1 //===-- lib/CodeGen/GlobalISel/GICombinerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 #include "llvm/CodeGen/GlobalISel/CombinerHelper.h" 9 #include "llvm/CodeGen/GlobalISel/Combiner.h" 10 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 11 #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h" 12 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 13 #include "llvm/CodeGen/GlobalISel/Utils.h" 14 #include "llvm/CodeGen/MachineDominators.h" 15 #include "llvm/CodeGen/MachineFrameInfo.h" 16 #include "llvm/CodeGen/MachineInstr.h" 17 #include "llvm/CodeGen/MachineRegisterInfo.h" 18 #include "llvm/CodeGen/TargetInstrInfo.h" 19 #include "llvm/CodeGen/TargetLowering.h" 20 #include "llvm/Target/TargetMachine.h" 21 22 #define DEBUG_TYPE "gi-combiner" 23 24 using namespace llvm; 25 26 // Option to allow testing of the combiner while no targets know about indexed 27 // addressing. 28 static cl::opt<bool> 29 ForceLegalIndexing("force-legal-indexing", cl::Hidden, cl::init(false), 30 cl::desc("Force all indexed operations to be " 31 "legal for the GlobalISel combiner")); 32 33 34 CombinerHelper::CombinerHelper(GISelChangeObserver &Observer, 35 MachineIRBuilder &B, GISelKnownBits *KB, 36 MachineDominatorTree *MDT) 37 : Builder(B), MRI(Builder.getMF().getRegInfo()), Observer(Observer), 38 KB(KB), MDT(MDT) { 39 (void)this->KB; 40 } 41 42 void CombinerHelper::replaceRegWith(MachineRegisterInfo &MRI, Register FromReg, 43 Register ToReg) const { 44 Observer.changingAllUsesOfReg(MRI, FromReg); 45 46 if (MRI.constrainRegAttrs(ToReg, FromReg)) 47 MRI.replaceRegWith(FromReg, ToReg); 48 else 49 Builder.buildCopy(ToReg, FromReg); 50 51 Observer.finishedChangingAllUsesOfReg(); 52 } 53 54 void CombinerHelper::replaceRegOpWith(MachineRegisterInfo &MRI, 55 MachineOperand &FromRegOp, 56 Register ToReg) const { 57 assert(FromRegOp.getParent() && "Expected an operand in an MI"); 58 Observer.changingInstr(*FromRegOp.getParent()); 59 60 FromRegOp.setReg(ToReg); 61 62 Observer.changedInstr(*FromRegOp.getParent()); 63 } 64 65 bool CombinerHelper::tryCombineCopy(MachineInstr &MI) { 66 if (matchCombineCopy(MI)) { 67 applyCombineCopy(MI); 68 return true; 69 } 70 return false; 71 } 72 bool CombinerHelper::matchCombineCopy(MachineInstr &MI) { 73 if (MI.getOpcode() != TargetOpcode::COPY) 74 return false; 75 Register DstReg = MI.getOperand(0).getReg(); 76 Register SrcReg = MI.getOperand(1).getReg(); 77 LLT DstTy = MRI.getType(DstReg); 78 LLT SrcTy = MRI.getType(SrcReg); 79 // Simple Copy Propagation. 80 // a(sx) = COPY b(sx) -> Replace all uses of a with b. 81 if (DstTy.isValid() && SrcTy.isValid() && DstTy == SrcTy) 82 return true; 83 return false; 84 } 85 void CombinerHelper::applyCombineCopy(MachineInstr &MI) { 86 Register DstReg = MI.getOperand(0).getReg(); 87 Register SrcReg = MI.getOperand(1).getReg(); 88 MI.eraseFromParent(); 89 replaceRegWith(MRI, DstReg, SrcReg); 90 } 91 92 bool CombinerHelper::tryCombineConcatVectors(MachineInstr &MI) { 93 bool IsUndef = false; 94 SmallVector<Register, 4> Ops; 95 if (matchCombineConcatVectors(MI, IsUndef, Ops)) { 96 applyCombineConcatVectors(MI, IsUndef, Ops); 97 return true; 98 } 99 return false; 100 } 101 102 bool CombinerHelper::matchCombineConcatVectors(MachineInstr &MI, bool &IsUndef, 103 SmallVectorImpl<Register> &Ops) { 104 assert(MI.getOpcode() == TargetOpcode::G_CONCAT_VECTORS && 105 "Invalid instruction"); 106 IsUndef = true; 107 MachineInstr *Undef = nullptr; 108 109 // Walk over all the operands of concat vectors and check if they are 110 // build_vector themselves or undef. 111 // Then collect their operands in Ops. 112 for (const MachineOperand &MO : MI.operands()) { 113 // Skip the instruction definition. 114 if (MO.isDef()) 115 continue; 116 Register Reg = MO.getReg(); 117 MachineInstr *Def = MRI.getVRegDef(Reg); 118 assert(Def && "Operand not defined"); 119 switch (Def->getOpcode()) { 120 case TargetOpcode::G_BUILD_VECTOR: 121 IsUndef = false; 122 // Remember the operands of the build_vector to fold 123 // them into the yet-to-build flattened concat vectors. 124 for (const MachineOperand &BuildVecMO : Def->operands()) { 125 // Skip the definition. 126 if (BuildVecMO.isDef()) 127 continue; 128 Ops.push_back(BuildVecMO.getReg()); 129 } 130 break; 131 case TargetOpcode::G_IMPLICIT_DEF: { 132 LLT OpType = MRI.getType(Reg); 133 // Keep one undef value for all the undef operands. 134 if (!Undef) { 135 Builder.setInsertPt(*MI.getParent(), MI); 136 Undef = Builder.buildUndef(OpType.getScalarType()); 137 } 138 assert(MRI.getType(Undef->getOperand(0).getReg()) == 139 OpType.getScalarType() && 140 "All undefs should have the same type"); 141 // Break the undef vector in as many scalar elements as needed 142 // for the flattening. 143 for (unsigned EltIdx = 0, EltEnd = OpType.getNumElements(); 144 EltIdx != EltEnd; ++EltIdx) 145 Ops.push_back(Undef->getOperand(0).getReg()); 146 break; 147 } 148 default: 149 return false; 150 } 151 } 152 return true; 153 } 154 void CombinerHelper::applyCombineConcatVectors( 155 MachineInstr &MI, bool IsUndef, const ArrayRef<Register> Ops) { 156 // We determined that the concat_vectors can be flatten. 157 // Generate the flattened build_vector. 158 Register DstReg = MI.getOperand(0).getReg(); 159 Builder.setInsertPt(*MI.getParent(), MI); 160 Register NewDstReg = MRI.cloneVirtualRegister(DstReg); 161 162 // Note: IsUndef is sort of redundant. We could have determine it by 163 // checking that at all Ops are undef. Alternatively, we could have 164 // generate a build_vector of undefs and rely on another combine to 165 // clean that up. For now, given we already gather this information 166 // in tryCombineConcatVectors, just save compile time and issue the 167 // right thing. 168 if (IsUndef) 169 Builder.buildUndef(NewDstReg); 170 else 171 Builder.buildBuildVector(NewDstReg, Ops); 172 MI.eraseFromParent(); 173 replaceRegWith(MRI, DstReg, NewDstReg); 174 } 175 176 bool CombinerHelper::tryCombineShuffleVector(MachineInstr &MI) { 177 SmallVector<Register, 4> Ops; 178 if (matchCombineShuffleVector(MI, Ops)) { 179 applyCombineShuffleVector(MI, Ops); 180 return true; 181 } 182 return false; 183 } 184 185 bool CombinerHelper::matchCombineShuffleVector(MachineInstr &MI, 186 SmallVectorImpl<Register> &Ops) { 187 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR && 188 "Invalid instruction kind"); 189 LLT DstType = MRI.getType(MI.getOperand(0).getReg()); 190 Register Src1 = MI.getOperand(1).getReg(); 191 LLT SrcType = MRI.getType(Src1); 192 unsigned DstNumElts = DstType.getNumElements(); 193 unsigned SrcNumElts = SrcType.getNumElements(); 194 195 // If the resulting vector is smaller than the size of the source 196 // vectors being concatenated, we won't be able to replace the 197 // shuffle vector into a concat_vectors. 198 // 199 // Note: We may still be able to produce a concat_vectors fed by 200 // extract_vector_elt and so on. It is less clear that would 201 // be better though, so don't bother for now. 202 if (DstNumElts < 2 * SrcNumElts) 203 return false; 204 205 // Check that the shuffle mask can be broken evenly between the 206 // different sources. 207 if (DstNumElts % SrcNumElts != 0) 208 return false; 209 210 // Mask length is a multiple of the source vector length. 211 // Check if the shuffle is some kind of concatenation of the input 212 // vectors. 213 unsigned NumConcat = DstNumElts / SrcNumElts; 214 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 215 SmallVector<int, 8> Mask; 216 ShuffleVectorInst::getShuffleMask(MI.getOperand(3).getShuffleMask(), Mask); 217 for (unsigned i = 0; i != DstNumElts; ++i) { 218 int Idx = Mask[i]; 219 // Undef value. 220 if (Idx < 0) 221 continue; 222 // Ensure the indices in each SrcType sized piece are sequential and that 223 // the same source is used for the whole piece. 224 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 225 (ConcatSrcs[i / SrcNumElts] >= 0 && 226 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) 227 return false; 228 // Remember which source this index came from. 229 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 230 } 231 232 // The shuffle is concatenating multiple vectors together. 233 // Collect the different operands for that. 234 Register UndefReg; 235 Register Src2 = MI.getOperand(2).getReg(); 236 for (auto Src : ConcatSrcs) { 237 if (Src < 0) { 238 if (!UndefReg) { 239 Builder.setInsertPt(*MI.getParent(), MI); 240 UndefReg = Builder.buildUndef(SrcType).getReg(0); 241 } 242 Ops.push_back(UndefReg); 243 } else if (Src == 0) 244 Ops.push_back(Src1); 245 else 246 Ops.push_back(Src2); 247 } 248 return true; 249 } 250 251 void CombinerHelper::applyCombineShuffleVector(MachineInstr &MI, 252 const ArrayRef<Register> Ops) { 253 Register DstReg = MI.getOperand(0).getReg(); 254 Builder.setInsertPt(*MI.getParent(), MI); 255 Register NewDstReg = MRI.cloneVirtualRegister(DstReg); 256 257 Builder.buildConcatVectors(NewDstReg, Ops); 258 259 MI.eraseFromParent(); 260 replaceRegWith(MRI, DstReg, NewDstReg); 261 } 262 263 namespace { 264 265 /// Select a preference between two uses. CurrentUse is the current preference 266 /// while *ForCandidate is attributes of the candidate under consideration. 267 PreferredTuple ChoosePreferredUse(PreferredTuple &CurrentUse, 268 const LLT &TyForCandidate, 269 unsigned OpcodeForCandidate, 270 MachineInstr *MIForCandidate) { 271 if (!CurrentUse.Ty.isValid()) { 272 if (CurrentUse.ExtendOpcode == OpcodeForCandidate || 273 CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT) 274 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 275 return CurrentUse; 276 } 277 278 // We permit the extend to hoist through basic blocks but this is only 279 // sensible if the target has extending loads. If you end up lowering back 280 // into a load and extend during the legalizer then the end result is 281 // hoisting the extend up to the load. 282 283 // Prefer defined extensions to undefined extensions as these are more 284 // likely to reduce the number of instructions. 285 if (OpcodeForCandidate == TargetOpcode::G_ANYEXT && 286 CurrentUse.ExtendOpcode != TargetOpcode::G_ANYEXT) 287 return CurrentUse; 288 else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT && 289 OpcodeForCandidate != TargetOpcode::G_ANYEXT) 290 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 291 292 // Prefer sign extensions to zero extensions as sign-extensions tend to be 293 // more expensive. 294 if (CurrentUse.Ty == TyForCandidate) { 295 if (CurrentUse.ExtendOpcode == TargetOpcode::G_SEXT && 296 OpcodeForCandidate == TargetOpcode::G_ZEXT) 297 return CurrentUse; 298 else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ZEXT && 299 OpcodeForCandidate == TargetOpcode::G_SEXT) 300 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 301 } 302 303 // This is potentially target specific. We've chosen the largest type 304 // because G_TRUNC is usually free. One potential catch with this is that 305 // some targets have a reduced number of larger registers than smaller 306 // registers and this choice potentially increases the live-range for the 307 // larger value. 308 if (TyForCandidate.getSizeInBits() > CurrentUse.Ty.getSizeInBits()) { 309 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 310 } 311 return CurrentUse; 312 } 313 314 /// Find a suitable place to insert some instructions and insert them. This 315 /// function accounts for special cases like inserting before a PHI node. 316 /// The current strategy for inserting before PHI's is to duplicate the 317 /// instructions for each predecessor. However, while that's ok for G_TRUNC 318 /// on most targets since it generally requires no code, other targets/cases may 319 /// want to try harder to find a dominating block. 320 static void InsertInsnsWithoutSideEffectsBeforeUse( 321 MachineIRBuilder &Builder, MachineInstr &DefMI, MachineOperand &UseMO, 322 std::function<void(MachineBasicBlock *, MachineBasicBlock::iterator, 323 MachineOperand &UseMO)> 324 Inserter) { 325 MachineInstr &UseMI = *UseMO.getParent(); 326 327 MachineBasicBlock *InsertBB = UseMI.getParent(); 328 329 // If the use is a PHI then we want the predecessor block instead. 330 if (UseMI.isPHI()) { 331 MachineOperand *PredBB = std::next(&UseMO); 332 InsertBB = PredBB->getMBB(); 333 } 334 335 // If the block is the same block as the def then we want to insert just after 336 // the def instead of at the start of the block. 337 if (InsertBB == DefMI.getParent()) { 338 MachineBasicBlock::iterator InsertPt = &DefMI; 339 Inserter(InsertBB, std::next(InsertPt), UseMO); 340 return; 341 } 342 343 // Otherwise we want the start of the BB 344 Inserter(InsertBB, InsertBB->getFirstNonPHI(), UseMO); 345 } 346 } // end anonymous namespace 347 348 bool CombinerHelper::tryCombineExtendingLoads(MachineInstr &MI) { 349 PreferredTuple Preferred; 350 if (matchCombineExtendingLoads(MI, Preferred)) { 351 applyCombineExtendingLoads(MI, Preferred); 352 return true; 353 } 354 return false; 355 } 356 357 bool CombinerHelper::matchCombineExtendingLoads(MachineInstr &MI, 358 PreferredTuple &Preferred) { 359 // We match the loads and follow the uses to the extend instead of matching 360 // the extends and following the def to the load. This is because the load 361 // must remain in the same position for correctness (unless we also add code 362 // to find a safe place to sink it) whereas the extend is freely movable. 363 // It also prevents us from duplicating the load for the volatile case or just 364 // for performance. 365 366 if (MI.getOpcode() != TargetOpcode::G_LOAD && 367 MI.getOpcode() != TargetOpcode::G_SEXTLOAD && 368 MI.getOpcode() != TargetOpcode::G_ZEXTLOAD) 369 return false; 370 371 auto &LoadValue = MI.getOperand(0); 372 assert(LoadValue.isReg() && "Result wasn't a register?"); 373 374 LLT LoadValueTy = MRI.getType(LoadValue.getReg()); 375 if (!LoadValueTy.isScalar()) 376 return false; 377 378 // Most architectures are going to legalize <s8 loads into at least a 1 byte 379 // load, and the MMOs can only describe memory accesses in multiples of bytes. 380 // If we try to perform extload combining on those, we can end up with 381 // %a(s8) = extload %ptr (load 1 byte from %ptr) 382 // ... which is an illegal extload instruction. 383 if (LoadValueTy.getSizeInBits() < 8) 384 return false; 385 386 // For non power-of-2 types, they will very likely be legalized into multiple 387 // loads. Don't bother trying to match them into extending loads. 388 if (!isPowerOf2_32(LoadValueTy.getSizeInBits())) 389 return false; 390 391 // Find the preferred type aside from the any-extends (unless it's the only 392 // one) and non-extending ops. We'll emit an extending load to that type and 393 // and emit a variant of (extend (trunc X)) for the others according to the 394 // relative type sizes. At the same time, pick an extend to use based on the 395 // extend involved in the chosen type. 396 unsigned PreferredOpcode = MI.getOpcode() == TargetOpcode::G_LOAD 397 ? TargetOpcode::G_ANYEXT 398 : MI.getOpcode() == TargetOpcode::G_SEXTLOAD 399 ? TargetOpcode::G_SEXT 400 : TargetOpcode::G_ZEXT; 401 Preferred = {LLT(), PreferredOpcode, nullptr}; 402 for (auto &UseMI : MRI.use_instructions(LoadValue.getReg())) { 403 if (UseMI.getOpcode() == TargetOpcode::G_SEXT || 404 UseMI.getOpcode() == TargetOpcode::G_ZEXT || 405 UseMI.getOpcode() == TargetOpcode::G_ANYEXT) { 406 Preferred = ChoosePreferredUse(Preferred, 407 MRI.getType(UseMI.getOperand(0).getReg()), 408 UseMI.getOpcode(), &UseMI); 409 } 410 } 411 412 // There were no extends 413 if (!Preferred.MI) 414 return false; 415 // It should be impossible to chose an extend without selecting a different 416 // type since by definition the result of an extend is larger. 417 assert(Preferred.Ty != LoadValueTy && "Extending to same type?"); 418 419 LLVM_DEBUG(dbgs() << "Preferred use is: " << *Preferred.MI); 420 return true; 421 } 422 423 void CombinerHelper::applyCombineExtendingLoads(MachineInstr &MI, 424 PreferredTuple &Preferred) { 425 // Rewrite the load to the chosen extending load. 426 Register ChosenDstReg = Preferred.MI->getOperand(0).getReg(); 427 428 // Inserter to insert a truncate back to the original type at a given point 429 // with some basic CSE to limit truncate duplication to one per BB. 430 DenseMap<MachineBasicBlock *, MachineInstr *> EmittedInsns; 431 auto InsertTruncAt = [&](MachineBasicBlock *InsertIntoBB, 432 MachineBasicBlock::iterator InsertBefore, 433 MachineOperand &UseMO) { 434 MachineInstr *PreviouslyEmitted = EmittedInsns.lookup(InsertIntoBB); 435 if (PreviouslyEmitted) { 436 Observer.changingInstr(*UseMO.getParent()); 437 UseMO.setReg(PreviouslyEmitted->getOperand(0).getReg()); 438 Observer.changedInstr(*UseMO.getParent()); 439 return; 440 } 441 442 Builder.setInsertPt(*InsertIntoBB, InsertBefore); 443 Register NewDstReg = MRI.cloneVirtualRegister(MI.getOperand(0).getReg()); 444 MachineInstr *NewMI = Builder.buildTrunc(NewDstReg, ChosenDstReg); 445 EmittedInsns[InsertIntoBB] = NewMI; 446 replaceRegOpWith(MRI, UseMO, NewDstReg); 447 }; 448 449 Observer.changingInstr(MI); 450 MI.setDesc( 451 Builder.getTII().get(Preferred.ExtendOpcode == TargetOpcode::G_SEXT 452 ? TargetOpcode::G_SEXTLOAD 453 : Preferred.ExtendOpcode == TargetOpcode::G_ZEXT 454 ? TargetOpcode::G_ZEXTLOAD 455 : TargetOpcode::G_LOAD)); 456 457 // Rewrite all the uses to fix up the types. 458 auto &LoadValue = MI.getOperand(0); 459 SmallVector<MachineOperand *, 4> Uses; 460 for (auto &UseMO : MRI.use_operands(LoadValue.getReg())) 461 Uses.push_back(&UseMO); 462 463 for (auto *UseMO : Uses) { 464 MachineInstr *UseMI = UseMO->getParent(); 465 466 // If the extend is compatible with the preferred extend then we should fix 467 // up the type and extend so that it uses the preferred use. 468 if (UseMI->getOpcode() == Preferred.ExtendOpcode || 469 UseMI->getOpcode() == TargetOpcode::G_ANYEXT) { 470 Register UseDstReg = UseMI->getOperand(0).getReg(); 471 MachineOperand &UseSrcMO = UseMI->getOperand(1); 472 const LLT &UseDstTy = MRI.getType(UseDstReg); 473 if (UseDstReg != ChosenDstReg) { 474 if (Preferred.Ty == UseDstTy) { 475 // If the use has the same type as the preferred use, then merge 476 // the vregs and erase the extend. For example: 477 // %1:_(s8) = G_LOAD ... 478 // %2:_(s32) = G_SEXT %1(s8) 479 // %3:_(s32) = G_ANYEXT %1(s8) 480 // ... = ... %3(s32) 481 // rewrites to: 482 // %2:_(s32) = G_SEXTLOAD ... 483 // ... = ... %2(s32) 484 replaceRegWith(MRI, UseDstReg, ChosenDstReg); 485 Observer.erasingInstr(*UseMO->getParent()); 486 UseMO->getParent()->eraseFromParent(); 487 } else if (Preferred.Ty.getSizeInBits() < UseDstTy.getSizeInBits()) { 488 // If the preferred size is smaller, then keep the extend but extend 489 // from the result of the extending load. For example: 490 // %1:_(s8) = G_LOAD ... 491 // %2:_(s32) = G_SEXT %1(s8) 492 // %3:_(s64) = G_ANYEXT %1(s8) 493 // ... = ... %3(s64) 494 /// rewrites to: 495 // %2:_(s32) = G_SEXTLOAD ... 496 // %3:_(s64) = G_ANYEXT %2:_(s32) 497 // ... = ... %3(s64) 498 replaceRegOpWith(MRI, UseSrcMO, ChosenDstReg); 499 } else { 500 // If the preferred size is large, then insert a truncate. For 501 // example: 502 // %1:_(s8) = G_LOAD ... 503 // %2:_(s64) = G_SEXT %1(s8) 504 // %3:_(s32) = G_ZEXT %1(s8) 505 // ... = ... %3(s32) 506 /// rewrites to: 507 // %2:_(s64) = G_SEXTLOAD ... 508 // %4:_(s8) = G_TRUNC %2:_(s32) 509 // %3:_(s64) = G_ZEXT %2:_(s8) 510 // ... = ... %3(s64) 511 InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, 512 InsertTruncAt); 513 } 514 continue; 515 } 516 // The use is (one of) the uses of the preferred use we chose earlier. 517 // We're going to update the load to def this value later so just erase 518 // the old extend. 519 Observer.erasingInstr(*UseMO->getParent()); 520 UseMO->getParent()->eraseFromParent(); 521 continue; 522 } 523 524 // The use isn't an extend. Truncate back to the type we originally loaded. 525 // This is free on many targets. 526 InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, InsertTruncAt); 527 } 528 529 MI.getOperand(0).setReg(ChosenDstReg); 530 Observer.changedInstr(MI); 531 } 532 533 bool CombinerHelper::isPredecessor(MachineInstr &DefMI, MachineInstr &UseMI) { 534 assert(DefMI.getParent() == UseMI.getParent()); 535 if (&DefMI == &UseMI) 536 return false; 537 538 // Loop through the basic block until we find one of the instructions. 539 MachineBasicBlock::const_iterator I = DefMI.getParent()->begin(); 540 for (; &*I != &DefMI && &*I != &UseMI; ++I) 541 return &*I == &DefMI; 542 543 llvm_unreachable("Block must contain instructions"); 544 } 545 546 bool CombinerHelper::dominates(MachineInstr &DefMI, MachineInstr &UseMI) { 547 if (MDT) 548 return MDT->dominates(&DefMI, &UseMI); 549 else if (DefMI.getParent() != UseMI.getParent()) 550 return false; 551 552 return isPredecessor(DefMI, UseMI); 553 } 554 555 bool CombinerHelper::findPostIndexCandidate(MachineInstr &MI, Register &Addr, 556 Register &Base, Register &Offset) { 557 auto &MF = *MI.getParent()->getParent(); 558 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 559 560 #ifndef NDEBUG 561 unsigned Opcode = MI.getOpcode(); 562 assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD || 563 Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE); 564 #endif 565 566 Base = MI.getOperand(1).getReg(); 567 MachineInstr *BaseDef = MRI.getUniqueVRegDef(Base); 568 if (BaseDef && BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) 569 return false; 570 571 LLVM_DEBUG(dbgs() << "Searching for post-indexing opportunity for: " << MI); 572 573 for (auto &Use : MRI.use_instructions(Base)) { 574 if (Use.getOpcode() != TargetOpcode::G_GEP) 575 continue; 576 577 Offset = Use.getOperand(2).getReg(); 578 if (!ForceLegalIndexing && 579 !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ false, MRI)) { 580 LLVM_DEBUG(dbgs() << " Ignoring candidate with illegal addrmode: " 581 << Use); 582 continue; 583 } 584 585 // Make sure the offset calculation is before the potentially indexed op. 586 // FIXME: we really care about dependency here. The offset calculation might 587 // be movable. 588 MachineInstr *OffsetDef = MRI.getUniqueVRegDef(Offset); 589 if (!OffsetDef || !dominates(*OffsetDef, MI)) { 590 LLVM_DEBUG(dbgs() << " Ignoring candidate with offset after mem-op: " 591 << Use); 592 continue; 593 } 594 595 // FIXME: check whether all uses of Base are load/store with foldable 596 // addressing modes. If so, using the normal addr-modes is better than 597 // forming an indexed one. 598 599 bool MemOpDominatesAddrUses = true; 600 for (auto &GEPUse : MRI.use_instructions(Use.getOperand(0).getReg())) { 601 if (!dominates(MI, GEPUse)) { 602 MemOpDominatesAddrUses = false; 603 break; 604 } 605 } 606 607 if (!MemOpDominatesAddrUses) { 608 LLVM_DEBUG( 609 dbgs() << " Ignoring candidate as memop does not dominate uses: " 610 << Use); 611 continue; 612 } 613 614 LLVM_DEBUG(dbgs() << " Found match: " << Use); 615 Addr = Use.getOperand(0).getReg(); 616 return true; 617 } 618 619 return false; 620 } 621 622 bool CombinerHelper::findPreIndexCandidate(MachineInstr &MI, Register &Addr, 623 Register &Base, Register &Offset) { 624 auto &MF = *MI.getParent()->getParent(); 625 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 626 627 #ifndef NDEBUG 628 unsigned Opcode = MI.getOpcode(); 629 assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD || 630 Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE); 631 #endif 632 633 Addr = MI.getOperand(1).getReg(); 634 MachineInstr *AddrDef = getOpcodeDef(TargetOpcode::G_GEP, Addr, MRI); 635 if (!AddrDef || MRI.hasOneUse(Addr)) 636 return false; 637 638 Base = AddrDef->getOperand(1).getReg(); 639 Offset = AddrDef->getOperand(2).getReg(); 640 641 LLVM_DEBUG(dbgs() << "Found potential pre-indexed load_store: " << MI); 642 643 if (!ForceLegalIndexing && 644 !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ true, MRI)) { 645 LLVM_DEBUG(dbgs() << " Skipping, not legal for target"); 646 return false; 647 } 648 649 MachineInstr *BaseDef = getDefIgnoringCopies(Base, MRI); 650 if (BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) { 651 LLVM_DEBUG(dbgs() << " Skipping, frame index would need copy anyway."); 652 return false; 653 } 654 655 if (MI.getOpcode() == TargetOpcode::G_STORE) { 656 // Would require a copy. 657 if (Base == MI.getOperand(0).getReg()) { 658 LLVM_DEBUG(dbgs() << " Skipping, storing base so need copy anyway."); 659 return false; 660 } 661 662 // We're expecting one use of Addr in MI, but it could also be the 663 // value stored, which isn't actually dominated by the instruction. 664 if (MI.getOperand(0).getReg() == Addr) { 665 LLVM_DEBUG(dbgs() << " Skipping, does not dominate all addr uses"); 666 return false; 667 } 668 } 669 670 // FIXME: check whether all uses of the base pointer are constant GEPs. That 671 // might allow us to end base's liveness here by adjusting the constant. 672 673 for (auto &UseMI : MRI.use_instructions(Addr)) { 674 if (!dominates(MI, UseMI)) { 675 LLVM_DEBUG(dbgs() << " Skipping, does not dominate all addr uses."); 676 return false; 677 } 678 } 679 680 return true; 681 } 682 683 bool CombinerHelper::tryCombineIndexedLoadStore(MachineInstr &MI) { 684 unsigned Opcode = MI.getOpcode(); 685 if (Opcode != TargetOpcode::G_LOAD && Opcode != TargetOpcode::G_SEXTLOAD && 686 Opcode != TargetOpcode::G_ZEXTLOAD && Opcode != TargetOpcode::G_STORE) 687 return false; 688 689 bool IsStore = Opcode == TargetOpcode::G_STORE; 690 Register Addr, Base, Offset; 691 bool IsPre = findPreIndexCandidate(MI, Addr, Base, Offset); 692 if (!IsPre && !findPostIndexCandidate(MI, Addr, Base, Offset)) 693 return false; 694 695 696 unsigned NewOpcode; 697 switch (Opcode) { 698 case TargetOpcode::G_LOAD: 699 NewOpcode = TargetOpcode::G_INDEXED_LOAD; 700 break; 701 case TargetOpcode::G_SEXTLOAD: 702 NewOpcode = TargetOpcode::G_INDEXED_SEXTLOAD; 703 break; 704 case TargetOpcode::G_ZEXTLOAD: 705 NewOpcode = TargetOpcode::G_INDEXED_ZEXTLOAD; 706 break; 707 case TargetOpcode::G_STORE: 708 NewOpcode = TargetOpcode::G_INDEXED_STORE; 709 break; 710 default: 711 llvm_unreachable("Unknown load/store opcode"); 712 } 713 714 MachineInstr &AddrDef = *MRI.getUniqueVRegDef(Addr); 715 MachineIRBuilder MIRBuilder(MI); 716 auto MIB = MIRBuilder.buildInstr(NewOpcode); 717 if (IsStore) { 718 MIB.addDef(Addr); 719 MIB.addUse(MI.getOperand(0).getReg()); 720 } else { 721 MIB.addDef(MI.getOperand(0).getReg()); 722 MIB.addDef(Addr); 723 } 724 725 MIB.addUse(Base); 726 MIB.addUse(Offset); 727 MIB.addImm(IsPre); 728 MI.eraseFromParent(); 729 AddrDef.eraseFromParent(); 730 731 LLVM_DEBUG(dbgs() << " Combinined to indexed operation"); 732 return true; 733 } 734 735 bool CombinerHelper::matchElideBrByInvertingCond(MachineInstr &MI) { 736 if (MI.getOpcode() != TargetOpcode::G_BR) 737 return false; 738 739 // Try to match the following: 740 // bb1: 741 // %c(s32) = G_ICMP pred, %a, %b 742 // %c1(s1) = G_TRUNC %c(s32) 743 // G_BRCOND %c1, %bb2 744 // G_BR %bb3 745 // bb2: 746 // ... 747 // bb3: 748 749 // The above pattern does not have a fall through to the successor bb2, always 750 // resulting in a branch no matter which path is taken. Here we try to find 751 // and replace that pattern with conditional branch to bb3 and otherwise 752 // fallthrough to bb2. 753 754 MachineBasicBlock *MBB = MI.getParent(); 755 MachineBasicBlock::iterator BrIt(MI); 756 if (BrIt == MBB->begin()) 757 return false; 758 assert(std::next(BrIt) == MBB->end() && "expected G_BR to be a terminator"); 759 760 MachineInstr *BrCond = &*std::prev(BrIt); 761 if (BrCond->getOpcode() != TargetOpcode::G_BRCOND) 762 return false; 763 764 // Check that the next block is the conditional branch target. 765 if (!MBB->isLayoutSuccessor(BrCond->getOperand(1).getMBB())) 766 return false; 767 768 MachineInstr *CmpMI = MRI.getVRegDef(BrCond->getOperand(0).getReg()); 769 if (!CmpMI || CmpMI->getOpcode() != TargetOpcode::G_ICMP || 770 !MRI.hasOneUse(CmpMI->getOperand(0).getReg())) 771 return false; 772 return true; 773 } 774 775 bool CombinerHelper::tryElideBrByInvertingCond(MachineInstr &MI) { 776 if (!matchElideBrByInvertingCond(MI)) 777 return false; 778 applyElideBrByInvertingCond(MI); 779 return true; 780 } 781 782 void CombinerHelper::applyElideBrByInvertingCond(MachineInstr &MI) { 783 MachineBasicBlock *BrTarget = MI.getOperand(0).getMBB(); 784 MachineBasicBlock::iterator BrIt(MI); 785 MachineInstr *BrCond = &*std::prev(BrIt); 786 MachineInstr *CmpMI = MRI.getVRegDef(BrCond->getOperand(0).getReg()); 787 788 CmpInst::Predicate InversePred = CmpInst::getInversePredicate( 789 (CmpInst::Predicate)CmpMI->getOperand(1).getPredicate()); 790 791 // Invert the G_ICMP condition. 792 Observer.changingInstr(*CmpMI); 793 CmpMI->getOperand(1).setPredicate(InversePred); 794 Observer.changedInstr(*CmpMI); 795 796 // Change the conditional branch target. 797 Observer.changingInstr(*BrCond); 798 BrCond->getOperand(1).setMBB(BrTarget); 799 Observer.changedInstr(*BrCond); 800 MI.eraseFromParent(); 801 } 802 803 static bool shouldLowerMemFuncForSize(const MachineFunction &MF) { 804 // On Darwin, -Os means optimize for size without hurting performance, so 805 // only really optimize for size when -Oz (MinSize) is used. 806 if (MF.getTarget().getTargetTriple().isOSDarwin()) 807 return MF.getFunction().hasMinSize(); 808 return MF.getFunction().hasOptSize(); 809 } 810 811 // Returns a list of types to use for memory op lowering in MemOps. A partial 812 // port of findOptimalMemOpLowering in TargetLowering. 813 static bool findGISelOptimalMemOpLowering( 814 std::vector<LLT> &MemOps, unsigned Limit, uint64_t Size, unsigned DstAlign, 815 unsigned SrcAlign, bool IsMemset, bool ZeroMemset, bool MemcpyStrSrc, 816 bool AllowOverlap, unsigned DstAS, unsigned SrcAS, 817 const AttributeList &FuncAttributes, const TargetLowering &TLI) { 818 // If 'SrcAlign' is zero, that means the memory operation does not need to 819 // load the value, i.e. memset or memcpy from constant string. Otherwise, 820 // it's the inferred alignment of the source. 'DstAlign', on the other hand, 821 // is the specified alignment of the memory operation. If it is zero, that 822 // means it's possible to change the alignment of the destination. 823 // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does 824 // not need to be loaded. 825 if (SrcAlign != 0 && SrcAlign < DstAlign) 826 return false; 827 828 LLT Ty = TLI.getOptimalMemOpLLT(Size, DstAlign, SrcAlign, IsMemset, 829 ZeroMemset, MemcpyStrSrc, FuncAttributes); 830 831 if (Ty == LLT()) { 832 // Use the largest scalar type whose alignment constraints are satisfied. 833 // We only need to check DstAlign here as SrcAlign is always greater or 834 // equal to DstAlign (or zero). 835 Ty = LLT::scalar(64); 836 while (DstAlign && DstAlign < Ty.getSizeInBytes() && 837 !TLI.allowsMisalignedMemoryAccesses(Ty, DstAS, DstAlign)) 838 Ty = LLT::scalar(Ty.getSizeInBytes()); 839 assert(Ty.getSizeInBits() > 0 && "Could not find valid type"); 840 // FIXME: check for the largest legal type we can load/store to. 841 } 842 843 unsigned NumMemOps = 0; 844 while (Size != 0) { 845 unsigned TySize = Ty.getSizeInBytes(); 846 while (TySize > Size) { 847 // For now, only use non-vector load / store's for the left-over pieces. 848 LLT NewTy = Ty; 849 // FIXME: check for mem op safety and legality of the types. Not all of 850 // SDAGisms map cleanly to GISel concepts. 851 if (NewTy.isVector()) 852 NewTy = NewTy.getSizeInBits() > 64 ? LLT::scalar(64) : LLT::scalar(32); 853 NewTy = LLT::scalar(PowerOf2Floor(NewTy.getSizeInBits() - 1)); 854 unsigned NewTySize = NewTy.getSizeInBytes(); 855 assert(NewTySize > 0 && "Could not find appropriate type"); 856 857 // If the new LLT cannot cover all of the remaining bits, then consider 858 // issuing a (or a pair of) unaligned and overlapping load / store. 859 bool Fast; 860 // Need to get a VT equivalent for allowMisalignedMemoryAccesses(). 861 MVT VT = getMVTForLLT(Ty); 862 if (NumMemOps && AllowOverlap && NewTySize < Size && 863 TLI.allowsMisalignedMemoryAccesses( 864 VT, DstAS, DstAlign, MachineMemOperand::MONone, &Fast) && 865 Fast) 866 TySize = Size; 867 else { 868 Ty = NewTy; 869 TySize = NewTySize; 870 } 871 } 872 873 if (++NumMemOps > Limit) 874 return false; 875 876 MemOps.push_back(Ty); 877 Size -= TySize; 878 } 879 880 return true; 881 } 882 883 static Type *getTypeForLLT(LLT Ty, LLVMContext &C) { 884 if (Ty.isVector()) 885 return VectorType::get(IntegerType::get(C, Ty.getScalarSizeInBits()), 886 Ty.getNumElements()); 887 return IntegerType::get(C, Ty.getSizeInBits()); 888 } 889 890 // Get a vectorized representation of the memset value operand, GISel edition. 891 static Register getMemsetValue(Register Val, LLT Ty, MachineIRBuilder &MIB) { 892 MachineRegisterInfo &MRI = *MIB.getMRI(); 893 unsigned NumBits = Ty.getScalarSizeInBits(); 894 auto ValVRegAndVal = getConstantVRegValWithLookThrough(Val, MRI); 895 if (!Ty.isVector() && ValVRegAndVal) { 896 unsigned KnownVal = ValVRegAndVal->Value; 897 APInt Scalar = APInt(8, KnownVal); 898 APInt SplatVal = APInt::getSplat(NumBits, Scalar); 899 return MIB.buildConstant(Ty, SplatVal).getReg(0); 900 } 901 // FIXME: for vector types create a G_BUILD_VECTOR. 902 if (Ty.isVector()) 903 return Register(); 904 905 // Extend the byte value to the larger type, and then multiply by a magic 906 // value 0x010101... in order to replicate it across every byte. 907 LLT ExtType = Ty.getScalarType(); 908 auto ZExt = MIB.buildZExtOrTrunc(ExtType, Val); 909 if (NumBits > 8) { 910 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 911 auto MagicMI = MIB.buildConstant(ExtType, Magic); 912 Val = MIB.buildMul(ExtType, ZExt, MagicMI).getReg(0); 913 } 914 915 assert(ExtType == Ty && "Vector memset value type not supported yet"); 916 return Val; 917 } 918 919 bool CombinerHelper::optimizeMemset(MachineInstr &MI, Register Dst, Register Val, 920 unsigned KnownLen, unsigned Align, 921 bool IsVolatile) { 922 auto &MF = *MI.getParent()->getParent(); 923 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 924 auto &DL = MF.getDataLayout(); 925 LLVMContext &C = MF.getFunction().getContext(); 926 927 assert(KnownLen != 0 && "Have a zero length memset length!"); 928 929 bool DstAlignCanChange = false; 930 MachineFrameInfo &MFI = MF.getFrameInfo(); 931 bool OptSize = shouldLowerMemFuncForSize(MF); 932 933 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); 934 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) 935 DstAlignCanChange = true; 936 937 unsigned Limit = TLI.getMaxStoresPerMemset(OptSize); 938 std::vector<LLT> MemOps; 939 940 const auto &DstMMO = **MI.memoperands_begin(); 941 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); 942 943 auto ValVRegAndVal = getConstantVRegValWithLookThrough(Val, MRI); 944 bool IsZeroVal = ValVRegAndVal && ValVRegAndVal->Value == 0; 945 946 if (!findGISelOptimalMemOpLowering( 947 MemOps, Limit, KnownLen, (DstAlignCanChange ? 0 : Align), 0, 948 /*IsMemset=*/true, 949 /*ZeroMemset=*/IsZeroVal, /*MemcpyStrSrc=*/false, 950 /*AllowOverlap=*/!IsVolatile, DstPtrInfo.getAddrSpace(), ~0u, 951 MF.getFunction().getAttributes(), TLI)) 952 return false; 953 954 if (DstAlignCanChange) { 955 // Get an estimate of the type from the LLT. 956 Type *IRTy = getTypeForLLT(MemOps[0], C); 957 unsigned NewAlign = (unsigned)DL.getABITypeAlignment(IRTy); 958 if (NewAlign > Align) { 959 Align = NewAlign; 960 unsigned FI = FIDef->getOperand(1).getIndex(); 961 // Give the stack frame object a larger alignment if needed. 962 if (MFI.getObjectAlignment(FI) < Align) 963 MFI.setObjectAlignment(FI, Align); 964 } 965 } 966 967 MachineIRBuilder MIB(MI); 968 // Find the largest store and generate the bit pattern for it. 969 LLT LargestTy = MemOps[0]; 970 for (unsigned i = 1; i < MemOps.size(); i++) 971 if (MemOps[i].getSizeInBits() > LargestTy.getSizeInBits()) 972 LargestTy = MemOps[i]; 973 974 // The memset stored value is always defined as an s8, so in order to make it 975 // work with larger store types we need to repeat the bit pattern across the 976 // wider type. 977 Register MemSetValue = getMemsetValue(Val, LargestTy, MIB); 978 979 if (!MemSetValue) 980 return false; 981 982 // Generate the stores. For each store type in the list, we generate the 983 // matching store of that type to the destination address. 984 LLT PtrTy = MRI.getType(Dst); 985 unsigned DstOff = 0; 986 unsigned Size = KnownLen; 987 for (unsigned I = 0; I < MemOps.size(); I++) { 988 LLT Ty = MemOps[I]; 989 unsigned TySize = Ty.getSizeInBytes(); 990 if (TySize > Size) { 991 // Issuing an unaligned load / store pair that overlaps with the previous 992 // pair. Adjust the offset accordingly. 993 assert(I == MemOps.size() - 1 && I != 0); 994 DstOff -= TySize - Size; 995 } 996 997 // If this store is smaller than the largest store see whether we can get 998 // the smaller value for free with a truncate. 999 Register Value = MemSetValue; 1000 if (Ty.getSizeInBits() < LargestTy.getSizeInBits()) { 1001 MVT VT = getMVTForLLT(Ty); 1002 MVT LargestVT = getMVTForLLT(LargestTy); 1003 if (!LargestTy.isVector() && !Ty.isVector() && 1004 TLI.isTruncateFree(LargestVT, VT)) 1005 Value = MIB.buildTrunc(Ty, MemSetValue).getReg(0); 1006 else 1007 Value = getMemsetValue(Val, Ty, MIB); 1008 if (!Value) 1009 return false; 1010 } 1011 1012 auto *StoreMMO = 1013 MF.getMachineMemOperand(&DstMMO, DstOff, Ty.getSizeInBytes()); 1014 1015 Register Ptr = Dst; 1016 if (DstOff != 0) { 1017 auto Offset = 1018 MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), DstOff); 1019 Ptr = MIB.buildGEP(PtrTy, Dst, Offset).getReg(0); 1020 } 1021 1022 MIB.buildStore(Value, Ptr, *StoreMMO); 1023 DstOff += Ty.getSizeInBytes(); 1024 Size -= TySize; 1025 } 1026 1027 MI.eraseFromParent(); 1028 return true; 1029 } 1030 1031 1032 bool CombinerHelper::optimizeMemcpy(MachineInstr &MI, Register Dst, 1033 Register Src, unsigned KnownLen, 1034 unsigned DstAlign, unsigned SrcAlign, 1035 bool IsVolatile) { 1036 auto &MF = *MI.getParent()->getParent(); 1037 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 1038 auto &DL = MF.getDataLayout(); 1039 LLVMContext &C = MF.getFunction().getContext(); 1040 1041 assert(KnownLen != 0 && "Have a zero length memcpy length!"); 1042 1043 bool DstAlignCanChange = false; 1044 MachineFrameInfo &MFI = MF.getFrameInfo(); 1045 bool OptSize = shouldLowerMemFuncForSize(MF); 1046 unsigned Alignment = MinAlign(DstAlign, SrcAlign); 1047 1048 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); 1049 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) 1050 DstAlignCanChange = true; 1051 1052 // FIXME: infer better src pointer alignment like SelectionDAG does here. 1053 // FIXME: also use the equivalent of isMemSrcFromConstant and alwaysinlining 1054 // if the memcpy is in a tail call position. 1055 1056 unsigned Limit = TLI.getMaxStoresPerMemcpy(OptSize); 1057 std::vector<LLT> MemOps; 1058 1059 const auto &DstMMO = **MI.memoperands_begin(); 1060 const auto &SrcMMO = **std::next(MI.memoperands_begin()); 1061 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); 1062 MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo(); 1063 1064 if (!findGISelOptimalMemOpLowering( 1065 MemOps, Limit, KnownLen, (DstAlignCanChange ? 0 : Alignment), 1066 SrcAlign, 1067 /*IsMemset=*/false, 1068 /*ZeroMemset=*/false, /*MemcpyStrSrc=*/false, 1069 /*AllowOverlap=*/!IsVolatile, DstPtrInfo.getAddrSpace(), 1070 SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes(), TLI)) 1071 return false; 1072 1073 if (DstAlignCanChange) { 1074 // Get an estimate of the type from the LLT. 1075 Type *IRTy = getTypeForLLT(MemOps[0], C); 1076 unsigned NewAlign = (unsigned)DL.getABITypeAlignment(IRTy); 1077 1078 // Don't promote to an alignment that would require dynamic stack 1079 // realignment. 1080 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1081 if (!TRI->needsStackRealignment(MF)) 1082 while (NewAlign > Alignment && 1083 DL.exceedsNaturalStackAlignment(Align(NewAlign))) 1084 NewAlign /= 2; 1085 1086 if (NewAlign > Alignment) { 1087 Alignment = NewAlign; 1088 unsigned FI = FIDef->getOperand(1).getIndex(); 1089 // Give the stack frame object a larger alignment if needed. 1090 if (MFI.getObjectAlignment(FI) < Alignment) 1091 MFI.setObjectAlignment(FI, Alignment); 1092 } 1093 } 1094 1095 LLVM_DEBUG(dbgs() << "Inlining memcpy: " << MI << " into loads & stores\n"); 1096 1097 MachineIRBuilder MIB(MI); 1098 // Now we need to emit a pair of load and stores for each of the types we've 1099 // collected. I.e. for each type, generate a load from the source pointer of 1100 // that type width, and then generate a corresponding store to the dest buffer 1101 // of that value loaded. This can result in a sequence of loads and stores 1102 // mixed types, depending on what the target specifies as good types to use. 1103 unsigned CurrOffset = 0; 1104 LLT PtrTy = MRI.getType(Src); 1105 unsigned Size = KnownLen; 1106 for (auto CopyTy : MemOps) { 1107 // Issuing an unaligned load / store pair that overlaps with the previous 1108 // pair. Adjust the offset accordingly. 1109 if (CopyTy.getSizeInBytes() > Size) 1110 CurrOffset -= CopyTy.getSizeInBytes() - Size; 1111 1112 // Construct MMOs for the accesses. 1113 auto *LoadMMO = 1114 MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes()); 1115 auto *StoreMMO = 1116 MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes()); 1117 1118 // Create the load. 1119 Register LoadPtr = Src; 1120 Register Offset; 1121 if (CurrOffset != 0) { 1122 Offset = MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset) 1123 .getReg(0); 1124 LoadPtr = MIB.buildGEP(PtrTy, Src, Offset).getReg(0); 1125 } 1126 auto LdVal = MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO); 1127 1128 // Create the store. 1129 Register StorePtr = 1130 CurrOffset == 0 ? Dst : MIB.buildGEP(PtrTy, Dst, Offset).getReg(0); 1131 MIB.buildStore(LdVal, StorePtr, *StoreMMO); 1132 CurrOffset += CopyTy.getSizeInBytes(); 1133 Size -= CopyTy.getSizeInBytes(); 1134 } 1135 1136 MI.eraseFromParent(); 1137 return true; 1138 } 1139 1140 bool CombinerHelper::optimizeMemmove(MachineInstr &MI, Register Dst, 1141 Register Src, unsigned KnownLen, 1142 unsigned DstAlign, unsigned SrcAlign, 1143 bool IsVolatile) { 1144 auto &MF = *MI.getParent()->getParent(); 1145 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 1146 auto &DL = MF.getDataLayout(); 1147 LLVMContext &C = MF.getFunction().getContext(); 1148 1149 assert(KnownLen != 0 && "Have a zero length memmove length!"); 1150 1151 bool DstAlignCanChange = false; 1152 MachineFrameInfo &MFI = MF.getFrameInfo(); 1153 bool OptSize = shouldLowerMemFuncForSize(MF); 1154 unsigned Alignment = MinAlign(DstAlign, SrcAlign); 1155 1156 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); 1157 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) 1158 DstAlignCanChange = true; 1159 1160 unsigned Limit = TLI.getMaxStoresPerMemmove(OptSize); 1161 std::vector<LLT> MemOps; 1162 1163 const auto &DstMMO = **MI.memoperands_begin(); 1164 const auto &SrcMMO = **std::next(MI.memoperands_begin()); 1165 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); 1166 MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo(); 1167 1168 // FIXME: SelectionDAG always passes false for 'AllowOverlap', apparently due 1169 // to a bug in it's findOptimalMemOpLowering implementation. For now do the 1170 // same thing here. 1171 if (!findGISelOptimalMemOpLowering( 1172 MemOps, Limit, KnownLen, (DstAlignCanChange ? 0 : Alignment), 1173 SrcAlign, 1174 /*IsMemset=*/false, 1175 /*ZeroMemset=*/false, /*MemcpyStrSrc=*/false, 1176 /*AllowOverlap=*/false, DstPtrInfo.getAddrSpace(), 1177 SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes(), TLI)) 1178 return false; 1179 1180 if (DstAlignCanChange) { 1181 // Get an estimate of the type from the LLT. 1182 Type *IRTy = getTypeForLLT(MemOps[0], C); 1183 unsigned NewAlign = (unsigned)DL.getABITypeAlignment(IRTy); 1184 1185 // Don't promote to an alignment that would require dynamic stack 1186 // realignment. 1187 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1188 if (!TRI->needsStackRealignment(MF)) 1189 while (NewAlign > Alignment && 1190 DL.exceedsNaturalStackAlignment(Align(NewAlign))) 1191 NewAlign /= 2; 1192 1193 if (NewAlign > Alignment) { 1194 Alignment = NewAlign; 1195 unsigned FI = FIDef->getOperand(1).getIndex(); 1196 // Give the stack frame object a larger alignment if needed. 1197 if (MFI.getObjectAlignment(FI) < Alignment) 1198 MFI.setObjectAlignment(FI, Alignment); 1199 } 1200 } 1201 1202 LLVM_DEBUG(dbgs() << "Inlining memmove: " << MI << " into loads & stores\n"); 1203 1204 MachineIRBuilder MIB(MI); 1205 // Memmove requires that we perform the loads first before issuing the stores. 1206 // Apart from that, this loop is pretty much doing the same thing as the 1207 // memcpy codegen function. 1208 unsigned CurrOffset = 0; 1209 LLT PtrTy = MRI.getType(Src); 1210 SmallVector<Register, 16> LoadVals; 1211 for (auto CopyTy : MemOps) { 1212 // Construct MMO for the load. 1213 auto *LoadMMO = 1214 MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes()); 1215 1216 // Create the load. 1217 Register LoadPtr = Src; 1218 if (CurrOffset != 0) { 1219 auto Offset = 1220 MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset); 1221 LoadPtr = MIB.buildGEP(PtrTy, Src, Offset).getReg(0); 1222 } 1223 LoadVals.push_back(MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO).getReg(0)); 1224 CurrOffset += CopyTy.getSizeInBytes(); 1225 } 1226 1227 CurrOffset = 0; 1228 for (unsigned I = 0; I < MemOps.size(); ++I) { 1229 LLT CopyTy = MemOps[I]; 1230 // Now store the values loaded. 1231 auto *StoreMMO = 1232 MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes()); 1233 1234 Register StorePtr = Dst; 1235 if (CurrOffset != 0) { 1236 auto Offset = 1237 MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset); 1238 StorePtr = MIB.buildGEP(PtrTy, Dst, Offset).getReg(0); 1239 } 1240 MIB.buildStore(LoadVals[I], StorePtr, *StoreMMO); 1241 CurrOffset += CopyTy.getSizeInBytes(); 1242 } 1243 MI.eraseFromParent(); 1244 return true; 1245 } 1246 1247 bool CombinerHelper::tryCombineMemCpyFamily(MachineInstr &MI, unsigned MaxLen) { 1248 // This combine is fairly complex so it's not written with a separate 1249 // matcher function. 1250 assert(MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS); 1251 Intrinsic::ID ID = (Intrinsic::ID)MI.getIntrinsicID(); 1252 assert((ID == Intrinsic::memcpy || ID == Intrinsic::memmove || 1253 ID == Intrinsic::memset) && 1254 "Expected a memcpy like intrinsic"); 1255 1256 auto MMOIt = MI.memoperands_begin(); 1257 const MachineMemOperand *MemOp = *MMOIt; 1258 bool IsVolatile = MemOp->isVolatile(); 1259 // Don't try to optimize volatile. 1260 if (IsVolatile) 1261 return false; 1262 1263 unsigned DstAlign = MemOp->getBaseAlignment(); 1264 unsigned SrcAlign = 0; 1265 Register Dst = MI.getOperand(1).getReg(); 1266 Register Src = MI.getOperand(2).getReg(); 1267 Register Len = MI.getOperand(3).getReg(); 1268 1269 if (ID != Intrinsic::memset) { 1270 assert(MMOIt != MI.memoperands_end() && "Expected a second MMO on MI"); 1271 MemOp = *(++MMOIt); 1272 SrcAlign = MemOp->getBaseAlignment(); 1273 } 1274 1275 // See if this is a constant length copy 1276 auto LenVRegAndVal = getConstantVRegValWithLookThrough(Len, MRI); 1277 if (!LenVRegAndVal) 1278 return false; // Leave it to the legalizer to lower it to a libcall. 1279 unsigned KnownLen = LenVRegAndVal->Value; 1280 1281 if (KnownLen == 0) { 1282 MI.eraseFromParent(); 1283 return true; 1284 } 1285 1286 if (MaxLen && KnownLen > MaxLen) 1287 return false; 1288 1289 if (ID == Intrinsic::memcpy) 1290 return optimizeMemcpy(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, IsVolatile); 1291 if (ID == Intrinsic::memmove) 1292 return optimizeMemmove(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, IsVolatile); 1293 if (ID == Intrinsic::memset) 1294 return optimizeMemset(MI, Dst, Src, KnownLen, DstAlign, IsVolatile); 1295 return false; 1296 } 1297 1298 bool CombinerHelper::tryCombine(MachineInstr &MI) { 1299 if (tryCombineCopy(MI)) 1300 return true; 1301 if (tryCombineExtendingLoads(MI)) 1302 return true; 1303 if (tryCombineIndexedLoadStore(MI)) 1304 return true; 1305 return false; 1306 } 1307