xref: /freebsd-src/contrib/llvm-project/llvm/lib/Analysis/TargetTransformInfo.cpp (revision a7dea1671b87c07d2d266f836bfa8b58efc7c134)
1 //===- llvm/Analysis/TargetTransformInfo.cpp ------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Analysis/TargetTransformInfo.h"
10 #include "llvm/Analysis/TargetTransformInfoImpl.h"
11 #include "llvm/IR/CallSite.h"
12 #include "llvm/IR/CFG.h"
13 #include "llvm/IR/DataLayout.h"
14 #include "llvm/IR/Instruction.h"
15 #include "llvm/IR/Instructions.h"
16 #include "llvm/IR/IntrinsicInst.h"
17 #include "llvm/IR/Module.h"
18 #include "llvm/IR/Operator.h"
19 #include "llvm/IR/PatternMatch.h"
20 #include "llvm/Support/CommandLine.h"
21 #include "llvm/Support/ErrorHandling.h"
22 #include "llvm/Analysis/CFG.h"
23 #include "llvm/Analysis/LoopIterator.h"
24 #include <utility>
25 
26 using namespace llvm;
27 using namespace PatternMatch;
28 
29 #define DEBUG_TYPE "tti"
30 
31 static cl::opt<bool> EnableReduxCost("costmodel-reduxcost", cl::init(false),
32                                      cl::Hidden,
33                                      cl::desc("Recognize reduction patterns."));
34 
35 namespace {
36 /// No-op implementation of the TTI interface using the utility base
37 /// classes.
38 ///
39 /// This is used when no target specific information is available.
40 struct NoTTIImpl : TargetTransformInfoImplCRTPBase<NoTTIImpl> {
41   explicit NoTTIImpl(const DataLayout &DL)
42       : TargetTransformInfoImplCRTPBase<NoTTIImpl>(DL) {}
43 };
44 }
45 
46 bool HardwareLoopInfo::canAnalyze(LoopInfo &LI) {
47   // If the loop has irreducible control flow, it can not be converted to
48   // Hardware loop.
49   LoopBlocksRPO RPOT(L);
50   RPOT.perform(&LI);
51   if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI))
52     return false;
53   return true;
54 }
55 
56 bool HardwareLoopInfo::isHardwareLoopCandidate(ScalarEvolution &SE,
57                                                LoopInfo &LI, DominatorTree &DT,
58                                                bool ForceNestedLoop,
59                                                bool ForceHardwareLoopPHI) {
60   SmallVector<BasicBlock *, 4> ExitingBlocks;
61   L->getExitingBlocks(ExitingBlocks);
62 
63   for (BasicBlock *BB : ExitingBlocks) {
64     // If we pass the updated counter back through a phi, we need to know
65     // which latch the updated value will be coming from.
66     if (!L->isLoopLatch(BB)) {
67       if (ForceHardwareLoopPHI || CounterInReg)
68         continue;
69     }
70 
71     const SCEV *EC = SE.getExitCount(L, BB);
72     if (isa<SCEVCouldNotCompute>(EC))
73       continue;
74     if (const SCEVConstant *ConstEC = dyn_cast<SCEVConstant>(EC)) {
75       if (ConstEC->getValue()->isZero())
76         continue;
77     } else if (!SE.isLoopInvariant(EC, L))
78       continue;
79 
80     if (SE.getTypeSizeInBits(EC->getType()) > CountType->getBitWidth())
81       continue;
82 
83     // If this exiting block is contained in a nested loop, it is not eligible
84     // for insertion of the branch-and-decrement since the inner loop would
85     // end up messing up the value in the CTR.
86     if (!IsNestingLegal && LI.getLoopFor(BB) != L && !ForceNestedLoop)
87       continue;
88 
89     // We now have a loop-invariant count of loop iterations (which is not the
90     // constant zero) for which we know that this loop will not exit via this
91     // existing block.
92 
93     // We need to make sure that this block will run on every loop iteration.
94     // For this to be true, we must dominate all blocks with backedges. Such
95     // blocks are in-loop predecessors to the header block.
96     bool NotAlways = false;
97     for (BasicBlock *Pred : predecessors(L->getHeader())) {
98       if (!L->contains(Pred))
99         continue;
100 
101       if (!DT.dominates(BB, Pred)) {
102         NotAlways = true;
103         break;
104       }
105     }
106 
107     if (NotAlways)
108       continue;
109 
110     // Make sure this blocks ends with a conditional branch.
111     Instruction *TI = BB->getTerminator();
112     if (!TI)
113       continue;
114 
115     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
116       if (!BI->isConditional())
117         continue;
118 
119       ExitBranch = BI;
120     } else
121       continue;
122 
123     // Note that this block may not be the loop latch block, even if the loop
124     // has a latch block.
125     ExitBlock = BB;
126     ExitCount = EC;
127     break;
128   }
129 
130   if (!ExitBlock)
131     return false;
132   return true;
133 }
134 
135 TargetTransformInfo::TargetTransformInfo(const DataLayout &DL)
136     : TTIImpl(new Model<NoTTIImpl>(NoTTIImpl(DL))) {}
137 
138 TargetTransformInfo::~TargetTransformInfo() {}
139 
140 TargetTransformInfo::TargetTransformInfo(TargetTransformInfo &&Arg)
141     : TTIImpl(std::move(Arg.TTIImpl)) {}
142 
143 TargetTransformInfo &TargetTransformInfo::operator=(TargetTransformInfo &&RHS) {
144   TTIImpl = std::move(RHS.TTIImpl);
145   return *this;
146 }
147 
148 int TargetTransformInfo::getOperationCost(unsigned Opcode, Type *Ty,
149                                           Type *OpTy) const {
150   int Cost = TTIImpl->getOperationCost(Opcode, Ty, OpTy);
151   assert(Cost >= 0 && "TTI should not produce negative costs!");
152   return Cost;
153 }
154 
155 int TargetTransformInfo::getCallCost(FunctionType *FTy, int NumArgs,
156                                      const User *U) const {
157   int Cost = TTIImpl->getCallCost(FTy, NumArgs, U);
158   assert(Cost >= 0 && "TTI should not produce negative costs!");
159   return Cost;
160 }
161 
162 int TargetTransformInfo::getCallCost(const Function *F,
163                                      ArrayRef<const Value *> Arguments,
164                                      const User *U) const {
165   int Cost = TTIImpl->getCallCost(F, Arguments, U);
166   assert(Cost >= 0 && "TTI should not produce negative costs!");
167   return Cost;
168 }
169 
170 unsigned TargetTransformInfo::getInliningThresholdMultiplier() const {
171   return TTIImpl->getInliningThresholdMultiplier();
172 }
173 
174 int TargetTransformInfo::getInlinerVectorBonusPercent() const {
175   return TTIImpl->getInlinerVectorBonusPercent();
176 }
177 
178 int TargetTransformInfo::getGEPCost(Type *PointeeType, const Value *Ptr,
179                                     ArrayRef<const Value *> Operands) const {
180   return TTIImpl->getGEPCost(PointeeType, Ptr, Operands);
181 }
182 
183 int TargetTransformInfo::getExtCost(const Instruction *I,
184                                     const Value *Src) const {
185   return TTIImpl->getExtCost(I, Src);
186 }
187 
188 int TargetTransformInfo::getIntrinsicCost(
189     Intrinsic::ID IID, Type *RetTy, ArrayRef<const Value *> Arguments,
190     const User *U) const {
191   int Cost = TTIImpl->getIntrinsicCost(IID, RetTy, Arguments, U);
192   assert(Cost >= 0 && "TTI should not produce negative costs!");
193   return Cost;
194 }
195 
196 unsigned
197 TargetTransformInfo::getEstimatedNumberOfCaseClusters(const SwitchInst &SI,
198                                                       unsigned &JTSize) const {
199   return TTIImpl->getEstimatedNumberOfCaseClusters(SI, JTSize);
200 }
201 
202 int TargetTransformInfo::getUserCost(const User *U,
203     ArrayRef<const Value *> Operands) const {
204   int Cost = TTIImpl->getUserCost(U, Operands);
205   assert(Cost >= 0 && "TTI should not produce negative costs!");
206   return Cost;
207 }
208 
209 bool TargetTransformInfo::hasBranchDivergence() const {
210   return TTIImpl->hasBranchDivergence();
211 }
212 
213 bool TargetTransformInfo::isSourceOfDivergence(const Value *V) const {
214   return TTIImpl->isSourceOfDivergence(V);
215 }
216 
217 bool llvm::TargetTransformInfo::isAlwaysUniform(const Value *V) const {
218   return TTIImpl->isAlwaysUniform(V);
219 }
220 
221 unsigned TargetTransformInfo::getFlatAddressSpace() const {
222   return TTIImpl->getFlatAddressSpace();
223 }
224 
225 bool TargetTransformInfo::collectFlatAddressOperands(
226   SmallVectorImpl<int> &OpIndexes, Intrinsic::ID IID) const  {
227   return TTIImpl->collectFlatAddressOperands(OpIndexes, IID);
228 }
229 
230 bool TargetTransformInfo::rewriteIntrinsicWithAddressSpace(
231   IntrinsicInst *II, Value *OldV, Value *NewV) const {
232   return TTIImpl->rewriteIntrinsicWithAddressSpace(II, OldV, NewV);
233 }
234 
235 bool TargetTransformInfo::isLoweredToCall(const Function *F) const {
236   return TTIImpl->isLoweredToCall(F);
237 }
238 
239 bool TargetTransformInfo::isHardwareLoopProfitable(
240   Loop *L, ScalarEvolution &SE, AssumptionCache &AC,
241   TargetLibraryInfo *LibInfo, HardwareLoopInfo &HWLoopInfo) const {
242   return TTIImpl->isHardwareLoopProfitable(L, SE, AC, LibInfo, HWLoopInfo);
243 }
244 
245 void TargetTransformInfo::getUnrollingPreferences(
246     Loop *L, ScalarEvolution &SE, UnrollingPreferences &UP) const {
247   return TTIImpl->getUnrollingPreferences(L, SE, UP);
248 }
249 
250 bool TargetTransformInfo::isLegalAddImmediate(int64_t Imm) const {
251   return TTIImpl->isLegalAddImmediate(Imm);
252 }
253 
254 bool TargetTransformInfo::isLegalICmpImmediate(int64_t Imm) const {
255   return TTIImpl->isLegalICmpImmediate(Imm);
256 }
257 
258 bool TargetTransformInfo::isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV,
259                                                 int64_t BaseOffset,
260                                                 bool HasBaseReg,
261                                                 int64_t Scale,
262                                                 unsigned AddrSpace,
263                                                 Instruction *I) const {
264   return TTIImpl->isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg,
265                                         Scale, AddrSpace, I);
266 }
267 
268 bool TargetTransformInfo::isLSRCostLess(LSRCost &C1, LSRCost &C2) const {
269   return TTIImpl->isLSRCostLess(C1, C2);
270 }
271 
272 bool TargetTransformInfo::canMacroFuseCmp() const {
273   return TTIImpl->canMacroFuseCmp();
274 }
275 
276 bool TargetTransformInfo::canSaveCmp(Loop *L, BranchInst **BI,
277                                      ScalarEvolution *SE, LoopInfo *LI,
278                                      DominatorTree *DT, AssumptionCache *AC,
279                                      TargetLibraryInfo *LibInfo) const {
280   return TTIImpl->canSaveCmp(L, BI, SE, LI, DT, AC, LibInfo);
281 }
282 
283 bool TargetTransformInfo::shouldFavorPostInc() const {
284   return TTIImpl->shouldFavorPostInc();
285 }
286 
287 bool TargetTransformInfo::shouldFavorBackedgeIndex(const Loop *L) const {
288   return TTIImpl->shouldFavorBackedgeIndex(L);
289 }
290 
291 bool TargetTransformInfo::isLegalMaskedStore(Type *DataType,
292                                              MaybeAlign Alignment) const {
293   return TTIImpl->isLegalMaskedStore(DataType, Alignment);
294 }
295 
296 bool TargetTransformInfo::isLegalMaskedLoad(Type *DataType,
297                                             MaybeAlign Alignment) const {
298   return TTIImpl->isLegalMaskedLoad(DataType, Alignment);
299 }
300 
301 bool TargetTransformInfo::isLegalNTStore(Type *DataType,
302                                          Align Alignment) const {
303   return TTIImpl->isLegalNTStore(DataType, Alignment);
304 }
305 
306 bool TargetTransformInfo::isLegalNTLoad(Type *DataType, Align Alignment) const {
307   return TTIImpl->isLegalNTLoad(DataType, Alignment);
308 }
309 
310 bool TargetTransformInfo::isLegalMaskedGather(Type *DataType) const {
311   return TTIImpl->isLegalMaskedGather(DataType);
312 }
313 
314 bool TargetTransformInfo::isLegalMaskedScatter(Type *DataType) const {
315   return TTIImpl->isLegalMaskedScatter(DataType);
316 }
317 
318 bool TargetTransformInfo::isLegalMaskedCompressStore(Type *DataType) const {
319   return TTIImpl->isLegalMaskedCompressStore(DataType);
320 }
321 
322 bool TargetTransformInfo::isLegalMaskedExpandLoad(Type *DataType) const {
323   return TTIImpl->isLegalMaskedExpandLoad(DataType);
324 }
325 
326 bool TargetTransformInfo::hasDivRemOp(Type *DataType, bool IsSigned) const {
327   return TTIImpl->hasDivRemOp(DataType, IsSigned);
328 }
329 
330 bool TargetTransformInfo::hasVolatileVariant(Instruction *I,
331                                              unsigned AddrSpace) const {
332   return TTIImpl->hasVolatileVariant(I, AddrSpace);
333 }
334 
335 bool TargetTransformInfo::prefersVectorizedAddressing() const {
336   return TTIImpl->prefersVectorizedAddressing();
337 }
338 
339 int TargetTransformInfo::getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
340                                               int64_t BaseOffset,
341                                               bool HasBaseReg,
342                                               int64_t Scale,
343                                               unsigned AddrSpace) const {
344   int Cost = TTIImpl->getScalingFactorCost(Ty, BaseGV, BaseOffset, HasBaseReg,
345                                            Scale, AddrSpace);
346   assert(Cost >= 0 && "TTI should not produce negative costs!");
347   return Cost;
348 }
349 
350 bool TargetTransformInfo::LSRWithInstrQueries() const {
351   return TTIImpl->LSRWithInstrQueries();
352 }
353 
354 bool TargetTransformInfo::isTruncateFree(Type *Ty1, Type *Ty2) const {
355   return TTIImpl->isTruncateFree(Ty1, Ty2);
356 }
357 
358 bool TargetTransformInfo::isProfitableToHoist(Instruction *I) const {
359   return TTIImpl->isProfitableToHoist(I);
360 }
361 
362 bool TargetTransformInfo::useAA() const { return TTIImpl->useAA(); }
363 
364 bool TargetTransformInfo::isTypeLegal(Type *Ty) const {
365   return TTIImpl->isTypeLegal(Ty);
366 }
367 
368 bool TargetTransformInfo::shouldBuildLookupTables() const {
369   return TTIImpl->shouldBuildLookupTables();
370 }
371 bool TargetTransformInfo::shouldBuildLookupTablesForConstant(Constant *C) const {
372   return TTIImpl->shouldBuildLookupTablesForConstant(C);
373 }
374 
375 bool TargetTransformInfo::useColdCCForColdCall(Function &F) const {
376   return TTIImpl->useColdCCForColdCall(F);
377 }
378 
379 unsigned TargetTransformInfo::
380 getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const {
381   return TTIImpl->getScalarizationOverhead(Ty, Insert, Extract);
382 }
383 
384 unsigned TargetTransformInfo::
385 getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
386                                  unsigned VF) const {
387   return TTIImpl->getOperandsScalarizationOverhead(Args, VF);
388 }
389 
390 bool TargetTransformInfo::supportsEfficientVectorElementLoadStore() const {
391   return TTIImpl->supportsEfficientVectorElementLoadStore();
392 }
393 
394 bool TargetTransformInfo::enableAggressiveInterleaving(bool LoopHasReductions) const {
395   return TTIImpl->enableAggressiveInterleaving(LoopHasReductions);
396 }
397 
398 TargetTransformInfo::MemCmpExpansionOptions
399 TargetTransformInfo::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const {
400   return TTIImpl->enableMemCmpExpansion(OptSize, IsZeroCmp);
401 }
402 
403 bool TargetTransformInfo::enableInterleavedAccessVectorization() const {
404   return TTIImpl->enableInterleavedAccessVectorization();
405 }
406 
407 bool TargetTransformInfo::enableMaskedInterleavedAccessVectorization() const {
408   return TTIImpl->enableMaskedInterleavedAccessVectorization();
409 }
410 
411 bool TargetTransformInfo::isFPVectorizationPotentiallyUnsafe() const {
412   return TTIImpl->isFPVectorizationPotentiallyUnsafe();
413 }
414 
415 bool TargetTransformInfo::allowsMisalignedMemoryAccesses(LLVMContext &Context,
416                                                          unsigned BitWidth,
417                                                          unsigned AddressSpace,
418                                                          unsigned Alignment,
419                                                          bool *Fast) const {
420   return TTIImpl->allowsMisalignedMemoryAccesses(Context, BitWidth, AddressSpace,
421                                                  Alignment, Fast);
422 }
423 
424 TargetTransformInfo::PopcntSupportKind
425 TargetTransformInfo::getPopcntSupport(unsigned IntTyWidthInBit) const {
426   return TTIImpl->getPopcntSupport(IntTyWidthInBit);
427 }
428 
429 bool TargetTransformInfo::haveFastSqrt(Type *Ty) const {
430   return TTIImpl->haveFastSqrt(Ty);
431 }
432 
433 bool TargetTransformInfo::isFCmpOrdCheaperThanFCmpZero(Type *Ty) const {
434   return TTIImpl->isFCmpOrdCheaperThanFCmpZero(Ty);
435 }
436 
437 int TargetTransformInfo::getFPOpCost(Type *Ty) const {
438   int Cost = TTIImpl->getFPOpCost(Ty);
439   assert(Cost >= 0 && "TTI should not produce negative costs!");
440   return Cost;
441 }
442 
443 int TargetTransformInfo::getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx,
444                                                const APInt &Imm,
445                                                Type *Ty) const {
446   int Cost = TTIImpl->getIntImmCodeSizeCost(Opcode, Idx, Imm, Ty);
447   assert(Cost >= 0 && "TTI should not produce negative costs!");
448   return Cost;
449 }
450 
451 int TargetTransformInfo::getIntImmCost(const APInt &Imm, Type *Ty) const {
452   int Cost = TTIImpl->getIntImmCost(Imm, Ty);
453   assert(Cost >= 0 && "TTI should not produce negative costs!");
454   return Cost;
455 }
456 
457 int TargetTransformInfo::getIntImmCost(unsigned Opcode, unsigned Idx,
458                                        const APInt &Imm, Type *Ty) const {
459   int Cost = TTIImpl->getIntImmCost(Opcode, Idx, Imm, Ty);
460   assert(Cost >= 0 && "TTI should not produce negative costs!");
461   return Cost;
462 }
463 
464 int TargetTransformInfo::getIntImmCost(Intrinsic::ID IID, unsigned Idx,
465                                        const APInt &Imm, Type *Ty) const {
466   int Cost = TTIImpl->getIntImmCost(IID, Idx, Imm, Ty);
467   assert(Cost >= 0 && "TTI should not produce negative costs!");
468   return Cost;
469 }
470 
471 unsigned TargetTransformInfo::getNumberOfRegisters(unsigned ClassID) const {
472   return TTIImpl->getNumberOfRegisters(ClassID);
473 }
474 
475 unsigned TargetTransformInfo::getRegisterClassForType(bool Vector, Type *Ty) const {
476   return TTIImpl->getRegisterClassForType(Vector, Ty);
477 }
478 
479 const char* TargetTransformInfo::getRegisterClassName(unsigned ClassID) const {
480   return TTIImpl->getRegisterClassName(ClassID);
481 }
482 
483 unsigned TargetTransformInfo::getRegisterBitWidth(bool Vector) const {
484   return TTIImpl->getRegisterBitWidth(Vector);
485 }
486 
487 unsigned TargetTransformInfo::getMinVectorRegisterBitWidth() const {
488   return TTIImpl->getMinVectorRegisterBitWidth();
489 }
490 
491 bool TargetTransformInfo::shouldMaximizeVectorBandwidth(bool OptSize) const {
492   return TTIImpl->shouldMaximizeVectorBandwidth(OptSize);
493 }
494 
495 unsigned TargetTransformInfo::getMinimumVF(unsigned ElemWidth) const {
496   return TTIImpl->getMinimumVF(ElemWidth);
497 }
498 
499 bool TargetTransformInfo::shouldConsiderAddressTypePromotion(
500     const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const {
501   return TTIImpl->shouldConsiderAddressTypePromotion(
502       I, AllowPromotionWithoutCommonHeader);
503 }
504 
505 unsigned TargetTransformInfo::getCacheLineSize() const {
506   return TTIImpl->getCacheLineSize();
507 }
508 
509 llvm::Optional<unsigned> TargetTransformInfo::getCacheSize(CacheLevel Level)
510   const {
511   return TTIImpl->getCacheSize(Level);
512 }
513 
514 llvm::Optional<unsigned> TargetTransformInfo::getCacheAssociativity(
515   CacheLevel Level) const {
516   return TTIImpl->getCacheAssociativity(Level);
517 }
518 
519 unsigned TargetTransformInfo::getPrefetchDistance() const {
520   return TTIImpl->getPrefetchDistance();
521 }
522 
523 unsigned TargetTransformInfo::getMinPrefetchStride() const {
524   return TTIImpl->getMinPrefetchStride();
525 }
526 
527 unsigned TargetTransformInfo::getMaxPrefetchIterationsAhead() const {
528   return TTIImpl->getMaxPrefetchIterationsAhead();
529 }
530 
531 unsigned TargetTransformInfo::getMaxInterleaveFactor(unsigned VF) const {
532   return TTIImpl->getMaxInterleaveFactor(VF);
533 }
534 
535 TargetTransformInfo::OperandValueKind
536 TargetTransformInfo::getOperandInfo(Value *V, OperandValueProperties &OpProps) {
537   OperandValueKind OpInfo = OK_AnyValue;
538   OpProps = OP_None;
539 
540   if (auto *CI = dyn_cast<ConstantInt>(V)) {
541     if (CI->getValue().isPowerOf2())
542       OpProps = OP_PowerOf2;
543     return OK_UniformConstantValue;
544   }
545 
546   // A broadcast shuffle creates a uniform value.
547   // TODO: Add support for non-zero index broadcasts.
548   // TODO: Add support for different source vector width.
549   if (auto *ShuffleInst = dyn_cast<ShuffleVectorInst>(V))
550     if (ShuffleInst->isZeroEltSplat())
551       OpInfo = OK_UniformValue;
552 
553   const Value *Splat = getSplatValue(V);
554 
555   // Check for a splat of a constant or for a non uniform vector of constants
556   // and check if the constant(s) are all powers of two.
557   if (isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) {
558     OpInfo = OK_NonUniformConstantValue;
559     if (Splat) {
560       OpInfo = OK_UniformConstantValue;
561       if (auto *CI = dyn_cast<ConstantInt>(Splat))
562         if (CI->getValue().isPowerOf2())
563           OpProps = OP_PowerOf2;
564     } else if (auto *CDS = dyn_cast<ConstantDataSequential>(V)) {
565       OpProps = OP_PowerOf2;
566       for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) {
567         if (auto *CI = dyn_cast<ConstantInt>(CDS->getElementAsConstant(I)))
568           if (CI->getValue().isPowerOf2())
569             continue;
570         OpProps = OP_None;
571         break;
572       }
573     }
574   }
575 
576   // Check for a splat of a uniform value. This is not loop aware, so return
577   // true only for the obviously uniform cases (argument, globalvalue)
578   if (Splat && (isa<Argument>(Splat) || isa<GlobalValue>(Splat)))
579     OpInfo = OK_UniformValue;
580 
581   return OpInfo;
582 }
583 
584 int TargetTransformInfo::getArithmeticInstrCost(
585     unsigned Opcode, Type *Ty, OperandValueKind Opd1Info,
586     OperandValueKind Opd2Info, OperandValueProperties Opd1PropInfo,
587     OperandValueProperties Opd2PropInfo,
588     ArrayRef<const Value *> Args) const {
589   int Cost = TTIImpl->getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info,
590                                              Opd1PropInfo, Opd2PropInfo, Args);
591   assert(Cost >= 0 && "TTI should not produce negative costs!");
592   return Cost;
593 }
594 
595 int TargetTransformInfo::getShuffleCost(ShuffleKind Kind, Type *Ty, int Index,
596                                         Type *SubTp) const {
597   int Cost = TTIImpl->getShuffleCost(Kind, Ty, Index, SubTp);
598   assert(Cost >= 0 && "TTI should not produce negative costs!");
599   return Cost;
600 }
601 
602 int TargetTransformInfo::getCastInstrCost(unsigned Opcode, Type *Dst,
603                                  Type *Src, const Instruction *I) const {
604   assert ((I == nullptr || I->getOpcode() == Opcode) &&
605           "Opcode should reflect passed instruction.");
606   int Cost = TTIImpl->getCastInstrCost(Opcode, Dst, Src, I);
607   assert(Cost >= 0 && "TTI should not produce negative costs!");
608   return Cost;
609 }
610 
611 int TargetTransformInfo::getExtractWithExtendCost(unsigned Opcode, Type *Dst,
612                                                   VectorType *VecTy,
613                                                   unsigned Index) const {
614   int Cost = TTIImpl->getExtractWithExtendCost(Opcode, Dst, VecTy, Index);
615   assert(Cost >= 0 && "TTI should not produce negative costs!");
616   return Cost;
617 }
618 
619 int TargetTransformInfo::getCFInstrCost(unsigned Opcode) const {
620   int Cost = TTIImpl->getCFInstrCost(Opcode);
621   assert(Cost >= 0 && "TTI should not produce negative costs!");
622   return Cost;
623 }
624 
625 int TargetTransformInfo::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
626                                  Type *CondTy, const Instruction *I) const {
627   assert ((I == nullptr || I->getOpcode() == Opcode) &&
628           "Opcode should reflect passed instruction.");
629   int Cost = TTIImpl->getCmpSelInstrCost(Opcode, ValTy, CondTy, I);
630   assert(Cost >= 0 && "TTI should not produce negative costs!");
631   return Cost;
632 }
633 
634 int TargetTransformInfo::getVectorInstrCost(unsigned Opcode, Type *Val,
635                                             unsigned Index) const {
636   int Cost = TTIImpl->getVectorInstrCost(Opcode, Val, Index);
637   assert(Cost >= 0 && "TTI should not produce negative costs!");
638   return Cost;
639 }
640 
641 int TargetTransformInfo::getMemoryOpCost(unsigned Opcode, Type *Src,
642                                          unsigned Alignment,
643                                          unsigned AddressSpace,
644                                          const Instruction *I) const {
645   assert ((I == nullptr || I->getOpcode() == Opcode) &&
646           "Opcode should reflect passed instruction.");
647   int Cost = TTIImpl->getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, I);
648   assert(Cost >= 0 && "TTI should not produce negative costs!");
649   return Cost;
650 }
651 
652 int TargetTransformInfo::getMaskedMemoryOpCost(unsigned Opcode, Type *Src,
653                                                unsigned Alignment,
654                                                unsigned AddressSpace) const {
655   int Cost =
656       TTIImpl->getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace);
657   assert(Cost >= 0 && "TTI should not produce negative costs!");
658   return Cost;
659 }
660 
661 int TargetTransformInfo::getGatherScatterOpCost(unsigned Opcode, Type *DataTy,
662                                                 Value *Ptr, bool VariableMask,
663                                                 unsigned Alignment) const {
664   int Cost = TTIImpl->getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask,
665                                              Alignment);
666   assert(Cost >= 0 && "TTI should not produce negative costs!");
667   return Cost;
668 }
669 
670 int TargetTransformInfo::getInterleavedMemoryOpCost(
671     unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
672     unsigned Alignment, unsigned AddressSpace, bool UseMaskForCond,
673     bool UseMaskForGaps) const {
674   int Cost = TTIImpl->getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
675                                                  Alignment, AddressSpace,
676                                                  UseMaskForCond,
677                                                  UseMaskForGaps);
678   assert(Cost >= 0 && "TTI should not produce negative costs!");
679   return Cost;
680 }
681 
682 int TargetTransformInfo::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
683                                     ArrayRef<Type *> Tys, FastMathFlags FMF,
684                                     unsigned ScalarizationCostPassed) const {
685   int Cost = TTIImpl->getIntrinsicInstrCost(ID, RetTy, Tys, FMF,
686                                             ScalarizationCostPassed);
687   assert(Cost >= 0 && "TTI should not produce negative costs!");
688   return Cost;
689 }
690 
691 int TargetTransformInfo::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
692            ArrayRef<Value *> Args, FastMathFlags FMF, unsigned VF) const {
693   int Cost = TTIImpl->getIntrinsicInstrCost(ID, RetTy, Args, FMF, VF);
694   assert(Cost >= 0 && "TTI should not produce negative costs!");
695   return Cost;
696 }
697 
698 int TargetTransformInfo::getCallInstrCost(Function *F, Type *RetTy,
699                                           ArrayRef<Type *> Tys) const {
700   int Cost = TTIImpl->getCallInstrCost(F, RetTy, Tys);
701   assert(Cost >= 0 && "TTI should not produce negative costs!");
702   return Cost;
703 }
704 
705 unsigned TargetTransformInfo::getNumberOfParts(Type *Tp) const {
706   return TTIImpl->getNumberOfParts(Tp);
707 }
708 
709 int TargetTransformInfo::getAddressComputationCost(Type *Tp,
710                                                    ScalarEvolution *SE,
711                                                    const SCEV *Ptr) const {
712   int Cost = TTIImpl->getAddressComputationCost(Tp, SE, Ptr);
713   assert(Cost >= 0 && "TTI should not produce negative costs!");
714   return Cost;
715 }
716 
717 int TargetTransformInfo::getMemcpyCost(const Instruction *I) const {
718   int Cost = TTIImpl->getMemcpyCost(I);
719   assert(Cost >= 0 && "TTI should not produce negative costs!");
720   return Cost;
721 }
722 
723 int TargetTransformInfo::getArithmeticReductionCost(unsigned Opcode, Type *Ty,
724                                                     bool IsPairwiseForm) const {
725   int Cost = TTIImpl->getArithmeticReductionCost(Opcode, Ty, IsPairwiseForm);
726   assert(Cost >= 0 && "TTI should not produce negative costs!");
727   return Cost;
728 }
729 
730 int TargetTransformInfo::getMinMaxReductionCost(Type *Ty, Type *CondTy,
731                                                 bool IsPairwiseForm,
732                                                 bool IsUnsigned) const {
733   int Cost =
734       TTIImpl->getMinMaxReductionCost(Ty, CondTy, IsPairwiseForm, IsUnsigned);
735   assert(Cost >= 0 && "TTI should not produce negative costs!");
736   return Cost;
737 }
738 
739 unsigned
740 TargetTransformInfo::getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) const {
741   return TTIImpl->getCostOfKeepingLiveOverCall(Tys);
742 }
743 
744 bool TargetTransformInfo::getTgtMemIntrinsic(IntrinsicInst *Inst,
745                                              MemIntrinsicInfo &Info) const {
746   return TTIImpl->getTgtMemIntrinsic(Inst, Info);
747 }
748 
749 unsigned TargetTransformInfo::getAtomicMemIntrinsicMaxElementSize() const {
750   return TTIImpl->getAtomicMemIntrinsicMaxElementSize();
751 }
752 
753 Value *TargetTransformInfo::getOrCreateResultFromMemIntrinsic(
754     IntrinsicInst *Inst, Type *ExpectedType) const {
755   return TTIImpl->getOrCreateResultFromMemIntrinsic(Inst, ExpectedType);
756 }
757 
758 Type *TargetTransformInfo::getMemcpyLoopLoweringType(LLVMContext &Context,
759                                                      Value *Length,
760                                                      unsigned SrcAlign,
761                                                      unsigned DestAlign) const {
762   return TTIImpl->getMemcpyLoopLoweringType(Context, Length, SrcAlign,
763                                             DestAlign);
764 }
765 
766 void TargetTransformInfo::getMemcpyLoopResidualLoweringType(
767     SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context,
768     unsigned RemainingBytes, unsigned SrcAlign, unsigned DestAlign) const {
769   TTIImpl->getMemcpyLoopResidualLoweringType(OpsOut, Context, RemainingBytes,
770                                              SrcAlign, DestAlign);
771 }
772 
773 bool TargetTransformInfo::areInlineCompatible(const Function *Caller,
774                                               const Function *Callee) const {
775   return TTIImpl->areInlineCompatible(Caller, Callee);
776 }
777 
778 bool TargetTransformInfo::areFunctionArgsABICompatible(
779     const Function *Caller, const Function *Callee,
780     SmallPtrSetImpl<Argument *> &Args) const {
781   return TTIImpl->areFunctionArgsABICompatible(Caller, Callee, Args);
782 }
783 
784 bool TargetTransformInfo::isIndexedLoadLegal(MemIndexedMode Mode,
785                                              Type *Ty) const {
786   return TTIImpl->isIndexedLoadLegal(Mode, Ty);
787 }
788 
789 bool TargetTransformInfo::isIndexedStoreLegal(MemIndexedMode Mode,
790                                               Type *Ty) const {
791   return TTIImpl->isIndexedStoreLegal(Mode, Ty);
792 }
793 
794 unsigned TargetTransformInfo::getLoadStoreVecRegBitWidth(unsigned AS) const {
795   return TTIImpl->getLoadStoreVecRegBitWidth(AS);
796 }
797 
798 bool TargetTransformInfo::isLegalToVectorizeLoad(LoadInst *LI) const {
799   return TTIImpl->isLegalToVectorizeLoad(LI);
800 }
801 
802 bool TargetTransformInfo::isLegalToVectorizeStore(StoreInst *SI) const {
803   return TTIImpl->isLegalToVectorizeStore(SI);
804 }
805 
806 bool TargetTransformInfo::isLegalToVectorizeLoadChain(
807     unsigned ChainSizeInBytes, unsigned Alignment, unsigned AddrSpace) const {
808   return TTIImpl->isLegalToVectorizeLoadChain(ChainSizeInBytes, Alignment,
809                                               AddrSpace);
810 }
811 
812 bool TargetTransformInfo::isLegalToVectorizeStoreChain(
813     unsigned ChainSizeInBytes, unsigned Alignment, unsigned AddrSpace) const {
814   return TTIImpl->isLegalToVectorizeStoreChain(ChainSizeInBytes, Alignment,
815                                                AddrSpace);
816 }
817 
818 unsigned TargetTransformInfo::getLoadVectorFactor(unsigned VF,
819                                                   unsigned LoadSize,
820                                                   unsigned ChainSizeInBytes,
821                                                   VectorType *VecTy) const {
822   return TTIImpl->getLoadVectorFactor(VF, LoadSize, ChainSizeInBytes, VecTy);
823 }
824 
825 unsigned TargetTransformInfo::getStoreVectorFactor(unsigned VF,
826                                                    unsigned StoreSize,
827                                                    unsigned ChainSizeInBytes,
828                                                    VectorType *VecTy) const {
829   return TTIImpl->getStoreVectorFactor(VF, StoreSize, ChainSizeInBytes, VecTy);
830 }
831 
832 bool TargetTransformInfo::useReductionIntrinsic(unsigned Opcode,
833                                                 Type *Ty, ReductionFlags Flags) const {
834   return TTIImpl->useReductionIntrinsic(Opcode, Ty, Flags);
835 }
836 
837 bool TargetTransformInfo::shouldExpandReduction(const IntrinsicInst *II) const {
838   return TTIImpl->shouldExpandReduction(II);
839 }
840 
841 unsigned TargetTransformInfo::getGISelRematGlobalCost() const {
842   return TTIImpl->getGISelRematGlobalCost();
843 }
844 
845 int TargetTransformInfo::getInstructionLatency(const Instruction *I) const {
846   return TTIImpl->getInstructionLatency(I);
847 }
848 
849 static bool matchPairwiseShuffleMask(ShuffleVectorInst *SI, bool IsLeft,
850                                      unsigned Level) {
851   // We don't need a shuffle if we just want to have element 0 in position 0 of
852   // the vector.
853   if (!SI && Level == 0 && IsLeft)
854     return true;
855   else if (!SI)
856     return false;
857 
858   SmallVector<int, 32> Mask(SI->getType()->getVectorNumElements(), -1);
859 
860   // Build a mask of 0, 2, ... (left) or 1, 3, ... (right) depending on whether
861   // we look at the left or right side.
862   for (unsigned i = 0, e = (1 << Level), val = !IsLeft; i != e; ++i, val += 2)
863     Mask[i] = val;
864 
865   SmallVector<int, 16> ActualMask = SI->getShuffleMask();
866   return Mask == ActualMask;
867 }
868 
869 namespace {
870 /// Kind of the reduction data.
871 enum ReductionKind {
872   RK_None,           /// Not a reduction.
873   RK_Arithmetic,     /// Binary reduction data.
874   RK_MinMax,         /// Min/max reduction data.
875   RK_UnsignedMinMax, /// Unsigned min/max reduction data.
876 };
877 /// Contains opcode + LHS/RHS parts of the reduction operations.
878 struct ReductionData {
879   ReductionData() = delete;
880   ReductionData(ReductionKind Kind, unsigned Opcode, Value *LHS, Value *RHS)
881       : Opcode(Opcode), LHS(LHS), RHS(RHS), Kind(Kind) {
882     assert(Kind != RK_None && "expected binary or min/max reduction only.");
883   }
884   unsigned Opcode = 0;
885   Value *LHS = nullptr;
886   Value *RHS = nullptr;
887   ReductionKind Kind = RK_None;
888   bool hasSameData(ReductionData &RD) const {
889     return Kind == RD.Kind && Opcode == RD.Opcode;
890   }
891 };
892 } // namespace
893 
894 static Optional<ReductionData> getReductionData(Instruction *I) {
895   Value *L, *R;
896   if (m_BinOp(m_Value(L), m_Value(R)).match(I))
897     return ReductionData(RK_Arithmetic, I->getOpcode(), L, R);
898   if (auto *SI = dyn_cast<SelectInst>(I)) {
899     if (m_SMin(m_Value(L), m_Value(R)).match(SI) ||
900         m_SMax(m_Value(L), m_Value(R)).match(SI) ||
901         m_OrdFMin(m_Value(L), m_Value(R)).match(SI) ||
902         m_OrdFMax(m_Value(L), m_Value(R)).match(SI) ||
903         m_UnordFMin(m_Value(L), m_Value(R)).match(SI) ||
904         m_UnordFMax(m_Value(L), m_Value(R)).match(SI)) {
905       auto *CI = cast<CmpInst>(SI->getCondition());
906       return ReductionData(RK_MinMax, CI->getOpcode(), L, R);
907     }
908     if (m_UMin(m_Value(L), m_Value(R)).match(SI) ||
909         m_UMax(m_Value(L), m_Value(R)).match(SI)) {
910       auto *CI = cast<CmpInst>(SI->getCondition());
911       return ReductionData(RK_UnsignedMinMax, CI->getOpcode(), L, R);
912     }
913   }
914   return llvm::None;
915 }
916 
917 static ReductionKind matchPairwiseReductionAtLevel(Instruction *I,
918                                                    unsigned Level,
919                                                    unsigned NumLevels) {
920   // Match one level of pairwise operations.
921   // %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef,
922   //       <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef>
923   // %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef,
924   //       <4 x i32> <i32 1, i32 3, i32 undef, i32 undef>
925   // %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1
926   if (!I)
927     return RK_None;
928 
929   assert(I->getType()->isVectorTy() && "Expecting a vector type");
930 
931   Optional<ReductionData> RD = getReductionData(I);
932   if (!RD)
933     return RK_None;
934 
935   ShuffleVectorInst *LS = dyn_cast<ShuffleVectorInst>(RD->LHS);
936   if (!LS && Level)
937     return RK_None;
938   ShuffleVectorInst *RS = dyn_cast<ShuffleVectorInst>(RD->RHS);
939   if (!RS && Level)
940     return RK_None;
941 
942   // On level 0 we can omit one shufflevector instruction.
943   if (!Level && !RS && !LS)
944     return RK_None;
945 
946   // Shuffle inputs must match.
947   Value *NextLevelOpL = LS ? LS->getOperand(0) : nullptr;
948   Value *NextLevelOpR = RS ? RS->getOperand(0) : nullptr;
949   Value *NextLevelOp = nullptr;
950   if (NextLevelOpR && NextLevelOpL) {
951     // If we have two shuffles their operands must match.
952     if (NextLevelOpL != NextLevelOpR)
953       return RK_None;
954 
955     NextLevelOp = NextLevelOpL;
956   } else if (Level == 0 && (NextLevelOpR || NextLevelOpL)) {
957     // On the first level we can omit the shufflevector <0, undef,...>. So the
958     // input to the other shufflevector <1, undef> must match with one of the
959     // inputs to the current binary operation.
960     // Example:
961     //  %NextLevelOpL = shufflevector %R, <1, undef ...>
962     //  %BinOp        = fadd          %NextLevelOpL, %R
963     if (NextLevelOpL && NextLevelOpL != RD->RHS)
964       return RK_None;
965     else if (NextLevelOpR && NextLevelOpR != RD->LHS)
966       return RK_None;
967 
968     NextLevelOp = NextLevelOpL ? RD->RHS : RD->LHS;
969   } else
970     return RK_None;
971 
972   // Check that the next levels binary operation exists and matches with the
973   // current one.
974   if (Level + 1 != NumLevels) {
975     Optional<ReductionData> NextLevelRD =
976         getReductionData(cast<Instruction>(NextLevelOp));
977     if (!NextLevelRD || !RD->hasSameData(*NextLevelRD))
978       return RK_None;
979   }
980 
981   // Shuffle mask for pairwise operation must match.
982   if (matchPairwiseShuffleMask(LS, /*IsLeft=*/true, Level)) {
983     if (!matchPairwiseShuffleMask(RS, /*IsLeft=*/false, Level))
984       return RK_None;
985   } else if (matchPairwiseShuffleMask(RS, /*IsLeft=*/true, Level)) {
986     if (!matchPairwiseShuffleMask(LS, /*IsLeft=*/false, Level))
987       return RK_None;
988   } else {
989     return RK_None;
990   }
991 
992   if (++Level == NumLevels)
993     return RD->Kind;
994 
995   // Match next level.
996   return matchPairwiseReductionAtLevel(cast<Instruction>(NextLevelOp), Level,
997                                        NumLevels);
998 }
999 
1000 static ReductionKind matchPairwiseReduction(const ExtractElementInst *ReduxRoot,
1001                                             unsigned &Opcode, Type *&Ty) {
1002   if (!EnableReduxCost)
1003     return RK_None;
1004 
1005   // Need to extract the first element.
1006   ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1));
1007   unsigned Idx = ~0u;
1008   if (CI)
1009     Idx = CI->getZExtValue();
1010   if (Idx != 0)
1011     return RK_None;
1012 
1013   auto *RdxStart = dyn_cast<Instruction>(ReduxRoot->getOperand(0));
1014   if (!RdxStart)
1015     return RK_None;
1016   Optional<ReductionData> RD = getReductionData(RdxStart);
1017   if (!RD)
1018     return RK_None;
1019 
1020   Type *VecTy = RdxStart->getType();
1021   unsigned NumVecElems = VecTy->getVectorNumElements();
1022   if (!isPowerOf2_32(NumVecElems))
1023     return RK_None;
1024 
1025   // We look for a sequence of shuffle,shuffle,add triples like the following
1026   // that builds a pairwise reduction tree.
1027   //
1028   //  (X0, X1, X2, X3)
1029   //   (X0 + X1, X2 + X3, undef, undef)
1030   //    ((X0 + X1) + (X2 + X3), undef, undef, undef)
1031   //
1032   // %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef,
1033   //       <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef>
1034   // %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef,
1035   //       <4 x i32> <i32 1, i32 3, i32 undef, i32 undef>
1036   // %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1
1037   // %rdx.shuf.1.0 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef,
1038   //       <4 x i32> <i32 0, i32 undef, i32 undef, i32 undef>
1039   // %rdx.shuf.1.1 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef,
1040   //       <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef>
1041   // %bin.rdx8 = fadd <4 x float> %rdx.shuf.1.0, %rdx.shuf.1.1
1042   // %r = extractelement <4 x float> %bin.rdx8, i32 0
1043   if (matchPairwiseReductionAtLevel(RdxStart, 0, Log2_32(NumVecElems)) ==
1044       RK_None)
1045     return RK_None;
1046 
1047   Opcode = RD->Opcode;
1048   Ty = VecTy;
1049 
1050   return RD->Kind;
1051 }
1052 
1053 static std::pair<Value *, ShuffleVectorInst *>
1054 getShuffleAndOtherOprd(Value *L, Value *R) {
1055   ShuffleVectorInst *S = nullptr;
1056 
1057   if ((S = dyn_cast<ShuffleVectorInst>(L)))
1058     return std::make_pair(R, S);
1059 
1060   S = dyn_cast<ShuffleVectorInst>(R);
1061   return std::make_pair(L, S);
1062 }
1063 
1064 static ReductionKind
1065 matchVectorSplittingReduction(const ExtractElementInst *ReduxRoot,
1066                               unsigned &Opcode, Type *&Ty) {
1067   if (!EnableReduxCost)
1068     return RK_None;
1069 
1070   // Need to extract the first element.
1071   ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1));
1072   unsigned Idx = ~0u;
1073   if (CI)
1074     Idx = CI->getZExtValue();
1075   if (Idx != 0)
1076     return RK_None;
1077 
1078   auto *RdxStart = dyn_cast<Instruction>(ReduxRoot->getOperand(0));
1079   if (!RdxStart)
1080     return RK_None;
1081   Optional<ReductionData> RD = getReductionData(RdxStart);
1082   if (!RD)
1083     return RK_None;
1084 
1085   Type *VecTy = ReduxRoot->getOperand(0)->getType();
1086   unsigned NumVecElems = VecTy->getVectorNumElements();
1087   if (!isPowerOf2_32(NumVecElems))
1088     return RK_None;
1089 
1090   // We look for a sequence of shuffles and adds like the following matching one
1091   // fadd, shuffle vector pair at a time.
1092   //
1093   // %rdx.shuf = shufflevector <4 x float> %rdx, <4 x float> undef,
1094   //                           <4 x i32> <i32 2, i32 3, i32 undef, i32 undef>
1095   // %bin.rdx = fadd <4 x float> %rdx, %rdx.shuf
1096   // %rdx.shuf7 = shufflevector <4 x float> %bin.rdx, <4 x float> undef,
1097   //                          <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef>
1098   // %bin.rdx8 = fadd <4 x float> %bin.rdx, %rdx.shuf7
1099   // %r = extractelement <4 x float> %bin.rdx8, i32 0
1100 
1101   unsigned MaskStart = 1;
1102   Instruction *RdxOp = RdxStart;
1103   SmallVector<int, 32> ShuffleMask(NumVecElems, 0);
1104   unsigned NumVecElemsRemain = NumVecElems;
1105   while (NumVecElemsRemain - 1) {
1106     // Check for the right reduction operation.
1107     if (!RdxOp)
1108       return RK_None;
1109     Optional<ReductionData> RDLevel = getReductionData(RdxOp);
1110     if (!RDLevel || !RDLevel->hasSameData(*RD))
1111       return RK_None;
1112 
1113     Value *NextRdxOp;
1114     ShuffleVectorInst *Shuffle;
1115     std::tie(NextRdxOp, Shuffle) =
1116         getShuffleAndOtherOprd(RDLevel->LHS, RDLevel->RHS);
1117 
1118     // Check the current reduction operation and the shuffle use the same value.
1119     if (Shuffle == nullptr)
1120       return RK_None;
1121     if (Shuffle->getOperand(0) != NextRdxOp)
1122       return RK_None;
1123 
1124     // Check that shuffle masks matches.
1125     for (unsigned j = 0; j != MaskStart; ++j)
1126       ShuffleMask[j] = MaskStart + j;
1127     // Fill the rest of the mask with -1 for undef.
1128     std::fill(&ShuffleMask[MaskStart], ShuffleMask.end(), -1);
1129 
1130     SmallVector<int, 16> Mask = Shuffle->getShuffleMask();
1131     if (ShuffleMask != Mask)
1132       return RK_None;
1133 
1134     RdxOp = dyn_cast<Instruction>(NextRdxOp);
1135     NumVecElemsRemain /= 2;
1136     MaskStart *= 2;
1137   }
1138 
1139   Opcode = RD->Opcode;
1140   Ty = VecTy;
1141   return RD->Kind;
1142 }
1143 
1144 int TargetTransformInfo::getInstructionThroughput(const Instruction *I) const {
1145   switch (I->getOpcode()) {
1146   case Instruction::GetElementPtr:
1147     return getUserCost(I);
1148 
1149   case Instruction::Ret:
1150   case Instruction::PHI:
1151   case Instruction::Br: {
1152     return getCFInstrCost(I->getOpcode());
1153   }
1154   case Instruction::Add:
1155   case Instruction::FAdd:
1156   case Instruction::Sub:
1157   case Instruction::FSub:
1158   case Instruction::Mul:
1159   case Instruction::FMul:
1160   case Instruction::UDiv:
1161   case Instruction::SDiv:
1162   case Instruction::FDiv:
1163   case Instruction::URem:
1164   case Instruction::SRem:
1165   case Instruction::FRem:
1166   case Instruction::Shl:
1167   case Instruction::LShr:
1168   case Instruction::AShr:
1169   case Instruction::And:
1170   case Instruction::Or:
1171   case Instruction::Xor: {
1172     TargetTransformInfo::OperandValueKind Op1VK, Op2VK;
1173     TargetTransformInfo::OperandValueProperties Op1VP, Op2VP;
1174     Op1VK = getOperandInfo(I->getOperand(0), Op1VP);
1175     Op2VK = getOperandInfo(I->getOperand(1), Op2VP);
1176     SmallVector<const Value *, 2> Operands(I->operand_values());
1177     return getArithmeticInstrCost(I->getOpcode(), I->getType(), Op1VK, Op2VK,
1178                                   Op1VP, Op2VP, Operands);
1179   }
1180   case Instruction::FNeg: {
1181     TargetTransformInfo::OperandValueKind Op1VK, Op2VK;
1182     TargetTransformInfo::OperandValueProperties Op1VP, Op2VP;
1183     Op1VK = getOperandInfo(I->getOperand(0), Op1VP);
1184     Op2VK = OK_AnyValue;
1185     Op2VP = OP_None;
1186     SmallVector<const Value *, 2> Operands(I->operand_values());
1187     return getArithmeticInstrCost(I->getOpcode(), I->getType(), Op1VK, Op2VK,
1188                                   Op1VP, Op2VP, Operands);
1189   }
1190   case Instruction::Select: {
1191     const SelectInst *SI = cast<SelectInst>(I);
1192     Type *CondTy = SI->getCondition()->getType();
1193     return getCmpSelInstrCost(I->getOpcode(), I->getType(), CondTy, I);
1194   }
1195   case Instruction::ICmp:
1196   case Instruction::FCmp: {
1197     Type *ValTy = I->getOperand(0)->getType();
1198     return getCmpSelInstrCost(I->getOpcode(), ValTy, I->getType(), I);
1199   }
1200   case Instruction::Store: {
1201     const StoreInst *SI = cast<StoreInst>(I);
1202     Type *ValTy = SI->getValueOperand()->getType();
1203     return getMemoryOpCost(I->getOpcode(), ValTy,
1204                                 SI->getAlignment(),
1205                                 SI->getPointerAddressSpace(), I);
1206   }
1207   case Instruction::Load: {
1208     const LoadInst *LI = cast<LoadInst>(I);
1209     return getMemoryOpCost(I->getOpcode(), I->getType(),
1210                                 LI->getAlignment(),
1211                                 LI->getPointerAddressSpace(), I);
1212   }
1213   case Instruction::ZExt:
1214   case Instruction::SExt:
1215   case Instruction::FPToUI:
1216   case Instruction::FPToSI:
1217   case Instruction::FPExt:
1218   case Instruction::PtrToInt:
1219   case Instruction::IntToPtr:
1220   case Instruction::SIToFP:
1221   case Instruction::UIToFP:
1222   case Instruction::Trunc:
1223   case Instruction::FPTrunc:
1224   case Instruction::BitCast:
1225   case Instruction::AddrSpaceCast: {
1226     Type *SrcTy = I->getOperand(0)->getType();
1227     return getCastInstrCost(I->getOpcode(), I->getType(), SrcTy, I);
1228   }
1229   case Instruction::ExtractElement: {
1230     const ExtractElementInst * EEI = cast<ExtractElementInst>(I);
1231     ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1));
1232     unsigned Idx = -1;
1233     if (CI)
1234       Idx = CI->getZExtValue();
1235 
1236     // Try to match a reduction sequence (series of shufflevector and vector
1237     // adds followed by a extractelement).
1238     unsigned ReduxOpCode;
1239     Type *ReduxType;
1240 
1241     switch (matchVectorSplittingReduction(EEI, ReduxOpCode, ReduxType)) {
1242     case RK_Arithmetic:
1243       return getArithmeticReductionCost(ReduxOpCode, ReduxType,
1244                                              /*IsPairwiseForm=*/false);
1245     case RK_MinMax:
1246       return getMinMaxReductionCost(
1247           ReduxType, CmpInst::makeCmpResultType(ReduxType),
1248           /*IsPairwiseForm=*/false, /*IsUnsigned=*/false);
1249     case RK_UnsignedMinMax:
1250       return getMinMaxReductionCost(
1251           ReduxType, CmpInst::makeCmpResultType(ReduxType),
1252           /*IsPairwiseForm=*/false, /*IsUnsigned=*/true);
1253     case RK_None:
1254       break;
1255     }
1256 
1257     switch (matchPairwiseReduction(EEI, ReduxOpCode, ReduxType)) {
1258     case RK_Arithmetic:
1259       return getArithmeticReductionCost(ReduxOpCode, ReduxType,
1260                                              /*IsPairwiseForm=*/true);
1261     case RK_MinMax:
1262       return getMinMaxReductionCost(
1263           ReduxType, CmpInst::makeCmpResultType(ReduxType),
1264           /*IsPairwiseForm=*/true, /*IsUnsigned=*/false);
1265     case RK_UnsignedMinMax:
1266       return getMinMaxReductionCost(
1267           ReduxType, CmpInst::makeCmpResultType(ReduxType),
1268           /*IsPairwiseForm=*/true, /*IsUnsigned=*/true);
1269     case RK_None:
1270       break;
1271     }
1272 
1273     return getVectorInstrCost(I->getOpcode(),
1274                                    EEI->getOperand(0)->getType(), Idx);
1275   }
1276   case Instruction::InsertElement: {
1277     const InsertElementInst * IE = cast<InsertElementInst>(I);
1278     ConstantInt *CI = dyn_cast<ConstantInt>(IE->getOperand(2));
1279     unsigned Idx = -1;
1280     if (CI)
1281       Idx = CI->getZExtValue();
1282     return getVectorInstrCost(I->getOpcode(),
1283                                    IE->getType(), Idx);
1284   }
1285   case Instruction::ExtractValue:
1286     return 0; // Model all ExtractValue nodes as free.
1287   case Instruction::ShuffleVector: {
1288     const ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I);
1289     Type *Ty = Shuffle->getType();
1290     Type *SrcTy = Shuffle->getOperand(0)->getType();
1291 
1292     // TODO: Identify and add costs for insert subvector, etc.
1293     int SubIndex;
1294     if (Shuffle->isExtractSubvectorMask(SubIndex))
1295       return TTIImpl->getShuffleCost(SK_ExtractSubvector, SrcTy, SubIndex, Ty);
1296 
1297     if (Shuffle->changesLength())
1298       return -1;
1299 
1300     if (Shuffle->isIdentity())
1301       return 0;
1302 
1303     if (Shuffle->isReverse())
1304       return TTIImpl->getShuffleCost(SK_Reverse, Ty, 0, nullptr);
1305 
1306     if (Shuffle->isSelect())
1307       return TTIImpl->getShuffleCost(SK_Select, Ty, 0, nullptr);
1308 
1309     if (Shuffle->isTranspose())
1310       return TTIImpl->getShuffleCost(SK_Transpose, Ty, 0, nullptr);
1311 
1312     if (Shuffle->isZeroEltSplat())
1313       return TTIImpl->getShuffleCost(SK_Broadcast, Ty, 0, nullptr);
1314 
1315     if (Shuffle->isSingleSource())
1316       return TTIImpl->getShuffleCost(SK_PermuteSingleSrc, Ty, 0, nullptr);
1317 
1318     return TTIImpl->getShuffleCost(SK_PermuteTwoSrc, Ty, 0, nullptr);
1319   }
1320   case Instruction::Call:
1321     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1322       SmallVector<Value *, 4> Args(II->arg_operands());
1323 
1324       FastMathFlags FMF;
1325       if (auto *FPMO = dyn_cast<FPMathOperator>(II))
1326         FMF = FPMO->getFastMathFlags();
1327 
1328       return getIntrinsicInstrCost(II->getIntrinsicID(), II->getType(),
1329                                         Args, FMF);
1330     }
1331     return -1;
1332   default:
1333     // We don't have any information on this instruction.
1334     return -1;
1335   }
1336 }
1337 
1338 TargetTransformInfo::Concept::~Concept() {}
1339 
1340 TargetIRAnalysis::TargetIRAnalysis() : TTICallback(&getDefaultTTI) {}
1341 
1342 TargetIRAnalysis::TargetIRAnalysis(
1343     std::function<Result(const Function &)> TTICallback)
1344     : TTICallback(std::move(TTICallback)) {}
1345 
1346 TargetIRAnalysis::Result TargetIRAnalysis::run(const Function &F,
1347                                                FunctionAnalysisManager &) {
1348   return TTICallback(F);
1349 }
1350 
1351 AnalysisKey TargetIRAnalysis::Key;
1352 
1353 TargetIRAnalysis::Result TargetIRAnalysis::getDefaultTTI(const Function &F) {
1354   return Result(F.getParent()->getDataLayout());
1355 }
1356 
1357 // Register the basic pass.
1358 INITIALIZE_PASS(TargetTransformInfoWrapperPass, "tti",
1359                 "Target Transform Information", false, true)
1360 char TargetTransformInfoWrapperPass::ID = 0;
1361 
1362 void TargetTransformInfoWrapperPass::anchor() {}
1363 
1364 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass()
1365     : ImmutablePass(ID) {
1366   initializeTargetTransformInfoWrapperPassPass(
1367       *PassRegistry::getPassRegistry());
1368 }
1369 
1370 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass(
1371     TargetIRAnalysis TIRA)
1372     : ImmutablePass(ID), TIRA(std::move(TIRA)) {
1373   initializeTargetTransformInfoWrapperPassPass(
1374       *PassRegistry::getPassRegistry());
1375 }
1376 
1377 TargetTransformInfo &TargetTransformInfoWrapperPass::getTTI(const Function &F) {
1378   FunctionAnalysisManager DummyFAM;
1379   TTI = TIRA.run(F, DummyFAM);
1380   return *TTI;
1381 }
1382 
1383 ImmutablePass *
1384 llvm::createTargetTransformInfoWrapperPass(TargetIRAnalysis TIRA) {
1385   return new TargetTransformInfoWrapperPass(std::move(TIRA));
1386 }
1387