 934 MachineBasicBlock::iterator FIB = FalseBBI.BB->begin(); 935 MachineBasicBlock::iterator TIE = TrueBBI.BB->end(); 936 MachineBasicBlock::iterator FIE = FalseBBI.BB->end(); 937 if(!CountDuplicatedInstructions(TIB, FIB, TIE, FIE, Dups1, Dups2, 938 *TrueBBI.BB, *FalseBBI.BB, 939 /* SkipUnconditionalBranches */ true)) 940 return false; 941 942 TrueBBICalc.BB = TrueBBI.BB; 943 FalseBBICalc.BB = FalseBBI.BB; 944 TrueBBICalc.IsBrAnalyzable = TrueBBI.IsBrAnalyzable; 945 FalseBBICalc.IsBrAnalyzable = FalseBBI.IsBrAnalyzable; 946 if (!RescanInstructions(TIB, FIB, TIE, FIE, TrueBBICalc, FalseBBICalc)) 947 return false; 948 949 // The size is used to decide whether to if-convert, and the shared portions 950 // are subtracted off. Because of the subtraction, we just use the size that 951 // was calculated by the original ScanInstructions, as it is correct. 952 TrueBBICalc.NonPredSize = TrueBBI.NonPredSize; 953 FalseBBICalc.NonPredSize = FalseBBI.NonPredSize; 954 return true; 955 } 956 957 /// ValidDiamond - Returns true if the 'true' and 'false' blocks (along 958 /// with their common predecessor) forms a valid diamond shape for ifcvt. 959 bool IfConverter::ValidDiamond( 960 BBInfo &TrueBBI, BBInfo &FalseBBI, 961 unsigned &Dups1, unsigned &Dups2, 962 BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const { 963 Dups1 = Dups2 = 0; 964 if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone || 965 FalseBBI.IsBeingAnalyzed || FalseBBI.IsDone) 966 return false; 967 968 MachineBasicBlock *TT = TrueBBI.TrueBB; 969 MachineBasicBlock *FT = FalseBBI.TrueBB; 970 971 if (!TT && blockAlwaysFallThrough(TrueBBI)) 972 TT = getNextBlock(*TrueBBI.BB); 973 if (!FT && blockAlwaysFallThrough(FalseBBI)) 974 FT = getNextBlock(*FalseBBI.BB); 975 if (TT != FT) 976 return false; 977 if (!TT && (TrueBBI.IsBrAnalyzable || FalseBBI.IsBrAnalyzable)) 978 return false; 979 if (TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1) 980 return false; 981 982 // FIXME: Allow true block to have an early exit? 983 if (TrueBBI.FalseBB || FalseBBI.FalseBB) 984 return false; 985 986 // Count duplicate instructions at the beginning and end of the true and 987 // false blocks. 988 // Skip unconditional branches only if we are considering an analyzable 989 // diamond. Otherwise the branches must be the same. 990 bool SkipUnconditionalBranches = 991 TrueBBI.IsBrAnalyzable && FalseBBI.IsBrAnalyzable; 992 MachineBasicBlock::iterator TIB = TrueBBI.BB->begin(); 993 MachineBasicBlock::iterator FIB = FalseBBI.BB->begin(); 994 MachineBasicBlock::iterator TIE = TrueBBI.BB->end(); 995 MachineBasicBlock::iterator FIE = FalseBBI.BB->end(); 996 if(!CountDuplicatedInstructions(TIB, FIB, TIE, FIE, Dups1, Dups2, 997 *TrueBBI.BB, *FalseBBI.BB, 998 SkipUnconditionalBranches)) 999 return false; 1000 1001 TrueBBICalc.BB = TrueBBI.BB; 1002 FalseBBICalc.BB = FalseBBI.BB; 1003 TrueBBICalc.IsBrAnalyzable = TrueBBI.IsBrAnalyzable; 1004 FalseBBICalc.IsBrAnalyzable = FalseBBI.IsBrAnalyzable; 1005 if (!RescanInstructions(TIB, FIB, TIE, FIE, TrueBBICalc, FalseBBICalc)) 1006 return false; 1007 // The size is used to decide whether to if-convert, and the shared portions 1008 // are subtracted off. Because of the subtraction, we just use the size that 1009 // was calculated by the original ScanInstructions, as it is correct. 1010 TrueBBICalc.NonPredSize = TrueBBI.NonPredSize; 1011 FalseBBICalc.NonPredSize = FalseBBI.NonPredSize; 1012 return true; 1013 } 1014 1015 /// AnalyzeBranches - Look at the branches at the end of a block to determine if 1016 /// the block is predicable. 1017 void IfConverter::AnalyzeBranches(BBInfo &BBI) { 1018 if (BBI.IsDone) 1019 return; 1020 1021 BBI.TrueBB = BBI.FalseBB = nullptr; 1022 BBI.BrCond.clear(); 1023 BBI.IsBrAnalyzable = 1024 !TII->analyzeBranch(*BBI.BB, BBI.TrueBB, BBI.FalseBB, BBI.BrCond); 1025 if (!BBI.IsBrAnalyzable) { 1026 BBI.TrueBB = nullptr; 1027 BBI.FalseBB = nullptr; 1028 BBI.BrCond.clear(); 1029 } 1030 1031 SmallVector<MachineOperand, 4> RevCond(BBI.BrCond.begin(), BBI.BrCond.end()); 1032 BBI.IsBrReversible = (RevCond.size() == 0) || 1033 !TII->reverseBranchCondition(RevCond); 1034 BBI.HasFallThrough = BBI.IsBrAnalyzable && BBI.FalseBB == nullptr; 1035 1036 if (BBI.BrCond.size()) { 1037 // No false branch. This BB must end with a conditional branch and a 1038 // fallthrough. 1039 if (!BBI.FalseBB) 1040 BBI.FalseBB = findFalseBlock(BBI.BB, BBI.TrueBB); 1041 if (!BBI.FalseBB) { 1042 // Malformed bcc? True and false blocks are the same? 1043 BBI.IsUnpredicable = true; 1044 } 1045 } 1046 } 1047 1048 /// ScanInstructions - Scan all the instructions in the block to determine if 1049 /// the block is predicable. In most cases, that means all the instructions 1050 /// in the block are isPredicable(). Also checks if the block contains any 1051 /// instruction which can clobber a predicate (e.g. condition code register). 1052 /// If so, the block is not predicable unless it's the last instruction. 1053 void IfConverter::ScanInstructions(BBInfo &BBI, 1054 MachineBasicBlock::iterator &Begin, 1055 MachineBasicBlock::iterator &End, 1056 bool BranchUnpredicable) const { 1057 if (BBI.IsDone || BBI.IsUnpredicable) 1058 return; 1059 1060 bool AlreadyPredicated = !BBI.Predicate.empty(); 1061 1062 BBI.NonPredSize = 0; 1063 BBI.ExtraCost = 0; 1064 BBI.ExtraCost2 = 0; 1065 BBI.ClobbersPred = false; 1066 for (MachineInstr &MI : make_range(Begin, End)) { 1067 if (MI.isDebugInstr()) 1068 continue; 1069 1070 // It's unsafe to duplicate convergent instructions in this context, so set 1071 // BBI.CannotBeCopied to true if MI is convergent. To see why, consider the 1072 // following CFG, which is subject to our "simple" transformation. 1073 // 1074 // BB0 // if (c1) goto BB1; else goto BB2; 1075 // / \ 1076 // BB1 | 1077 // | BB2 // if (c2) goto TBB; else goto FBB; 1078 // | / | 1079 // | / | 1080 // TBB | 1081 // | | 1082 // | FBB 1083 // | 1084 // exit 1085 // 1086 // Suppose we want to move TBB's contents up into BB1 and BB2 (in BB1 they'd 1087 // be unconditional, and in BB2, they'd be predicated upon c2), and suppose 1088 // TBB contains a convergent instruction. This is safe iff doing so does 1089 // not add a control-flow dependency to the convergent instruction -- i.e., 1090 // it's safe iff the set of control flows that leads us to the convergent 1091 // instruction does not get smaller after the transformation. 1092 // 1093 // Originally we executed TBB if c1 || c2. After the transformation, there 1094 // are two copies of TBB's instructions. We get to the first if c1, and we 1095 // get to the second if !c1 && c2. 1096 // 1097 // There are clearly fewer ways to satisfy the condition "c1" than 1098 // "c1 || c2". Since we've shrunk the set of control flows which lead to 1099 // our convergent instruction, the transformation is unsafe. 1100 if (MI.isNotDuplicable() || MI.isConvergent()) 1101 BBI.CannotBeCopied = true; 1102 1103 bool isPredicated = TII->isPredicated(MI); 1104 bool isCondBr = BBI.IsBrAnalyzable && MI.isConditionalBranch(); 1105 1106 if (BranchUnpredicable && MI.isBranch()) { 1107 BBI.IsUnpredicable = true; 1108 return; 1109 } 1110 1111 // A conditional branch is not predicable, but it may be eliminated. 1112 if (isCondBr) 1113 continue; 1114 1115 if (!isPredicated) { 1116 BBI.NonPredSize++; 1117 unsigned ExtraPredCost = TII->getPredicationCost(MI); 1118 unsigned NumCycles = SchedModel.computeInstrLatency(&MI, false); 1119 if (NumCycles > 1) 1120 BBI.ExtraCost += NumCycles-1; 1121 BBI.ExtraCost2 += ExtraPredCost; 1122 } else if (!AlreadyPredicated) { 1123 // FIXME: This instruction is already predicated before the 1124 // if-conversion pass. It's probably something like a conditional move. 1125 // Mark this block unpredicable for now. 1126 BBI.IsUnpredicable = true; 1127 return; 1128 } 1129 1130 if (BBI.ClobbersPred && !isPredicated) { 1131 // Predicate modification instruction should end the block (except for 1132 // already predicated instructions and end of block branches). 1133 // Predicate may have been modified, the subsequent (currently) 1134 // unpredicated instructions cannot be correctly predicated. 1135 BBI.IsUnpredicable = true; 1136 return; 1137 } 1138 1139 // FIXME: Make use of PredDefs? e.g. ADDC, SUBC sets predicates but are 1140 // still potentially predicable. 1141 std::vector<MachineOperand> PredDefs; 1142 if (TII->DefinesPredicate(MI, PredDefs)) 1143 BBI.ClobbersPred = true; 1144 1145 if (!TII->isPredicable(MI)) { 1146 BBI.IsUnpredicable = true; 1147 return; 1148 } 1149 } 1150 } 1151 1152 /// Determine if the block is a suitable candidate to be predicated by the 1153 /// specified predicate. 1154 /// @param BBI BBInfo for the block to check 1155 /// @param Pred Predicate array for the branch that leads to BBI 1156 /// @param isTriangle true if the Analysis is for a triangle 1157 /// @param RevBranch true if Reverse(Pred) leads to BBI (e.g. BBI is the false 1158 /// case 1159 /// @param hasCommonTail true if BBI shares a tail with a sibling block that 1160 /// contains any instruction that would make the block unpredicable. 1161 bool IfConverter::FeasibilityAnalysis(BBInfo &BBI, 1162 SmallVectorImpl<MachineOperand> &Pred, 1163 bool isTriangle, bool RevBranch, 1164 bool hasCommonTail) { 1165 // If the block is dead or unpredicable, then it cannot be predicated. 1166 // Two blocks may share a common unpredicable tail, but this doesn't prevent 1167 // them from being if-converted. The non-shared portion is assumed to have 1168 // been checked 1169 if (BBI.IsDone || (BBI.IsUnpredicable && !hasCommonTail)) 1170 return false; 1171 1172 // If it is already predicated but we couldn't analyze its terminator, the 1173 // latter might fallthrough, but we can't determine where to. 1174 // Conservatively avoid if-converting again. 1175 if (BBI.Predicate.size() && !BBI.IsBrAnalyzable) 1176 return false; 1177 1178 // If it is already predicated, check if the new predicate subsumes 1179 // its predicate. 1180 if (BBI.Predicate.size() && !TII->SubsumesPredicate(Pred, BBI.Predicate)) 1181 return false; 1182 1183 if (!hasCommonTail && BBI.BrCond.size()) { 1184 if (!isTriangle) 1185 return false; 1186 1187 // Test predicate subsumption. 1188 SmallVector<MachineOperand, 4> RevPred(Pred.begin(), Pred.end()); 1189 SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end()); 1190 if (RevBranch) { 1191 if (TII->reverseBranchCondition(Cond)) 1192 return false; 1193 } 1194 if (TII->reverseBranchCondition(RevPred) || 1195 !TII->SubsumesPredicate(Cond, RevPred)) 1196 return false; 1197 } 1198 1199 return true; 1200 } 1201 1202 /// Analyze the structure of the sub-CFG starting from the specified block. 1203 /// Record its successors and whether it looks like an if-conversion candidate. 1204 void IfConverter::AnalyzeBlock( 1205 MachineBasicBlock &MBB, std::vector<std::unique_ptr<IfcvtToken>> &Tokens) { 1206 struct BBState { 1207 BBState(MachineBasicBlock &MBB) : MBB(&MBB), SuccsAnalyzed(false) {} 1208 MachineBasicBlock *MBB; 1209 1210 /// This flag is true if MBB's successors have been analyzed. 1211 bool SuccsAnalyzed; 1212 }; 1213 1214 // Push MBB to the stack. 1215 SmallVector<BBState, 16> BBStack(1, MBB); 1216 1217 while (!BBStack.empty()) { 1218 BBState &State = BBStack.back(); 1219 MachineBasicBlock *BB = State.MBB; 1220 BBInfo &BBI = BBAnalysis[BB->getNumber()]; 1221 1222 if (!State.SuccsAnalyzed) { 1223 if (BBI.IsAnalyzed || BBI.IsBeingAnalyzed) { 1224 BBStack.pop_back(); 1225 continue; 1226 } 1227 1228 BBI.BB = BB; 1229 BBI.IsBeingAnalyzed = true; 1230 1231 AnalyzeBranches(BBI); 1232 MachineBasicBlock::iterator Begin = BBI.BB->begin(); 1233 MachineBasicBlock::iterator End = BBI.BB->end(); 1234 ScanInstructions(BBI, Begin, End); 1235 1236 // Unanalyzable or ends with fallthrough or unconditional branch, or if is 1237 // not considered for ifcvt anymore. 1238 if (!BBI.IsBrAnalyzable || BBI.BrCond.empty() || BBI.IsDone) { 1239 BBI.IsBeingAnalyzed = false; 1240 BBI.IsAnalyzed = true; 1241 BBStack.pop_back(); 1242 continue; 1243 } 1244 1245 // Do not ifcvt if either path is a back edge to the entry block. 1246 if (BBI.TrueBB == BB || BBI.FalseBB == BB) { 1247 BBI.IsBeingAnalyzed = false; 1248 BBI.IsAnalyzed = true; 1249 BBStack.pop_back(); 1250 continue; 1251 } 1252 1253 // Do not ifcvt if true and false fallthrough blocks are the same. 1254 if (!BBI.FalseBB) { 1255 BBI.IsBeingAnalyzed = false; 1256 BBI.IsAnalyzed = true; 1257 BBStack.pop_back(); 1258 continue; 1259 } 1260 1261 // Push the False and True blocks to the stack. 1262 State.SuccsAnalyzed = true; 1263 BBStack.push_back(*BBI.FalseBB); 1264 BBStack.push_back(*BBI.TrueBB); 1265 continue; 1266 } 1267 1268 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()]; 1269 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()]; 1270 1271 if (TrueBBI.IsDone && FalseBBI.IsDone) { 1272 BBI.IsBeingAnalyzed = false; 1273 BBI.IsAnalyzed = true; 1274 BBStack.pop_back(); 1275 continue; 1276 } 1277 1278 SmallVector<MachineOperand, 4> 1279 RevCond(BBI.BrCond.begin(), BBI.BrCond.end()); 1280 bool CanRevCond = !TII->reverseBranchCondition(RevCond); 1281 1282 unsigned Dups = 0; 1283 unsigned Dups2 = 0; 1284 bool TNeedSub = !TrueBBI.Predicate.empty(); 1285 bool FNeedSub = !FalseBBI.Predicate.empty(); 1286 bool Enqueued = false; 1287 1288 BranchProbability Prediction = MBPI->getEdgeProbability(BB, TrueBBI.BB); 1289 1290 if (CanRevCond) { 1291 BBInfo TrueBBICalc, FalseBBICalc; 1292 auto feasibleDiamond = [&](bool Forked) { 1293 bool MeetsSize = MeetIfcvtSizeLimit(TrueBBICalc, FalseBBICalc, *BB, 1294 Dups + Dups2, Prediction, Forked); 1295 bool TrueFeasible = FeasibilityAnalysis(TrueBBI, BBI.BrCond, 1296 /* IsTriangle */ false, /* RevCond */ false, 1297 /* hasCommonTail */ true); 1298 bool FalseFeasible = FeasibilityAnalysis(FalseBBI, RevCond, 1299 /* IsTriangle */ false, /* RevCond */ false, 1300 /* hasCommonTail */ true); 1301 return MeetsSize && TrueFeasible && FalseFeasible; 1302 }; 1303 1304 if (ValidDiamond(TrueBBI, FalseBBI, Dups, Dups2, 1305 TrueBBICalc, FalseBBICalc)) { 1306 if (feasibleDiamond(false)) { 1307 // Diamond: 1308 // EBB 1309 // / \_ 1310 // | | 1311 // TBB FBB 1312 // \ / 1313 // TailBB 1314 // Note TailBB can be empty. 1315 Tokens.push_back(std::make_unique<IfcvtToken>( 1316 BBI, ICDiamond, TNeedSub | FNeedSub, Dups, Dups2, 1317 (bool) TrueBBICalc.ClobbersPred, (bool) FalseBBICalc.ClobbersPred)); 1318 Enqueued = true; 1319 } 1320 } else if (ValidForkedDiamond(TrueBBI, FalseBBI, Dups, Dups2, 1321 TrueBBICalc, FalseBBICalc)) { 1322 if (feasibleDiamond(true)) { 1323 // ForkedDiamond: 1324 // if TBB and FBB have a common tail that includes their conditional 1325 // branch instructions, then we can If Convert this pattern. 1326 // EBB 1327 // _/ \_ 1328 // | | 1329 // TBB FBB 1330 // / \ / \ 1331 // FalseBB TrueBB FalseBB 1332 // 1333 Tokens.push_back(std::make_unique<IfcvtToken>( 1334 BBI, ICForkedDiamond, TNeedSub | FNeedSub, Dups, Dups2, 1335 (bool) TrueBBICalc.ClobbersPred, (bool) FalseBBICalc.ClobbersPred)); 1336 Enqueued = true; 1337 } 1338 } 1339 } 1340 1341 if (ValidTriangle(TrueBBI, FalseBBI, false, Dups, Prediction) && 1342 MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost, 1343 TrueBBI.ExtraCost2, Prediction) && 1344 FeasibilityAnalysis(TrueBBI, BBI.BrCond, true)) { 1345 // Triangle: 1346 // EBB 1347 // | \_ 1348 // | | 1349 // | TBB 1350 // | / 1351 // FBB 1352 Tokens.push_back( 1353 std::make_unique<IfcvtToken>(BBI, ICTriangle, TNeedSub, Dups)); 1354 Enqueued = true; 1355 } 1356 1357 if (ValidTriangle(TrueBBI, FalseBBI, true, Dups, Prediction) && 1358 MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost, 1359 TrueBBI.ExtraCost2, Prediction) && 1360 FeasibilityAnalysis(TrueBBI, BBI.BrCond, true, true)) { 1361 Tokens.push_back( 1362 std::make_unique<IfcvtToken>(BBI, ICTriangleRev, TNeedSub, Dups)); 1363 Enqueued = true; 1364 } 1365 1366 if (ValidSimple(TrueBBI, Dups, Prediction) && 1367 MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost, 1368 TrueBBI.ExtraCost2, Prediction) && 1369 FeasibilityAnalysis(TrueBBI, BBI.BrCond)) { 1370 // Simple (split, no rejoin): 1371 // EBB 1372 // | \_ 1373 // | | 1374 // | TBB---> exit 1375 // | 1376 // FBB 1377 Tokens.push_back( 1378 std::make_unique<IfcvtToken>(BBI, ICSimple, TNeedSub, Dups)); 1379 Enqueued = true; 1380 } 1381 1382 if (CanRevCond) { 1383 // Try the other path... 1384 if (ValidTriangle(FalseBBI, TrueBBI, false, Dups, 1385 Prediction.getCompl()) && 1386 MeetIfcvtSizeLimit(*FalseBBI.BB, 1387 FalseBBI.NonPredSize + FalseBBI.ExtraCost, 1388 FalseBBI.ExtraCost2, Prediction.getCompl()) && 1389 FeasibilityAnalysis(FalseBBI, RevCond, true)) { 1390 Tokens.push_back(std::make_unique<IfcvtToken>(BBI, ICTriangleFalse, 1391 FNeedSub, Dups)); 1392 Enqueued = true; 1393 } 1394 1395 if (ValidTriangle(FalseBBI, TrueBBI, true, Dups, 1396 Prediction.getCompl()) && 1397 MeetIfcvtSizeLimit(*FalseBBI.BB, 1398 FalseBBI.NonPredSize + FalseBBI.ExtraCost, 1399 FalseBBI.ExtraCost2, Prediction.getCompl()) && 1400 FeasibilityAnalysis(FalseBBI, RevCond, true, true)) { 1401 Tokens.push_back( 1402 std::make_unique<IfcvtToken>(BBI, ICTriangleFRev, FNeedSub, Dups)); 1403 Enqueued = true; 1404 } 1405 1406 if (ValidSimple(FalseBBI, Dups, Prediction.getCompl()) && 1407 MeetIfcvtSizeLimit(*FalseBBI.BB, 1408 FalseBBI.NonPredSize + FalseBBI.ExtraCost, 1409 FalseBBI.ExtraCost2, Prediction.getCompl()) && 1410 FeasibilityAnalysis(FalseBBI, RevCond)) { 1411 Tokens.push_back( 1412 std::make_unique<IfcvtToken>(BBI, ICSimpleFalse, FNeedSub, Dups)); 1413 Enqueued = true; 1414 } 1415 } 1416 1417 BBI.IsEnqueued = Enqueued; 1418 BBI.IsBeingAnalyzed = false; 1419 BBI.IsAnalyzed = true; 1420 BBStack.pop_back(); 1421 } 1422 } 1423 1424 /// Analyze all blocks and find entries for all if-conversion candidates. 1425 void IfConverter::AnalyzeBlocks( 1426 MachineFunction &MF, std::vector<std::unique_ptr<IfcvtToken>> &Tokens) { 1427 for (MachineBasicBlock &MBB : MF) 1428 AnalyzeBlock(MBB, Tokens); 1429 1430 // Sort to favor more complex ifcvt scheme. 1431 llvm::stable_sort(Tokens, IfcvtTokenCmp); 1432 } 1433 1434 /// Returns true either if ToMBB is the next block after MBB or that all the 1435 /// intervening blocks are empty (given MBB can fall through to its next block). 1436 static bool canFallThroughTo(MachineBasicBlock &MBB, MachineBasicBlock &ToMBB) { 1437 MachineFunction::iterator PI = MBB.getIterator(); 1438 MachineFunction::iterator I = std::next(PI); 1439 MachineFunction::iterator TI = ToMBB.getIterator(); 1440 MachineFunction::iterator E = MBB.getParent()->end(); 1441 while (I != TI) { 1442 // Check isSuccessor to avoid case where the next block is empty, but 1443 // it's not a successor. 1444 if (I == E || !I->empty() || !PI->isSuccessor(&*I)) 1445 return false; 1446 PI = I++; 1447 } 1448 // Finally see if the last I is indeed a successor to PI. 1449 return PI->isSuccessor(&*I); 1450 } 1451 1452 /// Invalidate predecessor BB info so it would be re-analyzed to determine if it 1453 /// can be if-converted. If predecessor is already enqueued, dequeue it! 1454 void IfConverter::InvalidatePreds(MachineBasicBlock &MBB) { 1455 for (const MachineBasicBlock *Predecessor : MBB.predecessors()) { 1456 BBInfo &PBBI = BBAnalysis[Predecessor->getNumber()]; 1457 if (PBBI.IsDone || PBBI.BB == &MBB) 1458 continue; 1459 PBBI.IsAnalyzed = false; 1460 PBBI.IsEnqueued = false; 1461 } 1462 } 1463 1464 /// Inserts an unconditional branch from \p MBB to \p ToMBB. 1465 static void InsertUncondBranch(MachineBasicBlock &MBB, MachineBasicBlock &ToMBB, 1466 const TargetInstrInfo *TII) { 1467 DebugLoc dl; // FIXME: this is nowhere 1468 SmallVector<MachineOperand, 0> NoCond; 1469 TII->insertBranch(MBB, &ToMBB, nullptr, NoCond, dl); 1470 } 1471 1472 /// Behaves like LiveRegUnits::StepForward() but also adds implicit uses to all 1473 /// values defined in MI which are also live/used by MI. 1474 static void UpdatePredRedefs(MachineInstr &MI, LivePhysRegs &Redefs) { 1475 const TargetRegisterInfo *TRI = MI.getMF()->getSubtarget().getRegisterInfo(); 1476 1477 // Before stepping forward past MI, remember which regs were live 1478 // before MI. This is needed to set the Undef flag only when reg is 1479 // dead. 1480 SparseSet<MCPhysReg, identity<MCPhysReg>> LiveBeforeMI; 1481 LiveBeforeMI.setUniverse(TRI->getNumRegs()); 1482 for (unsigned Reg : Redefs) 1483 LiveBeforeMI.insert(Reg); 1484 1485 SmallVector<std::pair<MCPhysReg, const MachineOperand*>, 4> Clobbers; 1486 Redefs.stepForward(MI, Clobbers); 1487 1488 // Now add the implicit uses for each of the clobbered values. 1489 for (auto Clobber : Clobbers) { 1490 // FIXME: Const cast here is nasty, but better than making StepForward 1491 // take a mutable instruction instead of const. 1492 unsigned Reg = Clobber.first; 1493 MachineOperand &Op = const_cast<MachineOperand&>(*Clobber.second); 1494 MachineInstr *OpMI = Op.getParent(); 1495 MachineInstrBuilder MIB(*OpMI->getMF(), OpMI); 1496 if (Op.isRegMask()) { 1497 // First handle regmasks. They clobber any entries in the mask which 1498 // means that we need a def for those registers. 1499 if (LiveBeforeMI.count(Reg)) 1500 MIB.addReg(Reg, RegState::Implicit); 1501 1502 // We also need to add an implicit def of this register for the later 1503 // use to read from. 1504 // For the register allocator to have allocated a register clobbered 1505 // by the call which is used later, it must be the case that 1506 // the call doesn't return. 1507 MIB.addReg(Reg, RegState::Implicit | RegState::Define); 1508 continue; 1509 } 1510 if (LiveBeforeMI.count(Reg)) 1511 MIB.addReg(Reg, RegState::Implicit); 1512 else { 1513 bool HasLiveSubReg = false; 1514 for (MCSubRegIterator S(Reg, TRI); S.isValid(); ++S) { 1515 if (!LiveBeforeMI.count(*S)) 1516 continue; 1517 HasLiveSubReg = true; 1518 break; 1519 } 1520 if (HasLiveSubReg) 1521 MIB.addReg(Reg, RegState::Implicit); 1522 } 1523 } 1524 } 1525 1526 /// If convert a simple (split, no rejoin) sub-CFG. 1527 bool IfConverter::IfConvertSimple(BBInfo &BBI, IfcvtKind Kind) { 1528 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()]; 1529 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()]; 1530 BBInfo *CvtBBI = &TrueBBI; 1531 BBInfo *NextBBI = &FalseBBI; 1532 1533 SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end()); 1534 if (Kind == ICSimpleFalse) 1535 std::swap(CvtBBI, NextBBI); 1536 1537 MachineBasicBlock &CvtMBB = *CvtBBI->BB; 1538 MachineBasicBlock &NextMBB = *NextBBI->BB; 1539 if (CvtBBI->IsDone || 1540 (CvtBBI->CannotBeCopied && CvtMBB.pred_size() > 1)) { 1541 // Something has changed. It's no longer safe to predicate this block. 1542 BBI.IsAnalyzed = false; 1543 CvtBBI->IsAnalyzed = false; 1544 return false; 1545 } 1546 1547 if (CvtMBB.hasAddressTaken()) 1548 // Conservatively abort if-conversion if BB's address is taken. 1549 return false; 1550 1551 if (Kind == ICSimpleFalse) 1552 if (TII->reverseBranchCondition(Cond)) 1553 llvm_unreachable("Unable to reverse branch condition!"); 1554 1555 Redefs.init(*TRI); 1556 1557 if (MRI->tracksLiveness()) { 1558 // Initialize liveins to the first BB. These are potentially redefined by 1559 // predicated instructions. 1560 Redefs.addLiveIns(CvtMBB); 1561 Redefs.addLiveIns(NextMBB); 1562 } 1563 1564 // Remove the branches from the entry so we can add the contents of the true 1565 // block to it. 1566 BBI.NonPredSize -= TII->removeBranch(*BBI.BB); 1567 1568 if (CvtMBB.pred_size() > 1) { 1569 // Copy instructions in the true block, predicate them, and add them to 1570 // the entry block. 1571 CopyAndPredicateBlock(BBI, *CvtBBI, Cond); 1572 1573 // Keep the CFG updated. 1574 BBI.BB->removeSuccessor(&CvtMBB, true); 1575 } else { 1576 // Predicate the instructions in the true block. 1577 PredicateBlock(*CvtBBI, CvtMBB.end(), Cond); 1578 1579 // Merge converted block into entry block. The BB to Cvt edge is removed 1580 // by MergeBlocks. 1581 MergeBlocks(BBI, *CvtBBI); 1582 } 1583 1584 bool IterIfcvt = true; 1585 if (!canFallThroughTo(*BBI.BB, NextMBB)) { 1586 InsertUncondBranch(*BBI.BB, NextMBB, TII); 1587 BBI.HasFallThrough = false; 1588 // Now ifcvt'd block will look like this: 1589 // BB: 1590 // ... 1591 // t, f = cmp 1592 // if t op 1593 // b BBf 1594 // 1595 // We cannot further ifcvt this block because the unconditional branch 1596 // will have to be predicated on the new condition, that will not be 1597 // available if cmp executes. 1598 IterIfcvt = false; 1599 } 1600 1601 // Update block info. BB can be iteratively if-converted. 1602 if (!IterIfcvt) 1603 BBI.IsDone = true; 1604 InvalidatePreds(*BBI.BB); 1605 CvtBBI->IsDone = true; 1606 1607 // FIXME: Must maintain LiveIns. 1608 return true; 1609 } 1610 1611 /// If convert a triangle sub-CFG. 1612 bool IfConverter::IfConvertTriangle(BBInfo &BBI, IfcvtKind Kind) { 1613 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()]; 1614 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()]; 1615 BBInfo *CvtBBI = &TrueBBI; 1616 BBInfo *NextBBI = &FalseBBI; 1617 DebugLoc dl; // FIXME: this is nowhere 1618 1619 SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end()); 1620 if (Kind == ICTriangleFalse || Kind == ICTriangleFRev) 1621 std::swap(CvtBBI, NextBBI); 1622 1623 MachineBasicBlock &CvtMBB = *CvtBBI->BB; 1624 MachineBasicBlock &NextMBB = *NextBBI->BB; 1625 if (CvtBBI->IsDone || 1626 (CvtBBI->CannotBeCopied && CvtMBB.pred_size() > 1)) { 1627 // Something has changed. It's no longer safe to predicate this block. 1628 BBI.IsAnalyzed = false; 1629 CvtBBI->IsAnalyzed = false; 1630 return false; 1631 } 1632 1633 if (CvtMBB.hasAddressTaken()) 1634 // Conservatively abort if-conversion if BB's address is taken. 1635 return false; 1636 1637 if (Kind == ICTriangleFalse || Kind == ICTriangleFRev) 1638 if (TII->reverseBranchCondition(Cond)) 1639 llvm_unreachable("Unable to reverse branch condition!"); 1640 1641 if (Kind == ICTriangleRev || Kind == ICTriangleFRev) { 1642 if (reverseBranchCondition(*CvtBBI)) { 1643 // BB has been changed, modify its predecessors (except for this 1644 // one) so they don't get ifcvt'ed based on bad intel. 1645 for (MachineBasicBlock *PBB : CvtMBB.predecessors()) { 1646 if (PBB == BBI.BB) 1647 continue; 1648 BBInfo &PBBI = BBAnalysis[PBB->getNumber()]; 1649 if (PBBI.IsEnqueued) { 1650 PBBI.IsAnalyzed = false; 1651 PBBI.IsEnqueued = false; 1652 } 1653 } 1654 } 1655 } 1656 1657 // Initialize liveins to the first BB. These are potentially redefined by 1658 // predicated instructions. 1659 Redefs.init(*TRI); 1660 if (MRI->tracksLiveness()) { 1661 Redefs.addLiveIns(CvtMBB); 1662 Redefs.addLiveIns(NextMBB); 1663 } 1664 1665 bool HasEarlyExit = CvtBBI->FalseBB != nullptr; 1666 BranchProbability CvtNext, CvtFalse, BBNext, BBCvt; 1667 1668 if (HasEarlyExit) { 1669 // Get probabilities before modifying CvtMBB and BBI.BB. 1670 CvtNext = MBPI->getEdgeProbability(&CvtMBB, &NextMBB); 1671 CvtFalse = MBPI->getEdgeProbability(&CvtMBB, CvtBBI->FalseBB); 1672 BBNext = MBPI->getEdgeProbability(BBI.BB, &NextMBB); 1673 BBCvt = MBPI->getEdgeProbability(BBI.BB, &CvtMBB); 1674 } 1675 1676 // Remove the branches from the entry so we can add the contents of the true 1677 // block to it. 1678 BBI.NonPredSize -= TII->removeBranch(*BBI.BB); 1679 1680 if (CvtMBB.pred_size() > 1) { 1681 // Copy instructions in the true block, predicate them, and add them to 1682 // the entry block. 1683 CopyAndPredicateBlock(BBI, *CvtBBI, Cond, true); 1684 } else { 1685 // Predicate the 'true' block after removing its branch. 1686 CvtBBI->NonPredSize -= TII->removeBranch(CvtMBB); 1687 PredicateBlock(*CvtBBI, CvtMBB.end(), Cond); 1688 1689 // Now merge the entry of the triangle with the true block. 1690 MergeBlocks(BBI, *CvtBBI, false); 1691 } 1692 1693 // Keep the CFG updated. 1694 BBI.BB->removeSuccessor(&CvtMBB, true); 1695 1696 // If 'true' block has a 'false' successor, add an exit branch to it. 1697 if (HasEarlyExit) { 1698 SmallVector<MachineOperand, 4> RevCond(CvtBBI->BrCond.begin(), 1699 CvtBBI->BrCond.end()); 1700 if (TII->reverseBranchCondition(RevCond)) 1701 llvm_unreachable("Unable to reverse branch condition!"); 1702 1703 // Update the edge probability for both CvtBBI->FalseBB and NextBBI. 1704 // NewNext = New_Prob(BBI.BB, NextMBB) = 1705 // Prob(BBI.BB, NextMBB) + 1706 // Prob(BBI.BB, CvtMBB) * Prob(CvtMBB, NextMBB) 1707 // NewFalse = New_Prob(BBI.BB, CvtBBI->FalseBB) = 1708 // Prob(BBI.BB, CvtMBB) * Prob(CvtMBB, CvtBBI->FalseBB) 1709 auto NewTrueBB = getNextBlock(*BBI.BB); 1710 auto NewNext = BBNext + BBCvt * CvtNext; 1711 auto NewTrueBBIter = find(BBI.BB->successors(), NewTrueBB); 1712 if (NewTrueBBIter != BBI.BB->succ_end()) 1713 BBI.BB->setSuccProbability(NewTrueBBIter, NewNext); 1714 1715 auto NewFalse = BBCvt * CvtFalse; 1716 TII->insertBranch(*BBI.BB, CvtBBI->FalseBB, nullptr, RevCond, dl); 1717 BBI.BB->addSuccessor(CvtBBI->FalseBB, NewFalse); 1718 } 1719 1720 // Merge in the 'false' block if the 'false' block has no other 1721 // predecessors. Otherwise, add an unconditional branch to 'false'. 1722 bool FalseBBDead = false; 1723 bool IterIfcvt = true; 1724 bool isFallThrough = canFallThroughTo(*BBI.BB, NextMBB); 1725 if (!isFallThrough) { 1726 // Only merge them if the true block does not fallthrough to the false 1727 // block. By not merging them, we make it possible to iteratively 1728 // ifcvt the blocks. 1729 if (!HasEarlyExit && 1730 NextMBB.pred_size() == 1 && !NextBBI->HasFallThrough && 1731 !NextMBB.hasAddressTaken()) { 1732 MergeBlocks(BBI, *NextBBI); 1733 FalseBBDead = true; 1734 } else { 1735 InsertUncondBranch(*BBI.BB, NextMBB, TII); 1736 BBI.HasFallThrough = false; 1737 } 1738 // Mixed predicated and unpredicated code. This cannot be iteratively 1739 // predicated. 1740 IterIfcvt = false; 1741 } 1742 1743 // Update block info. BB can be iteratively if-converted. 1744 if (!IterIfcvt) 1745 BBI.IsDone = true; 1746 InvalidatePreds(*BBI.BB); 1747 CvtBBI->IsDone = true; 1748 if (FalseBBDead) 1749 NextBBI->IsDone = true; 1750 1751 // FIXME: Must maintain LiveIns. 1752 return true; 1753 } 1754 1755 /// Common code shared between diamond conversions. 1756 /// \p BBI, \p TrueBBI, and \p FalseBBI form the diamond shape. 1757 /// \p NumDups1 - number of shared instructions at the beginning of \p TrueBBI 1758 /// and FalseBBI 1759 /// \p NumDups2 - number of shared instructions at the end of \p TrueBBI 1760 /// and \p FalseBBI 1761 /// \p RemoveBranch - Remove the common branch of the two blocks before 1762 /// predicating. Only false for unanalyzable fallthrough 1763 /// cases. The caller will replace the branch if necessary. 1764 /// \p MergeAddEdges - Add successor edges when merging blocks. Only false for 1765 /// unanalyzable fallthrough 1766 bool IfConverter::IfConvertDiamondCommon( 1767 BBInfo &BBI, BBInfo &TrueBBI, BBInfo &FalseBBI, 1768 unsigned NumDups1, unsigned NumDups2, 1769 bool TClobbersPred, bool FClobbersPred, 1770 bool RemoveBranch, bool MergeAddEdges) { 1771 1772 if (TrueBBI.IsDone || FalseBBI.IsDone || 1773 TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1) { 1774 // Something has changed. It's no longer safe to predicate these blocks. 1775 BBI.IsAnalyzed = false; 1776 TrueBBI.IsAnalyzed = false; 1777 FalseBBI.IsAnalyzed = false; 1778 return false; 1779 } 1780 1781 if (TrueBBI.BB->hasAddressTaken() || FalseBBI.BB->hasAddressTaken()) 1782 // Conservatively abort if-conversion if either BB has its address taken. 1783 return false; 1784 1785 // Put the predicated instructions from the 'true' block before the 1786 // instructions from the 'false' block, unless the true block would clobber 1787 // the predicate, in which case, do the opposite. 1788 BBInfo *BBI1 = &TrueBBI; 1789 BBInfo *BBI2 = &FalseBBI; 1790 SmallVector<MachineOperand, 4> RevCond(BBI.BrCond.begin(), BBI.BrCond.end()); 1791 if (TII->reverseBranchCondition(RevCond)) 1792 llvm_unreachable("Unable to reverse branch condition!"); 1793 SmallVector<MachineOperand, 4> *Cond1 = &BBI.BrCond; 1794 SmallVector<MachineOperand, 4> *Cond2 = &RevCond; 1795 1796 // Figure out the more profitable ordering. 1797 bool DoSwap = false; 1798 if (TClobbersPred && !FClobbersPred) 1799 DoSwap = true; 1800 else if (!TClobbersPred && !FClobbersPred) { 1801 if (TrueBBI.NonPredSize > FalseBBI.NonPredSize) 1802 DoSwap = true; 1803 } else if (TClobbersPred && FClobbersPred) 1804 llvm_unreachable("Predicate info cannot be clobbered by both sides."); 1805 if (DoSwap) { 1806 std::swap(BBI1, BBI2); 1807 std::swap(Cond1, Cond2); 1808 } 1809 1810 // Remove the conditional branch from entry to the blocks. 1811 BBI.NonPredSize -= TII->removeBranch(*BBI.BB); 1812 1813 MachineBasicBlock &MBB1 = *BBI1->BB; 1814 MachineBasicBlock &MBB2 = *BBI2->BB; 1815 1816 // Initialize the Redefs: 1817 // - BB2 live-in regs need implicit uses before being redefined by BB1 1818 // instructions. 1819 // - BB1 live-out regs need implicit uses before being redefined by BB2 1820 // instructions. We start with BB1 live-ins so we have the live-out regs 1821 // after tracking the BB1 instructions. 1822 Redefs.init(*TRI); 1823 if (MRI->tracksLiveness()) { 1824 Redefs.addLiveIns(MBB1); 1825 Redefs.addLiveIns(MBB2); 1826 } 1827 1828 // Remove the duplicated instructions at the beginnings of both paths. 1829 // Skip dbg_value instructions. 1830 MachineBasicBlock::iterator DI1 = MBB1.getFirstNonDebugInstr(); 1831 MachineBasicBlock::iterator DI2 = MBB2.getFirstNonDebugInstr(); 1832 BBI1->NonPredSize -= NumDups1; 1833 BBI2->NonPredSize -= NumDups1; 1834 1835 // Skip past the dups on each side separately since there may be 1836 // differing dbg_value entries. NumDups1 can include a "return" 1837 // instruction, if it's not marked as "branch". 1838 for (unsigned i = 0; i < NumDups1; ++DI1) { 1839 if (DI1 == MBB1.end()) 1840 break; 1841 if (!DI1->isDebugInstr()) 1842 ++i; 1843 } 1844 while (NumDups1 != 0) { 1845 // Since this instruction is going to be deleted, update call 1846 // site info state if the instruction is call instruction. 1847 if (DI2->isCall(MachineInstr::IgnoreBundle)) 1848 MBB2.getParent()->eraseCallSiteInfo(&*DI2); 1849 1850 ++DI2; 1851 if (DI2 == MBB2.end()) 1852 break; 1853 if (!DI2->isDebugInstr()) 1854 --NumDups1; 1855 } 1856 1857 if (MRI->tracksLiveness()) { 1858 for (const MachineInstr &MI : make_range(MBB1.begin(), DI1)) { 1859 SmallVector<std::pair<MCPhysReg, const MachineOperand*>, 4> Dummy; 1860 Redefs.stepForward(MI, Dummy); 1861 } 1862 } 1863 1864 BBI.BB->splice(BBI.BB->end(), &MBB1, MBB1.begin(), DI1); 1865 MBB2.erase(MBB2.begin(), DI2); 1866 1867 // The branches have been checked to match, so it is safe to remove the 1868 // branch in BB1 and rely on the copy in BB2. The complication is that 1869 // the blocks may end with a return instruction, which may or may not 1870 // be marked as "branch". If it's not, then it could be included in 1871 // "dups1", leaving the blocks potentially empty after moving the common 1872 // duplicates. 1873 #ifndef NDEBUG 1874 // Unanalyzable branches must match exactly. Check that now. 1875 if (!BBI1->IsBrAnalyzable) 1876 verifySameBranchInstructions(&MBB1, &MBB2); 1877 #endif 1878 // Remove duplicated instructions from the tail of MBB1: any branch 1879 // instructions, and the common instructions counted by NumDups2. 1880 DI1 = MBB1.end(); 1881 while (DI1 != MBB1.begin()) { 1882 MachineBasicBlock::iterator Prev = std::prev(DI1); 1883 if (!Prev->isBranch() && !Prev->isDebugInstr()) 1884 break; 1885 DI1 = Prev; 1886 } 1887 for (unsigned i = 0; i != NumDups2; ) { 1888 // NumDups2 only counted non-dbg_value instructions, so this won't 1889 // run off the head of the list. 1890 assert(DI1 != MBB1.begin()); 1891 1892 --DI1; 1893 1894 // Since this instruction is going to be deleted, update call 1895 // site info state if the instruction is call instruction. 1896 if (DI1->isCall(MachineInstr::IgnoreBundle)) 1897 MBB1.getParent()->eraseCallSiteInfo(&*DI1); 1898 1899 // skip dbg_value instructions 1900 if (!DI1->isDebugInstr()) 1901 ++i; 1902 } 1903 MBB1.erase(DI1, MBB1.end()); 1904 1905 DI2 = BBI2->BB->end(); 1906 // The branches have been checked to match. Skip over the branch in the false 1907 // block so that we don't try to predicate it. 1908 if (RemoveBranch) 1909 BBI2->NonPredSize -= TII->removeBranch(*BBI2->BB); 1910 else { 1911 // Make DI2 point to the end of the range where the common "tail" 1912 // instructions could be found. 1913 while (DI2 != MBB2.begin()) { 1914 MachineBasicBlock::iterator Prev = std::prev(DI2); 1915 if (!Prev->isBranch() && !Prev->isDebugInstr()) 1916 break; 1917 DI2 = Prev; 1918 } 1919 } 1920 while (NumDups2 != 0) { 1921 // NumDups2 only counted non-dbg_value instructions, so this won't 1922 // run off the head of the list. 1923 assert(DI2 != MBB2.begin()); 1924 --DI2; 1925 // skip dbg_value instructions 1926 if (!DI2->isDebugInstr()) 1927 --NumDups2; 1928 } 1929 1930 // Remember which registers would later be defined by the false block. 1931 // This allows us not to predicate instructions in the true block that would 1932 // later be re-defined. That is, rather than 1933 // subeq r0, r1, #1 1934 // addne r0, r1, #1 1935 // generate: 1936 // sub r0, r1, #1 1937 // addne r0, r1, #1 1938 SmallSet<MCPhysReg, 4> RedefsByFalse; 1939 SmallSet<MCPhysReg, 4> ExtUses; 1940 if (TII->isProfitableToUnpredicate(MBB1, MBB2)) { 1941 for (const MachineInstr &FI : make_range(MBB2.begin(), DI2)) { 1942 if (FI.isDebugInstr()) 1943 continue; 1944 SmallVector<MCPhysReg, 4> Defs; 1945 for (const MachineOperand &MO : FI.operands()) { 1946 if (!MO.isReg()) 1947 continue; 1948 Register Reg = MO.getReg(); 1949 if (!Reg) 1950 continue; 1951 if (MO.isDef()) { 1952 Defs.push_back(Reg); 1953 } else if (!RedefsByFalse.count(Reg)) { 1954 // These are defined before ctrl flow reach the 'false' instructions. 1955 // They cannot be modified by the 'true' instructions. 1956 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); 1957 SubRegs.isValid(); ++SubRegs) 1958 ExtUses.insert(*SubRegs); 1959 } 1960 } 1961 1962 for (MCPhysReg Reg : Defs) { 1963 if (!ExtUses.count(Reg)) { 1964 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); 1965 SubRegs.isValid(); ++SubRegs) 1966 RedefsByFalse.insert(*SubRegs); 1967 } 1968 } 1969 } 1970 } 1971 1972 // Predicate the 'true' block. 1973 PredicateBlock(*BBI1, MBB1.end(), *Cond1, &RedefsByFalse); 1974 1975 // After predicating BBI1, if there is a predicated terminator in BBI1 and 1976 // a non-predicated in BBI2, then we don't want to predicate the one from 1977 // BBI2. The reason is that if we merged these blocks, we would end up with 1978 // two predicated terminators in the same block. 1979 // Also, if the branches in MBB1 and MBB2 were non-analyzable, then don't 1980 // predicate them either. They were checked to be identical, and so the 1981 // same branch would happen regardless of which path was taken. 1982 if (!MBB2.empty() && (DI2 == MBB2.end())) { 1983 MachineBasicBlock::iterator BBI1T = MBB1.getFirstTerminator(); 1984 MachineBasicBlock::iterator BBI2T = MBB2.getFirstTerminator(); 1985 bool BB1Predicated = BBI1T != MBB1.end() && TII->isPredicated(*BBI1T); 1986 bool BB2NonPredicated = BBI2T != MBB2.end() && !TII->isPredicated(*BBI2T); 1987 if (BB2NonPredicated && (BB1Predicated || !BBI2->IsBrAnalyzable)) 1988 --DI2; 1989 } 1990 1991 // Predicate the 'false' block. 1992 PredicateBlock(*BBI2, DI2, *Cond2); 1993 1994 // Merge the true block into the entry of the diamond. 1995 MergeBlocks(BBI, *BBI1, MergeAddEdges); 1996 MergeBlocks(BBI, *BBI2, MergeAddEdges); 1997 return true; 1998 } 1999 2000 /// If convert an almost-diamond sub-CFG where the true 2001 /// and false blocks share a common tail. 2002 bool IfConverter::IfConvertForkedDiamond( 2003 BBInfo &BBI, IfcvtKind Kind, 2004 unsigned NumDups1, unsigned NumDups2, 2005 bool TClobbersPred, bool FClobbersPred) { 2006 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()]; 2007 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()]; 2008 2009 // Save the debug location for later. 2010 DebugLoc dl; 2011 MachineBasicBlock::iterator TIE = TrueBBI.BB->getFirstTerminator(); 2012 if (TIE != TrueBBI.BB->end()) 2013 dl = TIE->getDebugLoc(); 2014 // Removing branches from both blocks is safe, because we have already 2015 // determined that both blocks have the same branch instructions. The branch 2016 // will be added back at the end, unpredicated. 2017 if (!IfConvertDiamondCommon( 2018 BBI, TrueBBI, FalseBBI, 2019 NumDups1, NumDups2, 2020 TClobbersPred, FClobbersPred, 2021 /* RemoveBranch */ true, /* MergeAddEdges */ true)) 2022 return false; 2023 2024 // Add back the branch. 2025 // Debug location saved above when removing the branch from BBI2 2026 TII->insertBranch(*BBI.BB, TrueBBI.TrueBB, TrueBBI.FalseBB, 2027 TrueBBI.BrCond, dl); 2028 2029 // Update block info. 2030 BBI.IsDone = TrueBBI.IsDone = FalseBBI.IsDone = true; 2031 InvalidatePreds(*BBI.BB); 2032 2033 // FIXME: Must maintain LiveIns. 2034 return true; 2035 } 2036 2037 /// If convert a diamond sub-CFG. 2038 bool IfConverter::IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind, 2039 unsigned NumDups1, unsigned NumDups2, 2040 bool TClobbersPred, bool FClobbersPred) { 2041 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()]; 2042 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()]; 2043 MachineBasicBlock *TailBB = TrueBBI.TrueBB; 2044 2045 // True block must fall through or end with an unanalyzable terminator. 2046 if (!TailBB) { 2047 if (blockAlwaysFallThrough(TrueBBI)) 2048 TailBB = FalseBBI.TrueBB; 2049 assert((TailBB || !TrueBBI.IsBrAnalyzable) && "Unexpected!"); 2050 } 2051 2052 if (!IfConvertDiamondCommon( 2053 BBI, TrueBBI, FalseBBI, 2054 NumDups1, NumDups2, 2055 TClobbersPred, FClobbersPred, 2056 /* RemoveBranch */ TrueBBI.IsBrAnalyzable, 2057 /* MergeAddEdges */ TailBB == nullptr)) 2058 return false; 2059 2060 // If the if-converted block falls through or unconditionally branches into 2061 // the tail block, and the tail block does not have other predecessors, then 2062 // fold the tail block in as well. Otherwise, unless it falls through to the 2063 // tail, add a unconditional branch to it. 2064 if (TailBB) { 2065 // We need to remove the edges to the true and false blocks manually since 2066 // we didn't let IfConvertDiamondCommon update the CFG. 2067 BBI.BB->removeSuccessor(TrueBBI.BB); 2068 BBI.BB->removeSuccessor(FalseBBI.BB, true); 2069 2070 BBInfo &TailBBI = BBAnalysis[TailBB->getNumber()]; 2071 bool CanMergeTail = !TailBBI.HasFallThrough && 2072 !TailBBI.BB->hasAddressTaken(); 2073 // The if-converted block can still have a predicated terminator 2074 // (e.g. a predicated return). If that is the case, we cannot merge 2075 // it with the tail block. 2076 MachineBasicBlock::const_iterator TI = BBI.BB->getFirstTerminator(); 2077 if (TI != BBI.BB->end() && TII->isPredicated(*TI)) 2078 CanMergeTail = false; 2079 // There may still be a fall-through edge from BBI1 or BBI2 to TailBB; 2080 // check if there are any other predecessors besides those. 2081 unsigned NumPreds = TailBB->pred_size(); 2082 if (NumPreds > 1) 2083 CanMergeTail = false; 2084 else if (NumPreds == 1 && CanMergeTail) { 2085 MachineBasicBlock::pred_iterator PI = TailBB->pred_begin(); 2086 if (*PI != TrueBBI.BB && *PI != FalseBBI.BB) 2087 CanMergeTail = false; 2088 } 2089 if (CanMergeTail) { 2090 MergeBlocks(BBI, TailBBI); 2091 TailBBI.IsDone = true; 2092 } else { 2093 BBI.BB->addSuccessor(TailBB, BranchProbability::getOne()); 2094 InsertUncondBranch(*BBI.BB, *TailBB, TII); 2095 BBI.HasFallThrough = false; 2096 } 2097 } 2098 2099 // Update block info. 2100 BBI.IsDone = TrueBBI.IsDone = FalseBBI.IsDone = true; 2101 InvalidatePreds(*BBI.BB); 2102 2103 // FIXME: Must maintain LiveIns. 2104 return true; 2105 } 2106 2107 static bool MaySpeculate(const MachineInstr &MI, 2108 SmallSet<MCPhysReg, 4> &LaterRedefs) { 2109 bool SawStore = true; 2110 if (!MI.isSafeToMove(nullptr, SawStore)) 2111 return false; 2112 2113 for (const MachineOperand &MO : MI.operands()) { 2114 if (!MO.isReg()) 2115 continue; 2116 Register Reg = MO.getReg(); 2117 if (!Reg) 2118 continue; 2119 if (MO.isDef() && !LaterRedefs.count(Reg)) 2120 return false; 2121 } 2122 2123 return true; 2124 } 2125 2126 /// Predicate instructions from the start of the block to the specified end with 2127 /// the specified condition. 2128 void IfConverter::PredicateBlock(BBInfo &BBI, 2129 MachineBasicBlock::iterator E, 2130 SmallVectorImpl<MachineOperand> &Cond, 2131 SmallSet<MCPhysReg, 4> *LaterRedefs) { 2132 bool AnyUnpred = false; 2133 bool MaySpec = LaterRedefs != nullptr; 2134 for (MachineInstr &I : make_range(BBI.BB->begin(), E)) { 2135 if (I.isDebugInstr() || TII->isPredicated(I)) 2136 continue; 2137 // It may be possible not to predicate an instruction if it's the 'true' 2138 // side of a diamond and the 'false' side may re-define the instruction's 2139 // defs. 2140 if (MaySpec && MaySpeculate(I, *LaterRedefs)) { 2141 AnyUnpred = true; 2142 continue; 2143 } 2144 // If any instruction is predicated, then every instruction after it must 2145 // be predicated. 2146 MaySpec = false; 2147 if (!TII->PredicateInstruction(I, Cond)) { 2148 #ifndef NDEBUG 2149 dbgs() << "Unable to predicate " << I << "!\n"; 2150 #endif 2151 llvm_unreachable(nullptr); 2152 } 2153 2154 // If the predicated instruction now redefines a register as the result of 2155 // if-conversion, add an implicit kill. 2156 UpdatePredRedefs(I, Redefs); 2157 } 2158 2159 BBI.Predicate.append(Cond.begin(), Cond.end()); 2160 2161 BBI.IsAnalyzed = false; 2162 BBI.NonPredSize = 0; 2163 2164 ++NumIfConvBBs; 2165 if (AnyUnpred) 2166 ++NumUnpred; 2167 } 2168 2169 /// Copy and predicate instructions from source BB to the destination block. 2170 /// Skip end of block branches if IgnoreBr is true. 2171 void IfConverter::CopyAndPredicateBlock(BBInfo &ToBBI, BBInfo &FromBBI, 2172 SmallVectorImpl<MachineOperand> &Cond, 2173 bool IgnoreBr) { 2174 MachineFunction &MF = *ToBBI.BB->getParent(); 2175 2176 MachineBasicBlock &FromMBB = *FromBBI.BB; 2177 for (MachineInstr &I : FromMBB) { 2178 // Do not copy the end of the block branches. 2179 if (IgnoreBr && I.isBranch()) 2180 break; 2181 2182 MachineInstr *MI = MF.CloneMachineInstr(&I); 2183 // Make a copy of the call site info. 2184 if (MI->isCall(MachineInstr::IgnoreBundle)) 2185 MF.copyCallSiteInfo(&I,MI); 2186 2187 ToBBI.BB->insert(ToBBI.BB->end(), MI); 2188 ToBBI.NonPredSize++; 2189 unsigned ExtraPredCost = TII->getPredicationCost(I); 2190 unsigned NumCycles = SchedModel.computeInstrLatency(&I, false); 2191 if (NumCycles > 1) 2192 ToBBI.ExtraCost += NumCycles-1; 2193 ToBBI.ExtraCost2 += ExtraPredCost; 2194 2195 if (!TII->isPredicated(I) && !MI->isDebugInstr()) { 2196 if (!TII->PredicateInstruction(*MI, Cond)) { 2197 #ifndef NDEBUG 2198 dbgs() << "Unable to predicate " << I << "!\n"; 2199 #endif 2200 llvm_unreachable(nullptr); 2201 } 2202 } 2203 2204 // If the predicated instruction now redefines a register as the result of 2205 // if-conversion, add an implicit kill. 2206 UpdatePredRedefs(*MI, Redefs); 2207 } 2208 2209 if (!IgnoreBr) { 2210 std::vector<MachineBasicBlock *> Succs(FromMBB.succ_begin(), 2211 FromMBB.succ_end()); 2212 MachineBasicBlock *NBB = getNextBlock(FromMBB); 2213 MachineBasicBlock *FallThrough = FromBBI.HasFallThrough ? NBB : nullptr; 2214 2215 for (MachineBasicBlock *Succ : Succs) { 2216 // Fallthrough edge can't be transferred. 2217 if (Succ == FallThrough) 2218 continue; 2219 ToBBI.BB->addSuccessor(Succ); 2220 } 2221 } 2222 2223 ToBBI.Predicate.append(FromBBI.Predicate.begin(), FromBBI.Predicate.end()); 2224 ToBBI.Predicate.append(Cond.begin(), Cond.end()); 2225 2226 ToBBI.ClobbersPred |= FromBBI.ClobbersPred; 2227 ToBBI.IsAnalyzed = false; 2228 2229 ++NumDupBBs; 2230 } 2231 2232 /// Move all instructions from FromBB to the end of ToBB. This will leave 2233 /// FromBB as an empty block, so remove all of its successor edges except for 2234 /// the fall-through edge. If AddEdges is true, i.e., when FromBBI's branch is 2235 /// being moved, add those successor edges to ToBBI and remove the old edge 2236 /// from ToBBI to FromBBI. 2237 void IfConverter::MergeBlocks(BBInfo &ToBBI, BBInfo &FromBBI, bool AddEdges) { 2238 MachineBasicBlock &FromMBB = *FromBBI.BB; 2239 assert(!FromMBB.hasAddressTaken() && 2240 "Removing a BB whose address is taken!"); 2241 2242 // In case FromMBB contains terminators (e.g. return instruction), 2243 // first move the non-terminator instructions, then the terminators. 2244 MachineBasicBlock::iterator FromTI = FromMBB.getFirstTerminator(); 2245 MachineBasicBlock::iterator ToTI = ToBBI.BB->getFirstTerminator(); 2246 ToBBI.BB->splice(ToTI, &FromMBB, FromMBB.begin(), FromTI); 2247 2248 // If FromBB has non-predicated terminator we should copy it at the end. 2249 if (FromTI != FromMBB.end() && !TII->isPredicated(*FromTI)) 2250 ToTI = ToBBI.BB->end(); 2251 ToBBI.BB->splice(ToTI, &FromMBB, FromTI, FromMBB.end()); 2252 2253 // Force normalizing the successors' probabilities of ToBBI.BB to convert all 2254 // unknown probabilities into known ones. 2255 // FIXME: This usage is too tricky and in the future we would like to 2256 // eliminate all unknown probabilities in MBB. 2257 if (ToBBI.IsBrAnalyzable) 2258 ToBBI.BB->normalizeSuccProbs(); 2259 2260 SmallVector<MachineBasicBlock *, 4> FromSuccs(FromMBB.succ_begin(), 2261 FromMBB.succ_end()); 2262 MachineBasicBlock *NBB = getNextBlock(FromMBB); 2263 MachineBasicBlock *FallThrough = FromBBI.HasFallThrough ? NBB : nullptr; 2264 // The edge probability from ToBBI.BB to FromMBB, which is only needed when 2265 // AddEdges is true and FromMBB is a successor of ToBBI.BB. 2266 auto To2FromProb = BranchProbability::getZero(); 2267 if (AddEdges && ToBBI.BB->isSuccessor(&FromMBB)) { 2268 // Remove the old edge but remember the edge probability so we can calculate 2269 // the correct weights on the new edges being added further down. 2270 To2FromProb = MBPI->getEdgeProbability(ToBBI.BB, &FromMBB); 2271 ToBBI.BB->removeSuccessor(&FromMBB); 2272 } 2273 2274 for (MachineBasicBlock *Succ : FromSuccs) { 2275 // Fallthrough edge can't be transferred. 2276 if (Succ == FallThrough) 2277 continue; 2278 2279 auto NewProb = BranchProbability::getZero(); 2280 if (AddEdges) { 2281 // Calculate the edge probability for the edge from ToBBI.BB to Succ, 2282 // which is a portion of the edge probability from FromMBB to Succ. The 2283 // portion ratio is the edge probability from ToBBI.BB to FromMBB (if 2284 // FromBBI is a successor of ToBBI.BB. See comment below for exception). 2285 NewProb = MBPI->getEdgeProbability(&FromMBB, Succ); 2286 2287 // To2FromProb is 0 when FromMBB is not a successor of ToBBI.BB. This 2288 // only happens when if-converting a diamond CFG and FromMBB is the 2289 // tail BB. In this case FromMBB post-dominates ToBBI.BB and hence we 2290 // could just use the probabilities on FromMBB's out-edges when adding 2291 // new successors. 2292 if (!To2FromProb.isZero()) 2293 NewProb *= To2FromProb; 2294 } 2295 2296 FromMBB.removeSuccessor(Succ); 2297 2298 if (AddEdges) { 2299 // If the edge from ToBBI.BB to Succ already exists, update the 2300 // probability of this edge by adding NewProb to it. An example is shown 2301 // below, in which A is ToBBI.BB and B is FromMBB. In this case we 2302 // don't have to set C as A's successor as it already is. We only need to 2303 // update the edge probability on A->C. Note that B will not be 2304 // immediately removed from A's successors. It is possible that B->D is 2305 // not removed either if D is a fallthrough of B. Later the edge A->D 2306 // (generated here) and B->D will be combined into one edge. To maintain 2307 // correct edge probability of this combined edge, we need to set the edge 2308 // probability of A->B to zero, which is already done above. The edge 2309 // probability on A->D is calculated by scaling the original probability 2310 // on A->B by the probability of B->D. 2311 // 2312 // Before ifcvt: After ifcvt (assume B->D is kept): 2313 // 2314 // A A 2315 // /| /|\ 2316 // / B / B| 2317 // | /| | || 2318 // |/ | | |/ 2319 // C D C D 2320 // 2321 if (ToBBI.BB->isSuccessor(Succ)) 2322 ToBBI.BB->setSuccProbability( 2323 find(ToBBI.BB->successors(), Succ), 2324 MBPI->getEdgeProbability(ToBBI.BB, Succ) + NewProb); 2325 else 2326 ToBBI.BB->addSuccessor(Succ, NewProb); 2327 } 2328 } 2329 2330 // Move the now empty FromMBB out of the way to the end of the function so 2331 // it doesn't interfere with fallthrough checks done by canFallThroughTo(). 2332 MachineBasicBlock *Last = &*FromMBB.getParent()->rbegin(); 2333 if (Last != &FromMBB) 2334 FromMBB.moveAfter(Last); 2335 2336 // Normalize the probabilities of ToBBI.BB's successors with all adjustment 2337 // we've done above. 2338 if (ToBBI.IsBrAnalyzable && FromBBI.IsBrAnalyzable) 2339 ToBBI.BB->normalizeSuccProbs(); 2340 2341 ToBBI.Predicate.append(FromBBI.Predicate.begin(), FromBBI.Predicate.end()); 2342 FromBBI.Predicate.clear(); 2343 2344 ToBBI.NonPredSize += FromBBI.NonPredSize; 2345 ToBBI.ExtraCost += FromBBI.ExtraCost; 2346 ToBBI.ExtraCost2 += FromBBI.ExtraCost2; 2347 FromBBI.NonPredSize = 0; 2348 FromBBI.ExtraCost = 0; 2349 FromBBI.ExtraCost2 = 0; 2350 2351 ToBBI.ClobbersPred |= FromBBI.ClobbersPred; 2352 ToBBI.HasFallThrough = FromBBI.HasFallThrough; 2353 ToBBI.IsAnalyzed = false; 2354 FromBBI.IsAnalyzed = false; 2355 } 2356 2357 FunctionPass * 2358 llvm::createIfConverter(std::function<bool(const MachineFunction &)> Ftor) { 2359 return new IfConverter(std::move(Ftor)); 2360 } 2361