xref: /freebsd-src/contrib/llvm-project/llvm/lib/CodeGen/Analysis.cpp (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
10b57cec5SDimitry Andric //===-- Analysis.cpp - CodeGen LLVM IR Analysis Utilities -----------------===//
20b57cec5SDimitry Andric //
30b57cec5SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
40b57cec5SDimitry Andric // See https://llvm.org/LICENSE.txt for license information.
50b57cec5SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
60b57cec5SDimitry Andric //
70b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
80b57cec5SDimitry Andric //
90b57cec5SDimitry Andric // This file defines several CodeGen-specific LLVM IR analysis utilities.
100b57cec5SDimitry Andric //
110b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
120b57cec5SDimitry Andric 
130b57cec5SDimitry Andric #include "llvm/CodeGen/Analysis.h"
140b57cec5SDimitry Andric #include "llvm/Analysis/ValueTracking.h"
150b57cec5SDimitry Andric #include "llvm/CodeGen/MachineFunction.h"
160b57cec5SDimitry Andric #include "llvm/CodeGen/TargetInstrInfo.h"
170b57cec5SDimitry Andric #include "llvm/CodeGen/TargetLowering.h"
180b57cec5SDimitry Andric #include "llvm/CodeGen/TargetSubtargetInfo.h"
190b57cec5SDimitry Andric #include "llvm/IR/DataLayout.h"
200b57cec5SDimitry Andric #include "llvm/IR/DerivedTypes.h"
210b57cec5SDimitry Andric #include "llvm/IR/Function.h"
220b57cec5SDimitry Andric #include "llvm/IR/Instructions.h"
230b57cec5SDimitry Andric #include "llvm/IR/IntrinsicInst.h"
240b57cec5SDimitry Andric #include "llvm/IR/Module.h"
250b57cec5SDimitry Andric #include "llvm/Support/ErrorHandling.h"
265ffd83dbSDimitry Andric #include "llvm/Target/TargetMachine.h"
270b57cec5SDimitry Andric 
280b57cec5SDimitry Andric using namespace llvm;
290b57cec5SDimitry Andric 
300b57cec5SDimitry Andric /// Compute the linearized index of a member in a nested aggregate/struct/array
310b57cec5SDimitry Andric /// by recursing and accumulating CurIndex as long as there are indices in the
320b57cec5SDimitry Andric /// index list.
330b57cec5SDimitry Andric unsigned llvm::ComputeLinearIndex(Type *Ty,
340b57cec5SDimitry Andric                                   const unsigned *Indices,
350b57cec5SDimitry Andric                                   const unsigned *IndicesEnd,
360b57cec5SDimitry Andric                                   unsigned CurIndex) {
370b57cec5SDimitry Andric   // Base case: We're done.
380b57cec5SDimitry Andric   if (Indices && Indices == IndicesEnd)
390b57cec5SDimitry Andric     return CurIndex;
400b57cec5SDimitry Andric 
410b57cec5SDimitry Andric   // Given a struct type, recursively traverse the elements.
420b57cec5SDimitry Andric   if (StructType *STy = dyn_cast<StructType>(Ty)) {
43fe6060f1SDimitry Andric     for (auto I : llvm::enumerate(STy->elements())) {
44fe6060f1SDimitry Andric       Type *ET = I.value();
45fe6060f1SDimitry Andric       if (Indices && *Indices == I.index())
46fe6060f1SDimitry Andric         return ComputeLinearIndex(ET, Indices + 1, IndicesEnd, CurIndex);
47fe6060f1SDimitry Andric       CurIndex = ComputeLinearIndex(ET, nullptr, nullptr, CurIndex);
480b57cec5SDimitry Andric     }
490b57cec5SDimitry Andric     assert(!Indices && "Unexpected out of bound");
500b57cec5SDimitry Andric     return CurIndex;
510b57cec5SDimitry Andric   }
520b57cec5SDimitry Andric   // Given an array type, recursively traverse the elements.
530b57cec5SDimitry Andric   else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
540b57cec5SDimitry Andric     Type *EltTy = ATy->getElementType();
550b57cec5SDimitry Andric     unsigned NumElts = ATy->getNumElements();
560b57cec5SDimitry Andric     // Compute the Linear offset when jumping one element of the array
570b57cec5SDimitry Andric     unsigned EltLinearOffset = ComputeLinearIndex(EltTy, nullptr, nullptr, 0);
580b57cec5SDimitry Andric     if (Indices) {
590b57cec5SDimitry Andric       assert(*Indices < NumElts && "Unexpected out of bound");
600b57cec5SDimitry Andric       // If the indice is inside the array, compute the index to the requested
610b57cec5SDimitry Andric       // elt and recurse inside the element with the end of the indices list
620b57cec5SDimitry Andric       CurIndex += EltLinearOffset* *Indices;
630b57cec5SDimitry Andric       return ComputeLinearIndex(EltTy, Indices+1, IndicesEnd, CurIndex);
640b57cec5SDimitry Andric     }
650b57cec5SDimitry Andric     CurIndex += EltLinearOffset*NumElts;
660b57cec5SDimitry Andric     return CurIndex;
670b57cec5SDimitry Andric   }
680b57cec5SDimitry Andric   // We haven't found the type we're looking for, so keep searching.
690b57cec5SDimitry Andric   return CurIndex + 1;
700b57cec5SDimitry Andric }
710b57cec5SDimitry Andric 
720b57cec5SDimitry Andric /// ComputeValueVTs - Given an LLVM IR type, compute a sequence of
730b57cec5SDimitry Andric /// EVTs that represent all the individual underlying
740b57cec5SDimitry Andric /// non-aggregate types that comprise it.
750b57cec5SDimitry Andric ///
760b57cec5SDimitry Andric /// If Offsets is non-null, it points to a vector to be filled in
770b57cec5SDimitry Andric /// with the in-memory offsets of each of the individual values.
780b57cec5SDimitry Andric ///
790b57cec5SDimitry Andric void llvm::ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL,
800b57cec5SDimitry Andric                            Type *Ty, SmallVectorImpl<EVT> &ValueVTs,
810b57cec5SDimitry Andric                            SmallVectorImpl<EVT> *MemVTs,
8206c3fb27SDimitry Andric                            SmallVectorImpl<TypeSize> *Offsets,
8306c3fb27SDimitry Andric                            TypeSize StartingOffset) {
84*0fca6ea1SDimitry Andric   assert((Ty->isScalableTy() == StartingOffset.isScalable() ||
85*0fca6ea1SDimitry Andric           StartingOffset.isZero()) &&
86*0fca6ea1SDimitry Andric          "Offset/TypeSize mismatch!");
870b57cec5SDimitry Andric   // Given a struct type, recursively traverse the elements.
880b57cec5SDimitry Andric   if (StructType *STy = dyn_cast<StructType>(Ty)) {
89e8d8bef9SDimitry Andric     // If the Offsets aren't needed, don't query the struct layout. This allows
90e8d8bef9SDimitry Andric     // us to support structs with scalable vectors for operations that don't
91e8d8bef9SDimitry Andric     // need offsets.
92e8d8bef9SDimitry Andric     const StructLayout *SL = Offsets ? DL.getStructLayout(STy) : nullptr;
930b57cec5SDimitry Andric     for (StructType::element_iterator EB = STy->element_begin(),
940b57cec5SDimitry Andric                                       EI = EB,
950b57cec5SDimitry Andric                                       EE = STy->element_end();
96e8d8bef9SDimitry Andric          EI != EE; ++EI) {
97e8d8bef9SDimitry Andric       // Don't compute the element offset if we didn't get a StructLayout above.
98*0fca6ea1SDimitry Andric       TypeSize EltOffset =
99*0fca6ea1SDimitry Andric           SL ? SL->getElementOffset(EI - EB) : TypeSize::getZero();
1000b57cec5SDimitry Andric       ComputeValueVTs(TLI, DL, *EI, ValueVTs, MemVTs, Offsets,
101e8d8bef9SDimitry Andric                       StartingOffset + EltOffset);
102e8d8bef9SDimitry Andric     }
1030b57cec5SDimitry Andric     return;
1040b57cec5SDimitry Andric   }
1050b57cec5SDimitry Andric   // Given an array type, recursively traverse the elements.
1060b57cec5SDimitry Andric   if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1070b57cec5SDimitry Andric     Type *EltTy = ATy->getElementType();
10806c3fb27SDimitry Andric     TypeSize EltSize = DL.getTypeAllocSize(EltTy);
1090b57cec5SDimitry Andric     for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
1100b57cec5SDimitry Andric       ComputeValueVTs(TLI, DL, EltTy, ValueVTs, MemVTs, Offsets,
1110b57cec5SDimitry Andric                       StartingOffset + i * EltSize);
1120b57cec5SDimitry Andric     return;
1130b57cec5SDimitry Andric   }
1140b57cec5SDimitry Andric   // Interpret void as zero return values.
1150b57cec5SDimitry Andric   if (Ty->isVoidTy())
1160b57cec5SDimitry Andric     return;
1170b57cec5SDimitry Andric   // Base case: we can get an EVT for this LLVM IR type.
1180b57cec5SDimitry Andric   ValueVTs.push_back(TLI.getValueType(DL, Ty));
1190b57cec5SDimitry Andric   if (MemVTs)
1200b57cec5SDimitry Andric     MemVTs->push_back(TLI.getMemValueType(DL, Ty));
1210b57cec5SDimitry Andric   if (Offsets)
1220b57cec5SDimitry Andric     Offsets->push_back(StartingOffset);
1230b57cec5SDimitry Andric }
1240b57cec5SDimitry Andric 
1250b57cec5SDimitry Andric void llvm::ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL,
1260b57cec5SDimitry Andric                            Type *Ty, SmallVectorImpl<EVT> &ValueVTs,
12706c3fb27SDimitry Andric                            SmallVectorImpl<EVT> *MemVTs,
12806c3fb27SDimitry Andric                            SmallVectorImpl<uint64_t> *FixedOffsets,
12906c3fb27SDimitry Andric                            uint64_t StartingOffset) {
130*0fca6ea1SDimitry Andric   TypeSize Offset = TypeSize::getFixed(StartingOffset);
1315f757f3fSDimitry Andric   if (FixedOffsets) {
13206c3fb27SDimitry Andric     SmallVector<TypeSize, 4> Offsets;
13306c3fb27SDimitry Andric     ComputeValueVTs(TLI, DL, Ty, ValueVTs, MemVTs, &Offsets, Offset);
13406c3fb27SDimitry Andric     for (TypeSize Offset : Offsets)
1355f757f3fSDimitry Andric       FixedOffsets->push_back(Offset.getFixedValue());
1365f757f3fSDimitry Andric   } else {
1375f757f3fSDimitry Andric     ComputeValueVTs(TLI, DL, Ty, ValueVTs, MemVTs, nullptr, Offset);
1385f757f3fSDimitry Andric   }
13906c3fb27SDimitry Andric }
14006c3fb27SDimitry Andric 
1410b57cec5SDimitry Andric void llvm::computeValueLLTs(const DataLayout &DL, Type &Ty,
1420b57cec5SDimitry Andric                             SmallVectorImpl<LLT> &ValueTys,
1430b57cec5SDimitry Andric                             SmallVectorImpl<uint64_t> *Offsets,
1440b57cec5SDimitry Andric                             uint64_t StartingOffset) {
1450b57cec5SDimitry Andric   // Given a struct type, recursively traverse the elements.
1460b57cec5SDimitry Andric   if (StructType *STy = dyn_cast<StructType>(&Ty)) {
147e8d8bef9SDimitry Andric     // If the Offsets aren't needed, don't query the struct layout. This allows
148e8d8bef9SDimitry Andric     // us to support structs with scalable vectors for operations that don't
149e8d8bef9SDimitry Andric     // need offsets.
150e8d8bef9SDimitry Andric     const StructLayout *SL = Offsets ? DL.getStructLayout(STy) : nullptr;
151e8d8bef9SDimitry Andric     for (unsigned I = 0, E = STy->getNumElements(); I != E; ++I) {
152e8d8bef9SDimitry Andric       uint64_t EltOffset = SL ? SL->getElementOffset(I) : 0;
1530b57cec5SDimitry Andric       computeValueLLTs(DL, *STy->getElementType(I), ValueTys, Offsets,
154e8d8bef9SDimitry Andric                        StartingOffset + EltOffset);
155e8d8bef9SDimitry Andric     }
1560b57cec5SDimitry Andric     return;
1570b57cec5SDimitry Andric   }
1580b57cec5SDimitry Andric   // Given an array type, recursively traverse the elements.
1590b57cec5SDimitry Andric   if (ArrayType *ATy = dyn_cast<ArrayType>(&Ty)) {
1600b57cec5SDimitry Andric     Type *EltTy = ATy->getElementType();
161e8d8bef9SDimitry Andric     uint64_t EltSize = DL.getTypeAllocSize(EltTy).getFixedValue();
1620b57cec5SDimitry Andric     for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
1630b57cec5SDimitry Andric       computeValueLLTs(DL, *EltTy, ValueTys, Offsets,
1640b57cec5SDimitry Andric                        StartingOffset + i * EltSize);
1650b57cec5SDimitry Andric     return;
1660b57cec5SDimitry Andric   }
1670b57cec5SDimitry Andric   // Interpret void as zero return values.
1680b57cec5SDimitry Andric   if (Ty.isVoidTy())
1690b57cec5SDimitry Andric     return;
1700b57cec5SDimitry Andric   // Base case: we can get an LLT for this LLVM IR type.
1710b57cec5SDimitry Andric   ValueTys.push_back(getLLTForType(Ty, DL));
1720b57cec5SDimitry Andric   if (Offsets != nullptr)
1730b57cec5SDimitry Andric     Offsets->push_back(StartingOffset * 8);
1740b57cec5SDimitry Andric }
1750b57cec5SDimitry Andric 
1760b57cec5SDimitry Andric /// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
1770b57cec5SDimitry Andric GlobalValue *llvm::ExtractTypeInfo(Value *V) {
1780b57cec5SDimitry Andric   V = V->stripPointerCasts();
1790b57cec5SDimitry Andric   GlobalValue *GV = dyn_cast<GlobalValue>(V);
1800b57cec5SDimitry Andric   GlobalVariable *Var = dyn_cast<GlobalVariable>(V);
1810b57cec5SDimitry Andric 
1820b57cec5SDimitry Andric   if (Var && Var->getName() == "llvm.eh.catch.all.value") {
1830b57cec5SDimitry Andric     assert(Var->hasInitializer() &&
1840b57cec5SDimitry Andric            "The EH catch-all value must have an initializer");
1850b57cec5SDimitry Andric     Value *Init = Var->getInitializer();
1860b57cec5SDimitry Andric     GV = dyn_cast<GlobalValue>(Init);
1870b57cec5SDimitry Andric     if (!GV) V = cast<ConstantPointerNull>(Init);
1880b57cec5SDimitry Andric   }
1890b57cec5SDimitry Andric 
1900b57cec5SDimitry Andric   assert((GV || isa<ConstantPointerNull>(V)) &&
1910b57cec5SDimitry Andric          "TypeInfo must be a global variable or NULL");
1920b57cec5SDimitry Andric   return GV;
1930b57cec5SDimitry Andric }
1940b57cec5SDimitry Andric 
1950b57cec5SDimitry Andric /// getFCmpCondCode - Return the ISD condition code corresponding to
1960b57cec5SDimitry Andric /// the given LLVM IR floating-point condition code.  This includes
1970b57cec5SDimitry Andric /// consideration of global floating-point math flags.
1980b57cec5SDimitry Andric ///
1990b57cec5SDimitry Andric ISD::CondCode llvm::getFCmpCondCode(FCmpInst::Predicate Pred) {
2000b57cec5SDimitry Andric   switch (Pred) {
2010b57cec5SDimitry Andric   case FCmpInst::FCMP_FALSE: return ISD::SETFALSE;
2020b57cec5SDimitry Andric   case FCmpInst::FCMP_OEQ:   return ISD::SETOEQ;
2030b57cec5SDimitry Andric   case FCmpInst::FCMP_OGT:   return ISD::SETOGT;
2040b57cec5SDimitry Andric   case FCmpInst::FCMP_OGE:   return ISD::SETOGE;
2050b57cec5SDimitry Andric   case FCmpInst::FCMP_OLT:   return ISD::SETOLT;
2060b57cec5SDimitry Andric   case FCmpInst::FCMP_OLE:   return ISD::SETOLE;
2070b57cec5SDimitry Andric   case FCmpInst::FCMP_ONE:   return ISD::SETONE;
2080b57cec5SDimitry Andric   case FCmpInst::FCMP_ORD:   return ISD::SETO;
2090b57cec5SDimitry Andric   case FCmpInst::FCMP_UNO:   return ISD::SETUO;
2100b57cec5SDimitry Andric   case FCmpInst::FCMP_UEQ:   return ISD::SETUEQ;
2110b57cec5SDimitry Andric   case FCmpInst::FCMP_UGT:   return ISD::SETUGT;
2120b57cec5SDimitry Andric   case FCmpInst::FCMP_UGE:   return ISD::SETUGE;
2130b57cec5SDimitry Andric   case FCmpInst::FCMP_ULT:   return ISD::SETULT;
2140b57cec5SDimitry Andric   case FCmpInst::FCMP_ULE:   return ISD::SETULE;
2150b57cec5SDimitry Andric   case FCmpInst::FCMP_UNE:   return ISD::SETUNE;
2160b57cec5SDimitry Andric   case FCmpInst::FCMP_TRUE:  return ISD::SETTRUE;
2170b57cec5SDimitry Andric   default: llvm_unreachable("Invalid FCmp predicate opcode!");
2180b57cec5SDimitry Andric   }
2190b57cec5SDimitry Andric }
2200b57cec5SDimitry Andric 
2210b57cec5SDimitry Andric ISD::CondCode llvm::getFCmpCodeWithoutNaN(ISD::CondCode CC) {
2220b57cec5SDimitry Andric   switch (CC) {
2230b57cec5SDimitry Andric     case ISD::SETOEQ: case ISD::SETUEQ: return ISD::SETEQ;
2240b57cec5SDimitry Andric     case ISD::SETONE: case ISD::SETUNE: return ISD::SETNE;
2250b57cec5SDimitry Andric     case ISD::SETOLT: case ISD::SETULT: return ISD::SETLT;
2260b57cec5SDimitry Andric     case ISD::SETOLE: case ISD::SETULE: return ISD::SETLE;
2270b57cec5SDimitry Andric     case ISD::SETOGT: case ISD::SETUGT: return ISD::SETGT;
2280b57cec5SDimitry Andric     case ISD::SETOGE: case ISD::SETUGE: return ISD::SETGE;
2290b57cec5SDimitry Andric     default: return CC;
2300b57cec5SDimitry Andric   }
2310b57cec5SDimitry Andric }
2320b57cec5SDimitry Andric 
2330b57cec5SDimitry Andric ISD::CondCode llvm::getICmpCondCode(ICmpInst::Predicate Pred) {
2340b57cec5SDimitry Andric   switch (Pred) {
2350b57cec5SDimitry Andric   case ICmpInst::ICMP_EQ:  return ISD::SETEQ;
2360b57cec5SDimitry Andric   case ICmpInst::ICMP_NE:  return ISD::SETNE;
2370b57cec5SDimitry Andric   case ICmpInst::ICMP_SLE: return ISD::SETLE;
2380b57cec5SDimitry Andric   case ICmpInst::ICMP_ULE: return ISD::SETULE;
2390b57cec5SDimitry Andric   case ICmpInst::ICMP_SGE: return ISD::SETGE;
2400b57cec5SDimitry Andric   case ICmpInst::ICMP_UGE: return ISD::SETUGE;
2410b57cec5SDimitry Andric   case ICmpInst::ICMP_SLT: return ISD::SETLT;
2420b57cec5SDimitry Andric   case ICmpInst::ICMP_ULT: return ISD::SETULT;
2430b57cec5SDimitry Andric   case ICmpInst::ICMP_SGT: return ISD::SETGT;
2440b57cec5SDimitry Andric   case ICmpInst::ICMP_UGT: return ISD::SETUGT;
2450b57cec5SDimitry Andric   default:
2460b57cec5SDimitry Andric     llvm_unreachable("Invalid ICmp predicate opcode!");
2470b57cec5SDimitry Andric   }
2480b57cec5SDimitry Andric }
2490b57cec5SDimitry Andric 
250349cc55cSDimitry Andric ICmpInst::Predicate llvm::getICmpCondCode(ISD::CondCode Pred) {
251349cc55cSDimitry Andric   switch (Pred) {
252349cc55cSDimitry Andric   case ISD::SETEQ:
253349cc55cSDimitry Andric     return ICmpInst::ICMP_EQ;
254349cc55cSDimitry Andric   case ISD::SETNE:
255349cc55cSDimitry Andric     return ICmpInst::ICMP_NE;
256349cc55cSDimitry Andric   case ISD::SETLE:
257349cc55cSDimitry Andric     return ICmpInst::ICMP_SLE;
258349cc55cSDimitry Andric   case ISD::SETULE:
259349cc55cSDimitry Andric     return ICmpInst::ICMP_ULE;
260349cc55cSDimitry Andric   case ISD::SETGE:
261349cc55cSDimitry Andric     return ICmpInst::ICMP_SGE;
262349cc55cSDimitry Andric   case ISD::SETUGE:
263349cc55cSDimitry Andric     return ICmpInst::ICMP_UGE;
264349cc55cSDimitry Andric   case ISD::SETLT:
265349cc55cSDimitry Andric     return ICmpInst::ICMP_SLT;
266349cc55cSDimitry Andric   case ISD::SETULT:
267349cc55cSDimitry Andric     return ICmpInst::ICMP_ULT;
268349cc55cSDimitry Andric   case ISD::SETGT:
269349cc55cSDimitry Andric     return ICmpInst::ICMP_SGT;
270349cc55cSDimitry Andric   case ISD::SETUGT:
271349cc55cSDimitry Andric     return ICmpInst::ICMP_UGT;
272349cc55cSDimitry Andric   default:
273349cc55cSDimitry Andric     llvm_unreachable("Invalid ISD integer condition code!");
274349cc55cSDimitry Andric   }
275349cc55cSDimitry Andric }
276349cc55cSDimitry Andric 
2770b57cec5SDimitry Andric static bool isNoopBitcast(Type *T1, Type *T2,
2780b57cec5SDimitry Andric                           const TargetLoweringBase& TLI) {
2790b57cec5SDimitry Andric   return T1 == T2 || (T1->isPointerTy() && T2->isPointerTy()) ||
2800b57cec5SDimitry Andric          (isa<VectorType>(T1) && isa<VectorType>(T2) &&
2810b57cec5SDimitry Andric           TLI.isTypeLegal(EVT::getEVT(T1)) && TLI.isTypeLegal(EVT::getEVT(T2)));
2820b57cec5SDimitry Andric }
2830b57cec5SDimitry Andric 
2840b57cec5SDimitry Andric /// Look through operations that will be free to find the earliest source of
2850b57cec5SDimitry Andric /// this value.
2860b57cec5SDimitry Andric ///
287480093f4SDimitry Andric /// @param ValLoc If V has aggregate type, we will be interested in a particular
2880b57cec5SDimitry Andric /// scalar component. This records its address; the reverse of this list gives a
2890b57cec5SDimitry Andric /// sequence of indices appropriate for an extractvalue to locate the important
2900b57cec5SDimitry Andric /// value. This value is updated during the function and on exit will indicate
2910b57cec5SDimitry Andric /// similar information for the Value returned.
2920b57cec5SDimitry Andric ///
2930b57cec5SDimitry Andric /// @param DataBits If this function looks through truncate instructions, this
2940b57cec5SDimitry Andric /// will record the smallest size attained.
2950b57cec5SDimitry Andric static const Value *getNoopInput(const Value *V,
2960b57cec5SDimitry Andric                                  SmallVectorImpl<unsigned> &ValLoc,
2970b57cec5SDimitry Andric                                  unsigned &DataBits,
2980b57cec5SDimitry Andric                                  const TargetLoweringBase &TLI,
2990b57cec5SDimitry Andric                                  const DataLayout &DL) {
3000b57cec5SDimitry Andric   while (true) {
3010b57cec5SDimitry Andric     // Try to look through V1; if V1 is not an instruction, it can't be looked
3020b57cec5SDimitry Andric     // through.
3030b57cec5SDimitry Andric     const Instruction *I = dyn_cast<Instruction>(V);
3040b57cec5SDimitry Andric     if (!I || I->getNumOperands() == 0) return V;
3050b57cec5SDimitry Andric     const Value *NoopInput = nullptr;
3060b57cec5SDimitry Andric 
3070b57cec5SDimitry Andric     Value *Op = I->getOperand(0);
3080b57cec5SDimitry Andric     if (isa<BitCastInst>(I)) {
3090b57cec5SDimitry Andric       // Look through truly no-op bitcasts.
3100b57cec5SDimitry Andric       if (isNoopBitcast(Op->getType(), I->getType(), TLI))
3110b57cec5SDimitry Andric         NoopInput = Op;
3120b57cec5SDimitry Andric     } else if (isa<GetElementPtrInst>(I)) {
3130b57cec5SDimitry Andric       // Look through getelementptr
3140b57cec5SDimitry Andric       if (cast<GetElementPtrInst>(I)->hasAllZeroIndices())
3150b57cec5SDimitry Andric         NoopInput = Op;
3160b57cec5SDimitry Andric     } else if (isa<IntToPtrInst>(I)) {
3170b57cec5SDimitry Andric       // Look through inttoptr.
3180b57cec5SDimitry Andric       // Make sure this isn't a truncating or extending cast.  We could
3190b57cec5SDimitry Andric       // support this eventually, but don't bother for now.
3200b57cec5SDimitry Andric       if (!isa<VectorType>(I->getType()) &&
3210b57cec5SDimitry Andric           DL.getPointerSizeInBits() ==
3220b57cec5SDimitry Andric               cast<IntegerType>(Op->getType())->getBitWidth())
3230b57cec5SDimitry Andric         NoopInput = Op;
3240b57cec5SDimitry Andric     } else if (isa<PtrToIntInst>(I)) {
3250b57cec5SDimitry Andric       // Look through ptrtoint.
3260b57cec5SDimitry Andric       // Make sure this isn't a truncating or extending cast.  We could
3270b57cec5SDimitry Andric       // support this eventually, but don't bother for now.
3280b57cec5SDimitry Andric       if (!isa<VectorType>(I->getType()) &&
3290b57cec5SDimitry Andric           DL.getPointerSizeInBits() ==
3300b57cec5SDimitry Andric               cast<IntegerType>(I->getType())->getBitWidth())
3310b57cec5SDimitry Andric         NoopInput = Op;
3320b57cec5SDimitry Andric     } else if (isa<TruncInst>(I) &&
3330b57cec5SDimitry Andric                TLI.allowTruncateForTailCall(Op->getType(), I->getType())) {
334bdd1243dSDimitry Andric       DataBits =
335bdd1243dSDimitry Andric           std::min((uint64_t)DataBits,
336bdd1243dSDimitry Andric                    I->getType()->getPrimitiveSizeInBits().getFixedValue());
3370b57cec5SDimitry Andric       NoopInput = Op;
3385ffd83dbSDimitry Andric     } else if (auto *CB = dyn_cast<CallBase>(I)) {
3395ffd83dbSDimitry Andric       const Value *ReturnedOp = CB->getReturnedArgOperand();
3400b57cec5SDimitry Andric       if (ReturnedOp && isNoopBitcast(ReturnedOp->getType(), I->getType(), TLI))
3410b57cec5SDimitry Andric         NoopInput = ReturnedOp;
3420b57cec5SDimitry Andric     } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(V)) {
3430b57cec5SDimitry Andric       // Value may come from either the aggregate or the scalar
3440b57cec5SDimitry Andric       ArrayRef<unsigned> InsertLoc = IVI->getIndices();
3450b57cec5SDimitry Andric       if (ValLoc.size() >= InsertLoc.size() &&
3460b57cec5SDimitry Andric           std::equal(InsertLoc.begin(), InsertLoc.end(), ValLoc.rbegin())) {
3470b57cec5SDimitry Andric         // The type being inserted is a nested sub-type of the aggregate; we
3480b57cec5SDimitry Andric         // have to remove those initial indices to get the location we're
3490b57cec5SDimitry Andric         // interested in for the operand.
3500b57cec5SDimitry Andric         ValLoc.resize(ValLoc.size() - InsertLoc.size());
3510b57cec5SDimitry Andric         NoopInput = IVI->getInsertedValueOperand();
3520b57cec5SDimitry Andric       } else {
3530b57cec5SDimitry Andric         // The struct we're inserting into has the value we're interested in, no
3540b57cec5SDimitry Andric         // change of address.
3550b57cec5SDimitry Andric         NoopInput = Op;
3560b57cec5SDimitry Andric       }
3570b57cec5SDimitry Andric     } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(V)) {
3580b57cec5SDimitry Andric       // The part we're interested in will inevitably be some sub-section of the
3590b57cec5SDimitry Andric       // previous aggregate. Combine the two paths to obtain the true address of
3600b57cec5SDimitry Andric       // our element.
3610b57cec5SDimitry Andric       ArrayRef<unsigned> ExtractLoc = EVI->getIndices();
3620b57cec5SDimitry Andric       ValLoc.append(ExtractLoc.rbegin(), ExtractLoc.rend());
3630b57cec5SDimitry Andric       NoopInput = Op;
3640b57cec5SDimitry Andric     }
3650b57cec5SDimitry Andric     // Terminate if we couldn't find anything to look through.
3660b57cec5SDimitry Andric     if (!NoopInput)
3670b57cec5SDimitry Andric       return V;
3680b57cec5SDimitry Andric 
3690b57cec5SDimitry Andric     V = NoopInput;
3700b57cec5SDimitry Andric   }
3710b57cec5SDimitry Andric }
3720b57cec5SDimitry Andric 
3730b57cec5SDimitry Andric /// Return true if this scalar return value only has bits discarded on its path
3740b57cec5SDimitry Andric /// from the "tail call" to the "ret". This includes the obvious noop
3750b57cec5SDimitry Andric /// instructions handled by getNoopInput above as well as free truncations (or
3760b57cec5SDimitry Andric /// extensions prior to the call).
3770b57cec5SDimitry Andric static bool slotOnlyDiscardsData(const Value *RetVal, const Value *CallVal,
3780b57cec5SDimitry Andric                                  SmallVectorImpl<unsigned> &RetIndices,
3790b57cec5SDimitry Andric                                  SmallVectorImpl<unsigned> &CallIndices,
3800b57cec5SDimitry Andric                                  bool AllowDifferingSizes,
3810b57cec5SDimitry Andric                                  const TargetLoweringBase &TLI,
3820b57cec5SDimitry Andric                                  const DataLayout &DL) {
3830b57cec5SDimitry Andric 
3840b57cec5SDimitry Andric   // Trace the sub-value needed by the return value as far back up the graph as
3850b57cec5SDimitry Andric   // possible, in the hope that it will intersect with the value produced by the
3860b57cec5SDimitry Andric   // call. In the simple case with no "returned" attribute, the hope is actually
3870b57cec5SDimitry Andric   // that we end up back at the tail call instruction itself.
3880b57cec5SDimitry Andric   unsigned BitsRequired = UINT_MAX;
3890b57cec5SDimitry Andric   RetVal = getNoopInput(RetVal, RetIndices, BitsRequired, TLI, DL);
3900b57cec5SDimitry Andric 
3910b57cec5SDimitry Andric   // If this slot in the value returned is undef, it doesn't matter what the
3920b57cec5SDimitry Andric   // call puts there, it'll be fine.
3930b57cec5SDimitry Andric   if (isa<UndefValue>(RetVal))
3940b57cec5SDimitry Andric     return true;
3950b57cec5SDimitry Andric 
3960b57cec5SDimitry Andric   // Now do a similar search up through the graph to find where the value
3970b57cec5SDimitry Andric   // actually returned by the "tail call" comes from. In the simple case without
3980b57cec5SDimitry Andric   // a "returned" attribute, the search will be blocked immediately and the loop
3990b57cec5SDimitry Andric   // a Noop.
4000b57cec5SDimitry Andric   unsigned BitsProvided = UINT_MAX;
4010b57cec5SDimitry Andric   CallVal = getNoopInput(CallVal, CallIndices, BitsProvided, TLI, DL);
4020b57cec5SDimitry Andric 
4030b57cec5SDimitry Andric   // There's no hope if we can't actually trace them to (the same part of!) the
4040b57cec5SDimitry Andric   // same value.
4050b57cec5SDimitry Andric   if (CallVal != RetVal || CallIndices != RetIndices)
4060b57cec5SDimitry Andric     return false;
4070b57cec5SDimitry Andric 
4080b57cec5SDimitry Andric   // However, intervening truncates may have made the call non-tail. Make sure
4090b57cec5SDimitry Andric   // all the bits that are needed by the "ret" have been provided by the "tail
4100b57cec5SDimitry Andric   // call". FIXME: with sufficiently cunning bit-tracking, we could look through
4110b57cec5SDimitry Andric   // extensions too.
4120b57cec5SDimitry Andric   if (BitsProvided < BitsRequired ||
4130b57cec5SDimitry Andric       (!AllowDifferingSizes && BitsProvided != BitsRequired))
4140b57cec5SDimitry Andric     return false;
4150b57cec5SDimitry Andric 
4160b57cec5SDimitry Andric   return true;
4170b57cec5SDimitry Andric }
4180b57cec5SDimitry Andric 
4190b57cec5SDimitry Andric /// For an aggregate type, determine whether a given index is within bounds or
4200b57cec5SDimitry Andric /// not.
4215ffd83dbSDimitry Andric static bool indexReallyValid(Type *T, unsigned Idx) {
4220b57cec5SDimitry Andric   if (ArrayType *AT = dyn_cast<ArrayType>(T))
4230b57cec5SDimitry Andric     return Idx < AT->getNumElements();
4240b57cec5SDimitry Andric 
4250b57cec5SDimitry Andric   return Idx < cast<StructType>(T)->getNumElements();
4260b57cec5SDimitry Andric }
4270b57cec5SDimitry Andric 
4280b57cec5SDimitry Andric /// Move the given iterators to the next leaf type in depth first traversal.
4290b57cec5SDimitry Andric ///
4300b57cec5SDimitry Andric /// Performs a depth-first traversal of the type as specified by its arguments,
4310b57cec5SDimitry Andric /// stopping at the next leaf node (which may be a legitimate scalar type or an
4320b57cec5SDimitry Andric /// empty struct or array).
4330b57cec5SDimitry Andric ///
4340b57cec5SDimitry Andric /// @param SubTypes List of the partial components making up the type from
4350b57cec5SDimitry Andric /// outermost to innermost non-empty aggregate. The element currently
4360b57cec5SDimitry Andric /// represented is SubTypes.back()->getTypeAtIndex(Path.back() - 1).
4370b57cec5SDimitry Andric ///
4380b57cec5SDimitry Andric /// @param Path Set of extractvalue indices leading from the outermost type
4390b57cec5SDimitry Andric /// (SubTypes[0]) to the leaf node currently represented.
4400b57cec5SDimitry Andric ///
4410b57cec5SDimitry Andric /// @returns true if a new type was found, false otherwise. Calling this
4420b57cec5SDimitry Andric /// function again on a finished iterator will repeatedly return
4430b57cec5SDimitry Andric /// false. SubTypes.back()->getTypeAtIndex(Path.back()) is either an empty
4440b57cec5SDimitry Andric /// aggregate or a non-aggregate
4455ffd83dbSDimitry Andric static bool advanceToNextLeafType(SmallVectorImpl<Type *> &SubTypes,
4460b57cec5SDimitry Andric                                   SmallVectorImpl<unsigned> &Path) {
4470b57cec5SDimitry Andric   // First march back up the tree until we can successfully increment one of the
4480b57cec5SDimitry Andric   // coordinates in Path.
4490b57cec5SDimitry Andric   while (!Path.empty() && !indexReallyValid(SubTypes.back(), Path.back() + 1)) {
4500b57cec5SDimitry Andric     Path.pop_back();
4510b57cec5SDimitry Andric     SubTypes.pop_back();
4520b57cec5SDimitry Andric   }
4530b57cec5SDimitry Andric 
4540b57cec5SDimitry Andric   // If we reached the top, then the iterator is done.
4550b57cec5SDimitry Andric   if (Path.empty())
4560b57cec5SDimitry Andric     return false;
4570b57cec5SDimitry Andric 
4580b57cec5SDimitry Andric   // We know there's *some* valid leaf now, so march back down the tree picking
4590b57cec5SDimitry Andric   // out the left-most element at each node.
4600b57cec5SDimitry Andric   ++Path.back();
4615ffd83dbSDimitry Andric   Type *DeeperType =
4625ffd83dbSDimitry Andric       ExtractValueInst::getIndexedType(SubTypes.back(), Path.back());
4630b57cec5SDimitry Andric   while (DeeperType->isAggregateType()) {
4645ffd83dbSDimitry Andric     if (!indexReallyValid(DeeperType, 0))
4650b57cec5SDimitry Andric       return true;
4660b57cec5SDimitry Andric 
4675ffd83dbSDimitry Andric     SubTypes.push_back(DeeperType);
4680b57cec5SDimitry Andric     Path.push_back(0);
4690b57cec5SDimitry Andric 
4705ffd83dbSDimitry Andric     DeeperType = ExtractValueInst::getIndexedType(DeeperType, 0);
4710b57cec5SDimitry Andric   }
4720b57cec5SDimitry Andric 
4730b57cec5SDimitry Andric   return true;
4740b57cec5SDimitry Andric }
4750b57cec5SDimitry Andric 
4760b57cec5SDimitry Andric /// Find the first non-empty, scalar-like type in Next and setup the iterator
4770b57cec5SDimitry Andric /// components.
4780b57cec5SDimitry Andric ///
4790b57cec5SDimitry Andric /// Assuming Next is an aggregate of some kind, this function will traverse the
4800b57cec5SDimitry Andric /// tree from left to right (i.e. depth-first) looking for the first
4810b57cec5SDimitry Andric /// non-aggregate type which will play a role in function return.
4820b57cec5SDimitry Andric ///
4830b57cec5SDimitry Andric /// For example, if Next was {[0 x i64], {{}, i32, {}}, i32} then we would setup
4840b57cec5SDimitry Andric /// Path as [1, 1] and SubTypes as [Next, {{}, i32, {}}] to represent the first
4850b57cec5SDimitry Andric /// i32 in that type.
4865ffd83dbSDimitry Andric static bool firstRealType(Type *Next, SmallVectorImpl<Type *> &SubTypes,
4870b57cec5SDimitry Andric                           SmallVectorImpl<unsigned> &Path) {
4880b57cec5SDimitry Andric   // First initialise the iterator components to the first "leaf" node
4890b57cec5SDimitry Andric   // (i.e. node with no valid sub-type at any index, so {} does count as a leaf
4900b57cec5SDimitry Andric   // despite nominally being an aggregate).
4915ffd83dbSDimitry Andric   while (Type *FirstInner = ExtractValueInst::getIndexedType(Next, 0)) {
4925ffd83dbSDimitry Andric     SubTypes.push_back(Next);
4930b57cec5SDimitry Andric     Path.push_back(0);
4945ffd83dbSDimitry Andric     Next = FirstInner;
4950b57cec5SDimitry Andric   }
4960b57cec5SDimitry Andric 
4970b57cec5SDimitry Andric   // If there's no Path now, Next was originally scalar already (or empty
4980b57cec5SDimitry Andric   // leaf). We're done.
4990b57cec5SDimitry Andric   if (Path.empty())
5000b57cec5SDimitry Andric     return true;
5010b57cec5SDimitry Andric 
5020b57cec5SDimitry Andric   // Otherwise, use normal iteration to keep looking through the tree until we
5030b57cec5SDimitry Andric   // find a non-aggregate type.
5045ffd83dbSDimitry Andric   while (ExtractValueInst::getIndexedType(SubTypes.back(), Path.back())
5055ffd83dbSDimitry Andric              ->isAggregateType()) {
5060b57cec5SDimitry Andric     if (!advanceToNextLeafType(SubTypes, Path))
5070b57cec5SDimitry Andric       return false;
5080b57cec5SDimitry Andric   }
5090b57cec5SDimitry Andric 
5100b57cec5SDimitry Andric   return true;
5110b57cec5SDimitry Andric }
5120b57cec5SDimitry Andric 
5130b57cec5SDimitry Andric /// Set the iterator data-structures to the next non-empty, non-aggregate
5140b57cec5SDimitry Andric /// subtype.
5155ffd83dbSDimitry Andric static bool nextRealType(SmallVectorImpl<Type *> &SubTypes,
5160b57cec5SDimitry Andric                          SmallVectorImpl<unsigned> &Path) {
5170b57cec5SDimitry Andric   do {
5180b57cec5SDimitry Andric     if (!advanceToNextLeafType(SubTypes, Path))
5190b57cec5SDimitry Andric       return false;
5200b57cec5SDimitry Andric 
5210b57cec5SDimitry Andric     assert(!Path.empty() && "found a leaf but didn't set the path?");
5225ffd83dbSDimitry Andric   } while (ExtractValueInst::getIndexedType(SubTypes.back(), Path.back())
5235ffd83dbSDimitry Andric                ->isAggregateType());
5240b57cec5SDimitry Andric 
5250b57cec5SDimitry Andric   return true;
5260b57cec5SDimitry Andric }
5270b57cec5SDimitry Andric 
5280b57cec5SDimitry Andric 
5290b57cec5SDimitry Andric /// Test if the given instruction is in a position to be optimized
5300b57cec5SDimitry Andric /// with a tail-call. This roughly means that it's in a block with
5310b57cec5SDimitry Andric /// a return and there's nothing that needs to be scheduled
5320b57cec5SDimitry Andric /// between it and the return.
5330b57cec5SDimitry Andric ///
5340b57cec5SDimitry Andric /// This function only tests target-independent requirements.
535*0fca6ea1SDimitry Andric bool llvm::isInTailCallPosition(const CallBase &Call, const TargetMachine &TM,
536*0fca6ea1SDimitry Andric                                 bool ReturnsFirstArg) {
5375ffd83dbSDimitry Andric   const BasicBlock *ExitBB = Call.getParent();
5380b57cec5SDimitry Andric   const Instruction *Term = ExitBB->getTerminator();
5390b57cec5SDimitry Andric   const ReturnInst *Ret = dyn_cast<ReturnInst>(Term);
5400b57cec5SDimitry Andric 
5410b57cec5SDimitry Andric   // The block must end in a return statement or unreachable.
5420b57cec5SDimitry Andric   //
5430b57cec5SDimitry Andric   // FIXME: Decline tailcall if it's not guaranteed and if the block ends in
5440b57cec5SDimitry Andric   // an unreachable, for now. The way tailcall optimization is currently
5450b57cec5SDimitry Andric   // implemented means it will add an epilogue followed by a jump. That is
5460b57cec5SDimitry Andric   // not profitable. Also, if the callee is a special function (e.g.
5470b57cec5SDimitry Andric   // longjmp on x86), it can end up causing miscompilation that has not
5480b57cec5SDimitry Andric   // been fully understood.
549fe6060f1SDimitry Andric   if (!Ret && ((!TM.Options.GuaranteedTailCallOpt &&
550fe6060f1SDimitry Andric                 Call.getCallingConv() != CallingConv::Tail &&
551fe6060f1SDimitry Andric                 Call.getCallingConv() != CallingConv::SwiftTail) ||
552fe6060f1SDimitry Andric                !isa<UnreachableInst>(Term)))
5530b57cec5SDimitry Andric     return false;
5540b57cec5SDimitry Andric 
5550b57cec5SDimitry Andric   // If I will have a chain, make sure no other instruction that will have a
5560b57cec5SDimitry Andric   // chain interposes between I and the return.
5575ffd83dbSDimitry Andric   // Check for all calls including speculatable functions.
5580b57cec5SDimitry Andric   for (BasicBlock::const_iterator BBI = std::prev(ExitBB->end(), 2);; --BBI) {
5595ffd83dbSDimitry Andric     if (&*BBI == &Call)
5600b57cec5SDimitry Andric       break;
5610b57cec5SDimitry Andric     // Debug info intrinsics do not get in the way of tail call optimization.
562e8d8bef9SDimitry Andric     // Pseudo probe intrinsics do not block tail call optimization either.
563349cc55cSDimitry Andric     if (BBI->isDebugOrPseudoInst())
564e8d8bef9SDimitry Andric       continue;
565e8d8bef9SDimitry Andric     // A lifetime end, assume or noalias.decl intrinsic should not stop tail
566e8d8bef9SDimitry Andric     // call optimization.
5670b57cec5SDimitry Andric     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(BBI))
5688bcb0991SDimitry Andric       if (II->getIntrinsicID() == Intrinsic::lifetime_end ||
569e8d8bef9SDimitry Andric           II->getIntrinsicID() == Intrinsic::assume ||
570e8d8bef9SDimitry Andric           II->getIntrinsicID() == Intrinsic::experimental_noalias_scope_decl)
5710b57cec5SDimitry Andric         continue;
5720b57cec5SDimitry Andric     if (BBI->mayHaveSideEffects() || BBI->mayReadFromMemory() ||
5730b57cec5SDimitry Andric         !isSafeToSpeculativelyExecute(&*BBI))
5740b57cec5SDimitry Andric       return false;
5750b57cec5SDimitry Andric   }
5760b57cec5SDimitry Andric 
5770b57cec5SDimitry Andric   const Function *F = ExitBB->getParent();
5780b57cec5SDimitry Andric   return returnTypeIsEligibleForTailCall(
579*0fca6ea1SDimitry Andric       F, &Call, Ret, *TM.getSubtargetImpl(*F)->getTargetLowering(),
580*0fca6ea1SDimitry Andric       ReturnsFirstArg);
5810b57cec5SDimitry Andric }
5820b57cec5SDimitry Andric 
5830b57cec5SDimitry Andric bool llvm::attributesPermitTailCall(const Function *F, const Instruction *I,
5840b57cec5SDimitry Andric                                     const ReturnInst *Ret,
5850b57cec5SDimitry Andric                                     const TargetLoweringBase &TLI,
5860b57cec5SDimitry Andric                                     bool *AllowDifferingSizes) {
5870b57cec5SDimitry Andric   // ADS may be null, so don't write to it directly.
5880b57cec5SDimitry Andric   bool DummyADS;
5890b57cec5SDimitry Andric   bool &ADS = AllowDifferingSizes ? *AllowDifferingSizes : DummyADS;
5900b57cec5SDimitry Andric   ADS = true;
5910b57cec5SDimitry Andric 
59204eeddc0SDimitry Andric   AttrBuilder CallerAttrs(F->getContext(), F->getAttributes().getRetAttrs());
59304eeddc0SDimitry Andric   AttrBuilder CalleeAttrs(F->getContext(),
59404eeddc0SDimitry Andric                           cast<CallInst>(I)->getAttributes().getRetAttrs());
5950b57cec5SDimitry Andric 
596480093f4SDimitry Andric   // Following attributes are completely benign as far as calling convention
5970b57cec5SDimitry Andric   // goes, they shouldn't affect whether the call is a tail call.
598*0fca6ea1SDimitry Andric   for (const auto &Attr :
599*0fca6ea1SDimitry Andric        {Attribute::Alignment, Attribute::Dereferenceable,
600fe6060f1SDimitry Andric         Attribute::DereferenceableOrNull, Attribute::NoAlias,
601*0fca6ea1SDimitry Andric         Attribute::NonNull, Attribute::NoUndef, Attribute::Range}) {
602fe6060f1SDimitry Andric     CallerAttrs.removeAttribute(Attr);
603fe6060f1SDimitry Andric     CalleeAttrs.removeAttribute(Attr);
604fe6060f1SDimitry Andric   }
6050b57cec5SDimitry Andric 
6060b57cec5SDimitry Andric   if (CallerAttrs.contains(Attribute::ZExt)) {
6070b57cec5SDimitry Andric     if (!CalleeAttrs.contains(Attribute::ZExt))
6080b57cec5SDimitry Andric       return false;
6090b57cec5SDimitry Andric 
6100b57cec5SDimitry Andric     ADS = false;
6110b57cec5SDimitry Andric     CallerAttrs.removeAttribute(Attribute::ZExt);
6120b57cec5SDimitry Andric     CalleeAttrs.removeAttribute(Attribute::ZExt);
6130b57cec5SDimitry Andric   } else if (CallerAttrs.contains(Attribute::SExt)) {
6140b57cec5SDimitry Andric     if (!CalleeAttrs.contains(Attribute::SExt))
6150b57cec5SDimitry Andric       return false;
6160b57cec5SDimitry Andric 
6170b57cec5SDimitry Andric     ADS = false;
6180b57cec5SDimitry Andric     CallerAttrs.removeAttribute(Attribute::SExt);
6190b57cec5SDimitry Andric     CalleeAttrs.removeAttribute(Attribute::SExt);
6200b57cec5SDimitry Andric   }
6210b57cec5SDimitry Andric 
6220b57cec5SDimitry Andric   // Drop sext and zext return attributes if the result is not used.
6230b57cec5SDimitry Andric   // This enables tail calls for code like:
6240b57cec5SDimitry Andric   //
6250b57cec5SDimitry Andric   // define void @caller() {
6260b57cec5SDimitry Andric   // entry:
6270b57cec5SDimitry Andric   //   %unused_result = tail call zeroext i1 @callee()
6280b57cec5SDimitry Andric   //   br label %retlabel
6290b57cec5SDimitry Andric   // retlabel:
6300b57cec5SDimitry Andric   //   ret void
6310b57cec5SDimitry Andric   // }
6320b57cec5SDimitry Andric   if (I->use_empty()) {
6330b57cec5SDimitry Andric     CalleeAttrs.removeAttribute(Attribute::SExt);
6340b57cec5SDimitry Andric     CalleeAttrs.removeAttribute(Attribute::ZExt);
6350b57cec5SDimitry Andric   }
6360b57cec5SDimitry Andric 
6370b57cec5SDimitry Andric   // If they're still different, there's some facet we don't understand
6380b57cec5SDimitry Andric   // (currently only "inreg", but in future who knows). It may be OK but the
6390b57cec5SDimitry Andric   // only safe option is to reject the tail call.
6400b57cec5SDimitry Andric   return CallerAttrs == CalleeAttrs;
6410b57cec5SDimitry Andric }
6420b57cec5SDimitry Andric 
6430b57cec5SDimitry Andric bool llvm::returnTypeIsEligibleForTailCall(const Function *F,
6440b57cec5SDimitry Andric                                            const Instruction *I,
6450b57cec5SDimitry Andric                                            const ReturnInst *Ret,
646*0fca6ea1SDimitry Andric                                            const TargetLoweringBase &TLI,
647*0fca6ea1SDimitry Andric                                            bool ReturnsFirstArg) {
6480b57cec5SDimitry Andric   // If the block ends with a void return or unreachable, it doesn't matter
6490b57cec5SDimitry Andric   // what the call's return type is.
6500b57cec5SDimitry Andric   if (!Ret || Ret->getNumOperands() == 0) return true;
6510b57cec5SDimitry Andric 
6520b57cec5SDimitry Andric   // If the return value is undef, it doesn't matter what the call's
6530b57cec5SDimitry Andric   // return type is.
6540b57cec5SDimitry Andric   if (isa<UndefValue>(Ret->getOperand(0))) return true;
6550b57cec5SDimitry Andric 
6560b57cec5SDimitry Andric   // Make sure the attributes attached to each return are compatible.
6570b57cec5SDimitry Andric   bool AllowDifferingSizes;
6580b57cec5SDimitry Andric   if (!attributesPermitTailCall(F, I, Ret, TLI, &AllowDifferingSizes))
6590b57cec5SDimitry Andric     return false;
6600b57cec5SDimitry Andric 
661*0fca6ea1SDimitry Andric   // If the return value is the first argument of the call.
662*0fca6ea1SDimitry Andric   if (ReturnsFirstArg)
6630b57cec5SDimitry Andric     return true;
6640b57cec5SDimitry Andric 
665*0fca6ea1SDimitry Andric   const Value *RetVal = Ret->getOperand(0), *CallVal = I;
6660b57cec5SDimitry Andric   SmallVector<unsigned, 4> RetPath, CallPath;
6675ffd83dbSDimitry Andric   SmallVector<Type *, 4> RetSubTypes, CallSubTypes;
6680b57cec5SDimitry Andric 
6690b57cec5SDimitry Andric   bool RetEmpty = !firstRealType(RetVal->getType(), RetSubTypes, RetPath);
6700b57cec5SDimitry Andric   bool CallEmpty = !firstRealType(CallVal->getType(), CallSubTypes, CallPath);
6710b57cec5SDimitry Andric 
6720b57cec5SDimitry Andric   // Nothing's actually returned, it doesn't matter what the callee put there
6730b57cec5SDimitry Andric   // it's a valid tail call.
6740b57cec5SDimitry Andric   if (RetEmpty)
6750b57cec5SDimitry Andric     return true;
6760b57cec5SDimitry Andric 
6770b57cec5SDimitry Andric   // Iterate pairwise through each of the value types making up the tail call
6780b57cec5SDimitry Andric   // and the corresponding return. For each one we want to know whether it's
6790b57cec5SDimitry Andric   // essentially going directly from the tail call to the ret, via operations
6800b57cec5SDimitry Andric   // that end up not generating any code.
6810b57cec5SDimitry Andric   //
6820b57cec5SDimitry Andric   // We allow a certain amount of covariance here. For example it's permitted
6830b57cec5SDimitry Andric   // for the tail call to define more bits than the ret actually cares about
6840b57cec5SDimitry Andric   // (e.g. via a truncate).
6850b57cec5SDimitry Andric   do {
6860b57cec5SDimitry Andric     if (CallEmpty) {
6870b57cec5SDimitry Andric       // We've exhausted the values produced by the tail call instruction, the
6880b57cec5SDimitry Andric       // rest are essentially undef. The type doesn't really matter, but we need
6890b57cec5SDimitry Andric       // *something*.
6905ffd83dbSDimitry Andric       Type *SlotType =
6915ffd83dbSDimitry Andric           ExtractValueInst::getIndexedType(RetSubTypes.back(), RetPath.back());
6920b57cec5SDimitry Andric       CallVal = UndefValue::get(SlotType);
6930b57cec5SDimitry Andric     }
6940b57cec5SDimitry Andric 
6950b57cec5SDimitry Andric     // The manipulations performed when we're looking through an insertvalue or
6960b57cec5SDimitry Andric     // an extractvalue would happen at the front of the RetPath list, so since
6970b57cec5SDimitry Andric     // we have to copy it anyway it's more efficient to create a reversed copy.
6980eae32dcSDimitry Andric     SmallVector<unsigned, 4> TmpRetPath(llvm::reverse(RetPath));
6990eae32dcSDimitry Andric     SmallVector<unsigned, 4> TmpCallPath(llvm::reverse(CallPath));
7000b57cec5SDimitry Andric 
7010b57cec5SDimitry Andric     // Finally, we can check whether the value produced by the tail call at this
7020b57cec5SDimitry Andric     // index is compatible with the value we return.
7030b57cec5SDimitry Andric     if (!slotOnlyDiscardsData(RetVal, CallVal, TmpRetPath, TmpCallPath,
7040b57cec5SDimitry Andric                               AllowDifferingSizes, TLI,
705*0fca6ea1SDimitry Andric                               F->getDataLayout()))
7060b57cec5SDimitry Andric       return false;
7070b57cec5SDimitry Andric 
7080b57cec5SDimitry Andric     CallEmpty  = !nextRealType(CallSubTypes, CallPath);
7090b57cec5SDimitry Andric   } while(nextRealType(RetSubTypes, RetPath));
7100b57cec5SDimitry Andric 
7110b57cec5SDimitry Andric   return true;
7120b57cec5SDimitry Andric }
7130b57cec5SDimitry Andric 
714*0fca6ea1SDimitry Andric bool llvm::funcReturnsFirstArgOfCall(const CallInst &CI) {
715*0fca6ea1SDimitry Andric   const ReturnInst *Ret = dyn_cast<ReturnInst>(CI.getParent()->getTerminator());
716*0fca6ea1SDimitry Andric   Value *RetVal = Ret ? Ret->getReturnValue() : nullptr;
717*0fca6ea1SDimitry Andric   bool ReturnsFirstArg = false;
718*0fca6ea1SDimitry Andric   if (RetVal && ((RetVal == CI.getArgOperand(0))))
719*0fca6ea1SDimitry Andric     ReturnsFirstArg = true;
720*0fca6ea1SDimitry Andric   return ReturnsFirstArg;
721*0fca6ea1SDimitry Andric }
722*0fca6ea1SDimitry Andric 
7230b57cec5SDimitry Andric static void collectEHScopeMembers(
7240b57cec5SDimitry Andric     DenseMap<const MachineBasicBlock *, int> &EHScopeMembership, int EHScope,
7250b57cec5SDimitry Andric     const MachineBasicBlock *MBB) {
7260b57cec5SDimitry Andric   SmallVector<const MachineBasicBlock *, 16> Worklist = {MBB};
7270b57cec5SDimitry Andric   while (!Worklist.empty()) {
7280b57cec5SDimitry Andric     const MachineBasicBlock *Visiting = Worklist.pop_back_val();
7290b57cec5SDimitry Andric     // Don't follow blocks which start new scopes.
7300b57cec5SDimitry Andric     if (Visiting->isEHPad() && Visiting != MBB)
7310b57cec5SDimitry Andric       continue;
7320b57cec5SDimitry Andric 
7330b57cec5SDimitry Andric     // Add this MBB to our scope.
7340b57cec5SDimitry Andric     auto P = EHScopeMembership.insert(std::make_pair(Visiting, EHScope));
7350b57cec5SDimitry Andric 
7360b57cec5SDimitry Andric     // Don't revisit blocks.
7370b57cec5SDimitry Andric     if (!P.second) {
7380b57cec5SDimitry Andric       assert(P.first->second == EHScope && "MBB is part of two scopes!");
7390b57cec5SDimitry Andric       continue;
7400b57cec5SDimitry Andric     }
7410b57cec5SDimitry Andric 
7420b57cec5SDimitry Andric     // Returns are boundaries where scope transfer can occur, don't follow
7430b57cec5SDimitry Andric     // successors.
7440b57cec5SDimitry Andric     if (Visiting->isEHScopeReturnBlock())
7450b57cec5SDimitry Andric       continue;
7460b57cec5SDimitry Andric 
747e8d8bef9SDimitry Andric     append_range(Worklist, Visiting->successors());
7480b57cec5SDimitry Andric   }
7490b57cec5SDimitry Andric }
7500b57cec5SDimitry Andric 
7510b57cec5SDimitry Andric DenseMap<const MachineBasicBlock *, int>
7520b57cec5SDimitry Andric llvm::getEHScopeMembership(const MachineFunction &MF) {
7530b57cec5SDimitry Andric   DenseMap<const MachineBasicBlock *, int> EHScopeMembership;
7540b57cec5SDimitry Andric 
7550b57cec5SDimitry Andric   // We don't have anything to do if there aren't any EH pads.
7560b57cec5SDimitry Andric   if (!MF.hasEHScopes())
7570b57cec5SDimitry Andric     return EHScopeMembership;
7580b57cec5SDimitry Andric 
7590b57cec5SDimitry Andric   int EntryBBNumber = MF.front().getNumber();
7600b57cec5SDimitry Andric   bool IsSEH = isAsynchronousEHPersonality(
7610b57cec5SDimitry Andric       classifyEHPersonality(MF.getFunction().getPersonalityFn()));
7620b57cec5SDimitry Andric 
7630b57cec5SDimitry Andric   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
7640b57cec5SDimitry Andric   SmallVector<const MachineBasicBlock *, 16> EHScopeBlocks;
7650b57cec5SDimitry Andric   SmallVector<const MachineBasicBlock *, 16> UnreachableBlocks;
7660b57cec5SDimitry Andric   SmallVector<const MachineBasicBlock *, 16> SEHCatchPads;
7670b57cec5SDimitry Andric   SmallVector<std::pair<const MachineBasicBlock *, int>, 16> CatchRetSuccessors;
7680b57cec5SDimitry Andric   for (const MachineBasicBlock &MBB : MF) {
7690b57cec5SDimitry Andric     if (MBB.isEHScopeEntry()) {
7700b57cec5SDimitry Andric       EHScopeBlocks.push_back(&MBB);
7710b57cec5SDimitry Andric     } else if (IsSEH && MBB.isEHPad()) {
7720b57cec5SDimitry Andric       SEHCatchPads.push_back(&MBB);
7730b57cec5SDimitry Andric     } else if (MBB.pred_empty()) {
7740b57cec5SDimitry Andric       UnreachableBlocks.push_back(&MBB);
7750b57cec5SDimitry Andric     }
7760b57cec5SDimitry Andric 
7770b57cec5SDimitry Andric     MachineBasicBlock::const_iterator MBBI = MBB.getFirstTerminator();
7780b57cec5SDimitry Andric 
7790b57cec5SDimitry Andric     // CatchPads are not scopes for SEH so do not consider CatchRet to
7800b57cec5SDimitry Andric     // transfer control to another scope.
7810b57cec5SDimitry Andric     if (MBBI == MBB.end() || MBBI->getOpcode() != TII->getCatchReturnOpcode())
7820b57cec5SDimitry Andric       continue;
7830b57cec5SDimitry Andric 
7840b57cec5SDimitry Andric     // FIXME: SEH CatchPads are not necessarily in the parent function:
7850b57cec5SDimitry Andric     // they could be inside a finally block.
7860b57cec5SDimitry Andric     const MachineBasicBlock *Successor = MBBI->getOperand(0).getMBB();
7870b57cec5SDimitry Andric     const MachineBasicBlock *SuccessorColor = MBBI->getOperand(1).getMBB();
7880b57cec5SDimitry Andric     CatchRetSuccessors.push_back(
7890b57cec5SDimitry Andric         {Successor, IsSEH ? EntryBBNumber : SuccessorColor->getNumber()});
7900b57cec5SDimitry Andric   }
7910b57cec5SDimitry Andric 
7920b57cec5SDimitry Andric   // We don't have anything to do if there aren't any EH pads.
7930b57cec5SDimitry Andric   if (EHScopeBlocks.empty())
7940b57cec5SDimitry Andric     return EHScopeMembership;
7950b57cec5SDimitry Andric 
7960b57cec5SDimitry Andric   // Identify all the basic blocks reachable from the function entry.
7970b57cec5SDimitry Andric   collectEHScopeMembers(EHScopeMembership, EntryBBNumber, &MF.front());
7980b57cec5SDimitry Andric   // All blocks not part of a scope are in the parent function.
7990b57cec5SDimitry Andric   for (const MachineBasicBlock *MBB : UnreachableBlocks)
8000b57cec5SDimitry Andric     collectEHScopeMembers(EHScopeMembership, EntryBBNumber, MBB);
8010b57cec5SDimitry Andric   // Next, identify all the blocks inside the scopes.
8020b57cec5SDimitry Andric   for (const MachineBasicBlock *MBB : EHScopeBlocks)
8030b57cec5SDimitry Andric     collectEHScopeMembers(EHScopeMembership, MBB->getNumber(), MBB);
8040b57cec5SDimitry Andric   // SEH CatchPads aren't really scopes, handle them separately.
8050b57cec5SDimitry Andric   for (const MachineBasicBlock *MBB : SEHCatchPads)
8060b57cec5SDimitry Andric     collectEHScopeMembers(EHScopeMembership, EntryBBNumber, MBB);
8070b57cec5SDimitry Andric   // Finally, identify all the targets of a catchret.
8080b57cec5SDimitry Andric   for (std::pair<const MachineBasicBlock *, int> CatchRetPair :
8090b57cec5SDimitry Andric        CatchRetSuccessors)
8100b57cec5SDimitry Andric     collectEHScopeMembers(EHScopeMembership, CatchRetPair.second,
8110b57cec5SDimitry Andric                           CatchRetPair.first);
8120b57cec5SDimitry Andric   return EHScopeMembership;
8130b57cec5SDimitry Andric }
814