1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains routines that help analyze properties that chains of 10 // computations have. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/ValueTracking.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/AssumptionCache.h" 28 #include "llvm/Analysis/GuardUtils.h" 29 #include "llvm/Analysis/InstructionSimplify.h" 30 #include "llvm/Analysis/Loads.h" 31 #include "llvm/Analysis/LoopInfo.h" 32 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 33 #include "llvm/Analysis/TargetLibraryInfo.h" 34 #include "llvm/IR/Argument.h" 35 #include "llvm/IR/Attributes.h" 36 #include "llvm/IR/BasicBlock.h" 37 #include "llvm/IR/CallSite.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/ConstantRange.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/DiagnosticInfo.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GetElementPtrTypeIterator.h" 46 #include "llvm/IR/GlobalAlias.h" 47 #include "llvm/IR/GlobalValue.h" 48 #include "llvm/IR/GlobalVariable.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/IntrinsicInst.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/LLVMContext.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/Operator.h" 58 #include "llvm/IR/PatternMatch.h" 59 #include "llvm/IR/Type.h" 60 #include "llvm/IR/User.h" 61 #include "llvm/IR/Value.h" 62 #include "llvm/Support/Casting.h" 63 #include "llvm/Support/CommandLine.h" 64 #include "llvm/Support/Compiler.h" 65 #include "llvm/Support/ErrorHandling.h" 66 #include "llvm/Support/KnownBits.h" 67 #include "llvm/Support/MathExtras.h" 68 #include <algorithm> 69 #include <array> 70 #include <cassert> 71 #include <cstdint> 72 #include <iterator> 73 #include <utility> 74 75 using namespace llvm; 76 using namespace llvm::PatternMatch; 77 78 const unsigned MaxDepth = 6; 79 80 // Controls the number of uses of the value searched for possible 81 // dominating comparisons. 82 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 83 cl::Hidden, cl::init(20)); 84 85 /// Returns the bitwidth of the given scalar or pointer type. For vector types, 86 /// returns the element type's bitwidth. 87 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 88 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 89 return BitWidth; 90 91 return DL.getIndexTypeSizeInBits(Ty); 92 } 93 94 namespace { 95 96 // Simplifying using an assume can only be done in a particular control-flow 97 // context (the context instruction provides that context). If an assume and 98 // the context instruction are not in the same block then the DT helps in 99 // figuring out if we can use it. 100 struct Query { 101 const DataLayout &DL; 102 AssumptionCache *AC; 103 const Instruction *CxtI; 104 const DominatorTree *DT; 105 106 // Unlike the other analyses, this may be a nullptr because not all clients 107 // provide it currently. 108 OptimizationRemarkEmitter *ORE; 109 110 /// Set of assumptions that should be excluded from further queries. 111 /// This is because of the potential for mutual recursion to cause 112 /// computeKnownBits to repeatedly visit the same assume intrinsic. The 113 /// classic case of this is assume(x = y), which will attempt to determine 114 /// bits in x from bits in y, which will attempt to determine bits in y from 115 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call 116 /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo 117 /// (all of which can call computeKnownBits), and so on. 118 std::array<const Value *, MaxDepth> Excluded; 119 120 /// If true, it is safe to use metadata during simplification. 121 InstrInfoQuery IIQ; 122 123 unsigned NumExcluded = 0; 124 125 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 126 const DominatorTree *DT, bool UseInstrInfo, 127 OptimizationRemarkEmitter *ORE = nullptr) 128 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {} 129 130 Query(const Query &Q, const Value *NewExcl) 131 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), IIQ(Q.IIQ), 132 NumExcluded(Q.NumExcluded) { 133 Excluded = Q.Excluded; 134 Excluded[NumExcluded++] = NewExcl; 135 assert(NumExcluded <= Excluded.size()); 136 } 137 138 bool isExcluded(const Value *Value) const { 139 if (NumExcluded == 0) 140 return false; 141 auto End = Excluded.begin() + NumExcluded; 142 return std::find(Excluded.begin(), End, Value) != End; 143 } 144 }; 145 146 } // end anonymous namespace 147 148 // Given the provided Value and, potentially, a context instruction, return 149 // the preferred context instruction (if any). 150 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 151 // If we've been provided with a context instruction, then use that (provided 152 // it has been inserted). 153 if (CxtI && CxtI->getParent()) 154 return CxtI; 155 156 // If the value is really an already-inserted instruction, then use that. 157 CxtI = dyn_cast<Instruction>(V); 158 if (CxtI && CxtI->getParent()) 159 return CxtI; 160 161 return nullptr; 162 } 163 164 static void computeKnownBits(const Value *V, KnownBits &Known, 165 unsigned Depth, const Query &Q); 166 167 void llvm::computeKnownBits(const Value *V, KnownBits &Known, 168 const DataLayout &DL, unsigned Depth, 169 AssumptionCache *AC, const Instruction *CxtI, 170 const DominatorTree *DT, 171 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 172 ::computeKnownBits(V, Known, Depth, 173 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 174 } 175 176 static KnownBits computeKnownBits(const Value *V, unsigned Depth, 177 const Query &Q); 178 179 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL, 180 unsigned Depth, AssumptionCache *AC, 181 const Instruction *CxtI, 182 const DominatorTree *DT, 183 OptimizationRemarkEmitter *ORE, 184 bool UseInstrInfo) { 185 return ::computeKnownBits( 186 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 187 } 188 189 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, 190 const DataLayout &DL, AssumptionCache *AC, 191 const Instruction *CxtI, const DominatorTree *DT, 192 bool UseInstrInfo) { 193 assert(LHS->getType() == RHS->getType() && 194 "LHS and RHS should have the same type"); 195 assert(LHS->getType()->isIntOrIntVectorTy() && 196 "LHS and RHS should be integers"); 197 // Look for an inverted mask: (X & ~M) op (Y & M). 198 Value *M; 199 if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 200 match(RHS, m_c_And(m_Specific(M), m_Value()))) 201 return true; 202 if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 203 match(LHS, m_c_And(m_Specific(M), m_Value()))) 204 return true; 205 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 206 KnownBits LHSKnown(IT->getBitWidth()); 207 KnownBits RHSKnown(IT->getBitWidth()); 208 computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 209 computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 210 return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue(); 211 } 212 213 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) { 214 for (const User *U : CxtI->users()) { 215 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 216 if (IC->isEquality()) 217 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 218 if (C->isNullValue()) 219 continue; 220 return false; 221 } 222 return true; 223 } 224 225 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 226 const Query &Q); 227 228 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, 229 bool OrZero, unsigned Depth, 230 AssumptionCache *AC, const Instruction *CxtI, 231 const DominatorTree *DT, bool UseInstrInfo) { 232 return ::isKnownToBeAPowerOfTwo( 233 V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 234 } 235 236 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); 237 238 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, 239 AssumptionCache *AC, const Instruction *CxtI, 240 const DominatorTree *DT, bool UseInstrInfo) { 241 return ::isKnownNonZero(V, Depth, 242 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 243 } 244 245 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, 246 unsigned Depth, AssumptionCache *AC, 247 const Instruction *CxtI, const DominatorTree *DT, 248 bool UseInstrInfo) { 249 KnownBits Known = 250 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 251 return Known.isNonNegative(); 252 } 253 254 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, 255 AssumptionCache *AC, const Instruction *CxtI, 256 const DominatorTree *DT, bool UseInstrInfo) { 257 if (auto *CI = dyn_cast<ConstantInt>(V)) 258 return CI->getValue().isStrictlyPositive(); 259 260 // TODO: We'd doing two recursive queries here. We should factor this such 261 // that only a single query is needed. 262 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) && 263 isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo); 264 } 265 266 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, 267 AssumptionCache *AC, const Instruction *CxtI, 268 const DominatorTree *DT, bool UseInstrInfo) { 269 KnownBits Known = 270 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 271 return Known.isNegative(); 272 } 273 274 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q); 275 276 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, 277 const DataLayout &DL, AssumptionCache *AC, 278 const Instruction *CxtI, const DominatorTree *DT, 279 bool UseInstrInfo) { 280 return ::isKnownNonEqual(V1, V2, 281 Query(DL, AC, safeCxtI(V1, safeCxtI(V2, CxtI)), DT, 282 UseInstrInfo, /*ORE=*/nullptr)); 283 } 284 285 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 286 const Query &Q); 287 288 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, 289 const DataLayout &DL, unsigned Depth, 290 AssumptionCache *AC, const Instruction *CxtI, 291 const DominatorTree *DT, bool UseInstrInfo) { 292 return ::MaskedValueIsZero( 293 V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 294 } 295 296 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 297 const Query &Q); 298 299 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, 300 unsigned Depth, AssumptionCache *AC, 301 const Instruction *CxtI, 302 const DominatorTree *DT, bool UseInstrInfo) { 303 return ::ComputeNumSignBits( 304 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 305 } 306 307 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, 308 bool NSW, 309 KnownBits &KnownOut, KnownBits &Known2, 310 unsigned Depth, const Query &Q) { 311 unsigned BitWidth = KnownOut.getBitWidth(); 312 313 // If an initial sequence of bits in the result is not needed, the 314 // corresponding bits in the operands are not needed. 315 KnownBits LHSKnown(BitWidth); 316 computeKnownBits(Op0, LHSKnown, Depth + 1, Q); 317 computeKnownBits(Op1, Known2, Depth + 1, Q); 318 319 KnownOut = KnownBits::computeForAddSub(Add, NSW, LHSKnown, Known2); 320 } 321 322 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, 323 KnownBits &Known, KnownBits &Known2, 324 unsigned Depth, const Query &Q) { 325 unsigned BitWidth = Known.getBitWidth(); 326 computeKnownBits(Op1, Known, Depth + 1, Q); 327 computeKnownBits(Op0, Known2, Depth + 1, Q); 328 329 bool isKnownNegative = false; 330 bool isKnownNonNegative = false; 331 // If the multiplication is known not to overflow, compute the sign bit. 332 if (NSW) { 333 if (Op0 == Op1) { 334 // The product of a number with itself is non-negative. 335 isKnownNonNegative = true; 336 } else { 337 bool isKnownNonNegativeOp1 = Known.isNonNegative(); 338 bool isKnownNonNegativeOp0 = Known2.isNonNegative(); 339 bool isKnownNegativeOp1 = Known.isNegative(); 340 bool isKnownNegativeOp0 = Known2.isNegative(); 341 // The product of two numbers with the same sign is non-negative. 342 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 343 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 344 // The product of a negative number and a non-negative number is either 345 // negative or zero. 346 if (!isKnownNonNegative) 347 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 348 isKnownNonZero(Op0, Depth, Q)) || 349 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && 350 isKnownNonZero(Op1, Depth, Q)); 351 } 352 } 353 354 assert(!Known.hasConflict() && !Known2.hasConflict()); 355 // Compute a conservative estimate for high known-0 bits. 356 unsigned LeadZ = std::max(Known.countMinLeadingZeros() + 357 Known2.countMinLeadingZeros(), 358 BitWidth) - BitWidth; 359 LeadZ = std::min(LeadZ, BitWidth); 360 361 // The result of the bottom bits of an integer multiply can be 362 // inferred by looking at the bottom bits of both operands and 363 // multiplying them together. 364 // We can infer at least the minimum number of known trailing bits 365 // of both operands. Depending on number of trailing zeros, we can 366 // infer more bits, because (a*b) <=> ((a/m) * (b/n)) * (m*n) assuming 367 // a and b are divisible by m and n respectively. 368 // We then calculate how many of those bits are inferrable and set 369 // the output. For example, the i8 mul: 370 // a = XXXX1100 (12) 371 // b = XXXX1110 (14) 372 // We know the bottom 3 bits are zero since the first can be divided by 373 // 4 and the second by 2, thus having ((12/4) * (14/2)) * (2*4). 374 // Applying the multiplication to the trimmed arguments gets: 375 // XX11 (3) 376 // X111 (7) 377 // ------- 378 // XX11 379 // XX11 380 // XX11 381 // XX11 382 // ------- 383 // XXXXX01 384 // Which allows us to infer the 2 LSBs. Since we're multiplying the result 385 // by 8, the bottom 3 bits will be 0, so we can infer a total of 5 bits. 386 // The proof for this can be described as: 387 // Pre: (C1 >= 0) && (C1 < (1 << C5)) && (C2 >= 0) && (C2 < (1 << C6)) && 388 // (C7 == (1 << (umin(countTrailingZeros(C1), C5) + 389 // umin(countTrailingZeros(C2), C6) + 390 // umin(C5 - umin(countTrailingZeros(C1), C5), 391 // C6 - umin(countTrailingZeros(C2), C6)))) - 1) 392 // %aa = shl i8 %a, C5 393 // %bb = shl i8 %b, C6 394 // %aaa = or i8 %aa, C1 395 // %bbb = or i8 %bb, C2 396 // %mul = mul i8 %aaa, %bbb 397 // %mask = and i8 %mul, C7 398 // => 399 // %mask = i8 ((C1*C2)&C7) 400 // Where C5, C6 describe the known bits of %a, %b 401 // C1, C2 describe the known bottom bits of %a, %b. 402 // C7 describes the mask of the known bits of the result. 403 APInt Bottom0 = Known.One; 404 APInt Bottom1 = Known2.One; 405 406 // How many times we'd be able to divide each argument by 2 (shr by 1). 407 // This gives us the number of trailing zeros on the multiplication result. 408 unsigned TrailBitsKnown0 = (Known.Zero | Known.One).countTrailingOnes(); 409 unsigned TrailBitsKnown1 = (Known2.Zero | Known2.One).countTrailingOnes(); 410 unsigned TrailZero0 = Known.countMinTrailingZeros(); 411 unsigned TrailZero1 = Known2.countMinTrailingZeros(); 412 unsigned TrailZ = TrailZero0 + TrailZero1; 413 414 // Figure out the fewest known-bits operand. 415 unsigned SmallestOperand = std::min(TrailBitsKnown0 - TrailZero0, 416 TrailBitsKnown1 - TrailZero1); 417 unsigned ResultBitsKnown = std::min(SmallestOperand + TrailZ, BitWidth); 418 419 APInt BottomKnown = Bottom0.getLoBits(TrailBitsKnown0) * 420 Bottom1.getLoBits(TrailBitsKnown1); 421 422 Known.resetAll(); 423 Known.Zero.setHighBits(LeadZ); 424 Known.Zero |= (~BottomKnown).getLoBits(ResultBitsKnown); 425 Known.One |= BottomKnown.getLoBits(ResultBitsKnown); 426 427 // Only make use of no-wrap flags if we failed to compute the sign bit 428 // directly. This matters if the multiplication always overflows, in 429 // which case we prefer to follow the result of the direct computation, 430 // though as the program is invoking undefined behaviour we can choose 431 // whatever we like here. 432 if (isKnownNonNegative && !Known.isNegative()) 433 Known.makeNonNegative(); 434 else if (isKnownNegative && !Known.isNonNegative()) 435 Known.makeNegative(); 436 } 437 438 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 439 KnownBits &Known) { 440 unsigned BitWidth = Known.getBitWidth(); 441 unsigned NumRanges = Ranges.getNumOperands() / 2; 442 assert(NumRanges >= 1); 443 444 Known.Zero.setAllBits(); 445 Known.One.setAllBits(); 446 447 for (unsigned i = 0; i < NumRanges; ++i) { 448 ConstantInt *Lower = 449 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 450 ConstantInt *Upper = 451 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 452 ConstantRange Range(Lower->getValue(), Upper->getValue()); 453 454 // The first CommonPrefixBits of all values in Range are equal. 455 unsigned CommonPrefixBits = 456 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 457 458 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 459 Known.One &= Range.getUnsignedMax() & Mask; 460 Known.Zero &= ~Range.getUnsignedMax() & Mask; 461 } 462 } 463 464 static bool isEphemeralValueOf(const Instruction *I, const Value *E) { 465 SmallVector<const Value *, 16> WorkSet(1, I); 466 SmallPtrSet<const Value *, 32> Visited; 467 SmallPtrSet<const Value *, 16> EphValues; 468 469 // The instruction defining an assumption's condition itself is always 470 // considered ephemeral to that assumption (even if it has other 471 // non-ephemeral users). See r246696's test case for an example. 472 if (is_contained(I->operands(), E)) 473 return true; 474 475 while (!WorkSet.empty()) { 476 const Value *V = WorkSet.pop_back_val(); 477 if (!Visited.insert(V).second) 478 continue; 479 480 // If all uses of this value are ephemeral, then so is this value. 481 if (llvm::all_of(V->users(), [&](const User *U) { 482 return EphValues.count(U); 483 })) { 484 if (V == E) 485 return true; 486 487 if (V == I || isSafeToSpeculativelyExecute(V)) { 488 EphValues.insert(V); 489 if (const User *U = dyn_cast<User>(V)) 490 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end(); 491 J != JE; ++J) 492 WorkSet.push_back(*J); 493 } 494 } 495 } 496 497 return false; 498 } 499 500 // Is this an intrinsic that cannot be speculated but also cannot trap? 501 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) { 502 if (const CallInst *CI = dyn_cast<CallInst>(I)) 503 if (Function *F = CI->getCalledFunction()) 504 switch (F->getIntrinsicID()) { 505 default: break; 506 // FIXME: This list is repeated from NoTTI::getIntrinsicCost. 507 case Intrinsic::assume: 508 case Intrinsic::sideeffect: 509 case Intrinsic::dbg_declare: 510 case Intrinsic::dbg_value: 511 case Intrinsic::dbg_label: 512 case Intrinsic::invariant_start: 513 case Intrinsic::invariant_end: 514 case Intrinsic::lifetime_start: 515 case Intrinsic::lifetime_end: 516 case Intrinsic::objectsize: 517 case Intrinsic::ptr_annotation: 518 case Intrinsic::var_annotation: 519 return true; 520 } 521 522 return false; 523 } 524 525 bool llvm::isValidAssumeForContext(const Instruction *Inv, 526 const Instruction *CxtI, 527 const DominatorTree *DT) { 528 // There are two restrictions on the use of an assume: 529 // 1. The assume must dominate the context (or the control flow must 530 // reach the assume whenever it reaches the context). 531 // 2. The context must not be in the assume's set of ephemeral values 532 // (otherwise we will use the assume to prove that the condition 533 // feeding the assume is trivially true, thus causing the removal of 534 // the assume). 535 536 if (DT) { 537 if (DT->dominates(Inv, CxtI)) 538 return true; 539 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 540 // We don't have a DT, but this trivially dominates. 541 return true; 542 } 543 544 // With or without a DT, the only remaining case we will check is if the 545 // instructions are in the same BB. Give up if that is not the case. 546 if (Inv->getParent() != CxtI->getParent()) 547 return false; 548 549 // If we have a dom tree, then we now know that the assume doesn't dominate 550 // the other instruction. If we don't have a dom tree then we can check if 551 // the assume is first in the BB. 552 if (!DT) { 553 // Search forward from the assume until we reach the context (or the end 554 // of the block); the common case is that the assume will come first. 555 for (auto I = std::next(BasicBlock::const_iterator(Inv)), 556 IE = Inv->getParent()->end(); I != IE; ++I) 557 if (&*I == CxtI) 558 return true; 559 } 560 561 // Don't let an assume affect itself - this would cause the problems 562 // `isEphemeralValueOf` is trying to prevent, and it would also make 563 // the loop below go out of bounds. 564 if (Inv == CxtI) 565 return false; 566 567 // The context comes first, but they're both in the same block. Make sure 568 // there is nothing in between that might interrupt the control flow. 569 for (BasicBlock::const_iterator I = 570 std::next(BasicBlock::const_iterator(CxtI)), IE(Inv); 571 I != IE; ++I) 572 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 573 return false; 574 575 return !isEphemeralValueOf(Inv, CxtI); 576 } 577 578 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known, 579 unsigned Depth, const Query &Q) { 580 // Use of assumptions is context-sensitive. If we don't have a context, we 581 // cannot use them! 582 if (!Q.AC || !Q.CxtI) 583 return; 584 585 unsigned BitWidth = Known.getBitWidth(); 586 587 // Note that the patterns below need to be kept in sync with the code 588 // in AssumptionCache::updateAffectedValues. 589 590 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 591 if (!AssumeVH) 592 continue; 593 CallInst *I = cast<CallInst>(AssumeVH); 594 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 595 "Got assumption for the wrong function!"); 596 if (Q.isExcluded(I)) 597 continue; 598 599 // Warning: This loop can end up being somewhat performance sensitive. 600 // We're running this loop for once for each value queried resulting in a 601 // runtime of ~O(#assumes * #values). 602 603 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 604 "must be an assume intrinsic"); 605 606 Value *Arg = I->getArgOperand(0); 607 608 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 609 assert(BitWidth == 1 && "assume operand is not i1?"); 610 Known.setAllOnes(); 611 return; 612 } 613 if (match(Arg, m_Not(m_Specific(V))) && 614 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 615 assert(BitWidth == 1 && "assume operand is not i1?"); 616 Known.setAllZero(); 617 return; 618 } 619 620 // The remaining tests are all recursive, so bail out if we hit the limit. 621 if (Depth == MaxDepth) 622 continue; 623 624 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 625 if (!Cmp) 626 continue; 627 628 Value *A, *B; 629 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 630 631 CmpInst::Predicate Pred; 632 uint64_t C; 633 switch (Cmp->getPredicate()) { 634 default: 635 break; 636 case ICmpInst::ICMP_EQ: 637 // assume(v = a) 638 if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) && 639 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 640 KnownBits RHSKnown(BitWidth); 641 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 642 Known.Zero |= RHSKnown.Zero; 643 Known.One |= RHSKnown.One; 644 // assume(v & b = a) 645 } else if (match(Cmp, 646 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 647 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 648 KnownBits RHSKnown(BitWidth); 649 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 650 KnownBits MaskKnown(BitWidth); 651 computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I)); 652 653 // For those bits in the mask that are known to be one, we can propagate 654 // known bits from the RHS to V. 655 Known.Zero |= RHSKnown.Zero & MaskKnown.One; 656 Known.One |= RHSKnown.One & MaskKnown.One; 657 // assume(~(v & b) = a) 658 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 659 m_Value(A))) && 660 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 661 KnownBits RHSKnown(BitWidth); 662 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 663 KnownBits MaskKnown(BitWidth); 664 computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I)); 665 666 // For those bits in the mask that are known to be one, we can propagate 667 // inverted known bits from the RHS to V. 668 Known.Zero |= RHSKnown.One & MaskKnown.One; 669 Known.One |= RHSKnown.Zero & MaskKnown.One; 670 // assume(v | b = a) 671 } else if (match(Cmp, 672 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 673 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 674 KnownBits RHSKnown(BitWidth); 675 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 676 KnownBits BKnown(BitWidth); 677 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 678 679 // For those bits in B that are known to be zero, we can propagate known 680 // bits from the RHS to V. 681 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 682 Known.One |= RHSKnown.One & BKnown.Zero; 683 // assume(~(v | b) = a) 684 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 685 m_Value(A))) && 686 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 687 KnownBits RHSKnown(BitWidth); 688 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 689 KnownBits BKnown(BitWidth); 690 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 691 692 // For those bits in B that are known to be zero, we can propagate 693 // inverted known bits from the RHS to V. 694 Known.Zero |= RHSKnown.One & BKnown.Zero; 695 Known.One |= RHSKnown.Zero & BKnown.Zero; 696 // assume(v ^ b = a) 697 } else if (match(Cmp, 698 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 699 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 700 KnownBits RHSKnown(BitWidth); 701 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 702 KnownBits BKnown(BitWidth); 703 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 704 705 // For those bits in B that are known to be zero, we can propagate known 706 // bits from the RHS to V. For those bits in B that are known to be one, 707 // we can propagate inverted known bits from the RHS to V. 708 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 709 Known.One |= RHSKnown.One & BKnown.Zero; 710 Known.Zero |= RHSKnown.One & BKnown.One; 711 Known.One |= RHSKnown.Zero & BKnown.One; 712 // assume(~(v ^ b) = a) 713 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 714 m_Value(A))) && 715 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 716 KnownBits RHSKnown(BitWidth); 717 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 718 KnownBits BKnown(BitWidth); 719 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 720 721 // For those bits in B that are known to be zero, we can propagate 722 // inverted known bits from the RHS to V. For those bits in B that are 723 // known to be one, we can propagate known bits from the RHS to V. 724 Known.Zero |= RHSKnown.One & BKnown.Zero; 725 Known.One |= RHSKnown.Zero & BKnown.Zero; 726 Known.Zero |= RHSKnown.Zero & BKnown.One; 727 Known.One |= RHSKnown.One & BKnown.One; 728 // assume(v << c = a) 729 } else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 730 m_Value(A))) && 731 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 732 KnownBits RHSKnown(BitWidth); 733 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 734 // For those bits in RHS that are known, we can propagate them to known 735 // bits in V shifted to the right by C. 736 RHSKnown.Zero.lshrInPlace(C); 737 Known.Zero |= RHSKnown.Zero; 738 RHSKnown.One.lshrInPlace(C); 739 Known.One |= RHSKnown.One; 740 // assume(~(v << c) = a) 741 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 742 m_Value(A))) && 743 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 744 KnownBits RHSKnown(BitWidth); 745 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 746 // For those bits in RHS that are known, we can propagate them inverted 747 // to known bits in V shifted to the right by C. 748 RHSKnown.One.lshrInPlace(C); 749 Known.Zero |= RHSKnown.One; 750 RHSKnown.Zero.lshrInPlace(C); 751 Known.One |= RHSKnown.Zero; 752 // assume(v >> c = a) 753 } else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)), 754 m_Value(A))) && 755 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 756 KnownBits RHSKnown(BitWidth); 757 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 758 // For those bits in RHS that are known, we can propagate them to known 759 // bits in V shifted to the right by C. 760 Known.Zero |= RHSKnown.Zero << C; 761 Known.One |= RHSKnown.One << C; 762 // assume(~(v >> c) = a) 763 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))), 764 m_Value(A))) && 765 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 766 KnownBits RHSKnown(BitWidth); 767 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 768 // For those bits in RHS that are known, we can propagate them inverted 769 // to known bits in V shifted to the right by C. 770 Known.Zero |= RHSKnown.One << C; 771 Known.One |= RHSKnown.Zero << C; 772 } 773 break; 774 case ICmpInst::ICMP_SGE: 775 // assume(v >=_s c) where c is non-negative 776 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 777 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 778 KnownBits RHSKnown(BitWidth); 779 computeKnownBits(A, RHSKnown, Depth + 1, Query(Q, I)); 780 781 if (RHSKnown.isNonNegative()) { 782 // We know that the sign bit is zero. 783 Known.makeNonNegative(); 784 } 785 } 786 break; 787 case ICmpInst::ICMP_SGT: 788 // assume(v >_s c) where c is at least -1. 789 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 790 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 791 KnownBits RHSKnown(BitWidth); 792 computeKnownBits(A, RHSKnown, Depth + 1, Query(Q, I)); 793 794 if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) { 795 // We know that the sign bit is zero. 796 Known.makeNonNegative(); 797 } 798 } 799 break; 800 case ICmpInst::ICMP_SLE: 801 // assume(v <=_s c) where c is negative 802 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 803 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 804 KnownBits RHSKnown(BitWidth); 805 computeKnownBits(A, RHSKnown, Depth + 1, Query(Q, I)); 806 807 if (RHSKnown.isNegative()) { 808 // We know that the sign bit is one. 809 Known.makeNegative(); 810 } 811 } 812 break; 813 case ICmpInst::ICMP_SLT: 814 // assume(v <_s c) where c is non-positive 815 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 816 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 817 KnownBits RHSKnown(BitWidth); 818 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 819 820 if (RHSKnown.isZero() || RHSKnown.isNegative()) { 821 // We know that the sign bit is one. 822 Known.makeNegative(); 823 } 824 } 825 break; 826 case ICmpInst::ICMP_ULE: 827 // assume(v <=_u c) 828 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 829 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 830 KnownBits RHSKnown(BitWidth); 831 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 832 833 // Whatever high bits in c are zero are known to be zero. 834 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 835 } 836 break; 837 case ICmpInst::ICMP_ULT: 838 // assume(v <_u c) 839 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 840 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 841 KnownBits RHSKnown(BitWidth); 842 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 843 844 // If the RHS is known zero, then this assumption must be wrong (nothing 845 // is unsigned less than zero). Signal a conflict and get out of here. 846 if (RHSKnown.isZero()) { 847 Known.Zero.setAllBits(); 848 Known.One.setAllBits(); 849 break; 850 } 851 852 // Whatever high bits in c are zero are known to be zero (if c is a power 853 // of 2, then one more). 854 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I))) 855 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1); 856 else 857 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 858 } 859 break; 860 } 861 } 862 863 // If assumptions conflict with each other or previous known bits, then we 864 // have a logical fallacy. It's possible that the assumption is not reachable, 865 // so this isn't a real bug. On the other hand, the program may have undefined 866 // behavior, or we might have a bug in the compiler. We can't assert/crash, so 867 // clear out the known bits, try to warn the user, and hope for the best. 868 if (Known.Zero.intersects(Known.One)) { 869 Known.resetAll(); 870 871 if (Q.ORE) 872 Q.ORE->emit([&]() { 873 auto *CxtI = const_cast<Instruction *>(Q.CxtI); 874 return OptimizationRemarkAnalysis("value-tracking", "BadAssumption", 875 CxtI) 876 << "Detected conflicting code assumptions. Program may " 877 "have undefined behavior, or compiler may have " 878 "internal error."; 879 }); 880 } 881 } 882 883 /// Compute known bits from a shift operator, including those with a 884 /// non-constant shift amount. Known is the output of this function. Known2 is a 885 /// pre-allocated temporary with the same bit width as Known. KZF and KOF are 886 /// operator-specific functions that, given the known-zero or known-one bits 887 /// respectively, and a shift amount, compute the implied known-zero or 888 /// known-one bits of the shift operator's result respectively for that shift 889 /// amount. The results from calling KZF and KOF are conservatively combined for 890 /// all permitted shift amounts. 891 static void computeKnownBitsFromShiftOperator( 892 const Operator *I, KnownBits &Known, KnownBits &Known2, 893 unsigned Depth, const Query &Q, 894 function_ref<APInt(const APInt &, unsigned)> KZF, 895 function_ref<APInt(const APInt &, unsigned)> KOF) { 896 unsigned BitWidth = Known.getBitWidth(); 897 898 if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 899 unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1); 900 901 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 902 Known.Zero = KZF(Known.Zero, ShiftAmt); 903 Known.One = KOF(Known.One, ShiftAmt); 904 // If the known bits conflict, this must be an overflowing left shift, so 905 // the shift result is poison. We can return anything we want. Choose 0 for 906 // the best folding opportunity. 907 if (Known.hasConflict()) 908 Known.setAllZero(); 909 910 return; 911 } 912 913 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); 914 915 // If the shift amount could be greater than or equal to the bit-width of the 916 // LHS, the value could be poison, but bail out because the check below is 917 // expensive. TODO: Should we just carry on? 918 if ((~Known.Zero).uge(BitWidth)) { 919 Known.resetAll(); 920 return; 921 } 922 923 // Note: We cannot use Known.Zero.getLimitedValue() here, because if 924 // BitWidth > 64 and any upper bits are known, we'll end up returning the 925 // limit value (which implies all bits are known). 926 uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue(); 927 uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue(); 928 929 // It would be more-clearly correct to use the two temporaries for this 930 // calculation. Reusing the APInts here to prevent unnecessary allocations. 931 Known.resetAll(); 932 933 // If we know the shifter operand is nonzero, we can sometimes infer more 934 // known bits. However this is expensive to compute, so be lazy about it and 935 // only compute it when absolutely necessary. 936 Optional<bool> ShifterOperandIsNonZero; 937 938 // Early exit if we can't constrain any well-defined shift amount. 939 if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) && 940 !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) { 941 ShifterOperandIsNonZero = isKnownNonZero(I->getOperand(1), Depth + 1, Q); 942 if (!*ShifterOperandIsNonZero) 943 return; 944 } 945 946 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 947 948 Known.Zero.setAllBits(); 949 Known.One.setAllBits(); 950 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 951 // Combine the shifted known input bits only for those shift amounts 952 // compatible with its known constraints. 953 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 954 continue; 955 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 956 continue; 957 // If we know the shifter is nonzero, we may be able to infer more known 958 // bits. This check is sunk down as far as possible to avoid the expensive 959 // call to isKnownNonZero if the cheaper checks above fail. 960 if (ShiftAmt == 0) { 961 if (!ShifterOperandIsNonZero.hasValue()) 962 ShifterOperandIsNonZero = 963 isKnownNonZero(I->getOperand(1), Depth + 1, Q); 964 if (*ShifterOperandIsNonZero) 965 continue; 966 } 967 968 Known.Zero &= KZF(Known2.Zero, ShiftAmt); 969 Known.One &= KOF(Known2.One, ShiftAmt); 970 } 971 972 // If the known bits conflict, the result is poison. Return a 0 and hope the 973 // caller can further optimize that. 974 if (Known.hasConflict()) 975 Known.setAllZero(); 976 } 977 978 static void computeKnownBitsFromOperator(const Operator *I, KnownBits &Known, 979 unsigned Depth, const Query &Q) { 980 unsigned BitWidth = Known.getBitWidth(); 981 982 KnownBits Known2(Known); 983 switch (I->getOpcode()) { 984 default: break; 985 case Instruction::Load: 986 if (MDNode *MD = 987 Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range)) 988 computeKnownBitsFromRangeMetadata(*MD, Known); 989 break; 990 case Instruction::And: { 991 // If either the LHS or the RHS are Zero, the result is zero. 992 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); 993 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 994 995 // Output known-1 bits are only known if set in both the LHS & RHS. 996 Known.One &= Known2.One; 997 // Output known-0 are known to be clear if zero in either the LHS | RHS. 998 Known.Zero |= Known2.Zero; 999 1000 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 1001 // here we handle the more general case of adding any odd number by 1002 // matching the form add(x, add(x, y)) where y is odd. 1003 // TODO: This could be generalized to clearing any bit set in y where the 1004 // following bit is known to be unset in y. 1005 Value *X = nullptr, *Y = nullptr; 1006 if (!Known.Zero[0] && !Known.One[0] && 1007 match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) { 1008 Known2.resetAll(); 1009 computeKnownBits(Y, Known2, Depth + 1, Q); 1010 if (Known2.countMinTrailingOnes() > 0) 1011 Known.Zero.setBit(0); 1012 } 1013 break; 1014 } 1015 case Instruction::Or: 1016 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); 1017 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1018 1019 // Output known-0 bits are only known if clear in both the LHS & RHS. 1020 Known.Zero &= Known2.Zero; 1021 // Output known-1 are known to be set if set in either the LHS | RHS. 1022 Known.One |= Known2.One; 1023 break; 1024 case Instruction::Xor: { 1025 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); 1026 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1027 1028 // Output known-0 bits are known if clear or set in both the LHS & RHS. 1029 APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One); 1030 // Output known-1 are known to be set if set in only one of the LHS, RHS. 1031 Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero); 1032 Known.Zero = std::move(KnownZeroOut); 1033 break; 1034 } 1035 case Instruction::Mul: { 1036 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1037 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, Known, 1038 Known2, Depth, Q); 1039 break; 1040 } 1041 case Instruction::UDiv: { 1042 // For the purposes of computing leading zeros we can conservatively 1043 // treat a udiv as a logical right shift by the power of 2 known to 1044 // be less than the denominator. 1045 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1046 unsigned LeadZ = Known2.countMinLeadingZeros(); 1047 1048 Known2.resetAll(); 1049 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1050 unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros(); 1051 if (RHSMaxLeadingZeros != BitWidth) 1052 LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1); 1053 1054 Known.Zero.setHighBits(LeadZ); 1055 break; 1056 } 1057 case Instruction::Select: { 1058 const Value *LHS = nullptr, *RHS = nullptr; 1059 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 1060 if (SelectPatternResult::isMinOrMax(SPF)) { 1061 computeKnownBits(RHS, Known, Depth + 1, Q); 1062 computeKnownBits(LHS, Known2, Depth + 1, Q); 1063 } else { 1064 computeKnownBits(I->getOperand(2), Known, Depth + 1, Q); 1065 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1066 } 1067 1068 unsigned MaxHighOnes = 0; 1069 unsigned MaxHighZeros = 0; 1070 if (SPF == SPF_SMAX) { 1071 // If both sides are negative, the result is negative. 1072 if (Known.isNegative() && Known2.isNegative()) 1073 // We can derive a lower bound on the result by taking the max of the 1074 // leading one bits. 1075 MaxHighOnes = 1076 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes()); 1077 // If either side is non-negative, the result is non-negative. 1078 else if (Known.isNonNegative() || Known2.isNonNegative()) 1079 MaxHighZeros = 1; 1080 } else if (SPF == SPF_SMIN) { 1081 // If both sides are non-negative, the result is non-negative. 1082 if (Known.isNonNegative() && Known2.isNonNegative()) 1083 // We can derive an upper bound on the result by taking the max of the 1084 // leading zero bits. 1085 MaxHighZeros = std::max(Known.countMinLeadingZeros(), 1086 Known2.countMinLeadingZeros()); 1087 // If either side is negative, the result is negative. 1088 else if (Known.isNegative() || Known2.isNegative()) 1089 MaxHighOnes = 1; 1090 } else if (SPF == SPF_UMAX) { 1091 // We can derive a lower bound on the result by taking the max of the 1092 // leading one bits. 1093 MaxHighOnes = 1094 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes()); 1095 } else if (SPF == SPF_UMIN) { 1096 // We can derive an upper bound on the result by taking the max of the 1097 // leading zero bits. 1098 MaxHighZeros = 1099 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 1100 } else if (SPF == SPF_ABS) { 1101 // RHS from matchSelectPattern returns the negation part of abs pattern. 1102 // If the negate has an NSW flag we can assume the sign bit of the result 1103 // will be 0 because that makes abs(INT_MIN) undefined. 1104 if (match(RHS, m_Neg(m_Specific(LHS))) && 1105 Q.IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 1106 MaxHighZeros = 1; 1107 } 1108 1109 // Only known if known in both the LHS and RHS. 1110 Known.One &= Known2.One; 1111 Known.Zero &= Known2.Zero; 1112 if (MaxHighOnes > 0) 1113 Known.One.setHighBits(MaxHighOnes); 1114 if (MaxHighZeros > 0) 1115 Known.Zero.setHighBits(MaxHighZeros); 1116 break; 1117 } 1118 case Instruction::FPTrunc: 1119 case Instruction::FPExt: 1120 case Instruction::FPToUI: 1121 case Instruction::FPToSI: 1122 case Instruction::SIToFP: 1123 case Instruction::UIToFP: 1124 break; // Can't work with floating point. 1125 case Instruction::PtrToInt: 1126 case Instruction::IntToPtr: 1127 // Fall through and handle them the same as zext/trunc. 1128 LLVM_FALLTHROUGH; 1129 case Instruction::ZExt: 1130 case Instruction::Trunc: { 1131 Type *SrcTy = I->getOperand(0)->getType(); 1132 1133 unsigned SrcBitWidth; 1134 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1135 // which fall through here. 1136 Type *ScalarTy = SrcTy->getScalarType(); 1137 SrcBitWidth = ScalarTy->isPointerTy() ? 1138 Q.DL.getIndexTypeSizeInBits(ScalarTy) : 1139 Q.DL.getTypeSizeInBits(ScalarTy); 1140 1141 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1142 Known = Known.zextOrTrunc(SrcBitWidth, false); 1143 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1144 Known = Known.zextOrTrunc(BitWidth, true /* ExtendedBitsAreKnownZero */); 1145 break; 1146 } 1147 case Instruction::BitCast: { 1148 Type *SrcTy = I->getOperand(0)->getType(); 1149 if (SrcTy->isIntOrPtrTy() && 1150 // TODO: For now, not handling conversions like: 1151 // (bitcast i64 %x to <2 x i32>) 1152 !I->getType()->isVectorTy()) { 1153 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1154 break; 1155 } 1156 break; 1157 } 1158 case Instruction::SExt: { 1159 // Compute the bits in the result that are not present in the input. 1160 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1161 1162 Known = Known.trunc(SrcBitWidth); 1163 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1164 // If the sign bit of the input is known set or clear, then we know the 1165 // top bits of the result. 1166 Known = Known.sext(BitWidth); 1167 break; 1168 } 1169 case Instruction::Shl: { 1170 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 1171 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1172 auto KZF = [NSW](const APInt &KnownZero, unsigned ShiftAmt) { 1173 APInt KZResult = KnownZero << ShiftAmt; 1174 KZResult.setLowBits(ShiftAmt); // Low bits known 0. 1175 // If this shift has "nsw" keyword, then the result is either a poison 1176 // value or has the same sign bit as the first operand. 1177 if (NSW && KnownZero.isSignBitSet()) 1178 KZResult.setSignBit(); 1179 return KZResult; 1180 }; 1181 1182 auto KOF = [NSW](const APInt &KnownOne, unsigned ShiftAmt) { 1183 APInt KOResult = KnownOne << ShiftAmt; 1184 if (NSW && KnownOne.isSignBitSet()) 1185 KOResult.setSignBit(); 1186 return KOResult; 1187 }; 1188 1189 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF); 1190 break; 1191 } 1192 case Instruction::LShr: { 1193 // (lshr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1194 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1195 APInt KZResult = KnownZero.lshr(ShiftAmt); 1196 // High bits known zero. 1197 KZResult.setHighBits(ShiftAmt); 1198 return KZResult; 1199 }; 1200 1201 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1202 return KnownOne.lshr(ShiftAmt); 1203 }; 1204 1205 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF); 1206 break; 1207 } 1208 case Instruction::AShr: { 1209 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1210 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1211 return KnownZero.ashr(ShiftAmt); 1212 }; 1213 1214 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1215 return KnownOne.ashr(ShiftAmt); 1216 }; 1217 1218 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF); 1219 break; 1220 } 1221 case Instruction::Sub: { 1222 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1223 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1224 Known, Known2, Depth, Q); 1225 break; 1226 } 1227 case Instruction::Add: { 1228 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1229 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1230 Known, Known2, Depth, Q); 1231 break; 1232 } 1233 case Instruction::SRem: 1234 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1235 APInt RA = Rem->getValue().abs(); 1236 if (RA.isPowerOf2()) { 1237 APInt LowBits = RA - 1; 1238 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1239 1240 // The low bits of the first operand are unchanged by the srem. 1241 Known.Zero = Known2.Zero & LowBits; 1242 Known.One = Known2.One & LowBits; 1243 1244 // If the first operand is non-negative or has all low bits zero, then 1245 // the upper bits are all zero. 1246 if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero)) 1247 Known.Zero |= ~LowBits; 1248 1249 // If the first operand is negative and not all low bits are zero, then 1250 // the upper bits are all one. 1251 if (Known2.isNegative() && LowBits.intersects(Known2.One)) 1252 Known.One |= ~LowBits; 1253 1254 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1255 break; 1256 } 1257 } 1258 1259 // The sign bit is the LHS's sign bit, except when the result of the 1260 // remainder is zero. 1261 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1262 // If it's known zero, our sign bit is also zero. 1263 if (Known2.isNonNegative()) 1264 Known.makeNonNegative(); 1265 1266 break; 1267 case Instruction::URem: { 1268 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1269 const APInt &RA = Rem->getValue(); 1270 if (RA.isPowerOf2()) { 1271 APInt LowBits = (RA - 1); 1272 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1273 Known.Zero |= ~LowBits; 1274 Known.One &= LowBits; 1275 break; 1276 } 1277 } 1278 1279 // Since the result is less than or equal to either operand, any leading 1280 // zero bits in either operand must also exist in the result. 1281 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1282 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1283 1284 unsigned Leaders = 1285 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 1286 Known.resetAll(); 1287 Known.Zero.setHighBits(Leaders); 1288 break; 1289 } 1290 1291 case Instruction::Alloca: { 1292 const AllocaInst *AI = cast<AllocaInst>(I); 1293 unsigned Align = AI->getAlignment(); 1294 if (Align == 0) 1295 Align = Q.DL.getABITypeAlignment(AI->getAllocatedType()); 1296 1297 if (Align > 0) 1298 Known.Zero.setLowBits(countTrailingZeros(Align)); 1299 break; 1300 } 1301 case Instruction::GetElementPtr: { 1302 // Analyze all of the subscripts of this getelementptr instruction 1303 // to determine if we can prove known low zero bits. 1304 KnownBits LocalKnown(BitWidth); 1305 computeKnownBits(I->getOperand(0), LocalKnown, Depth + 1, Q); 1306 unsigned TrailZ = LocalKnown.countMinTrailingZeros(); 1307 1308 gep_type_iterator GTI = gep_type_begin(I); 1309 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1310 Value *Index = I->getOperand(i); 1311 if (StructType *STy = GTI.getStructTypeOrNull()) { 1312 // Handle struct member offset arithmetic. 1313 1314 // Handle case when index is vector zeroinitializer 1315 Constant *CIndex = cast<Constant>(Index); 1316 if (CIndex->isZeroValue()) 1317 continue; 1318 1319 if (CIndex->getType()->isVectorTy()) 1320 Index = CIndex->getSplatValue(); 1321 1322 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1323 const StructLayout *SL = Q.DL.getStructLayout(STy); 1324 uint64_t Offset = SL->getElementOffset(Idx); 1325 TrailZ = std::min<unsigned>(TrailZ, 1326 countTrailingZeros(Offset)); 1327 } else { 1328 // Handle array index arithmetic. 1329 Type *IndexedTy = GTI.getIndexedType(); 1330 if (!IndexedTy->isSized()) { 1331 TrailZ = 0; 1332 break; 1333 } 1334 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); 1335 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy); 1336 LocalKnown.Zero = LocalKnown.One = APInt(GEPOpiBits, 0); 1337 computeKnownBits(Index, LocalKnown, Depth + 1, Q); 1338 TrailZ = std::min(TrailZ, 1339 unsigned(countTrailingZeros(TypeSize) + 1340 LocalKnown.countMinTrailingZeros())); 1341 } 1342 } 1343 1344 Known.Zero.setLowBits(TrailZ); 1345 break; 1346 } 1347 case Instruction::PHI: { 1348 const PHINode *P = cast<PHINode>(I); 1349 // Handle the case of a simple two-predecessor recurrence PHI. 1350 // There's a lot more that could theoretically be done here, but 1351 // this is sufficient to catch some interesting cases. 1352 if (P->getNumIncomingValues() == 2) { 1353 for (unsigned i = 0; i != 2; ++i) { 1354 Value *L = P->getIncomingValue(i); 1355 Value *R = P->getIncomingValue(!i); 1356 Operator *LU = dyn_cast<Operator>(L); 1357 if (!LU) 1358 continue; 1359 unsigned Opcode = LU->getOpcode(); 1360 // Check for operations that have the property that if 1361 // both their operands have low zero bits, the result 1362 // will have low zero bits. 1363 if (Opcode == Instruction::Add || 1364 Opcode == Instruction::Sub || 1365 Opcode == Instruction::And || 1366 Opcode == Instruction::Or || 1367 Opcode == Instruction::Mul) { 1368 Value *LL = LU->getOperand(0); 1369 Value *LR = LU->getOperand(1); 1370 // Find a recurrence. 1371 if (LL == I) 1372 L = LR; 1373 else if (LR == I) 1374 L = LL; 1375 else 1376 continue; // Check for recurrence with L and R flipped. 1377 // Ok, we have a PHI of the form L op= R. Check for low 1378 // zero bits. 1379 computeKnownBits(R, Known2, Depth + 1, Q); 1380 1381 // We need to take the minimum number of known bits 1382 KnownBits Known3(Known); 1383 computeKnownBits(L, Known3, Depth + 1, Q); 1384 1385 Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(), 1386 Known3.countMinTrailingZeros())); 1387 1388 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU); 1389 if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) { 1390 // If initial value of recurrence is nonnegative, and we are adding 1391 // a nonnegative number with nsw, the result can only be nonnegative 1392 // or poison value regardless of the number of times we execute the 1393 // add in phi recurrence. If initial value is negative and we are 1394 // adding a negative number with nsw, the result can only be 1395 // negative or poison value. Similar arguments apply to sub and mul. 1396 // 1397 // (add non-negative, non-negative) --> non-negative 1398 // (add negative, negative) --> negative 1399 if (Opcode == Instruction::Add) { 1400 if (Known2.isNonNegative() && Known3.isNonNegative()) 1401 Known.makeNonNegative(); 1402 else if (Known2.isNegative() && Known3.isNegative()) 1403 Known.makeNegative(); 1404 } 1405 1406 // (sub nsw non-negative, negative) --> non-negative 1407 // (sub nsw negative, non-negative) --> negative 1408 else if (Opcode == Instruction::Sub && LL == I) { 1409 if (Known2.isNonNegative() && Known3.isNegative()) 1410 Known.makeNonNegative(); 1411 else if (Known2.isNegative() && Known3.isNonNegative()) 1412 Known.makeNegative(); 1413 } 1414 1415 // (mul nsw non-negative, non-negative) --> non-negative 1416 else if (Opcode == Instruction::Mul && Known2.isNonNegative() && 1417 Known3.isNonNegative()) 1418 Known.makeNonNegative(); 1419 } 1420 1421 break; 1422 } 1423 } 1424 } 1425 1426 // Unreachable blocks may have zero-operand PHI nodes. 1427 if (P->getNumIncomingValues() == 0) 1428 break; 1429 1430 // Otherwise take the unions of the known bit sets of the operands, 1431 // taking conservative care to avoid excessive recursion. 1432 if (Depth < MaxDepth - 1 && !Known.Zero && !Known.One) { 1433 // Skip if every incoming value references to ourself. 1434 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1435 break; 1436 1437 Known.Zero.setAllBits(); 1438 Known.One.setAllBits(); 1439 for (Value *IncValue : P->incoming_values()) { 1440 // Skip direct self references. 1441 if (IncValue == P) continue; 1442 1443 Known2 = KnownBits(BitWidth); 1444 // Recurse, but cap the recursion to one level, because we don't 1445 // want to waste time spinning around in loops. 1446 computeKnownBits(IncValue, Known2, MaxDepth - 1, Q); 1447 Known.Zero &= Known2.Zero; 1448 Known.One &= Known2.One; 1449 // If all bits have been ruled out, there's no need to check 1450 // more operands. 1451 if (!Known.Zero && !Known.One) 1452 break; 1453 } 1454 } 1455 break; 1456 } 1457 case Instruction::Call: 1458 case Instruction::Invoke: 1459 // If range metadata is attached to this call, set known bits from that, 1460 // and then intersect with known bits based on other properties of the 1461 // function. 1462 if (MDNode *MD = 1463 Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range)) 1464 computeKnownBitsFromRangeMetadata(*MD, Known); 1465 if (const Value *RV = ImmutableCallSite(I).getReturnedArgOperand()) { 1466 computeKnownBits(RV, Known2, Depth + 1, Q); 1467 Known.Zero |= Known2.Zero; 1468 Known.One |= Known2.One; 1469 } 1470 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1471 switch (II->getIntrinsicID()) { 1472 default: break; 1473 case Intrinsic::bitreverse: 1474 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1475 Known.Zero |= Known2.Zero.reverseBits(); 1476 Known.One |= Known2.One.reverseBits(); 1477 break; 1478 case Intrinsic::bswap: 1479 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1480 Known.Zero |= Known2.Zero.byteSwap(); 1481 Known.One |= Known2.One.byteSwap(); 1482 break; 1483 case Intrinsic::ctlz: { 1484 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1485 // If we have a known 1, its position is our upper bound. 1486 unsigned PossibleLZ = Known2.One.countLeadingZeros(); 1487 // If this call is undefined for 0, the result will be less than 2^n. 1488 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1489 PossibleLZ = std::min(PossibleLZ, BitWidth - 1); 1490 unsigned LowBits = Log2_32(PossibleLZ)+1; 1491 Known.Zero.setBitsFrom(LowBits); 1492 break; 1493 } 1494 case Intrinsic::cttz: { 1495 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1496 // If we have a known 1, its position is our upper bound. 1497 unsigned PossibleTZ = Known2.One.countTrailingZeros(); 1498 // If this call is undefined for 0, the result will be less than 2^n. 1499 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1500 PossibleTZ = std::min(PossibleTZ, BitWidth - 1); 1501 unsigned LowBits = Log2_32(PossibleTZ)+1; 1502 Known.Zero.setBitsFrom(LowBits); 1503 break; 1504 } 1505 case Intrinsic::ctpop: { 1506 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1507 // We can bound the space the count needs. Also, bits known to be zero 1508 // can't contribute to the population. 1509 unsigned BitsPossiblySet = Known2.countMaxPopulation(); 1510 unsigned LowBits = Log2_32(BitsPossiblySet)+1; 1511 Known.Zero.setBitsFrom(LowBits); 1512 // TODO: we could bound KnownOne using the lower bound on the number 1513 // of bits which might be set provided by popcnt KnownOne2. 1514 break; 1515 } 1516 case Intrinsic::fshr: 1517 case Intrinsic::fshl: { 1518 const APInt *SA; 1519 if (!match(I->getOperand(2), m_APInt(SA))) 1520 break; 1521 1522 // Normalize to funnel shift left. 1523 uint64_t ShiftAmt = SA->urem(BitWidth); 1524 if (II->getIntrinsicID() == Intrinsic::fshr) 1525 ShiftAmt = BitWidth - ShiftAmt; 1526 1527 KnownBits Known3(Known); 1528 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1529 computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q); 1530 1531 Known.Zero = 1532 Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt); 1533 Known.One = 1534 Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt); 1535 break; 1536 } 1537 case Intrinsic::uadd_sat: 1538 case Intrinsic::usub_sat: { 1539 bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat; 1540 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1541 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1542 1543 // Add: Leading ones of either operand are preserved. 1544 // Sub: Leading zeros of LHS and leading ones of RHS are preserved 1545 // as leading zeros in the result. 1546 unsigned LeadingKnown; 1547 if (IsAdd) 1548 LeadingKnown = std::max(Known.countMinLeadingOnes(), 1549 Known2.countMinLeadingOnes()); 1550 else 1551 LeadingKnown = std::max(Known.countMinLeadingZeros(), 1552 Known2.countMinLeadingOnes()); 1553 1554 Known = KnownBits::computeForAddSub( 1555 IsAdd, /* NSW */ false, Known, Known2); 1556 1557 // We select between the operation result and all-ones/zero 1558 // respectively, so we can preserve known ones/zeros. 1559 if (IsAdd) { 1560 Known.One.setHighBits(LeadingKnown); 1561 Known.Zero.clearAllBits(); 1562 } else { 1563 Known.Zero.setHighBits(LeadingKnown); 1564 Known.One.clearAllBits(); 1565 } 1566 break; 1567 } 1568 case Intrinsic::x86_sse42_crc32_64_64: 1569 Known.Zero.setBitsFrom(32); 1570 break; 1571 } 1572 } 1573 break; 1574 case Instruction::ExtractElement: 1575 // Look through extract element. At the moment we keep this simple and skip 1576 // tracking the specific element. But at least we might find information 1577 // valid for all elements of the vector (for example if vector is sign 1578 // extended, shifted, etc). 1579 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1580 break; 1581 case Instruction::ExtractValue: 1582 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1583 const ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1584 if (EVI->getNumIndices() != 1) break; 1585 if (EVI->getIndices()[0] == 0) { 1586 switch (II->getIntrinsicID()) { 1587 default: break; 1588 case Intrinsic::uadd_with_overflow: 1589 case Intrinsic::sadd_with_overflow: 1590 computeKnownBitsAddSub(true, II->getArgOperand(0), 1591 II->getArgOperand(1), false, Known, Known2, 1592 Depth, Q); 1593 break; 1594 case Intrinsic::usub_with_overflow: 1595 case Intrinsic::ssub_with_overflow: 1596 computeKnownBitsAddSub(false, II->getArgOperand(0), 1597 II->getArgOperand(1), false, Known, Known2, 1598 Depth, Q); 1599 break; 1600 case Intrinsic::umul_with_overflow: 1601 case Intrinsic::smul_with_overflow: 1602 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1603 Known, Known2, Depth, Q); 1604 break; 1605 } 1606 } 1607 } 1608 } 1609 } 1610 1611 /// Determine which bits of V are known to be either zero or one and return 1612 /// them. 1613 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) { 1614 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1615 computeKnownBits(V, Known, Depth, Q); 1616 return Known; 1617 } 1618 1619 /// Determine which bits of V are known to be either zero or one and return 1620 /// them in the Known bit set. 1621 /// 1622 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1623 /// we cannot optimize based on the assumption that it is zero without changing 1624 /// it to be an explicit zero. If we don't change it to zero, other code could 1625 /// optimized based on the contradictory assumption that it is non-zero. 1626 /// Because instcombine aggressively folds operations with undef args anyway, 1627 /// this won't lose us code quality. 1628 /// 1629 /// This function is defined on values with integer type, values with pointer 1630 /// type, and vectors of integers. In the case 1631 /// where V is a vector, known zero, and known one values are the 1632 /// same width as the vector element, and the bit is set only if it is true 1633 /// for all of the elements in the vector. 1634 void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, 1635 const Query &Q) { 1636 assert(V && "No Value?"); 1637 assert(Depth <= MaxDepth && "Limit Search Depth"); 1638 unsigned BitWidth = Known.getBitWidth(); 1639 1640 assert((V->getType()->isIntOrIntVectorTy(BitWidth) || 1641 V->getType()->isPtrOrPtrVectorTy()) && 1642 "Not integer or pointer type!"); 1643 1644 Type *ScalarTy = V->getType()->getScalarType(); 1645 unsigned ExpectedWidth = ScalarTy->isPointerTy() ? 1646 Q.DL.getIndexTypeSizeInBits(ScalarTy) : Q.DL.getTypeSizeInBits(ScalarTy); 1647 assert(ExpectedWidth == BitWidth && "V and Known should have same BitWidth"); 1648 (void)BitWidth; 1649 (void)ExpectedWidth; 1650 1651 const APInt *C; 1652 if (match(V, m_APInt(C))) { 1653 // We know all of the bits for a scalar constant or a splat vector constant! 1654 Known.One = *C; 1655 Known.Zero = ~Known.One; 1656 return; 1657 } 1658 // Null and aggregate-zero are all-zeros. 1659 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { 1660 Known.setAllZero(); 1661 return; 1662 } 1663 // Handle a constant vector by taking the intersection of the known bits of 1664 // each element. 1665 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) { 1666 // We know that CDS must be a vector of integers. Take the intersection of 1667 // each element. 1668 Known.Zero.setAllBits(); Known.One.setAllBits(); 1669 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1670 APInt Elt = CDS->getElementAsAPInt(i); 1671 Known.Zero &= ~Elt; 1672 Known.One &= Elt; 1673 } 1674 return; 1675 } 1676 1677 if (const auto *CV = dyn_cast<ConstantVector>(V)) { 1678 // We know that CV must be a vector of integers. Take the intersection of 1679 // each element. 1680 Known.Zero.setAllBits(); Known.One.setAllBits(); 1681 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1682 Constant *Element = CV->getAggregateElement(i); 1683 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 1684 if (!ElementCI) { 1685 Known.resetAll(); 1686 return; 1687 } 1688 const APInt &Elt = ElementCI->getValue(); 1689 Known.Zero &= ~Elt; 1690 Known.One &= Elt; 1691 } 1692 return; 1693 } 1694 1695 // Start out not knowing anything. 1696 Known.resetAll(); 1697 1698 // We can't imply anything about undefs. 1699 if (isa<UndefValue>(V)) 1700 return; 1701 1702 // There's no point in looking through other users of ConstantData for 1703 // assumptions. Confirm that we've handled them all. 1704 assert(!isa<ConstantData>(V) && "Unhandled constant data!"); 1705 1706 // Limit search depth. 1707 // All recursive calls that increase depth must come after this. 1708 if (Depth == MaxDepth) 1709 return; 1710 1711 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 1712 // the bits of its aliasee. 1713 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1714 if (!GA->isInterposable()) 1715 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q); 1716 return; 1717 } 1718 1719 if (const Operator *I = dyn_cast<Operator>(V)) 1720 computeKnownBitsFromOperator(I, Known, Depth, Q); 1721 1722 // Aligned pointers have trailing zeros - refine Known.Zero set 1723 if (V->getType()->isPointerTy()) { 1724 const MaybeAlign Align = V->getPointerAlignment(Q.DL); 1725 if (Align) 1726 Known.Zero.setLowBits(countTrailingZeros(Align->value())); 1727 } 1728 1729 // computeKnownBitsFromAssume strictly refines Known. 1730 // Therefore, we run them after computeKnownBitsFromOperator. 1731 1732 // Check whether a nearby assume intrinsic can determine some known bits. 1733 computeKnownBitsFromAssume(V, Known, Depth, Q); 1734 1735 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1736 } 1737 1738 /// Return true if the given value is known to have exactly one 1739 /// bit set when defined. For vectors return true if every element is known to 1740 /// be a power of two when defined. Supports values with integer or pointer 1741 /// types and vectors of integers. 1742 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 1743 const Query &Q) { 1744 assert(Depth <= MaxDepth && "Limit Search Depth"); 1745 1746 // Attempt to match against constants. 1747 if (OrZero && match(V, m_Power2OrZero())) 1748 return true; 1749 if (match(V, m_Power2())) 1750 return true; 1751 1752 // 1 << X is clearly a power of two if the one is not shifted off the end. If 1753 // it is shifted off the end then the result is undefined. 1754 if (match(V, m_Shl(m_One(), m_Value()))) 1755 return true; 1756 1757 // (signmask) >>l X is clearly a power of two if the one is not shifted off 1758 // the bottom. If it is shifted off the bottom then the result is undefined. 1759 if (match(V, m_LShr(m_SignMask(), m_Value()))) 1760 return true; 1761 1762 // The remaining tests are all recursive, so bail out if we hit the limit. 1763 if (Depth++ == MaxDepth) 1764 return false; 1765 1766 Value *X = nullptr, *Y = nullptr; 1767 // A shift left or a logical shift right of a power of two is a power of two 1768 // or zero. 1769 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 1770 match(V, m_LShr(m_Value(X), m_Value())))) 1771 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 1772 1773 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 1774 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 1775 1776 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) 1777 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 1778 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 1779 1780 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 1781 // A power of two and'd with anything is a power of two or zero. 1782 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 1783 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 1784 return true; 1785 // X & (-X) is always a power of two or zero. 1786 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 1787 return true; 1788 return false; 1789 } 1790 1791 // Adding a power-of-two or zero to the same power-of-two or zero yields 1792 // either the original power-of-two, a larger power-of-two or zero. 1793 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1794 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 1795 if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) || 1796 Q.IIQ.hasNoSignedWrap(VOBO)) { 1797 if (match(X, m_And(m_Specific(Y), m_Value())) || 1798 match(X, m_And(m_Value(), m_Specific(Y)))) 1799 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 1800 return true; 1801 if (match(Y, m_And(m_Specific(X), m_Value())) || 1802 match(Y, m_And(m_Value(), m_Specific(X)))) 1803 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 1804 return true; 1805 1806 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 1807 KnownBits LHSBits(BitWidth); 1808 computeKnownBits(X, LHSBits, Depth, Q); 1809 1810 KnownBits RHSBits(BitWidth); 1811 computeKnownBits(Y, RHSBits, Depth, Q); 1812 // If i8 V is a power of two or zero: 1813 // ZeroBits: 1 1 1 0 1 1 1 1 1814 // ~ZeroBits: 0 0 0 1 0 0 0 0 1815 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2()) 1816 // If OrZero isn't set, we cannot give back a zero result. 1817 // Make sure either the LHS or RHS has a bit set. 1818 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue()) 1819 return true; 1820 } 1821 } 1822 1823 // An exact divide or right shift can only shift off zero bits, so the result 1824 // is a power of two only if the first operand is a power of two and not 1825 // copying a sign bit (sdiv int_min, 2). 1826 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 1827 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 1828 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 1829 Depth, Q); 1830 } 1831 1832 return false; 1833 } 1834 1835 /// Test whether a GEP's result is known to be non-null. 1836 /// 1837 /// Uses properties inherent in a GEP to try to determine whether it is known 1838 /// to be non-null. 1839 /// 1840 /// Currently this routine does not support vector GEPs. 1841 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, 1842 const Query &Q) { 1843 const Function *F = nullptr; 1844 if (const Instruction *I = dyn_cast<Instruction>(GEP)) 1845 F = I->getFunction(); 1846 1847 if (!GEP->isInBounds() || 1848 NullPointerIsDefined(F, GEP->getPointerAddressSpace())) 1849 return false; 1850 1851 // FIXME: Support vector-GEPs. 1852 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 1853 1854 // If the base pointer is non-null, we cannot walk to a null address with an 1855 // inbounds GEP in address space zero. 1856 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 1857 return true; 1858 1859 // Walk the GEP operands and see if any operand introduces a non-zero offset. 1860 // If so, then the GEP cannot produce a null pointer, as doing so would 1861 // inherently violate the inbounds contract within address space zero. 1862 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 1863 GTI != GTE; ++GTI) { 1864 // Struct types are easy -- they must always be indexed by a constant. 1865 if (StructType *STy = GTI.getStructTypeOrNull()) { 1866 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 1867 unsigned ElementIdx = OpC->getZExtValue(); 1868 const StructLayout *SL = Q.DL.getStructLayout(STy); 1869 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 1870 if (ElementOffset > 0) 1871 return true; 1872 continue; 1873 } 1874 1875 // If we have a zero-sized type, the index doesn't matter. Keep looping. 1876 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0) 1877 continue; 1878 1879 // Fast path the constant operand case both for efficiency and so we don't 1880 // increment Depth when just zipping down an all-constant GEP. 1881 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 1882 if (!OpC->isZero()) 1883 return true; 1884 continue; 1885 } 1886 1887 // We post-increment Depth here because while isKnownNonZero increments it 1888 // as well, when we pop back up that increment won't persist. We don't want 1889 // to recurse 10k times just because we have 10k GEP operands. We don't 1890 // bail completely out because we want to handle constant GEPs regardless 1891 // of depth. 1892 if (Depth++ >= MaxDepth) 1893 continue; 1894 1895 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 1896 return true; 1897 } 1898 1899 return false; 1900 } 1901 1902 static bool isKnownNonNullFromDominatingCondition(const Value *V, 1903 const Instruction *CtxI, 1904 const DominatorTree *DT) { 1905 assert(V->getType()->isPointerTy() && "V must be pointer type"); 1906 assert(!isa<ConstantData>(V) && "Did not expect ConstantPointerNull"); 1907 1908 if (!CtxI || !DT) 1909 return false; 1910 1911 unsigned NumUsesExplored = 0; 1912 for (auto *U : V->users()) { 1913 // Avoid massive lists 1914 if (NumUsesExplored >= DomConditionsMaxUses) 1915 break; 1916 NumUsesExplored++; 1917 1918 // If the value is used as an argument to a call or invoke, then argument 1919 // attributes may provide an answer about null-ness. 1920 if (auto CS = ImmutableCallSite(U)) 1921 if (auto *CalledFunc = CS.getCalledFunction()) 1922 for (const Argument &Arg : CalledFunc->args()) 1923 if (CS.getArgOperand(Arg.getArgNo()) == V && 1924 Arg.hasNonNullAttr() && DT->dominates(CS.getInstruction(), CtxI)) 1925 return true; 1926 1927 // Consider only compare instructions uniquely controlling a branch 1928 CmpInst::Predicate Pred; 1929 if (!match(const_cast<User *>(U), 1930 m_c_ICmp(Pred, m_Specific(V), m_Zero())) || 1931 (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)) 1932 continue; 1933 1934 SmallVector<const User *, 4> WorkList; 1935 SmallPtrSet<const User *, 4> Visited; 1936 for (auto *CmpU : U->users()) { 1937 assert(WorkList.empty() && "Should be!"); 1938 if (Visited.insert(CmpU).second) 1939 WorkList.push_back(CmpU); 1940 1941 while (!WorkList.empty()) { 1942 auto *Curr = WorkList.pop_back_val(); 1943 1944 // If a user is an AND, add all its users to the work list. We only 1945 // propagate "pred != null" condition through AND because it is only 1946 // correct to assume that all conditions of AND are met in true branch. 1947 // TODO: Support similar logic of OR and EQ predicate? 1948 if (Pred == ICmpInst::ICMP_NE) 1949 if (auto *BO = dyn_cast<BinaryOperator>(Curr)) 1950 if (BO->getOpcode() == Instruction::And) { 1951 for (auto *BOU : BO->users()) 1952 if (Visited.insert(BOU).second) 1953 WorkList.push_back(BOU); 1954 continue; 1955 } 1956 1957 if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) { 1958 assert(BI->isConditional() && "uses a comparison!"); 1959 1960 BasicBlock *NonNullSuccessor = 1961 BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0); 1962 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 1963 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 1964 return true; 1965 } else if (Pred == ICmpInst::ICMP_NE && isGuard(Curr) && 1966 DT->dominates(cast<Instruction>(Curr), CtxI)) { 1967 return true; 1968 } 1969 } 1970 } 1971 } 1972 1973 return false; 1974 } 1975 1976 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 1977 /// ensure that the value it's attached to is never Value? 'RangeType' is 1978 /// is the type of the value described by the range. 1979 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { 1980 const unsigned NumRanges = Ranges->getNumOperands() / 2; 1981 assert(NumRanges >= 1); 1982 for (unsigned i = 0; i < NumRanges; ++i) { 1983 ConstantInt *Lower = 1984 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 1985 ConstantInt *Upper = 1986 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 1987 ConstantRange Range(Lower->getValue(), Upper->getValue()); 1988 if (Range.contains(Value)) 1989 return false; 1990 } 1991 return true; 1992 } 1993 1994 /// Return true if the given value is known to be non-zero when defined. For 1995 /// vectors, return true if every element is known to be non-zero when 1996 /// defined. For pointers, if the context instruction and dominator tree are 1997 /// specified, perform context-sensitive analysis and return true if the 1998 /// pointer couldn't possibly be null at the specified instruction. 1999 /// Supports values with integer or pointer type and vectors of integers. 2000 bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q) { 2001 if (auto *C = dyn_cast<Constant>(V)) { 2002 if (C->isNullValue()) 2003 return false; 2004 if (isa<ConstantInt>(C)) 2005 // Must be non-zero due to null test above. 2006 return true; 2007 2008 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 2009 // See the comment for IntToPtr/PtrToInt instructions below. 2010 if (CE->getOpcode() == Instruction::IntToPtr || 2011 CE->getOpcode() == Instruction::PtrToInt) 2012 if (Q.DL.getTypeSizeInBits(CE->getOperand(0)->getType()) <= 2013 Q.DL.getTypeSizeInBits(CE->getType())) 2014 return isKnownNonZero(CE->getOperand(0), Depth, Q); 2015 } 2016 2017 // For constant vectors, check that all elements are undefined or known 2018 // non-zero to determine that the whole vector is known non-zero. 2019 if (auto *VecTy = dyn_cast<VectorType>(C->getType())) { 2020 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { 2021 Constant *Elt = C->getAggregateElement(i); 2022 if (!Elt || Elt->isNullValue()) 2023 return false; 2024 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) 2025 return false; 2026 } 2027 return true; 2028 } 2029 2030 // A global variable in address space 0 is non null unless extern weak 2031 // or an absolute symbol reference. Other address spaces may have null as a 2032 // valid address for a global, so we can't assume anything. 2033 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 2034 if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() && 2035 GV->getType()->getAddressSpace() == 0) 2036 return true; 2037 } else 2038 return false; 2039 } 2040 2041 if (auto *I = dyn_cast<Instruction>(V)) { 2042 if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) { 2043 // If the possible ranges don't contain zero, then the value is 2044 // definitely non-zero. 2045 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { 2046 const APInt ZeroValue(Ty->getBitWidth(), 0); 2047 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 2048 return true; 2049 } 2050 } 2051 } 2052 2053 // Some of the tests below are recursive, so bail out if we hit the limit. 2054 if (Depth++ >= MaxDepth) 2055 return false; 2056 2057 // Check for pointer simplifications. 2058 if (V->getType()->isPointerTy()) { 2059 // Alloca never returns null, malloc might. 2060 if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0) 2061 return true; 2062 2063 // A byval, inalloca, or nonnull argument is never null. 2064 if (const Argument *A = dyn_cast<Argument>(V)) 2065 if (A->hasByValOrInAllocaAttr() || A->hasNonNullAttr()) 2066 return true; 2067 2068 // A Load tagged with nonnull metadata is never null. 2069 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 2070 if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull)) 2071 return true; 2072 2073 if (const auto *Call = dyn_cast<CallBase>(V)) { 2074 if (Call->isReturnNonNull()) 2075 return true; 2076 if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true)) 2077 return isKnownNonZero(RP, Depth, Q); 2078 } 2079 } 2080 2081 2082 // Check for recursive pointer simplifications. 2083 if (V->getType()->isPointerTy()) { 2084 if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT)) 2085 return true; 2086 2087 // Look through bitcast operations, GEPs, and int2ptr instructions as they 2088 // do not alter the value, or at least not the nullness property of the 2089 // value, e.g., int2ptr is allowed to zero/sign extend the value. 2090 // 2091 // Note that we have to take special care to avoid looking through 2092 // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well 2093 // as casts that can alter the value, e.g., AddrSpaceCasts. 2094 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 2095 if (isGEPKnownNonNull(GEP, Depth, Q)) 2096 return true; 2097 2098 if (auto *BCO = dyn_cast<BitCastOperator>(V)) 2099 return isKnownNonZero(BCO->getOperand(0), Depth, Q); 2100 2101 if (auto *I2P = dyn_cast<IntToPtrInst>(V)) 2102 if (Q.DL.getTypeSizeInBits(I2P->getSrcTy()) <= 2103 Q.DL.getTypeSizeInBits(I2P->getDestTy())) 2104 return isKnownNonZero(I2P->getOperand(0), Depth, Q); 2105 } 2106 2107 // Similar to int2ptr above, we can look through ptr2int here if the cast 2108 // is a no-op or an extend and not a truncate. 2109 if (auto *P2I = dyn_cast<PtrToIntInst>(V)) 2110 if (Q.DL.getTypeSizeInBits(P2I->getSrcTy()) <= 2111 Q.DL.getTypeSizeInBits(P2I->getDestTy())) 2112 return isKnownNonZero(P2I->getOperand(0), Depth, Q); 2113 2114 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 2115 2116 // X | Y != 0 if X != 0 or Y != 0. 2117 Value *X = nullptr, *Y = nullptr; 2118 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 2119 return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q); 2120 2121 // ext X != 0 if X != 0. 2122 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 2123 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 2124 2125 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 2126 // if the lowest bit is shifted off the end. 2127 if (match(V, m_Shl(m_Value(X), m_Value(Y)))) { 2128 // shl nuw can't remove any non-zero bits. 2129 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2130 if (Q.IIQ.hasNoUnsignedWrap(BO)) 2131 return isKnownNonZero(X, Depth, Q); 2132 2133 KnownBits Known(BitWidth); 2134 computeKnownBits(X, Known, Depth, Q); 2135 if (Known.One[0]) 2136 return true; 2137 } 2138 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 2139 // defined if the sign bit is shifted off the end. 2140 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 2141 // shr exact can only shift out zero bits. 2142 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 2143 if (BO->isExact()) 2144 return isKnownNonZero(X, Depth, Q); 2145 2146 KnownBits Known = computeKnownBits(X, Depth, Q); 2147 if (Known.isNegative()) 2148 return true; 2149 2150 // If the shifter operand is a constant, and all of the bits shifted 2151 // out are known to be zero, and X is known non-zero then at least one 2152 // non-zero bit must remain. 2153 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 2154 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 2155 // Is there a known one in the portion not shifted out? 2156 if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal) 2157 return true; 2158 // Are all the bits to be shifted out known zero? 2159 if (Known.countMinTrailingZeros() >= ShiftVal) 2160 return isKnownNonZero(X, Depth, Q); 2161 } 2162 } 2163 // div exact can only produce a zero if the dividend is zero. 2164 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 2165 return isKnownNonZero(X, Depth, Q); 2166 } 2167 // X + Y. 2168 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2169 KnownBits XKnown = computeKnownBits(X, Depth, Q); 2170 KnownBits YKnown = computeKnownBits(Y, Depth, Q); 2171 2172 // If X and Y are both non-negative (as signed values) then their sum is not 2173 // zero unless both X and Y are zero. 2174 if (XKnown.isNonNegative() && YKnown.isNonNegative()) 2175 if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q)) 2176 return true; 2177 2178 // If X and Y are both negative (as signed values) then their sum is not 2179 // zero unless both X and Y equal INT_MIN. 2180 if (XKnown.isNegative() && YKnown.isNegative()) { 2181 APInt Mask = APInt::getSignedMaxValue(BitWidth); 2182 // The sign bit of X is set. If some other bit is set then X is not equal 2183 // to INT_MIN. 2184 if (XKnown.One.intersects(Mask)) 2185 return true; 2186 // The sign bit of Y is set. If some other bit is set then Y is not equal 2187 // to INT_MIN. 2188 if (YKnown.One.intersects(Mask)) 2189 return true; 2190 } 2191 2192 // The sum of a non-negative number and a power of two is not zero. 2193 if (XKnown.isNonNegative() && 2194 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 2195 return true; 2196 if (YKnown.isNonNegative() && 2197 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 2198 return true; 2199 } 2200 // X * Y. 2201 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 2202 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2203 // If X and Y are non-zero then so is X * Y as long as the multiplication 2204 // does not overflow. 2205 if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) && 2206 isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q)) 2207 return true; 2208 } 2209 // (C ? X : Y) != 0 if X != 0 and Y != 0. 2210 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 2211 if (isKnownNonZero(SI->getTrueValue(), Depth, Q) && 2212 isKnownNonZero(SI->getFalseValue(), Depth, Q)) 2213 return true; 2214 } 2215 // PHI 2216 else if (const PHINode *PN = dyn_cast<PHINode>(V)) { 2217 // Try and detect a recurrence that monotonically increases from a 2218 // starting value, as these are common as induction variables. 2219 if (PN->getNumIncomingValues() == 2) { 2220 Value *Start = PN->getIncomingValue(0); 2221 Value *Induction = PN->getIncomingValue(1); 2222 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start)) 2223 std::swap(Start, Induction); 2224 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) { 2225 if (!C->isZero() && !C->isNegative()) { 2226 ConstantInt *X; 2227 if (Q.IIQ.UseInstrInfo && 2228 (match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) || 2229 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) && 2230 !X->isNegative()) 2231 return true; 2232 } 2233 } 2234 } 2235 // Check if all incoming values are non-zero constant. 2236 bool AllNonZeroConstants = llvm::all_of(PN->operands(), [](Value *V) { 2237 return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZero(); 2238 }); 2239 if (AllNonZeroConstants) 2240 return true; 2241 } 2242 2243 KnownBits Known(BitWidth); 2244 computeKnownBits(V, Known, Depth, Q); 2245 return Known.One != 0; 2246 } 2247 2248 /// Return true if V2 == V1 + X, where X is known non-zero. 2249 static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) { 2250 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 2251 if (!BO || BO->getOpcode() != Instruction::Add) 2252 return false; 2253 Value *Op = nullptr; 2254 if (V2 == BO->getOperand(0)) 2255 Op = BO->getOperand(1); 2256 else if (V2 == BO->getOperand(1)) 2257 Op = BO->getOperand(0); 2258 else 2259 return false; 2260 return isKnownNonZero(Op, 0, Q); 2261 } 2262 2263 /// Return true if it is known that V1 != V2. 2264 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) { 2265 if (V1 == V2) 2266 return false; 2267 if (V1->getType() != V2->getType()) 2268 // We can't look through casts yet. 2269 return false; 2270 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q)) 2271 return true; 2272 2273 if (V1->getType()->isIntOrIntVectorTy()) { 2274 // Are any known bits in V1 contradictory to known bits in V2? If V1 2275 // has a known zero where V2 has a known one, they must not be equal. 2276 KnownBits Known1 = computeKnownBits(V1, 0, Q); 2277 KnownBits Known2 = computeKnownBits(V2, 0, Q); 2278 2279 if (Known1.Zero.intersects(Known2.One) || 2280 Known2.Zero.intersects(Known1.One)) 2281 return true; 2282 } 2283 return false; 2284 } 2285 2286 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 2287 /// simplify operations downstream. Mask is known to be zero for bits that V 2288 /// cannot have. 2289 /// 2290 /// This function is defined on values with integer type, values with pointer 2291 /// type, and vectors of integers. In the case 2292 /// where V is a vector, the mask, known zero, and known one values are the 2293 /// same width as the vector element, and the bit is set only if it is true 2294 /// for all of the elements in the vector. 2295 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 2296 const Query &Q) { 2297 KnownBits Known(Mask.getBitWidth()); 2298 computeKnownBits(V, Known, Depth, Q); 2299 return Mask.isSubsetOf(Known.Zero); 2300 } 2301 2302 // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow). 2303 // Returns the input and lower/upper bounds. 2304 static bool isSignedMinMaxClamp(const Value *Select, const Value *&In, 2305 const APInt *&CLow, const APInt *&CHigh) { 2306 assert(isa<Operator>(Select) && 2307 cast<Operator>(Select)->getOpcode() == Instruction::Select && 2308 "Input should be a Select!"); 2309 2310 const Value *LHS = nullptr, *RHS = nullptr; 2311 SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor; 2312 if (SPF != SPF_SMAX && SPF != SPF_SMIN) 2313 return false; 2314 2315 if (!match(RHS, m_APInt(CLow))) 2316 return false; 2317 2318 const Value *LHS2 = nullptr, *RHS2 = nullptr; 2319 SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor; 2320 if (getInverseMinMaxFlavor(SPF) != SPF2) 2321 return false; 2322 2323 if (!match(RHS2, m_APInt(CHigh))) 2324 return false; 2325 2326 if (SPF == SPF_SMIN) 2327 std::swap(CLow, CHigh); 2328 2329 In = LHS2; 2330 return CLow->sle(*CHigh); 2331 } 2332 2333 /// For vector constants, loop over the elements and find the constant with the 2334 /// minimum number of sign bits. Return 0 if the value is not a vector constant 2335 /// or if any element was not analyzed; otherwise, return the count for the 2336 /// element with the minimum number of sign bits. 2337 static unsigned computeNumSignBitsVectorConstant(const Value *V, 2338 unsigned TyBits) { 2339 const auto *CV = dyn_cast<Constant>(V); 2340 if (!CV || !CV->getType()->isVectorTy()) 2341 return 0; 2342 2343 unsigned MinSignBits = TyBits; 2344 unsigned NumElts = CV->getType()->getVectorNumElements(); 2345 for (unsigned i = 0; i != NumElts; ++i) { 2346 // If we find a non-ConstantInt, bail out. 2347 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); 2348 if (!Elt) 2349 return 0; 2350 2351 MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits()); 2352 } 2353 2354 return MinSignBits; 2355 } 2356 2357 static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth, 2358 const Query &Q); 2359 2360 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 2361 const Query &Q) { 2362 unsigned Result = ComputeNumSignBitsImpl(V, Depth, Q); 2363 assert(Result > 0 && "At least one sign bit needs to be present!"); 2364 return Result; 2365 } 2366 2367 /// Return the number of times the sign bit of the register is replicated into 2368 /// the other bits. We know that at least 1 bit is always equal to the sign bit 2369 /// (itself), but other cases can give us information. For example, immediately 2370 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 2371 /// other, so we return 3. For vectors, return the number of sign bits for the 2372 /// vector element with the minimum number of known sign bits. 2373 static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth, 2374 const Query &Q) { 2375 assert(Depth <= MaxDepth && "Limit Search Depth"); 2376 2377 // We return the minimum number of sign bits that are guaranteed to be present 2378 // in V, so for undef we have to conservatively return 1. We don't have the 2379 // same behavior for poison though -- that's a FIXME today. 2380 2381 Type *ScalarTy = V->getType()->getScalarType(); 2382 unsigned TyBits = ScalarTy->isPointerTy() ? 2383 Q.DL.getIndexTypeSizeInBits(ScalarTy) : 2384 Q.DL.getTypeSizeInBits(ScalarTy); 2385 2386 unsigned Tmp, Tmp2; 2387 unsigned FirstAnswer = 1; 2388 2389 // Note that ConstantInt is handled by the general computeKnownBits case 2390 // below. 2391 2392 if (Depth == MaxDepth) 2393 return 1; // Limit search depth. 2394 2395 if (auto *U = dyn_cast<Operator>(V)) { 2396 switch (Operator::getOpcode(V)) { 2397 default: break; 2398 case Instruction::SExt: 2399 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 2400 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 2401 2402 case Instruction::SDiv: { 2403 const APInt *Denominator; 2404 // sdiv X, C -> adds log(C) sign bits. 2405 if (match(U->getOperand(1), m_APInt(Denominator))) { 2406 2407 // Ignore non-positive denominator. 2408 if (!Denominator->isStrictlyPositive()) 2409 break; 2410 2411 // Calculate the incoming numerator bits. 2412 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2413 2414 // Add floor(log(C)) bits to the numerator bits. 2415 return std::min(TyBits, NumBits + Denominator->logBase2()); 2416 } 2417 break; 2418 } 2419 2420 case Instruction::SRem: { 2421 const APInt *Denominator; 2422 // srem X, C -> we know that the result is within [-C+1,C) when C is a 2423 // positive constant. This let us put a lower bound on the number of sign 2424 // bits. 2425 if (match(U->getOperand(1), m_APInt(Denominator))) { 2426 2427 // Ignore non-positive denominator. 2428 if (!Denominator->isStrictlyPositive()) 2429 break; 2430 2431 // Calculate the incoming numerator bits. SRem by a positive constant 2432 // can't lower the number of sign bits. 2433 unsigned NumrBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2434 2435 // Calculate the leading sign bit constraints by examining the 2436 // denominator. Given that the denominator is positive, there are two 2437 // cases: 2438 // 2439 // 1. the numerator is positive. The result range is [0,C) and [0,C) u< 2440 // (1 << ceilLogBase2(C)). 2441 // 2442 // 2. the numerator is negative. Then the result range is (-C,0] and 2443 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 2444 // 2445 // Thus a lower bound on the number of sign bits is `TyBits - 2446 // ceilLogBase2(C)`. 2447 2448 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 2449 return std::max(NumrBits, ResBits); 2450 } 2451 break; 2452 } 2453 2454 case Instruction::AShr: { 2455 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2456 // ashr X, C -> adds C sign bits. Vectors too. 2457 const APInt *ShAmt; 2458 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2459 if (ShAmt->uge(TyBits)) 2460 break; // Bad shift. 2461 unsigned ShAmtLimited = ShAmt->getZExtValue(); 2462 Tmp += ShAmtLimited; 2463 if (Tmp > TyBits) Tmp = TyBits; 2464 } 2465 return Tmp; 2466 } 2467 case Instruction::Shl: { 2468 const APInt *ShAmt; 2469 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2470 // shl destroys sign bits. 2471 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2472 if (ShAmt->uge(TyBits) || // Bad shift. 2473 ShAmt->uge(Tmp)) break; // Shifted all sign bits out. 2474 Tmp2 = ShAmt->getZExtValue(); 2475 return Tmp - Tmp2; 2476 } 2477 break; 2478 } 2479 case Instruction::And: 2480 case Instruction::Or: 2481 case Instruction::Xor: // NOT is handled here. 2482 // Logical binary ops preserve the number of sign bits at the worst. 2483 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2484 if (Tmp != 1) { 2485 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2486 FirstAnswer = std::min(Tmp, Tmp2); 2487 // We computed what we know about the sign bits as our first 2488 // answer. Now proceed to the generic code that uses 2489 // computeKnownBits, and pick whichever answer is better. 2490 } 2491 break; 2492 2493 case Instruction::Select: { 2494 // If we have a clamp pattern, we know that the number of sign bits will 2495 // be the minimum of the clamp min/max range. 2496 const Value *X; 2497 const APInt *CLow, *CHigh; 2498 if (isSignedMinMaxClamp(U, X, CLow, CHigh)) 2499 return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits()); 2500 2501 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2502 if (Tmp == 1) break; 2503 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 2504 return std::min(Tmp, Tmp2); 2505 } 2506 2507 case Instruction::Add: 2508 // Add can have at most one carry bit. Thus we know that the output 2509 // is, at worst, one more bit than the inputs. 2510 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2511 if (Tmp == 1) break; 2512 2513 // Special case decrementing a value (ADD X, -1): 2514 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 2515 if (CRHS->isAllOnesValue()) { 2516 KnownBits Known(TyBits); 2517 computeKnownBits(U->getOperand(0), Known, Depth + 1, Q); 2518 2519 // If the input is known to be 0 or 1, the output is 0/-1, which is 2520 // all sign bits set. 2521 if ((Known.Zero | 1).isAllOnesValue()) 2522 return TyBits; 2523 2524 // If we are subtracting one from a positive number, there is no carry 2525 // out of the result. 2526 if (Known.isNonNegative()) 2527 return Tmp; 2528 } 2529 2530 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2531 if (Tmp2 == 1) break; 2532 return std::min(Tmp, Tmp2) - 1; 2533 2534 case Instruction::Sub: 2535 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2536 if (Tmp2 == 1) break; 2537 2538 // Handle NEG. 2539 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 2540 if (CLHS->isNullValue()) { 2541 KnownBits Known(TyBits); 2542 computeKnownBits(U->getOperand(1), Known, Depth + 1, Q); 2543 // If the input is known to be 0 or 1, the output is 0/-1, which is 2544 // all sign bits set. 2545 if ((Known.Zero | 1).isAllOnesValue()) 2546 return TyBits; 2547 2548 // If the input is known to be positive (the sign bit is known clear), 2549 // the output of the NEG has the same number of sign bits as the 2550 // input. 2551 if (Known.isNonNegative()) 2552 return Tmp2; 2553 2554 // Otherwise, we treat this like a SUB. 2555 } 2556 2557 // Sub can have at most one carry bit. Thus we know that the output 2558 // is, at worst, one more bit than the inputs. 2559 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2560 if (Tmp == 1) break; 2561 return std::min(Tmp, Tmp2) - 1; 2562 2563 case Instruction::Mul: { 2564 // The output of the Mul can be at most twice the valid bits in the 2565 // inputs. 2566 unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2567 if (SignBitsOp0 == 1) break; 2568 unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2569 if (SignBitsOp1 == 1) break; 2570 unsigned OutValidBits = 2571 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1); 2572 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1; 2573 } 2574 2575 case Instruction::PHI: { 2576 const PHINode *PN = cast<PHINode>(U); 2577 unsigned NumIncomingValues = PN->getNumIncomingValues(); 2578 // Don't analyze large in-degree PHIs. 2579 if (NumIncomingValues > 4) break; 2580 // Unreachable blocks may have zero-operand PHI nodes. 2581 if (NumIncomingValues == 0) break; 2582 2583 // Take the minimum of all incoming values. This can't infinitely loop 2584 // because of our depth threshold. 2585 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q); 2586 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) { 2587 if (Tmp == 1) return Tmp; 2588 Tmp = std::min( 2589 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q)); 2590 } 2591 return Tmp; 2592 } 2593 2594 case Instruction::Trunc: 2595 // FIXME: it's tricky to do anything useful for this, but it is an 2596 // important case for targets like X86. 2597 break; 2598 2599 case Instruction::ExtractElement: 2600 // Look through extract element. At the moment we keep this simple and 2601 // skip tracking the specific element. But at least we might find 2602 // information valid for all elements of the vector (for example if vector 2603 // is sign extended, shifted, etc). 2604 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2605 2606 case Instruction::ShuffleVector: { 2607 // TODO: This is copied almost directly from the SelectionDAG version of 2608 // ComputeNumSignBits. It would be better if we could share common 2609 // code. If not, make sure that changes are translated to the DAG. 2610 2611 // Collect the minimum number of sign bits that are shared by every vector 2612 // element referenced by the shuffle. 2613 auto *Shuf = cast<ShuffleVectorInst>(U); 2614 int NumElts = Shuf->getOperand(0)->getType()->getVectorNumElements(); 2615 int NumMaskElts = Shuf->getMask()->getType()->getVectorNumElements(); 2616 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 2617 for (int i = 0; i != NumMaskElts; ++i) { 2618 int M = Shuf->getMaskValue(i); 2619 assert(M < NumElts * 2 && "Invalid shuffle mask constant"); 2620 // For undef elements, we don't know anything about the common state of 2621 // the shuffle result. 2622 if (M == -1) 2623 return 1; 2624 if (M < NumElts) 2625 DemandedLHS.setBit(M % NumElts); 2626 else 2627 DemandedRHS.setBit(M % NumElts); 2628 } 2629 Tmp = std::numeric_limits<unsigned>::max(); 2630 if (!!DemandedLHS) 2631 Tmp = ComputeNumSignBits(Shuf->getOperand(0), Depth + 1, Q); 2632 if (!!DemandedRHS) { 2633 Tmp2 = ComputeNumSignBits(Shuf->getOperand(1), Depth + 1, Q); 2634 Tmp = std::min(Tmp, Tmp2); 2635 } 2636 // If we don't know anything, early out and try computeKnownBits 2637 // fall-back. 2638 if (Tmp == 1) 2639 break; 2640 assert(Tmp <= V->getType()->getScalarSizeInBits() && 2641 "Failed to determine minimum sign bits"); 2642 return Tmp; 2643 } 2644 } 2645 } 2646 2647 // Finally, if we can prove that the top bits of the result are 0's or 1's, 2648 // use this information. 2649 2650 // If we can examine all elements of a vector constant successfully, we're 2651 // done (we can't do any better than that). If not, keep trying. 2652 if (unsigned VecSignBits = computeNumSignBitsVectorConstant(V, TyBits)) 2653 return VecSignBits; 2654 2655 KnownBits Known(TyBits); 2656 computeKnownBits(V, Known, Depth, Q); 2657 2658 // If we know that the sign bit is either zero or one, determine the number of 2659 // identical bits in the top of the input value. 2660 return std::max(FirstAnswer, Known.countMinSignBits()); 2661 } 2662 2663 /// This function computes the integer multiple of Base that equals V. 2664 /// If successful, it returns true and returns the multiple in 2665 /// Multiple. If unsuccessful, it returns false. It looks 2666 /// through SExt instructions only if LookThroughSExt is true. 2667 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 2668 bool LookThroughSExt, unsigned Depth) { 2669 assert(V && "No Value?"); 2670 assert(Depth <= MaxDepth && "Limit Search Depth"); 2671 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 2672 2673 Type *T = V->getType(); 2674 2675 ConstantInt *CI = dyn_cast<ConstantInt>(V); 2676 2677 if (Base == 0) 2678 return false; 2679 2680 if (Base == 1) { 2681 Multiple = V; 2682 return true; 2683 } 2684 2685 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 2686 Constant *BaseVal = ConstantInt::get(T, Base); 2687 if (CO && CO == BaseVal) { 2688 // Multiple is 1. 2689 Multiple = ConstantInt::get(T, 1); 2690 return true; 2691 } 2692 2693 if (CI && CI->getZExtValue() % Base == 0) { 2694 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 2695 return true; 2696 } 2697 2698 if (Depth == MaxDepth) return false; // Limit search depth. 2699 2700 Operator *I = dyn_cast<Operator>(V); 2701 if (!I) return false; 2702 2703 switch (I->getOpcode()) { 2704 default: break; 2705 case Instruction::SExt: 2706 if (!LookThroughSExt) return false; 2707 // otherwise fall through to ZExt 2708 LLVM_FALLTHROUGH; 2709 case Instruction::ZExt: 2710 return ComputeMultiple(I->getOperand(0), Base, Multiple, 2711 LookThroughSExt, Depth+1); 2712 case Instruction::Shl: 2713 case Instruction::Mul: { 2714 Value *Op0 = I->getOperand(0); 2715 Value *Op1 = I->getOperand(1); 2716 2717 if (I->getOpcode() == Instruction::Shl) { 2718 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 2719 if (!Op1CI) return false; 2720 // Turn Op0 << Op1 into Op0 * 2^Op1 2721 APInt Op1Int = Op1CI->getValue(); 2722 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 2723 APInt API(Op1Int.getBitWidth(), 0); 2724 API.setBit(BitToSet); 2725 Op1 = ConstantInt::get(V->getContext(), API); 2726 } 2727 2728 Value *Mul0 = nullptr; 2729 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 2730 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 2731 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 2732 if (Op1C->getType()->getPrimitiveSizeInBits() < 2733 MulC->getType()->getPrimitiveSizeInBits()) 2734 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 2735 if (Op1C->getType()->getPrimitiveSizeInBits() > 2736 MulC->getType()->getPrimitiveSizeInBits()) 2737 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 2738 2739 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 2740 Multiple = ConstantExpr::getMul(MulC, Op1C); 2741 return true; 2742 } 2743 2744 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 2745 if (Mul0CI->getValue() == 1) { 2746 // V == Base * Op1, so return Op1 2747 Multiple = Op1; 2748 return true; 2749 } 2750 } 2751 2752 Value *Mul1 = nullptr; 2753 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 2754 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 2755 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 2756 if (Op0C->getType()->getPrimitiveSizeInBits() < 2757 MulC->getType()->getPrimitiveSizeInBits()) 2758 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 2759 if (Op0C->getType()->getPrimitiveSizeInBits() > 2760 MulC->getType()->getPrimitiveSizeInBits()) 2761 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 2762 2763 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 2764 Multiple = ConstantExpr::getMul(MulC, Op0C); 2765 return true; 2766 } 2767 2768 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 2769 if (Mul1CI->getValue() == 1) { 2770 // V == Base * Op0, so return Op0 2771 Multiple = Op0; 2772 return true; 2773 } 2774 } 2775 } 2776 } 2777 2778 // We could not determine if V is a multiple of Base. 2779 return false; 2780 } 2781 2782 Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS, 2783 const TargetLibraryInfo *TLI) { 2784 const Function *F = ICS.getCalledFunction(); 2785 if (!F) 2786 return Intrinsic::not_intrinsic; 2787 2788 if (F->isIntrinsic()) 2789 return F->getIntrinsicID(); 2790 2791 if (!TLI) 2792 return Intrinsic::not_intrinsic; 2793 2794 LibFunc Func; 2795 // We're going to make assumptions on the semantics of the functions, check 2796 // that the target knows that it's available in this environment and it does 2797 // not have local linkage. 2798 if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func)) 2799 return Intrinsic::not_intrinsic; 2800 2801 if (!ICS.onlyReadsMemory()) 2802 return Intrinsic::not_intrinsic; 2803 2804 // Otherwise check if we have a call to a function that can be turned into a 2805 // vector intrinsic. 2806 switch (Func) { 2807 default: 2808 break; 2809 case LibFunc_sin: 2810 case LibFunc_sinf: 2811 case LibFunc_sinl: 2812 return Intrinsic::sin; 2813 case LibFunc_cos: 2814 case LibFunc_cosf: 2815 case LibFunc_cosl: 2816 return Intrinsic::cos; 2817 case LibFunc_exp: 2818 case LibFunc_expf: 2819 case LibFunc_expl: 2820 return Intrinsic::exp; 2821 case LibFunc_exp2: 2822 case LibFunc_exp2f: 2823 case LibFunc_exp2l: 2824 return Intrinsic::exp2; 2825 case LibFunc_log: 2826 case LibFunc_logf: 2827 case LibFunc_logl: 2828 return Intrinsic::log; 2829 case LibFunc_log10: 2830 case LibFunc_log10f: 2831 case LibFunc_log10l: 2832 return Intrinsic::log10; 2833 case LibFunc_log2: 2834 case LibFunc_log2f: 2835 case LibFunc_log2l: 2836 return Intrinsic::log2; 2837 case LibFunc_fabs: 2838 case LibFunc_fabsf: 2839 case LibFunc_fabsl: 2840 return Intrinsic::fabs; 2841 case LibFunc_fmin: 2842 case LibFunc_fminf: 2843 case LibFunc_fminl: 2844 return Intrinsic::minnum; 2845 case LibFunc_fmax: 2846 case LibFunc_fmaxf: 2847 case LibFunc_fmaxl: 2848 return Intrinsic::maxnum; 2849 case LibFunc_copysign: 2850 case LibFunc_copysignf: 2851 case LibFunc_copysignl: 2852 return Intrinsic::copysign; 2853 case LibFunc_floor: 2854 case LibFunc_floorf: 2855 case LibFunc_floorl: 2856 return Intrinsic::floor; 2857 case LibFunc_ceil: 2858 case LibFunc_ceilf: 2859 case LibFunc_ceill: 2860 return Intrinsic::ceil; 2861 case LibFunc_trunc: 2862 case LibFunc_truncf: 2863 case LibFunc_truncl: 2864 return Intrinsic::trunc; 2865 case LibFunc_rint: 2866 case LibFunc_rintf: 2867 case LibFunc_rintl: 2868 return Intrinsic::rint; 2869 case LibFunc_nearbyint: 2870 case LibFunc_nearbyintf: 2871 case LibFunc_nearbyintl: 2872 return Intrinsic::nearbyint; 2873 case LibFunc_round: 2874 case LibFunc_roundf: 2875 case LibFunc_roundl: 2876 return Intrinsic::round; 2877 case LibFunc_pow: 2878 case LibFunc_powf: 2879 case LibFunc_powl: 2880 return Intrinsic::pow; 2881 case LibFunc_sqrt: 2882 case LibFunc_sqrtf: 2883 case LibFunc_sqrtl: 2884 return Intrinsic::sqrt; 2885 } 2886 2887 return Intrinsic::not_intrinsic; 2888 } 2889 2890 /// Return true if we can prove that the specified FP value is never equal to 2891 /// -0.0. 2892 /// 2893 /// NOTE: this function will need to be revisited when we support non-default 2894 /// rounding modes! 2895 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, 2896 unsigned Depth) { 2897 if (auto *CFP = dyn_cast<ConstantFP>(V)) 2898 return !CFP->getValueAPF().isNegZero(); 2899 2900 // Limit search depth. 2901 if (Depth == MaxDepth) 2902 return false; 2903 2904 auto *Op = dyn_cast<Operator>(V); 2905 if (!Op) 2906 return false; 2907 2908 // Check if the nsz fast-math flag is set. 2909 if (auto *FPO = dyn_cast<FPMathOperator>(Op)) 2910 if (FPO->hasNoSignedZeros()) 2911 return true; 2912 2913 // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0. 2914 if (match(Op, m_FAdd(m_Value(), m_PosZeroFP()))) 2915 return true; 2916 2917 // sitofp and uitofp turn into +0.0 for zero. 2918 if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) 2919 return true; 2920 2921 if (auto *Call = dyn_cast<CallInst>(Op)) { 2922 Intrinsic::ID IID = getIntrinsicForCallSite(Call, TLI); 2923 switch (IID) { 2924 default: 2925 break; 2926 // sqrt(-0.0) = -0.0, no other negative results are possible. 2927 case Intrinsic::sqrt: 2928 case Intrinsic::canonicalize: 2929 return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1); 2930 // fabs(x) != -0.0 2931 case Intrinsic::fabs: 2932 return true; 2933 } 2934 } 2935 2936 return false; 2937 } 2938 2939 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a 2940 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign 2941 /// bit despite comparing equal. 2942 static bool cannotBeOrderedLessThanZeroImpl(const Value *V, 2943 const TargetLibraryInfo *TLI, 2944 bool SignBitOnly, 2945 unsigned Depth) { 2946 // TODO: This function does not do the right thing when SignBitOnly is true 2947 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform 2948 // which flips the sign bits of NaNs. See 2949 // https://llvm.org/bugs/show_bug.cgi?id=31702. 2950 2951 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 2952 return !CFP->getValueAPF().isNegative() || 2953 (!SignBitOnly && CFP->getValueAPF().isZero()); 2954 } 2955 2956 // Handle vector of constants. 2957 if (auto *CV = dyn_cast<Constant>(V)) { 2958 if (CV->getType()->isVectorTy()) { 2959 unsigned NumElts = CV->getType()->getVectorNumElements(); 2960 for (unsigned i = 0; i != NumElts; ++i) { 2961 auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i)); 2962 if (!CFP) 2963 return false; 2964 if (CFP->getValueAPF().isNegative() && 2965 (SignBitOnly || !CFP->getValueAPF().isZero())) 2966 return false; 2967 } 2968 2969 // All non-negative ConstantFPs. 2970 return true; 2971 } 2972 } 2973 2974 if (Depth == MaxDepth) 2975 return false; // Limit search depth. 2976 2977 const Operator *I = dyn_cast<Operator>(V); 2978 if (!I) 2979 return false; 2980 2981 switch (I->getOpcode()) { 2982 default: 2983 break; 2984 // Unsigned integers are always nonnegative. 2985 case Instruction::UIToFP: 2986 return true; 2987 case Instruction::FMul: 2988 // x*x is always non-negative or a NaN. 2989 if (I->getOperand(0) == I->getOperand(1) && 2990 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs())) 2991 return true; 2992 2993 LLVM_FALLTHROUGH; 2994 case Instruction::FAdd: 2995 case Instruction::FDiv: 2996 case Instruction::FRem: 2997 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2998 Depth + 1) && 2999 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3000 Depth + 1); 3001 case Instruction::Select: 3002 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3003 Depth + 1) && 3004 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3005 Depth + 1); 3006 case Instruction::FPExt: 3007 case Instruction::FPTrunc: 3008 // Widening/narrowing never change sign. 3009 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3010 Depth + 1); 3011 case Instruction::ExtractElement: 3012 // Look through extract element. At the moment we keep this simple and skip 3013 // tracking the specific element. But at least we might find information 3014 // valid for all elements of the vector. 3015 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3016 Depth + 1); 3017 case Instruction::Call: 3018 const auto *CI = cast<CallInst>(I); 3019 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI); 3020 switch (IID) { 3021 default: 3022 break; 3023 case Intrinsic::maxnum: 3024 return (isKnownNeverNaN(I->getOperand(0), TLI) && 3025 cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, 3026 SignBitOnly, Depth + 1)) || 3027 (isKnownNeverNaN(I->getOperand(1), TLI) && 3028 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, 3029 SignBitOnly, Depth + 1)); 3030 3031 case Intrinsic::maximum: 3032 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3033 Depth + 1) || 3034 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3035 Depth + 1); 3036 case Intrinsic::minnum: 3037 case Intrinsic::minimum: 3038 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3039 Depth + 1) && 3040 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3041 Depth + 1); 3042 case Intrinsic::exp: 3043 case Intrinsic::exp2: 3044 case Intrinsic::fabs: 3045 return true; 3046 3047 case Intrinsic::sqrt: 3048 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0. 3049 if (!SignBitOnly) 3050 return true; 3051 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() || 3052 CannotBeNegativeZero(CI->getOperand(0), TLI)); 3053 3054 case Intrinsic::powi: 3055 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) { 3056 // powi(x,n) is non-negative if n is even. 3057 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0) 3058 return true; 3059 } 3060 // TODO: This is not correct. Given that exp is an integer, here are the 3061 // ways that pow can return a negative value: 3062 // 3063 // pow(x, exp) --> negative if exp is odd and x is negative. 3064 // pow(-0, exp) --> -inf if exp is negative odd. 3065 // pow(-0, exp) --> -0 if exp is positive odd. 3066 // pow(-inf, exp) --> -0 if exp is negative odd. 3067 // pow(-inf, exp) --> -inf if exp is positive odd. 3068 // 3069 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN, 3070 // but we must return false if x == -0. Unfortunately we do not currently 3071 // have a way of expressing this constraint. See details in 3072 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3073 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3074 Depth + 1); 3075 3076 case Intrinsic::fma: 3077 case Intrinsic::fmuladd: 3078 // x*x+y is non-negative if y is non-negative. 3079 return I->getOperand(0) == I->getOperand(1) && 3080 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) && 3081 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3082 Depth + 1); 3083 } 3084 break; 3085 } 3086 return false; 3087 } 3088 3089 bool llvm::CannotBeOrderedLessThanZero(const Value *V, 3090 const TargetLibraryInfo *TLI) { 3091 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0); 3092 } 3093 3094 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) { 3095 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0); 3096 } 3097 3098 bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI, 3099 unsigned Depth) { 3100 assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type"); 3101 3102 // If we're told that NaNs won't happen, assume they won't. 3103 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3104 if (FPMathOp->hasNoNaNs()) 3105 return true; 3106 3107 // Handle scalar constants. 3108 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3109 return !CFP->isNaN(); 3110 3111 if (Depth == MaxDepth) 3112 return false; 3113 3114 if (auto *Inst = dyn_cast<Instruction>(V)) { 3115 switch (Inst->getOpcode()) { 3116 case Instruction::FAdd: 3117 case Instruction::FMul: 3118 case Instruction::FSub: 3119 case Instruction::FDiv: 3120 case Instruction::FRem: { 3121 // TODO: Need isKnownNeverInfinity 3122 return false; 3123 } 3124 case Instruction::Select: { 3125 return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3126 isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1); 3127 } 3128 case Instruction::SIToFP: 3129 case Instruction::UIToFP: 3130 return true; 3131 case Instruction::FPTrunc: 3132 case Instruction::FPExt: 3133 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1); 3134 default: 3135 break; 3136 } 3137 } 3138 3139 if (const auto *II = dyn_cast<IntrinsicInst>(V)) { 3140 switch (II->getIntrinsicID()) { 3141 case Intrinsic::canonicalize: 3142 case Intrinsic::fabs: 3143 case Intrinsic::copysign: 3144 case Intrinsic::exp: 3145 case Intrinsic::exp2: 3146 case Intrinsic::floor: 3147 case Intrinsic::ceil: 3148 case Intrinsic::trunc: 3149 case Intrinsic::rint: 3150 case Intrinsic::nearbyint: 3151 case Intrinsic::round: 3152 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1); 3153 case Intrinsic::sqrt: 3154 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) && 3155 CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI); 3156 case Intrinsic::minnum: 3157 case Intrinsic::maxnum: 3158 // If either operand is not NaN, the result is not NaN. 3159 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) || 3160 isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1); 3161 default: 3162 return false; 3163 } 3164 } 3165 3166 // Bail out for constant expressions, but try to handle vector constants. 3167 if (!V->getType()->isVectorTy() || !isa<Constant>(V)) 3168 return false; 3169 3170 // For vectors, verify that each element is not NaN. 3171 unsigned NumElts = V->getType()->getVectorNumElements(); 3172 for (unsigned i = 0; i != NumElts; ++i) { 3173 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3174 if (!Elt) 3175 return false; 3176 if (isa<UndefValue>(Elt)) 3177 continue; 3178 auto *CElt = dyn_cast<ConstantFP>(Elt); 3179 if (!CElt || CElt->isNaN()) 3180 return false; 3181 } 3182 // All elements were confirmed not-NaN or undefined. 3183 return true; 3184 } 3185 3186 Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) { 3187 3188 // All byte-wide stores are splatable, even of arbitrary variables. 3189 if (V->getType()->isIntegerTy(8)) 3190 return V; 3191 3192 LLVMContext &Ctx = V->getContext(); 3193 3194 // Undef don't care. 3195 auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx)); 3196 if (isa<UndefValue>(V)) 3197 return UndefInt8; 3198 3199 const uint64_t Size = DL.getTypeStoreSize(V->getType()); 3200 if (!Size) 3201 return UndefInt8; 3202 3203 Constant *C = dyn_cast<Constant>(V); 3204 if (!C) { 3205 // Conceptually, we could handle things like: 3206 // %a = zext i8 %X to i16 3207 // %b = shl i16 %a, 8 3208 // %c = or i16 %a, %b 3209 // but until there is an example that actually needs this, it doesn't seem 3210 // worth worrying about. 3211 return nullptr; 3212 } 3213 3214 // Handle 'null' ConstantArrayZero etc. 3215 if (C->isNullValue()) 3216 return Constant::getNullValue(Type::getInt8Ty(Ctx)); 3217 3218 // Constant floating-point values can be handled as integer values if the 3219 // corresponding integer value is "byteable". An important case is 0.0. 3220 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 3221 Type *Ty = nullptr; 3222 if (CFP->getType()->isHalfTy()) 3223 Ty = Type::getInt16Ty(Ctx); 3224 else if (CFP->getType()->isFloatTy()) 3225 Ty = Type::getInt32Ty(Ctx); 3226 else if (CFP->getType()->isDoubleTy()) 3227 Ty = Type::getInt64Ty(Ctx); 3228 // Don't handle long double formats, which have strange constraints. 3229 return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL) 3230 : nullptr; 3231 } 3232 3233 // We can handle constant integers that are multiple of 8 bits. 3234 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { 3235 if (CI->getBitWidth() % 8 == 0) { 3236 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 3237 if (!CI->getValue().isSplat(8)) 3238 return nullptr; 3239 return ConstantInt::get(Ctx, CI->getValue().trunc(8)); 3240 } 3241 } 3242 3243 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 3244 if (CE->getOpcode() == Instruction::IntToPtr) { 3245 auto PS = DL.getPointerSizeInBits( 3246 cast<PointerType>(CE->getType())->getAddressSpace()); 3247 return isBytewiseValue( 3248 ConstantExpr::getIntegerCast(CE->getOperand(0), 3249 Type::getIntNTy(Ctx, PS), false), 3250 DL); 3251 } 3252 } 3253 3254 auto Merge = [&](Value *LHS, Value *RHS) -> Value * { 3255 if (LHS == RHS) 3256 return LHS; 3257 if (!LHS || !RHS) 3258 return nullptr; 3259 if (LHS == UndefInt8) 3260 return RHS; 3261 if (RHS == UndefInt8) 3262 return LHS; 3263 return nullptr; 3264 }; 3265 3266 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) { 3267 Value *Val = UndefInt8; 3268 for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I) 3269 if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL)))) 3270 return nullptr; 3271 return Val; 3272 } 3273 3274 if (isa<ConstantAggregate>(C)) { 3275 Value *Val = UndefInt8; 3276 for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I) 3277 if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL)))) 3278 return nullptr; 3279 return Val; 3280 } 3281 3282 // Don't try to handle the handful of other constants. 3283 return nullptr; 3284 } 3285 3286 // This is the recursive version of BuildSubAggregate. It takes a few different 3287 // arguments. Idxs is the index within the nested struct From that we are 3288 // looking at now (which is of type IndexedType). IdxSkip is the number of 3289 // indices from Idxs that should be left out when inserting into the resulting 3290 // struct. To is the result struct built so far, new insertvalue instructions 3291 // build on that. 3292 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 3293 SmallVectorImpl<unsigned> &Idxs, 3294 unsigned IdxSkip, 3295 Instruction *InsertBefore) { 3296 StructType *STy = dyn_cast<StructType>(IndexedType); 3297 if (STy) { 3298 // Save the original To argument so we can modify it 3299 Value *OrigTo = To; 3300 // General case, the type indexed by Idxs is a struct 3301 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 3302 // Process each struct element recursively 3303 Idxs.push_back(i); 3304 Value *PrevTo = To; 3305 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 3306 InsertBefore); 3307 Idxs.pop_back(); 3308 if (!To) { 3309 // Couldn't find any inserted value for this index? Cleanup 3310 while (PrevTo != OrigTo) { 3311 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 3312 PrevTo = Del->getAggregateOperand(); 3313 Del->eraseFromParent(); 3314 } 3315 // Stop processing elements 3316 break; 3317 } 3318 } 3319 // If we successfully found a value for each of our subaggregates 3320 if (To) 3321 return To; 3322 } 3323 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 3324 // the struct's elements had a value that was inserted directly. In the latter 3325 // case, perhaps we can't determine each of the subelements individually, but 3326 // we might be able to find the complete struct somewhere. 3327 3328 // Find the value that is at that particular spot 3329 Value *V = FindInsertedValue(From, Idxs); 3330 3331 if (!V) 3332 return nullptr; 3333 3334 // Insert the value in the new (sub) aggregate 3335 return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 3336 "tmp", InsertBefore); 3337 } 3338 3339 // This helper takes a nested struct and extracts a part of it (which is again a 3340 // struct) into a new value. For example, given the struct: 3341 // { a, { b, { c, d }, e } } 3342 // and the indices "1, 1" this returns 3343 // { c, d }. 3344 // 3345 // It does this by inserting an insertvalue for each element in the resulting 3346 // struct, as opposed to just inserting a single struct. This will only work if 3347 // each of the elements of the substruct are known (ie, inserted into From by an 3348 // insertvalue instruction somewhere). 3349 // 3350 // All inserted insertvalue instructions are inserted before InsertBefore 3351 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 3352 Instruction *InsertBefore) { 3353 assert(InsertBefore && "Must have someplace to insert!"); 3354 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 3355 idx_range); 3356 Value *To = UndefValue::get(IndexedType); 3357 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 3358 unsigned IdxSkip = Idxs.size(); 3359 3360 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 3361 } 3362 3363 /// Given an aggregate and a sequence of indices, see if the scalar value 3364 /// indexed is already around as a register, for example if it was inserted 3365 /// directly into the aggregate. 3366 /// 3367 /// If InsertBefore is not null, this function will duplicate (modified) 3368 /// insertvalues when a part of a nested struct is extracted. 3369 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 3370 Instruction *InsertBefore) { 3371 // Nothing to index? Just return V then (this is useful at the end of our 3372 // recursion). 3373 if (idx_range.empty()) 3374 return V; 3375 // We have indices, so V should have an indexable type. 3376 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 3377 "Not looking at a struct or array?"); 3378 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 3379 "Invalid indices for type?"); 3380 3381 if (Constant *C = dyn_cast<Constant>(V)) { 3382 C = C->getAggregateElement(idx_range[0]); 3383 if (!C) return nullptr; 3384 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 3385 } 3386 3387 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 3388 // Loop the indices for the insertvalue instruction in parallel with the 3389 // requested indices 3390 const unsigned *req_idx = idx_range.begin(); 3391 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 3392 i != e; ++i, ++req_idx) { 3393 if (req_idx == idx_range.end()) { 3394 // We can't handle this without inserting insertvalues 3395 if (!InsertBefore) 3396 return nullptr; 3397 3398 // The requested index identifies a part of a nested aggregate. Handle 3399 // this specially. For example, 3400 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 3401 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 3402 // %C = extractvalue {i32, { i32, i32 } } %B, 1 3403 // This can be changed into 3404 // %A = insertvalue {i32, i32 } undef, i32 10, 0 3405 // %C = insertvalue {i32, i32 } %A, i32 11, 1 3406 // which allows the unused 0,0 element from the nested struct to be 3407 // removed. 3408 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 3409 InsertBefore); 3410 } 3411 3412 // This insert value inserts something else than what we are looking for. 3413 // See if the (aggregate) value inserted into has the value we are 3414 // looking for, then. 3415 if (*req_idx != *i) 3416 return FindInsertedValue(I->getAggregateOperand(), idx_range, 3417 InsertBefore); 3418 } 3419 // If we end up here, the indices of the insertvalue match with those 3420 // requested (though possibly only partially). Now we recursively look at 3421 // the inserted value, passing any remaining indices. 3422 return FindInsertedValue(I->getInsertedValueOperand(), 3423 makeArrayRef(req_idx, idx_range.end()), 3424 InsertBefore); 3425 } 3426 3427 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 3428 // If we're extracting a value from an aggregate that was extracted from 3429 // something else, we can extract from that something else directly instead. 3430 // However, we will need to chain I's indices with the requested indices. 3431 3432 // Calculate the number of indices required 3433 unsigned size = I->getNumIndices() + idx_range.size(); 3434 // Allocate some space to put the new indices in 3435 SmallVector<unsigned, 5> Idxs; 3436 Idxs.reserve(size); 3437 // Add indices from the extract value instruction 3438 Idxs.append(I->idx_begin(), I->idx_end()); 3439 3440 // Add requested indices 3441 Idxs.append(idx_range.begin(), idx_range.end()); 3442 3443 assert(Idxs.size() == size 3444 && "Number of indices added not correct?"); 3445 3446 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 3447 } 3448 // Otherwise, we don't know (such as, extracting from a function return value 3449 // or load instruction) 3450 return nullptr; 3451 } 3452 3453 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP, 3454 unsigned CharSize) { 3455 // Make sure the GEP has exactly three arguments. 3456 if (GEP->getNumOperands() != 3) 3457 return false; 3458 3459 // Make sure the index-ee is a pointer to array of \p CharSize integers. 3460 // CharSize. 3461 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 3462 if (!AT || !AT->getElementType()->isIntegerTy(CharSize)) 3463 return false; 3464 3465 // Check to make sure that the first operand of the GEP is an integer and 3466 // has value 0 so that we are sure we're indexing into the initializer. 3467 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 3468 if (!FirstIdx || !FirstIdx->isZero()) 3469 return false; 3470 3471 return true; 3472 } 3473 3474 bool llvm::getConstantDataArrayInfo(const Value *V, 3475 ConstantDataArraySlice &Slice, 3476 unsigned ElementSize, uint64_t Offset) { 3477 assert(V); 3478 3479 // Look through bitcast instructions and geps. 3480 V = V->stripPointerCasts(); 3481 3482 // If the value is a GEP instruction or constant expression, treat it as an 3483 // offset. 3484 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3485 // The GEP operator should be based on a pointer to string constant, and is 3486 // indexing into the string constant. 3487 if (!isGEPBasedOnPointerToString(GEP, ElementSize)) 3488 return false; 3489 3490 // If the second index isn't a ConstantInt, then this is a variable index 3491 // into the array. If this occurs, we can't say anything meaningful about 3492 // the string. 3493 uint64_t StartIdx = 0; 3494 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 3495 StartIdx = CI->getZExtValue(); 3496 else 3497 return false; 3498 return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize, 3499 StartIdx + Offset); 3500 } 3501 3502 // The GEP instruction, constant or instruction, must reference a global 3503 // variable that is a constant and is initialized. The referenced constant 3504 // initializer is the array that we'll use for optimization. 3505 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 3506 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 3507 return false; 3508 3509 const ConstantDataArray *Array; 3510 ArrayType *ArrayTy; 3511 if (GV->getInitializer()->isNullValue()) { 3512 Type *GVTy = GV->getValueType(); 3513 if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) { 3514 // A zeroinitializer for the array; there is no ConstantDataArray. 3515 Array = nullptr; 3516 } else { 3517 const DataLayout &DL = GV->getParent()->getDataLayout(); 3518 uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy); 3519 uint64_t Length = SizeInBytes / (ElementSize / 8); 3520 if (Length <= Offset) 3521 return false; 3522 3523 Slice.Array = nullptr; 3524 Slice.Offset = 0; 3525 Slice.Length = Length - Offset; 3526 return true; 3527 } 3528 } else { 3529 // This must be a ConstantDataArray. 3530 Array = dyn_cast<ConstantDataArray>(GV->getInitializer()); 3531 if (!Array) 3532 return false; 3533 ArrayTy = Array->getType(); 3534 } 3535 if (!ArrayTy->getElementType()->isIntegerTy(ElementSize)) 3536 return false; 3537 3538 uint64_t NumElts = ArrayTy->getArrayNumElements(); 3539 if (Offset > NumElts) 3540 return false; 3541 3542 Slice.Array = Array; 3543 Slice.Offset = Offset; 3544 Slice.Length = NumElts - Offset; 3545 return true; 3546 } 3547 3548 /// This function computes the length of a null-terminated C string pointed to 3549 /// by V. If successful, it returns true and returns the string in Str. 3550 /// If unsuccessful, it returns false. 3551 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 3552 uint64_t Offset, bool TrimAtNul) { 3553 ConstantDataArraySlice Slice; 3554 if (!getConstantDataArrayInfo(V, Slice, 8, Offset)) 3555 return false; 3556 3557 if (Slice.Array == nullptr) { 3558 if (TrimAtNul) { 3559 Str = StringRef(); 3560 return true; 3561 } 3562 if (Slice.Length == 1) { 3563 Str = StringRef("", 1); 3564 return true; 3565 } 3566 // We cannot instantiate a StringRef as we do not have an appropriate string 3567 // of 0s at hand. 3568 return false; 3569 } 3570 3571 // Start out with the entire array in the StringRef. 3572 Str = Slice.Array->getAsString(); 3573 // Skip over 'offset' bytes. 3574 Str = Str.substr(Slice.Offset); 3575 3576 if (TrimAtNul) { 3577 // Trim off the \0 and anything after it. If the array is not nul 3578 // terminated, we just return the whole end of string. The client may know 3579 // some other way that the string is length-bound. 3580 Str = Str.substr(0, Str.find('\0')); 3581 } 3582 return true; 3583 } 3584 3585 // These next two are very similar to the above, but also look through PHI 3586 // nodes. 3587 // TODO: See if we can integrate these two together. 3588 3589 /// If we can compute the length of the string pointed to by 3590 /// the specified pointer, return 'len+1'. If we can't, return 0. 3591 static uint64_t GetStringLengthH(const Value *V, 3592 SmallPtrSetImpl<const PHINode*> &PHIs, 3593 unsigned CharSize) { 3594 // Look through noop bitcast instructions. 3595 V = V->stripPointerCasts(); 3596 3597 // If this is a PHI node, there are two cases: either we have already seen it 3598 // or we haven't. 3599 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 3600 if (!PHIs.insert(PN).second) 3601 return ~0ULL; // already in the set. 3602 3603 // If it was new, see if all the input strings are the same length. 3604 uint64_t LenSoFar = ~0ULL; 3605 for (Value *IncValue : PN->incoming_values()) { 3606 uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize); 3607 if (Len == 0) return 0; // Unknown length -> unknown. 3608 3609 if (Len == ~0ULL) continue; 3610 3611 if (Len != LenSoFar && LenSoFar != ~0ULL) 3612 return 0; // Disagree -> unknown. 3613 LenSoFar = Len; 3614 } 3615 3616 // Success, all agree. 3617 return LenSoFar; 3618 } 3619 3620 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 3621 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 3622 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize); 3623 if (Len1 == 0) return 0; 3624 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize); 3625 if (Len2 == 0) return 0; 3626 if (Len1 == ~0ULL) return Len2; 3627 if (Len2 == ~0ULL) return Len1; 3628 if (Len1 != Len2) return 0; 3629 return Len1; 3630 } 3631 3632 // Otherwise, see if we can read the string. 3633 ConstantDataArraySlice Slice; 3634 if (!getConstantDataArrayInfo(V, Slice, CharSize)) 3635 return 0; 3636 3637 if (Slice.Array == nullptr) 3638 return 1; 3639 3640 // Search for nul characters 3641 unsigned NullIndex = 0; 3642 for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) { 3643 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0) 3644 break; 3645 } 3646 3647 return NullIndex + 1; 3648 } 3649 3650 /// If we can compute the length of the string pointed to by 3651 /// the specified pointer, return 'len+1'. If we can't, return 0. 3652 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) { 3653 if (!V->getType()->isPointerTy()) 3654 return 0; 3655 3656 SmallPtrSet<const PHINode*, 32> PHIs; 3657 uint64_t Len = GetStringLengthH(V, PHIs, CharSize); 3658 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 3659 // an empty string as a length. 3660 return Len == ~0ULL ? 1 : Len; 3661 } 3662 3663 const Value * 3664 llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call, 3665 bool MustPreserveNullness) { 3666 assert(Call && 3667 "getArgumentAliasingToReturnedPointer only works on nonnull calls"); 3668 if (const Value *RV = Call->getReturnedArgOperand()) 3669 return RV; 3670 // This can be used only as a aliasing property. 3671 if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 3672 Call, MustPreserveNullness)) 3673 return Call->getArgOperand(0); 3674 return nullptr; 3675 } 3676 3677 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 3678 const CallBase *Call, bool MustPreserveNullness) { 3679 return Call->getIntrinsicID() == Intrinsic::launder_invariant_group || 3680 Call->getIntrinsicID() == Intrinsic::strip_invariant_group || 3681 Call->getIntrinsicID() == Intrinsic::aarch64_irg || 3682 Call->getIntrinsicID() == Intrinsic::aarch64_tagp || 3683 (!MustPreserveNullness && 3684 Call->getIntrinsicID() == Intrinsic::ptrmask); 3685 } 3686 3687 /// \p PN defines a loop-variant pointer to an object. Check if the 3688 /// previous iteration of the loop was referring to the same object as \p PN. 3689 static bool isSameUnderlyingObjectInLoop(const PHINode *PN, 3690 const LoopInfo *LI) { 3691 // Find the loop-defined value. 3692 Loop *L = LI->getLoopFor(PN->getParent()); 3693 if (PN->getNumIncomingValues() != 2) 3694 return true; 3695 3696 // Find the value from previous iteration. 3697 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 3698 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 3699 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 3700 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 3701 return true; 3702 3703 // If a new pointer is loaded in the loop, the pointer references a different 3704 // object in every iteration. E.g.: 3705 // for (i) 3706 // int *p = a[i]; 3707 // ... 3708 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 3709 if (!L->isLoopInvariant(Load->getPointerOperand())) 3710 return false; 3711 return true; 3712 } 3713 3714 Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL, 3715 unsigned MaxLookup) { 3716 if (!V->getType()->isPointerTy()) 3717 return V; 3718 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 3719 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3720 V = GEP->getPointerOperand(); 3721 } else if (Operator::getOpcode(V) == Instruction::BitCast || 3722 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 3723 V = cast<Operator>(V)->getOperand(0); 3724 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 3725 if (GA->isInterposable()) 3726 return V; 3727 V = GA->getAliasee(); 3728 } else if (isa<AllocaInst>(V)) { 3729 // An alloca can't be further simplified. 3730 return V; 3731 } else { 3732 if (auto *Call = dyn_cast<CallBase>(V)) { 3733 // CaptureTracking can know about special capturing properties of some 3734 // intrinsics like launder.invariant.group, that can't be expressed with 3735 // the attributes, but have properties like returning aliasing pointer. 3736 // Because some analysis may assume that nocaptured pointer is not 3737 // returned from some special intrinsic (because function would have to 3738 // be marked with returns attribute), it is crucial to use this function 3739 // because it should be in sync with CaptureTracking. Not using it may 3740 // cause weird miscompilations where 2 aliasing pointers are assumed to 3741 // noalias. 3742 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) { 3743 V = RP; 3744 continue; 3745 } 3746 } 3747 3748 // See if InstructionSimplify knows any relevant tricks. 3749 if (Instruction *I = dyn_cast<Instruction>(V)) 3750 // TODO: Acquire a DominatorTree and AssumptionCache and use them. 3751 if (Value *Simplified = SimplifyInstruction(I, {DL, I})) { 3752 V = Simplified; 3753 continue; 3754 } 3755 3756 return V; 3757 } 3758 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 3759 } 3760 return V; 3761 } 3762 3763 void llvm::GetUnderlyingObjects(const Value *V, 3764 SmallVectorImpl<const Value *> &Objects, 3765 const DataLayout &DL, LoopInfo *LI, 3766 unsigned MaxLookup) { 3767 SmallPtrSet<const Value *, 4> Visited; 3768 SmallVector<const Value *, 4> Worklist; 3769 Worklist.push_back(V); 3770 do { 3771 const Value *P = Worklist.pop_back_val(); 3772 P = GetUnderlyingObject(P, DL, MaxLookup); 3773 3774 if (!Visited.insert(P).second) 3775 continue; 3776 3777 if (auto *SI = dyn_cast<SelectInst>(P)) { 3778 Worklist.push_back(SI->getTrueValue()); 3779 Worklist.push_back(SI->getFalseValue()); 3780 continue; 3781 } 3782 3783 if (auto *PN = dyn_cast<PHINode>(P)) { 3784 // If this PHI changes the underlying object in every iteration of the 3785 // loop, don't look through it. Consider: 3786 // int **A; 3787 // for (i) { 3788 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 3789 // Curr = A[i]; 3790 // *Prev, *Curr; 3791 // 3792 // Prev is tracking Curr one iteration behind so they refer to different 3793 // underlying objects. 3794 if (!LI || !LI->isLoopHeader(PN->getParent()) || 3795 isSameUnderlyingObjectInLoop(PN, LI)) 3796 for (Value *IncValue : PN->incoming_values()) 3797 Worklist.push_back(IncValue); 3798 continue; 3799 } 3800 3801 Objects.push_back(P); 3802 } while (!Worklist.empty()); 3803 } 3804 3805 /// This is the function that does the work of looking through basic 3806 /// ptrtoint+arithmetic+inttoptr sequences. 3807 static const Value *getUnderlyingObjectFromInt(const Value *V) { 3808 do { 3809 if (const Operator *U = dyn_cast<Operator>(V)) { 3810 // If we find a ptrtoint, we can transfer control back to the 3811 // regular getUnderlyingObjectFromInt. 3812 if (U->getOpcode() == Instruction::PtrToInt) 3813 return U->getOperand(0); 3814 // If we find an add of a constant, a multiplied value, or a phi, it's 3815 // likely that the other operand will lead us to the base 3816 // object. We don't have to worry about the case where the 3817 // object address is somehow being computed by the multiply, 3818 // because our callers only care when the result is an 3819 // identifiable object. 3820 if (U->getOpcode() != Instruction::Add || 3821 (!isa<ConstantInt>(U->getOperand(1)) && 3822 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && 3823 !isa<PHINode>(U->getOperand(1)))) 3824 return V; 3825 V = U->getOperand(0); 3826 } else { 3827 return V; 3828 } 3829 assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); 3830 } while (true); 3831 } 3832 3833 /// This is a wrapper around GetUnderlyingObjects and adds support for basic 3834 /// ptrtoint+arithmetic+inttoptr sequences. 3835 /// It returns false if unidentified object is found in GetUnderlyingObjects. 3836 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V, 3837 SmallVectorImpl<Value *> &Objects, 3838 const DataLayout &DL) { 3839 SmallPtrSet<const Value *, 16> Visited; 3840 SmallVector<const Value *, 4> Working(1, V); 3841 do { 3842 V = Working.pop_back_val(); 3843 3844 SmallVector<const Value *, 4> Objs; 3845 GetUnderlyingObjects(V, Objs, DL); 3846 3847 for (const Value *V : Objs) { 3848 if (!Visited.insert(V).second) 3849 continue; 3850 if (Operator::getOpcode(V) == Instruction::IntToPtr) { 3851 const Value *O = 3852 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); 3853 if (O->getType()->isPointerTy()) { 3854 Working.push_back(O); 3855 continue; 3856 } 3857 } 3858 // If GetUnderlyingObjects fails to find an identifiable object, 3859 // getUnderlyingObjectsForCodeGen also fails for safety. 3860 if (!isIdentifiedObject(V)) { 3861 Objects.clear(); 3862 return false; 3863 } 3864 Objects.push_back(const_cast<Value *>(V)); 3865 } 3866 } while (!Working.empty()); 3867 return true; 3868 } 3869 3870 /// Return true if the only users of this pointer are lifetime markers. 3871 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 3872 for (const User *U : V->users()) { 3873 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 3874 if (!II) return false; 3875 3876 if (!II->isLifetimeStartOrEnd()) 3877 return false; 3878 } 3879 return true; 3880 } 3881 3882 bool llvm::mustSuppressSpeculation(const LoadInst &LI) { 3883 if (!LI.isUnordered()) 3884 return true; 3885 const Function &F = *LI.getFunction(); 3886 // Speculative load may create a race that did not exist in the source. 3887 return F.hasFnAttribute(Attribute::SanitizeThread) || 3888 // Speculative load may load data from dirty regions. 3889 F.hasFnAttribute(Attribute::SanitizeAddress) || 3890 F.hasFnAttribute(Attribute::SanitizeHWAddress); 3891 } 3892 3893 3894 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 3895 const Instruction *CtxI, 3896 const DominatorTree *DT) { 3897 const Operator *Inst = dyn_cast<Operator>(V); 3898 if (!Inst) 3899 return false; 3900 3901 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 3902 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 3903 if (C->canTrap()) 3904 return false; 3905 3906 switch (Inst->getOpcode()) { 3907 default: 3908 return true; 3909 case Instruction::UDiv: 3910 case Instruction::URem: { 3911 // x / y is undefined if y == 0. 3912 const APInt *V; 3913 if (match(Inst->getOperand(1), m_APInt(V))) 3914 return *V != 0; 3915 return false; 3916 } 3917 case Instruction::SDiv: 3918 case Instruction::SRem: { 3919 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 3920 const APInt *Numerator, *Denominator; 3921 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 3922 return false; 3923 // We cannot hoist this division if the denominator is 0. 3924 if (*Denominator == 0) 3925 return false; 3926 // It's safe to hoist if the denominator is not 0 or -1. 3927 if (*Denominator != -1) 3928 return true; 3929 // At this point we know that the denominator is -1. It is safe to hoist as 3930 // long we know that the numerator is not INT_MIN. 3931 if (match(Inst->getOperand(0), m_APInt(Numerator))) 3932 return !Numerator->isMinSignedValue(); 3933 // The numerator *might* be MinSignedValue. 3934 return false; 3935 } 3936 case Instruction::Load: { 3937 const LoadInst *LI = cast<LoadInst>(Inst); 3938 if (mustSuppressSpeculation(*LI)) 3939 return false; 3940 const DataLayout &DL = LI->getModule()->getDataLayout(); 3941 return isDereferenceableAndAlignedPointer( 3942 LI->getPointerOperand(), LI->getType(), MaybeAlign(LI->getAlignment()), 3943 DL, CtxI, DT); 3944 } 3945 case Instruction::Call: { 3946 auto *CI = cast<const CallInst>(Inst); 3947 const Function *Callee = CI->getCalledFunction(); 3948 3949 // The called function could have undefined behavior or side-effects, even 3950 // if marked readnone nounwind. 3951 return Callee && Callee->isSpeculatable(); 3952 } 3953 case Instruction::VAArg: 3954 case Instruction::Alloca: 3955 case Instruction::Invoke: 3956 case Instruction::CallBr: 3957 case Instruction::PHI: 3958 case Instruction::Store: 3959 case Instruction::Ret: 3960 case Instruction::Br: 3961 case Instruction::IndirectBr: 3962 case Instruction::Switch: 3963 case Instruction::Unreachable: 3964 case Instruction::Fence: 3965 case Instruction::AtomicRMW: 3966 case Instruction::AtomicCmpXchg: 3967 case Instruction::LandingPad: 3968 case Instruction::Resume: 3969 case Instruction::CatchSwitch: 3970 case Instruction::CatchPad: 3971 case Instruction::CatchRet: 3972 case Instruction::CleanupPad: 3973 case Instruction::CleanupRet: 3974 return false; // Misc instructions which have effects 3975 } 3976 } 3977 3978 bool llvm::mayBeMemoryDependent(const Instruction &I) { 3979 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 3980 } 3981 3982 /// Convert ConstantRange OverflowResult into ValueTracking OverflowResult. 3983 static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) { 3984 switch (OR) { 3985 case ConstantRange::OverflowResult::MayOverflow: 3986 return OverflowResult::MayOverflow; 3987 case ConstantRange::OverflowResult::AlwaysOverflowsLow: 3988 return OverflowResult::AlwaysOverflowsLow; 3989 case ConstantRange::OverflowResult::AlwaysOverflowsHigh: 3990 return OverflowResult::AlwaysOverflowsHigh; 3991 case ConstantRange::OverflowResult::NeverOverflows: 3992 return OverflowResult::NeverOverflows; 3993 } 3994 llvm_unreachable("Unknown OverflowResult"); 3995 } 3996 3997 /// Combine constant ranges from computeConstantRange() and computeKnownBits(). 3998 static ConstantRange computeConstantRangeIncludingKnownBits( 3999 const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth, 4000 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4001 OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) { 4002 KnownBits Known = computeKnownBits( 4003 V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo); 4004 ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned); 4005 ConstantRange CR2 = computeConstantRange(V, UseInstrInfo); 4006 ConstantRange::PreferredRangeType RangeType = 4007 ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned; 4008 return CR1.intersectWith(CR2, RangeType); 4009 } 4010 4011 OverflowResult llvm::computeOverflowForUnsignedMul( 4012 const Value *LHS, const Value *RHS, const DataLayout &DL, 4013 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4014 bool UseInstrInfo) { 4015 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4016 nullptr, UseInstrInfo); 4017 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4018 nullptr, UseInstrInfo); 4019 ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false); 4020 ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false); 4021 return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange)); 4022 } 4023 4024 OverflowResult 4025 llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS, 4026 const DataLayout &DL, AssumptionCache *AC, 4027 const Instruction *CxtI, 4028 const DominatorTree *DT, bool UseInstrInfo) { 4029 // Multiplying n * m significant bits yields a result of n + m significant 4030 // bits. If the total number of significant bits does not exceed the 4031 // result bit width (minus 1), there is no overflow. 4032 // This means if we have enough leading sign bits in the operands 4033 // we can guarantee that the result does not overflow. 4034 // Ref: "Hacker's Delight" by Henry Warren 4035 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 4036 4037 // Note that underestimating the number of sign bits gives a more 4038 // conservative answer. 4039 unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) + 4040 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT); 4041 4042 // First handle the easy case: if we have enough sign bits there's 4043 // definitely no overflow. 4044 if (SignBits > BitWidth + 1) 4045 return OverflowResult::NeverOverflows; 4046 4047 // There are two ambiguous cases where there can be no overflow: 4048 // SignBits == BitWidth + 1 and 4049 // SignBits == BitWidth 4050 // The second case is difficult to check, therefore we only handle the 4051 // first case. 4052 if (SignBits == BitWidth + 1) { 4053 // It overflows only when both arguments are negative and the true 4054 // product is exactly the minimum negative number. 4055 // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000 4056 // For simplicity we just check if at least one side is not negative. 4057 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4058 nullptr, UseInstrInfo); 4059 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4060 nullptr, UseInstrInfo); 4061 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) 4062 return OverflowResult::NeverOverflows; 4063 } 4064 return OverflowResult::MayOverflow; 4065 } 4066 4067 OverflowResult llvm::computeOverflowForUnsignedAdd( 4068 const Value *LHS, const Value *RHS, const DataLayout &DL, 4069 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4070 bool UseInstrInfo) { 4071 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4072 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4073 nullptr, UseInstrInfo); 4074 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4075 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4076 nullptr, UseInstrInfo); 4077 return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange)); 4078 } 4079 4080 static OverflowResult computeOverflowForSignedAdd(const Value *LHS, 4081 const Value *RHS, 4082 const AddOperator *Add, 4083 const DataLayout &DL, 4084 AssumptionCache *AC, 4085 const Instruction *CxtI, 4086 const DominatorTree *DT) { 4087 if (Add && Add->hasNoSignedWrap()) { 4088 return OverflowResult::NeverOverflows; 4089 } 4090 4091 // If LHS and RHS each have at least two sign bits, the addition will look 4092 // like 4093 // 4094 // XX..... + 4095 // YY..... 4096 // 4097 // If the carry into the most significant position is 0, X and Y can't both 4098 // be 1 and therefore the carry out of the addition is also 0. 4099 // 4100 // If the carry into the most significant position is 1, X and Y can't both 4101 // be 0 and therefore the carry out of the addition is also 1. 4102 // 4103 // Since the carry into the most significant position is always equal to 4104 // the carry out of the addition, there is no signed overflow. 4105 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4106 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4107 return OverflowResult::NeverOverflows; 4108 4109 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4110 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4111 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4112 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4113 OverflowResult OR = 4114 mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange)); 4115 if (OR != OverflowResult::MayOverflow) 4116 return OR; 4117 4118 // The remaining code needs Add to be available. Early returns if not so. 4119 if (!Add) 4120 return OverflowResult::MayOverflow; 4121 4122 // If the sign of Add is the same as at least one of the operands, this add 4123 // CANNOT overflow. If this can be determined from the known bits of the 4124 // operands the above signedAddMayOverflow() check will have already done so. 4125 // The only other way to improve on the known bits is from an assumption, so 4126 // call computeKnownBitsFromAssume() directly. 4127 bool LHSOrRHSKnownNonNegative = 4128 (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative()); 4129 bool LHSOrRHSKnownNegative = 4130 (LHSRange.isAllNegative() || RHSRange.isAllNegative()); 4131 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 4132 KnownBits AddKnown(LHSRange.getBitWidth()); 4133 computeKnownBitsFromAssume( 4134 Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true)); 4135 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) || 4136 (AddKnown.isNegative() && LHSOrRHSKnownNegative)) 4137 return OverflowResult::NeverOverflows; 4138 } 4139 4140 return OverflowResult::MayOverflow; 4141 } 4142 4143 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS, 4144 const Value *RHS, 4145 const DataLayout &DL, 4146 AssumptionCache *AC, 4147 const Instruction *CxtI, 4148 const DominatorTree *DT) { 4149 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4150 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4151 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4152 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4153 return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange)); 4154 } 4155 4156 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS, 4157 const Value *RHS, 4158 const DataLayout &DL, 4159 AssumptionCache *AC, 4160 const Instruction *CxtI, 4161 const DominatorTree *DT) { 4162 // If LHS and RHS each have at least two sign bits, the subtraction 4163 // cannot overflow. 4164 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4165 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4166 return OverflowResult::NeverOverflows; 4167 4168 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4169 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4170 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4171 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4172 return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange)); 4173 } 4174 4175 bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO, 4176 const DominatorTree &DT) { 4177 SmallVector<const BranchInst *, 2> GuardingBranches; 4178 SmallVector<const ExtractValueInst *, 2> Results; 4179 4180 for (const User *U : WO->users()) { 4181 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { 4182 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); 4183 4184 if (EVI->getIndices()[0] == 0) 4185 Results.push_back(EVI); 4186 else { 4187 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); 4188 4189 for (const auto *U : EVI->users()) 4190 if (const auto *B = dyn_cast<BranchInst>(U)) { 4191 assert(B->isConditional() && "How else is it using an i1?"); 4192 GuardingBranches.push_back(B); 4193 } 4194 } 4195 } else { 4196 // We are using the aggregate directly in a way we don't want to analyze 4197 // here (storing it to a global, say). 4198 return false; 4199 } 4200 } 4201 4202 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { 4203 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); 4204 if (!NoWrapEdge.isSingleEdge()) 4205 return false; 4206 4207 // Check if all users of the add are provably no-wrap. 4208 for (const auto *Result : Results) { 4209 // If the extractvalue itself is not executed on overflow, the we don't 4210 // need to check each use separately, since domination is transitive. 4211 if (DT.dominates(NoWrapEdge, Result->getParent())) 4212 continue; 4213 4214 for (auto &RU : Result->uses()) 4215 if (!DT.dominates(NoWrapEdge, RU)) 4216 return false; 4217 } 4218 4219 return true; 4220 }; 4221 4222 return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch); 4223 } 4224 4225 4226 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, 4227 const DataLayout &DL, 4228 AssumptionCache *AC, 4229 const Instruction *CxtI, 4230 const DominatorTree *DT) { 4231 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 4232 Add, DL, AC, CxtI, DT); 4233 } 4234 4235 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, 4236 const Value *RHS, 4237 const DataLayout &DL, 4238 AssumptionCache *AC, 4239 const Instruction *CxtI, 4240 const DominatorTree *DT) { 4241 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 4242 } 4243 4244 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 4245 // Note: An atomic operation isn't guaranteed to return in a reasonable amount 4246 // of time because it's possible for another thread to interfere with it for an 4247 // arbitrary length of time, but programs aren't allowed to rely on that. 4248 4249 // If there is no successor, then execution can't transfer to it. 4250 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) 4251 return !CRI->unwindsToCaller(); 4252 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) 4253 return !CatchSwitch->unwindsToCaller(); 4254 if (isa<ResumeInst>(I)) 4255 return false; 4256 if (isa<ReturnInst>(I)) 4257 return false; 4258 if (isa<UnreachableInst>(I)) 4259 return false; 4260 4261 // Calls can throw, or contain an infinite loop, or kill the process. 4262 if (auto CS = ImmutableCallSite(I)) { 4263 // Call sites that throw have implicit non-local control flow. 4264 if (!CS.doesNotThrow()) 4265 return false; 4266 4267 // A function which doens't throw and has "willreturn" attribute will 4268 // always return. 4269 if (CS.hasFnAttr(Attribute::WillReturn)) 4270 return true; 4271 4272 // Non-throwing call sites can loop infinitely, call exit/pthread_exit 4273 // etc. and thus not return. However, LLVM already assumes that 4274 // 4275 // - Thread exiting actions are modeled as writes to memory invisible to 4276 // the program. 4277 // 4278 // - Loops that don't have side effects (side effects are volatile/atomic 4279 // stores and IO) always terminate (see http://llvm.org/PR965). 4280 // Furthermore IO itself is also modeled as writes to memory invisible to 4281 // the program. 4282 // 4283 // We rely on those assumptions here, and use the memory effects of the call 4284 // target as a proxy for checking that it always returns. 4285 4286 // FIXME: This isn't aggressive enough; a call which only writes to a global 4287 // is guaranteed to return. 4288 return CS.onlyReadsMemory() || CS.onlyAccessesArgMemory(); 4289 } 4290 4291 // Other instructions return normally. 4292 return true; 4293 } 4294 4295 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) { 4296 // TODO: This is slightly conservative for invoke instruction since exiting 4297 // via an exception *is* normal control for them. 4298 for (auto I = BB->begin(), E = BB->end(); I != E; ++I) 4299 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 4300 return false; 4301 return true; 4302 } 4303 4304 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 4305 const Loop *L) { 4306 // The loop header is guaranteed to be executed for every iteration. 4307 // 4308 // FIXME: Relax this constraint to cover all basic blocks that are 4309 // guaranteed to be executed at every iteration. 4310 if (I->getParent() != L->getHeader()) return false; 4311 4312 for (const Instruction &LI : *L->getHeader()) { 4313 if (&LI == I) return true; 4314 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 4315 } 4316 llvm_unreachable("Instruction not contained in its own parent basic block."); 4317 } 4318 4319 bool llvm::propagatesFullPoison(const Instruction *I) { 4320 // TODO: This should include all instructions apart from phis, selects and 4321 // call-like instructions. 4322 switch (I->getOpcode()) { 4323 case Instruction::Add: 4324 case Instruction::Sub: 4325 case Instruction::Xor: 4326 case Instruction::Trunc: 4327 case Instruction::BitCast: 4328 case Instruction::AddrSpaceCast: 4329 case Instruction::Mul: 4330 case Instruction::Shl: 4331 case Instruction::GetElementPtr: 4332 // These operations all propagate poison unconditionally. Note that poison 4333 // is not any particular value, so xor or subtraction of poison with 4334 // itself still yields poison, not zero. 4335 return true; 4336 4337 case Instruction::AShr: 4338 case Instruction::SExt: 4339 // For these operations, one bit of the input is replicated across 4340 // multiple output bits. A replicated poison bit is still poison. 4341 return true; 4342 4343 case Instruction::ICmp: 4344 // Comparing poison with any value yields poison. This is why, for 4345 // instance, x s< (x +nsw 1) can be folded to true. 4346 return true; 4347 4348 default: 4349 return false; 4350 } 4351 } 4352 4353 const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) { 4354 switch (I->getOpcode()) { 4355 case Instruction::Store: 4356 return cast<StoreInst>(I)->getPointerOperand(); 4357 4358 case Instruction::Load: 4359 return cast<LoadInst>(I)->getPointerOperand(); 4360 4361 case Instruction::AtomicCmpXchg: 4362 return cast<AtomicCmpXchgInst>(I)->getPointerOperand(); 4363 4364 case Instruction::AtomicRMW: 4365 return cast<AtomicRMWInst>(I)->getPointerOperand(); 4366 4367 case Instruction::UDiv: 4368 case Instruction::SDiv: 4369 case Instruction::URem: 4370 case Instruction::SRem: 4371 return I->getOperand(1); 4372 4373 default: 4374 // Note: It's really tempting to think that a conditional branch or 4375 // switch should be listed here, but that's incorrect. It's not 4376 // branching off of poison which is UB, it is executing a side effecting 4377 // instruction which follows the branch. 4378 return nullptr; 4379 } 4380 } 4381 4382 bool llvm::mustTriggerUB(const Instruction *I, 4383 const SmallSet<const Value *, 16>& KnownPoison) { 4384 auto *NotPoison = getGuaranteedNonFullPoisonOp(I); 4385 return (NotPoison && KnownPoison.count(NotPoison)); 4386 } 4387 4388 4389 bool llvm::programUndefinedIfFullPoison(const Instruction *PoisonI) { 4390 // We currently only look for uses of poison values within the same basic 4391 // block, as that makes it easier to guarantee that the uses will be 4392 // executed given that PoisonI is executed. 4393 // 4394 // FIXME: Expand this to consider uses beyond the same basic block. To do 4395 // this, look out for the distinction between post-dominance and strong 4396 // post-dominance. 4397 const BasicBlock *BB = PoisonI->getParent(); 4398 4399 // Set of instructions that we have proved will yield poison if PoisonI 4400 // does. 4401 SmallSet<const Value *, 16> YieldsPoison; 4402 SmallSet<const BasicBlock *, 4> Visited; 4403 YieldsPoison.insert(PoisonI); 4404 Visited.insert(PoisonI->getParent()); 4405 4406 BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end(); 4407 4408 unsigned Iter = 0; 4409 while (Iter++ < MaxDepth) { 4410 for (auto &I : make_range(Begin, End)) { 4411 if (&I != PoisonI) { 4412 if (mustTriggerUB(&I, YieldsPoison)) 4413 return true; 4414 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 4415 return false; 4416 } 4417 4418 // Mark poison that propagates from I through uses of I. 4419 if (YieldsPoison.count(&I)) { 4420 for (const User *User : I.users()) { 4421 const Instruction *UserI = cast<Instruction>(User); 4422 if (propagatesFullPoison(UserI)) 4423 YieldsPoison.insert(User); 4424 } 4425 } 4426 } 4427 4428 if (auto *NextBB = BB->getSingleSuccessor()) { 4429 if (Visited.insert(NextBB).second) { 4430 BB = NextBB; 4431 Begin = BB->getFirstNonPHI()->getIterator(); 4432 End = BB->end(); 4433 continue; 4434 } 4435 } 4436 4437 break; 4438 } 4439 return false; 4440 } 4441 4442 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { 4443 if (FMF.noNaNs()) 4444 return true; 4445 4446 if (auto *C = dyn_cast<ConstantFP>(V)) 4447 return !C->isNaN(); 4448 4449 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 4450 if (!C->getElementType()->isFloatingPointTy()) 4451 return false; 4452 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 4453 if (C->getElementAsAPFloat(I).isNaN()) 4454 return false; 4455 } 4456 return true; 4457 } 4458 4459 return false; 4460 } 4461 4462 static bool isKnownNonZero(const Value *V) { 4463 if (auto *C = dyn_cast<ConstantFP>(V)) 4464 return !C->isZero(); 4465 4466 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 4467 if (!C->getElementType()->isFloatingPointTy()) 4468 return false; 4469 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 4470 if (C->getElementAsAPFloat(I).isZero()) 4471 return false; 4472 } 4473 return true; 4474 } 4475 4476 return false; 4477 } 4478 4479 /// Match clamp pattern for float types without care about NaNs or signed zeros. 4480 /// Given non-min/max outer cmp/select from the clamp pattern this 4481 /// function recognizes if it can be substitued by a "canonical" min/max 4482 /// pattern. 4483 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred, 4484 Value *CmpLHS, Value *CmpRHS, 4485 Value *TrueVal, Value *FalseVal, 4486 Value *&LHS, Value *&RHS) { 4487 // Try to match 4488 // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2)) 4489 // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2)) 4490 // and return description of the outer Max/Min. 4491 4492 // First, check if select has inverse order: 4493 if (CmpRHS == FalseVal) { 4494 std::swap(TrueVal, FalseVal); 4495 Pred = CmpInst::getInversePredicate(Pred); 4496 } 4497 4498 // Assume success now. If there's no match, callers should not use these anyway. 4499 LHS = TrueVal; 4500 RHS = FalseVal; 4501 4502 const APFloat *FC1; 4503 if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite()) 4504 return {SPF_UNKNOWN, SPNB_NA, false}; 4505 4506 const APFloat *FC2; 4507 switch (Pred) { 4508 case CmpInst::FCMP_OLT: 4509 case CmpInst::FCMP_OLE: 4510 case CmpInst::FCMP_ULT: 4511 case CmpInst::FCMP_ULE: 4512 if (match(FalseVal, 4513 m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)), 4514 m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) && 4515 FC1->compare(*FC2) == APFloat::cmpResult::cmpLessThan) 4516 return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false}; 4517 break; 4518 case CmpInst::FCMP_OGT: 4519 case CmpInst::FCMP_OGE: 4520 case CmpInst::FCMP_UGT: 4521 case CmpInst::FCMP_UGE: 4522 if (match(FalseVal, 4523 m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)), 4524 m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) && 4525 FC1->compare(*FC2) == APFloat::cmpResult::cmpGreaterThan) 4526 return {SPF_FMINNUM, SPNB_RETURNS_ANY, false}; 4527 break; 4528 default: 4529 break; 4530 } 4531 4532 return {SPF_UNKNOWN, SPNB_NA, false}; 4533 } 4534 4535 /// Recognize variations of: 4536 /// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v))) 4537 static SelectPatternResult matchClamp(CmpInst::Predicate Pred, 4538 Value *CmpLHS, Value *CmpRHS, 4539 Value *TrueVal, Value *FalseVal) { 4540 // Swap the select operands and predicate to match the patterns below. 4541 if (CmpRHS != TrueVal) { 4542 Pred = ICmpInst::getSwappedPredicate(Pred); 4543 std::swap(TrueVal, FalseVal); 4544 } 4545 const APInt *C1; 4546 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) { 4547 const APInt *C2; 4548 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1) 4549 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) && 4550 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT) 4551 return {SPF_SMAX, SPNB_NA, false}; 4552 4553 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1) 4554 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) && 4555 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT) 4556 return {SPF_SMIN, SPNB_NA, false}; 4557 4558 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1) 4559 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) && 4560 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT) 4561 return {SPF_UMAX, SPNB_NA, false}; 4562 4563 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1) 4564 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) && 4565 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT) 4566 return {SPF_UMIN, SPNB_NA, false}; 4567 } 4568 return {SPF_UNKNOWN, SPNB_NA, false}; 4569 } 4570 4571 /// Recognize variations of: 4572 /// a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c)) 4573 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred, 4574 Value *CmpLHS, Value *CmpRHS, 4575 Value *TVal, Value *FVal, 4576 unsigned Depth) { 4577 // TODO: Allow FP min/max with nnan/nsz. 4578 assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison"); 4579 4580 Value *A = nullptr, *B = nullptr; 4581 SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1); 4582 if (!SelectPatternResult::isMinOrMax(L.Flavor)) 4583 return {SPF_UNKNOWN, SPNB_NA, false}; 4584 4585 Value *C = nullptr, *D = nullptr; 4586 SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1); 4587 if (L.Flavor != R.Flavor) 4588 return {SPF_UNKNOWN, SPNB_NA, false}; 4589 4590 // We have something like: x Pred y ? min(a, b) : min(c, d). 4591 // Try to match the compare to the min/max operations of the select operands. 4592 // First, make sure we have the right compare predicate. 4593 switch (L.Flavor) { 4594 case SPF_SMIN: 4595 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) { 4596 Pred = ICmpInst::getSwappedPredicate(Pred); 4597 std::swap(CmpLHS, CmpRHS); 4598 } 4599 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 4600 break; 4601 return {SPF_UNKNOWN, SPNB_NA, false}; 4602 case SPF_SMAX: 4603 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) { 4604 Pred = ICmpInst::getSwappedPredicate(Pred); 4605 std::swap(CmpLHS, CmpRHS); 4606 } 4607 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 4608 break; 4609 return {SPF_UNKNOWN, SPNB_NA, false}; 4610 case SPF_UMIN: 4611 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) { 4612 Pred = ICmpInst::getSwappedPredicate(Pred); 4613 std::swap(CmpLHS, CmpRHS); 4614 } 4615 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) 4616 break; 4617 return {SPF_UNKNOWN, SPNB_NA, false}; 4618 case SPF_UMAX: 4619 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 4620 Pred = ICmpInst::getSwappedPredicate(Pred); 4621 std::swap(CmpLHS, CmpRHS); 4622 } 4623 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 4624 break; 4625 return {SPF_UNKNOWN, SPNB_NA, false}; 4626 default: 4627 return {SPF_UNKNOWN, SPNB_NA, false}; 4628 } 4629 4630 // If there is a common operand in the already matched min/max and the other 4631 // min/max operands match the compare operands (either directly or inverted), 4632 // then this is min/max of the same flavor. 4633 4634 // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 4635 // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 4636 if (D == B) { 4637 if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 4638 match(A, m_Not(m_Specific(CmpRHS))))) 4639 return {L.Flavor, SPNB_NA, false}; 4640 } 4641 // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 4642 // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 4643 if (C == B) { 4644 if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 4645 match(A, m_Not(m_Specific(CmpRHS))))) 4646 return {L.Flavor, SPNB_NA, false}; 4647 } 4648 // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 4649 // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 4650 if (D == A) { 4651 if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 4652 match(B, m_Not(m_Specific(CmpRHS))))) 4653 return {L.Flavor, SPNB_NA, false}; 4654 } 4655 // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 4656 // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 4657 if (C == A) { 4658 if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 4659 match(B, m_Not(m_Specific(CmpRHS))))) 4660 return {L.Flavor, SPNB_NA, false}; 4661 } 4662 4663 return {SPF_UNKNOWN, SPNB_NA, false}; 4664 } 4665 4666 /// Match non-obvious integer minimum and maximum sequences. 4667 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, 4668 Value *CmpLHS, Value *CmpRHS, 4669 Value *TrueVal, Value *FalseVal, 4670 Value *&LHS, Value *&RHS, 4671 unsigned Depth) { 4672 // Assume success. If there's no match, callers should not use these anyway. 4673 LHS = TrueVal; 4674 RHS = FalseVal; 4675 4676 SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal); 4677 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 4678 return SPR; 4679 4680 SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth); 4681 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 4682 return SPR; 4683 4684 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT) 4685 return {SPF_UNKNOWN, SPNB_NA, false}; 4686 4687 // Z = X -nsw Y 4688 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0) 4689 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0) 4690 if (match(TrueVal, m_Zero()) && 4691 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 4692 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 4693 4694 // Z = X -nsw Y 4695 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0) 4696 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0) 4697 if (match(FalseVal, m_Zero()) && 4698 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 4699 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 4700 4701 const APInt *C1; 4702 if (!match(CmpRHS, m_APInt(C1))) 4703 return {SPF_UNKNOWN, SPNB_NA, false}; 4704 4705 // An unsigned min/max can be written with a signed compare. 4706 const APInt *C2; 4707 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) || 4708 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) { 4709 // Is the sign bit set? 4710 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX 4711 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN 4712 if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() && 4713 C2->isMaxSignedValue()) 4714 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 4715 4716 // Is the sign bit clear? 4717 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX 4718 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN 4719 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() && 4720 C2->isMinSignedValue()) 4721 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 4722 } 4723 4724 // Look through 'not' ops to find disguised signed min/max. 4725 // (X >s C) ? ~X : ~C ==> (~X <s ~C) ? ~X : ~C ==> SMIN(~X, ~C) 4726 // (X <s C) ? ~X : ~C ==> (~X >s ~C) ? ~X : ~C ==> SMAX(~X, ~C) 4727 if (match(TrueVal, m_Not(m_Specific(CmpLHS))) && 4728 match(FalseVal, m_APInt(C2)) && ~(*C1) == *C2) 4729 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 4730 4731 // (X >s C) ? ~C : ~X ==> (~X <s ~C) ? ~C : ~X ==> SMAX(~C, ~X) 4732 // (X <s C) ? ~C : ~X ==> (~X >s ~C) ? ~C : ~X ==> SMIN(~C, ~X) 4733 if (match(FalseVal, m_Not(m_Specific(CmpLHS))) && 4734 match(TrueVal, m_APInt(C2)) && ~(*C1) == *C2) 4735 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 4736 4737 return {SPF_UNKNOWN, SPNB_NA, false}; 4738 } 4739 4740 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) { 4741 assert(X && Y && "Invalid operand"); 4742 4743 // X = sub (0, Y) || X = sub nsw (0, Y) 4744 if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) || 4745 (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y))))) 4746 return true; 4747 4748 // Y = sub (0, X) || Y = sub nsw (0, X) 4749 if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) || 4750 (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X))))) 4751 return true; 4752 4753 // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A) 4754 Value *A, *B; 4755 return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) && 4756 match(Y, m_Sub(m_Specific(B), m_Specific(A))))) || 4757 (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) && 4758 match(Y, m_NSWSub(m_Specific(B), m_Specific(A))))); 4759 } 4760 4761 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 4762 FastMathFlags FMF, 4763 Value *CmpLHS, Value *CmpRHS, 4764 Value *TrueVal, Value *FalseVal, 4765 Value *&LHS, Value *&RHS, 4766 unsigned Depth) { 4767 if (CmpInst::isFPPredicate(Pred)) { 4768 // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one 4769 // 0.0 operand, set the compare's 0.0 operands to that same value for the 4770 // purpose of identifying min/max. Disregard vector constants with undefined 4771 // elements because those can not be back-propagated for analysis. 4772 Value *OutputZeroVal = nullptr; 4773 if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) && 4774 !cast<Constant>(TrueVal)->containsUndefElement()) 4775 OutputZeroVal = TrueVal; 4776 else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) && 4777 !cast<Constant>(FalseVal)->containsUndefElement()) 4778 OutputZeroVal = FalseVal; 4779 4780 if (OutputZeroVal) { 4781 if (match(CmpLHS, m_AnyZeroFP())) 4782 CmpLHS = OutputZeroVal; 4783 if (match(CmpRHS, m_AnyZeroFP())) 4784 CmpRHS = OutputZeroVal; 4785 } 4786 } 4787 4788 LHS = CmpLHS; 4789 RHS = CmpRHS; 4790 4791 // Signed zero may return inconsistent results between implementations. 4792 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 4793 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 4794 // Therefore, we behave conservatively and only proceed if at least one of the 4795 // operands is known to not be zero or if we don't care about signed zero. 4796 switch (Pred) { 4797 default: break; 4798 // FIXME: Include OGT/OLT/UGT/ULT. 4799 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 4800 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 4801 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 4802 !isKnownNonZero(CmpRHS)) 4803 return {SPF_UNKNOWN, SPNB_NA, false}; 4804 } 4805 4806 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 4807 bool Ordered = false; 4808 4809 // When given one NaN and one non-NaN input: 4810 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 4811 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 4812 // ordered comparison fails), which could be NaN or non-NaN. 4813 // so here we discover exactly what NaN behavior is required/accepted. 4814 if (CmpInst::isFPPredicate(Pred)) { 4815 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 4816 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 4817 4818 if (LHSSafe && RHSSafe) { 4819 // Both operands are known non-NaN. 4820 NaNBehavior = SPNB_RETURNS_ANY; 4821 } else if (CmpInst::isOrdered(Pred)) { 4822 // An ordered comparison will return false when given a NaN, so it 4823 // returns the RHS. 4824 Ordered = true; 4825 if (LHSSafe) 4826 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 4827 NaNBehavior = SPNB_RETURNS_NAN; 4828 else if (RHSSafe) 4829 NaNBehavior = SPNB_RETURNS_OTHER; 4830 else 4831 // Completely unsafe. 4832 return {SPF_UNKNOWN, SPNB_NA, false}; 4833 } else { 4834 Ordered = false; 4835 // An unordered comparison will return true when given a NaN, so it 4836 // returns the LHS. 4837 if (LHSSafe) 4838 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 4839 NaNBehavior = SPNB_RETURNS_OTHER; 4840 else if (RHSSafe) 4841 NaNBehavior = SPNB_RETURNS_NAN; 4842 else 4843 // Completely unsafe. 4844 return {SPF_UNKNOWN, SPNB_NA, false}; 4845 } 4846 } 4847 4848 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 4849 std::swap(CmpLHS, CmpRHS); 4850 Pred = CmpInst::getSwappedPredicate(Pred); 4851 if (NaNBehavior == SPNB_RETURNS_NAN) 4852 NaNBehavior = SPNB_RETURNS_OTHER; 4853 else if (NaNBehavior == SPNB_RETURNS_OTHER) 4854 NaNBehavior = SPNB_RETURNS_NAN; 4855 Ordered = !Ordered; 4856 } 4857 4858 // ([if]cmp X, Y) ? X : Y 4859 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 4860 switch (Pred) { 4861 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 4862 case ICmpInst::ICMP_UGT: 4863 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 4864 case ICmpInst::ICMP_SGT: 4865 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 4866 case ICmpInst::ICMP_ULT: 4867 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 4868 case ICmpInst::ICMP_SLT: 4869 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 4870 case FCmpInst::FCMP_UGT: 4871 case FCmpInst::FCMP_UGE: 4872 case FCmpInst::FCMP_OGT: 4873 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 4874 case FCmpInst::FCMP_ULT: 4875 case FCmpInst::FCMP_ULE: 4876 case FCmpInst::FCMP_OLT: 4877 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 4878 } 4879 } 4880 4881 if (isKnownNegation(TrueVal, FalseVal)) { 4882 // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can 4883 // match against either LHS or sext(LHS). 4884 auto MaybeSExtCmpLHS = 4885 m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS))); 4886 auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes()); 4887 auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One()); 4888 if (match(TrueVal, MaybeSExtCmpLHS)) { 4889 // Set the return values. If the compare uses the negated value (-X >s 0), 4890 // swap the return values because the negated value is always 'RHS'. 4891 LHS = TrueVal; 4892 RHS = FalseVal; 4893 if (match(CmpLHS, m_Neg(m_Specific(FalseVal)))) 4894 std::swap(LHS, RHS); 4895 4896 // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X) 4897 // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X) 4898 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 4899 return {SPF_ABS, SPNB_NA, false}; 4900 4901 // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X) 4902 if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne)) 4903 return {SPF_ABS, SPNB_NA, false}; 4904 4905 // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X) 4906 // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X) 4907 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 4908 return {SPF_NABS, SPNB_NA, false}; 4909 } 4910 else if (match(FalseVal, MaybeSExtCmpLHS)) { 4911 // Set the return values. If the compare uses the negated value (-X >s 0), 4912 // swap the return values because the negated value is always 'RHS'. 4913 LHS = FalseVal; 4914 RHS = TrueVal; 4915 if (match(CmpLHS, m_Neg(m_Specific(TrueVal)))) 4916 std::swap(LHS, RHS); 4917 4918 // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X) 4919 // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X) 4920 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 4921 return {SPF_NABS, SPNB_NA, false}; 4922 4923 // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X) 4924 // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X) 4925 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 4926 return {SPF_ABS, SPNB_NA, false}; 4927 } 4928 } 4929 4930 if (CmpInst::isIntPredicate(Pred)) 4931 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth); 4932 4933 // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar 4934 // may return either -0.0 or 0.0, so fcmp/select pair has stricter 4935 // semantics than minNum. Be conservative in such case. 4936 if (NaNBehavior != SPNB_RETURNS_ANY || 4937 (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 4938 !isKnownNonZero(CmpRHS))) 4939 return {SPF_UNKNOWN, SPNB_NA, false}; 4940 4941 return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); 4942 } 4943 4944 /// Helps to match a select pattern in case of a type mismatch. 4945 /// 4946 /// The function processes the case when type of true and false values of a 4947 /// select instruction differs from type of the cmp instruction operands because 4948 /// of a cast instruction. The function checks if it is legal to move the cast 4949 /// operation after "select". If yes, it returns the new second value of 4950 /// "select" (with the assumption that cast is moved): 4951 /// 1. As operand of cast instruction when both values of "select" are same cast 4952 /// instructions. 4953 /// 2. As restored constant (by applying reverse cast operation) when the first 4954 /// value of the "select" is a cast operation and the second value is a 4955 /// constant. 4956 /// NOTE: We return only the new second value because the first value could be 4957 /// accessed as operand of cast instruction. 4958 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 4959 Instruction::CastOps *CastOp) { 4960 auto *Cast1 = dyn_cast<CastInst>(V1); 4961 if (!Cast1) 4962 return nullptr; 4963 4964 *CastOp = Cast1->getOpcode(); 4965 Type *SrcTy = Cast1->getSrcTy(); 4966 if (auto *Cast2 = dyn_cast<CastInst>(V2)) { 4967 // If V1 and V2 are both the same cast from the same type, look through V1. 4968 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy()) 4969 return Cast2->getOperand(0); 4970 return nullptr; 4971 } 4972 4973 auto *C = dyn_cast<Constant>(V2); 4974 if (!C) 4975 return nullptr; 4976 4977 Constant *CastedTo = nullptr; 4978 switch (*CastOp) { 4979 case Instruction::ZExt: 4980 if (CmpI->isUnsigned()) 4981 CastedTo = ConstantExpr::getTrunc(C, SrcTy); 4982 break; 4983 case Instruction::SExt: 4984 if (CmpI->isSigned()) 4985 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true); 4986 break; 4987 case Instruction::Trunc: 4988 Constant *CmpConst; 4989 if (match(CmpI->getOperand(1), m_Constant(CmpConst)) && 4990 CmpConst->getType() == SrcTy) { 4991 // Here we have the following case: 4992 // 4993 // %cond = cmp iN %x, CmpConst 4994 // %tr = trunc iN %x to iK 4995 // %narrowsel = select i1 %cond, iK %t, iK C 4996 // 4997 // We can always move trunc after select operation: 4998 // 4999 // %cond = cmp iN %x, CmpConst 5000 // %widesel = select i1 %cond, iN %x, iN CmpConst 5001 // %tr = trunc iN %widesel to iK 5002 // 5003 // Note that C could be extended in any way because we don't care about 5004 // upper bits after truncation. It can't be abs pattern, because it would 5005 // look like: 5006 // 5007 // select i1 %cond, x, -x. 5008 // 5009 // So only min/max pattern could be matched. Such match requires widened C 5010 // == CmpConst. That is why set widened C = CmpConst, condition trunc 5011 // CmpConst == C is checked below. 5012 CastedTo = CmpConst; 5013 } else { 5014 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned()); 5015 } 5016 break; 5017 case Instruction::FPTrunc: 5018 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true); 5019 break; 5020 case Instruction::FPExt: 5021 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true); 5022 break; 5023 case Instruction::FPToUI: 5024 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true); 5025 break; 5026 case Instruction::FPToSI: 5027 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true); 5028 break; 5029 case Instruction::UIToFP: 5030 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true); 5031 break; 5032 case Instruction::SIToFP: 5033 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true); 5034 break; 5035 default: 5036 break; 5037 } 5038 5039 if (!CastedTo) 5040 return nullptr; 5041 5042 // Make sure the cast doesn't lose any information. 5043 Constant *CastedBack = 5044 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true); 5045 if (CastedBack != C) 5046 return nullptr; 5047 5048 return CastedTo; 5049 } 5050 5051 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, 5052 Instruction::CastOps *CastOp, 5053 unsigned Depth) { 5054 if (Depth >= MaxDepth) 5055 return {SPF_UNKNOWN, SPNB_NA, false}; 5056 5057 SelectInst *SI = dyn_cast<SelectInst>(V); 5058 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 5059 5060 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 5061 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 5062 5063 Value *TrueVal = SI->getTrueValue(); 5064 Value *FalseVal = SI->getFalseValue(); 5065 5066 return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS, 5067 CastOp, Depth); 5068 } 5069 5070 SelectPatternResult llvm::matchDecomposedSelectPattern( 5071 CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, 5072 Instruction::CastOps *CastOp, unsigned Depth) { 5073 CmpInst::Predicate Pred = CmpI->getPredicate(); 5074 Value *CmpLHS = CmpI->getOperand(0); 5075 Value *CmpRHS = CmpI->getOperand(1); 5076 FastMathFlags FMF; 5077 if (isa<FPMathOperator>(CmpI)) 5078 FMF = CmpI->getFastMathFlags(); 5079 5080 // Bail out early. 5081 if (CmpI->isEquality()) 5082 return {SPF_UNKNOWN, SPNB_NA, false}; 5083 5084 // Deal with type mismatches. 5085 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 5086 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) { 5087 // If this is a potential fmin/fmax with a cast to integer, then ignore 5088 // -0.0 because there is no corresponding integer value. 5089 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 5090 FMF.setNoSignedZeros(); 5091 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 5092 cast<CastInst>(TrueVal)->getOperand(0), C, 5093 LHS, RHS, Depth); 5094 } 5095 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) { 5096 // If this is a potential fmin/fmax with a cast to integer, then ignore 5097 // -0.0 because there is no corresponding integer value. 5098 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 5099 FMF.setNoSignedZeros(); 5100 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 5101 C, cast<CastInst>(FalseVal)->getOperand(0), 5102 LHS, RHS, Depth); 5103 } 5104 } 5105 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 5106 LHS, RHS, Depth); 5107 } 5108 5109 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) { 5110 if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT; 5111 if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT; 5112 if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT; 5113 if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT; 5114 if (SPF == SPF_FMINNUM) 5115 return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; 5116 if (SPF == SPF_FMAXNUM) 5117 return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; 5118 llvm_unreachable("unhandled!"); 5119 } 5120 5121 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) { 5122 if (SPF == SPF_SMIN) return SPF_SMAX; 5123 if (SPF == SPF_UMIN) return SPF_UMAX; 5124 if (SPF == SPF_SMAX) return SPF_SMIN; 5125 if (SPF == SPF_UMAX) return SPF_UMIN; 5126 llvm_unreachable("unhandled!"); 5127 } 5128 5129 CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) { 5130 return getMinMaxPred(getInverseMinMaxFlavor(SPF)); 5131 } 5132 5133 /// Return true if "icmp Pred LHS RHS" is always true. 5134 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS, 5135 const Value *RHS, const DataLayout &DL, 5136 unsigned Depth) { 5137 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 5138 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 5139 return true; 5140 5141 switch (Pred) { 5142 default: 5143 return false; 5144 5145 case CmpInst::ICMP_SLE: { 5146 const APInt *C; 5147 5148 // LHS s<= LHS +_{nsw} C if C >= 0 5149 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 5150 return !C->isNegative(); 5151 return false; 5152 } 5153 5154 case CmpInst::ICMP_ULE: { 5155 const APInt *C; 5156 5157 // LHS u<= LHS +_{nuw} C for any C 5158 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 5159 return true; 5160 5161 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 5162 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, 5163 const Value *&X, 5164 const APInt *&CA, const APInt *&CB) { 5165 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 5166 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 5167 return true; 5168 5169 // If X & C == 0 then (X | C) == X +_{nuw} C 5170 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 5171 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 5172 KnownBits Known(CA->getBitWidth()); 5173 computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr, 5174 /*CxtI*/ nullptr, /*DT*/ nullptr); 5175 if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero)) 5176 return true; 5177 } 5178 5179 return false; 5180 }; 5181 5182 const Value *X; 5183 const APInt *CLHS, *CRHS; 5184 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 5185 return CLHS->ule(*CRHS); 5186 5187 return false; 5188 } 5189 } 5190 } 5191 5192 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 5193 /// ALHS ARHS" is true. Otherwise, return None. 5194 static Optional<bool> 5195 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, 5196 const Value *ARHS, const Value *BLHS, const Value *BRHS, 5197 const DataLayout &DL, unsigned Depth) { 5198 switch (Pred) { 5199 default: 5200 return None; 5201 5202 case CmpInst::ICMP_SLT: 5203 case CmpInst::ICMP_SLE: 5204 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) && 5205 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth)) 5206 return true; 5207 return None; 5208 5209 case CmpInst::ICMP_ULT: 5210 case CmpInst::ICMP_ULE: 5211 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) && 5212 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth)) 5213 return true; 5214 return None; 5215 } 5216 } 5217 5218 /// Return true if the operands of the two compares match. IsSwappedOps is true 5219 /// when the operands match, but are swapped. 5220 static bool isMatchingOps(const Value *ALHS, const Value *ARHS, 5221 const Value *BLHS, const Value *BRHS, 5222 bool &IsSwappedOps) { 5223 5224 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); 5225 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); 5226 return IsMatchingOps || IsSwappedOps; 5227 } 5228 5229 /// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true. 5230 /// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false. 5231 /// Otherwise, return None if we can't infer anything. 5232 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, 5233 CmpInst::Predicate BPred, 5234 bool AreSwappedOps) { 5235 // Canonicalize the predicate as if the operands were not commuted. 5236 if (AreSwappedOps) 5237 BPred = ICmpInst::getSwappedPredicate(BPred); 5238 5239 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) 5240 return true; 5241 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) 5242 return false; 5243 5244 return None; 5245 } 5246 5247 /// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true. 5248 /// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false. 5249 /// Otherwise, return None if we can't infer anything. 5250 static Optional<bool> 5251 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, 5252 const ConstantInt *C1, 5253 CmpInst::Predicate BPred, 5254 const ConstantInt *C2) { 5255 ConstantRange DomCR = 5256 ConstantRange::makeExactICmpRegion(APred, C1->getValue()); 5257 ConstantRange CR = 5258 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue()); 5259 ConstantRange Intersection = DomCR.intersectWith(CR); 5260 ConstantRange Difference = DomCR.difference(CR); 5261 if (Intersection.isEmptySet()) 5262 return false; 5263 if (Difference.isEmptySet()) 5264 return true; 5265 return None; 5266 } 5267 5268 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 5269 /// false. Otherwise, return None if we can't infer anything. 5270 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS, 5271 const ICmpInst *RHS, 5272 const DataLayout &DL, bool LHSIsTrue, 5273 unsigned Depth) { 5274 Value *ALHS = LHS->getOperand(0); 5275 Value *ARHS = LHS->getOperand(1); 5276 // The rest of the logic assumes the LHS condition is true. If that's not the 5277 // case, invert the predicate to make it so. 5278 ICmpInst::Predicate APred = 5279 LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate(); 5280 5281 Value *BLHS = RHS->getOperand(0); 5282 Value *BRHS = RHS->getOperand(1); 5283 ICmpInst::Predicate BPred = RHS->getPredicate(); 5284 5285 // Can we infer anything when the two compares have matching operands? 5286 bool AreSwappedOps; 5287 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) { 5288 if (Optional<bool> Implication = isImpliedCondMatchingOperands( 5289 APred, BPred, AreSwappedOps)) 5290 return Implication; 5291 // No amount of additional analysis will infer the second condition, so 5292 // early exit. 5293 return None; 5294 } 5295 5296 // Can we infer anything when the LHS operands match and the RHS operands are 5297 // constants (not necessarily matching)? 5298 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) { 5299 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands( 5300 APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS))) 5301 return Implication; 5302 // No amount of additional analysis will infer the second condition, so 5303 // early exit. 5304 return None; 5305 } 5306 5307 if (APred == BPred) 5308 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth); 5309 return None; 5310 } 5311 5312 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 5313 /// false. Otherwise, return None if we can't infer anything. We expect the 5314 /// RHS to be an icmp and the LHS to be an 'and' or an 'or' instruction. 5315 static Optional<bool> isImpliedCondAndOr(const BinaryOperator *LHS, 5316 const ICmpInst *RHS, 5317 const DataLayout &DL, bool LHSIsTrue, 5318 unsigned Depth) { 5319 // The LHS must be an 'or' or an 'and' instruction. 5320 assert((LHS->getOpcode() == Instruction::And || 5321 LHS->getOpcode() == Instruction::Or) && 5322 "Expected LHS to be 'and' or 'or'."); 5323 5324 assert(Depth <= MaxDepth && "Hit recursion limit"); 5325 5326 // If the result of an 'or' is false, then we know both legs of the 'or' are 5327 // false. Similarly, if the result of an 'and' is true, then we know both 5328 // legs of the 'and' are true. 5329 Value *ALHS, *ARHS; 5330 if ((!LHSIsTrue && match(LHS, m_Or(m_Value(ALHS), m_Value(ARHS)))) || 5331 (LHSIsTrue && match(LHS, m_And(m_Value(ALHS), m_Value(ARHS))))) { 5332 // FIXME: Make this non-recursion. 5333 if (Optional<bool> Implication = 5334 isImpliedCondition(ALHS, RHS, DL, LHSIsTrue, Depth + 1)) 5335 return Implication; 5336 if (Optional<bool> Implication = 5337 isImpliedCondition(ARHS, RHS, DL, LHSIsTrue, Depth + 1)) 5338 return Implication; 5339 return None; 5340 } 5341 return None; 5342 } 5343 5344 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, 5345 const DataLayout &DL, bool LHSIsTrue, 5346 unsigned Depth) { 5347 // Bail out when we hit the limit. 5348 if (Depth == MaxDepth) 5349 return None; 5350 5351 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for 5352 // example. 5353 if (LHS->getType() != RHS->getType()) 5354 return None; 5355 5356 Type *OpTy = LHS->getType(); 5357 assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!"); 5358 5359 // LHS ==> RHS by definition 5360 if (LHS == RHS) 5361 return LHSIsTrue; 5362 5363 // FIXME: Extending the code below to handle vectors. 5364 if (OpTy->isVectorTy()) 5365 return None; 5366 5367 assert(OpTy->isIntegerTy(1) && "implied by above"); 5368 5369 // Both LHS and RHS are icmps. 5370 const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS); 5371 const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS); 5372 if (LHSCmp && RHSCmp) 5373 return isImpliedCondICmps(LHSCmp, RHSCmp, DL, LHSIsTrue, Depth); 5374 5375 // The LHS should be an 'or' or an 'and' instruction. We expect the RHS to be 5376 // an icmp. FIXME: Add support for and/or on the RHS. 5377 const BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHS); 5378 if (LHSBO && RHSCmp) { 5379 if ((LHSBO->getOpcode() == Instruction::And || 5380 LHSBO->getOpcode() == Instruction::Or)) 5381 return isImpliedCondAndOr(LHSBO, RHSCmp, DL, LHSIsTrue, Depth); 5382 } 5383 return None; 5384 } 5385 5386 Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond, 5387 const Instruction *ContextI, 5388 const DataLayout &DL) { 5389 assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool"); 5390 if (!ContextI || !ContextI->getParent()) 5391 return None; 5392 5393 // TODO: This is a poor/cheap way to determine dominance. Should we use a 5394 // dominator tree (eg, from a SimplifyQuery) instead? 5395 const BasicBlock *ContextBB = ContextI->getParent(); 5396 const BasicBlock *PredBB = ContextBB->getSinglePredecessor(); 5397 if (!PredBB) 5398 return None; 5399 5400 // We need a conditional branch in the predecessor. 5401 Value *PredCond; 5402 BasicBlock *TrueBB, *FalseBB; 5403 if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB))) 5404 return None; 5405 5406 // The branch should get simplified. Don't bother simplifying this condition. 5407 if (TrueBB == FalseBB) 5408 return None; 5409 5410 assert((TrueBB == ContextBB || FalseBB == ContextBB) && 5411 "Predecessor block does not point to successor?"); 5412 5413 // Is this condition implied by the predecessor condition? 5414 bool CondIsTrue = TrueBB == ContextBB; 5415 return isImpliedCondition(PredCond, Cond, DL, CondIsTrue); 5416 } 5417 5418 static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower, 5419 APInt &Upper, const InstrInfoQuery &IIQ) { 5420 unsigned Width = Lower.getBitWidth(); 5421 const APInt *C; 5422 switch (BO.getOpcode()) { 5423 case Instruction::Add: 5424 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 5425 // FIXME: If we have both nuw and nsw, we should reduce the range further. 5426 if (IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 5427 // 'add nuw x, C' produces [C, UINT_MAX]. 5428 Lower = *C; 5429 } else if (IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 5430 if (C->isNegative()) { 5431 // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C]. 5432 Lower = APInt::getSignedMinValue(Width); 5433 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 5434 } else { 5435 // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX]. 5436 Lower = APInt::getSignedMinValue(Width) + *C; 5437 Upper = APInt::getSignedMaxValue(Width) + 1; 5438 } 5439 } 5440 } 5441 break; 5442 5443 case Instruction::And: 5444 if (match(BO.getOperand(1), m_APInt(C))) 5445 // 'and x, C' produces [0, C]. 5446 Upper = *C + 1; 5447 break; 5448 5449 case Instruction::Or: 5450 if (match(BO.getOperand(1), m_APInt(C))) 5451 // 'or x, C' produces [C, UINT_MAX]. 5452 Lower = *C; 5453 break; 5454 5455 case Instruction::AShr: 5456 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 5457 // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C]. 5458 Lower = APInt::getSignedMinValue(Width).ashr(*C); 5459 Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1; 5460 } else if (match(BO.getOperand(0), m_APInt(C))) { 5461 unsigned ShiftAmount = Width - 1; 5462 if (!C->isNullValue() && IIQ.isExact(&BO)) 5463 ShiftAmount = C->countTrailingZeros(); 5464 if (C->isNegative()) { 5465 // 'ashr C, x' produces [C, C >> (Width-1)] 5466 Lower = *C; 5467 Upper = C->ashr(ShiftAmount) + 1; 5468 } else { 5469 // 'ashr C, x' produces [C >> (Width-1), C] 5470 Lower = C->ashr(ShiftAmount); 5471 Upper = *C + 1; 5472 } 5473 } 5474 break; 5475 5476 case Instruction::LShr: 5477 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 5478 // 'lshr x, C' produces [0, UINT_MAX >> C]. 5479 Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1; 5480 } else if (match(BO.getOperand(0), m_APInt(C))) { 5481 // 'lshr C, x' produces [C >> (Width-1), C]. 5482 unsigned ShiftAmount = Width - 1; 5483 if (!C->isNullValue() && IIQ.isExact(&BO)) 5484 ShiftAmount = C->countTrailingZeros(); 5485 Lower = C->lshr(ShiftAmount); 5486 Upper = *C + 1; 5487 } 5488 break; 5489 5490 case Instruction::Shl: 5491 if (match(BO.getOperand(0), m_APInt(C))) { 5492 if (IIQ.hasNoUnsignedWrap(&BO)) { 5493 // 'shl nuw C, x' produces [C, C << CLZ(C)] 5494 Lower = *C; 5495 Upper = Lower.shl(Lower.countLeadingZeros()) + 1; 5496 } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw? 5497 if (C->isNegative()) { 5498 // 'shl nsw C, x' produces [C << CLO(C)-1, C] 5499 unsigned ShiftAmount = C->countLeadingOnes() - 1; 5500 Lower = C->shl(ShiftAmount); 5501 Upper = *C + 1; 5502 } else { 5503 // 'shl nsw C, x' produces [C, C << CLZ(C)-1] 5504 unsigned ShiftAmount = C->countLeadingZeros() - 1; 5505 Lower = *C; 5506 Upper = C->shl(ShiftAmount) + 1; 5507 } 5508 } 5509 } 5510 break; 5511 5512 case Instruction::SDiv: 5513 if (match(BO.getOperand(1), m_APInt(C))) { 5514 APInt IntMin = APInt::getSignedMinValue(Width); 5515 APInt IntMax = APInt::getSignedMaxValue(Width); 5516 if (C->isAllOnesValue()) { 5517 // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX] 5518 // where C != -1 and C != 0 and C != 1 5519 Lower = IntMin + 1; 5520 Upper = IntMax + 1; 5521 } else if (C->countLeadingZeros() < Width - 1) { 5522 // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C] 5523 // where C != -1 and C != 0 and C != 1 5524 Lower = IntMin.sdiv(*C); 5525 Upper = IntMax.sdiv(*C); 5526 if (Lower.sgt(Upper)) 5527 std::swap(Lower, Upper); 5528 Upper = Upper + 1; 5529 assert(Upper != Lower && "Upper part of range has wrapped!"); 5530 } 5531 } else if (match(BO.getOperand(0), m_APInt(C))) { 5532 if (C->isMinSignedValue()) { 5533 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2]. 5534 Lower = *C; 5535 Upper = Lower.lshr(1) + 1; 5536 } else { 5537 // 'sdiv C, x' produces [-|C|, |C|]. 5538 Upper = C->abs() + 1; 5539 Lower = (-Upper) + 1; 5540 } 5541 } 5542 break; 5543 5544 case Instruction::UDiv: 5545 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 5546 // 'udiv x, C' produces [0, UINT_MAX / C]. 5547 Upper = APInt::getMaxValue(Width).udiv(*C) + 1; 5548 } else if (match(BO.getOperand(0), m_APInt(C))) { 5549 // 'udiv C, x' produces [0, C]. 5550 Upper = *C + 1; 5551 } 5552 break; 5553 5554 case Instruction::SRem: 5555 if (match(BO.getOperand(1), m_APInt(C))) { 5556 // 'srem x, C' produces (-|C|, |C|). 5557 Upper = C->abs(); 5558 Lower = (-Upper) + 1; 5559 } 5560 break; 5561 5562 case Instruction::URem: 5563 if (match(BO.getOperand(1), m_APInt(C))) 5564 // 'urem x, C' produces [0, C). 5565 Upper = *C; 5566 break; 5567 5568 default: 5569 break; 5570 } 5571 } 5572 5573 static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower, 5574 APInt &Upper) { 5575 unsigned Width = Lower.getBitWidth(); 5576 const APInt *C; 5577 switch (II.getIntrinsicID()) { 5578 case Intrinsic::uadd_sat: 5579 // uadd.sat(x, C) produces [C, UINT_MAX]. 5580 if (match(II.getOperand(0), m_APInt(C)) || 5581 match(II.getOperand(1), m_APInt(C))) 5582 Lower = *C; 5583 break; 5584 case Intrinsic::sadd_sat: 5585 if (match(II.getOperand(0), m_APInt(C)) || 5586 match(II.getOperand(1), m_APInt(C))) { 5587 if (C->isNegative()) { 5588 // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)]. 5589 Lower = APInt::getSignedMinValue(Width); 5590 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 5591 } else { 5592 // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX]. 5593 Lower = APInt::getSignedMinValue(Width) + *C; 5594 Upper = APInt::getSignedMaxValue(Width) + 1; 5595 } 5596 } 5597 break; 5598 case Intrinsic::usub_sat: 5599 // usub.sat(C, x) produces [0, C]. 5600 if (match(II.getOperand(0), m_APInt(C))) 5601 Upper = *C + 1; 5602 // usub.sat(x, C) produces [0, UINT_MAX - C]. 5603 else if (match(II.getOperand(1), m_APInt(C))) 5604 Upper = APInt::getMaxValue(Width) - *C + 1; 5605 break; 5606 case Intrinsic::ssub_sat: 5607 if (match(II.getOperand(0), m_APInt(C))) { 5608 if (C->isNegative()) { 5609 // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)]. 5610 Lower = APInt::getSignedMinValue(Width); 5611 Upper = *C - APInt::getSignedMinValue(Width) + 1; 5612 } else { 5613 // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX]. 5614 Lower = *C - APInt::getSignedMaxValue(Width); 5615 Upper = APInt::getSignedMaxValue(Width) + 1; 5616 } 5617 } else if (match(II.getOperand(1), m_APInt(C))) { 5618 if (C->isNegative()) { 5619 // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]: 5620 Lower = APInt::getSignedMinValue(Width) - *C; 5621 Upper = APInt::getSignedMaxValue(Width) + 1; 5622 } else { 5623 // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C]. 5624 Lower = APInt::getSignedMinValue(Width); 5625 Upper = APInt::getSignedMaxValue(Width) - *C + 1; 5626 } 5627 } 5628 break; 5629 default: 5630 break; 5631 } 5632 } 5633 5634 static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower, 5635 APInt &Upper, const InstrInfoQuery &IIQ) { 5636 const Value *LHS = nullptr, *RHS = nullptr; 5637 SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS); 5638 if (R.Flavor == SPF_UNKNOWN) 5639 return; 5640 5641 unsigned BitWidth = SI.getType()->getScalarSizeInBits(); 5642 5643 if (R.Flavor == SelectPatternFlavor::SPF_ABS) { 5644 // If the negation part of the abs (in RHS) has the NSW flag, 5645 // then the result of abs(X) is [0..SIGNED_MAX], 5646 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 5647 Lower = APInt::getNullValue(BitWidth); 5648 if (match(RHS, m_Neg(m_Specific(LHS))) && 5649 IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 5650 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 5651 else 5652 Upper = APInt::getSignedMinValue(BitWidth) + 1; 5653 return; 5654 } 5655 5656 if (R.Flavor == SelectPatternFlavor::SPF_NABS) { 5657 // The result of -abs(X) is <= 0. 5658 Lower = APInt::getSignedMinValue(BitWidth); 5659 Upper = APInt(BitWidth, 1); 5660 return; 5661 } 5662 5663 const APInt *C; 5664 if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C))) 5665 return; 5666 5667 switch (R.Flavor) { 5668 case SPF_UMIN: 5669 Upper = *C + 1; 5670 break; 5671 case SPF_UMAX: 5672 Lower = *C; 5673 break; 5674 case SPF_SMIN: 5675 Lower = APInt::getSignedMinValue(BitWidth); 5676 Upper = *C + 1; 5677 break; 5678 case SPF_SMAX: 5679 Lower = *C; 5680 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 5681 break; 5682 default: 5683 break; 5684 } 5685 } 5686 5687 ConstantRange llvm::computeConstantRange(const Value *V, bool UseInstrInfo) { 5688 assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction"); 5689 5690 const APInt *C; 5691 if (match(V, m_APInt(C))) 5692 return ConstantRange(*C); 5693 5694 InstrInfoQuery IIQ(UseInstrInfo); 5695 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 5696 APInt Lower = APInt(BitWidth, 0); 5697 APInt Upper = APInt(BitWidth, 0); 5698 if (auto *BO = dyn_cast<BinaryOperator>(V)) 5699 setLimitsForBinOp(*BO, Lower, Upper, IIQ); 5700 else if (auto *II = dyn_cast<IntrinsicInst>(V)) 5701 setLimitsForIntrinsic(*II, Lower, Upper); 5702 else if (auto *SI = dyn_cast<SelectInst>(V)) 5703 setLimitsForSelectPattern(*SI, Lower, Upper, IIQ); 5704 5705 ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper); 5706 5707 if (auto *I = dyn_cast<Instruction>(V)) 5708 if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range)) 5709 CR = CR.intersectWith(getConstantRangeFromMetadata(*Range)); 5710 5711 return CR; 5712 } 5713 5714 static Optional<int64_t> 5715 getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) { 5716 // Skip over the first indices. 5717 gep_type_iterator GTI = gep_type_begin(GEP); 5718 for (unsigned i = 1; i != Idx; ++i, ++GTI) 5719 /*skip along*/; 5720 5721 // Compute the offset implied by the rest of the indices. 5722 int64_t Offset = 0; 5723 for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) { 5724 ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i)); 5725 if (!OpC) 5726 return None; 5727 if (OpC->isZero()) 5728 continue; // No offset. 5729 5730 // Handle struct indices, which add their field offset to the pointer. 5731 if (StructType *STy = GTI.getStructTypeOrNull()) { 5732 Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); 5733 continue; 5734 } 5735 5736 // Otherwise, we have a sequential type like an array or vector. Multiply 5737 // the index by the ElementSize. 5738 uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()); 5739 Offset += Size * OpC->getSExtValue(); 5740 } 5741 5742 return Offset; 5743 } 5744 5745 Optional<int64_t> llvm::isPointerOffset(const Value *Ptr1, const Value *Ptr2, 5746 const DataLayout &DL) { 5747 Ptr1 = Ptr1->stripPointerCasts(); 5748 Ptr2 = Ptr2->stripPointerCasts(); 5749 5750 // Handle the trivial case first. 5751 if (Ptr1 == Ptr2) { 5752 return 0; 5753 } 5754 5755 const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1); 5756 const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2); 5757 5758 // If one pointer is a GEP see if the GEP is a constant offset from the base, 5759 // as in "P" and "gep P, 1". 5760 // Also do this iteratively to handle the the following case: 5761 // Ptr_t1 = GEP Ptr1, c1 5762 // Ptr_t2 = GEP Ptr_t1, c2 5763 // Ptr2 = GEP Ptr_t2, c3 5764 // where we will return c1+c2+c3. 5765 // TODO: Handle the case when both Ptr1 and Ptr2 are GEPs of some common base 5766 // -- replace getOffsetFromBase with getOffsetAndBase, check that the bases 5767 // are the same, and return the difference between offsets. 5768 auto getOffsetFromBase = [&DL](const GEPOperator *GEP, 5769 const Value *Ptr) -> Optional<int64_t> { 5770 const GEPOperator *GEP_T = GEP; 5771 int64_t OffsetVal = 0; 5772 bool HasSameBase = false; 5773 while (GEP_T) { 5774 auto Offset = getOffsetFromIndex(GEP_T, 1, DL); 5775 if (!Offset) 5776 return None; 5777 OffsetVal += *Offset; 5778 auto Op0 = GEP_T->getOperand(0)->stripPointerCasts(); 5779 if (Op0 == Ptr) { 5780 HasSameBase = true; 5781 break; 5782 } 5783 GEP_T = dyn_cast<GEPOperator>(Op0); 5784 } 5785 if (!HasSameBase) 5786 return None; 5787 return OffsetVal; 5788 }; 5789 5790 if (GEP1) { 5791 auto Offset = getOffsetFromBase(GEP1, Ptr2); 5792 if (Offset) 5793 return -*Offset; 5794 } 5795 if (GEP2) { 5796 auto Offset = getOffsetFromBase(GEP2, Ptr1); 5797 if (Offset) 5798 return Offset; 5799 } 5800 5801 // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical 5802 // base. After that base, they may have some number of common (and 5803 // potentially variable) indices. After that they handle some constant 5804 // offset, which determines their offset from each other. At this point, we 5805 // handle no other case. 5806 if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0)) 5807 return None; 5808 5809 // Skip any common indices and track the GEP types. 5810 unsigned Idx = 1; 5811 for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx) 5812 if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx)) 5813 break; 5814 5815 auto Offset1 = getOffsetFromIndex(GEP1, Idx, DL); 5816 auto Offset2 = getOffsetFromIndex(GEP2, Idx, DL); 5817 if (!Offset1 || !Offset2) 5818 return None; 5819 return *Offset2 - *Offset1; 5820 } 5821