xref: /freebsd-src/contrib/llvm-project/llvm/lib/Analysis/ValueTracking.cpp (revision a7dea1671b87c07d2d266f836bfa8b58efc7c134)
1 //===- ValueTracking.cpp - Walk computations to compute properties --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains routines that help analyze properties that chains of
10 // computations have.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Analysis/ValueTracking.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/ADT/iterator_range.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/AssumptionCache.h"
28 #include "llvm/Analysis/GuardUtils.h"
29 #include "llvm/Analysis/InstructionSimplify.h"
30 #include "llvm/Analysis/Loads.h"
31 #include "llvm/Analysis/LoopInfo.h"
32 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
33 #include "llvm/Analysis/TargetLibraryInfo.h"
34 #include "llvm/IR/Argument.h"
35 #include "llvm/IR/Attributes.h"
36 #include "llvm/IR/BasicBlock.h"
37 #include "llvm/IR/CallSite.h"
38 #include "llvm/IR/Constant.h"
39 #include "llvm/IR/ConstantRange.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/DerivedTypes.h"
42 #include "llvm/IR/DiagnosticInfo.h"
43 #include "llvm/IR/Dominators.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/GetElementPtrTypeIterator.h"
46 #include "llvm/IR/GlobalAlias.h"
47 #include "llvm/IR/GlobalValue.h"
48 #include "llvm/IR/GlobalVariable.h"
49 #include "llvm/IR/InstrTypes.h"
50 #include "llvm/IR/Instruction.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/IntrinsicInst.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/LLVMContext.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Module.h"
57 #include "llvm/IR/Operator.h"
58 #include "llvm/IR/PatternMatch.h"
59 #include "llvm/IR/Type.h"
60 #include "llvm/IR/User.h"
61 #include "llvm/IR/Value.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/CommandLine.h"
64 #include "llvm/Support/Compiler.h"
65 #include "llvm/Support/ErrorHandling.h"
66 #include "llvm/Support/KnownBits.h"
67 #include "llvm/Support/MathExtras.h"
68 #include <algorithm>
69 #include <array>
70 #include <cassert>
71 #include <cstdint>
72 #include <iterator>
73 #include <utility>
74 
75 using namespace llvm;
76 using namespace llvm::PatternMatch;
77 
78 const unsigned MaxDepth = 6;
79 
80 // Controls the number of uses of the value searched for possible
81 // dominating comparisons.
82 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
83                                               cl::Hidden, cl::init(20));
84 
85 /// Returns the bitwidth of the given scalar or pointer type. For vector types,
86 /// returns the element type's bitwidth.
87 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
88   if (unsigned BitWidth = Ty->getScalarSizeInBits())
89     return BitWidth;
90 
91   return DL.getIndexTypeSizeInBits(Ty);
92 }
93 
94 namespace {
95 
96 // Simplifying using an assume can only be done in a particular control-flow
97 // context (the context instruction provides that context). If an assume and
98 // the context instruction are not in the same block then the DT helps in
99 // figuring out if we can use it.
100 struct Query {
101   const DataLayout &DL;
102   AssumptionCache *AC;
103   const Instruction *CxtI;
104   const DominatorTree *DT;
105 
106   // Unlike the other analyses, this may be a nullptr because not all clients
107   // provide it currently.
108   OptimizationRemarkEmitter *ORE;
109 
110   /// Set of assumptions that should be excluded from further queries.
111   /// This is because of the potential for mutual recursion to cause
112   /// computeKnownBits to repeatedly visit the same assume intrinsic. The
113   /// classic case of this is assume(x = y), which will attempt to determine
114   /// bits in x from bits in y, which will attempt to determine bits in y from
115   /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call
116   /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo
117   /// (all of which can call computeKnownBits), and so on.
118   std::array<const Value *, MaxDepth> Excluded;
119 
120   /// If true, it is safe to use metadata during simplification.
121   InstrInfoQuery IIQ;
122 
123   unsigned NumExcluded = 0;
124 
125   Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI,
126         const DominatorTree *DT, bool UseInstrInfo,
127         OptimizationRemarkEmitter *ORE = nullptr)
128       : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {}
129 
130   Query(const Query &Q, const Value *NewExcl)
131       : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), IIQ(Q.IIQ),
132         NumExcluded(Q.NumExcluded) {
133     Excluded = Q.Excluded;
134     Excluded[NumExcluded++] = NewExcl;
135     assert(NumExcluded <= Excluded.size());
136   }
137 
138   bool isExcluded(const Value *Value) const {
139     if (NumExcluded == 0)
140       return false;
141     auto End = Excluded.begin() + NumExcluded;
142     return std::find(Excluded.begin(), End, Value) != End;
143   }
144 };
145 
146 } // end anonymous namespace
147 
148 // Given the provided Value and, potentially, a context instruction, return
149 // the preferred context instruction (if any).
150 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
151   // If we've been provided with a context instruction, then use that (provided
152   // it has been inserted).
153   if (CxtI && CxtI->getParent())
154     return CxtI;
155 
156   // If the value is really an already-inserted instruction, then use that.
157   CxtI = dyn_cast<Instruction>(V);
158   if (CxtI && CxtI->getParent())
159     return CxtI;
160 
161   return nullptr;
162 }
163 
164 static void computeKnownBits(const Value *V, KnownBits &Known,
165                              unsigned Depth, const Query &Q);
166 
167 void llvm::computeKnownBits(const Value *V, KnownBits &Known,
168                             const DataLayout &DL, unsigned Depth,
169                             AssumptionCache *AC, const Instruction *CxtI,
170                             const DominatorTree *DT,
171                             OptimizationRemarkEmitter *ORE, bool UseInstrInfo) {
172   ::computeKnownBits(V, Known, Depth,
173                      Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
174 }
175 
176 static KnownBits computeKnownBits(const Value *V, unsigned Depth,
177                                   const Query &Q);
178 
179 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL,
180                                  unsigned Depth, AssumptionCache *AC,
181                                  const Instruction *CxtI,
182                                  const DominatorTree *DT,
183                                  OptimizationRemarkEmitter *ORE,
184                                  bool UseInstrInfo) {
185   return ::computeKnownBits(
186       V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
187 }
188 
189 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS,
190                                const DataLayout &DL, AssumptionCache *AC,
191                                const Instruction *CxtI, const DominatorTree *DT,
192                                bool UseInstrInfo) {
193   assert(LHS->getType() == RHS->getType() &&
194          "LHS and RHS should have the same type");
195   assert(LHS->getType()->isIntOrIntVectorTy() &&
196          "LHS and RHS should be integers");
197   // Look for an inverted mask: (X & ~M) op (Y & M).
198   Value *M;
199   if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) &&
200       match(RHS, m_c_And(m_Specific(M), m_Value())))
201     return true;
202   if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) &&
203       match(LHS, m_c_And(m_Specific(M), m_Value())))
204     return true;
205   IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
206   KnownBits LHSKnown(IT->getBitWidth());
207   KnownBits RHSKnown(IT->getBitWidth());
208   computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo);
209   computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo);
210   return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue();
211 }
212 
213 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) {
214   for (const User *U : CxtI->users()) {
215     if (const ICmpInst *IC = dyn_cast<ICmpInst>(U))
216       if (IC->isEquality())
217         if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
218           if (C->isNullValue())
219             continue;
220     return false;
221   }
222   return true;
223 }
224 
225 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
226                                    const Query &Q);
227 
228 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL,
229                                   bool OrZero, unsigned Depth,
230                                   AssumptionCache *AC, const Instruction *CxtI,
231                                   const DominatorTree *DT, bool UseInstrInfo) {
232   return ::isKnownToBeAPowerOfTwo(
233       V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
234 }
235 
236 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q);
237 
238 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth,
239                           AssumptionCache *AC, const Instruction *CxtI,
240                           const DominatorTree *DT, bool UseInstrInfo) {
241   return ::isKnownNonZero(V, Depth,
242                           Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
243 }
244 
245 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL,
246                               unsigned Depth, AssumptionCache *AC,
247                               const Instruction *CxtI, const DominatorTree *DT,
248                               bool UseInstrInfo) {
249   KnownBits Known =
250       computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo);
251   return Known.isNonNegative();
252 }
253 
254 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth,
255                            AssumptionCache *AC, const Instruction *CxtI,
256                            const DominatorTree *DT, bool UseInstrInfo) {
257   if (auto *CI = dyn_cast<ConstantInt>(V))
258     return CI->getValue().isStrictlyPositive();
259 
260   // TODO: We'd doing two recursive queries here.  We should factor this such
261   // that only a single query is needed.
262   return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) &&
263          isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo);
264 }
265 
266 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth,
267                            AssumptionCache *AC, const Instruction *CxtI,
268                            const DominatorTree *DT, bool UseInstrInfo) {
269   KnownBits Known =
270       computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo);
271   return Known.isNegative();
272 }
273 
274 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q);
275 
276 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2,
277                            const DataLayout &DL, AssumptionCache *AC,
278                            const Instruction *CxtI, const DominatorTree *DT,
279                            bool UseInstrInfo) {
280   return ::isKnownNonEqual(V1, V2,
281                            Query(DL, AC, safeCxtI(V1, safeCxtI(V2, CxtI)), DT,
282                                  UseInstrInfo, /*ORE=*/nullptr));
283 }
284 
285 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
286                               const Query &Q);
287 
288 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask,
289                              const DataLayout &DL, unsigned Depth,
290                              AssumptionCache *AC, const Instruction *CxtI,
291                              const DominatorTree *DT, bool UseInstrInfo) {
292   return ::MaskedValueIsZero(
293       V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
294 }
295 
296 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
297                                    const Query &Q);
298 
299 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL,
300                                   unsigned Depth, AssumptionCache *AC,
301                                   const Instruction *CxtI,
302                                   const DominatorTree *DT, bool UseInstrInfo) {
303   return ::ComputeNumSignBits(
304       V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
305 }
306 
307 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1,
308                                    bool NSW,
309                                    KnownBits &KnownOut, KnownBits &Known2,
310                                    unsigned Depth, const Query &Q) {
311   unsigned BitWidth = KnownOut.getBitWidth();
312 
313   // If an initial sequence of bits in the result is not needed, the
314   // corresponding bits in the operands are not needed.
315   KnownBits LHSKnown(BitWidth);
316   computeKnownBits(Op0, LHSKnown, Depth + 1, Q);
317   computeKnownBits(Op1, Known2, Depth + 1, Q);
318 
319   KnownOut = KnownBits::computeForAddSub(Add, NSW, LHSKnown, Known2);
320 }
321 
322 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW,
323                                 KnownBits &Known, KnownBits &Known2,
324                                 unsigned Depth, const Query &Q) {
325   unsigned BitWidth = Known.getBitWidth();
326   computeKnownBits(Op1, Known, Depth + 1, Q);
327   computeKnownBits(Op0, Known2, Depth + 1, Q);
328 
329   bool isKnownNegative = false;
330   bool isKnownNonNegative = false;
331   // If the multiplication is known not to overflow, compute the sign bit.
332   if (NSW) {
333     if (Op0 == Op1) {
334       // The product of a number with itself is non-negative.
335       isKnownNonNegative = true;
336     } else {
337       bool isKnownNonNegativeOp1 = Known.isNonNegative();
338       bool isKnownNonNegativeOp0 = Known2.isNonNegative();
339       bool isKnownNegativeOp1 = Known.isNegative();
340       bool isKnownNegativeOp0 = Known2.isNegative();
341       // The product of two numbers with the same sign is non-negative.
342       isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
343         (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
344       // The product of a negative number and a non-negative number is either
345       // negative or zero.
346       if (!isKnownNonNegative)
347         isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
348                            isKnownNonZero(Op0, Depth, Q)) ||
349                           (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
350                            isKnownNonZero(Op1, Depth, Q));
351     }
352   }
353 
354   assert(!Known.hasConflict() && !Known2.hasConflict());
355   // Compute a conservative estimate for high known-0 bits.
356   unsigned LeadZ =  std::max(Known.countMinLeadingZeros() +
357                              Known2.countMinLeadingZeros(),
358                              BitWidth) - BitWidth;
359   LeadZ = std::min(LeadZ, BitWidth);
360 
361   // The result of the bottom bits of an integer multiply can be
362   // inferred by looking at the bottom bits of both operands and
363   // multiplying them together.
364   // We can infer at least the minimum number of known trailing bits
365   // of both operands. Depending on number of trailing zeros, we can
366   // infer more bits, because (a*b) <=> ((a/m) * (b/n)) * (m*n) assuming
367   // a and b are divisible by m and n respectively.
368   // We then calculate how many of those bits are inferrable and set
369   // the output. For example, the i8 mul:
370   //  a = XXXX1100 (12)
371   //  b = XXXX1110 (14)
372   // We know the bottom 3 bits are zero since the first can be divided by
373   // 4 and the second by 2, thus having ((12/4) * (14/2)) * (2*4).
374   // Applying the multiplication to the trimmed arguments gets:
375   //    XX11 (3)
376   //    X111 (7)
377   // -------
378   //    XX11
379   //   XX11
380   //  XX11
381   // XX11
382   // -------
383   // XXXXX01
384   // Which allows us to infer the 2 LSBs. Since we're multiplying the result
385   // by 8, the bottom 3 bits will be 0, so we can infer a total of 5 bits.
386   // The proof for this can be described as:
387   // Pre: (C1 >= 0) && (C1 < (1 << C5)) && (C2 >= 0) && (C2 < (1 << C6)) &&
388   //      (C7 == (1 << (umin(countTrailingZeros(C1), C5) +
389   //                    umin(countTrailingZeros(C2), C6) +
390   //                    umin(C5 - umin(countTrailingZeros(C1), C5),
391   //                         C6 - umin(countTrailingZeros(C2), C6)))) - 1)
392   // %aa = shl i8 %a, C5
393   // %bb = shl i8 %b, C6
394   // %aaa = or i8 %aa, C1
395   // %bbb = or i8 %bb, C2
396   // %mul = mul i8 %aaa, %bbb
397   // %mask = and i8 %mul, C7
398   //   =>
399   // %mask = i8 ((C1*C2)&C7)
400   // Where C5, C6 describe the known bits of %a, %b
401   // C1, C2 describe the known bottom bits of %a, %b.
402   // C7 describes the mask of the known bits of the result.
403   APInt Bottom0 = Known.One;
404   APInt Bottom1 = Known2.One;
405 
406   // How many times we'd be able to divide each argument by 2 (shr by 1).
407   // This gives us the number of trailing zeros on the multiplication result.
408   unsigned TrailBitsKnown0 = (Known.Zero | Known.One).countTrailingOnes();
409   unsigned TrailBitsKnown1 = (Known2.Zero | Known2.One).countTrailingOnes();
410   unsigned TrailZero0 = Known.countMinTrailingZeros();
411   unsigned TrailZero1 = Known2.countMinTrailingZeros();
412   unsigned TrailZ = TrailZero0 + TrailZero1;
413 
414   // Figure out the fewest known-bits operand.
415   unsigned SmallestOperand = std::min(TrailBitsKnown0 - TrailZero0,
416                                       TrailBitsKnown1 - TrailZero1);
417   unsigned ResultBitsKnown = std::min(SmallestOperand + TrailZ, BitWidth);
418 
419   APInt BottomKnown = Bottom0.getLoBits(TrailBitsKnown0) *
420                       Bottom1.getLoBits(TrailBitsKnown1);
421 
422   Known.resetAll();
423   Known.Zero.setHighBits(LeadZ);
424   Known.Zero |= (~BottomKnown).getLoBits(ResultBitsKnown);
425   Known.One |= BottomKnown.getLoBits(ResultBitsKnown);
426 
427   // Only make use of no-wrap flags if we failed to compute the sign bit
428   // directly.  This matters if the multiplication always overflows, in
429   // which case we prefer to follow the result of the direct computation,
430   // though as the program is invoking undefined behaviour we can choose
431   // whatever we like here.
432   if (isKnownNonNegative && !Known.isNegative())
433     Known.makeNonNegative();
434   else if (isKnownNegative && !Known.isNonNegative())
435     Known.makeNegative();
436 }
437 
438 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
439                                              KnownBits &Known) {
440   unsigned BitWidth = Known.getBitWidth();
441   unsigned NumRanges = Ranges.getNumOperands() / 2;
442   assert(NumRanges >= 1);
443 
444   Known.Zero.setAllBits();
445   Known.One.setAllBits();
446 
447   for (unsigned i = 0; i < NumRanges; ++i) {
448     ConstantInt *Lower =
449         mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
450     ConstantInt *Upper =
451         mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
452     ConstantRange Range(Lower->getValue(), Upper->getValue());
453 
454     // The first CommonPrefixBits of all values in Range are equal.
455     unsigned CommonPrefixBits =
456         (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros();
457 
458     APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits);
459     Known.One &= Range.getUnsignedMax() & Mask;
460     Known.Zero &= ~Range.getUnsignedMax() & Mask;
461   }
462 }
463 
464 static bool isEphemeralValueOf(const Instruction *I, const Value *E) {
465   SmallVector<const Value *, 16> WorkSet(1, I);
466   SmallPtrSet<const Value *, 32> Visited;
467   SmallPtrSet<const Value *, 16> EphValues;
468 
469   // The instruction defining an assumption's condition itself is always
470   // considered ephemeral to that assumption (even if it has other
471   // non-ephemeral users). See r246696's test case for an example.
472   if (is_contained(I->operands(), E))
473     return true;
474 
475   while (!WorkSet.empty()) {
476     const Value *V = WorkSet.pop_back_val();
477     if (!Visited.insert(V).second)
478       continue;
479 
480     // If all uses of this value are ephemeral, then so is this value.
481     if (llvm::all_of(V->users(), [&](const User *U) {
482                                    return EphValues.count(U);
483                                  })) {
484       if (V == E)
485         return true;
486 
487       if (V == I || isSafeToSpeculativelyExecute(V)) {
488        EphValues.insert(V);
489        if (const User *U = dyn_cast<User>(V))
490          for (User::const_op_iterator J = U->op_begin(), JE = U->op_end();
491               J != JE; ++J)
492            WorkSet.push_back(*J);
493       }
494     }
495   }
496 
497   return false;
498 }
499 
500 // Is this an intrinsic that cannot be speculated but also cannot trap?
501 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) {
502   if (const CallInst *CI = dyn_cast<CallInst>(I))
503     if (Function *F = CI->getCalledFunction())
504       switch (F->getIntrinsicID()) {
505       default: break;
506       // FIXME: This list is repeated from NoTTI::getIntrinsicCost.
507       case Intrinsic::assume:
508       case Intrinsic::sideeffect:
509       case Intrinsic::dbg_declare:
510       case Intrinsic::dbg_value:
511       case Intrinsic::dbg_label:
512       case Intrinsic::invariant_start:
513       case Intrinsic::invariant_end:
514       case Intrinsic::lifetime_start:
515       case Intrinsic::lifetime_end:
516       case Intrinsic::objectsize:
517       case Intrinsic::ptr_annotation:
518       case Intrinsic::var_annotation:
519         return true;
520       }
521 
522   return false;
523 }
524 
525 bool llvm::isValidAssumeForContext(const Instruction *Inv,
526                                    const Instruction *CxtI,
527                                    const DominatorTree *DT) {
528   // There are two restrictions on the use of an assume:
529   //  1. The assume must dominate the context (or the control flow must
530   //     reach the assume whenever it reaches the context).
531   //  2. The context must not be in the assume's set of ephemeral values
532   //     (otherwise we will use the assume to prove that the condition
533   //     feeding the assume is trivially true, thus causing the removal of
534   //     the assume).
535 
536   if (DT) {
537     if (DT->dominates(Inv, CxtI))
538       return true;
539   } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) {
540     // We don't have a DT, but this trivially dominates.
541     return true;
542   }
543 
544   // With or without a DT, the only remaining case we will check is if the
545   // instructions are in the same BB.  Give up if that is not the case.
546   if (Inv->getParent() != CxtI->getParent())
547     return false;
548 
549   // If we have a dom tree, then we now know that the assume doesn't dominate
550   // the other instruction.  If we don't have a dom tree then we can check if
551   // the assume is first in the BB.
552   if (!DT) {
553     // Search forward from the assume until we reach the context (or the end
554     // of the block); the common case is that the assume will come first.
555     for (auto I = std::next(BasicBlock::const_iterator(Inv)),
556          IE = Inv->getParent()->end(); I != IE; ++I)
557       if (&*I == CxtI)
558         return true;
559   }
560 
561   // Don't let an assume affect itself - this would cause the problems
562   // `isEphemeralValueOf` is trying to prevent, and it would also make
563   // the loop below go out of bounds.
564   if (Inv == CxtI)
565     return false;
566 
567   // The context comes first, but they're both in the same block. Make sure
568   // there is nothing in between that might interrupt the control flow.
569   for (BasicBlock::const_iterator I =
570          std::next(BasicBlock::const_iterator(CxtI)), IE(Inv);
571        I != IE; ++I)
572     if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
573       return false;
574 
575   return !isEphemeralValueOf(Inv, CxtI);
576 }
577 
578 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known,
579                                        unsigned Depth, const Query &Q) {
580   // Use of assumptions is context-sensitive. If we don't have a context, we
581   // cannot use them!
582   if (!Q.AC || !Q.CxtI)
583     return;
584 
585   unsigned BitWidth = Known.getBitWidth();
586 
587   // Note that the patterns below need to be kept in sync with the code
588   // in AssumptionCache::updateAffectedValues.
589 
590   for (auto &AssumeVH : Q.AC->assumptionsFor(V)) {
591     if (!AssumeVH)
592       continue;
593     CallInst *I = cast<CallInst>(AssumeVH);
594     assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
595            "Got assumption for the wrong function!");
596     if (Q.isExcluded(I))
597       continue;
598 
599     // Warning: This loop can end up being somewhat performance sensitive.
600     // We're running this loop for once for each value queried resulting in a
601     // runtime of ~O(#assumes * #values).
602 
603     assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
604            "must be an assume intrinsic");
605 
606     Value *Arg = I->getArgOperand(0);
607 
608     if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
609       assert(BitWidth == 1 && "assume operand is not i1?");
610       Known.setAllOnes();
611       return;
612     }
613     if (match(Arg, m_Not(m_Specific(V))) &&
614         isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
615       assert(BitWidth == 1 && "assume operand is not i1?");
616       Known.setAllZero();
617       return;
618     }
619 
620     // The remaining tests are all recursive, so bail out if we hit the limit.
621     if (Depth == MaxDepth)
622       continue;
623 
624     ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg);
625     if (!Cmp)
626       continue;
627 
628     Value *A, *B;
629     auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V)));
630 
631     CmpInst::Predicate Pred;
632     uint64_t C;
633     switch (Cmp->getPredicate()) {
634     default:
635       break;
636     case ICmpInst::ICMP_EQ:
637       // assume(v = a)
638       if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) &&
639           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
640         KnownBits RHSKnown(BitWidth);
641         computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
642         Known.Zero |= RHSKnown.Zero;
643         Known.One  |= RHSKnown.One;
644       // assume(v & b = a)
645       } else if (match(Cmp,
646                        m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
647                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
648         KnownBits RHSKnown(BitWidth);
649         computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
650         KnownBits MaskKnown(BitWidth);
651         computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I));
652 
653         // For those bits in the mask that are known to be one, we can propagate
654         // known bits from the RHS to V.
655         Known.Zero |= RHSKnown.Zero & MaskKnown.One;
656         Known.One  |= RHSKnown.One  & MaskKnown.One;
657       // assume(~(v & b) = a)
658       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
659                                      m_Value(A))) &&
660                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
661         KnownBits RHSKnown(BitWidth);
662         computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
663         KnownBits MaskKnown(BitWidth);
664         computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I));
665 
666         // For those bits in the mask that are known to be one, we can propagate
667         // inverted known bits from the RHS to V.
668         Known.Zero |= RHSKnown.One  & MaskKnown.One;
669         Known.One  |= RHSKnown.Zero & MaskKnown.One;
670       // assume(v | b = a)
671       } else if (match(Cmp,
672                        m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
673                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
674         KnownBits RHSKnown(BitWidth);
675         computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
676         KnownBits BKnown(BitWidth);
677         computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
678 
679         // For those bits in B that are known to be zero, we can propagate known
680         // bits from the RHS to V.
681         Known.Zero |= RHSKnown.Zero & BKnown.Zero;
682         Known.One  |= RHSKnown.One  & BKnown.Zero;
683       // assume(~(v | b) = a)
684       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
685                                      m_Value(A))) &&
686                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
687         KnownBits RHSKnown(BitWidth);
688         computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
689         KnownBits BKnown(BitWidth);
690         computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
691 
692         // For those bits in B that are known to be zero, we can propagate
693         // inverted known bits from the RHS to V.
694         Known.Zero |= RHSKnown.One  & BKnown.Zero;
695         Known.One  |= RHSKnown.Zero & BKnown.Zero;
696       // assume(v ^ b = a)
697       } else if (match(Cmp,
698                        m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
699                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
700         KnownBits RHSKnown(BitWidth);
701         computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
702         KnownBits BKnown(BitWidth);
703         computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
704 
705         // For those bits in B that are known to be zero, we can propagate known
706         // bits from the RHS to V. For those bits in B that are known to be one,
707         // we can propagate inverted known bits from the RHS to V.
708         Known.Zero |= RHSKnown.Zero & BKnown.Zero;
709         Known.One  |= RHSKnown.One  & BKnown.Zero;
710         Known.Zero |= RHSKnown.One  & BKnown.One;
711         Known.One  |= RHSKnown.Zero & BKnown.One;
712       // assume(~(v ^ b) = a)
713       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
714                                      m_Value(A))) &&
715                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
716         KnownBits RHSKnown(BitWidth);
717         computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
718         KnownBits BKnown(BitWidth);
719         computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
720 
721         // For those bits in B that are known to be zero, we can propagate
722         // inverted known bits from the RHS to V. For those bits in B that are
723         // known to be one, we can propagate known bits from the RHS to V.
724         Known.Zero |= RHSKnown.One  & BKnown.Zero;
725         Known.One  |= RHSKnown.Zero & BKnown.Zero;
726         Known.Zero |= RHSKnown.Zero & BKnown.One;
727         Known.One  |= RHSKnown.One  & BKnown.One;
728       // assume(v << c = a)
729       } else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
730                                      m_Value(A))) &&
731                  isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
732         KnownBits RHSKnown(BitWidth);
733         computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
734         // For those bits in RHS that are known, we can propagate them to known
735         // bits in V shifted to the right by C.
736         RHSKnown.Zero.lshrInPlace(C);
737         Known.Zero |= RHSKnown.Zero;
738         RHSKnown.One.lshrInPlace(C);
739         Known.One  |= RHSKnown.One;
740       // assume(~(v << c) = a)
741       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
742                                      m_Value(A))) &&
743                  isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
744         KnownBits RHSKnown(BitWidth);
745         computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
746         // For those bits in RHS that are known, we can propagate them inverted
747         // to known bits in V shifted to the right by C.
748         RHSKnown.One.lshrInPlace(C);
749         Known.Zero |= RHSKnown.One;
750         RHSKnown.Zero.lshrInPlace(C);
751         Known.One  |= RHSKnown.Zero;
752       // assume(v >> c = a)
753       } else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)),
754                                      m_Value(A))) &&
755                  isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
756         KnownBits RHSKnown(BitWidth);
757         computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
758         // For those bits in RHS that are known, we can propagate them to known
759         // bits in V shifted to the right by C.
760         Known.Zero |= RHSKnown.Zero << C;
761         Known.One  |= RHSKnown.One  << C;
762       // assume(~(v >> c) = a)
763       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))),
764                                      m_Value(A))) &&
765                  isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
766         KnownBits RHSKnown(BitWidth);
767         computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
768         // For those bits in RHS that are known, we can propagate them inverted
769         // to known bits in V shifted to the right by C.
770         Known.Zero |= RHSKnown.One  << C;
771         Known.One  |= RHSKnown.Zero << C;
772       }
773       break;
774     case ICmpInst::ICMP_SGE:
775       // assume(v >=_s c) where c is non-negative
776       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
777           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
778         KnownBits RHSKnown(BitWidth);
779         computeKnownBits(A, RHSKnown, Depth + 1, Query(Q, I));
780 
781         if (RHSKnown.isNonNegative()) {
782           // We know that the sign bit is zero.
783           Known.makeNonNegative();
784         }
785       }
786       break;
787     case ICmpInst::ICMP_SGT:
788       // assume(v >_s c) where c is at least -1.
789       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
790           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
791         KnownBits RHSKnown(BitWidth);
792         computeKnownBits(A, RHSKnown, Depth + 1, Query(Q, I));
793 
794         if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) {
795           // We know that the sign bit is zero.
796           Known.makeNonNegative();
797         }
798       }
799       break;
800     case ICmpInst::ICMP_SLE:
801       // assume(v <=_s c) where c is negative
802       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
803           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
804         KnownBits RHSKnown(BitWidth);
805         computeKnownBits(A, RHSKnown, Depth + 1, Query(Q, I));
806 
807         if (RHSKnown.isNegative()) {
808           // We know that the sign bit is one.
809           Known.makeNegative();
810         }
811       }
812       break;
813     case ICmpInst::ICMP_SLT:
814       // assume(v <_s c) where c is non-positive
815       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
816           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
817         KnownBits RHSKnown(BitWidth);
818         computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
819 
820         if (RHSKnown.isZero() || RHSKnown.isNegative()) {
821           // We know that the sign bit is one.
822           Known.makeNegative();
823         }
824       }
825       break;
826     case ICmpInst::ICMP_ULE:
827       // assume(v <=_u c)
828       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
829           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
830         KnownBits RHSKnown(BitWidth);
831         computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
832 
833         // Whatever high bits in c are zero are known to be zero.
834         Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
835       }
836       break;
837     case ICmpInst::ICMP_ULT:
838       // assume(v <_u c)
839       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
840           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
841         KnownBits RHSKnown(BitWidth);
842         computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
843 
844         // If the RHS is known zero, then this assumption must be wrong (nothing
845         // is unsigned less than zero). Signal a conflict and get out of here.
846         if (RHSKnown.isZero()) {
847           Known.Zero.setAllBits();
848           Known.One.setAllBits();
849           break;
850         }
851 
852         // Whatever high bits in c are zero are known to be zero (if c is a power
853         // of 2, then one more).
854         if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I)))
855           Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1);
856         else
857           Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
858       }
859       break;
860     }
861   }
862 
863   // If assumptions conflict with each other or previous known bits, then we
864   // have a logical fallacy. It's possible that the assumption is not reachable,
865   // so this isn't a real bug. On the other hand, the program may have undefined
866   // behavior, or we might have a bug in the compiler. We can't assert/crash, so
867   // clear out the known bits, try to warn the user, and hope for the best.
868   if (Known.Zero.intersects(Known.One)) {
869     Known.resetAll();
870 
871     if (Q.ORE)
872       Q.ORE->emit([&]() {
873         auto *CxtI = const_cast<Instruction *>(Q.CxtI);
874         return OptimizationRemarkAnalysis("value-tracking", "BadAssumption",
875                                           CxtI)
876                << "Detected conflicting code assumptions. Program may "
877                   "have undefined behavior, or compiler may have "
878                   "internal error.";
879       });
880   }
881 }
882 
883 /// Compute known bits from a shift operator, including those with a
884 /// non-constant shift amount. Known is the output of this function. Known2 is a
885 /// pre-allocated temporary with the same bit width as Known. KZF and KOF are
886 /// operator-specific functions that, given the known-zero or known-one bits
887 /// respectively, and a shift amount, compute the implied known-zero or
888 /// known-one bits of the shift operator's result respectively for that shift
889 /// amount. The results from calling KZF and KOF are conservatively combined for
890 /// all permitted shift amounts.
891 static void computeKnownBitsFromShiftOperator(
892     const Operator *I, KnownBits &Known, KnownBits &Known2,
893     unsigned Depth, const Query &Q,
894     function_ref<APInt(const APInt &, unsigned)> KZF,
895     function_ref<APInt(const APInt &, unsigned)> KOF) {
896   unsigned BitWidth = Known.getBitWidth();
897 
898   if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
899     unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1);
900 
901     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
902     Known.Zero = KZF(Known.Zero, ShiftAmt);
903     Known.One  = KOF(Known.One, ShiftAmt);
904     // If the known bits conflict, this must be an overflowing left shift, so
905     // the shift result is poison. We can return anything we want. Choose 0 for
906     // the best folding opportunity.
907     if (Known.hasConflict())
908       Known.setAllZero();
909 
910     return;
911   }
912 
913   computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
914 
915   // If the shift amount could be greater than or equal to the bit-width of the
916   // LHS, the value could be poison, but bail out because the check below is
917   // expensive. TODO: Should we just carry on?
918   if ((~Known.Zero).uge(BitWidth)) {
919     Known.resetAll();
920     return;
921   }
922 
923   // Note: We cannot use Known.Zero.getLimitedValue() here, because if
924   // BitWidth > 64 and any upper bits are known, we'll end up returning the
925   // limit value (which implies all bits are known).
926   uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue();
927   uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue();
928 
929   // It would be more-clearly correct to use the two temporaries for this
930   // calculation. Reusing the APInts here to prevent unnecessary allocations.
931   Known.resetAll();
932 
933   // If we know the shifter operand is nonzero, we can sometimes infer more
934   // known bits. However this is expensive to compute, so be lazy about it and
935   // only compute it when absolutely necessary.
936   Optional<bool> ShifterOperandIsNonZero;
937 
938   // Early exit if we can't constrain any well-defined shift amount.
939   if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) &&
940       !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) {
941     ShifterOperandIsNonZero = isKnownNonZero(I->getOperand(1), Depth + 1, Q);
942     if (!*ShifterOperandIsNonZero)
943       return;
944   }
945 
946   computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
947 
948   Known.Zero.setAllBits();
949   Known.One.setAllBits();
950   for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) {
951     // Combine the shifted known input bits only for those shift amounts
952     // compatible with its known constraints.
953     if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt)
954       continue;
955     if ((ShiftAmt | ShiftAmtKO) != ShiftAmt)
956       continue;
957     // If we know the shifter is nonzero, we may be able to infer more known
958     // bits. This check is sunk down as far as possible to avoid the expensive
959     // call to isKnownNonZero if the cheaper checks above fail.
960     if (ShiftAmt == 0) {
961       if (!ShifterOperandIsNonZero.hasValue())
962         ShifterOperandIsNonZero =
963             isKnownNonZero(I->getOperand(1), Depth + 1, Q);
964       if (*ShifterOperandIsNonZero)
965         continue;
966     }
967 
968     Known.Zero &= KZF(Known2.Zero, ShiftAmt);
969     Known.One  &= KOF(Known2.One, ShiftAmt);
970   }
971 
972   // If the known bits conflict, the result is poison. Return a 0 and hope the
973   // caller can further optimize that.
974   if (Known.hasConflict())
975     Known.setAllZero();
976 }
977 
978 static void computeKnownBitsFromOperator(const Operator *I, KnownBits &Known,
979                                          unsigned Depth, const Query &Q) {
980   unsigned BitWidth = Known.getBitWidth();
981 
982   KnownBits Known2(Known);
983   switch (I->getOpcode()) {
984   default: break;
985   case Instruction::Load:
986     if (MDNode *MD =
987             Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range))
988       computeKnownBitsFromRangeMetadata(*MD, Known);
989     break;
990   case Instruction::And: {
991     // If either the LHS or the RHS are Zero, the result is zero.
992     computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
993     computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
994 
995     // Output known-1 bits are only known if set in both the LHS & RHS.
996     Known.One &= Known2.One;
997     // Output known-0 are known to be clear if zero in either the LHS | RHS.
998     Known.Zero |= Known2.Zero;
999 
1000     // and(x, add (x, -1)) is a common idiom that always clears the low bit;
1001     // here we handle the more general case of adding any odd number by
1002     // matching the form add(x, add(x, y)) where y is odd.
1003     // TODO: This could be generalized to clearing any bit set in y where the
1004     // following bit is known to be unset in y.
1005     Value *X = nullptr, *Y = nullptr;
1006     if (!Known.Zero[0] && !Known.One[0] &&
1007         match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) {
1008       Known2.resetAll();
1009       computeKnownBits(Y, Known2, Depth + 1, Q);
1010       if (Known2.countMinTrailingOnes() > 0)
1011         Known.Zero.setBit(0);
1012     }
1013     break;
1014   }
1015   case Instruction::Or:
1016     computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
1017     computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1018 
1019     // Output known-0 bits are only known if clear in both the LHS & RHS.
1020     Known.Zero &= Known2.Zero;
1021     // Output known-1 are known to be set if set in either the LHS | RHS.
1022     Known.One |= Known2.One;
1023     break;
1024   case Instruction::Xor: {
1025     computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
1026     computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1027 
1028     // Output known-0 bits are known if clear or set in both the LHS & RHS.
1029     APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
1030     // Output known-1 are known to be set if set in only one of the LHS, RHS.
1031     Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
1032     Known.Zero = std::move(KnownZeroOut);
1033     break;
1034   }
1035   case Instruction::Mul: {
1036     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1037     computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, Known,
1038                         Known2, Depth, Q);
1039     break;
1040   }
1041   case Instruction::UDiv: {
1042     // For the purposes of computing leading zeros we can conservatively
1043     // treat a udiv as a logical right shift by the power of 2 known to
1044     // be less than the denominator.
1045     computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1046     unsigned LeadZ = Known2.countMinLeadingZeros();
1047 
1048     Known2.resetAll();
1049     computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1050     unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros();
1051     if (RHSMaxLeadingZeros != BitWidth)
1052       LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1);
1053 
1054     Known.Zero.setHighBits(LeadZ);
1055     break;
1056   }
1057   case Instruction::Select: {
1058     const Value *LHS = nullptr, *RHS = nullptr;
1059     SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor;
1060     if (SelectPatternResult::isMinOrMax(SPF)) {
1061       computeKnownBits(RHS, Known, Depth + 1, Q);
1062       computeKnownBits(LHS, Known2, Depth + 1, Q);
1063     } else {
1064       computeKnownBits(I->getOperand(2), Known, Depth + 1, Q);
1065       computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1066     }
1067 
1068     unsigned MaxHighOnes = 0;
1069     unsigned MaxHighZeros = 0;
1070     if (SPF == SPF_SMAX) {
1071       // If both sides are negative, the result is negative.
1072       if (Known.isNegative() && Known2.isNegative())
1073         // We can derive a lower bound on the result by taking the max of the
1074         // leading one bits.
1075         MaxHighOnes =
1076             std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes());
1077       // If either side is non-negative, the result is non-negative.
1078       else if (Known.isNonNegative() || Known2.isNonNegative())
1079         MaxHighZeros = 1;
1080     } else if (SPF == SPF_SMIN) {
1081       // If both sides are non-negative, the result is non-negative.
1082       if (Known.isNonNegative() && Known2.isNonNegative())
1083         // We can derive an upper bound on the result by taking the max of the
1084         // leading zero bits.
1085         MaxHighZeros = std::max(Known.countMinLeadingZeros(),
1086                                 Known2.countMinLeadingZeros());
1087       // If either side is negative, the result is negative.
1088       else if (Known.isNegative() || Known2.isNegative())
1089         MaxHighOnes = 1;
1090     } else if (SPF == SPF_UMAX) {
1091       // We can derive a lower bound on the result by taking the max of the
1092       // leading one bits.
1093       MaxHighOnes =
1094           std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes());
1095     } else if (SPF == SPF_UMIN) {
1096       // We can derive an upper bound on the result by taking the max of the
1097       // leading zero bits.
1098       MaxHighZeros =
1099           std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
1100     } else if (SPF == SPF_ABS) {
1101       // RHS from matchSelectPattern returns the negation part of abs pattern.
1102       // If the negate has an NSW flag we can assume the sign bit of the result
1103       // will be 0 because that makes abs(INT_MIN) undefined.
1104       if (match(RHS, m_Neg(m_Specific(LHS))) &&
1105           Q.IIQ.hasNoSignedWrap(cast<Instruction>(RHS)))
1106         MaxHighZeros = 1;
1107     }
1108 
1109     // Only known if known in both the LHS and RHS.
1110     Known.One &= Known2.One;
1111     Known.Zero &= Known2.Zero;
1112     if (MaxHighOnes > 0)
1113       Known.One.setHighBits(MaxHighOnes);
1114     if (MaxHighZeros > 0)
1115       Known.Zero.setHighBits(MaxHighZeros);
1116     break;
1117   }
1118   case Instruction::FPTrunc:
1119   case Instruction::FPExt:
1120   case Instruction::FPToUI:
1121   case Instruction::FPToSI:
1122   case Instruction::SIToFP:
1123   case Instruction::UIToFP:
1124     break; // Can't work with floating point.
1125   case Instruction::PtrToInt:
1126   case Instruction::IntToPtr:
1127     // Fall through and handle them the same as zext/trunc.
1128     LLVM_FALLTHROUGH;
1129   case Instruction::ZExt:
1130   case Instruction::Trunc: {
1131     Type *SrcTy = I->getOperand(0)->getType();
1132 
1133     unsigned SrcBitWidth;
1134     // Note that we handle pointer operands here because of inttoptr/ptrtoint
1135     // which fall through here.
1136     Type *ScalarTy = SrcTy->getScalarType();
1137     SrcBitWidth = ScalarTy->isPointerTy() ?
1138       Q.DL.getIndexTypeSizeInBits(ScalarTy) :
1139       Q.DL.getTypeSizeInBits(ScalarTy);
1140 
1141     assert(SrcBitWidth && "SrcBitWidth can't be zero");
1142     Known = Known.zextOrTrunc(SrcBitWidth, false);
1143     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1144     Known = Known.zextOrTrunc(BitWidth, true /* ExtendedBitsAreKnownZero */);
1145     break;
1146   }
1147   case Instruction::BitCast: {
1148     Type *SrcTy = I->getOperand(0)->getType();
1149     if (SrcTy->isIntOrPtrTy() &&
1150         // TODO: For now, not handling conversions like:
1151         // (bitcast i64 %x to <2 x i32>)
1152         !I->getType()->isVectorTy()) {
1153       computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1154       break;
1155     }
1156     break;
1157   }
1158   case Instruction::SExt: {
1159     // Compute the bits in the result that are not present in the input.
1160     unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
1161 
1162     Known = Known.trunc(SrcBitWidth);
1163     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1164     // If the sign bit of the input is known set or clear, then we know the
1165     // top bits of the result.
1166     Known = Known.sext(BitWidth);
1167     break;
1168   }
1169   case Instruction::Shl: {
1170     // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1171     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1172     auto KZF = [NSW](const APInt &KnownZero, unsigned ShiftAmt) {
1173       APInt KZResult = KnownZero << ShiftAmt;
1174       KZResult.setLowBits(ShiftAmt); // Low bits known 0.
1175       // If this shift has "nsw" keyword, then the result is either a poison
1176       // value or has the same sign bit as the first operand.
1177       if (NSW && KnownZero.isSignBitSet())
1178         KZResult.setSignBit();
1179       return KZResult;
1180     };
1181 
1182     auto KOF = [NSW](const APInt &KnownOne, unsigned ShiftAmt) {
1183       APInt KOResult = KnownOne << ShiftAmt;
1184       if (NSW && KnownOne.isSignBitSet())
1185         KOResult.setSignBit();
1186       return KOResult;
1187     };
1188 
1189     computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF);
1190     break;
1191   }
1192   case Instruction::LShr: {
1193     // (lshr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1194     auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) {
1195       APInt KZResult = KnownZero.lshr(ShiftAmt);
1196       // High bits known zero.
1197       KZResult.setHighBits(ShiftAmt);
1198       return KZResult;
1199     };
1200 
1201     auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) {
1202       return KnownOne.lshr(ShiftAmt);
1203     };
1204 
1205     computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF);
1206     break;
1207   }
1208   case Instruction::AShr: {
1209     // (ashr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1210     auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) {
1211       return KnownZero.ashr(ShiftAmt);
1212     };
1213 
1214     auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) {
1215       return KnownOne.ashr(ShiftAmt);
1216     };
1217 
1218     computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF);
1219     break;
1220   }
1221   case Instruction::Sub: {
1222     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1223     computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
1224                            Known, Known2, Depth, Q);
1225     break;
1226   }
1227   case Instruction::Add: {
1228     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1229     computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
1230                            Known, Known2, Depth, Q);
1231     break;
1232   }
1233   case Instruction::SRem:
1234     if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
1235       APInt RA = Rem->getValue().abs();
1236       if (RA.isPowerOf2()) {
1237         APInt LowBits = RA - 1;
1238         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1239 
1240         // The low bits of the first operand are unchanged by the srem.
1241         Known.Zero = Known2.Zero & LowBits;
1242         Known.One = Known2.One & LowBits;
1243 
1244         // If the first operand is non-negative or has all low bits zero, then
1245         // the upper bits are all zero.
1246         if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero))
1247           Known.Zero |= ~LowBits;
1248 
1249         // If the first operand is negative and not all low bits are zero, then
1250         // the upper bits are all one.
1251         if (Known2.isNegative() && LowBits.intersects(Known2.One))
1252           Known.One |= ~LowBits;
1253 
1254         assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?");
1255         break;
1256       }
1257     }
1258 
1259     // The sign bit is the LHS's sign bit, except when the result of the
1260     // remainder is zero.
1261     computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1262     // If it's known zero, our sign bit is also zero.
1263     if (Known2.isNonNegative())
1264       Known.makeNonNegative();
1265 
1266     break;
1267   case Instruction::URem: {
1268     if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
1269       const APInt &RA = Rem->getValue();
1270       if (RA.isPowerOf2()) {
1271         APInt LowBits = (RA - 1);
1272         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1273         Known.Zero |= ~LowBits;
1274         Known.One &= LowBits;
1275         break;
1276       }
1277     }
1278 
1279     // Since the result is less than or equal to either operand, any leading
1280     // zero bits in either operand must also exist in the result.
1281     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1282     computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1283 
1284     unsigned Leaders =
1285         std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
1286     Known.resetAll();
1287     Known.Zero.setHighBits(Leaders);
1288     break;
1289   }
1290 
1291   case Instruction::Alloca: {
1292     const AllocaInst *AI = cast<AllocaInst>(I);
1293     unsigned Align = AI->getAlignment();
1294     if (Align == 0)
1295       Align = Q.DL.getABITypeAlignment(AI->getAllocatedType());
1296 
1297     if (Align > 0)
1298       Known.Zero.setLowBits(countTrailingZeros(Align));
1299     break;
1300   }
1301   case Instruction::GetElementPtr: {
1302     // Analyze all of the subscripts of this getelementptr instruction
1303     // to determine if we can prove known low zero bits.
1304     KnownBits LocalKnown(BitWidth);
1305     computeKnownBits(I->getOperand(0), LocalKnown, Depth + 1, Q);
1306     unsigned TrailZ = LocalKnown.countMinTrailingZeros();
1307 
1308     gep_type_iterator GTI = gep_type_begin(I);
1309     for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1310       Value *Index = I->getOperand(i);
1311       if (StructType *STy = GTI.getStructTypeOrNull()) {
1312         // Handle struct member offset arithmetic.
1313 
1314         // Handle case when index is vector zeroinitializer
1315         Constant *CIndex = cast<Constant>(Index);
1316         if (CIndex->isZeroValue())
1317           continue;
1318 
1319         if (CIndex->getType()->isVectorTy())
1320           Index = CIndex->getSplatValue();
1321 
1322         unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
1323         const StructLayout *SL = Q.DL.getStructLayout(STy);
1324         uint64_t Offset = SL->getElementOffset(Idx);
1325         TrailZ = std::min<unsigned>(TrailZ,
1326                                     countTrailingZeros(Offset));
1327       } else {
1328         // Handle array index arithmetic.
1329         Type *IndexedTy = GTI.getIndexedType();
1330         if (!IndexedTy->isSized()) {
1331           TrailZ = 0;
1332           break;
1333         }
1334         unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
1335         uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy);
1336         LocalKnown.Zero = LocalKnown.One = APInt(GEPOpiBits, 0);
1337         computeKnownBits(Index, LocalKnown, Depth + 1, Q);
1338         TrailZ = std::min(TrailZ,
1339                           unsigned(countTrailingZeros(TypeSize) +
1340                                    LocalKnown.countMinTrailingZeros()));
1341       }
1342     }
1343 
1344     Known.Zero.setLowBits(TrailZ);
1345     break;
1346   }
1347   case Instruction::PHI: {
1348     const PHINode *P = cast<PHINode>(I);
1349     // Handle the case of a simple two-predecessor recurrence PHI.
1350     // There's a lot more that could theoretically be done here, but
1351     // this is sufficient to catch some interesting cases.
1352     if (P->getNumIncomingValues() == 2) {
1353       for (unsigned i = 0; i != 2; ++i) {
1354         Value *L = P->getIncomingValue(i);
1355         Value *R = P->getIncomingValue(!i);
1356         Operator *LU = dyn_cast<Operator>(L);
1357         if (!LU)
1358           continue;
1359         unsigned Opcode = LU->getOpcode();
1360         // Check for operations that have the property that if
1361         // both their operands have low zero bits, the result
1362         // will have low zero bits.
1363         if (Opcode == Instruction::Add ||
1364             Opcode == Instruction::Sub ||
1365             Opcode == Instruction::And ||
1366             Opcode == Instruction::Or ||
1367             Opcode == Instruction::Mul) {
1368           Value *LL = LU->getOperand(0);
1369           Value *LR = LU->getOperand(1);
1370           // Find a recurrence.
1371           if (LL == I)
1372             L = LR;
1373           else if (LR == I)
1374             L = LL;
1375           else
1376             continue; // Check for recurrence with L and R flipped.
1377           // Ok, we have a PHI of the form L op= R. Check for low
1378           // zero bits.
1379           computeKnownBits(R, Known2, Depth + 1, Q);
1380 
1381           // We need to take the minimum number of known bits
1382           KnownBits Known3(Known);
1383           computeKnownBits(L, Known3, Depth + 1, Q);
1384 
1385           Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(),
1386                                          Known3.countMinTrailingZeros()));
1387 
1388           auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU);
1389           if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) {
1390             // If initial value of recurrence is nonnegative, and we are adding
1391             // a nonnegative number with nsw, the result can only be nonnegative
1392             // or poison value regardless of the number of times we execute the
1393             // add in phi recurrence. If initial value is negative and we are
1394             // adding a negative number with nsw, the result can only be
1395             // negative or poison value. Similar arguments apply to sub and mul.
1396             //
1397             // (add non-negative, non-negative) --> non-negative
1398             // (add negative, negative) --> negative
1399             if (Opcode == Instruction::Add) {
1400               if (Known2.isNonNegative() && Known3.isNonNegative())
1401                 Known.makeNonNegative();
1402               else if (Known2.isNegative() && Known3.isNegative())
1403                 Known.makeNegative();
1404             }
1405 
1406             // (sub nsw non-negative, negative) --> non-negative
1407             // (sub nsw negative, non-negative) --> negative
1408             else if (Opcode == Instruction::Sub && LL == I) {
1409               if (Known2.isNonNegative() && Known3.isNegative())
1410                 Known.makeNonNegative();
1411               else if (Known2.isNegative() && Known3.isNonNegative())
1412                 Known.makeNegative();
1413             }
1414 
1415             // (mul nsw non-negative, non-negative) --> non-negative
1416             else if (Opcode == Instruction::Mul && Known2.isNonNegative() &&
1417                      Known3.isNonNegative())
1418               Known.makeNonNegative();
1419           }
1420 
1421           break;
1422         }
1423       }
1424     }
1425 
1426     // Unreachable blocks may have zero-operand PHI nodes.
1427     if (P->getNumIncomingValues() == 0)
1428       break;
1429 
1430     // Otherwise take the unions of the known bit sets of the operands,
1431     // taking conservative care to avoid excessive recursion.
1432     if (Depth < MaxDepth - 1 && !Known.Zero && !Known.One) {
1433       // Skip if every incoming value references to ourself.
1434       if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
1435         break;
1436 
1437       Known.Zero.setAllBits();
1438       Known.One.setAllBits();
1439       for (Value *IncValue : P->incoming_values()) {
1440         // Skip direct self references.
1441         if (IncValue == P) continue;
1442 
1443         Known2 = KnownBits(BitWidth);
1444         // Recurse, but cap the recursion to one level, because we don't
1445         // want to waste time spinning around in loops.
1446         computeKnownBits(IncValue, Known2, MaxDepth - 1, Q);
1447         Known.Zero &= Known2.Zero;
1448         Known.One &= Known2.One;
1449         // If all bits have been ruled out, there's no need to check
1450         // more operands.
1451         if (!Known.Zero && !Known.One)
1452           break;
1453       }
1454     }
1455     break;
1456   }
1457   case Instruction::Call:
1458   case Instruction::Invoke:
1459     // If range metadata is attached to this call, set known bits from that,
1460     // and then intersect with known bits based on other properties of the
1461     // function.
1462     if (MDNode *MD =
1463             Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range))
1464       computeKnownBitsFromRangeMetadata(*MD, Known);
1465     if (const Value *RV = ImmutableCallSite(I).getReturnedArgOperand()) {
1466       computeKnownBits(RV, Known2, Depth + 1, Q);
1467       Known.Zero |= Known2.Zero;
1468       Known.One |= Known2.One;
1469     }
1470     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1471       switch (II->getIntrinsicID()) {
1472       default: break;
1473       case Intrinsic::bitreverse:
1474         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1475         Known.Zero |= Known2.Zero.reverseBits();
1476         Known.One |= Known2.One.reverseBits();
1477         break;
1478       case Intrinsic::bswap:
1479         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1480         Known.Zero |= Known2.Zero.byteSwap();
1481         Known.One |= Known2.One.byteSwap();
1482         break;
1483       case Intrinsic::ctlz: {
1484         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1485         // If we have a known 1, its position is our upper bound.
1486         unsigned PossibleLZ = Known2.One.countLeadingZeros();
1487         // If this call is undefined for 0, the result will be less than 2^n.
1488         if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1489           PossibleLZ = std::min(PossibleLZ, BitWidth - 1);
1490         unsigned LowBits = Log2_32(PossibleLZ)+1;
1491         Known.Zero.setBitsFrom(LowBits);
1492         break;
1493       }
1494       case Intrinsic::cttz: {
1495         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1496         // If we have a known 1, its position is our upper bound.
1497         unsigned PossibleTZ = Known2.One.countTrailingZeros();
1498         // If this call is undefined for 0, the result will be less than 2^n.
1499         if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1500           PossibleTZ = std::min(PossibleTZ, BitWidth - 1);
1501         unsigned LowBits = Log2_32(PossibleTZ)+1;
1502         Known.Zero.setBitsFrom(LowBits);
1503         break;
1504       }
1505       case Intrinsic::ctpop: {
1506         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1507         // We can bound the space the count needs.  Also, bits known to be zero
1508         // can't contribute to the population.
1509         unsigned BitsPossiblySet = Known2.countMaxPopulation();
1510         unsigned LowBits = Log2_32(BitsPossiblySet)+1;
1511         Known.Zero.setBitsFrom(LowBits);
1512         // TODO: we could bound KnownOne using the lower bound on the number
1513         // of bits which might be set provided by popcnt KnownOne2.
1514         break;
1515       }
1516       case Intrinsic::fshr:
1517       case Intrinsic::fshl: {
1518         const APInt *SA;
1519         if (!match(I->getOperand(2), m_APInt(SA)))
1520           break;
1521 
1522         // Normalize to funnel shift left.
1523         uint64_t ShiftAmt = SA->urem(BitWidth);
1524         if (II->getIntrinsicID() == Intrinsic::fshr)
1525           ShiftAmt = BitWidth - ShiftAmt;
1526 
1527         KnownBits Known3(Known);
1528         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1529         computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q);
1530 
1531         Known.Zero =
1532             Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt);
1533         Known.One =
1534             Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt);
1535         break;
1536       }
1537       case Intrinsic::uadd_sat:
1538       case Intrinsic::usub_sat: {
1539         bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat;
1540         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1541         computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1542 
1543         // Add: Leading ones of either operand are preserved.
1544         // Sub: Leading zeros of LHS and leading ones of RHS are preserved
1545         // as leading zeros in the result.
1546         unsigned LeadingKnown;
1547         if (IsAdd)
1548           LeadingKnown = std::max(Known.countMinLeadingOnes(),
1549                                   Known2.countMinLeadingOnes());
1550         else
1551           LeadingKnown = std::max(Known.countMinLeadingZeros(),
1552                                   Known2.countMinLeadingOnes());
1553 
1554         Known = KnownBits::computeForAddSub(
1555             IsAdd, /* NSW */ false, Known, Known2);
1556 
1557         // We select between the operation result and all-ones/zero
1558         // respectively, so we can preserve known ones/zeros.
1559         if (IsAdd) {
1560           Known.One.setHighBits(LeadingKnown);
1561           Known.Zero.clearAllBits();
1562         } else {
1563           Known.Zero.setHighBits(LeadingKnown);
1564           Known.One.clearAllBits();
1565         }
1566         break;
1567       }
1568       case Intrinsic::x86_sse42_crc32_64_64:
1569         Known.Zero.setBitsFrom(32);
1570         break;
1571       }
1572     }
1573     break;
1574   case Instruction::ExtractElement:
1575     // Look through extract element. At the moment we keep this simple and skip
1576     // tracking the specific element. But at least we might find information
1577     // valid for all elements of the vector (for example if vector is sign
1578     // extended, shifted, etc).
1579     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1580     break;
1581   case Instruction::ExtractValue:
1582     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
1583       const ExtractValueInst *EVI = cast<ExtractValueInst>(I);
1584       if (EVI->getNumIndices() != 1) break;
1585       if (EVI->getIndices()[0] == 0) {
1586         switch (II->getIntrinsicID()) {
1587         default: break;
1588         case Intrinsic::uadd_with_overflow:
1589         case Intrinsic::sadd_with_overflow:
1590           computeKnownBitsAddSub(true, II->getArgOperand(0),
1591                                  II->getArgOperand(1), false, Known, Known2,
1592                                  Depth, Q);
1593           break;
1594         case Intrinsic::usub_with_overflow:
1595         case Intrinsic::ssub_with_overflow:
1596           computeKnownBitsAddSub(false, II->getArgOperand(0),
1597                                  II->getArgOperand(1), false, Known, Known2,
1598                                  Depth, Q);
1599           break;
1600         case Intrinsic::umul_with_overflow:
1601         case Intrinsic::smul_with_overflow:
1602           computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
1603                               Known, Known2, Depth, Q);
1604           break;
1605         }
1606       }
1607     }
1608   }
1609 }
1610 
1611 /// Determine which bits of V are known to be either zero or one and return
1612 /// them.
1613 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) {
1614   KnownBits Known(getBitWidth(V->getType(), Q.DL));
1615   computeKnownBits(V, Known, Depth, Q);
1616   return Known;
1617 }
1618 
1619 /// Determine which bits of V are known to be either zero or one and return
1620 /// them in the Known bit set.
1621 ///
1622 /// NOTE: we cannot consider 'undef' to be "IsZero" here.  The problem is that
1623 /// we cannot optimize based on the assumption that it is zero without changing
1624 /// it to be an explicit zero.  If we don't change it to zero, other code could
1625 /// optimized based on the contradictory assumption that it is non-zero.
1626 /// Because instcombine aggressively folds operations with undef args anyway,
1627 /// this won't lose us code quality.
1628 ///
1629 /// This function is defined on values with integer type, values with pointer
1630 /// type, and vectors of integers.  In the case
1631 /// where V is a vector, known zero, and known one values are the
1632 /// same width as the vector element, and the bit is set only if it is true
1633 /// for all of the elements in the vector.
1634 void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth,
1635                       const Query &Q) {
1636   assert(V && "No Value?");
1637   assert(Depth <= MaxDepth && "Limit Search Depth");
1638   unsigned BitWidth = Known.getBitWidth();
1639 
1640   assert((V->getType()->isIntOrIntVectorTy(BitWidth) ||
1641           V->getType()->isPtrOrPtrVectorTy()) &&
1642          "Not integer or pointer type!");
1643 
1644   Type *ScalarTy = V->getType()->getScalarType();
1645   unsigned ExpectedWidth = ScalarTy->isPointerTy() ?
1646     Q.DL.getIndexTypeSizeInBits(ScalarTy) : Q.DL.getTypeSizeInBits(ScalarTy);
1647   assert(ExpectedWidth == BitWidth && "V and Known should have same BitWidth");
1648   (void)BitWidth;
1649   (void)ExpectedWidth;
1650 
1651   const APInt *C;
1652   if (match(V, m_APInt(C))) {
1653     // We know all of the bits for a scalar constant or a splat vector constant!
1654     Known.One = *C;
1655     Known.Zero = ~Known.One;
1656     return;
1657   }
1658   // Null and aggregate-zero are all-zeros.
1659   if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) {
1660     Known.setAllZero();
1661     return;
1662   }
1663   // Handle a constant vector by taking the intersection of the known bits of
1664   // each element.
1665   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
1666     // We know that CDS must be a vector of integers. Take the intersection of
1667     // each element.
1668     Known.Zero.setAllBits(); Known.One.setAllBits();
1669     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1670       APInt Elt = CDS->getElementAsAPInt(i);
1671       Known.Zero &= ~Elt;
1672       Known.One &= Elt;
1673     }
1674     return;
1675   }
1676 
1677   if (const auto *CV = dyn_cast<ConstantVector>(V)) {
1678     // We know that CV must be a vector of integers. Take the intersection of
1679     // each element.
1680     Known.Zero.setAllBits(); Known.One.setAllBits();
1681     for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1682       Constant *Element = CV->getAggregateElement(i);
1683       auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
1684       if (!ElementCI) {
1685         Known.resetAll();
1686         return;
1687       }
1688       const APInt &Elt = ElementCI->getValue();
1689       Known.Zero &= ~Elt;
1690       Known.One &= Elt;
1691     }
1692     return;
1693   }
1694 
1695   // Start out not knowing anything.
1696   Known.resetAll();
1697 
1698   // We can't imply anything about undefs.
1699   if (isa<UndefValue>(V))
1700     return;
1701 
1702   // There's no point in looking through other users of ConstantData for
1703   // assumptions.  Confirm that we've handled them all.
1704   assert(!isa<ConstantData>(V) && "Unhandled constant data!");
1705 
1706   // Limit search depth.
1707   // All recursive calls that increase depth must come after this.
1708   if (Depth == MaxDepth)
1709     return;
1710 
1711   // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
1712   // the bits of its aliasee.
1713   if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
1714     if (!GA->isInterposable())
1715       computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q);
1716     return;
1717   }
1718 
1719   if (const Operator *I = dyn_cast<Operator>(V))
1720     computeKnownBitsFromOperator(I, Known, Depth, Q);
1721 
1722   // Aligned pointers have trailing zeros - refine Known.Zero set
1723   if (V->getType()->isPointerTy()) {
1724     const MaybeAlign Align = V->getPointerAlignment(Q.DL);
1725     if (Align)
1726       Known.Zero.setLowBits(countTrailingZeros(Align->value()));
1727   }
1728 
1729   // computeKnownBitsFromAssume strictly refines Known.
1730   // Therefore, we run them after computeKnownBitsFromOperator.
1731 
1732   // Check whether a nearby assume intrinsic can determine some known bits.
1733   computeKnownBitsFromAssume(V, Known, Depth, Q);
1734 
1735   assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?");
1736 }
1737 
1738 /// Return true if the given value is known to have exactly one
1739 /// bit set when defined. For vectors return true if every element is known to
1740 /// be a power of two when defined. Supports values with integer or pointer
1741 /// types and vectors of integers.
1742 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
1743                             const Query &Q) {
1744   assert(Depth <= MaxDepth && "Limit Search Depth");
1745 
1746   // Attempt to match against constants.
1747   if (OrZero && match(V, m_Power2OrZero()))
1748       return true;
1749   if (match(V, m_Power2()))
1750       return true;
1751 
1752   // 1 << X is clearly a power of two if the one is not shifted off the end.  If
1753   // it is shifted off the end then the result is undefined.
1754   if (match(V, m_Shl(m_One(), m_Value())))
1755     return true;
1756 
1757   // (signmask) >>l X is clearly a power of two if the one is not shifted off
1758   // the bottom.  If it is shifted off the bottom then the result is undefined.
1759   if (match(V, m_LShr(m_SignMask(), m_Value())))
1760     return true;
1761 
1762   // The remaining tests are all recursive, so bail out if we hit the limit.
1763   if (Depth++ == MaxDepth)
1764     return false;
1765 
1766   Value *X = nullptr, *Y = nullptr;
1767   // A shift left or a logical shift right of a power of two is a power of two
1768   // or zero.
1769   if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
1770                  match(V, m_LShr(m_Value(X), m_Value()))))
1771     return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q);
1772 
1773   if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V))
1774     return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
1775 
1776   if (const SelectInst *SI = dyn_cast<SelectInst>(V))
1777     return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
1778            isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
1779 
1780   if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
1781     // A power of two and'd with anything is a power of two or zero.
1782     if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) ||
1783         isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q))
1784       return true;
1785     // X & (-X) is always a power of two or zero.
1786     if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
1787       return true;
1788     return false;
1789   }
1790 
1791   // Adding a power-of-two or zero to the same power-of-two or zero yields
1792   // either the original power-of-two, a larger power-of-two or zero.
1793   if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1794     const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
1795     if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) ||
1796         Q.IIQ.hasNoSignedWrap(VOBO)) {
1797       if (match(X, m_And(m_Specific(Y), m_Value())) ||
1798           match(X, m_And(m_Value(), m_Specific(Y))))
1799         if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
1800           return true;
1801       if (match(Y, m_And(m_Specific(X), m_Value())) ||
1802           match(Y, m_And(m_Value(), m_Specific(X))))
1803         if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
1804           return true;
1805 
1806       unsigned BitWidth = V->getType()->getScalarSizeInBits();
1807       KnownBits LHSBits(BitWidth);
1808       computeKnownBits(X, LHSBits, Depth, Q);
1809 
1810       KnownBits RHSBits(BitWidth);
1811       computeKnownBits(Y, RHSBits, Depth, Q);
1812       // If i8 V is a power of two or zero:
1813       //  ZeroBits: 1 1 1 0 1 1 1 1
1814       // ~ZeroBits: 0 0 0 1 0 0 0 0
1815       if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2())
1816         // If OrZero isn't set, we cannot give back a zero result.
1817         // Make sure either the LHS or RHS has a bit set.
1818         if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue())
1819           return true;
1820     }
1821   }
1822 
1823   // An exact divide or right shift can only shift off zero bits, so the result
1824   // is a power of two only if the first operand is a power of two and not
1825   // copying a sign bit (sdiv int_min, 2).
1826   if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
1827       match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
1828     return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
1829                                   Depth, Q);
1830   }
1831 
1832   return false;
1833 }
1834 
1835 /// Test whether a GEP's result is known to be non-null.
1836 ///
1837 /// Uses properties inherent in a GEP to try to determine whether it is known
1838 /// to be non-null.
1839 ///
1840 /// Currently this routine does not support vector GEPs.
1841 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth,
1842                               const Query &Q) {
1843   const Function *F = nullptr;
1844   if (const Instruction *I = dyn_cast<Instruction>(GEP))
1845     F = I->getFunction();
1846 
1847   if (!GEP->isInBounds() ||
1848       NullPointerIsDefined(F, GEP->getPointerAddressSpace()))
1849     return false;
1850 
1851   // FIXME: Support vector-GEPs.
1852   assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
1853 
1854   // If the base pointer is non-null, we cannot walk to a null address with an
1855   // inbounds GEP in address space zero.
1856   if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q))
1857     return true;
1858 
1859   // Walk the GEP operands and see if any operand introduces a non-zero offset.
1860   // If so, then the GEP cannot produce a null pointer, as doing so would
1861   // inherently violate the inbounds contract within address space zero.
1862   for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
1863        GTI != GTE; ++GTI) {
1864     // Struct types are easy -- they must always be indexed by a constant.
1865     if (StructType *STy = GTI.getStructTypeOrNull()) {
1866       ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
1867       unsigned ElementIdx = OpC->getZExtValue();
1868       const StructLayout *SL = Q.DL.getStructLayout(STy);
1869       uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
1870       if (ElementOffset > 0)
1871         return true;
1872       continue;
1873     }
1874 
1875     // If we have a zero-sized type, the index doesn't matter. Keep looping.
1876     if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0)
1877       continue;
1878 
1879     // Fast path the constant operand case both for efficiency and so we don't
1880     // increment Depth when just zipping down an all-constant GEP.
1881     if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
1882       if (!OpC->isZero())
1883         return true;
1884       continue;
1885     }
1886 
1887     // We post-increment Depth here because while isKnownNonZero increments it
1888     // as well, when we pop back up that increment won't persist. We don't want
1889     // to recurse 10k times just because we have 10k GEP operands. We don't
1890     // bail completely out because we want to handle constant GEPs regardless
1891     // of depth.
1892     if (Depth++ >= MaxDepth)
1893       continue;
1894 
1895     if (isKnownNonZero(GTI.getOperand(), Depth, Q))
1896       return true;
1897   }
1898 
1899   return false;
1900 }
1901 
1902 static bool isKnownNonNullFromDominatingCondition(const Value *V,
1903                                                   const Instruction *CtxI,
1904                                                   const DominatorTree *DT) {
1905   assert(V->getType()->isPointerTy() && "V must be pointer type");
1906   assert(!isa<ConstantData>(V) && "Did not expect ConstantPointerNull");
1907 
1908   if (!CtxI || !DT)
1909     return false;
1910 
1911   unsigned NumUsesExplored = 0;
1912   for (auto *U : V->users()) {
1913     // Avoid massive lists
1914     if (NumUsesExplored >= DomConditionsMaxUses)
1915       break;
1916     NumUsesExplored++;
1917 
1918     // If the value is used as an argument to a call or invoke, then argument
1919     // attributes may provide an answer about null-ness.
1920     if (auto CS = ImmutableCallSite(U))
1921       if (auto *CalledFunc = CS.getCalledFunction())
1922         for (const Argument &Arg : CalledFunc->args())
1923           if (CS.getArgOperand(Arg.getArgNo()) == V &&
1924               Arg.hasNonNullAttr() && DT->dominates(CS.getInstruction(), CtxI))
1925             return true;
1926 
1927     // Consider only compare instructions uniquely controlling a branch
1928     CmpInst::Predicate Pred;
1929     if (!match(const_cast<User *>(U),
1930                m_c_ICmp(Pred, m_Specific(V), m_Zero())) ||
1931         (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE))
1932       continue;
1933 
1934     SmallVector<const User *, 4> WorkList;
1935     SmallPtrSet<const User *, 4> Visited;
1936     for (auto *CmpU : U->users()) {
1937       assert(WorkList.empty() && "Should be!");
1938       if (Visited.insert(CmpU).second)
1939         WorkList.push_back(CmpU);
1940 
1941       while (!WorkList.empty()) {
1942         auto *Curr = WorkList.pop_back_val();
1943 
1944         // If a user is an AND, add all its users to the work list. We only
1945         // propagate "pred != null" condition through AND because it is only
1946         // correct to assume that all conditions of AND are met in true branch.
1947         // TODO: Support similar logic of OR and EQ predicate?
1948         if (Pred == ICmpInst::ICMP_NE)
1949           if (auto *BO = dyn_cast<BinaryOperator>(Curr))
1950             if (BO->getOpcode() == Instruction::And) {
1951               for (auto *BOU : BO->users())
1952                 if (Visited.insert(BOU).second)
1953                   WorkList.push_back(BOU);
1954               continue;
1955             }
1956 
1957         if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) {
1958           assert(BI->isConditional() && "uses a comparison!");
1959 
1960           BasicBlock *NonNullSuccessor =
1961               BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0);
1962           BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
1963           if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
1964             return true;
1965         } else if (Pred == ICmpInst::ICMP_NE && isGuard(Curr) &&
1966                    DT->dominates(cast<Instruction>(Curr), CtxI)) {
1967           return true;
1968         }
1969       }
1970     }
1971   }
1972 
1973   return false;
1974 }
1975 
1976 /// Does the 'Range' metadata (which must be a valid MD_range operand list)
1977 /// ensure that the value it's attached to is never Value?  'RangeType' is
1978 /// is the type of the value described by the range.
1979 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) {
1980   const unsigned NumRanges = Ranges->getNumOperands() / 2;
1981   assert(NumRanges >= 1);
1982   for (unsigned i = 0; i < NumRanges; ++i) {
1983     ConstantInt *Lower =
1984         mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
1985     ConstantInt *Upper =
1986         mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
1987     ConstantRange Range(Lower->getValue(), Upper->getValue());
1988     if (Range.contains(Value))
1989       return false;
1990   }
1991   return true;
1992 }
1993 
1994 /// Return true if the given value is known to be non-zero when defined. For
1995 /// vectors, return true if every element is known to be non-zero when
1996 /// defined. For pointers, if the context instruction and dominator tree are
1997 /// specified, perform context-sensitive analysis and return true if the
1998 /// pointer couldn't possibly be null at the specified instruction.
1999 /// Supports values with integer or pointer type and vectors of integers.
2000 bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q) {
2001   if (auto *C = dyn_cast<Constant>(V)) {
2002     if (C->isNullValue())
2003       return false;
2004     if (isa<ConstantInt>(C))
2005       // Must be non-zero due to null test above.
2006       return true;
2007 
2008     if (auto *CE = dyn_cast<ConstantExpr>(C)) {
2009       // See the comment for IntToPtr/PtrToInt instructions below.
2010       if (CE->getOpcode() == Instruction::IntToPtr ||
2011           CE->getOpcode() == Instruction::PtrToInt)
2012         if (Q.DL.getTypeSizeInBits(CE->getOperand(0)->getType()) <=
2013             Q.DL.getTypeSizeInBits(CE->getType()))
2014           return isKnownNonZero(CE->getOperand(0), Depth, Q);
2015     }
2016 
2017     // For constant vectors, check that all elements are undefined or known
2018     // non-zero to determine that the whole vector is known non-zero.
2019     if (auto *VecTy = dyn_cast<VectorType>(C->getType())) {
2020       for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) {
2021         Constant *Elt = C->getAggregateElement(i);
2022         if (!Elt || Elt->isNullValue())
2023           return false;
2024         if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt))
2025           return false;
2026       }
2027       return true;
2028     }
2029 
2030     // A global variable in address space 0 is non null unless extern weak
2031     // or an absolute symbol reference. Other address spaces may have null as a
2032     // valid address for a global, so we can't assume anything.
2033     if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
2034       if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() &&
2035           GV->getType()->getAddressSpace() == 0)
2036         return true;
2037     } else
2038       return false;
2039   }
2040 
2041   if (auto *I = dyn_cast<Instruction>(V)) {
2042     if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) {
2043       // If the possible ranges don't contain zero, then the value is
2044       // definitely non-zero.
2045       if (auto *Ty = dyn_cast<IntegerType>(V->getType())) {
2046         const APInt ZeroValue(Ty->getBitWidth(), 0);
2047         if (rangeMetadataExcludesValue(Ranges, ZeroValue))
2048           return true;
2049       }
2050     }
2051   }
2052 
2053   // Some of the tests below are recursive, so bail out if we hit the limit.
2054   if (Depth++ >= MaxDepth)
2055     return false;
2056 
2057   // Check for pointer simplifications.
2058   if (V->getType()->isPointerTy()) {
2059     // Alloca never returns null, malloc might.
2060     if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0)
2061       return true;
2062 
2063     // A byval, inalloca, or nonnull argument is never null.
2064     if (const Argument *A = dyn_cast<Argument>(V))
2065       if (A->hasByValOrInAllocaAttr() || A->hasNonNullAttr())
2066         return true;
2067 
2068     // A Load tagged with nonnull metadata is never null.
2069     if (const LoadInst *LI = dyn_cast<LoadInst>(V))
2070       if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull))
2071         return true;
2072 
2073     if (const auto *Call = dyn_cast<CallBase>(V)) {
2074       if (Call->isReturnNonNull())
2075         return true;
2076       if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true))
2077         return isKnownNonZero(RP, Depth, Q);
2078     }
2079   }
2080 
2081 
2082   // Check for recursive pointer simplifications.
2083   if (V->getType()->isPointerTy()) {
2084     if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT))
2085       return true;
2086 
2087     // Look through bitcast operations, GEPs, and int2ptr instructions as they
2088     // do not alter the value, or at least not the nullness property of the
2089     // value, e.g., int2ptr is allowed to zero/sign extend the value.
2090     //
2091     // Note that we have to take special care to avoid looking through
2092     // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well
2093     // as casts that can alter the value, e.g., AddrSpaceCasts.
2094     if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V))
2095       if (isGEPKnownNonNull(GEP, Depth, Q))
2096         return true;
2097 
2098     if (auto *BCO = dyn_cast<BitCastOperator>(V))
2099       return isKnownNonZero(BCO->getOperand(0), Depth, Q);
2100 
2101     if (auto *I2P = dyn_cast<IntToPtrInst>(V))
2102       if (Q.DL.getTypeSizeInBits(I2P->getSrcTy()) <=
2103           Q.DL.getTypeSizeInBits(I2P->getDestTy()))
2104         return isKnownNonZero(I2P->getOperand(0), Depth, Q);
2105   }
2106 
2107   // Similar to int2ptr above, we can look through ptr2int here if the cast
2108   // is a no-op or an extend and not a truncate.
2109   if (auto *P2I = dyn_cast<PtrToIntInst>(V))
2110     if (Q.DL.getTypeSizeInBits(P2I->getSrcTy()) <=
2111         Q.DL.getTypeSizeInBits(P2I->getDestTy()))
2112       return isKnownNonZero(P2I->getOperand(0), Depth, Q);
2113 
2114   unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL);
2115 
2116   // X | Y != 0 if X != 0 or Y != 0.
2117   Value *X = nullptr, *Y = nullptr;
2118   if (match(V, m_Or(m_Value(X), m_Value(Y))))
2119     return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q);
2120 
2121   // ext X != 0 if X != 0.
2122   if (isa<SExtInst>(V) || isa<ZExtInst>(V))
2123     return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q);
2124 
2125   // shl X, Y != 0 if X is odd.  Note that the value of the shift is undefined
2126   // if the lowest bit is shifted off the end.
2127   if (match(V, m_Shl(m_Value(X), m_Value(Y)))) {
2128     // shl nuw can't remove any non-zero bits.
2129     const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
2130     if (Q.IIQ.hasNoUnsignedWrap(BO))
2131       return isKnownNonZero(X, Depth, Q);
2132 
2133     KnownBits Known(BitWidth);
2134     computeKnownBits(X, Known, Depth, Q);
2135     if (Known.One[0])
2136       return true;
2137   }
2138   // shr X, Y != 0 if X is negative.  Note that the value of the shift is not
2139   // defined if the sign bit is shifted off the end.
2140   else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
2141     // shr exact can only shift out zero bits.
2142     const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
2143     if (BO->isExact())
2144       return isKnownNonZero(X, Depth, Q);
2145 
2146     KnownBits Known = computeKnownBits(X, Depth, Q);
2147     if (Known.isNegative())
2148       return true;
2149 
2150     // If the shifter operand is a constant, and all of the bits shifted
2151     // out are known to be zero, and X is known non-zero then at least one
2152     // non-zero bit must remain.
2153     if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) {
2154       auto ShiftVal = Shift->getLimitedValue(BitWidth - 1);
2155       // Is there a known one in the portion not shifted out?
2156       if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal)
2157         return true;
2158       // Are all the bits to be shifted out known zero?
2159       if (Known.countMinTrailingZeros() >= ShiftVal)
2160         return isKnownNonZero(X, Depth, Q);
2161     }
2162   }
2163   // div exact can only produce a zero if the dividend is zero.
2164   else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
2165     return isKnownNonZero(X, Depth, Q);
2166   }
2167   // X + Y.
2168   else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
2169     KnownBits XKnown = computeKnownBits(X, Depth, Q);
2170     KnownBits YKnown = computeKnownBits(Y, Depth, Q);
2171 
2172     // If X and Y are both non-negative (as signed values) then their sum is not
2173     // zero unless both X and Y are zero.
2174     if (XKnown.isNonNegative() && YKnown.isNonNegative())
2175       if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q))
2176         return true;
2177 
2178     // If X and Y are both negative (as signed values) then their sum is not
2179     // zero unless both X and Y equal INT_MIN.
2180     if (XKnown.isNegative() && YKnown.isNegative()) {
2181       APInt Mask = APInt::getSignedMaxValue(BitWidth);
2182       // The sign bit of X is set.  If some other bit is set then X is not equal
2183       // to INT_MIN.
2184       if (XKnown.One.intersects(Mask))
2185         return true;
2186       // The sign bit of Y is set.  If some other bit is set then Y is not equal
2187       // to INT_MIN.
2188       if (YKnown.One.intersects(Mask))
2189         return true;
2190     }
2191 
2192     // The sum of a non-negative number and a power of two is not zero.
2193     if (XKnown.isNonNegative() &&
2194         isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q))
2195       return true;
2196     if (YKnown.isNonNegative() &&
2197         isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q))
2198       return true;
2199   }
2200   // X * Y.
2201   else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
2202     const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
2203     // If X and Y are non-zero then so is X * Y as long as the multiplication
2204     // does not overflow.
2205     if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) &&
2206         isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q))
2207       return true;
2208   }
2209   // (C ? X : Y) != 0 if X != 0 and Y != 0.
2210   else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
2211     if (isKnownNonZero(SI->getTrueValue(), Depth, Q) &&
2212         isKnownNonZero(SI->getFalseValue(), Depth, Q))
2213       return true;
2214   }
2215   // PHI
2216   else if (const PHINode *PN = dyn_cast<PHINode>(V)) {
2217     // Try and detect a recurrence that monotonically increases from a
2218     // starting value, as these are common as induction variables.
2219     if (PN->getNumIncomingValues() == 2) {
2220       Value *Start = PN->getIncomingValue(0);
2221       Value *Induction = PN->getIncomingValue(1);
2222       if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start))
2223         std::swap(Start, Induction);
2224       if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) {
2225         if (!C->isZero() && !C->isNegative()) {
2226           ConstantInt *X;
2227           if (Q.IIQ.UseInstrInfo &&
2228               (match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) ||
2229                match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) &&
2230               !X->isNegative())
2231             return true;
2232         }
2233       }
2234     }
2235     // Check if all incoming values are non-zero constant.
2236     bool AllNonZeroConstants = llvm::all_of(PN->operands(), [](Value *V) {
2237       return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZero();
2238     });
2239     if (AllNonZeroConstants)
2240       return true;
2241   }
2242 
2243   KnownBits Known(BitWidth);
2244   computeKnownBits(V, Known, Depth, Q);
2245   return Known.One != 0;
2246 }
2247 
2248 /// Return true if V2 == V1 + X, where X is known non-zero.
2249 static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) {
2250   const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1);
2251   if (!BO || BO->getOpcode() != Instruction::Add)
2252     return false;
2253   Value *Op = nullptr;
2254   if (V2 == BO->getOperand(0))
2255     Op = BO->getOperand(1);
2256   else if (V2 == BO->getOperand(1))
2257     Op = BO->getOperand(0);
2258   else
2259     return false;
2260   return isKnownNonZero(Op, 0, Q);
2261 }
2262 
2263 /// Return true if it is known that V1 != V2.
2264 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) {
2265   if (V1 == V2)
2266     return false;
2267   if (V1->getType() != V2->getType())
2268     // We can't look through casts yet.
2269     return false;
2270   if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q))
2271     return true;
2272 
2273   if (V1->getType()->isIntOrIntVectorTy()) {
2274     // Are any known bits in V1 contradictory to known bits in V2? If V1
2275     // has a known zero where V2 has a known one, they must not be equal.
2276     KnownBits Known1 = computeKnownBits(V1, 0, Q);
2277     KnownBits Known2 = computeKnownBits(V2, 0, Q);
2278 
2279     if (Known1.Zero.intersects(Known2.One) ||
2280         Known2.Zero.intersects(Known1.One))
2281       return true;
2282   }
2283   return false;
2284 }
2285 
2286 /// Return true if 'V & Mask' is known to be zero.  We use this predicate to
2287 /// simplify operations downstream. Mask is known to be zero for bits that V
2288 /// cannot have.
2289 ///
2290 /// This function is defined on values with integer type, values with pointer
2291 /// type, and vectors of integers.  In the case
2292 /// where V is a vector, the mask, known zero, and known one values are the
2293 /// same width as the vector element, and the bit is set only if it is true
2294 /// for all of the elements in the vector.
2295 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
2296                        const Query &Q) {
2297   KnownBits Known(Mask.getBitWidth());
2298   computeKnownBits(V, Known, Depth, Q);
2299   return Mask.isSubsetOf(Known.Zero);
2300 }
2301 
2302 // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow).
2303 // Returns the input and lower/upper bounds.
2304 static bool isSignedMinMaxClamp(const Value *Select, const Value *&In,
2305                                 const APInt *&CLow, const APInt *&CHigh) {
2306   assert(isa<Operator>(Select) &&
2307          cast<Operator>(Select)->getOpcode() == Instruction::Select &&
2308          "Input should be a Select!");
2309 
2310   const Value *LHS = nullptr, *RHS = nullptr;
2311   SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor;
2312   if (SPF != SPF_SMAX && SPF != SPF_SMIN)
2313     return false;
2314 
2315   if (!match(RHS, m_APInt(CLow)))
2316     return false;
2317 
2318   const Value *LHS2 = nullptr, *RHS2 = nullptr;
2319   SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor;
2320   if (getInverseMinMaxFlavor(SPF) != SPF2)
2321     return false;
2322 
2323   if (!match(RHS2, m_APInt(CHigh)))
2324     return false;
2325 
2326   if (SPF == SPF_SMIN)
2327     std::swap(CLow, CHigh);
2328 
2329   In = LHS2;
2330   return CLow->sle(*CHigh);
2331 }
2332 
2333 /// For vector constants, loop over the elements and find the constant with the
2334 /// minimum number of sign bits. Return 0 if the value is not a vector constant
2335 /// or if any element was not analyzed; otherwise, return the count for the
2336 /// element with the minimum number of sign bits.
2337 static unsigned computeNumSignBitsVectorConstant(const Value *V,
2338                                                  unsigned TyBits) {
2339   const auto *CV = dyn_cast<Constant>(V);
2340   if (!CV || !CV->getType()->isVectorTy())
2341     return 0;
2342 
2343   unsigned MinSignBits = TyBits;
2344   unsigned NumElts = CV->getType()->getVectorNumElements();
2345   for (unsigned i = 0; i != NumElts; ++i) {
2346     // If we find a non-ConstantInt, bail out.
2347     auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i));
2348     if (!Elt)
2349       return 0;
2350 
2351     MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits());
2352   }
2353 
2354   return MinSignBits;
2355 }
2356 
2357 static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth,
2358                                        const Query &Q);
2359 
2360 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
2361                                    const Query &Q) {
2362   unsigned Result = ComputeNumSignBitsImpl(V, Depth, Q);
2363   assert(Result > 0 && "At least one sign bit needs to be present!");
2364   return Result;
2365 }
2366 
2367 /// Return the number of times the sign bit of the register is replicated into
2368 /// the other bits. We know that at least 1 bit is always equal to the sign bit
2369 /// (itself), but other cases can give us information. For example, immediately
2370 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each
2371 /// other, so we return 3. For vectors, return the number of sign bits for the
2372 /// vector element with the minimum number of known sign bits.
2373 static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth,
2374                                        const Query &Q) {
2375   assert(Depth <= MaxDepth && "Limit Search Depth");
2376 
2377   // We return the minimum number of sign bits that are guaranteed to be present
2378   // in V, so for undef we have to conservatively return 1.  We don't have the
2379   // same behavior for poison though -- that's a FIXME today.
2380 
2381   Type *ScalarTy = V->getType()->getScalarType();
2382   unsigned TyBits = ScalarTy->isPointerTy() ?
2383     Q.DL.getIndexTypeSizeInBits(ScalarTy) :
2384     Q.DL.getTypeSizeInBits(ScalarTy);
2385 
2386   unsigned Tmp, Tmp2;
2387   unsigned FirstAnswer = 1;
2388 
2389   // Note that ConstantInt is handled by the general computeKnownBits case
2390   // below.
2391 
2392   if (Depth == MaxDepth)
2393     return 1;  // Limit search depth.
2394 
2395   if (auto *U = dyn_cast<Operator>(V)) {
2396     switch (Operator::getOpcode(V)) {
2397     default: break;
2398     case Instruction::SExt:
2399       Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
2400       return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp;
2401 
2402     case Instruction::SDiv: {
2403       const APInt *Denominator;
2404       // sdiv X, C -> adds log(C) sign bits.
2405       if (match(U->getOperand(1), m_APInt(Denominator))) {
2406 
2407         // Ignore non-positive denominator.
2408         if (!Denominator->isStrictlyPositive())
2409           break;
2410 
2411         // Calculate the incoming numerator bits.
2412         unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2413 
2414         // Add floor(log(C)) bits to the numerator bits.
2415         return std::min(TyBits, NumBits + Denominator->logBase2());
2416       }
2417       break;
2418     }
2419 
2420     case Instruction::SRem: {
2421       const APInt *Denominator;
2422       // srem X, C -> we know that the result is within [-C+1,C) when C is a
2423       // positive constant.  This let us put a lower bound on the number of sign
2424       // bits.
2425       if (match(U->getOperand(1), m_APInt(Denominator))) {
2426 
2427         // Ignore non-positive denominator.
2428         if (!Denominator->isStrictlyPositive())
2429           break;
2430 
2431         // Calculate the incoming numerator bits. SRem by a positive constant
2432         // can't lower the number of sign bits.
2433         unsigned NumrBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2434 
2435         // Calculate the leading sign bit constraints by examining the
2436         // denominator.  Given that the denominator is positive, there are two
2437         // cases:
2438         //
2439         //  1. the numerator is positive. The result range is [0,C) and [0,C) u<
2440         //     (1 << ceilLogBase2(C)).
2441         //
2442         //  2. the numerator is negative. Then the result range is (-C,0] and
2443         //     integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
2444         //
2445         // Thus a lower bound on the number of sign bits is `TyBits -
2446         // ceilLogBase2(C)`.
2447 
2448         unsigned ResBits = TyBits - Denominator->ceilLogBase2();
2449         return std::max(NumrBits, ResBits);
2450       }
2451       break;
2452     }
2453 
2454     case Instruction::AShr: {
2455       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2456       // ashr X, C   -> adds C sign bits.  Vectors too.
2457       const APInt *ShAmt;
2458       if (match(U->getOperand(1), m_APInt(ShAmt))) {
2459         if (ShAmt->uge(TyBits))
2460           break; // Bad shift.
2461         unsigned ShAmtLimited = ShAmt->getZExtValue();
2462         Tmp += ShAmtLimited;
2463         if (Tmp > TyBits) Tmp = TyBits;
2464       }
2465       return Tmp;
2466     }
2467     case Instruction::Shl: {
2468       const APInt *ShAmt;
2469       if (match(U->getOperand(1), m_APInt(ShAmt))) {
2470         // shl destroys sign bits.
2471         Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2472         if (ShAmt->uge(TyBits) ||   // Bad shift.
2473             ShAmt->uge(Tmp)) break; // Shifted all sign bits out.
2474         Tmp2 = ShAmt->getZExtValue();
2475         return Tmp - Tmp2;
2476       }
2477       break;
2478     }
2479     case Instruction::And:
2480     case Instruction::Or:
2481     case Instruction::Xor: // NOT is handled here.
2482       // Logical binary ops preserve the number of sign bits at the worst.
2483       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2484       if (Tmp != 1) {
2485         Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2486         FirstAnswer = std::min(Tmp, Tmp2);
2487         // We computed what we know about the sign bits as our first
2488         // answer. Now proceed to the generic code that uses
2489         // computeKnownBits, and pick whichever answer is better.
2490       }
2491       break;
2492 
2493     case Instruction::Select: {
2494       // If we have a clamp pattern, we know that the number of sign bits will
2495       // be the minimum of the clamp min/max range.
2496       const Value *X;
2497       const APInt *CLow, *CHigh;
2498       if (isSignedMinMaxClamp(U, X, CLow, CHigh))
2499         return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits());
2500 
2501       Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2502       if (Tmp == 1) break;
2503       Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q);
2504       return std::min(Tmp, Tmp2);
2505     }
2506 
2507     case Instruction::Add:
2508       // Add can have at most one carry bit.  Thus we know that the output
2509       // is, at worst, one more bit than the inputs.
2510       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2511       if (Tmp == 1) break;
2512 
2513       // Special case decrementing a value (ADD X, -1):
2514       if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
2515         if (CRHS->isAllOnesValue()) {
2516           KnownBits Known(TyBits);
2517           computeKnownBits(U->getOperand(0), Known, Depth + 1, Q);
2518 
2519           // If the input is known to be 0 or 1, the output is 0/-1, which is
2520           // all sign bits set.
2521           if ((Known.Zero | 1).isAllOnesValue())
2522             return TyBits;
2523 
2524           // If we are subtracting one from a positive number, there is no carry
2525           // out of the result.
2526           if (Known.isNonNegative())
2527             return Tmp;
2528         }
2529 
2530       Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2531       if (Tmp2 == 1) break;
2532       return std::min(Tmp, Tmp2) - 1;
2533 
2534     case Instruction::Sub:
2535       Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2536       if (Tmp2 == 1) break;
2537 
2538       // Handle NEG.
2539       if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
2540         if (CLHS->isNullValue()) {
2541           KnownBits Known(TyBits);
2542           computeKnownBits(U->getOperand(1), Known, Depth + 1, Q);
2543           // If the input is known to be 0 or 1, the output is 0/-1, which is
2544           // all sign bits set.
2545           if ((Known.Zero | 1).isAllOnesValue())
2546             return TyBits;
2547 
2548           // If the input is known to be positive (the sign bit is known clear),
2549           // the output of the NEG has the same number of sign bits as the
2550           // input.
2551           if (Known.isNonNegative())
2552             return Tmp2;
2553 
2554           // Otherwise, we treat this like a SUB.
2555         }
2556 
2557       // Sub can have at most one carry bit.  Thus we know that the output
2558       // is, at worst, one more bit than the inputs.
2559       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2560       if (Tmp == 1) break;
2561       return std::min(Tmp, Tmp2) - 1;
2562 
2563     case Instruction::Mul: {
2564       // The output of the Mul can be at most twice the valid bits in the
2565       // inputs.
2566       unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2567       if (SignBitsOp0 == 1) break;
2568       unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2569       if (SignBitsOp1 == 1) break;
2570       unsigned OutValidBits =
2571           (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1);
2572       return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1;
2573     }
2574 
2575     case Instruction::PHI: {
2576       const PHINode *PN = cast<PHINode>(U);
2577       unsigned NumIncomingValues = PN->getNumIncomingValues();
2578       // Don't analyze large in-degree PHIs.
2579       if (NumIncomingValues > 4) break;
2580       // Unreachable blocks may have zero-operand PHI nodes.
2581       if (NumIncomingValues == 0) break;
2582 
2583       // Take the minimum of all incoming values.  This can't infinitely loop
2584       // because of our depth threshold.
2585       Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q);
2586       for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) {
2587         if (Tmp == 1) return Tmp;
2588         Tmp = std::min(
2589             Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q));
2590       }
2591       return Tmp;
2592     }
2593 
2594     case Instruction::Trunc:
2595       // FIXME: it's tricky to do anything useful for this, but it is an
2596       // important case for targets like X86.
2597       break;
2598 
2599     case Instruction::ExtractElement:
2600       // Look through extract element. At the moment we keep this simple and
2601       // skip tracking the specific element. But at least we might find
2602       // information valid for all elements of the vector (for example if vector
2603       // is sign extended, shifted, etc).
2604       return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2605 
2606     case Instruction::ShuffleVector: {
2607       // TODO: This is copied almost directly from the SelectionDAG version of
2608       //       ComputeNumSignBits. It would be better if we could share common
2609       //       code. If not, make sure that changes are translated to the DAG.
2610 
2611       // Collect the minimum number of sign bits that are shared by every vector
2612       // element referenced by the shuffle.
2613       auto *Shuf = cast<ShuffleVectorInst>(U);
2614       int NumElts = Shuf->getOperand(0)->getType()->getVectorNumElements();
2615       int NumMaskElts = Shuf->getMask()->getType()->getVectorNumElements();
2616       APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
2617       for (int i = 0; i != NumMaskElts; ++i) {
2618         int M = Shuf->getMaskValue(i);
2619         assert(M < NumElts * 2 && "Invalid shuffle mask constant");
2620         // For undef elements, we don't know anything about the common state of
2621         // the shuffle result.
2622         if (M == -1)
2623           return 1;
2624         if (M < NumElts)
2625           DemandedLHS.setBit(M % NumElts);
2626         else
2627           DemandedRHS.setBit(M % NumElts);
2628       }
2629       Tmp = std::numeric_limits<unsigned>::max();
2630       if (!!DemandedLHS)
2631         Tmp = ComputeNumSignBits(Shuf->getOperand(0), Depth + 1, Q);
2632       if (!!DemandedRHS) {
2633         Tmp2 = ComputeNumSignBits(Shuf->getOperand(1), Depth + 1, Q);
2634         Tmp = std::min(Tmp, Tmp2);
2635       }
2636       // If we don't know anything, early out and try computeKnownBits
2637       // fall-back.
2638       if (Tmp == 1)
2639         break;
2640       assert(Tmp <= V->getType()->getScalarSizeInBits() &&
2641              "Failed to determine minimum sign bits");
2642       return Tmp;
2643     }
2644     }
2645   }
2646 
2647   // Finally, if we can prove that the top bits of the result are 0's or 1's,
2648   // use this information.
2649 
2650   // If we can examine all elements of a vector constant successfully, we're
2651   // done (we can't do any better than that). If not, keep trying.
2652   if (unsigned VecSignBits = computeNumSignBitsVectorConstant(V, TyBits))
2653     return VecSignBits;
2654 
2655   KnownBits Known(TyBits);
2656   computeKnownBits(V, Known, Depth, Q);
2657 
2658   // If we know that the sign bit is either zero or one, determine the number of
2659   // identical bits in the top of the input value.
2660   return std::max(FirstAnswer, Known.countMinSignBits());
2661 }
2662 
2663 /// This function computes the integer multiple of Base that equals V.
2664 /// If successful, it returns true and returns the multiple in
2665 /// Multiple. If unsuccessful, it returns false. It looks
2666 /// through SExt instructions only if LookThroughSExt is true.
2667 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
2668                            bool LookThroughSExt, unsigned Depth) {
2669   assert(V && "No Value?");
2670   assert(Depth <= MaxDepth && "Limit Search Depth");
2671   assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
2672 
2673   Type *T = V->getType();
2674 
2675   ConstantInt *CI = dyn_cast<ConstantInt>(V);
2676 
2677   if (Base == 0)
2678     return false;
2679 
2680   if (Base == 1) {
2681     Multiple = V;
2682     return true;
2683   }
2684 
2685   ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
2686   Constant *BaseVal = ConstantInt::get(T, Base);
2687   if (CO && CO == BaseVal) {
2688     // Multiple is 1.
2689     Multiple = ConstantInt::get(T, 1);
2690     return true;
2691   }
2692 
2693   if (CI && CI->getZExtValue() % Base == 0) {
2694     Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
2695     return true;
2696   }
2697 
2698   if (Depth == MaxDepth) return false;  // Limit search depth.
2699 
2700   Operator *I = dyn_cast<Operator>(V);
2701   if (!I) return false;
2702 
2703   switch (I->getOpcode()) {
2704   default: break;
2705   case Instruction::SExt:
2706     if (!LookThroughSExt) return false;
2707     // otherwise fall through to ZExt
2708     LLVM_FALLTHROUGH;
2709   case Instruction::ZExt:
2710     return ComputeMultiple(I->getOperand(0), Base, Multiple,
2711                            LookThroughSExt, Depth+1);
2712   case Instruction::Shl:
2713   case Instruction::Mul: {
2714     Value *Op0 = I->getOperand(0);
2715     Value *Op1 = I->getOperand(1);
2716 
2717     if (I->getOpcode() == Instruction::Shl) {
2718       ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
2719       if (!Op1CI) return false;
2720       // Turn Op0 << Op1 into Op0 * 2^Op1
2721       APInt Op1Int = Op1CI->getValue();
2722       uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
2723       APInt API(Op1Int.getBitWidth(), 0);
2724       API.setBit(BitToSet);
2725       Op1 = ConstantInt::get(V->getContext(), API);
2726     }
2727 
2728     Value *Mul0 = nullptr;
2729     if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
2730       if (Constant *Op1C = dyn_cast<Constant>(Op1))
2731         if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
2732           if (Op1C->getType()->getPrimitiveSizeInBits() <
2733               MulC->getType()->getPrimitiveSizeInBits())
2734             Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
2735           if (Op1C->getType()->getPrimitiveSizeInBits() >
2736               MulC->getType()->getPrimitiveSizeInBits())
2737             MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
2738 
2739           // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
2740           Multiple = ConstantExpr::getMul(MulC, Op1C);
2741           return true;
2742         }
2743 
2744       if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
2745         if (Mul0CI->getValue() == 1) {
2746           // V == Base * Op1, so return Op1
2747           Multiple = Op1;
2748           return true;
2749         }
2750     }
2751 
2752     Value *Mul1 = nullptr;
2753     if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
2754       if (Constant *Op0C = dyn_cast<Constant>(Op0))
2755         if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
2756           if (Op0C->getType()->getPrimitiveSizeInBits() <
2757               MulC->getType()->getPrimitiveSizeInBits())
2758             Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
2759           if (Op0C->getType()->getPrimitiveSizeInBits() >
2760               MulC->getType()->getPrimitiveSizeInBits())
2761             MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
2762 
2763           // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
2764           Multiple = ConstantExpr::getMul(MulC, Op0C);
2765           return true;
2766         }
2767 
2768       if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
2769         if (Mul1CI->getValue() == 1) {
2770           // V == Base * Op0, so return Op0
2771           Multiple = Op0;
2772           return true;
2773         }
2774     }
2775   }
2776   }
2777 
2778   // We could not determine if V is a multiple of Base.
2779   return false;
2780 }
2781 
2782 Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS,
2783                                             const TargetLibraryInfo *TLI) {
2784   const Function *F = ICS.getCalledFunction();
2785   if (!F)
2786     return Intrinsic::not_intrinsic;
2787 
2788   if (F->isIntrinsic())
2789     return F->getIntrinsicID();
2790 
2791   if (!TLI)
2792     return Intrinsic::not_intrinsic;
2793 
2794   LibFunc Func;
2795   // We're going to make assumptions on the semantics of the functions, check
2796   // that the target knows that it's available in this environment and it does
2797   // not have local linkage.
2798   if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func))
2799     return Intrinsic::not_intrinsic;
2800 
2801   if (!ICS.onlyReadsMemory())
2802     return Intrinsic::not_intrinsic;
2803 
2804   // Otherwise check if we have a call to a function that can be turned into a
2805   // vector intrinsic.
2806   switch (Func) {
2807   default:
2808     break;
2809   case LibFunc_sin:
2810   case LibFunc_sinf:
2811   case LibFunc_sinl:
2812     return Intrinsic::sin;
2813   case LibFunc_cos:
2814   case LibFunc_cosf:
2815   case LibFunc_cosl:
2816     return Intrinsic::cos;
2817   case LibFunc_exp:
2818   case LibFunc_expf:
2819   case LibFunc_expl:
2820     return Intrinsic::exp;
2821   case LibFunc_exp2:
2822   case LibFunc_exp2f:
2823   case LibFunc_exp2l:
2824     return Intrinsic::exp2;
2825   case LibFunc_log:
2826   case LibFunc_logf:
2827   case LibFunc_logl:
2828     return Intrinsic::log;
2829   case LibFunc_log10:
2830   case LibFunc_log10f:
2831   case LibFunc_log10l:
2832     return Intrinsic::log10;
2833   case LibFunc_log2:
2834   case LibFunc_log2f:
2835   case LibFunc_log2l:
2836     return Intrinsic::log2;
2837   case LibFunc_fabs:
2838   case LibFunc_fabsf:
2839   case LibFunc_fabsl:
2840     return Intrinsic::fabs;
2841   case LibFunc_fmin:
2842   case LibFunc_fminf:
2843   case LibFunc_fminl:
2844     return Intrinsic::minnum;
2845   case LibFunc_fmax:
2846   case LibFunc_fmaxf:
2847   case LibFunc_fmaxl:
2848     return Intrinsic::maxnum;
2849   case LibFunc_copysign:
2850   case LibFunc_copysignf:
2851   case LibFunc_copysignl:
2852     return Intrinsic::copysign;
2853   case LibFunc_floor:
2854   case LibFunc_floorf:
2855   case LibFunc_floorl:
2856     return Intrinsic::floor;
2857   case LibFunc_ceil:
2858   case LibFunc_ceilf:
2859   case LibFunc_ceill:
2860     return Intrinsic::ceil;
2861   case LibFunc_trunc:
2862   case LibFunc_truncf:
2863   case LibFunc_truncl:
2864     return Intrinsic::trunc;
2865   case LibFunc_rint:
2866   case LibFunc_rintf:
2867   case LibFunc_rintl:
2868     return Intrinsic::rint;
2869   case LibFunc_nearbyint:
2870   case LibFunc_nearbyintf:
2871   case LibFunc_nearbyintl:
2872     return Intrinsic::nearbyint;
2873   case LibFunc_round:
2874   case LibFunc_roundf:
2875   case LibFunc_roundl:
2876     return Intrinsic::round;
2877   case LibFunc_pow:
2878   case LibFunc_powf:
2879   case LibFunc_powl:
2880     return Intrinsic::pow;
2881   case LibFunc_sqrt:
2882   case LibFunc_sqrtf:
2883   case LibFunc_sqrtl:
2884     return Intrinsic::sqrt;
2885   }
2886 
2887   return Intrinsic::not_intrinsic;
2888 }
2889 
2890 /// Return true if we can prove that the specified FP value is never equal to
2891 /// -0.0.
2892 ///
2893 /// NOTE: this function will need to be revisited when we support non-default
2894 /// rounding modes!
2895 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI,
2896                                 unsigned Depth) {
2897   if (auto *CFP = dyn_cast<ConstantFP>(V))
2898     return !CFP->getValueAPF().isNegZero();
2899 
2900   // Limit search depth.
2901   if (Depth == MaxDepth)
2902     return false;
2903 
2904   auto *Op = dyn_cast<Operator>(V);
2905   if (!Op)
2906     return false;
2907 
2908   // Check if the nsz fast-math flag is set.
2909   if (auto *FPO = dyn_cast<FPMathOperator>(Op))
2910     if (FPO->hasNoSignedZeros())
2911       return true;
2912 
2913   // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0.
2914   if (match(Op, m_FAdd(m_Value(), m_PosZeroFP())))
2915     return true;
2916 
2917   // sitofp and uitofp turn into +0.0 for zero.
2918   if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op))
2919     return true;
2920 
2921   if (auto *Call = dyn_cast<CallInst>(Op)) {
2922     Intrinsic::ID IID = getIntrinsicForCallSite(Call, TLI);
2923     switch (IID) {
2924     default:
2925       break;
2926     // sqrt(-0.0) = -0.0, no other negative results are possible.
2927     case Intrinsic::sqrt:
2928     case Intrinsic::canonicalize:
2929       return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1);
2930     // fabs(x) != -0.0
2931     case Intrinsic::fabs:
2932       return true;
2933     }
2934   }
2935 
2936   return false;
2937 }
2938 
2939 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a
2940 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign
2941 /// bit despite comparing equal.
2942 static bool cannotBeOrderedLessThanZeroImpl(const Value *V,
2943                                             const TargetLibraryInfo *TLI,
2944                                             bool SignBitOnly,
2945                                             unsigned Depth) {
2946   // TODO: This function does not do the right thing when SignBitOnly is true
2947   // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform
2948   // which flips the sign bits of NaNs.  See
2949   // https://llvm.org/bugs/show_bug.cgi?id=31702.
2950 
2951   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2952     return !CFP->getValueAPF().isNegative() ||
2953            (!SignBitOnly && CFP->getValueAPF().isZero());
2954   }
2955 
2956   // Handle vector of constants.
2957   if (auto *CV = dyn_cast<Constant>(V)) {
2958     if (CV->getType()->isVectorTy()) {
2959       unsigned NumElts = CV->getType()->getVectorNumElements();
2960       for (unsigned i = 0; i != NumElts; ++i) {
2961         auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i));
2962         if (!CFP)
2963           return false;
2964         if (CFP->getValueAPF().isNegative() &&
2965             (SignBitOnly || !CFP->getValueAPF().isZero()))
2966           return false;
2967       }
2968 
2969       // All non-negative ConstantFPs.
2970       return true;
2971     }
2972   }
2973 
2974   if (Depth == MaxDepth)
2975     return false; // Limit search depth.
2976 
2977   const Operator *I = dyn_cast<Operator>(V);
2978   if (!I)
2979     return false;
2980 
2981   switch (I->getOpcode()) {
2982   default:
2983     break;
2984   // Unsigned integers are always nonnegative.
2985   case Instruction::UIToFP:
2986     return true;
2987   case Instruction::FMul:
2988     // x*x is always non-negative or a NaN.
2989     if (I->getOperand(0) == I->getOperand(1) &&
2990         (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()))
2991       return true;
2992 
2993     LLVM_FALLTHROUGH;
2994   case Instruction::FAdd:
2995   case Instruction::FDiv:
2996   case Instruction::FRem:
2997     return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2998                                            Depth + 1) &&
2999            cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3000                                            Depth + 1);
3001   case Instruction::Select:
3002     return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3003                                            Depth + 1) &&
3004            cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
3005                                            Depth + 1);
3006   case Instruction::FPExt:
3007   case Instruction::FPTrunc:
3008     // Widening/narrowing never change sign.
3009     return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3010                                            Depth + 1);
3011   case Instruction::ExtractElement:
3012     // Look through extract element. At the moment we keep this simple and skip
3013     // tracking the specific element. But at least we might find information
3014     // valid for all elements of the vector.
3015     return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3016                                            Depth + 1);
3017   case Instruction::Call:
3018     const auto *CI = cast<CallInst>(I);
3019     Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI);
3020     switch (IID) {
3021     default:
3022       break;
3023     case Intrinsic::maxnum:
3024       return (isKnownNeverNaN(I->getOperand(0), TLI) &&
3025               cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI,
3026                                               SignBitOnly, Depth + 1)) ||
3027             (isKnownNeverNaN(I->getOperand(1), TLI) &&
3028               cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI,
3029                                               SignBitOnly, Depth + 1));
3030 
3031     case Intrinsic::maximum:
3032       return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3033                                              Depth + 1) ||
3034              cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3035                                              Depth + 1);
3036     case Intrinsic::minnum:
3037     case Intrinsic::minimum:
3038       return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3039                                              Depth + 1) &&
3040              cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3041                                              Depth + 1);
3042     case Intrinsic::exp:
3043     case Intrinsic::exp2:
3044     case Intrinsic::fabs:
3045       return true;
3046 
3047     case Intrinsic::sqrt:
3048       // sqrt(x) is always >= -0 or NaN.  Moreover, sqrt(x) == -0 iff x == -0.
3049       if (!SignBitOnly)
3050         return true;
3051       return CI->hasNoNaNs() && (CI->hasNoSignedZeros() ||
3052                                  CannotBeNegativeZero(CI->getOperand(0), TLI));
3053 
3054     case Intrinsic::powi:
3055       if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) {
3056         // powi(x,n) is non-negative if n is even.
3057         if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0)
3058           return true;
3059       }
3060       // TODO: This is not correct.  Given that exp is an integer, here are the
3061       // ways that pow can return a negative value:
3062       //
3063       //   pow(x, exp)    --> negative if exp is odd and x is negative.
3064       //   pow(-0, exp)   --> -inf if exp is negative odd.
3065       //   pow(-0, exp)   --> -0 if exp is positive odd.
3066       //   pow(-inf, exp) --> -0 if exp is negative odd.
3067       //   pow(-inf, exp) --> -inf if exp is positive odd.
3068       //
3069       // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN,
3070       // but we must return false if x == -0.  Unfortunately we do not currently
3071       // have a way of expressing this constraint.  See details in
3072       // https://llvm.org/bugs/show_bug.cgi?id=31702.
3073       return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3074                                              Depth + 1);
3075 
3076     case Intrinsic::fma:
3077     case Intrinsic::fmuladd:
3078       // x*x+y is non-negative if y is non-negative.
3079       return I->getOperand(0) == I->getOperand(1) &&
3080              (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) &&
3081              cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
3082                                              Depth + 1);
3083     }
3084     break;
3085   }
3086   return false;
3087 }
3088 
3089 bool llvm::CannotBeOrderedLessThanZero(const Value *V,
3090                                        const TargetLibraryInfo *TLI) {
3091   return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0);
3092 }
3093 
3094 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) {
3095   return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0);
3096 }
3097 
3098 bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI,
3099                            unsigned Depth) {
3100   assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type");
3101 
3102   // If we're told that NaNs won't happen, assume they won't.
3103   if (auto *FPMathOp = dyn_cast<FPMathOperator>(V))
3104     if (FPMathOp->hasNoNaNs())
3105       return true;
3106 
3107   // Handle scalar constants.
3108   if (auto *CFP = dyn_cast<ConstantFP>(V))
3109     return !CFP->isNaN();
3110 
3111   if (Depth == MaxDepth)
3112     return false;
3113 
3114   if (auto *Inst = dyn_cast<Instruction>(V)) {
3115     switch (Inst->getOpcode()) {
3116     case Instruction::FAdd:
3117     case Instruction::FMul:
3118     case Instruction::FSub:
3119     case Instruction::FDiv:
3120     case Instruction::FRem: {
3121       // TODO: Need isKnownNeverInfinity
3122       return false;
3123     }
3124     case Instruction::Select: {
3125       return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) &&
3126              isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1);
3127     }
3128     case Instruction::SIToFP:
3129     case Instruction::UIToFP:
3130       return true;
3131     case Instruction::FPTrunc:
3132     case Instruction::FPExt:
3133       return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1);
3134     default:
3135       break;
3136     }
3137   }
3138 
3139   if (const auto *II = dyn_cast<IntrinsicInst>(V)) {
3140     switch (II->getIntrinsicID()) {
3141     case Intrinsic::canonicalize:
3142     case Intrinsic::fabs:
3143     case Intrinsic::copysign:
3144     case Intrinsic::exp:
3145     case Intrinsic::exp2:
3146     case Intrinsic::floor:
3147     case Intrinsic::ceil:
3148     case Intrinsic::trunc:
3149     case Intrinsic::rint:
3150     case Intrinsic::nearbyint:
3151     case Intrinsic::round:
3152       return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1);
3153     case Intrinsic::sqrt:
3154       return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) &&
3155              CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI);
3156     case Intrinsic::minnum:
3157     case Intrinsic::maxnum:
3158       // If either operand is not NaN, the result is not NaN.
3159       return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) ||
3160              isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1);
3161     default:
3162       return false;
3163     }
3164   }
3165 
3166   // Bail out for constant expressions, but try to handle vector constants.
3167   if (!V->getType()->isVectorTy() || !isa<Constant>(V))
3168     return false;
3169 
3170   // For vectors, verify that each element is not NaN.
3171   unsigned NumElts = V->getType()->getVectorNumElements();
3172   for (unsigned i = 0; i != NumElts; ++i) {
3173     Constant *Elt = cast<Constant>(V)->getAggregateElement(i);
3174     if (!Elt)
3175       return false;
3176     if (isa<UndefValue>(Elt))
3177       continue;
3178     auto *CElt = dyn_cast<ConstantFP>(Elt);
3179     if (!CElt || CElt->isNaN())
3180       return false;
3181   }
3182   // All elements were confirmed not-NaN or undefined.
3183   return true;
3184 }
3185 
3186 Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) {
3187 
3188   // All byte-wide stores are splatable, even of arbitrary variables.
3189   if (V->getType()->isIntegerTy(8))
3190     return V;
3191 
3192   LLVMContext &Ctx = V->getContext();
3193 
3194   // Undef don't care.
3195   auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx));
3196   if (isa<UndefValue>(V))
3197     return UndefInt8;
3198 
3199   const uint64_t Size = DL.getTypeStoreSize(V->getType());
3200   if (!Size)
3201     return UndefInt8;
3202 
3203   Constant *C = dyn_cast<Constant>(V);
3204   if (!C) {
3205     // Conceptually, we could handle things like:
3206     //   %a = zext i8 %X to i16
3207     //   %b = shl i16 %a, 8
3208     //   %c = or i16 %a, %b
3209     // but until there is an example that actually needs this, it doesn't seem
3210     // worth worrying about.
3211     return nullptr;
3212   }
3213 
3214   // Handle 'null' ConstantArrayZero etc.
3215   if (C->isNullValue())
3216     return Constant::getNullValue(Type::getInt8Ty(Ctx));
3217 
3218   // Constant floating-point values can be handled as integer values if the
3219   // corresponding integer value is "byteable".  An important case is 0.0.
3220   if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
3221     Type *Ty = nullptr;
3222     if (CFP->getType()->isHalfTy())
3223       Ty = Type::getInt16Ty(Ctx);
3224     else if (CFP->getType()->isFloatTy())
3225       Ty = Type::getInt32Ty(Ctx);
3226     else if (CFP->getType()->isDoubleTy())
3227       Ty = Type::getInt64Ty(Ctx);
3228     // Don't handle long double formats, which have strange constraints.
3229     return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL)
3230               : nullptr;
3231   }
3232 
3233   // We can handle constant integers that are multiple of 8 bits.
3234   if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
3235     if (CI->getBitWidth() % 8 == 0) {
3236       assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
3237       if (!CI->getValue().isSplat(8))
3238         return nullptr;
3239       return ConstantInt::get(Ctx, CI->getValue().trunc(8));
3240     }
3241   }
3242 
3243   if (auto *CE = dyn_cast<ConstantExpr>(C)) {
3244     if (CE->getOpcode() == Instruction::IntToPtr) {
3245       auto PS = DL.getPointerSizeInBits(
3246           cast<PointerType>(CE->getType())->getAddressSpace());
3247       return isBytewiseValue(
3248           ConstantExpr::getIntegerCast(CE->getOperand(0),
3249                                        Type::getIntNTy(Ctx, PS), false),
3250           DL);
3251     }
3252   }
3253 
3254   auto Merge = [&](Value *LHS, Value *RHS) -> Value * {
3255     if (LHS == RHS)
3256       return LHS;
3257     if (!LHS || !RHS)
3258       return nullptr;
3259     if (LHS == UndefInt8)
3260       return RHS;
3261     if (RHS == UndefInt8)
3262       return LHS;
3263     return nullptr;
3264   };
3265 
3266   if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) {
3267     Value *Val = UndefInt8;
3268     for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I)
3269       if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL))))
3270         return nullptr;
3271     return Val;
3272   }
3273 
3274   if (isa<ConstantAggregate>(C)) {
3275     Value *Val = UndefInt8;
3276     for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I)
3277       if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL))))
3278         return nullptr;
3279     return Val;
3280   }
3281 
3282   // Don't try to handle the handful of other constants.
3283   return nullptr;
3284 }
3285 
3286 // This is the recursive version of BuildSubAggregate. It takes a few different
3287 // arguments. Idxs is the index within the nested struct From that we are
3288 // looking at now (which is of type IndexedType). IdxSkip is the number of
3289 // indices from Idxs that should be left out when inserting into the resulting
3290 // struct. To is the result struct built so far, new insertvalue instructions
3291 // build on that.
3292 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
3293                                 SmallVectorImpl<unsigned> &Idxs,
3294                                 unsigned IdxSkip,
3295                                 Instruction *InsertBefore) {
3296   StructType *STy = dyn_cast<StructType>(IndexedType);
3297   if (STy) {
3298     // Save the original To argument so we can modify it
3299     Value *OrigTo = To;
3300     // General case, the type indexed by Idxs is a struct
3301     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
3302       // Process each struct element recursively
3303       Idxs.push_back(i);
3304       Value *PrevTo = To;
3305       To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
3306                              InsertBefore);
3307       Idxs.pop_back();
3308       if (!To) {
3309         // Couldn't find any inserted value for this index? Cleanup
3310         while (PrevTo != OrigTo) {
3311           InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
3312           PrevTo = Del->getAggregateOperand();
3313           Del->eraseFromParent();
3314         }
3315         // Stop processing elements
3316         break;
3317       }
3318     }
3319     // If we successfully found a value for each of our subaggregates
3320     if (To)
3321       return To;
3322   }
3323   // Base case, the type indexed by SourceIdxs is not a struct, or not all of
3324   // the struct's elements had a value that was inserted directly. In the latter
3325   // case, perhaps we can't determine each of the subelements individually, but
3326   // we might be able to find the complete struct somewhere.
3327 
3328   // Find the value that is at that particular spot
3329   Value *V = FindInsertedValue(From, Idxs);
3330 
3331   if (!V)
3332     return nullptr;
3333 
3334   // Insert the value in the new (sub) aggregate
3335   return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
3336                                  "tmp", InsertBefore);
3337 }
3338 
3339 // This helper takes a nested struct and extracts a part of it (which is again a
3340 // struct) into a new value. For example, given the struct:
3341 // { a, { b, { c, d }, e } }
3342 // and the indices "1, 1" this returns
3343 // { c, d }.
3344 //
3345 // It does this by inserting an insertvalue for each element in the resulting
3346 // struct, as opposed to just inserting a single struct. This will only work if
3347 // each of the elements of the substruct are known (ie, inserted into From by an
3348 // insertvalue instruction somewhere).
3349 //
3350 // All inserted insertvalue instructions are inserted before InsertBefore
3351 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
3352                                 Instruction *InsertBefore) {
3353   assert(InsertBefore && "Must have someplace to insert!");
3354   Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
3355                                                              idx_range);
3356   Value *To = UndefValue::get(IndexedType);
3357   SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
3358   unsigned IdxSkip = Idxs.size();
3359 
3360   return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
3361 }
3362 
3363 /// Given an aggregate and a sequence of indices, see if the scalar value
3364 /// indexed is already around as a register, for example if it was inserted
3365 /// directly into the aggregate.
3366 ///
3367 /// If InsertBefore is not null, this function will duplicate (modified)
3368 /// insertvalues when a part of a nested struct is extracted.
3369 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
3370                                Instruction *InsertBefore) {
3371   // Nothing to index? Just return V then (this is useful at the end of our
3372   // recursion).
3373   if (idx_range.empty())
3374     return V;
3375   // We have indices, so V should have an indexable type.
3376   assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
3377          "Not looking at a struct or array?");
3378   assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
3379          "Invalid indices for type?");
3380 
3381   if (Constant *C = dyn_cast<Constant>(V)) {
3382     C = C->getAggregateElement(idx_range[0]);
3383     if (!C) return nullptr;
3384     return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
3385   }
3386 
3387   if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
3388     // Loop the indices for the insertvalue instruction in parallel with the
3389     // requested indices
3390     const unsigned *req_idx = idx_range.begin();
3391     for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
3392          i != e; ++i, ++req_idx) {
3393       if (req_idx == idx_range.end()) {
3394         // We can't handle this without inserting insertvalues
3395         if (!InsertBefore)
3396           return nullptr;
3397 
3398         // The requested index identifies a part of a nested aggregate. Handle
3399         // this specially. For example,
3400         // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
3401         // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
3402         // %C = extractvalue {i32, { i32, i32 } } %B, 1
3403         // This can be changed into
3404         // %A = insertvalue {i32, i32 } undef, i32 10, 0
3405         // %C = insertvalue {i32, i32 } %A, i32 11, 1
3406         // which allows the unused 0,0 element from the nested struct to be
3407         // removed.
3408         return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
3409                                  InsertBefore);
3410       }
3411 
3412       // This insert value inserts something else than what we are looking for.
3413       // See if the (aggregate) value inserted into has the value we are
3414       // looking for, then.
3415       if (*req_idx != *i)
3416         return FindInsertedValue(I->getAggregateOperand(), idx_range,
3417                                  InsertBefore);
3418     }
3419     // If we end up here, the indices of the insertvalue match with those
3420     // requested (though possibly only partially). Now we recursively look at
3421     // the inserted value, passing any remaining indices.
3422     return FindInsertedValue(I->getInsertedValueOperand(),
3423                              makeArrayRef(req_idx, idx_range.end()),
3424                              InsertBefore);
3425   }
3426 
3427   if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
3428     // If we're extracting a value from an aggregate that was extracted from
3429     // something else, we can extract from that something else directly instead.
3430     // However, we will need to chain I's indices with the requested indices.
3431 
3432     // Calculate the number of indices required
3433     unsigned size = I->getNumIndices() + idx_range.size();
3434     // Allocate some space to put the new indices in
3435     SmallVector<unsigned, 5> Idxs;
3436     Idxs.reserve(size);
3437     // Add indices from the extract value instruction
3438     Idxs.append(I->idx_begin(), I->idx_end());
3439 
3440     // Add requested indices
3441     Idxs.append(idx_range.begin(), idx_range.end());
3442 
3443     assert(Idxs.size() == size
3444            && "Number of indices added not correct?");
3445 
3446     return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
3447   }
3448   // Otherwise, we don't know (such as, extracting from a function return value
3449   // or load instruction)
3450   return nullptr;
3451 }
3452 
3453 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP,
3454                                        unsigned CharSize) {
3455   // Make sure the GEP has exactly three arguments.
3456   if (GEP->getNumOperands() != 3)
3457     return false;
3458 
3459   // Make sure the index-ee is a pointer to array of \p CharSize integers.
3460   // CharSize.
3461   ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType());
3462   if (!AT || !AT->getElementType()->isIntegerTy(CharSize))
3463     return false;
3464 
3465   // Check to make sure that the first operand of the GEP is an integer and
3466   // has value 0 so that we are sure we're indexing into the initializer.
3467   const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
3468   if (!FirstIdx || !FirstIdx->isZero())
3469     return false;
3470 
3471   return true;
3472 }
3473 
3474 bool llvm::getConstantDataArrayInfo(const Value *V,
3475                                     ConstantDataArraySlice &Slice,
3476                                     unsigned ElementSize, uint64_t Offset) {
3477   assert(V);
3478 
3479   // Look through bitcast instructions and geps.
3480   V = V->stripPointerCasts();
3481 
3482   // If the value is a GEP instruction or constant expression, treat it as an
3483   // offset.
3484   if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
3485     // The GEP operator should be based on a pointer to string constant, and is
3486     // indexing into the string constant.
3487     if (!isGEPBasedOnPointerToString(GEP, ElementSize))
3488       return false;
3489 
3490     // If the second index isn't a ConstantInt, then this is a variable index
3491     // into the array.  If this occurs, we can't say anything meaningful about
3492     // the string.
3493     uint64_t StartIdx = 0;
3494     if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
3495       StartIdx = CI->getZExtValue();
3496     else
3497       return false;
3498     return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize,
3499                                     StartIdx + Offset);
3500   }
3501 
3502   // The GEP instruction, constant or instruction, must reference a global
3503   // variable that is a constant and is initialized. The referenced constant
3504   // initializer is the array that we'll use for optimization.
3505   const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
3506   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
3507     return false;
3508 
3509   const ConstantDataArray *Array;
3510   ArrayType *ArrayTy;
3511   if (GV->getInitializer()->isNullValue()) {
3512     Type *GVTy = GV->getValueType();
3513     if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) {
3514       // A zeroinitializer for the array; there is no ConstantDataArray.
3515       Array = nullptr;
3516     } else {
3517       const DataLayout &DL = GV->getParent()->getDataLayout();
3518       uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy);
3519       uint64_t Length = SizeInBytes / (ElementSize / 8);
3520       if (Length <= Offset)
3521         return false;
3522 
3523       Slice.Array = nullptr;
3524       Slice.Offset = 0;
3525       Slice.Length = Length - Offset;
3526       return true;
3527     }
3528   } else {
3529     // This must be a ConstantDataArray.
3530     Array = dyn_cast<ConstantDataArray>(GV->getInitializer());
3531     if (!Array)
3532       return false;
3533     ArrayTy = Array->getType();
3534   }
3535   if (!ArrayTy->getElementType()->isIntegerTy(ElementSize))
3536     return false;
3537 
3538   uint64_t NumElts = ArrayTy->getArrayNumElements();
3539   if (Offset > NumElts)
3540     return false;
3541 
3542   Slice.Array = Array;
3543   Slice.Offset = Offset;
3544   Slice.Length = NumElts - Offset;
3545   return true;
3546 }
3547 
3548 /// This function computes the length of a null-terminated C string pointed to
3549 /// by V. If successful, it returns true and returns the string in Str.
3550 /// If unsuccessful, it returns false.
3551 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
3552                                  uint64_t Offset, bool TrimAtNul) {
3553   ConstantDataArraySlice Slice;
3554   if (!getConstantDataArrayInfo(V, Slice, 8, Offset))
3555     return false;
3556 
3557   if (Slice.Array == nullptr) {
3558     if (TrimAtNul) {
3559       Str = StringRef();
3560       return true;
3561     }
3562     if (Slice.Length == 1) {
3563       Str = StringRef("", 1);
3564       return true;
3565     }
3566     // We cannot instantiate a StringRef as we do not have an appropriate string
3567     // of 0s at hand.
3568     return false;
3569   }
3570 
3571   // Start out with the entire array in the StringRef.
3572   Str = Slice.Array->getAsString();
3573   // Skip over 'offset' bytes.
3574   Str = Str.substr(Slice.Offset);
3575 
3576   if (TrimAtNul) {
3577     // Trim off the \0 and anything after it.  If the array is not nul
3578     // terminated, we just return the whole end of string.  The client may know
3579     // some other way that the string is length-bound.
3580     Str = Str.substr(0, Str.find('\0'));
3581   }
3582   return true;
3583 }
3584 
3585 // These next two are very similar to the above, but also look through PHI
3586 // nodes.
3587 // TODO: See if we can integrate these two together.
3588 
3589 /// If we can compute the length of the string pointed to by
3590 /// the specified pointer, return 'len+1'.  If we can't, return 0.
3591 static uint64_t GetStringLengthH(const Value *V,
3592                                  SmallPtrSetImpl<const PHINode*> &PHIs,
3593                                  unsigned CharSize) {
3594   // Look through noop bitcast instructions.
3595   V = V->stripPointerCasts();
3596 
3597   // If this is a PHI node, there are two cases: either we have already seen it
3598   // or we haven't.
3599   if (const PHINode *PN = dyn_cast<PHINode>(V)) {
3600     if (!PHIs.insert(PN).second)
3601       return ~0ULL;  // already in the set.
3602 
3603     // If it was new, see if all the input strings are the same length.
3604     uint64_t LenSoFar = ~0ULL;
3605     for (Value *IncValue : PN->incoming_values()) {
3606       uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize);
3607       if (Len == 0) return 0; // Unknown length -> unknown.
3608 
3609       if (Len == ~0ULL) continue;
3610 
3611       if (Len != LenSoFar && LenSoFar != ~0ULL)
3612         return 0;    // Disagree -> unknown.
3613       LenSoFar = Len;
3614     }
3615 
3616     // Success, all agree.
3617     return LenSoFar;
3618   }
3619 
3620   // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
3621   if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
3622     uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize);
3623     if (Len1 == 0) return 0;
3624     uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize);
3625     if (Len2 == 0) return 0;
3626     if (Len1 == ~0ULL) return Len2;
3627     if (Len2 == ~0ULL) return Len1;
3628     if (Len1 != Len2) return 0;
3629     return Len1;
3630   }
3631 
3632   // Otherwise, see if we can read the string.
3633   ConstantDataArraySlice Slice;
3634   if (!getConstantDataArrayInfo(V, Slice, CharSize))
3635     return 0;
3636 
3637   if (Slice.Array == nullptr)
3638     return 1;
3639 
3640   // Search for nul characters
3641   unsigned NullIndex = 0;
3642   for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) {
3643     if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0)
3644       break;
3645   }
3646 
3647   return NullIndex + 1;
3648 }
3649 
3650 /// If we can compute the length of the string pointed to by
3651 /// the specified pointer, return 'len+1'.  If we can't, return 0.
3652 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) {
3653   if (!V->getType()->isPointerTy())
3654     return 0;
3655 
3656   SmallPtrSet<const PHINode*, 32> PHIs;
3657   uint64_t Len = GetStringLengthH(V, PHIs, CharSize);
3658   // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
3659   // an empty string as a length.
3660   return Len == ~0ULL ? 1 : Len;
3661 }
3662 
3663 const Value *
3664 llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call,
3665                                            bool MustPreserveNullness) {
3666   assert(Call &&
3667          "getArgumentAliasingToReturnedPointer only works on nonnull calls");
3668   if (const Value *RV = Call->getReturnedArgOperand())
3669     return RV;
3670   // This can be used only as a aliasing property.
3671   if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(
3672           Call, MustPreserveNullness))
3673     return Call->getArgOperand(0);
3674   return nullptr;
3675 }
3676 
3677 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(
3678     const CallBase *Call, bool MustPreserveNullness) {
3679   return Call->getIntrinsicID() == Intrinsic::launder_invariant_group ||
3680          Call->getIntrinsicID() == Intrinsic::strip_invariant_group ||
3681          Call->getIntrinsicID() == Intrinsic::aarch64_irg ||
3682          Call->getIntrinsicID() == Intrinsic::aarch64_tagp ||
3683          (!MustPreserveNullness &&
3684           Call->getIntrinsicID() == Intrinsic::ptrmask);
3685 }
3686 
3687 /// \p PN defines a loop-variant pointer to an object.  Check if the
3688 /// previous iteration of the loop was referring to the same object as \p PN.
3689 static bool isSameUnderlyingObjectInLoop(const PHINode *PN,
3690                                          const LoopInfo *LI) {
3691   // Find the loop-defined value.
3692   Loop *L = LI->getLoopFor(PN->getParent());
3693   if (PN->getNumIncomingValues() != 2)
3694     return true;
3695 
3696   // Find the value from previous iteration.
3697   auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
3698   if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
3699     PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
3700   if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
3701     return true;
3702 
3703   // If a new pointer is loaded in the loop, the pointer references a different
3704   // object in every iteration.  E.g.:
3705   //    for (i)
3706   //       int *p = a[i];
3707   //       ...
3708   if (auto *Load = dyn_cast<LoadInst>(PrevValue))
3709     if (!L->isLoopInvariant(Load->getPointerOperand()))
3710       return false;
3711   return true;
3712 }
3713 
3714 Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL,
3715                                  unsigned MaxLookup) {
3716   if (!V->getType()->isPointerTy())
3717     return V;
3718   for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
3719     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
3720       V = GEP->getPointerOperand();
3721     } else if (Operator::getOpcode(V) == Instruction::BitCast ||
3722                Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
3723       V = cast<Operator>(V)->getOperand(0);
3724     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
3725       if (GA->isInterposable())
3726         return V;
3727       V = GA->getAliasee();
3728     } else if (isa<AllocaInst>(V)) {
3729       // An alloca can't be further simplified.
3730       return V;
3731     } else {
3732       if (auto *Call = dyn_cast<CallBase>(V)) {
3733         // CaptureTracking can know about special capturing properties of some
3734         // intrinsics like launder.invariant.group, that can't be expressed with
3735         // the attributes, but have properties like returning aliasing pointer.
3736         // Because some analysis may assume that nocaptured pointer is not
3737         // returned from some special intrinsic (because function would have to
3738         // be marked with returns attribute), it is crucial to use this function
3739         // because it should be in sync with CaptureTracking. Not using it may
3740         // cause weird miscompilations where 2 aliasing pointers are assumed to
3741         // noalias.
3742         if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) {
3743           V = RP;
3744           continue;
3745         }
3746       }
3747 
3748       // See if InstructionSimplify knows any relevant tricks.
3749       if (Instruction *I = dyn_cast<Instruction>(V))
3750         // TODO: Acquire a DominatorTree and AssumptionCache and use them.
3751         if (Value *Simplified = SimplifyInstruction(I, {DL, I})) {
3752           V = Simplified;
3753           continue;
3754         }
3755 
3756       return V;
3757     }
3758     assert(V->getType()->isPointerTy() && "Unexpected operand type!");
3759   }
3760   return V;
3761 }
3762 
3763 void llvm::GetUnderlyingObjects(const Value *V,
3764                                 SmallVectorImpl<const Value *> &Objects,
3765                                 const DataLayout &DL, LoopInfo *LI,
3766                                 unsigned MaxLookup) {
3767   SmallPtrSet<const Value *, 4> Visited;
3768   SmallVector<const Value *, 4> Worklist;
3769   Worklist.push_back(V);
3770   do {
3771     const Value *P = Worklist.pop_back_val();
3772     P = GetUnderlyingObject(P, DL, MaxLookup);
3773 
3774     if (!Visited.insert(P).second)
3775       continue;
3776 
3777     if (auto *SI = dyn_cast<SelectInst>(P)) {
3778       Worklist.push_back(SI->getTrueValue());
3779       Worklist.push_back(SI->getFalseValue());
3780       continue;
3781     }
3782 
3783     if (auto *PN = dyn_cast<PHINode>(P)) {
3784       // If this PHI changes the underlying object in every iteration of the
3785       // loop, don't look through it.  Consider:
3786       //   int **A;
3787       //   for (i) {
3788       //     Prev = Curr;     // Prev = PHI (Prev_0, Curr)
3789       //     Curr = A[i];
3790       //     *Prev, *Curr;
3791       //
3792       // Prev is tracking Curr one iteration behind so they refer to different
3793       // underlying objects.
3794       if (!LI || !LI->isLoopHeader(PN->getParent()) ||
3795           isSameUnderlyingObjectInLoop(PN, LI))
3796         for (Value *IncValue : PN->incoming_values())
3797           Worklist.push_back(IncValue);
3798       continue;
3799     }
3800 
3801     Objects.push_back(P);
3802   } while (!Worklist.empty());
3803 }
3804 
3805 /// This is the function that does the work of looking through basic
3806 /// ptrtoint+arithmetic+inttoptr sequences.
3807 static const Value *getUnderlyingObjectFromInt(const Value *V) {
3808   do {
3809     if (const Operator *U = dyn_cast<Operator>(V)) {
3810       // If we find a ptrtoint, we can transfer control back to the
3811       // regular getUnderlyingObjectFromInt.
3812       if (U->getOpcode() == Instruction::PtrToInt)
3813         return U->getOperand(0);
3814       // If we find an add of a constant, a multiplied value, or a phi, it's
3815       // likely that the other operand will lead us to the base
3816       // object. We don't have to worry about the case where the
3817       // object address is somehow being computed by the multiply,
3818       // because our callers only care when the result is an
3819       // identifiable object.
3820       if (U->getOpcode() != Instruction::Add ||
3821           (!isa<ConstantInt>(U->getOperand(1)) &&
3822            Operator::getOpcode(U->getOperand(1)) != Instruction::Mul &&
3823            !isa<PHINode>(U->getOperand(1))))
3824         return V;
3825       V = U->getOperand(0);
3826     } else {
3827       return V;
3828     }
3829     assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
3830   } while (true);
3831 }
3832 
3833 /// This is a wrapper around GetUnderlyingObjects and adds support for basic
3834 /// ptrtoint+arithmetic+inttoptr sequences.
3835 /// It returns false if unidentified object is found in GetUnderlyingObjects.
3836 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V,
3837                           SmallVectorImpl<Value *> &Objects,
3838                           const DataLayout &DL) {
3839   SmallPtrSet<const Value *, 16> Visited;
3840   SmallVector<const Value *, 4> Working(1, V);
3841   do {
3842     V = Working.pop_back_val();
3843 
3844     SmallVector<const Value *, 4> Objs;
3845     GetUnderlyingObjects(V, Objs, DL);
3846 
3847     for (const Value *V : Objs) {
3848       if (!Visited.insert(V).second)
3849         continue;
3850       if (Operator::getOpcode(V) == Instruction::IntToPtr) {
3851         const Value *O =
3852           getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
3853         if (O->getType()->isPointerTy()) {
3854           Working.push_back(O);
3855           continue;
3856         }
3857       }
3858       // If GetUnderlyingObjects fails to find an identifiable object,
3859       // getUnderlyingObjectsForCodeGen also fails for safety.
3860       if (!isIdentifiedObject(V)) {
3861         Objects.clear();
3862         return false;
3863       }
3864       Objects.push_back(const_cast<Value *>(V));
3865     }
3866   } while (!Working.empty());
3867   return true;
3868 }
3869 
3870 /// Return true if the only users of this pointer are lifetime markers.
3871 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
3872   for (const User *U : V->users()) {
3873     const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
3874     if (!II) return false;
3875 
3876     if (!II->isLifetimeStartOrEnd())
3877       return false;
3878   }
3879   return true;
3880 }
3881 
3882 bool llvm::mustSuppressSpeculation(const LoadInst &LI) {
3883   if (!LI.isUnordered())
3884     return true;
3885   const Function &F = *LI.getFunction();
3886   // Speculative load may create a race that did not exist in the source.
3887   return F.hasFnAttribute(Attribute::SanitizeThread) ||
3888     // Speculative load may load data from dirty regions.
3889     F.hasFnAttribute(Attribute::SanitizeAddress) ||
3890     F.hasFnAttribute(Attribute::SanitizeHWAddress);
3891 }
3892 
3893 
3894 bool llvm::isSafeToSpeculativelyExecute(const Value *V,
3895                                         const Instruction *CtxI,
3896                                         const DominatorTree *DT) {
3897   const Operator *Inst = dyn_cast<Operator>(V);
3898   if (!Inst)
3899     return false;
3900 
3901   for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
3902     if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
3903       if (C->canTrap())
3904         return false;
3905 
3906   switch (Inst->getOpcode()) {
3907   default:
3908     return true;
3909   case Instruction::UDiv:
3910   case Instruction::URem: {
3911     // x / y is undefined if y == 0.
3912     const APInt *V;
3913     if (match(Inst->getOperand(1), m_APInt(V)))
3914       return *V != 0;
3915     return false;
3916   }
3917   case Instruction::SDiv:
3918   case Instruction::SRem: {
3919     // x / y is undefined if y == 0 or x == INT_MIN and y == -1
3920     const APInt *Numerator, *Denominator;
3921     if (!match(Inst->getOperand(1), m_APInt(Denominator)))
3922       return false;
3923     // We cannot hoist this division if the denominator is 0.
3924     if (*Denominator == 0)
3925       return false;
3926     // It's safe to hoist if the denominator is not 0 or -1.
3927     if (*Denominator != -1)
3928       return true;
3929     // At this point we know that the denominator is -1.  It is safe to hoist as
3930     // long we know that the numerator is not INT_MIN.
3931     if (match(Inst->getOperand(0), m_APInt(Numerator)))
3932       return !Numerator->isMinSignedValue();
3933     // The numerator *might* be MinSignedValue.
3934     return false;
3935   }
3936   case Instruction::Load: {
3937     const LoadInst *LI = cast<LoadInst>(Inst);
3938     if (mustSuppressSpeculation(*LI))
3939       return false;
3940     const DataLayout &DL = LI->getModule()->getDataLayout();
3941     return isDereferenceableAndAlignedPointer(
3942         LI->getPointerOperand(), LI->getType(), MaybeAlign(LI->getAlignment()),
3943         DL, CtxI, DT);
3944   }
3945   case Instruction::Call: {
3946     auto *CI = cast<const CallInst>(Inst);
3947     const Function *Callee = CI->getCalledFunction();
3948 
3949     // The called function could have undefined behavior or side-effects, even
3950     // if marked readnone nounwind.
3951     return Callee && Callee->isSpeculatable();
3952   }
3953   case Instruction::VAArg:
3954   case Instruction::Alloca:
3955   case Instruction::Invoke:
3956   case Instruction::CallBr:
3957   case Instruction::PHI:
3958   case Instruction::Store:
3959   case Instruction::Ret:
3960   case Instruction::Br:
3961   case Instruction::IndirectBr:
3962   case Instruction::Switch:
3963   case Instruction::Unreachable:
3964   case Instruction::Fence:
3965   case Instruction::AtomicRMW:
3966   case Instruction::AtomicCmpXchg:
3967   case Instruction::LandingPad:
3968   case Instruction::Resume:
3969   case Instruction::CatchSwitch:
3970   case Instruction::CatchPad:
3971   case Instruction::CatchRet:
3972   case Instruction::CleanupPad:
3973   case Instruction::CleanupRet:
3974     return false; // Misc instructions which have effects
3975   }
3976 }
3977 
3978 bool llvm::mayBeMemoryDependent(const Instruction &I) {
3979   return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I);
3980 }
3981 
3982 /// Convert ConstantRange OverflowResult into ValueTracking OverflowResult.
3983 static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) {
3984   switch (OR) {
3985     case ConstantRange::OverflowResult::MayOverflow:
3986       return OverflowResult::MayOverflow;
3987     case ConstantRange::OverflowResult::AlwaysOverflowsLow:
3988       return OverflowResult::AlwaysOverflowsLow;
3989     case ConstantRange::OverflowResult::AlwaysOverflowsHigh:
3990       return OverflowResult::AlwaysOverflowsHigh;
3991     case ConstantRange::OverflowResult::NeverOverflows:
3992       return OverflowResult::NeverOverflows;
3993   }
3994   llvm_unreachable("Unknown OverflowResult");
3995 }
3996 
3997 /// Combine constant ranges from computeConstantRange() and computeKnownBits().
3998 static ConstantRange computeConstantRangeIncludingKnownBits(
3999     const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth,
4000     AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
4001     OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) {
4002   KnownBits Known = computeKnownBits(
4003       V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo);
4004   ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned);
4005   ConstantRange CR2 = computeConstantRange(V, UseInstrInfo);
4006   ConstantRange::PreferredRangeType RangeType =
4007       ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned;
4008   return CR1.intersectWith(CR2, RangeType);
4009 }
4010 
4011 OverflowResult llvm::computeOverflowForUnsignedMul(
4012     const Value *LHS, const Value *RHS, const DataLayout &DL,
4013     AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
4014     bool UseInstrInfo) {
4015   KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT,
4016                                         nullptr, UseInstrInfo);
4017   KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT,
4018                                         nullptr, UseInstrInfo);
4019   ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false);
4020   ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false);
4021   return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange));
4022 }
4023 
4024 OverflowResult
4025 llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS,
4026                                   const DataLayout &DL, AssumptionCache *AC,
4027                                   const Instruction *CxtI,
4028                                   const DominatorTree *DT, bool UseInstrInfo) {
4029   // Multiplying n * m significant bits yields a result of n + m significant
4030   // bits. If the total number of significant bits does not exceed the
4031   // result bit width (minus 1), there is no overflow.
4032   // This means if we have enough leading sign bits in the operands
4033   // we can guarantee that the result does not overflow.
4034   // Ref: "Hacker's Delight" by Henry Warren
4035   unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
4036 
4037   // Note that underestimating the number of sign bits gives a more
4038   // conservative answer.
4039   unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) +
4040                       ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT);
4041 
4042   // First handle the easy case: if we have enough sign bits there's
4043   // definitely no overflow.
4044   if (SignBits > BitWidth + 1)
4045     return OverflowResult::NeverOverflows;
4046 
4047   // There are two ambiguous cases where there can be no overflow:
4048   //   SignBits == BitWidth + 1    and
4049   //   SignBits == BitWidth
4050   // The second case is difficult to check, therefore we only handle the
4051   // first case.
4052   if (SignBits == BitWidth + 1) {
4053     // It overflows only when both arguments are negative and the true
4054     // product is exactly the minimum negative number.
4055     // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000
4056     // For simplicity we just check if at least one side is not negative.
4057     KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT,
4058                                           nullptr, UseInstrInfo);
4059     KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT,
4060                                           nullptr, UseInstrInfo);
4061     if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative())
4062       return OverflowResult::NeverOverflows;
4063   }
4064   return OverflowResult::MayOverflow;
4065 }
4066 
4067 OverflowResult llvm::computeOverflowForUnsignedAdd(
4068     const Value *LHS, const Value *RHS, const DataLayout &DL,
4069     AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
4070     bool UseInstrInfo) {
4071   ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
4072       LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT,
4073       nullptr, UseInstrInfo);
4074   ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
4075       RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT,
4076       nullptr, UseInstrInfo);
4077   return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange));
4078 }
4079 
4080 static OverflowResult computeOverflowForSignedAdd(const Value *LHS,
4081                                                   const Value *RHS,
4082                                                   const AddOperator *Add,
4083                                                   const DataLayout &DL,
4084                                                   AssumptionCache *AC,
4085                                                   const Instruction *CxtI,
4086                                                   const DominatorTree *DT) {
4087   if (Add && Add->hasNoSignedWrap()) {
4088     return OverflowResult::NeverOverflows;
4089   }
4090 
4091   // If LHS and RHS each have at least two sign bits, the addition will look
4092   // like
4093   //
4094   // XX..... +
4095   // YY.....
4096   //
4097   // If the carry into the most significant position is 0, X and Y can't both
4098   // be 1 and therefore the carry out of the addition is also 0.
4099   //
4100   // If the carry into the most significant position is 1, X and Y can't both
4101   // be 0 and therefore the carry out of the addition is also 1.
4102   //
4103   // Since the carry into the most significant position is always equal to
4104   // the carry out of the addition, there is no signed overflow.
4105   if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 &&
4106       ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1)
4107     return OverflowResult::NeverOverflows;
4108 
4109   ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
4110       LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
4111   ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
4112       RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
4113   OverflowResult OR =
4114       mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange));
4115   if (OR != OverflowResult::MayOverflow)
4116     return OR;
4117 
4118   // The remaining code needs Add to be available. Early returns if not so.
4119   if (!Add)
4120     return OverflowResult::MayOverflow;
4121 
4122   // If the sign of Add is the same as at least one of the operands, this add
4123   // CANNOT overflow. If this can be determined from the known bits of the
4124   // operands the above signedAddMayOverflow() check will have already done so.
4125   // The only other way to improve on the known bits is from an assumption, so
4126   // call computeKnownBitsFromAssume() directly.
4127   bool LHSOrRHSKnownNonNegative =
4128       (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative());
4129   bool LHSOrRHSKnownNegative =
4130       (LHSRange.isAllNegative() || RHSRange.isAllNegative());
4131   if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
4132     KnownBits AddKnown(LHSRange.getBitWidth());
4133     computeKnownBitsFromAssume(
4134         Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true));
4135     if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) ||
4136         (AddKnown.isNegative() && LHSOrRHSKnownNegative))
4137       return OverflowResult::NeverOverflows;
4138   }
4139 
4140   return OverflowResult::MayOverflow;
4141 }
4142 
4143 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS,
4144                                                    const Value *RHS,
4145                                                    const DataLayout &DL,
4146                                                    AssumptionCache *AC,
4147                                                    const Instruction *CxtI,
4148                                                    const DominatorTree *DT) {
4149   ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
4150       LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT);
4151   ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
4152       RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT);
4153   return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange));
4154 }
4155 
4156 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS,
4157                                                  const Value *RHS,
4158                                                  const DataLayout &DL,
4159                                                  AssumptionCache *AC,
4160                                                  const Instruction *CxtI,
4161                                                  const DominatorTree *DT) {
4162   // If LHS and RHS each have at least two sign bits, the subtraction
4163   // cannot overflow.
4164   if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 &&
4165       ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1)
4166     return OverflowResult::NeverOverflows;
4167 
4168   ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
4169       LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
4170   ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
4171       RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
4172   return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange));
4173 }
4174 
4175 bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO,
4176                                      const DominatorTree &DT) {
4177   SmallVector<const BranchInst *, 2> GuardingBranches;
4178   SmallVector<const ExtractValueInst *, 2> Results;
4179 
4180   for (const User *U : WO->users()) {
4181     if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) {
4182       assert(EVI->getNumIndices() == 1 && "Obvious from CI's type");
4183 
4184       if (EVI->getIndices()[0] == 0)
4185         Results.push_back(EVI);
4186       else {
4187         assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type");
4188 
4189         for (const auto *U : EVI->users())
4190           if (const auto *B = dyn_cast<BranchInst>(U)) {
4191             assert(B->isConditional() && "How else is it using an i1?");
4192             GuardingBranches.push_back(B);
4193           }
4194       }
4195     } else {
4196       // We are using the aggregate directly in a way we don't want to analyze
4197       // here (storing it to a global, say).
4198       return false;
4199     }
4200   }
4201 
4202   auto AllUsesGuardedByBranch = [&](const BranchInst *BI) {
4203     BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1));
4204     if (!NoWrapEdge.isSingleEdge())
4205       return false;
4206 
4207     // Check if all users of the add are provably no-wrap.
4208     for (const auto *Result : Results) {
4209       // If the extractvalue itself is not executed on overflow, the we don't
4210       // need to check each use separately, since domination is transitive.
4211       if (DT.dominates(NoWrapEdge, Result->getParent()))
4212         continue;
4213 
4214       for (auto &RU : Result->uses())
4215         if (!DT.dominates(NoWrapEdge, RU))
4216           return false;
4217     }
4218 
4219     return true;
4220   };
4221 
4222   return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch);
4223 }
4224 
4225 
4226 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add,
4227                                                  const DataLayout &DL,
4228                                                  AssumptionCache *AC,
4229                                                  const Instruction *CxtI,
4230                                                  const DominatorTree *DT) {
4231   return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
4232                                        Add, DL, AC, CxtI, DT);
4233 }
4234 
4235 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS,
4236                                                  const Value *RHS,
4237                                                  const DataLayout &DL,
4238                                                  AssumptionCache *AC,
4239                                                  const Instruction *CxtI,
4240                                                  const DominatorTree *DT) {
4241   return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT);
4242 }
4243 
4244 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
4245   // Note: An atomic operation isn't guaranteed to return in a reasonable amount
4246   // of time because it's possible for another thread to interfere with it for an
4247   // arbitrary length of time, but programs aren't allowed to rely on that.
4248 
4249   // If there is no successor, then execution can't transfer to it.
4250   if (const auto *CRI = dyn_cast<CleanupReturnInst>(I))
4251     return !CRI->unwindsToCaller();
4252   if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I))
4253     return !CatchSwitch->unwindsToCaller();
4254   if (isa<ResumeInst>(I))
4255     return false;
4256   if (isa<ReturnInst>(I))
4257     return false;
4258   if (isa<UnreachableInst>(I))
4259     return false;
4260 
4261   // Calls can throw, or contain an infinite loop, or kill the process.
4262   if (auto CS = ImmutableCallSite(I)) {
4263     // Call sites that throw have implicit non-local control flow.
4264     if (!CS.doesNotThrow())
4265       return false;
4266 
4267     // A function which doens't throw and has "willreturn" attribute will
4268     // always return.
4269     if (CS.hasFnAttr(Attribute::WillReturn))
4270       return true;
4271 
4272     // Non-throwing call sites can loop infinitely, call exit/pthread_exit
4273     // etc. and thus not return.  However, LLVM already assumes that
4274     //
4275     //  - Thread exiting actions are modeled as writes to memory invisible to
4276     //    the program.
4277     //
4278     //  - Loops that don't have side effects (side effects are volatile/atomic
4279     //    stores and IO) always terminate (see http://llvm.org/PR965).
4280     //    Furthermore IO itself is also modeled as writes to memory invisible to
4281     //    the program.
4282     //
4283     // We rely on those assumptions here, and use the memory effects of the call
4284     // target as a proxy for checking that it always returns.
4285 
4286     // FIXME: This isn't aggressive enough; a call which only writes to a global
4287     // is guaranteed to return.
4288     return CS.onlyReadsMemory() || CS.onlyAccessesArgMemory();
4289   }
4290 
4291   // Other instructions return normally.
4292   return true;
4293 }
4294 
4295 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) {
4296   // TODO: This is slightly conservative for invoke instruction since exiting
4297   // via an exception *is* normal control for them.
4298   for (auto I = BB->begin(), E = BB->end(); I != E; ++I)
4299     if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
4300       return false;
4301   return true;
4302 }
4303 
4304 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
4305                                                   const Loop *L) {
4306   // The loop header is guaranteed to be executed for every iteration.
4307   //
4308   // FIXME: Relax this constraint to cover all basic blocks that are
4309   // guaranteed to be executed at every iteration.
4310   if (I->getParent() != L->getHeader()) return false;
4311 
4312   for (const Instruction &LI : *L->getHeader()) {
4313     if (&LI == I) return true;
4314     if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
4315   }
4316   llvm_unreachable("Instruction not contained in its own parent basic block.");
4317 }
4318 
4319 bool llvm::propagatesFullPoison(const Instruction *I) {
4320   // TODO: This should include all instructions apart from phis, selects and
4321   // call-like instructions.
4322   switch (I->getOpcode()) {
4323   case Instruction::Add:
4324   case Instruction::Sub:
4325   case Instruction::Xor:
4326   case Instruction::Trunc:
4327   case Instruction::BitCast:
4328   case Instruction::AddrSpaceCast:
4329   case Instruction::Mul:
4330   case Instruction::Shl:
4331   case Instruction::GetElementPtr:
4332     // These operations all propagate poison unconditionally. Note that poison
4333     // is not any particular value, so xor or subtraction of poison with
4334     // itself still yields poison, not zero.
4335     return true;
4336 
4337   case Instruction::AShr:
4338   case Instruction::SExt:
4339     // For these operations, one bit of the input is replicated across
4340     // multiple output bits. A replicated poison bit is still poison.
4341     return true;
4342 
4343   case Instruction::ICmp:
4344     // Comparing poison with any value yields poison.  This is why, for
4345     // instance, x s< (x +nsw 1) can be folded to true.
4346     return true;
4347 
4348   default:
4349     return false;
4350   }
4351 }
4352 
4353 const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) {
4354   switch (I->getOpcode()) {
4355     case Instruction::Store:
4356       return cast<StoreInst>(I)->getPointerOperand();
4357 
4358     case Instruction::Load:
4359       return cast<LoadInst>(I)->getPointerOperand();
4360 
4361     case Instruction::AtomicCmpXchg:
4362       return cast<AtomicCmpXchgInst>(I)->getPointerOperand();
4363 
4364     case Instruction::AtomicRMW:
4365       return cast<AtomicRMWInst>(I)->getPointerOperand();
4366 
4367     case Instruction::UDiv:
4368     case Instruction::SDiv:
4369     case Instruction::URem:
4370     case Instruction::SRem:
4371       return I->getOperand(1);
4372 
4373     default:
4374       // Note: It's really tempting to think that a conditional branch or
4375       // switch should be listed here, but that's incorrect.  It's not
4376       // branching off of poison which is UB, it is executing a side effecting
4377       // instruction which follows the branch.
4378       return nullptr;
4379   }
4380 }
4381 
4382 bool llvm::mustTriggerUB(const Instruction *I,
4383                          const SmallSet<const Value *, 16>& KnownPoison) {
4384   auto *NotPoison = getGuaranteedNonFullPoisonOp(I);
4385   return (NotPoison && KnownPoison.count(NotPoison));
4386 }
4387 
4388 
4389 bool llvm::programUndefinedIfFullPoison(const Instruction *PoisonI) {
4390   // We currently only look for uses of poison values within the same basic
4391   // block, as that makes it easier to guarantee that the uses will be
4392   // executed given that PoisonI is executed.
4393   //
4394   // FIXME: Expand this to consider uses beyond the same basic block. To do
4395   // this, look out for the distinction between post-dominance and strong
4396   // post-dominance.
4397   const BasicBlock *BB = PoisonI->getParent();
4398 
4399   // Set of instructions that we have proved will yield poison if PoisonI
4400   // does.
4401   SmallSet<const Value *, 16> YieldsPoison;
4402   SmallSet<const BasicBlock *, 4> Visited;
4403   YieldsPoison.insert(PoisonI);
4404   Visited.insert(PoisonI->getParent());
4405 
4406   BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end();
4407 
4408   unsigned Iter = 0;
4409   while (Iter++ < MaxDepth) {
4410     for (auto &I : make_range(Begin, End)) {
4411       if (&I != PoisonI) {
4412         if (mustTriggerUB(&I, YieldsPoison))
4413           return true;
4414         if (!isGuaranteedToTransferExecutionToSuccessor(&I))
4415           return false;
4416       }
4417 
4418       // Mark poison that propagates from I through uses of I.
4419       if (YieldsPoison.count(&I)) {
4420         for (const User *User : I.users()) {
4421           const Instruction *UserI = cast<Instruction>(User);
4422           if (propagatesFullPoison(UserI))
4423             YieldsPoison.insert(User);
4424         }
4425       }
4426     }
4427 
4428     if (auto *NextBB = BB->getSingleSuccessor()) {
4429       if (Visited.insert(NextBB).second) {
4430         BB = NextBB;
4431         Begin = BB->getFirstNonPHI()->getIterator();
4432         End = BB->end();
4433         continue;
4434       }
4435     }
4436 
4437     break;
4438   }
4439   return false;
4440 }
4441 
4442 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) {
4443   if (FMF.noNaNs())
4444     return true;
4445 
4446   if (auto *C = dyn_cast<ConstantFP>(V))
4447     return !C->isNaN();
4448 
4449   if (auto *C = dyn_cast<ConstantDataVector>(V)) {
4450     if (!C->getElementType()->isFloatingPointTy())
4451       return false;
4452     for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) {
4453       if (C->getElementAsAPFloat(I).isNaN())
4454         return false;
4455     }
4456     return true;
4457   }
4458 
4459   return false;
4460 }
4461 
4462 static bool isKnownNonZero(const Value *V) {
4463   if (auto *C = dyn_cast<ConstantFP>(V))
4464     return !C->isZero();
4465 
4466   if (auto *C = dyn_cast<ConstantDataVector>(V)) {
4467     if (!C->getElementType()->isFloatingPointTy())
4468       return false;
4469     for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) {
4470       if (C->getElementAsAPFloat(I).isZero())
4471         return false;
4472     }
4473     return true;
4474   }
4475 
4476   return false;
4477 }
4478 
4479 /// Match clamp pattern for float types without care about NaNs or signed zeros.
4480 /// Given non-min/max outer cmp/select from the clamp pattern this
4481 /// function recognizes if it can be substitued by a "canonical" min/max
4482 /// pattern.
4483 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred,
4484                                                Value *CmpLHS, Value *CmpRHS,
4485                                                Value *TrueVal, Value *FalseVal,
4486                                                Value *&LHS, Value *&RHS) {
4487   // Try to match
4488   //   X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2))
4489   //   X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2))
4490   // and return description of the outer Max/Min.
4491 
4492   // First, check if select has inverse order:
4493   if (CmpRHS == FalseVal) {
4494     std::swap(TrueVal, FalseVal);
4495     Pred = CmpInst::getInversePredicate(Pred);
4496   }
4497 
4498   // Assume success now. If there's no match, callers should not use these anyway.
4499   LHS = TrueVal;
4500   RHS = FalseVal;
4501 
4502   const APFloat *FC1;
4503   if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite())
4504     return {SPF_UNKNOWN, SPNB_NA, false};
4505 
4506   const APFloat *FC2;
4507   switch (Pred) {
4508   case CmpInst::FCMP_OLT:
4509   case CmpInst::FCMP_OLE:
4510   case CmpInst::FCMP_ULT:
4511   case CmpInst::FCMP_ULE:
4512     if (match(FalseVal,
4513               m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)),
4514                           m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
4515         FC1->compare(*FC2) == APFloat::cmpResult::cmpLessThan)
4516       return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false};
4517     break;
4518   case CmpInst::FCMP_OGT:
4519   case CmpInst::FCMP_OGE:
4520   case CmpInst::FCMP_UGT:
4521   case CmpInst::FCMP_UGE:
4522     if (match(FalseVal,
4523               m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)),
4524                           m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
4525         FC1->compare(*FC2) == APFloat::cmpResult::cmpGreaterThan)
4526       return {SPF_FMINNUM, SPNB_RETURNS_ANY, false};
4527     break;
4528   default:
4529     break;
4530   }
4531 
4532   return {SPF_UNKNOWN, SPNB_NA, false};
4533 }
4534 
4535 /// Recognize variations of:
4536 ///   CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v)))
4537 static SelectPatternResult matchClamp(CmpInst::Predicate Pred,
4538                                       Value *CmpLHS, Value *CmpRHS,
4539                                       Value *TrueVal, Value *FalseVal) {
4540   // Swap the select operands and predicate to match the patterns below.
4541   if (CmpRHS != TrueVal) {
4542     Pred = ICmpInst::getSwappedPredicate(Pred);
4543     std::swap(TrueVal, FalseVal);
4544   }
4545   const APInt *C1;
4546   if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) {
4547     const APInt *C2;
4548     // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1)
4549     if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) &&
4550         C1->slt(*C2) && Pred == CmpInst::ICMP_SLT)
4551       return {SPF_SMAX, SPNB_NA, false};
4552 
4553     // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1)
4554     if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) &&
4555         C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT)
4556       return {SPF_SMIN, SPNB_NA, false};
4557 
4558     // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1)
4559     if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) &&
4560         C1->ult(*C2) && Pred == CmpInst::ICMP_ULT)
4561       return {SPF_UMAX, SPNB_NA, false};
4562 
4563     // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1)
4564     if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) &&
4565         C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT)
4566       return {SPF_UMIN, SPNB_NA, false};
4567   }
4568   return {SPF_UNKNOWN, SPNB_NA, false};
4569 }
4570 
4571 /// Recognize variations of:
4572 ///   a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c))
4573 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred,
4574                                                Value *CmpLHS, Value *CmpRHS,
4575                                                Value *TVal, Value *FVal,
4576                                                unsigned Depth) {
4577   // TODO: Allow FP min/max with nnan/nsz.
4578   assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison");
4579 
4580   Value *A = nullptr, *B = nullptr;
4581   SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1);
4582   if (!SelectPatternResult::isMinOrMax(L.Flavor))
4583     return {SPF_UNKNOWN, SPNB_NA, false};
4584 
4585   Value *C = nullptr, *D = nullptr;
4586   SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1);
4587   if (L.Flavor != R.Flavor)
4588     return {SPF_UNKNOWN, SPNB_NA, false};
4589 
4590   // We have something like: x Pred y ? min(a, b) : min(c, d).
4591   // Try to match the compare to the min/max operations of the select operands.
4592   // First, make sure we have the right compare predicate.
4593   switch (L.Flavor) {
4594   case SPF_SMIN:
4595     if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) {
4596       Pred = ICmpInst::getSwappedPredicate(Pred);
4597       std::swap(CmpLHS, CmpRHS);
4598     }
4599     if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
4600       break;
4601     return {SPF_UNKNOWN, SPNB_NA, false};
4602   case SPF_SMAX:
4603     if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) {
4604       Pred = ICmpInst::getSwappedPredicate(Pred);
4605       std::swap(CmpLHS, CmpRHS);
4606     }
4607     if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
4608       break;
4609     return {SPF_UNKNOWN, SPNB_NA, false};
4610   case SPF_UMIN:
4611     if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) {
4612       Pred = ICmpInst::getSwappedPredicate(Pred);
4613       std::swap(CmpLHS, CmpRHS);
4614     }
4615     if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE)
4616       break;
4617     return {SPF_UNKNOWN, SPNB_NA, false};
4618   case SPF_UMAX:
4619     if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
4620       Pred = ICmpInst::getSwappedPredicate(Pred);
4621       std::swap(CmpLHS, CmpRHS);
4622     }
4623     if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
4624       break;
4625     return {SPF_UNKNOWN, SPNB_NA, false};
4626   default:
4627     return {SPF_UNKNOWN, SPNB_NA, false};
4628   }
4629 
4630   // If there is a common operand in the already matched min/max and the other
4631   // min/max operands match the compare operands (either directly or inverted),
4632   // then this is min/max of the same flavor.
4633 
4634   // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b))
4635   // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b))
4636   if (D == B) {
4637     if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) &&
4638                                          match(A, m_Not(m_Specific(CmpRHS)))))
4639       return {L.Flavor, SPNB_NA, false};
4640   }
4641   // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d))
4642   // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d))
4643   if (C == B) {
4644     if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) &&
4645                                          match(A, m_Not(m_Specific(CmpRHS)))))
4646       return {L.Flavor, SPNB_NA, false};
4647   }
4648   // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a))
4649   // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a))
4650   if (D == A) {
4651     if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) &&
4652                                          match(B, m_Not(m_Specific(CmpRHS)))))
4653       return {L.Flavor, SPNB_NA, false};
4654   }
4655   // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d))
4656   // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d))
4657   if (C == A) {
4658     if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) &&
4659                                          match(B, m_Not(m_Specific(CmpRHS)))))
4660       return {L.Flavor, SPNB_NA, false};
4661   }
4662 
4663   return {SPF_UNKNOWN, SPNB_NA, false};
4664 }
4665 
4666 /// Match non-obvious integer minimum and maximum sequences.
4667 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred,
4668                                        Value *CmpLHS, Value *CmpRHS,
4669                                        Value *TrueVal, Value *FalseVal,
4670                                        Value *&LHS, Value *&RHS,
4671                                        unsigned Depth) {
4672   // Assume success. If there's no match, callers should not use these anyway.
4673   LHS = TrueVal;
4674   RHS = FalseVal;
4675 
4676   SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal);
4677   if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN)
4678     return SPR;
4679 
4680   SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth);
4681   if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN)
4682     return SPR;
4683 
4684   if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT)
4685     return {SPF_UNKNOWN, SPNB_NA, false};
4686 
4687   // Z = X -nsw Y
4688   // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0)
4689   // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0)
4690   if (match(TrueVal, m_Zero()) &&
4691       match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
4692     return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false};
4693 
4694   // Z = X -nsw Y
4695   // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0)
4696   // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0)
4697   if (match(FalseVal, m_Zero()) &&
4698       match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
4699     return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false};
4700 
4701   const APInt *C1;
4702   if (!match(CmpRHS, m_APInt(C1)))
4703     return {SPF_UNKNOWN, SPNB_NA, false};
4704 
4705   // An unsigned min/max can be written with a signed compare.
4706   const APInt *C2;
4707   if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) ||
4708       (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) {
4709     // Is the sign bit set?
4710     // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX
4711     // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN
4712     if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() &&
4713         C2->isMaxSignedValue())
4714       return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
4715 
4716     // Is the sign bit clear?
4717     // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX
4718     // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN
4719     if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() &&
4720         C2->isMinSignedValue())
4721       return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
4722   }
4723 
4724   // Look through 'not' ops to find disguised signed min/max.
4725   // (X >s C) ? ~X : ~C ==> (~X <s ~C) ? ~X : ~C ==> SMIN(~X, ~C)
4726   // (X <s C) ? ~X : ~C ==> (~X >s ~C) ? ~X : ~C ==> SMAX(~X, ~C)
4727   if (match(TrueVal, m_Not(m_Specific(CmpLHS))) &&
4728       match(FalseVal, m_APInt(C2)) && ~(*C1) == *C2)
4729     return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false};
4730 
4731   // (X >s C) ? ~C : ~X ==> (~X <s ~C) ? ~C : ~X ==> SMAX(~C, ~X)
4732   // (X <s C) ? ~C : ~X ==> (~X >s ~C) ? ~C : ~X ==> SMIN(~C, ~X)
4733   if (match(FalseVal, m_Not(m_Specific(CmpLHS))) &&
4734       match(TrueVal, m_APInt(C2)) && ~(*C1) == *C2)
4735     return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false};
4736 
4737   return {SPF_UNKNOWN, SPNB_NA, false};
4738 }
4739 
4740 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) {
4741   assert(X && Y && "Invalid operand");
4742 
4743   // X = sub (0, Y) || X = sub nsw (0, Y)
4744   if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) ||
4745       (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y)))))
4746     return true;
4747 
4748   // Y = sub (0, X) || Y = sub nsw (0, X)
4749   if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) ||
4750       (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X)))))
4751     return true;
4752 
4753   // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A)
4754   Value *A, *B;
4755   return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) &&
4756                         match(Y, m_Sub(m_Specific(B), m_Specific(A))))) ||
4757          (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) &&
4758                        match(Y, m_NSWSub(m_Specific(B), m_Specific(A)))));
4759 }
4760 
4761 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
4762                                               FastMathFlags FMF,
4763                                               Value *CmpLHS, Value *CmpRHS,
4764                                               Value *TrueVal, Value *FalseVal,
4765                                               Value *&LHS, Value *&RHS,
4766                                               unsigned Depth) {
4767   if (CmpInst::isFPPredicate(Pred)) {
4768     // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one
4769     // 0.0 operand, set the compare's 0.0 operands to that same value for the
4770     // purpose of identifying min/max. Disregard vector constants with undefined
4771     // elements because those can not be back-propagated for analysis.
4772     Value *OutputZeroVal = nullptr;
4773     if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) &&
4774         !cast<Constant>(TrueVal)->containsUndefElement())
4775       OutputZeroVal = TrueVal;
4776     else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) &&
4777              !cast<Constant>(FalseVal)->containsUndefElement())
4778       OutputZeroVal = FalseVal;
4779 
4780     if (OutputZeroVal) {
4781       if (match(CmpLHS, m_AnyZeroFP()))
4782         CmpLHS = OutputZeroVal;
4783       if (match(CmpRHS, m_AnyZeroFP()))
4784         CmpRHS = OutputZeroVal;
4785     }
4786   }
4787 
4788   LHS = CmpLHS;
4789   RHS = CmpRHS;
4790 
4791   // Signed zero may return inconsistent results between implementations.
4792   //  (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
4793   //  minNum(0.0, -0.0)          // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
4794   // Therefore, we behave conservatively and only proceed if at least one of the
4795   // operands is known to not be zero or if we don't care about signed zero.
4796   switch (Pred) {
4797   default: break;
4798   // FIXME: Include OGT/OLT/UGT/ULT.
4799   case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
4800   case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
4801     if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
4802         !isKnownNonZero(CmpRHS))
4803       return {SPF_UNKNOWN, SPNB_NA, false};
4804   }
4805 
4806   SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
4807   bool Ordered = false;
4808 
4809   // When given one NaN and one non-NaN input:
4810   //   - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
4811   //   - A simple C99 (a < b ? a : b) construction will return 'b' (as the
4812   //     ordered comparison fails), which could be NaN or non-NaN.
4813   // so here we discover exactly what NaN behavior is required/accepted.
4814   if (CmpInst::isFPPredicate(Pred)) {
4815     bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
4816     bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);
4817 
4818     if (LHSSafe && RHSSafe) {
4819       // Both operands are known non-NaN.
4820       NaNBehavior = SPNB_RETURNS_ANY;
4821     } else if (CmpInst::isOrdered(Pred)) {
4822       // An ordered comparison will return false when given a NaN, so it
4823       // returns the RHS.
4824       Ordered = true;
4825       if (LHSSafe)
4826         // LHS is non-NaN, so if RHS is NaN then NaN will be returned.
4827         NaNBehavior = SPNB_RETURNS_NAN;
4828       else if (RHSSafe)
4829         NaNBehavior = SPNB_RETURNS_OTHER;
4830       else
4831         // Completely unsafe.
4832         return {SPF_UNKNOWN, SPNB_NA, false};
4833     } else {
4834       Ordered = false;
4835       // An unordered comparison will return true when given a NaN, so it
4836       // returns the LHS.
4837       if (LHSSafe)
4838         // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
4839         NaNBehavior = SPNB_RETURNS_OTHER;
4840       else if (RHSSafe)
4841         NaNBehavior = SPNB_RETURNS_NAN;
4842       else
4843         // Completely unsafe.
4844         return {SPF_UNKNOWN, SPNB_NA, false};
4845     }
4846   }
4847 
4848   if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
4849     std::swap(CmpLHS, CmpRHS);
4850     Pred = CmpInst::getSwappedPredicate(Pred);
4851     if (NaNBehavior == SPNB_RETURNS_NAN)
4852       NaNBehavior = SPNB_RETURNS_OTHER;
4853     else if (NaNBehavior == SPNB_RETURNS_OTHER)
4854       NaNBehavior = SPNB_RETURNS_NAN;
4855     Ordered = !Ordered;
4856   }
4857 
4858   // ([if]cmp X, Y) ? X : Y
4859   if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
4860     switch (Pred) {
4861     default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
4862     case ICmpInst::ICMP_UGT:
4863     case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
4864     case ICmpInst::ICMP_SGT:
4865     case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
4866     case ICmpInst::ICMP_ULT:
4867     case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
4868     case ICmpInst::ICMP_SLT:
4869     case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
4870     case FCmpInst::FCMP_UGT:
4871     case FCmpInst::FCMP_UGE:
4872     case FCmpInst::FCMP_OGT:
4873     case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
4874     case FCmpInst::FCMP_ULT:
4875     case FCmpInst::FCMP_ULE:
4876     case FCmpInst::FCMP_OLT:
4877     case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
4878     }
4879   }
4880 
4881   if (isKnownNegation(TrueVal, FalseVal)) {
4882     // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can
4883     // match against either LHS or sext(LHS).
4884     auto MaybeSExtCmpLHS =
4885         m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS)));
4886     auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes());
4887     auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One());
4888     if (match(TrueVal, MaybeSExtCmpLHS)) {
4889       // Set the return values. If the compare uses the negated value (-X >s 0),
4890       // swap the return values because the negated value is always 'RHS'.
4891       LHS = TrueVal;
4892       RHS = FalseVal;
4893       if (match(CmpLHS, m_Neg(m_Specific(FalseVal))))
4894         std::swap(LHS, RHS);
4895 
4896       // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X)
4897       // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X)
4898       if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes))
4899         return {SPF_ABS, SPNB_NA, false};
4900 
4901       // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X)
4902       if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne))
4903         return {SPF_ABS, SPNB_NA, false};
4904 
4905       // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X)
4906       // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X)
4907       if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne))
4908         return {SPF_NABS, SPNB_NA, false};
4909     }
4910     else if (match(FalseVal, MaybeSExtCmpLHS)) {
4911       // Set the return values. If the compare uses the negated value (-X >s 0),
4912       // swap the return values because the negated value is always 'RHS'.
4913       LHS = FalseVal;
4914       RHS = TrueVal;
4915       if (match(CmpLHS, m_Neg(m_Specific(TrueVal))))
4916         std::swap(LHS, RHS);
4917 
4918       // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X)
4919       // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X)
4920       if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes))
4921         return {SPF_NABS, SPNB_NA, false};
4922 
4923       // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X)
4924       // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X)
4925       if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne))
4926         return {SPF_ABS, SPNB_NA, false};
4927     }
4928   }
4929 
4930   if (CmpInst::isIntPredicate(Pred))
4931     return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth);
4932 
4933   // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar
4934   // may return either -0.0 or 0.0, so fcmp/select pair has stricter
4935   // semantics than minNum. Be conservative in such case.
4936   if (NaNBehavior != SPNB_RETURNS_ANY ||
4937       (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
4938        !isKnownNonZero(CmpRHS)))
4939     return {SPF_UNKNOWN, SPNB_NA, false};
4940 
4941   return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS);
4942 }
4943 
4944 /// Helps to match a select pattern in case of a type mismatch.
4945 ///
4946 /// The function processes the case when type of true and false values of a
4947 /// select instruction differs from type of the cmp instruction operands because
4948 /// of a cast instruction. The function checks if it is legal to move the cast
4949 /// operation after "select". If yes, it returns the new second value of
4950 /// "select" (with the assumption that cast is moved):
4951 /// 1. As operand of cast instruction when both values of "select" are same cast
4952 /// instructions.
4953 /// 2. As restored constant (by applying reverse cast operation) when the first
4954 /// value of the "select" is a cast operation and the second value is a
4955 /// constant.
4956 /// NOTE: We return only the new second value because the first value could be
4957 /// accessed as operand of cast instruction.
4958 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
4959                               Instruction::CastOps *CastOp) {
4960   auto *Cast1 = dyn_cast<CastInst>(V1);
4961   if (!Cast1)
4962     return nullptr;
4963 
4964   *CastOp = Cast1->getOpcode();
4965   Type *SrcTy = Cast1->getSrcTy();
4966   if (auto *Cast2 = dyn_cast<CastInst>(V2)) {
4967     // If V1 and V2 are both the same cast from the same type, look through V1.
4968     if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy())
4969       return Cast2->getOperand(0);
4970     return nullptr;
4971   }
4972 
4973   auto *C = dyn_cast<Constant>(V2);
4974   if (!C)
4975     return nullptr;
4976 
4977   Constant *CastedTo = nullptr;
4978   switch (*CastOp) {
4979   case Instruction::ZExt:
4980     if (CmpI->isUnsigned())
4981       CastedTo = ConstantExpr::getTrunc(C, SrcTy);
4982     break;
4983   case Instruction::SExt:
4984     if (CmpI->isSigned())
4985       CastedTo = ConstantExpr::getTrunc(C, SrcTy, true);
4986     break;
4987   case Instruction::Trunc:
4988     Constant *CmpConst;
4989     if (match(CmpI->getOperand(1), m_Constant(CmpConst)) &&
4990         CmpConst->getType() == SrcTy) {
4991       // Here we have the following case:
4992       //
4993       //   %cond = cmp iN %x, CmpConst
4994       //   %tr = trunc iN %x to iK
4995       //   %narrowsel = select i1 %cond, iK %t, iK C
4996       //
4997       // We can always move trunc after select operation:
4998       //
4999       //   %cond = cmp iN %x, CmpConst
5000       //   %widesel = select i1 %cond, iN %x, iN CmpConst
5001       //   %tr = trunc iN %widesel to iK
5002       //
5003       // Note that C could be extended in any way because we don't care about
5004       // upper bits after truncation. It can't be abs pattern, because it would
5005       // look like:
5006       //
5007       //   select i1 %cond, x, -x.
5008       //
5009       // So only min/max pattern could be matched. Such match requires widened C
5010       // == CmpConst. That is why set widened C = CmpConst, condition trunc
5011       // CmpConst == C is checked below.
5012       CastedTo = CmpConst;
5013     } else {
5014       CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned());
5015     }
5016     break;
5017   case Instruction::FPTrunc:
5018     CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true);
5019     break;
5020   case Instruction::FPExt:
5021     CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true);
5022     break;
5023   case Instruction::FPToUI:
5024     CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true);
5025     break;
5026   case Instruction::FPToSI:
5027     CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true);
5028     break;
5029   case Instruction::UIToFP:
5030     CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true);
5031     break;
5032   case Instruction::SIToFP:
5033     CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true);
5034     break;
5035   default:
5036     break;
5037   }
5038 
5039   if (!CastedTo)
5040     return nullptr;
5041 
5042   // Make sure the cast doesn't lose any information.
5043   Constant *CastedBack =
5044       ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true);
5045   if (CastedBack != C)
5046     return nullptr;
5047 
5048   return CastedTo;
5049 }
5050 
5051 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS,
5052                                              Instruction::CastOps *CastOp,
5053                                              unsigned Depth) {
5054   if (Depth >= MaxDepth)
5055     return {SPF_UNKNOWN, SPNB_NA, false};
5056 
5057   SelectInst *SI = dyn_cast<SelectInst>(V);
5058   if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
5059 
5060   CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
5061   if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};
5062 
5063   Value *TrueVal = SI->getTrueValue();
5064   Value *FalseVal = SI->getFalseValue();
5065 
5066   return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS,
5067                                             CastOp, Depth);
5068 }
5069 
5070 SelectPatternResult llvm::matchDecomposedSelectPattern(
5071     CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS,
5072     Instruction::CastOps *CastOp, unsigned Depth) {
5073   CmpInst::Predicate Pred = CmpI->getPredicate();
5074   Value *CmpLHS = CmpI->getOperand(0);
5075   Value *CmpRHS = CmpI->getOperand(1);
5076   FastMathFlags FMF;
5077   if (isa<FPMathOperator>(CmpI))
5078     FMF = CmpI->getFastMathFlags();
5079 
5080   // Bail out early.
5081   if (CmpI->isEquality())
5082     return {SPF_UNKNOWN, SPNB_NA, false};
5083 
5084   // Deal with type mismatches.
5085   if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
5086     if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) {
5087       // If this is a potential fmin/fmax with a cast to integer, then ignore
5088       // -0.0 because there is no corresponding integer value.
5089       if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
5090         FMF.setNoSignedZeros();
5091       return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
5092                                   cast<CastInst>(TrueVal)->getOperand(0), C,
5093                                   LHS, RHS, Depth);
5094     }
5095     if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) {
5096       // If this is a potential fmin/fmax with a cast to integer, then ignore
5097       // -0.0 because there is no corresponding integer value.
5098       if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
5099         FMF.setNoSignedZeros();
5100       return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
5101                                   C, cast<CastInst>(FalseVal)->getOperand(0),
5102                                   LHS, RHS, Depth);
5103     }
5104   }
5105   return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
5106                               LHS, RHS, Depth);
5107 }
5108 
5109 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) {
5110   if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT;
5111   if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT;
5112   if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT;
5113   if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT;
5114   if (SPF == SPF_FMINNUM)
5115     return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT;
5116   if (SPF == SPF_FMAXNUM)
5117     return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT;
5118   llvm_unreachable("unhandled!");
5119 }
5120 
5121 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) {
5122   if (SPF == SPF_SMIN) return SPF_SMAX;
5123   if (SPF == SPF_UMIN) return SPF_UMAX;
5124   if (SPF == SPF_SMAX) return SPF_SMIN;
5125   if (SPF == SPF_UMAX) return SPF_UMIN;
5126   llvm_unreachable("unhandled!");
5127 }
5128 
5129 CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) {
5130   return getMinMaxPred(getInverseMinMaxFlavor(SPF));
5131 }
5132 
5133 /// Return true if "icmp Pred LHS RHS" is always true.
5134 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS,
5135                             const Value *RHS, const DataLayout &DL,
5136                             unsigned Depth) {
5137   assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!");
5138   if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS)
5139     return true;
5140 
5141   switch (Pred) {
5142   default:
5143     return false;
5144 
5145   case CmpInst::ICMP_SLE: {
5146     const APInt *C;
5147 
5148     // LHS s<= LHS +_{nsw} C   if C >= 0
5149     if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C))))
5150       return !C->isNegative();
5151     return false;
5152   }
5153 
5154   case CmpInst::ICMP_ULE: {
5155     const APInt *C;
5156 
5157     // LHS u<= LHS +_{nuw} C   for any C
5158     if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C))))
5159       return true;
5160 
5161     // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB)
5162     auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B,
5163                                        const Value *&X,
5164                                        const APInt *&CA, const APInt *&CB) {
5165       if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) &&
5166           match(B, m_NUWAdd(m_Specific(X), m_APInt(CB))))
5167         return true;
5168 
5169       // If X & C == 0 then (X | C) == X +_{nuw} C
5170       if (match(A, m_Or(m_Value(X), m_APInt(CA))) &&
5171           match(B, m_Or(m_Specific(X), m_APInt(CB)))) {
5172         KnownBits Known(CA->getBitWidth());
5173         computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr,
5174                          /*CxtI*/ nullptr, /*DT*/ nullptr);
5175         if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero))
5176           return true;
5177       }
5178 
5179       return false;
5180     };
5181 
5182     const Value *X;
5183     const APInt *CLHS, *CRHS;
5184     if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS))
5185       return CLHS->ule(*CRHS);
5186 
5187     return false;
5188   }
5189   }
5190 }
5191 
5192 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred
5193 /// ALHS ARHS" is true.  Otherwise, return None.
5194 static Optional<bool>
5195 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS,
5196                       const Value *ARHS, const Value *BLHS, const Value *BRHS,
5197                       const DataLayout &DL, unsigned Depth) {
5198   switch (Pred) {
5199   default:
5200     return None;
5201 
5202   case CmpInst::ICMP_SLT:
5203   case CmpInst::ICMP_SLE:
5204     if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) &&
5205         isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth))
5206       return true;
5207     return None;
5208 
5209   case CmpInst::ICMP_ULT:
5210   case CmpInst::ICMP_ULE:
5211     if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) &&
5212         isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth))
5213       return true;
5214     return None;
5215   }
5216 }
5217 
5218 /// Return true if the operands of the two compares match.  IsSwappedOps is true
5219 /// when the operands match, but are swapped.
5220 static bool isMatchingOps(const Value *ALHS, const Value *ARHS,
5221                           const Value *BLHS, const Value *BRHS,
5222                           bool &IsSwappedOps) {
5223 
5224   bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS);
5225   IsSwappedOps = (ALHS == BRHS && ARHS == BLHS);
5226   return IsMatchingOps || IsSwappedOps;
5227 }
5228 
5229 /// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true.
5230 /// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false.
5231 /// Otherwise, return None if we can't infer anything.
5232 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred,
5233                                                     CmpInst::Predicate BPred,
5234                                                     bool AreSwappedOps) {
5235   // Canonicalize the predicate as if the operands were not commuted.
5236   if (AreSwappedOps)
5237     BPred = ICmpInst::getSwappedPredicate(BPred);
5238 
5239   if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred))
5240     return true;
5241   if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred))
5242     return false;
5243 
5244   return None;
5245 }
5246 
5247 /// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true.
5248 /// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false.
5249 /// Otherwise, return None if we can't infer anything.
5250 static Optional<bool>
5251 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred,
5252                                  const ConstantInt *C1,
5253                                  CmpInst::Predicate BPred,
5254                                  const ConstantInt *C2) {
5255   ConstantRange DomCR =
5256       ConstantRange::makeExactICmpRegion(APred, C1->getValue());
5257   ConstantRange CR =
5258       ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue());
5259   ConstantRange Intersection = DomCR.intersectWith(CR);
5260   ConstantRange Difference = DomCR.difference(CR);
5261   if (Intersection.isEmptySet())
5262     return false;
5263   if (Difference.isEmptySet())
5264     return true;
5265   return None;
5266 }
5267 
5268 /// Return true if LHS implies RHS is true.  Return false if LHS implies RHS is
5269 /// false.  Otherwise, return None if we can't infer anything.
5270 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS,
5271                                          const ICmpInst *RHS,
5272                                          const DataLayout &DL, bool LHSIsTrue,
5273                                          unsigned Depth) {
5274   Value *ALHS = LHS->getOperand(0);
5275   Value *ARHS = LHS->getOperand(1);
5276   // The rest of the logic assumes the LHS condition is true.  If that's not the
5277   // case, invert the predicate to make it so.
5278   ICmpInst::Predicate APred =
5279       LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate();
5280 
5281   Value *BLHS = RHS->getOperand(0);
5282   Value *BRHS = RHS->getOperand(1);
5283   ICmpInst::Predicate BPred = RHS->getPredicate();
5284 
5285   // Can we infer anything when the two compares have matching operands?
5286   bool AreSwappedOps;
5287   if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) {
5288     if (Optional<bool> Implication = isImpliedCondMatchingOperands(
5289             APred, BPred, AreSwappedOps))
5290       return Implication;
5291     // No amount of additional analysis will infer the second condition, so
5292     // early exit.
5293     return None;
5294   }
5295 
5296   // Can we infer anything when the LHS operands match and the RHS operands are
5297   // constants (not necessarily matching)?
5298   if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) {
5299     if (Optional<bool> Implication = isImpliedCondMatchingImmOperands(
5300             APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS)))
5301       return Implication;
5302     // No amount of additional analysis will infer the second condition, so
5303     // early exit.
5304     return None;
5305   }
5306 
5307   if (APred == BPred)
5308     return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth);
5309   return None;
5310 }
5311 
5312 /// Return true if LHS implies RHS is true.  Return false if LHS implies RHS is
5313 /// false.  Otherwise, return None if we can't infer anything.  We expect the
5314 /// RHS to be an icmp and the LHS to be an 'and' or an 'or' instruction.
5315 static Optional<bool> isImpliedCondAndOr(const BinaryOperator *LHS,
5316                                          const ICmpInst *RHS,
5317                                          const DataLayout &DL, bool LHSIsTrue,
5318                                          unsigned Depth) {
5319   // The LHS must be an 'or' or an 'and' instruction.
5320   assert((LHS->getOpcode() == Instruction::And ||
5321           LHS->getOpcode() == Instruction::Or) &&
5322          "Expected LHS to be 'and' or 'or'.");
5323 
5324   assert(Depth <= MaxDepth && "Hit recursion limit");
5325 
5326   // If the result of an 'or' is false, then we know both legs of the 'or' are
5327   // false.  Similarly, if the result of an 'and' is true, then we know both
5328   // legs of the 'and' are true.
5329   Value *ALHS, *ARHS;
5330   if ((!LHSIsTrue && match(LHS, m_Or(m_Value(ALHS), m_Value(ARHS)))) ||
5331       (LHSIsTrue && match(LHS, m_And(m_Value(ALHS), m_Value(ARHS))))) {
5332     // FIXME: Make this non-recursion.
5333     if (Optional<bool> Implication =
5334             isImpliedCondition(ALHS, RHS, DL, LHSIsTrue, Depth + 1))
5335       return Implication;
5336     if (Optional<bool> Implication =
5337             isImpliedCondition(ARHS, RHS, DL, LHSIsTrue, Depth + 1))
5338       return Implication;
5339     return None;
5340   }
5341   return None;
5342 }
5343 
5344 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS,
5345                                         const DataLayout &DL, bool LHSIsTrue,
5346                                         unsigned Depth) {
5347   // Bail out when we hit the limit.
5348   if (Depth == MaxDepth)
5349     return None;
5350 
5351   // A mismatch occurs when we compare a scalar cmp to a vector cmp, for
5352   // example.
5353   if (LHS->getType() != RHS->getType())
5354     return None;
5355 
5356   Type *OpTy = LHS->getType();
5357   assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!");
5358 
5359   // LHS ==> RHS by definition
5360   if (LHS == RHS)
5361     return LHSIsTrue;
5362 
5363   // FIXME: Extending the code below to handle vectors.
5364   if (OpTy->isVectorTy())
5365     return None;
5366 
5367   assert(OpTy->isIntegerTy(1) && "implied by above");
5368 
5369   // Both LHS and RHS are icmps.
5370   const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS);
5371   const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS);
5372   if (LHSCmp && RHSCmp)
5373     return isImpliedCondICmps(LHSCmp, RHSCmp, DL, LHSIsTrue, Depth);
5374 
5375   // The LHS should be an 'or' or an 'and' instruction.  We expect the RHS to be
5376   // an icmp. FIXME: Add support for and/or on the RHS.
5377   const BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHS);
5378   if (LHSBO && RHSCmp) {
5379     if ((LHSBO->getOpcode() == Instruction::And ||
5380          LHSBO->getOpcode() == Instruction::Or))
5381       return isImpliedCondAndOr(LHSBO, RHSCmp, DL, LHSIsTrue, Depth);
5382   }
5383   return None;
5384 }
5385 
5386 Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond,
5387                                              const Instruction *ContextI,
5388                                              const DataLayout &DL) {
5389   assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool");
5390   if (!ContextI || !ContextI->getParent())
5391     return None;
5392 
5393   // TODO: This is a poor/cheap way to determine dominance. Should we use a
5394   // dominator tree (eg, from a SimplifyQuery) instead?
5395   const BasicBlock *ContextBB = ContextI->getParent();
5396   const BasicBlock *PredBB = ContextBB->getSinglePredecessor();
5397   if (!PredBB)
5398     return None;
5399 
5400   // We need a conditional branch in the predecessor.
5401   Value *PredCond;
5402   BasicBlock *TrueBB, *FalseBB;
5403   if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB)))
5404     return None;
5405 
5406   // The branch should get simplified. Don't bother simplifying this condition.
5407   if (TrueBB == FalseBB)
5408     return None;
5409 
5410   assert((TrueBB == ContextBB || FalseBB == ContextBB) &&
5411          "Predecessor block does not point to successor?");
5412 
5413   // Is this condition implied by the predecessor condition?
5414   bool CondIsTrue = TrueBB == ContextBB;
5415   return isImpliedCondition(PredCond, Cond, DL, CondIsTrue);
5416 }
5417 
5418 static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower,
5419                               APInt &Upper, const InstrInfoQuery &IIQ) {
5420   unsigned Width = Lower.getBitWidth();
5421   const APInt *C;
5422   switch (BO.getOpcode()) {
5423   case Instruction::Add:
5424     if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) {
5425       // FIXME: If we have both nuw and nsw, we should reduce the range further.
5426       if (IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(&BO))) {
5427         // 'add nuw x, C' produces [C, UINT_MAX].
5428         Lower = *C;
5429       } else if (IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(&BO))) {
5430         if (C->isNegative()) {
5431           // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C].
5432           Lower = APInt::getSignedMinValue(Width);
5433           Upper = APInt::getSignedMaxValue(Width) + *C + 1;
5434         } else {
5435           // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX].
5436           Lower = APInt::getSignedMinValue(Width) + *C;
5437           Upper = APInt::getSignedMaxValue(Width) + 1;
5438         }
5439       }
5440     }
5441     break;
5442 
5443   case Instruction::And:
5444     if (match(BO.getOperand(1), m_APInt(C)))
5445       // 'and x, C' produces [0, C].
5446       Upper = *C + 1;
5447     break;
5448 
5449   case Instruction::Or:
5450     if (match(BO.getOperand(1), m_APInt(C)))
5451       // 'or x, C' produces [C, UINT_MAX].
5452       Lower = *C;
5453     break;
5454 
5455   case Instruction::AShr:
5456     if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
5457       // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C].
5458       Lower = APInt::getSignedMinValue(Width).ashr(*C);
5459       Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1;
5460     } else if (match(BO.getOperand(0), m_APInt(C))) {
5461       unsigned ShiftAmount = Width - 1;
5462       if (!C->isNullValue() && IIQ.isExact(&BO))
5463         ShiftAmount = C->countTrailingZeros();
5464       if (C->isNegative()) {
5465         // 'ashr C, x' produces [C, C >> (Width-1)]
5466         Lower = *C;
5467         Upper = C->ashr(ShiftAmount) + 1;
5468       } else {
5469         // 'ashr C, x' produces [C >> (Width-1), C]
5470         Lower = C->ashr(ShiftAmount);
5471         Upper = *C + 1;
5472       }
5473     }
5474     break;
5475 
5476   case Instruction::LShr:
5477     if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
5478       // 'lshr x, C' produces [0, UINT_MAX >> C].
5479       Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1;
5480     } else if (match(BO.getOperand(0), m_APInt(C))) {
5481       // 'lshr C, x' produces [C >> (Width-1), C].
5482       unsigned ShiftAmount = Width - 1;
5483       if (!C->isNullValue() && IIQ.isExact(&BO))
5484         ShiftAmount = C->countTrailingZeros();
5485       Lower = C->lshr(ShiftAmount);
5486       Upper = *C + 1;
5487     }
5488     break;
5489 
5490   case Instruction::Shl:
5491     if (match(BO.getOperand(0), m_APInt(C))) {
5492       if (IIQ.hasNoUnsignedWrap(&BO)) {
5493         // 'shl nuw C, x' produces [C, C << CLZ(C)]
5494         Lower = *C;
5495         Upper = Lower.shl(Lower.countLeadingZeros()) + 1;
5496       } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw?
5497         if (C->isNegative()) {
5498           // 'shl nsw C, x' produces [C << CLO(C)-1, C]
5499           unsigned ShiftAmount = C->countLeadingOnes() - 1;
5500           Lower = C->shl(ShiftAmount);
5501           Upper = *C + 1;
5502         } else {
5503           // 'shl nsw C, x' produces [C, C << CLZ(C)-1]
5504           unsigned ShiftAmount = C->countLeadingZeros() - 1;
5505           Lower = *C;
5506           Upper = C->shl(ShiftAmount) + 1;
5507         }
5508       }
5509     }
5510     break;
5511 
5512   case Instruction::SDiv:
5513     if (match(BO.getOperand(1), m_APInt(C))) {
5514       APInt IntMin = APInt::getSignedMinValue(Width);
5515       APInt IntMax = APInt::getSignedMaxValue(Width);
5516       if (C->isAllOnesValue()) {
5517         // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX]
5518         //    where C != -1 and C != 0 and C != 1
5519         Lower = IntMin + 1;
5520         Upper = IntMax + 1;
5521       } else if (C->countLeadingZeros() < Width - 1) {
5522         // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C]
5523         //    where C != -1 and C != 0 and C != 1
5524         Lower = IntMin.sdiv(*C);
5525         Upper = IntMax.sdiv(*C);
5526         if (Lower.sgt(Upper))
5527           std::swap(Lower, Upper);
5528         Upper = Upper + 1;
5529         assert(Upper != Lower && "Upper part of range has wrapped!");
5530       }
5531     } else if (match(BO.getOperand(0), m_APInt(C))) {
5532       if (C->isMinSignedValue()) {
5533         // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2].
5534         Lower = *C;
5535         Upper = Lower.lshr(1) + 1;
5536       } else {
5537         // 'sdiv C, x' produces [-|C|, |C|].
5538         Upper = C->abs() + 1;
5539         Lower = (-Upper) + 1;
5540       }
5541     }
5542     break;
5543 
5544   case Instruction::UDiv:
5545     if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) {
5546       // 'udiv x, C' produces [0, UINT_MAX / C].
5547       Upper = APInt::getMaxValue(Width).udiv(*C) + 1;
5548     } else if (match(BO.getOperand(0), m_APInt(C))) {
5549       // 'udiv C, x' produces [0, C].
5550       Upper = *C + 1;
5551     }
5552     break;
5553 
5554   case Instruction::SRem:
5555     if (match(BO.getOperand(1), m_APInt(C))) {
5556       // 'srem x, C' produces (-|C|, |C|).
5557       Upper = C->abs();
5558       Lower = (-Upper) + 1;
5559     }
5560     break;
5561 
5562   case Instruction::URem:
5563     if (match(BO.getOperand(1), m_APInt(C)))
5564       // 'urem x, C' produces [0, C).
5565       Upper = *C;
5566     break;
5567 
5568   default:
5569     break;
5570   }
5571 }
5572 
5573 static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower,
5574                                   APInt &Upper) {
5575   unsigned Width = Lower.getBitWidth();
5576   const APInt *C;
5577   switch (II.getIntrinsicID()) {
5578   case Intrinsic::uadd_sat:
5579     // uadd.sat(x, C) produces [C, UINT_MAX].
5580     if (match(II.getOperand(0), m_APInt(C)) ||
5581         match(II.getOperand(1), m_APInt(C)))
5582       Lower = *C;
5583     break;
5584   case Intrinsic::sadd_sat:
5585     if (match(II.getOperand(0), m_APInt(C)) ||
5586         match(II.getOperand(1), m_APInt(C))) {
5587       if (C->isNegative()) {
5588         // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)].
5589         Lower = APInt::getSignedMinValue(Width);
5590         Upper = APInt::getSignedMaxValue(Width) + *C + 1;
5591       } else {
5592         // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX].
5593         Lower = APInt::getSignedMinValue(Width) + *C;
5594         Upper = APInt::getSignedMaxValue(Width) + 1;
5595       }
5596     }
5597     break;
5598   case Intrinsic::usub_sat:
5599     // usub.sat(C, x) produces [0, C].
5600     if (match(II.getOperand(0), m_APInt(C)))
5601       Upper = *C + 1;
5602     // usub.sat(x, C) produces [0, UINT_MAX - C].
5603     else if (match(II.getOperand(1), m_APInt(C)))
5604       Upper = APInt::getMaxValue(Width) - *C + 1;
5605     break;
5606   case Intrinsic::ssub_sat:
5607     if (match(II.getOperand(0), m_APInt(C))) {
5608       if (C->isNegative()) {
5609         // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)].
5610         Lower = APInt::getSignedMinValue(Width);
5611         Upper = *C - APInt::getSignedMinValue(Width) + 1;
5612       } else {
5613         // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX].
5614         Lower = *C - APInt::getSignedMaxValue(Width);
5615         Upper = APInt::getSignedMaxValue(Width) + 1;
5616       }
5617     } else if (match(II.getOperand(1), m_APInt(C))) {
5618       if (C->isNegative()) {
5619         // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]:
5620         Lower = APInt::getSignedMinValue(Width) - *C;
5621         Upper = APInt::getSignedMaxValue(Width) + 1;
5622       } else {
5623         // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C].
5624         Lower = APInt::getSignedMinValue(Width);
5625         Upper = APInt::getSignedMaxValue(Width) - *C + 1;
5626       }
5627     }
5628     break;
5629   default:
5630     break;
5631   }
5632 }
5633 
5634 static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower,
5635                                       APInt &Upper, const InstrInfoQuery &IIQ) {
5636   const Value *LHS = nullptr, *RHS = nullptr;
5637   SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS);
5638   if (R.Flavor == SPF_UNKNOWN)
5639     return;
5640 
5641   unsigned BitWidth = SI.getType()->getScalarSizeInBits();
5642 
5643   if (R.Flavor == SelectPatternFlavor::SPF_ABS) {
5644     // If the negation part of the abs (in RHS) has the NSW flag,
5645     // then the result of abs(X) is [0..SIGNED_MAX],
5646     // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN.
5647     Lower = APInt::getNullValue(BitWidth);
5648     if (match(RHS, m_Neg(m_Specific(LHS))) &&
5649         IIQ.hasNoSignedWrap(cast<Instruction>(RHS)))
5650       Upper = APInt::getSignedMaxValue(BitWidth) + 1;
5651     else
5652       Upper = APInt::getSignedMinValue(BitWidth) + 1;
5653     return;
5654   }
5655 
5656   if (R.Flavor == SelectPatternFlavor::SPF_NABS) {
5657     // The result of -abs(X) is <= 0.
5658     Lower = APInt::getSignedMinValue(BitWidth);
5659     Upper = APInt(BitWidth, 1);
5660     return;
5661   }
5662 
5663   const APInt *C;
5664   if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C)))
5665     return;
5666 
5667   switch (R.Flavor) {
5668     case SPF_UMIN:
5669       Upper = *C + 1;
5670       break;
5671     case SPF_UMAX:
5672       Lower = *C;
5673       break;
5674     case SPF_SMIN:
5675       Lower = APInt::getSignedMinValue(BitWidth);
5676       Upper = *C + 1;
5677       break;
5678     case SPF_SMAX:
5679       Lower = *C;
5680       Upper = APInt::getSignedMaxValue(BitWidth) + 1;
5681       break;
5682     default:
5683       break;
5684   }
5685 }
5686 
5687 ConstantRange llvm::computeConstantRange(const Value *V, bool UseInstrInfo) {
5688   assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction");
5689 
5690   const APInt *C;
5691   if (match(V, m_APInt(C)))
5692     return ConstantRange(*C);
5693 
5694   InstrInfoQuery IIQ(UseInstrInfo);
5695   unsigned BitWidth = V->getType()->getScalarSizeInBits();
5696   APInt Lower = APInt(BitWidth, 0);
5697   APInt Upper = APInt(BitWidth, 0);
5698   if (auto *BO = dyn_cast<BinaryOperator>(V))
5699     setLimitsForBinOp(*BO, Lower, Upper, IIQ);
5700   else if (auto *II = dyn_cast<IntrinsicInst>(V))
5701     setLimitsForIntrinsic(*II, Lower, Upper);
5702   else if (auto *SI = dyn_cast<SelectInst>(V))
5703     setLimitsForSelectPattern(*SI, Lower, Upper, IIQ);
5704 
5705   ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper);
5706 
5707   if (auto *I = dyn_cast<Instruction>(V))
5708     if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range))
5709       CR = CR.intersectWith(getConstantRangeFromMetadata(*Range));
5710 
5711   return CR;
5712 }
5713 
5714 static Optional<int64_t>
5715 getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) {
5716   // Skip over the first indices.
5717   gep_type_iterator GTI = gep_type_begin(GEP);
5718   for (unsigned i = 1; i != Idx; ++i, ++GTI)
5719     /*skip along*/;
5720 
5721   // Compute the offset implied by the rest of the indices.
5722   int64_t Offset = 0;
5723   for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) {
5724     ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i));
5725     if (!OpC)
5726       return None;
5727     if (OpC->isZero())
5728       continue; // No offset.
5729 
5730     // Handle struct indices, which add their field offset to the pointer.
5731     if (StructType *STy = GTI.getStructTypeOrNull()) {
5732       Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
5733       continue;
5734     }
5735 
5736     // Otherwise, we have a sequential type like an array or vector.  Multiply
5737     // the index by the ElementSize.
5738     uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
5739     Offset += Size * OpC->getSExtValue();
5740   }
5741 
5742   return Offset;
5743 }
5744 
5745 Optional<int64_t> llvm::isPointerOffset(const Value *Ptr1, const Value *Ptr2,
5746                                         const DataLayout &DL) {
5747   Ptr1 = Ptr1->stripPointerCasts();
5748   Ptr2 = Ptr2->stripPointerCasts();
5749 
5750   // Handle the trivial case first.
5751   if (Ptr1 == Ptr2) {
5752     return 0;
5753   }
5754 
5755   const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1);
5756   const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2);
5757 
5758   // If one pointer is a GEP see if the GEP is a constant offset from the base,
5759   // as in "P" and "gep P, 1".
5760   // Also do this iteratively to handle the the following case:
5761   //   Ptr_t1 = GEP Ptr1, c1
5762   //   Ptr_t2 = GEP Ptr_t1, c2
5763   //   Ptr2 = GEP Ptr_t2, c3
5764   // where we will return c1+c2+c3.
5765   // TODO: Handle the case when both Ptr1 and Ptr2 are GEPs of some common base
5766   // -- replace getOffsetFromBase with getOffsetAndBase, check that the bases
5767   // are the same, and return the difference between offsets.
5768   auto getOffsetFromBase = [&DL](const GEPOperator *GEP,
5769                                  const Value *Ptr) -> Optional<int64_t> {
5770     const GEPOperator *GEP_T = GEP;
5771     int64_t OffsetVal = 0;
5772     bool HasSameBase = false;
5773     while (GEP_T) {
5774       auto Offset = getOffsetFromIndex(GEP_T, 1, DL);
5775       if (!Offset)
5776         return None;
5777       OffsetVal += *Offset;
5778       auto Op0 = GEP_T->getOperand(0)->stripPointerCasts();
5779       if (Op0 == Ptr) {
5780         HasSameBase = true;
5781         break;
5782       }
5783       GEP_T = dyn_cast<GEPOperator>(Op0);
5784     }
5785     if (!HasSameBase)
5786       return None;
5787     return OffsetVal;
5788   };
5789 
5790   if (GEP1) {
5791     auto Offset = getOffsetFromBase(GEP1, Ptr2);
5792     if (Offset)
5793       return -*Offset;
5794   }
5795   if (GEP2) {
5796     auto Offset = getOffsetFromBase(GEP2, Ptr1);
5797     if (Offset)
5798       return Offset;
5799   }
5800 
5801   // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical
5802   // base.  After that base, they may have some number of common (and
5803   // potentially variable) indices.  After that they handle some constant
5804   // offset, which determines their offset from each other.  At this point, we
5805   // handle no other case.
5806   if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0))
5807     return None;
5808 
5809   // Skip any common indices and track the GEP types.
5810   unsigned Idx = 1;
5811   for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx)
5812     if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx))
5813       break;
5814 
5815   auto Offset1 = getOffsetFromIndex(GEP1, Idx, DL);
5816   auto Offset2 = getOffsetFromIndex(GEP2, Idx, DL);
5817   if (!Offset1 || !Offset2)
5818     return None;
5819   return *Offset2 - *Offset1;
5820 }
5821