xref: /freebsd-src/contrib/llvm-project/llvm/lib/Analysis/ScalarEvolution.cpp (revision 4824e7fd18a1223177218d4aec1b3c6c5c4a444e)
1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the implementation of the scalar evolution analysis
10 // engine, which is used primarily to analyze expressions involving induction
11 // variables in loops.
12 //
13 // There are several aspects to this library.  First is the representation of
14 // scalar expressions, which are represented as subclasses of the SCEV class.
15 // These classes are used to represent certain types of subexpressions that we
16 // can handle. We only create one SCEV of a particular shape, so
17 // pointer-comparisons for equality are legal.
18 //
19 // One important aspect of the SCEV objects is that they are never cyclic, even
20 // if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
21 // the PHI node is one of the idioms that we can represent (e.g., a polynomial
22 // recurrence) then we represent it directly as a recurrence node, otherwise we
23 // represent it as a SCEVUnknown node.
24 //
25 // In addition to being able to represent expressions of various types, we also
26 // have folders that are used to build the *canonical* representation for a
27 // particular expression.  These folders are capable of using a variety of
28 // rewrite rules to simplify the expressions.
29 //
30 // Once the folders are defined, we can implement the more interesting
31 // higher-level code, such as the code that recognizes PHI nodes of various
32 // types, computes the execution count of a loop, etc.
33 //
34 // TODO: We should use these routines and value representations to implement
35 // dependence analysis!
36 //
37 //===----------------------------------------------------------------------===//
38 //
39 // There are several good references for the techniques used in this analysis.
40 //
41 //  Chains of recurrences -- a method to expedite the evaluation
42 //  of closed-form functions
43 //  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
44 //
45 //  On computational properties of chains of recurrences
46 //  Eugene V. Zima
47 //
48 //  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
49 //  Robert A. van Engelen
50 //
51 //  Efficient Symbolic Analysis for Optimizing Compilers
52 //  Robert A. van Engelen
53 //
54 //  Using the chains of recurrences algebra for data dependence testing and
55 //  induction variable substitution
56 //  MS Thesis, Johnie Birch
57 //
58 //===----------------------------------------------------------------------===//
59 
60 #include "llvm/Analysis/ScalarEvolution.h"
61 #include "llvm/ADT/APInt.h"
62 #include "llvm/ADT/ArrayRef.h"
63 #include "llvm/ADT/DenseMap.h"
64 #include "llvm/ADT/DepthFirstIterator.h"
65 #include "llvm/ADT/EquivalenceClasses.h"
66 #include "llvm/ADT/FoldingSet.h"
67 #include "llvm/ADT/None.h"
68 #include "llvm/ADT/Optional.h"
69 #include "llvm/ADT/STLExtras.h"
70 #include "llvm/ADT/ScopeExit.h"
71 #include "llvm/ADT/Sequence.h"
72 #include "llvm/ADT/SetVector.h"
73 #include "llvm/ADT/SmallPtrSet.h"
74 #include "llvm/ADT/SmallSet.h"
75 #include "llvm/ADT/SmallVector.h"
76 #include "llvm/ADT/Statistic.h"
77 #include "llvm/ADT/StringRef.h"
78 #include "llvm/Analysis/AssumptionCache.h"
79 #include "llvm/Analysis/ConstantFolding.h"
80 #include "llvm/Analysis/InstructionSimplify.h"
81 #include "llvm/Analysis/LoopInfo.h"
82 #include "llvm/Analysis/ScalarEvolutionDivision.h"
83 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
84 #include "llvm/Analysis/TargetLibraryInfo.h"
85 #include "llvm/Analysis/ValueTracking.h"
86 #include "llvm/Config/llvm-config.h"
87 #include "llvm/IR/Argument.h"
88 #include "llvm/IR/BasicBlock.h"
89 #include "llvm/IR/CFG.h"
90 #include "llvm/IR/Constant.h"
91 #include "llvm/IR/ConstantRange.h"
92 #include "llvm/IR/Constants.h"
93 #include "llvm/IR/DataLayout.h"
94 #include "llvm/IR/DerivedTypes.h"
95 #include "llvm/IR/Dominators.h"
96 #include "llvm/IR/Function.h"
97 #include "llvm/IR/GlobalAlias.h"
98 #include "llvm/IR/GlobalValue.h"
99 #include "llvm/IR/GlobalVariable.h"
100 #include "llvm/IR/InstIterator.h"
101 #include "llvm/IR/InstrTypes.h"
102 #include "llvm/IR/Instruction.h"
103 #include "llvm/IR/Instructions.h"
104 #include "llvm/IR/IntrinsicInst.h"
105 #include "llvm/IR/Intrinsics.h"
106 #include "llvm/IR/LLVMContext.h"
107 #include "llvm/IR/Metadata.h"
108 #include "llvm/IR/Operator.h"
109 #include "llvm/IR/PatternMatch.h"
110 #include "llvm/IR/Type.h"
111 #include "llvm/IR/Use.h"
112 #include "llvm/IR/User.h"
113 #include "llvm/IR/Value.h"
114 #include "llvm/IR/Verifier.h"
115 #include "llvm/InitializePasses.h"
116 #include "llvm/Pass.h"
117 #include "llvm/Support/Casting.h"
118 #include "llvm/Support/CommandLine.h"
119 #include "llvm/Support/Compiler.h"
120 #include "llvm/Support/Debug.h"
121 #include "llvm/Support/ErrorHandling.h"
122 #include "llvm/Support/KnownBits.h"
123 #include "llvm/Support/SaveAndRestore.h"
124 #include "llvm/Support/raw_ostream.h"
125 #include <algorithm>
126 #include <cassert>
127 #include <climits>
128 #include <cstddef>
129 #include <cstdint>
130 #include <cstdlib>
131 #include <map>
132 #include <memory>
133 #include <tuple>
134 #include <utility>
135 #include <vector>
136 
137 using namespace llvm;
138 using namespace PatternMatch;
139 
140 #define DEBUG_TYPE "scalar-evolution"
141 
142 STATISTIC(NumTripCountsComputed,
143           "Number of loops with predictable loop counts");
144 STATISTIC(NumTripCountsNotComputed,
145           "Number of loops without predictable loop counts");
146 STATISTIC(NumBruteForceTripCountsComputed,
147           "Number of loops with trip counts computed by force");
148 
149 static cl::opt<unsigned>
150 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
151                         cl::ZeroOrMore,
152                         cl::desc("Maximum number of iterations SCEV will "
153                                  "symbolically execute a constant "
154                                  "derived loop"),
155                         cl::init(100));
156 
157 // FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean.
158 static cl::opt<bool> VerifySCEV(
159     "verify-scev", cl::Hidden,
160     cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
161 static cl::opt<bool> VerifySCEVStrict(
162     "verify-scev-strict", cl::Hidden,
163     cl::desc("Enable stricter verification with -verify-scev is passed"));
164 static cl::opt<bool>
165     VerifySCEVMap("verify-scev-maps", cl::Hidden,
166                   cl::desc("Verify no dangling value in ScalarEvolution's "
167                            "ExprValueMap (slow)"));
168 
169 static cl::opt<bool> VerifyIR(
170     "scev-verify-ir", cl::Hidden,
171     cl::desc("Verify IR correctness when making sensitive SCEV queries (slow)"),
172     cl::init(false));
173 
174 static cl::opt<unsigned> MulOpsInlineThreshold(
175     "scev-mulops-inline-threshold", cl::Hidden,
176     cl::desc("Threshold for inlining multiplication operands into a SCEV"),
177     cl::init(32));
178 
179 static cl::opt<unsigned> AddOpsInlineThreshold(
180     "scev-addops-inline-threshold", cl::Hidden,
181     cl::desc("Threshold for inlining addition operands into a SCEV"),
182     cl::init(500));
183 
184 static cl::opt<unsigned> MaxSCEVCompareDepth(
185     "scalar-evolution-max-scev-compare-depth", cl::Hidden,
186     cl::desc("Maximum depth of recursive SCEV complexity comparisons"),
187     cl::init(32));
188 
189 static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth(
190     "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden,
191     cl::desc("Maximum depth of recursive SCEV operations implication analysis"),
192     cl::init(2));
193 
194 static cl::opt<unsigned> MaxValueCompareDepth(
195     "scalar-evolution-max-value-compare-depth", cl::Hidden,
196     cl::desc("Maximum depth of recursive value complexity comparisons"),
197     cl::init(2));
198 
199 static cl::opt<unsigned>
200     MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden,
201                   cl::desc("Maximum depth of recursive arithmetics"),
202                   cl::init(32));
203 
204 static cl::opt<unsigned> MaxConstantEvolvingDepth(
205     "scalar-evolution-max-constant-evolving-depth", cl::Hidden,
206     cl::desc("Maximum depth of recursive constant evolving"), cl::init(32));
207 
208 static cl::opt<unsigned>
209     MaxCastDepth("scalar-evolution-max-cast-depth", cl::Hidden,
210                  cl::desc("Maximum depth of recursive SExt/ZExt/Trunc"),
211                  cl::init(8));
212 
213 static cl::opt<unsigned>
214     MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden,
215                   cl::desc("Max coefficients in AddRec during evolving"),
216                   cl::init(8));
217 
218 static cl::opt<unsigned>
219     HugeExprThreshold("scalar-evolution-huge-expr-threshold", cl::Hidden,
220                   cl::desc("Size of the expression which is considered huge"),
221                   cl::init(4096));
222 
223 static cl::opt<bool>
224 ClassifyExpressions("scalar-evolution-classify-expressions",
225     cl::Hidden, cl::init(true),
226     cl::desc("When printing analysis, include information on every instruction"));
227 
228 static cl::opt<bool> UseExpensiveRangeSharpening(
229     "scalar-evolution-use-expensive-range-sharpening", cl::Hidden,
230     cl::init(false),
231     cl::desc("Use more powerful methods of sharpening expression ranges. May "
232              "be costly in terms of compile time"));
233 
234 //===----------------------------------------------------------------------===//
235 //                           SCEV class definitions
236 //===----------------------------------------------------------------------===//
237 
238 //===----------------------------------------------------------------------===//
239 // Implementation of the SCEV class.
240 //
241 
242 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
243 LLVM_DUMP_METHOD void SCEV::dump() const {
244   print(dbgs());
245   dbgs() << '\n';
246 }
247 #endif
248 
249 void SCEV::print(raw_ostream &OS) const {
250   switch (getSCEVType()) {
251   case scConstant:
252     cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
253     return;
254   case scPtrToInt: {
255     const SCEVPtrToIntExpr *PtrToInt = cast<SCEVPtrToIntExpr>(this);
256     const SCEV *Op = PtrToInt->getOperand();
257     OS << "(ptrtoint " << *Op->getType() << " " << *Op << " to "
258        << *PtrToInt->getType() << ")";
259     return;
260   }
261   case scTruncate: {
262     const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
263     const SCEV *Op = Trunc->getOperand();
264     OS << "(trunc " << *Op->getType() << " " << *Op << " to "
265        << *Trunc->getType() << ")";
266     return;
267   }
268   case scZeroExtend: {
269     const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
270     const SCEV *Op = ZExt->getOperand();
271     OS << "(zext " << *Op->getType() << " " << *Op << " to "
272        << *ZExt->getType() << ")";
273     return;
274   }
275   case scSignExtend: {
276     const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
277     const SCEV *Op = SExt->getOperand();
278     OS << "(sext " << *Op->getType() << " " << *Op << " to "
279        << *SExt->getType() << ")";
280     return;
281   }
282   case scAddRecExpr: {
283     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
284     OS << "{" << *AR->getOperand(0);
285     for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
286       OS << ",+," << *AR->getOperand(i);
287     OS << "}<";
288     if (AR->hasNoUnsignedWrap())
289       OS << "nuw><";
290     if (AR->hasNoSignedWrap())
291       OS << "nsw><";
292     if (AR->hasNoSelfWrap() &&
293         !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
294       OS << "nw><";
295     AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
296     OS << ">";
297     return;
298   }
299   case scAddExpr:
300   case scMulExpr:
301   case scUMaxExpr:
302   case scSMaxExpr:
303   case scUMinExpr:
304   case scSMinExpr: {
305     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
306     const char *OpStr = nullptr;
307     switch (NAry->getSCEVType()) {
308     case scAddExpr: OpStr = " + "; break;
309     case scMulExpr: OpStr = " * "; break;
310     case scUMaxExpr: OpStr = " umax "; break;
311     case scSMaxExpr: OpStr = " smax "; break;
312     case scUMinExpr:
313       OpStr = " umin ";
314       break;
315     case scSMinExpr:
316       OpStr = " smin ";
317       break;
318     default:
319       llvm_unreachable("There are no other nary expression types.");
320     }
321     OS << "(";
322     ListSeparator LS(OpStr);
323     for (const SCEV *Op : NAry->operands())
324       OS << LS << *Op;
325     OS << ")";
326     switch (NAry->getSCEVType()) {
327     case scAddExpr:
328     case scMulExpr:
329       if (NAry->hasNoUnsignedWrap())
330         OS << "<nuw>";
331       if (NAry->hasNoSignedWrap())
332         OS << "<nsw>";
333       break;
334     default:
335       // Nothing to print for other nary expressions.
336       break;
337     }
338     return;
339   }
340   case scUDivExpr: {
341     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
342     OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
343     return;
344   }
345   case scUnknown: {
346     const SCEVUnknown *U = cast<SCEVUnknown>(this);
347     Type *AllocTy;
348     if (U->isSizeOf(AllocTy)) {
349       OS << "sizeof(" << *AllocTy << ")";
350       return;
351     }
352     if (U->isAlignOf(AllocTy)) {
353       OS << "alignof(" << *AllocTy << ")";
354       return;
355     }
356 
357     Type *CTy;
358     Constant *FieldNo;
359     if (U->isOffsetOf(CTy, FieldNo)) {
360       OS << "offsetof(" << *CTy << ", ";
361       FieldNo->printAsOperand(OS, false);
362       OS << ")";
363       return;
364     }
365 
366     // Otherwise just print it normally.
367     U->getValue()->printAsOperand(OS, false);
368     return;
369   }
370   case scCouldNotCompute:
371     OS << "***COULDNOTCOMPUTE***";
372     return;
373   }
374   llvm_unreachable("Unknown SCEV kind!");
375 }
376 
377 Type *SCEV::getType() const {
378   switch (getSCEVType()) {
379   case scConstant:
380     return cast<SCEVConstant>(this)->getType();
381   case scPtrToInt:
382   case scTruncate:
383   case scZeroExtend:
384   case scSignExtend:
385     return cast<SCEVCastExpr>(this)->getType();
386   case scAddRecExpr:
387     return cast<SCEVAddRecExpr>(this)->getType();
388   case scMulExpr:
389     return cast<SCEVMulExpr>(this)->getType();
390   case scUMaxExpr:
391   case scSMaxExpr:
392   case scUMinExpr:
393   case scSMinExpr:
394     return cast<SCEVMinMaxExpr>(this)->getType();
395   case scAddExpr:
396     return cast<SCEVAddExpr>(this)->getType();
397   case scUDivExpr:
398     return cast<SCEVUDivExpr>(this)->getType();
399   case scUnknown:
400     return cast<SCEVUnknown>(this)->getType();
401   case scCouldNotCompute:
402     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
403   }
404   llvm_unreachable("Unknown SCEV kind!");
405 }
406 
407 bool SCEV::isZero() const {
408   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
409     return SC->getValue()->isZero();
410   return false;
411 }
412 
413 bool SCEV::isOne() const {
414   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
415     return SC->getValue()->isOne();
416   return false;
417 }
418 
419 bool SCEV::isAllOnesValue() const {
420   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
421     return SC->getValue()->isMinusOne();
422   return false;
423 }
424 
425 bool SCEV::isNonConstantNegative() const {
426   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
427   if (!Mul) return false;
428 
429   // If there is a constant factor, it will be first.
430   const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
431   if (!SC) return false;
432 
433   // Return true if the value is negative, this matches things like (-42 * V).
434   return SC->getAPInt().isNegative();
435 }
436 
437 SCEVCouldNotCompute::SCEVCouldNotCompute() :
438   SCEV(FoldingSetNodeIDRef(), scCouldNotCompute, 0) {}
439 
440 bool SCEVCouldNotCompute::classof(const SCEV *S) {
441   return S->getSCEVType() == scCouldNotCompute;
442 }
443 
444 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
445   FoldingSetNodeID ID;
446   ID.AddInteger(scConstant);
447   ID.AddPointer(V);
448   void *IP = nullptr;
449   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
450   SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
451   UniqueSCEVs.InsertNode(S, IP);
452   return S;
453 }
454 
455 const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
456   return getConstant(ConstantInt::get(getContext(), Val));
457 }
458 
459 const SCEV *
460 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
461   IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
462   return getConstant(ConstantInt::get(ITy, V, isSigned));
463 }
464 
465 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, SCEVTypes SCEVTy,
466                            const SCEV *op, Type *ty)
467     : SCEV(ID, SCEVTy, computeExpressionSize(op)), Ty(ty) {
468   Operands[0] = op;
469 }
470 
471 SCEVPtrToIntExpr::SCEVPtrToIntExpr(const FoldingSetNodeIDRef ID, const SCEV *Op,
472                                    Type *ITy)
473     : SCEVCastExpr(ID, scPtrToInt, Op, ITy) {
474   assert(getOperand()->getType()->isPointerTy() && Ty->isIntegerTy() &&
475          "Must be a non-bit-width-changing pointer-to-integer cast!");
476 }
477 
478 SCEVIntegralCastExpr::SCEVIntegralCastExpr(const FoldingSetNodeIDRef ID,
479                                            SCEVTypes SCEVTy, const SCEV *op,
480                                            Type *ty)
481     : SCEVCastExpr(ID, SCEVTy, op, ty) {}
482 
483 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, const SCEV *op,
484                                    Type *ty)
485     : SCEVIntegralCastExpr(ID, scTruncate, op, ty) {
486   assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
487          "Cannot truncate non-integer value!");
488 }
489 
490 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
491                                        const SCEV *op, Type *ty)
492     : SCEVIntegralCastExpr(ID, scZeroExtend, op, ty) {
493   assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
494          "Cannot zero extend non-integer value!");
495 }
496 
497 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
498                                        const SCEV *op, Type *ty)
499     : SCEVIntegralCastExpr(ID, scSignExtend, op, ty) {
500   assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
501          "Cannot sign extend non-integer value!");
502 }
503 
504 void SCEVUnknown::deleted() {
505   // Clear this SCEVUnknown from various maps.
506   SE->forgetMemoizedResults(this);
507 
508   // Remove this SCEVUnknown from the uniquing map.
509   SE->UniqueSCEVs.RemoveNode(this);
510 
511   // Release the value.
512   setValPtr(nullptr);
513 }
514 
515 void SCEVUnknown::allUsesReplacedWith(Value *New) {
516   // Remove this SCEVUnknown from the uniquing map.
517   SE->UniqueSCEVs.RemoveNode(this);
518 
519   // Update this SCEVUnknown to point to the new value. This is needed
520   // because there may still be outstanding SCEVs which still point to
521   // this SCEVUnknown.
522   setValPtr(New);
523 }
524 
525 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
526   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
527     if (VCE->getOpcode() == Instruction::PtrToInt)
528       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
529         if (CE->getOpcode() == Instruction::GetElementPtr &&
530             CE->getOperand(0)->isNullValue() &&
531             CE->getNumOperands() == 2)
532           if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
533             if (CI->isOne()) {
534               AllocTy = cast<GEPOperator>(CE)->getSourceElementType();
535               return true;
536             }
537 
538   return false;
539 }
540 
541 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
542   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
543     if (VCE->getOpcode() == Instruction::PtrToInt)
544       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
545         if (CE->getOpcode() == Instruction::GetElementPtr &&
546             CE->getOperand(0)->isNullValue()) {
547           Type *Ty = cast<GEPOperator>(CE)->getSourceElementType();
548           if (StructType *STy = dyn_cast<StructType>(Ty))
549             if (!STy->isPacked() &&
550                 CE->getNumOperands() == 3 &&
551                 CE->getOperand(1)->isNullValue()) {
552               if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
553                 if (CI->isOne() &&
554                     STy->getNumElements() == 2 &&
555                     STy->getElementType(0)->isIntegerTy(1)) {
556                   AllocTy = STy->getElementType(1);
557                   return true;
558                 }
559             }
560         }
561 
562   return false;
563 }
564 
565 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
566   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
567     if (VCE->getOpcode() == Instruction::PtrToInt)
568       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
569         if (CE->getOpcode() == Instruction::GetElementPtr &&
570             CE->getNumOperands() == 3 &&
571             CE->getOperand(0)->isNullValue() &&
572             CE->getOperand(1)->isNullValue()) {
573           Type *Ty = cast<GEPOperator>(CE)->getSourceElementType();
574           // Ignore vector types here so that ScalarEvolutionExpander doesn't
575           // emit getelementptrs that index into vectors.
576           if (Ty->isStructTy() || Ty->isArrayTy()) {
577             CTy = Ty;
578             FieldNo = CE->getOperand(2);
579             return true;
580           }
581         }
582 
583   return false;
584 }
585 
586 //===----------------------------------------------------------------------===//
587 //                               SCEV Utilities
588 //===----------------------------------------------------------------------===//
589 
590 /// Compare the two values \p LV and \p RV in terms of their "complexity" where
591 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order
592 /// operands in SCEV expressions.  \p EqCache is a set of pairs of values that
593 /// have been previously deemed to be "equally complex" by this routine.  It is
594 /// intended to avoid exponential time complexity in cases like:
595 ///
596 ///   %a = f(%x, %y)
597 ///   %b = f(%a, %a)
598 ///   %c = f(%b, %b)
599 ///
600 ///   %d = f(%x, %y)
601 ///   %e = f(%d, %d)
602 ///   %f = f(%e, %e)
603 ///
604 ///   CompareValueComplexity(%f, %c)
605 ///
606 /// Since we do not continue running this routine on expression trees once we
607 /// have seen unequal values, there is no need to track them in the cache.
608 static int
609 CompareValueComplexity(EquivalenceClasses<const Value *> &EqCacheValue,
610                        const LoopInfo *const LI, Value *LV, Value *RV,
611                        unsigned Depth) {
612   if (Depth > MaxValueCompareDepth || EqCacheValue.isEquivalent(LV, RV))
613     return 0;
614 
615   // Order pointer values after integer values. This helps SCEVExpander form
616   // GEPs.
617   bool LIsPointer = LV->getType()->isPointerTy(),
618        RIsPointer = RV->getType()->isPointerTy();
619   if (LIsPointer != RIsPointer)
620     return (int)LIsPointer - (int)RIsPointer;
621 
622   // Compare getValueID values.
623   unsigned LID = LV->getValueID(), RID = RV->getValueID();
624   if (LID != RID)
625     return (int)LID - (int)RID;
626 
627   // Sort arguments by their position.
628   if (const auto *LA = dyn_cast<Argument>(LV)) {
629     const auto *RA = cast<Argument>(RV);
630     unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
631     return (int)LArgNo - (int)RArgNo;
632   }
633 
634   if (const auto *LGV = dyn_cast<GlobalValue>(LV)) {
635     const auto *RGV = cast<GlobalValue>(RV);
636 
637     const auto IsGVNameSemantic = [&](const GlobalValue *GV) {
638       auto LT = GV->getLinkage();
639       return !(GlobalValue::isPrivateLinkage(LT) ||
640                GlobalValue::isInternalLinkage(LT));
641     };
642 
643     // Use the names to distinguish the two values, but only if the
644     // names are semantically important.
645     if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV))
646       return LGV->getName().compare(RGV->getName());
647   }
648 
649   // For instructions, compare their loop depth, and their operand count.  This
650   // is pretty loose.
651   if (const auto *LInst = dyn_cast<Instruction>(LV)) {
652     const auto *RInst = cast<Instruction>(RV);
653 
654     // Compare loop depths.
655     const BasicBlock *LParent = LInst->getParent(),
656                      *RParent = RInst->getParent();
657     if (LParent != RParent) {
658       unsigned LDepth = LI->getLoopDepth(LParent),
659                RDepth = LI->getLoopDepth(RParent);
660       if (LDepth != RDepth)
661         return (int)LDepth - (int)RDepth;
662     }
663 
664     // Compare the number of operands.
665     unsigned LNumOps = LInst->getNumOperands(),
666              RNumOps = RInst->getNumOperands();
667     if (LNumOps != RNumOps)
668       return (int)LNumOps - (int)RNumOps;
669 
670     for (unsigned Idx : seq(0u, LNumOps)) {
671       int Result =
672           CompareValueComplexity(EqCacheValue, LI, LInst->getOperand(Idx),
673                                  RInst->getOperand(Idx), Depth + 1);
674       if (Result != 0)
675         return Result;
676     }
677   }
678 
679   EqCacheValue.unionSets(LV, RV);
680   return 0;
681 }
682 
683 // Return negative, zero, or positive, if LHS is less than, equal to, or greater
684 // than RHS, respectively. A three-way result allows recursive comparisons to be
685 // more efficient.
686 // If the max analysis depth was reached, return None, assuming we do not know
687 // if they are equivalent for sure.
688 static Optional<int>
689 CompareSCEVComplexity(EquivalenceClasses<const SCEV *> &EqCacheSCEV,
690                       EquivalenceClasses<const Value *> &EqCacheValue,
691                       const LoopInfo *const LI, const SCEV *LHS,
692                       const SCEV *RHS, DominatorTree &DT, unsigned Depth = 0) {
693   // Fast-path: SCEVs are uniqued so we can do a quick equality check.
694   if (LHS == RHS)
695     return 0;
696 
697   // Primarily, sort the SCEVs by their getSCEVType().
698   SCEVTypes LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
699   if (LType != RType)
700     return (int)LType - (int)RType;
701 
702   if (EqCacheSCEV.isEquivalent(LHS, RHS))
703     return 0;
704 
705   if (Depth > MaxSCEVCompareDepth)
706     return None;
707 
708   // Aside from the getSCEVType() ordering, the particular ordering
709   // isn't very important except that it's beneficial to be consistent,
710   // so that (a + b) and (b + a) don't end up as different expressions.
711   switch (LType) {
712   case scUnknown: {
713     const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
714     const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
715 
716     int X = CompareValueComplexity(EqCacheValue, LI, LU->getValue(),
717                                    RU->getValue(), Depth + 1);
718     if (X == 0)
719       EqCacheSCEV.unionSets(LHS, RHS);
720     return X;
721   }
722 
723   case scConstant: {
724     const SCEVConstant *LC = cast<SCEVConstant>(LHS);
725     const SCEVConstant *RC = cast<SCEVConstant>(RHS);
726 
727     // Compare constant values.
728     const APInt &LA = LC->getAPInt();
729     const APInt &RA = RC->getAPInt();
730     unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
731     if (LBitWidth != RBitWidth)
732       return (int)LBitWidth - (int)RBitWidth;
733     return LA.ult(RA) ? -1 : 1;
734   }
735 
736   case scAddRecExpr: {
737     const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
738     const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
739 
740     // There is always a dominance between two recs that are used by one SCEV,
741     // so we can safely sort recs by loop header dominance. We require such
742     // order in getAddExpr.
743     const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
744     if (LLoop != RLoop) {
745       const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader();
746       assert(LHead != RHead && "Two loops share the same header?");
747       if (DT.dominates(LHead, RHead))
748         return 1;
749       else
750         assert(DT.dominates(RHead, LHead) &&
751                "No dominance between recurrences used by one SCEV?");
752       return -1;
753     }
754 
755     // Addrec complexity grows with operand count.
756     unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
757     if (LNumOps != RNumOps)
758       return (int)LNumOps - (int)RNumOps;
759 
760     // Lexicographically compare.
761     for (unsigned i = 0; i != LNumOps; ++i) {
762       auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
763                                      LA->getOperand(i), RA->getOperand(i), DT,
764                                      Depth + 1);
765       if (X != 0)
766         return X;
767     }
768     EqCacheSCEV.unionSets(LHS, RHS);
769     return 0;
770   }
771 
772   case scAddExpr:
773   case scMulExpr:
774   case scSMaxExpr:
775   case scUMaxExpr:
776   case scSMinExpr:
777   case scUMinExpr: {
778     const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
779     const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
780 
781     // Lexicographically compare n-ary expressions.
782     unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
783     if (LNumOps != RNumOps)
784       return (int)LNumOps - (int)RNumOps;
785 
786     for (unsigned i = 0; i != LNumOps; ++i) {
787       auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
788                                      LC->getOperand(i), RC->getOperand(i), DT,
789                                      Depth + 1);
790       if (X != 0)
791         return X;
792     }
793     EqCacheSCEV.unionSets(LHS, RHS);
794     return 0;
795   }
796 
797   case scUDivExpr: {
798     const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
799     const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
800 
801     // Lexicographically compare udiv expressions.
802     auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getLHS(),
803                                    RC->getLHS(), DT, Depth + 1);
804     if (X != 0)
805       return X;
806     X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getRHS(),
807                               RC->getRHS(), DT, Depth + 1);
808     if (X == 0)
809       EqCacheSCEV.unionSets(LHS, RHS);
810     return X;
811   }
812 
813   case scPtrToInt:
814   case scTruncate:
815   case scZeroExtend:
816   case scSignExtend: {
817     const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
818     const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
819 
820     // Compare cast expressions by operand.
821     auto X =
822         CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getOperand(),
823                               RC->getOperand(), DT, Depth + 1);
824     if (X == 0)
825       EqCacheSCEV.unionSets(LHS, RHS);
826     return X;
827   }
828 
829   case scCouldNotCompute:
830     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
831   }
832   llvm_unreachable("Unknown SCEV kind!");
833 }
834 
835 /// Given a list of SCEV objects, order them by their complexity, and group
836 /// objects of the same complexity together by value.  When this routine is
837 /// finished, we know that any duplicates in the vector are consecutive and that
838 /// complexity is monotonically increasing.
839 ///
840 /// Note that we go take special precautions to ensure that we get deterministic
841 /// results from this routine.  In other words, we don't want the results of
842 /// this to depend on where the addresses of various SCEV objects happened to
843 /// land in memory.
844 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
845                               LoopInfo *LI, DominatorTree &DT) {
846   if (Ops.size() < 2) return;  // Noop
847 
848   EquivalenceClasses<const SCEV *> EqCacheSCEV;
849   EquivalenceClasses<const Value *> EqCacheValue;
850 
851   // Whether LHS has provably less complexity than RHS.
852   auto IsLessComplex = [&](const SCEV *LHS, const SCEV *RHS) {
853     auto Complexity =
854         CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LHS, RHS, DT);
855     return Complexity && *Complexity < 0;
856   };
857   if (Ops.size() == 2) {
858     // This is the common case, which also happens to be trivially simple.
859     // Special case it.
860     const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
861     if (IsLessComplex(RHS, LHS))
862       std::swap(LHS, RHS);
863     return;
864   }
865 
866   // Do the rough sort by complexity.
867   llvm::stable_sort(Ops, [&](const SCEV *LHS, const SCEV *RHS) {
868     return IsLessComplex(LHS, RHS);
869   });
870 
871   // Now that we are sorted by complexity, group elements of the same
872   // complexity.  Note that this is, at worst, N^2, but the vector is likely to
873   // be extremely short in practice.  Note that we take this approach because we
874   // do not want to depend on the addresses of the objects we are grouping.
875   for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
876     const SCEV *S = Ops[i];
877     unsigned Complexity = S->getSCEVType();
878 
879     // If there are any objects of the same complexity and same value as this
880     // one, group them.
881     for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
882       if (Ops[j] == S) { // Found a duplicate.
883         // Move it to immediately after i'th element.
884         std::swap(Ops[i+1], Ops[j]);
885         ++i;   // no need to rescan it.
886         if (i == e-2) return;  // Done!
887       }
888     }
889   }
890 }
891 
892 /// Returns true if \p Ops contains a huge SCEV (the subtree of S contains at
893 /// least HugeExprThreshold nodes).
894 static bool hasHugeExpression(ArrayRef<const SCEV *> Ops) {
895   return any_of(Ops, [](const SCEV *S) {
896     return S->getExpressionSize() >= HugeExprThreshold;
897   });
898 }
899 
900 //===----------------------------------------------------------------------===//
901 //                      Simple SCEV method implementations
902 //===----------------------------------------------------------------------===//
903 
904 /// Compute BC(It, K).  The result has width W.  Assume, K > 0.
905 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
906                                        ScalarEvolution &SE,
907                                        Type *ResultTy) {
908   // Handle the simplest case efficiently.
909   if (K == 1)
910     return SE.getTruncateOrZeroExtend(It, ResultTy);
911 
912   // We are using the following formula for BC(It, K):
913   //
914   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
915   //
916   // Suppose, W is the bitwidth of the return value.  We must be prepared for
917   // overflow.  Hence, we must assure that the result of our computation is
918   // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
919   // safe in modular arithmetic.
920   //
921   // However, this code doesn't use exactly that formula; the formula it uses
922   // is something like the following, where T is the number of factors of 2 in
923   // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
924   // exponentiation:
925   //
926   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
927   //
928   // This formula is trivially equivalent to the previous formula.  However,
929   // this formula can be implemented much more efficiently.  The trick is that
930   // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
931   // arithmetic.  To do exact division in modular arithmetic, all we have
932   // to do is multiply by the inverse.  Therefore, this step can be done at
933   // width W.
934   //
935   // The next issue is how to safely do the division by 2^T.  The way this
936   // is done is by doing the multiplication step at a width of at least W + T
937   // bits.  This way, the bottom W+T bits of the product are accurate. Then,
938   // when we perform the division by 2^T (which is equivalent to a right shift
939   // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
940   // truncated out after the division by 2^T.
941   //
942   // In comparison to just directly using the first formula, this technique
943   // is much more efficient; using the first formula requires W * K bits,
944   // but this formula less than W + K bits. Also, the first formula requires
945   // a division step, whereas this formula only requires multiplies and shifts.
946   //
947   // It doesn't matter whether the subtraction step is done in the calculation
948   // width or the input iteration count's width; if the subtraction overflows,
949   // the result must be zero anyway.  We prefer here to do it in the width of
950   // the induction variable because it helps a lot for certain cases; CodeGen
951   // isn't smart enough to ignore the overflow, which leads to much less
952   // efficient code if the width of the subtraction is wider than the native
953   // register width.
954   //
955   // (It's possible to not widen at all by pulling out factors of 2 before
956   // the multiplication; for example, K=2 can be calculated as
957   // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
958   // extra arithmetic, so it's not an obvious win, and it gets
959   // much more complicated for K > 3.)
960 
961   // Protection from insane SCEVs; this bound is conservative,
962   // but it probably doesn't matter.
963   if (K > 1000)
964     return SE.getCouldNotCompute();
965 
966   unsigned W = SE.getTypeSizeInBits(ResultTy);
967 
968   // Calculate K! / 2^T and T; we divide out the factors of two before
969   // multiplying for calculating K! / 2^T to avoid overflow.
970   // Other overflow doesn't matter because we only care about the bottom
971   // W bits of the result.
972   APInt OddFactorial(W, 1);
973   unsigned T = 1;
974   for (unsigned i = 3; i <= K; ++i) {
975     APInt Mult(W, i);
976     unsigned TwoFactors = Mult.countTrailingZeros();
977     T += TwoFactors;
978     Mult.lshrInPlace(TwoFactors);
979     OddFactorial *= Mult;
980   }
981 
982   // We need at least W + T bits for the multiplication step
983   unsigned CalculationBits = W + T;
984 
985   // Calculate 2^T, at width T+W.
986   APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
987 
988   // Calculate the multiplicative inverse of K! / 2^T;
989   // this multiplication factor will perform the exact division by
990   // K! / 2^T.
991   APInt Mod = APInt::getSignedMinValue(W+1);
992   APInt MultiplyFactor = OddFactorial.zext(W+1);
993   MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
994   MultiplyFactor = MultiplyFactor.trunc(W);
995 
996   // Calculate the product, at width T+W
997   IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
998                                                       CalculationBits);
999   const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
1000   for (unsigned i = 1; i != K; ++i) {
1001     const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
1002     Dividend = SE.getMulExpr(Dividend,
1003                              SE.getTruncateOrZeroExtend(S, CalculationTy));
1004   }
1005 
1006   // Divide by 2^T
1007   const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
1008 
1009   // Truncate the result, and divide by K! / 2^T.
1010 
1011   return SE.getMulExpr(SE.getConstant(MultiplyFactor),
1012                        SE.getTruncateOrZeroExtend(DivResult, ResultTy));
1013 }
1014 
1015 /// Return the value of this chain of recurrences at the specified iteration
1016 /// number.  We can evaluate this recurrence by multiplying each element in the
1017 /// chain by the binomial coefficient corresponding to it.  In other words, we
1018 /// can evaluate {A,+,B,+,C,+,D} as:
1019 ///
1020 ///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
1021 ///
1022 /// where BC(It, k) stands for binomial coefficient.
1023 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
1024                                                 ScalarEvolution &SE) const {
1025   return evaluateAtIteration(makeArrayRef(op_begin(), op_end()), It, SE);
1026 }
1027 
1028 const SCEV *
1029 SCEVAddRecExpr::evaluateAtIteration(ArrayRef<const SCEV *> Operands,
1030                                     const SCEV *It, ScalarEvolution &SE) {
1031   assert(Operands.size() > 0);
1032   const SCEV *Result = Operands[0];
1033   for (unsigned i = 1, e = Operands.size(); i != e; ++i) {
1034     // The computation is correct in the face of overflow provided that the
1035     // multiplication is performed _after_ the evaluation of the binomial
1036     // coefficient.
1037     const SCEV *Coeff = BinomialCoefficient(It, i, SE, Result->getType());
1038     if (isa<SCEVCouldNotCompute>(Coeff))
1039       return Coeff;
1040 
1041     Result = SE.getAddExpr(Result, SE.getMulExpr(Operands[i], Coeff));
1042   }
1043   return Result;
1044 }
1045 
1046 //===----------------------------------------------------------------------===//
1047 //                    SCEV Expression folder implementations
1048 //===----------------------------------------------------------------------===//
1049 
1050 const SCEV *ScalarEvolution::getLosslessPtrToIntExpr(const SCEV *Op,
1051                                                      unsigned Depth) {
1052   assert(Depth <= 1 &&
1053          "getLosslessPtrToIntExpr() should self-recurse at most once.");
1054 
1055   // We could be called with an integer-typed operands during SCEV rewrites.
1056   // Since the operand is an integer already, just perform zext/trunc/self cast.
1057   if (!Op->getType()->isPointerTy())
1058     return Op;
1059 
1060   // What would be an ID for such a SCEV cast expression?
1061   FoldingSetNodeID ID;
1062   ID.AddInteger(scPtrToInt);
1063   ID.AddPointer(Op);
1064 
1065   void *IP = nullptr;
1066 
1067   // Is there already an expression for such a cast?
1068   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
1069     return S;
1070 
1071   // It isn't legal for optimizations to construct new ptrtoint expressions
1072   // for non-integral pointers.
1073   if (getDataLayout().isNonIntegralPointerType(Op->getType()))
1074     return getCouldNotCompute();
1075 
1076   Type *IntPtrTy = getDataLayout().getIntPtrType(Op->getType());
1077 
1078   // We can only trivially model ptrtoint if SCEV's effective (integer) type
1079   // is sufficiently wide to represent all possible pointer values.
1080   // We could theoretically teach SCEV to truncate wider pointers, but
1081   // that isn't implemented for now.
1082   if (getDataLayout().getTypeSizeInBits(getEffectiveSCEVType(Op->getType())) !=
1083       getDataLayout().getTypeSizeInBits(IntPtrTy))
1084     return getCouldNotCompute();
1085 
1086   // If not, is this expression something we can't reduce any further?
1087   if (auto *U = dyn_cast<SCEVUnknown>(Op)) {
1088     // Perform some basic constant folding. If the operand of the ptr2int cast
1089     // is a null pointer, don't create a ptr2int SCEV expression (that will be
1090     // left as-is), but produce a zero constant.
1091     // NOTE: We could handle a more general case, but lack motivational cases.
1092     if (isa<ConstantPointerNull>(U->getValue()))
1093       return getZero(IntPtrTy);
1094 
1095     // Create an explicit cast node.
1096     // We can reuse the existing insert position since if we get here,
1097     // we won't have made any changes which would invalidate it.
1098     SCEV *S = new (SCEVAllocator)
1099         SCEVPtrToIntExpr(ID.Intern(SCEVAllocator), Op, IntPtrTy);
1100     UniqueSCEVs.InsertNode(S, IP);
1101     registerUser(S, Op);
1102     return S;
1103   }
1104 
1105   assert(Depth == 0 && "getLosslessPtrToIntExpr() should not self-recurse for "
1106                        "non-SCEVUnknown's.");
1107 
1108   // Otherwise, we've got some expression that is more complex than just a
1109   // single SCEVUnknown. But we don't want to have a SCEVPtrToIntExpr of an
1110   // arbitrary expression, we want to have SCEVPtrToIntExpr of an SCEVUnknown
1111   // only, and the expressions must otherwise be integer-typed.
1112   // So sink the cast down to the SCEVUnknown's.
1113 
1114   /// The SCEVPtrToIntSinkingRewriter takes a scalar evolution expression,
1115   /// which computes a pointer-typed value, and rewrites the whole expression
1116   /// tree so that *all* the computations are done on integers, and the only
1117   /// pointer-typed operands in the expression are SCEVUnknown.
1118   class SCEVPtrToIntSinkingRewriter
1119       : public SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter> {
1120     using Base = SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter>;
1121 
1122   public:
1123     SCEVPtrToIntSinkingRewriter(ScalarEvolution &SE) : SCEVRewriteVisitor(SE) {}
1124 
1125     static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE) {
1126       SCEVPtrToIntSinkingRewriter Rewriter(SE);
1127       return Rewriter.visit(Scev);
1128     }
1129 
1130     const SCEV *visit(const SCEV *S) {
1131       Type *STy = S->getType();
1132       // If the expression is not pointer-typed, just keep it as-is.
1133       if (!STy->isPointerTy())
1134         return S;
1135       // Else, recursively sink the cast down into it.
1136       return Base::visit(S);
1137     }
1138 
1139     const SCEV *visitAddExpr(const SCEVAddExpr *Expr) {
1140       SmallVector<const SCEV *, 2> Operands;
1141       bool Changed = false;
1142       for (auto *Op : Expr->operands()) {
1143         Operands.push_back(visit(Op));
1144         Changed |= Op != Operands.back();
1145       }
1146       return !Changed ? Expr : SE.getAddExpr(Operands, Expr->getNoWrapFlags());
1147     }
1148 
1149     const SCEV *visitMulExpr(const SCEVMulExpr *Expr) {
1150       SmallVector<const SCEV *, 2> Operands;
1151       bool Changed = false;
1152       for (auto *Op : Expr->operands()) {
1153         Operands.push_back(visit(Op));
1154         Changed |= Op != Operands.back();
1155       }
1156       return !Changed ? Expr : SE.getMulExpr(Operands, Expr->getNoWrapFlags());
1157     }
1158 
1159     const SCEV *visitUnknown(const SCEVUnknown *Expr) {
1160       assert(Expr->getType()->isPointerTy() &&
1161              "Should only reach pointer-typed SCEVUnknown's.");
1162       return SE.getLosslessPtrToIntExpr(Expr, /*Depth=*/1);
1163     }
1164   };
1165 
1166   // And actually perform the cast sinking.
1167   const SCEV *IntOp = SCEVPtrToIntSinkingRewriter::rewrite(Op, *this);
1168   assert(IntOp->getType()->isIntegerTy() &&
1169          "We must have succeeded in sinking the cast, "
1170          "and ending up with an integer-typed expression!");
1171   return IntOp;
1172 }
1173 
1174 const SCEV *ScalarEvolution::getPtrToIntExpr(const SCEV *Op, Type *Ty) {
1175   assert(Ty->isIntegerTy() && "Target type must be an integer type!");
1176 
1177   const SCEV *IntOp = getLosslessPtrToIntExpr(Op);
1178   if (isa<SCEVCouldNotCompute>(IntOp))
1179     return IntOp;
1180 
1181   return getTruncateOrZeroExtend(IntOp, Ty);
1182 }
1183 
1184 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, Type *Ty,
1185                                              unsigned Depth) {
1186   assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
1187          "This is not a truncating conversion!");
1188   assert(isSCEVable(Ty) &&
1189          "This is not a conversion to a SCEVable type!");
1190   assert(!Op->getType()->isPointerTy() && "Can't truncate pointer!");
1191   Ty = getEffectiveSCEVType(Ty);
1192 
1193   FoldingSetNodeID ID;
1194   ID.AddInteger(scTruncate);
1195   ID.AddPointer(Op);
1196   ID.AddPointer(Ty);
1197   void *IP = nullptr;
1198   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1199 
1200   // Fold if the operand is constant.
1201   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1202     return getConstant(
1203       cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
1204 
1205   // trunc(trunc(x)) --> trunc(x)
1206   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
1207     return getTruncateExpr(ST->getOperand(), Ty, Depth + 1);
1208 
1209   // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
1210   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1211     return getTruncateOrSignExtend(SS->getOperand(), Ty, Depth + 1);
1212 
1213   // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
1214   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1215     return getTruncateOrZeroExtend(SZ->getOperand(), Ty, Depth + 1);
1216 
1217   if (Depth > MaxCastDepth) {
1218     SCEV *S =
1219         new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), Op, Ty);
1220     UniqueSCEVs.InsertNode(S, IP);
1221     registerUser(S, Op);
1222     return S;
1223   }
1224 
1225   // trunc(x1 + ... + xN) --> trunc(x1) + ... + trunc(xN) and
1226   // trunc(x1 * ... * xN) --> trunc(x1) * ... * trunc(xN),
1227   // if after transforming we have at most one truncate, not counting truncates
1228   // that replace other casts.
1229   if (isa<SCEVAddExpr>(Op) || isa<SCEVMulExpr>(Op)) {
1230     auto *CommOp = cast<SCEVCommutativeExpr>(Op);
1231     SmallVector<const SCEV *, 4> Operands;
1232     unsigned numTruncs = 0;
1233     for (unsigned i = 0, e = CommOp->getNumOperands(); i != e && numTruncs < 2;
1234          ++i) {
1235       const SCEV *S = getTruncateExpr(CommOp->getOperand(i), Ty, Depth + 1);
1236       if (!isa<SCEVIntegralCastExpr>(CommOp->getOperand(i)) &&
1237           isa<SCEVTruncateExpr>(S))
1238         numTruncs++;
1239       Operands.push_back(S);
1240     }
1241     if (numTruncs < 2) {
1242       if (isa<SCEVAddExpr>(Op))
1243         return getAddExpr(Operands);
1244       else if (isa<SCEVMulExpr>(Op))
1245         return getMulExpr(Operands);
1246       else
1247         llvm_unreachable("Unexpected SCEV type for Op.");
1248     }
1249     // Although we checked in the beginning that ID is not in the cache, it is
1250     // possible that during recursion and different modification ID was inserted
1251     // into the cache. So if we find it, just return it.
1252     if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
1253       return S;
1254   }
1255 
1256   // If the input value is a chrec scev, truncate the chrec's operands.
1257   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
1258     SmallVector<const SCEV *, 4> Operands;
1259     for (const SCEV *Op : AddRec->operands())
1260       Operands.push_back(getTruncateExpr(Op, Ty, Depth + 1));
1261     return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
1262   }
1263 
1264   // Return zero if truncating to known zeros.
1265   uint32_t MinTrailingZeros = GetMinTrailingZeros(Op);
1266   if (MinTrailingZeros >= getTypeSizeInBits(Ty))
1267     return getZero(Ty);
1268 
1269   // The cast wasn't folded; create an explicit cast node. We can reuse
1270   // the existing insert position since if we get here, we won't have
1271   // made any changes which would invalidate it.
1272   SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
1273                                                  Op, Ty);
1274   UniqueSCEVs.InsertNode(S, IP);
1275   registerUser(S, Op);
1276   return S;
1277 }
1278 
1279 // Get the limit of a recurrence such that incrementing by Step cannot cause
1280 // signed overflow as long as the value of the recurrence within the
1281 // loop does not exceed this limit before incrementing.
1282 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step,
1283                                                  ICmpInst::Predicate *Pred,
1284                                                  ScalarEvolution *SE) {
1285   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1286   if (SE->isKnownPositive(Step)) {
1287     *Pred = ICmpInst::ICMP_SLT;
1288     return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1289                            SE->getSignedRangeMax(Step));
1290   }
1291   if (SE->isKnownNegative(Step)) {
1292     *Pred = ICmpInst::ICMP_SGT;
1293     return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1294                            SE->getSignedRangeMin(Step));
1295   }
1296   return nullptr;
1297 }
1298 
1299 // Get the limit of a recurrence such that incrementing by Step cannot cause
1300 // unsigned overflow as long as the value of the recurrence within the loop does
1301 // not exceed this limit before incrementing.
1302 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step,
1303                                                    ICmpInst::Predicate *Pred,
1304                                                    ScalarEvolution *SE) {
1305   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1306   *Pred = ICmpInst::ICMP_ULT;
1307 
1308   return SE->getConstant(APInt::getMinValue(BitWidth) -
1309                          SE->getUnsignedRangeMax(Step));
1310 }
1311 
1312 namespace {
1313 
1314 struct ExtendOpTraitsBase {
1315   typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *,
1316                                                           unsigned);
1317 };
1318 
1319 // Used to make code generic over signed and unsigned overflow.
1320 template <typename ExtendOp> struct ExtendOpTraits {
1321   // Members present:
1322   //
1323   // static const SCEV::NoWrapFlags WrapType;
1324   //
1325   // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr;
1326   //
1327   // static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1328   //                                           ICmpInst::Predicate *Pred,
1329   //                                           ScalarEvolution *SE);
1330 };
1331 
1332 template <>
1333 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase {
1334   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW;
1335 
1336   static const GetExtendExprTy GetExtendExpr;
1337 
1338   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1339                                              ICmpInst::Predicate *Pred,
1340                                              ScalarEvolution *SE) {
1341     return getSignedOverflowLimitForStep(Step, Pred, SE);
1342   }
1343 };
1344 
1345 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1346     SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr;
1347 
1348 template <>
1349 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase {
1350   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW;
1351 
1352   static const GetExtendExprTy GetExtendExpr;
1353 
1354   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1355                                              ICmpInst::Predicate *Pred,
1356                                              ScalarEvolution *SE) {
1357     return getUnsignedOverflowLimitForStep(Step, Pred, SE);
1358   }
1359 };
1360 
1361 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1362     SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr;
1363 
1364 } // end anonymous namespace
1365 
1366 // The recurrence AR has been shown to have no signed/unsigned wrap or something
1367 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as
1368 // easily prove NSW/NUW for its preincrement or postincrement sibling. This
1369 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step +
1370 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the
1371 // expression "Step + sext/zext(PreIncAR)" is congruent with
1372 // "sext/zext(PostIncAR)"
1373 template <typename ExtendOpTy>
1374 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty,
1375                                         ScalarEvolution *SE, unsigned Depth) {
1376   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1377   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1378 
1379   const Loop *L = AR->getLoop();
1380   const SCEV *Start = AR->getStart();
1381   const SCEV *Step = AR->getStepRecurrence(*SE);
1382 
1383   // Check for a simple looking step prior to loop entry.
1384   const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1385   if (!SA)
1386     return nullptr;
1387 
1388   // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1389   // subtraction is expensive. For this purpose, perform a quick and dirty
1390   // difference, by checking for Step in the operand list.
1391   SmallVector<const SCEV *, 4> DiffOps;
1392   for (const SCEV *Op : SA->operands())
1393     if (Op != Step)
1394       DiffOps.push_back(Op);
1395 
1396   if (DiffOps.size() == SA->getNumOperands())
1397     return nullptr;
1398 
1399   // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` +
1400   // `Step`:
1401 
1402   // 1. NSW/NUW flags on the step increment.
1403   auto PreStartFlags =
1404     ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW);
1405   const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags);
1406   const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1407       SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1408 
1409   // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies
1410   // "S+X does not sign/unsign-overflow".
1411   //
1412 
1413   const SCEV *BECount = SE->getBackedgeTakenCount(L);
1414   if (PreAR && PreAR->getNoWrapFlags(WrapType) &&
1415       !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount))
1416     return PreStart;
1417 
1418   // 2. Direct overflow check on the step operation's expression.
1419   unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
1420   Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
1421   const SCEV *OperandExtendedStart =
1422       SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth),
1423                      (SE->*GetExtendExpr)(Step, WideTy, Depth));
1424   if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) {
1425     if (PreAR && AR->getNoWrapFlags(WrapType)) {
1426       // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW
1427       // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then
1428       // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`.  Cache this fact.
1429       SE->setNoWrapFlags(const_cast<SCEVAddRecExpr *>(PreAR), WrapType);
1430     }
1431     return PreStart;
1432   }
1433 
1434   // 3. Loop precondition.
1435   ICmpInst::Predicate Pred;
1436   const SCEV *OverflowLimit =
1437       ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE);
1438 
1439   if (OverflowLimit &&
1440       SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit))
1441     return PreStart;
1442 
1443   return nullptr;
1444 }
1445 
1446 // Get the normalized zero or sign extended expression for this AddRec's Start.
1447 template <typename ExtendOpTy>
1448 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty,
1449                                         ScalarEvolution *SE,
1450                                         unsigned Depth) {
1451   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1452 
1453   const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth);
1454   if (!PreStart)
1455     return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth);
1456 
1457   return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty,
1458                                              Depth),
1459                         (SE->*GetExtendExpr)(PreStart, Ty, Depth));
1460 }
1461 
1462 // Try to prove away overflow by looking at "nearby" add recurrences.  A
1463 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it
1464 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`.
1465 //
1466 // Formally:
1467 //
1468 //     {S,+,X} == {S-T,+,X} + T
1469 //  => Ext({S,+,X}) == Ext({S-T,+,X} + T)
1470 //
1471 // If ({S-T,+,X} + T) does not overflow  ... (1)
1472 //
1473 //  RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T)
1474 //
1475 // If {S-T,+,X} does not overflow  ... (2)
1476 //
1477 //  RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T)
1478 //      == {Ext(S-T)+Ext(T),+,Ext(X)}
1479 //
1480 // If (S-T)+T does not overflow  ... (3)
1481 //
1482 //  RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)}
1483 //      == {Ext(S),+,Ext(X)} == LHS
1484 //
1485 // Thus, if (1), (2) and (3) are true for some T, then
1486 //   Ext({S,+,X}) == {Ext(S),+,Ext(X)}
1487 //
1488 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T)
1489 // does not overflow" restricted to the 0th iteration.  Therefore we only need
1490 // to check for (1) and (2).
1491 //
1492 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T
1493 // is `Delta` (defined below).
1494 template <typename ExtendOpTy>
1495 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start,
1496                                                 const SCEV *Step,
1497                                                 const Loop *L) {
1498   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1499 
1500   // We restrict `Start` to a constant to prevent SCEV from spending too much
1501   // time here.  It is correct (but more expensive) to continue with a
1502   // non-constant `Start` and do a general SCEV subtraction to compute
1503   // `PreStart` below.
1504   const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start);
1505   if (!StartC)
1506     return false;
1507 
1508   APInt StartAI = StartC->getAPInt();
1509 
1510   for (unsigned Delta : {-2, -1, 1, 2}) {
1511     const SCEV *PreStart = getConstant(StartAI - Delta);
1512 
1513     FoldingSetNodeID ID;
1514     ID.AddInteger(scAddRecExpr);
1515     ID.AddPointer(PreStart);
1516     ID.AddPointer(Step);
1517     ID.AddPointer(L);
1518     void *IP = nullptr;
1519     const auto *PreAR =
1520       static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1521 
1522     // Give up if we don't already have the add recurrence we need because
1523     // actually constructing an add recurrence is relatively expensive.
1524     if (PreAR && PreAR->getNoWrapFlags(WrapType)) {  // proves (2)
1525       const SCEV *DeltaS = getConstant(StartC->getType(), Delta);
1526       ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1527       const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(
1528           DeltaS, &Pred, this);
1529       if (Limit && isKnownPredicate(Pred, PreAR, Limit))  // proves (1)
1530         return true;
1531     }
1532   }
1533 
1534   return false;
1535 }
1536 
1537 // Finds an integer D for an expression (C + x + y + ...) such that the top
1538 // level addition in (D + (C - D + x + y + ...)) would not wrap (signed or
1539 // unsigned) and the number of trailing zeros of (C - D + x + y + ...) is
1540 // maximized, where C is the \p ConstantTerm, x, y, ... are arbitrary SCEVs, and
1541 // the (C + x + y + ...) expression is \p WholeAddExpr.
1542 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
1543                                             const SCEVConstant *ConstantTerm,
1544                                             const SCEVAddExpr *WholeAddExpr) {
1545   const APInt &C = ConstantTerm->getAPInt();
1546   const unsigned BitWidth = C.getBitWidth();
1547   // Find number of trailing zeros of (x + y + ...) w/o the C first:
1548   uint32_t TZ = BitWidth;
1549   for (unsigned I = 1, E = WholeAddExpr->getNumOperands(); I < E && TZ; ++I)
1550     TZ = std::min(TZ, SE.GetMinTrailingZeros(WholeAddExpr->getOperand(I)));
1551   if (TZ) {
1552     // Set D to be as many least significant bits of C as possible while still
1553     // guaranteeing that adding D to (C - D + x + y + ...) won't cause a wrap:
1554     return TZ < BitWidth ? C.trunc(TZ).zext(BitWidth) : C;
1555   }
1556   return APInt(BitWidth, 0);
1557 }
1558 
1559 // Finds an integer D for an affine AddRec expression {C,+,x} such that the top
1560 // level addition in (D + {C-D,+,x}) would not wrap (signed or unsigned) and the
1561 // number of trailing zeros of (C - D + x * n) is maximized, where C is the \p
1562 // ConstantStart, x is an arbitrary \p Step, and n is the loop trip count.
1563 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
1564                                             const APInt &ConstantStart,
1565                                             const SCEV *Step) {
1566   const unsigned BitWidth = ConstantStart.getBitWidth();
1567   const uint32_t TZ = SE.GetMinTrailingZeros(Step);
1568   if (TZ)
1569     return TZ < BitWidth ? ConstantStart.trunc(TZ).zext(BitWidth)
1570                          : ConstantStart;
1571   return APInt(BitWidth, 0);
1572 }
1573 
1574 const SCEV *
1575 ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
1576   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1577          "This is not an extending conversion!");
1578   assert(isSCEVable(Ty) &&
1579          "This is not a conversion to a SCEVable type!");
1580   assert(!Op->getType()->isPointerTy() && "Can't extend pointer!");
1581   Ty = getEffectiveSCEVType(Ty);
1582 
1583   // Fold if the operand is constant.
1584   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1585     return getConstant(
1586       cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
1587 
1588   // zext(zext(x)) --> zext(x)
1589   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1590     return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
1591 
1592   // Before doing any expensive analysis, check to see if we've already
1593   // computed a SCEV for this Op and Ty.
1594   FoldingSetNodeID ID;
1595   ID.AddInteger(scZeroExtend);
1596   ID.AddPointer(Op);
1597   ID.AddPointer(Ty);
1598   void *IP = nullptr;
1599   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1600   if (Depth > MaxCastDepth) {
1601     SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1602                                                      Op, Ty);
1603     UniqueSCEVs.InsertNode(S, IP);
1604     registerUser(S, Op);
1605     return S;
1606   }
1607 
1608   // zext(trunc(x)) --> zext(x) or x or trunc(x)
1609   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1610     // It's possible the bits taken off by the truncate were all zero bits. If
1611     // so, we should be able to simplify this further.
1612     const SCEV *X = ST->getOperand();
1613     ConstantRange CR = getUnsignedRange(X);
1614     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1615     unsigned NewBits = getTypeSizeInBits(Ty);
1616     if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
1617             CR.zextOrTrunc(NewBits)))
1618       return getTruncateOrZeroExtend(X, Ty, Depth);
1619   }
1620 
1621   // If the input value is a chrec scev, and we can prove that the value
1622   // did not overflow the old, smaller, value, we can zero extend all of the
1623   // operands (often constants).  This allows analysis of something like
1624   // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
1625   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1626     if (AR->isAffine()) {
1627       const SCEV *Start = AR->getStart();
1628       const SCEV *Step = AR->getStepRecurrence(*this);
1629       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1630       const Loop *L = AR->getLoop();
1631 
1632       if (!AR->hasNoUnsignedWrap()) {
1633         auto NewFlags = proveNoWrapViaConstantRanges(AR);
1634         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
1635       }
1636 
1637       // If we have special knowledge that this addrec won't overflow,
1638       // we don't need to do any further analysis.
1639       if (AR->hasNoUnsignedWrap())
1640         return getAddRecExpr(
1641             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1),
1642             getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
1643 
1644       // Check whether the backedge-taken count is SCEVCouldNotCompute.
1645       // Note that this serves two purposes: It filters out loops that are
1646       // simply not analyzable, and it covers the case where this code is
1647       // being called from within backedge-taken count analysis, such that
1648       // attempting to ask for the backedge-taken count would likely result
1649       // in infinite recursion. In the later case, the analysis code will
1650       // cope with a conservative value, and it will take care to purge
1651       // that value once it has finished.
1652       const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
1653       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1654         // Manually compute the final value for AR, checking for overflow.
1655 
1656         // Check whether the backedge-taken count can be losslessly casted to
1657         // the addrec's type. The count is always unsigned.
1658         const SCEV *CastedMaxBECount =
1659             getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth);
1660         const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend(
1661             CastedMaxBECount, MaxBECount->getType(), Depth);
1662         if (MaxBECount == RecastedMaxBECount) {
1663           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1664           // Check whether Start+Step*MaxBECount has no unsigned overflow.
1665           const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step,
1666                                         SCEV::FlagAnyWrap, Depth + 1);
1667           const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul,
1668                                                           SCEV::FlagAnyWrap,
1669                                                           Depth + 1),
1670                                                WideTy, Depth + 1);
1671           const SCEV *WideStart = getZeroExtendExpr(Start, WideTy, Depth + 1);
1672           const SCEV *WideMaxBECount =
1673             getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
1674           const SCEV *OperandExtendedAdd =
1675             getAddExpr(WideStart,
1676                        getMulExpr(WideMaxBECount,
1677                                   getZeroExtendExpr(Step, WideTy, Depth + 1),
1678                                   SCEV::FlagAnyWrap, Depth + 1),
1679                        SCEV::FlagAnyWrap, Depth + 1);
1680           if (ZAdd == OperandExtendedAdd) {
1681             // Cache knowledge of AR NUW, which is propagated to this AddRec.
1682             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW);
1683             // Return the expression with the addrec on the outside.
1684             return getAddRecExpr(
1685                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1686                                                          Depth + 1),
1687                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
1688                 AR->getNoWrapFlags());
1689           }
1690           // Similar to above, only this time treat the step value as signed.
1691           // This covers loops that count down.
1692           OperandExtendedAdd =
1693             getAddExpr(WideStart,
1694                        getMulExpr(WideMaxBECount,
1695                                   getSignExtendExpr(Step, WideTy, Depth + 1),
1696                                   SCEV::FlagAnyWrap, Depth + 1),
1697                        SCEV::FlagAnyWrap, Depth + 1);
1698           if (ZAdd == OperandExtendedAdd) {
1699             // Cache knowledge of AR NW, which is propagated to this AddRec.
1700             // Negative step causes unsigned wrap, but it still can't self-wrap.
1701             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW);
1702             // Return the expression with the addrec on the outside.
1703             return getAddRecExpr(
1704                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1705                                                          Depth + 1),
1706                 getSignExtendExpr(Step, Ty, Depth + 1), L,
1707                 AR->getNoWrapFlags());
1708           }
1709         }
1710       }
1711 
1712       // Normally, in the cases we can prove no-overflow via a
1713       // backedge guarding condition, we can also compute a backedge
1714       // taken count for the loop.  The exceptions are assumptions and
1715       // guards present in the loop -- SCEV is not great at exploiting
1716       // these to compute max backedge taken counts, but can still use
1717       // these to prove lack of overflow.  Use this fact to avoid
1718       // doing extra work that may not pay off.
1719       if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
1720           !AC.assumptions().empty()) {
1721 
1722         auto NewFlags = proveNoUnsignedWrapViaInduction(AR);
1723         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
1724         if (AR->hasNoUnsignedWrap()) {
1725           // Same as nuw case above - duplicated here to avoid a compile time
1726           // issue.  It's not clear that the order of checks does matter, but
1727           // it's one of two issue possible causes for a change which was
1728           // reverted.  Be conservative for the moment.
1729           return getAddRecExpr(
1730                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1731                                                          Depth + 1),
1732                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
1733                 AR->getNoWrapFlags());
1734         }
1735 
1736         // For a negative step, we can extend the operands iff doing so only
1737         // traverses values in the range zext([0,UINT_MAX]).
1738         if (isKnownNegative(Step)) {
1739           const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1740                                       getSignedRangeMin(Step));
1741           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1742               isKnownOnEveryIteration(ICmpInst::ICMP_UGT, AR, N)) {
1743             // Cache knowledge of AR NW, which is propagated to this
1744             // AddRec.  Negative step causes unsigned wrap, but it
1745             // still can't self-wrap.
1746             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW);
1747             // Return the expression with the addrec on the outside.
1748             return getAddRecExpr(
1749                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1750                                                          Depth + 1),
1751                 getSignExtendExpr(Step, Ty, Depth + 1), L,
1752                 AR->getNoWrapFlags());
1753           }
1754         }
1755       }
1756 
1757       // zext({C,+,Step}) --> (zext(D) + zext({C-D,+,Step}))<nuw><nsw>
1758       // if D + (C - D + Step * n) could be proven to not unsigned wrap
1759       // where D maximizes the number of trailing zeros of (C - D + Step * n)
1760       if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
1761         const APInt &C = SC->getAPInt();
1762         const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
1763         if (D != 0) {
1764           const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
1765           const SCEV *SResidual =
1766               getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
1767           const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
1768           return getAddExpr(SZExtD, SZExtR,
1769                             (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1770                             Depth + 1);
1771         }
1772       }
1773 
1774       if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) {
1775         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW);
1776         return getAddRecExpr(
1777             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1),
1778             getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
1779       }
1780     }
1781 
1782   // zext(A % B) --> zext(A) % zext(B)
1783   {
1784     const SCEV *LHS;
1785     const SCEV *RHS;
1786     if (matchURem(Op, LHS, RHS))
1787       return getURemExpr(getZeroExtendExpr(LHS, Ty, Depth + 1),
1788                          getZeroExtendExpr(RHS, Ty, Depth + 1));
1789   }
1790 
1791   // zext(A / B) --> zext(A) / zext(B).
1792   if (auto *Div = dyn_cast<SCEVUDivExpr>(Op))
1793     return getUDivExpr(getZeroExtendExpr(Div->getLHS(), Ty, Depth + 1),
1794                        getZeroExtendExpr(Div->getRHS(), Ty, Depth + 1));
1795 
1796   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1797     // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw>
1798     if (SA->hasNoUnsignedWrap()) {
1799       // If the addition does not unsign overflow then we can, by definition,
1800       // commute the zero extension with the addition operation.
1801       SmallVector<const SCEV *, 4> Ops;
1802       for (const auto *Op : SA->operands())
1803         Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
1804       return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1);
1805     }
1806 
1807     // zext(C + x + y + ...) --> (zext(D) + zext((C - D) + x + y + ...))
1808     // if D + (C - D + x + y + ...) could be proven to not unsigned wrap
1809     // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
1810     //
1811     // Often address arithmetics contain expressions like
1812     // (zext (add (shl X, C1), C2)), for instance, (zext (5 + (4 * X))).
1813     // This transformation is useful while proving that such expressions are
1814     // equal or differ by a small constant amount, see LoadStoreVectorizer pass.
1815     if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
1816       const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
1817       if (D != 0) {
1818         const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
1819         const SCEV *SResidual =
1820             getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
1821         const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
1822         return getAddExpr(SZExtD, SZExtR,
1823                           (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1824                           Depth + 1);
1825       }
1826     }
1827   }
1828 
1829   if (auto *SM = dyn_cast<SCEVMulExpr>(Op)) {
1830     // zext((A * B * ...)<nuw>) --> (zext(A) * zext(B) * ...)<nuw>
1831     if (SM->hasNoUnsignedWrap()) {
1832       // If the multiply does not unsign overflow then we can, by definition,
1833       // commute the zero extension with the multiply operation.
1834       SmallVector<const SCEV *, 4> Ops;
1835       for (const auto *Op : SM->operands())
1836         Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
1837       return getMulExpr(Ops, SCEV::FlagNUW, Depth + 1);
1838     }
1839 
1840     // zext(2^K * (trunc X to iN)) to iM ->
1841     // 2^K * (zext(trunc X to i{N-K}) to iM)<nuw>
1842     //
1843     // Proof:
1844     //
1845     //     zext(2^K * (trunc X to iN)) to iM
1846     //   = zext((trunc X to iN) << K) to iM
1847     //   = zext((trunc X to i{N-K}) << K)<nuw> to iM
1848     //     (because shl removes the top K bits)
1849     //   = zext((2^K * (trunc X to i{N-K}))<nuw>) to iM
1850     //   = (2^K * (zext(trunc X to i{N-K}) to iM))<nuw>.
1851     //
1852     if (SM->getNumOperands() == 2)
1853       if (auto *MulLHS = dyn_cast<SCEVConstant>(SM->getOperand(0)))
1854         if (MulLHS->getAPInt().isPowerOf2())
1855           if (auto *TruncRHS = dyn_cast<SCEVTruncateExpr>(SM->getOperand(1))) {
1856             int NewTruncBits = getTypeSizeInBits(TruncRHS->getType()) -
1857                                MulLHS->getAPInt().logBase2();
1858             Type *NewTruncTy = IntegerType::get(getContext(), NewTruncBits);
1859             return getMulExpr(
1860                 getZeroExtendExpr(MulLHS, Ty),
1861                 getZeroExtendExpr(
1862                     getTruncateExpr(TruncRHS->getOperand(), NewTruncTy), Ty),
1863                 SCEV::FlagNUW, Depth + 1);
1864           }
1865   }
1866 
1867   // The cast wasn't folded; create an explicit cast node.
1868   // Recompute the insert position, as it may have been invalidated.
1869   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1870   SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1871                                                    Op, Ty);
1872   UniqueSCEVs.InsertNode(S, IP);
1873   registerUser(S, Op);
1874   return S;
1875 }
1876 
1877 const SCEV *
1878 ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
1879   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1880          "This is not an extending conversion!");
1881   assert(isSCEVable(Ty) &&
1882          "This is not a conversion to a SCEVable type!");
1883   assert(!Op->getType()->isPointerTy() && "Can't extend pointer!");
1884   Ty = getEffectiveSCEVType(Ty);
1885 
1886   // Fold if the operand is constant.
1887   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1888     return getConstant(
1889       cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
1890 
1891   // sext(sext(x)) --> sext(x)
1892   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1893     return getSignExtendExpr(SS->getOperand(), Ty, Depth + 1);
1894 
1895   // sext(zext(x)) --> zext(x)
1896   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1897     return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
1898 
1899   // Before doing any expensive analysis, check to see if we've already
1900   // computed a SCEV for this Op and Ty.
1901   FoldingSetNodeID ID;
1902   ID.AddInteger(scSignExtend);
1903   ID.AddPointer(Op);
1904   ID.AddPointer(Ty);
1905   void *IP = nullptr;
1906   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1907   // Limit recursion depth.
1908   if (Depth > MaxCastDepth) {
1909     SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1910                                                      Op, Ty);
1911     UniqueSCEVs.InsertNode(S, IP);
1912     registerUser(S, Op);
1913     return S;
1914   }
1915 
1916   // sext(trunc(x)) --> sext(x) or x or trunc(x)
1917   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1918     // It's possible the bits taken off by the truncate were all sign bits. If
1919     // so, we should be able to simplify this further.
1920     const SCEV *X = ST->getOperand();
1921     ConstantRange CR = getSignedRange(X);
1922     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1923     unsigned NewBits = getTypeSizeInBits(Ty);
1924     if (CR.truncate(TruncBits).signExtend(NewBits).contains(
1925             CR.sextOrTrunc(NewBits)))
1926       return getTruncateOrSignExtend(X, Ty, Depth);
1927   }
1928 
1929   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1930     // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
1931     if (SA->hasNoSignedWrap()) {
1932       // If the addition does not sign overflow then we can, by definition,
1933       // commute the sign extension with the addition operation.
1934       SmallVector<const SCEV *, 4> Ops;
1935       for (const auto *Op : SA->operands())
1936         Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1));
1937       return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1);
1938     }
1939 
1940     // sext(C + x + y + ...) --> (sext(D) + sext((C - D) + x + y + ...))
1941     // if D + (C - D + x + y + ...) could be proven to not signed wrap
1942     // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
1943     //
1944     // For instance, this will bring two seemingly different expressions:
1945     //     1 + sext(5 + 20 * %x + 24 * %y)  and
1946     //         sext(6 + 20 * %x + 24 * %y)
1947     // to the same form:
1948     //     2 + sext(4 + 20 * %x + 24 * %y)
1949     if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
1950       const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
1951       if (D != 0) {
1952         const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
1953         const SCEV *SResidual =
1954             getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
1955         const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
1956         return getAddExpr(SSExtD, SSExtR,
1957                           (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1958                           Depth + 1);
1959       }
1960     }
1961   }
1962   // If the input value is a chrec scev, and we can prove that the value
1963   // did not overflow the old, smaller, value, we can sign extend all of the
1964   // operands (often constants).  This allows analysis of something like
1965   // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
1966   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1967     if (AR->isAffine()) {
1968       const SCEV *Start = AR->getStart();
1969       const SCEV *Step = AR->getStepRecurrence(*this);
1970       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1971       const Loop *L = AR->getLoop();
1972 
1973       if (!AR->hasNoSignedWrap()) {
1974         auto NewFlags = proveNoWrapViaConstantRanges(AR);
1975         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
1976       }
1977 
1978       // If we have special knowledge that this addrec won't overflow,
1979       // we don't need to do any further analysis.
1980       if (AR->hasNoSignedWrap())
1981         return getAddRecExpr(
1982             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
1983             getSignExtendExpr(Step, Ty, Depth + 1), L, SCEV::FlagNSW);
1984 
1985       // Check whether the backedge-taken count is SCEVCouldNotCompute.
1986       // Note that this serves two purposes: It filters out loops that are
1987       // simply not analyzable, and it covers the case where this code is
1988       // being called from within backedge-taken count analysis, such that
1989       // attempting to ask for the backedge-taken count would likely result
1990       // in infinite recursion. In the later case, the analysis code will
1991       // cope with a conservative value, and it will take care to purge
1992       // that value once it has finished.
1993       const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
1994       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1995         // Manually compute the final value for AR, checking for
1996         // overflow.
1997 
1998         // Check whether the backedge-taken count can be losslessly casted to
1999         // the addrec's type. The count is always unsigned.
2000         const SCEV *CastedMaxBECount =
2001             getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth);
2002         const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend(
2003             CastedMaxBECount, MaxBECount->getType(), Depth);
2004         if (MaxBECount == RecastedMaxBECount) {
2005           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
2006           // Check whether Start+Step*MaxBECount has no signed overflow.
2007           const SCEV *SMul = getMulExpr(CastedMaxBECount, Step,
2008                                         SCEV::FlagAnyWrap, Depth + 1);
2009           const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul,
2010                                                           SCEV::FlagAnyWrap,
2011                                                           Depth + 1),
2012                                                WideTy, Depth + 1);
2013           const SCEV *WideStart = getSignExtendExpr(Start, WideTy, Depth + 1);
2014           const SCEV *WideMaxBECount =
2015             getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
2016           const SCEV *OperandExtendedAdd =
2017             getAddExpr(WideStart,
2018                        getMulExpr(WideMaxBECount,
2019                                   getSignExtendExpr(Step, WideTy, Depth + 1),
2020                                   SCEV::FlagAnyWrap, Depth + 1),
2021                        SCEV::FlagAnyWrap, Depth + 1);
2022           if (SAdd == OperandExtendedAdd) {
2023             // Cache knowledge of AR NSW, which is propagated to this AddRec.
2024             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW);
2025             // Return the expression with the addrec on the outside.
2026             return getAddRecExpr(
2027                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
2028                                                          Depth + 1),
2029                 getSignExtendExpr(Step, Ty, Depth + 1), L,
2030                 AR->getNoWrapFlags());
2031           }
2032           // Similar to above, only this time treat the step value as unsigned.
2033           // This covers loops that count up with an unsigned step.
2034           OperandExtendedAdd =
2035             getAddExpr(WideStart,
2036                        getMulExpr(WideMaxBECount,
2037                                   getZeroExtendExpr(Step, WideTy, Depth + 1),
2038                                   SCEV::FlagAnyWrap, Depth + 1),
2039                        SCEV::FlagAnyWrap, Depth + 1);
2040           if (SAdd == OperandExtendedAdd) {
2041             // If AR wraps around then
2042             //
2043             //    abs(Step) * MaxBECount > unsigned-max(AR->getType())
2044             // => SAdd != OperandExtendedAdd
2045             //
2046             // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=>
2047             // (SAdd == OperandExtendedAdd => AR is NW)
2048 
2049             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW);
2050 
2051             // Return the expression with the addrec on the outside.
2052             return getAddRecExpr(
2053                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
2054                                                          Depth + 1),
2055                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
2056                 AR->getNoWrapFlags());
2057           }
2058         }
2059       }
2060 
2061       auto NewFlags = proveNoSignedWrapViaInduction(AR);
2062       setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
2063       if (AR->hasNoSignedWrap()) {
2064         // Same as nsw case above - duplicated here to avoid a compile time
2065         // issue.  It's not clear that the order of checks does matter, but
2066         // it's one of two issue possible causes for a change which was
2067         // reverted.  Be conservative for the moment.
2068         return getAddRecExpr(
2069             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
2070             getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
2071       }
2072 
2073       // sext({C,+,Step}) --> (sext(D) + sext({C-D,+,Step}))<nuw><nsw>
2074       // if D + (C - D + Step * n) could be proven to not signed wrap
2075       // where D maximizes the number of trailing zeros of (C - D + Step * n)
2076       if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
2077         const APInt &C = SC->getAPInt();
2078         const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
2079         if (D != 0) {
2080           const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
2081           const SCEV *SResidual =
2082               getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
2083           const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
2084           return getAddExpr(SSExtD, SSExtR,
2085                             (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
2086                             Depth + 1);
2087         }
2088       }
2089 
2090       if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) {
2091         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW);
2092         return getAddRecExpr(
2093             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
2094             getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
2095       }
2096     }
2097 
2098   // If the input value is provably positive and we could not simplify
2099   // away the sext build a zext instead.
2100   if (isKnownNonNegative(Op))
2101     return getZeroExtendExpr(Op, Ty, Depth + 1);
2102 
2103   // The cast wasn't folded; create an explicit cast node.
2104   // Recompute the insert position, as it may have been invalidated.
2105   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2106   SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
2107                                                    Op, Ty);
2108   UniqueSCEVs.InsertNode(S, IP);
2109   registerUser(S, { Op });
2110   return S;
2111 }
2112 
2113 /// getAnyExtendExpr - Return a SCEV for the given operand extended with
2114 /// unspecified bits out to the given type.
2115 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
2116                                               Type *Ty) {
2117   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
2118          "This is not an extending conversion!");
2119   assert(isSCEVable(Ty) &&
2120          "This is not a conversion to a SCEVable type!");
2121   Ty = getEffectiveSCEVType(Ty);
2122 
2123   // Sign-extend negative constants.
2124   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
2125     if (SC->getAPInt().isNegative())
2126       return getSignExtendExpr(Op, Ty);
2127 
2128   // Peel off a truncate cast.
2129   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
2130     const SCEV *NewOp = T->getOperand();
2131     if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
2132       return getAnyExtendExpr(NewOp, Ty);
2133     return getTruncateOrNoop(NewOp, Ty);
2134   }
2135 
2136   // Next try a zext cast. If the cast is folded, use it.
2137   const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
2138   if (!isa<SCEVZeroExtendExpr>(ZExt))
2139     return ZExt;
2140 
2141   // Next try a sext cast. If the cast is folded, use it.
2142   const SCEV *SExt = getSignExtendExpr(Op, Ty);
2143   if (!isa<SCEVSignExtendExpr>(SExt))
2144     return SExt;
2145 
2146   // Force the cast to be folded into the operands of an addrec.
2147   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
2148     SmallVector<const SCEV *, 4> Ops;
2149     for (const SCEV *Op : AR->operands())
2150       Ops.push_back(getAnyExtendExpr(Op, Ty));
2151     return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
2152   }
2153 
2154   // If the expression is obviously signed, use the sext cast value.
2155   if (isa<SCEVSMaxExpr>(Op))
2156     return SExt;
2157 
2158   // Absent any other information, use the zext cast value.
2159   return ZExt;
2160 }
2161 
2162 /// Process the given Ops list, which is a list of operands to be added under
2163 /// the given scale, update the given map. This is a helper function for
2164 /// getAddRecExpr. As an example of what it does, given a sequence of operands
2165 /// that would form an add expression like this:
2166 ///
2167 ///    m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
2168 ///
2169 /// where A and B are constants, update the map with these values:
2170 ///
2171 ///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
2172 ///
2173 /// and add 13 + A*B*29 to AccumulatedConstant.
2174 /// This will allow getAddRecExpr to produce this:
2175 ///
2176 ///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
2177 ///
2178 /// This form often exposes folding opportunities that are hidden in
2179 /// the original operand list.
2180 ///
2181 /// Return true iff it appears that any interesting folding opportunities
2182 /// may be exposed. This helps getAddRecExpr short-circuit extra work in
2183 /// the common case where no interesting opportunities are present, and
2184 /// is also used as a check to avoid infinite recursion.
2185 static bool
2186 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
2187                              SmallVectorImpl<const SCEV *> &NewOps,
2188                              APInt &AccumulatedConstant,
2189                              const SCEV *const *Ops, size_t NumOperands,
2190                              const APInt &Scale,
2191                              ScalarEvolution &SE) {
2192   bool Interesting = false;
2193 
2194   // Iterate over the add operands. They are sorted, with constants first.
2195   unsigned i = 0;
2196   while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2197     ++i;
2198     // Pull a buried constant out to the outside.
2199     if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
2200       Interesting = true;
2201     AccumulatedConstant += Scale * C->getAPInt();
2202   }
2203 
2204   // Next comes everything else. We're especially interested in multiplies
2205   // here, but they're in the middle, so just visit the rest with one loop.
2206   for (; i != NumOperands; ++i) {
2207     const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
2208     if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
2209       APInt NewScale =
2210           Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt();
2211       if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
2212         // A multiplication of a constant with another add; recurse.
2213         const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
2214         Interesting |=
2215           CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2216                                        Add->op_begin(), Add->getNumOperands(),
2217                                        NewScale, SE);
2218       } else {
2219         // A multiplication of a constant with some other value. Update
2220         // the map.
2221         SmallVector<const SCEV *, 4> MulOps(drop_begin(Mul->operands()));
2222         const SCEV *Key = SE.getMulExpr(MulOps);
2223         auto Pair = M.insert({Key, NewScale});
2224         if (Pair.second) {
2225           NewOps.push_back(Pair.first->first);
2226         } else {
2227           Pair.first->second += NewScale;
2228           // The map already had an entry for this value, which may indicate
2229           // a folding opportunity.
2230           Interesting = true;
2231         }
2232       }
2233     } else {
2234       // An ordinary operand. Update the map.
2235       std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
2236           M.insert({Ops[i], Scale});
2237       if (Pair.second) {
2238         NewOps.push_back(Pair.first->first);
2239       } else {
2240         Pair.first->second += Scale;
2241         // The map already had an entry for this value, which may indicate
2242         // a folding opportunity.
2243         Interesting = true;
2244       }
2245     }
2246   }
2247 
2248   return Interesting;
2249 }
2250 
2251 bool ScalarEvolution::willNotOverflow(Instruction::BinaryOps BinOp, bool Signed,
2252                                       const SCEV *LHS, const SCEV *RHS) {
2253   const SCEV *(ScalarEvolution::*Operation)(const SCEV *, const SCEV *,
2254                                             SCEV::NoWrapFlags, unsigned);
2255   switch (BinOp) {
2256   default:
2257     llvm_unreachable("Unsupported binary op");
2258   case Instruction::Add:
2259     Operation = &ScalarEvolution::getAddExpr;
2260     break;
2261   case Instruction::Sub:
2262     Operation = &ScalarEvolution::getMinusSCEV;
2263     break;
2264   case Instruction::Mul:
2265     Operation = &ScalarEvolution::getMulExpr;
2266     break;
2267   }
2268 
2269   const SCEV *(ScalarEvolution::*Extension)(const SCEV *, Type *, unsigned) =
2270       Signed ? &ScalarEvolution::getSignExtendExpr
2271              : &ScalarEvolution::getZeroExtendExpr;
2272 
2273   // Check ext(LHS op RHS) == ext(LHS) op ext(RHS)
2274   auto *NarrowTy = cast<IntegerType>(LHS->getType());
2275   auto *WideTy =
2276       IntegerType::get(NarrowTy->getContext(), NarrowTy->getBitWidth() * 2);
2277 
2278   const SCEV *A = (this->*Extension)(
2279       (this->*Operation)(LHS, RHS, SCEV::FlagAnyWrap, 0), WideTy, 0);
2280   const SCEV *B = (this->*Operation)((this->*Extension)(LHS, WideTy, 0),
2281                                      (this->*Extension)(RHS, WideTy, 0),
2282                                      SCEV::FlagAnyWrap, 0);
2283   return A == B;
2284 }
2285 
2286 std::pair<SCEV::NoWrapFlags, bool /*Deduced*/>
2287 ScalarEvolution::getStrengthenedNoWrapFlagsFromBinOp(
2288     const OverflowingBinaryOperator *OBO) {
2289   SCEV::NoWrapFlags Flags = SCEV::NoWrapFlags::FlagAnyWrap;
2290 
2291   if (OBO->hasNoUnsignedWrap())
2292     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2293   if (OBO->hasNoSignedWrap())
2294     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2295 
2296   bool Deduced = false;
2297 
2298   if (OBO->hasNoUnsignedWrap() && OBO->hasNoSignedWrap())
2299     return {Flags, Deduced};
2300 
2301   if (OBO->getOpcode() != Instruction::Add &&
2302       OBO->getOpcode() != Instruction::Sub &&
2303       OBO->getOpcode() != Instruction::Mul)
2304     return {Flags, Deduced};
2305 
2306   const SCEV *LHS = getSCEV(OBO->getOperand(0));
2307   const SCEV *RHS = getSCEV(OBO->getOperand(1));
2308 
2309   if (!OBO->hasNoUnsignedWrap() &&
2310       willNotOverflow((Instruction::BinaryOps)OBO->getOpcode(),
2311                       /* Signed */ false, LHS, RHS)) {
2312     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2313     Deduced = true;
2314   }
2315 
2316   if (!OBO->hasNoSignedWrap() &&
2317       willNotOverflow((Instruction::BinaryOps)OBO->getOpcode(),
2318                       /* Signed */ true, LHS, RHS)) {
2319     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2320     Deduced = true;
2321   }
2322 
2323   return {Flags, Deduced};
2324 }
2325 
2326 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and
2327 // `OldFlags' as can't-wrap behavior.  Infer a more aggressive set of
2328 // can't-overflow flags for the operation if possible.
2329 static SCEV::NoWrapFlags
2330 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type,
2331                       const ArrayRef<const SCEV *> Ops,
2332                       SCEV::NoWrapFlags Flags) {
2333   using namespace std::placeholders;
2334 
2335   using OBO = OverflowingBinaryOperator;
2336 
2337   bool CanAnalyze =
2338       Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr;
2339   (void)CanAnalyze;
2340   assert(CanAnalyze && "don't call from other places!");
2341 
2342   int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2343   SCEV::NoWrapFlags SignOrUnsignWrap =
2344       ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2345 
2346   // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
2347   auto IsKnownNonNegative = [&](const SCEV *S) {
2348     return SE->isKnownNonNegative(S);
2349   };
2350 
2351   if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative))
2352     Flags =
2353         ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
2354 
2355   SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2356 
2357   if (SignOrUnsignWrap != SignOrUnsignMask &&
2358       (Type == scAddExpr || Type == scMulExpr) && Ops.size() == 2 &&
2359       isa<SCEVConstant>(Ops[0])) {
2360 
2361     auto Opcode = [&] {
2362       switch (Type) {
2363       case scAddExpr:
2364         return Instruction::Add;
2365       case scMulExpr:
2366         return Instruction::Mul;
2367       default:
2368         llvm_unreachable("Unexpected SCEV op.");
2369       }
2370     }();
2371 
2372     const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt();
2373 
2374     // (A <opcode> C) --> (A <opcode> C)<nsw> if the op doesn't sign overflow.
2375     if (!(SignOrUnsignWrap & SCEV::FlagNSW)) {
2376       auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2377           Opcode, C, OBO::NoSignedWrap);
2378       if (NSWRegion.contains(SE->getSignedRange(Ops[1])))
2379         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2380     }
2381 
2382     // (A <opcode> C) --> (A <opcode> C)<nuw> if the op doesn't unsign overflow.
2383     if (!(SignOrUnsignWrap & SCEV::FlagNUW)) {
2384       auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2385           Opcode, C, OBO::NoUnsignedWrap);
2386       if (NUWRegion.contains(SE->getUnsignedRange(Ops[1])))
2387         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2388     }
2389   }
2390 
2391   // <0,+,nonnegative><nw> is also nuw
2392   // TODO: Add corresponding nsw case
2393   if (Type == scAddRecExpr && ScalarEvolution::hasFlags(Flags, SCEV::FlagNW) &&
2394       !ScalarEvolution::hasFlags(Flags, SCEV::FlagNUW) && Ops.size() == 2 &&
2395       Ops[0]->isZero() && IsKnownNonNegative(Ops[1]))
2396     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2397 
2398   // both (udiv X, Y) * Y and Y * (udiv X, Y) are always NUW
2399   if (Type == scMulExpr && !ScalarEvolution::hasFlags(Flags, SCEV::FlagNUW) &&
2400       Ops.size() == 2) {
2401     if (auto *UDiv = dyn_cast<SCEVUDivExpr>(Ops[0]))
2402       if (UDiv->getOperand(1) == Ops[1])
2403         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2404     if (auto *UDiv = dyn_cast<SCEVUDivExpr>(Ops[1]))
2405       if (UDiv->getOperand(1) == Ops[0])
2406         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2407   }
2408 
2409   return Flags;
2410 }
2411 
2412 bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) {
2413   return isLoopInvariant(S, L) && properlyDominates(S, L->getHeader());
2414 }
2415 
2416 /// Get a canonical add expression, or something simpler if possible.
2417 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
2418                                         SCEV::NoWrapFlags OrigFlags,
2419                                         unsigned Depth) {
2420   assert(!(OrigFlags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
2421          "only nuw or nsw allowed");
2422   assert(!Ops.empty() && "Cannot get empty add!");
2423   if (Ops.size() == 1) return Ops[0];
2424 #ifndef NDEBUG
2425   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2426   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2427     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2428            "SCEVAddExpr operand types don't match!");
2429   unsigned NumPtrs = count_if(
2430       Ops, [](const SCEV *Op) { return Op->getType()->isPointerTy(); });
2431   assert(NumPtrs <= 1 && "add has at most one pointer operand");
2432 #endif
2433 
2434   // Sort by complexity, this groups all similar expression types together.
2435   GroupByComplexity(Ops, &LI, DT);
2436 
2437   // If there are any constants, fold them together.
2438   unsigned Idx = 0;
2439   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2440     ++Idx;
2441     assert(Idx < Ops.size());
2442     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2443       // We found two constants, fold them together!
2444       Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt());
2445       if (Ops.size() == 2) return Ops[0];
2446       Ops.erase(Ops.begin()+1);  // Erase the folded element
2447       LHSC = cast<SCEVConstant>(Ops[0]);
2448     }
2449 
2450     // If we are left with a constant zero being added, strip it off.
2451     if (LHSC->getValue()->isZero()) {
2452       Ops.erase(Ops.begin());
2453       --Idx;
2454     }
2455 
2456     if (Ops.size() == 1) return Ops[0];
2457   }
2458 
2459   // Delay expensive flag strengthening until necessary.
2460   auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) {
2461     return StrengthenNoWrapFlags(this, scAddExpr, Ops, OrigFlags);
2462   };
2463 
2464   // Limit recursion calls depth.
2465   if (Depth > MaxArithDepth || hasHugeExpression(Ops))
2466     return getOrCreateAddExpr(Ops, ComputeFlags(Ops));
2467 
2468   if (SCEV *S = findExistingSCEVInCache(scAddExpr, Ops)) {
2469     // Don't strengthen flags if we have no new information.
2470     SCEVAddExpr *Add = static_cast<SCEVAddExpr *>(S);
2471     if (Add->getNoWrapFlags(OrigFlags) != OrigFlags)
2472       Add->setNoWrapFlags(ComputeFlags(Ops));
2473     return S;
2474   }
2475 
2476   // Okay, check to see if the same value occurs in the operand list more than
2477   // once.  If so, merge them together into an multiply expression.  Since we
2478   // sorted the list, these values are required to be adjacent.
2479   Type *Ty = Ops[0]->getType();
2480   bool FoundMatch = false;
2481   for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
2482     if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
2483       // Scan ahead to count how many equal operands there are.
2484       unsigned Count = 2;
2485       while (i+Count != e && Ops[i+Count] == Ops[i])
2486         ++Count;
2487       // Merge the values into a multiply.
2488       const SCEV *Scale = getConstant(Ty, Count);
2489       const SCEV *Mul = getMulExpr(Scale, Ops[i], SCEV::FlagAnyWrap, Depth + 1);
2490       if (Ops.size() == Count)
2491         return Mul;
2492       Ops[i] = Mul;
2493       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
2494       --i; e -= Count - 1;
2495       FoundMatch = true;
2496     }
2497   if (FoundMatch)
2498     return getAddExpr(Ops, OrigFlags, Depth + 1);
2499 
2500   // Check for truncates. If all the operands are truncated from the same
2501   // type, see if factoring out the truncate would permit the result to be
2502   // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y)
2503   // if the contents of the resulting outer trunc fold to something simple.
2504   auto FindTruncSrcType = [&]() -> Type * {
2505     // We're ultimately looking to fold an addrec of truncs and muls of only
2506     // constants and truncs, so if we find any other types of SCEV
2507     // as operands of the addrec then we bail and return nullptr here.
2508     // Otherwise, we return the type of the operand of a trunc that we find.
2509     if (auto *T = dyn_cast<SCEVTruncateExpr>(Ops[Idx]))
2510       return T->getOperand()->getType();
2511     if (const auto *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
2512       const auto *LastOp = Mul->getOperand(Mul->getNumOperands() - 1);
2513       if (const auto *T = dyn_cast<SCEVTruncateExpr>(LastOp))
2514         return T->getOperand()->getType();
2515     }
2516     return nullptr;
2517   };
2518   if (auto *SrcType = FindTruncSrcType()) {
2519     SmallVector<const SCEV *, 8> LargeOps;
2520     bool Ok = true;
2521     // Check all the operands to see if they can be represented in the
2522     // source type of the truncate.
2523     for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
2524       if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
2525         if (T->getOperand()->getType() != SrcType) {
2526           Ok = false;
2527           break;
2528         }
2529         LargeOps.push_back(T->getOperand());
2530       } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2531         LargeOps.push_back(getAnyExtendExpr(C, SrcType));
2532       } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
2533         SmallVector<const SCEV *, 8> LargeMulOps;
2534         for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
2535           if (const SCEVTruncateExpr *T =
2536                 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
2537             if (T->getOperand()->getType() != SrcType) {
2538               Ok = false;
2539               break;
2540             }
2541             LargeMulOps.push_back(T->getOperand());
2542           } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) {
2543             LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
2544           } else {
2545             Ok = false;
2546             break;
2547           }
2548         }
2549         if (Ok)
2550           LargeOps.push_back(getMulExpr(LargeMulOps, SCEV::FlagAnyWrap, Depth + 1));
2551       } else {
2552         Ok = false;
2553         break;
2554       }
2555     }
2556     if (Ok) {
2557       // Evaluate the expression in the larger type.
2558       const SCEV *Fold = getAddExpr(LargeOps, SCEV::FlagAnyWrap, Depth + 1);
2559       // If it folds to something simple, use it. Otherwise, don't.
2560       if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
2561         return getTruncateExpr(Fold, Ty);
2562     }
2563   }
2564 
2565   if (Ops.size() == 2) {
2566     // Check if we have an expression of the form ((X + C1) - C2), where C1 and
2567     // C2 can be folded in a way that allows retaining wrapping flags of (X +
2568     // C1).
2569     const SCEV *A = Ops[0];
2570     const SCEV *B = Ops[1];
2571     auto *AddExpr = dyn_cast<SCEVAddExpr>(B);
2572     auto *C = dyn_cast<SCEVConstant>(A);
2573     if (AddExpr && C && isa<SCEVConstant>(AddExpr->getOperand(0))) {
2574       auto C1 = cast<SCEVConstant>(AddExpr->getOperand(0))->getAPInt();
2575       auto C2 = C->getAPInt();
2576       SCEV::NoWrapFlags PreservedFlags = SCEV::FlagAnyWrap;
2577 
2578       APInt ConstAdd = C1 + C2;
2579       auto AddFlags = AddExpr->getNoWrapFlags();
2580       // Adding a smaller constant is NUW if the original AddExpr was NUW.
2581       if (ScalarEvolution::hasFlags(AddFlags, SCEV::FlagNUW) &&
2582           ConstAdd.ule(C1)) {
2583         PreservedFlags =
2584             ScalarEvolution::setFlags(PreservedFlags, SCEV::FlagNUW);
2585       }
2586 
2587       // Adding a constant with the same sign and small magnitude is NSW, if the
2588       // original AddExpr was NSW.
2589       if (ScalarEvolution::hasFlags(AddFlags, SCEV::FlagNSW) &&
2590           C1.isSignBitSet() == ConstAdd.isSignBitSet() &&
2591           ConstAdd.abs().ule(C1.abs())) {
2592         PreservedFlags =
2593             ScalarEvolution::setFlags(PreservedFlags, SCEV::FlagNSW);
2594       }
2595 
2596       if (PreservedFlags != SCEV::FlagAnyWrap) {
2597         SmallVector<const SCEV *, 4> NewOps(AddExpr->operands());
2598         NewOps[0] = getConstant(ConstAdd);
2599         return getAddExpr(NewOps, PreservedFlags);
2600       }
2601     }
2602   }
2603 
2604   // Canonicalize (-1 * urem X, Y) + X --> (Y * X/Y)
2605   if (Ops.size() == 2) {
2606     const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[0]);
2607     if (Mul && Mul->getNumOperands() == 2 &&
2608         Mul->getOperand(0)->isAllOnesValue()) {
2609       const SCEV *X;
2610       const SCEV *Y;
2611       if (matchURem(Mul->getOperand(1), X, Y) && X == Ops[1]) {
2612         return getMulExpr(Y, getUDivExpr(X, Y));
2613       }
2614     }
2615   }
2616 
2617   // Skip past any other cast SCEVs.
2618   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
2619     ++Idx;
2620 
2621   // If there are add operands they would be next.
2622   if (Idx < Ops.size()) {
2623     bool DeletedAdd = false;
2624     // If the original flags and all inlined SCEVAddExprs are NUW, use the
2625     // common NUW flag for expression after inlining. Other flags cannot be
2626     // preserved, because they may depend on the original order of operations.
2627     SCEV::NoWrapFlags CommonFlags = maskFlags(OrigFlags, SCEV::FlagNUW);
2628     while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
2629       if (Ops.size() > AddOpsInlineThreshold ||
2630           Add->getNumOperands() > AddOpsInlineThreshold)
2631         break;
2632       // If we have an add, expand the add operands onto the end of the operands
2633       // list.
2634       Ops.erase(Ops.begin()+Idx);
2635       Ops.append(Add->op_begin(), Add->op_end());
2636       DeletedAdd = true;
2637       CommonFlags = maskFlags(CommonFlags, Add->getNoWrapFlags());
2638     }
2639 
2640     // If we deleted at least one add, we added operands to the end of the list,
2641     // and they are not necessarily sorted.  Recurse to resort and resimplify
2642     // any operands we just acquired.
2643     if (DeletedAdd)
2644       return getAddExpr(Ops, CommonFlags, Depth + 1);
2645   }
2646 
2647   // Skip over the add expression until we get to a multiply.
2648   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2649     ++Idx;
2650 
2651   // Check to see if there are any folding opportunities present with
2652   // operands multiplied by constant values.
2653   if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
2654     uint64_t BitWidth = getTypeSizeInBits(Ty);
2655     DenseMap<const SCEV *, APInt> M;
2656     SmallVector<const SCEV *, 8> NewOps;
2657     APInt AccumulatedConstant(BitWidth, 0);
2658     if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2659                                      Ops.data(), Ops.size(),
2660                                      APInt(BitWidth, 1), *this)) {
2661       struct APIntCompare {
2662         bool operator()(const APInt &LHS, const APInt &RHS) const {
2663           return LHS.ult(RHS);
2664         }
2665       };
2666 
2667       // Some interesting folding opportunity is present, so its worthwhile to
2668       // re-generate the operands list. Group the operands by constant scale,
2669       // to avoid multiplying by the same constant scale multiple times.
2670       std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
2671       for (const SCEV *NewOp : NewOps)
2672         MulOpLists[M.find(NewOp)->second].push_back(NewOp);
2673       // Re-generate the operands list.
2674       Ops.clear();
2675       if (AccumulatedConstant != 0)
2676         Ops.push_back(getConstant(AccumulatedConstant));
2677       for (auto &MulOp : MulOpLists) {
2678         if (MulOp.first == 1) {
2679           Ops.push_back(getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1));
2680         } else if (MulOp.first != 0) {
2681           Ops.push_back(getMulExpr(
2682               getConstant(MulOp.first),
2683               getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1),
2684               SCEV::FlagAnyWrap, Depth + 1));
2685         }
2686       }
2687       if (Ops.empty())
2688         return getZero(Ty);
2689       if (Ops.size() == 1)
2690         return Ops[0];
2691       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2692     }
2693   }
2694 
2695   // If we are adding something to a multiply expression, make sure the
2696   // something is not already an operand of the multiply.  If so, merge it into
2697   // the multiply.
2698   for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
2699     const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
2700     for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
2701       const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
2702       if (isa<SCEVConstant>(MulOpSCEV))
2703         continue;
2704       for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
2705         if (MulOpSCEV == Ops[AddOp]) {
2706           // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
2707           const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
2708           if (Mul->getNumOperands() != 2) {
2709             // If the multiply has more than two operands, we must get the
2710             // Y*Z term.
2711             SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2712                                                 Mul->op_begin()+MulOp);
2713             MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2714             InnerMul = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2715           }
2716           SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul};
2717           const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2718           const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV,
2719                                             SCEV::FlagAnyWrap, Depth + 1);
2720           if (Ops.size() == 2) return OuterMul;
2721           if (AddOp < Idx) {
2722             Ops.erase(Ops.begin()+AddOp);
2723             Ops.erase(Ops.begin()+Idx-1);
2724           } else {
2725             Ops.erase(Ops.begin()+Idx);
2726             Ops.erase(Ops.begin()+AddOp-1);
2727           }
2728           Ops.push_back(OuterMul);
2729           return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2730         }
2731 
2732       // Check this multiply against other multiplies being added together.
2733       for (unsigned OtherMulIdx = Idx+1;
2734            OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
2735            ++OtherMulIdx) {
2736         const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
2737         // If MulOp occurs in OtherMul, we can fold the two multiplies
2738         // together.
2739         for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
2740              OMulOp != e; ++OMulOp)
2741           if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
2742             // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
2743             const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
2744             if (Mul->getNumOperands() != 2) {
2745               SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2746                                                   Mul->op_begin()+MulOp);
2747               MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2748               InnerMul1 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2749             }
2750             const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
2751             if (OtherMul->getNumOperands() != 2) {
2752               SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
2753                                                   OtherMul->op_begin()+OMulOp);
2754               MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
2755               InnerMul2 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2756             }
2757             SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2};
2758             const SCEV *InnerMulSum =
2759                 getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2760             const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum,
2761                                               SCEV::FlagAnyWrap, Depth + 1);
2762             if (Ops.size() == 2) return OuterMul;
2763             Ops.erase(Ops.begin()+Idx);
2764             Ops.erase(Ops.begin()+OtherMulIdx-1);
2765             Ops.push_back(OuterMul);
2766             return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2767           }
2768       }
2769     }
2770   }
2771 
2772   // If there are any add recurrences in the operands list, see if any other
2773   // added values are loop invariant.  If so, we can fold them into the
2774   // recurrence.
2775   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2776     ++Idx;
2777 
2778   // Scan over all recurrences, trying to fold loop invariants into them.
2779   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2780     // Scan all of the other operands to this add and add them to the vector if
2781     // they are loop invariant w.r.t. the recurrence.
2782     SmallVector<const SCEV *, 8> LIOps;
2783     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2784     const Loop *AddRecLoop = AddRec->getLoop();
2785     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2786       if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
2787         LIOps.push_back(Ops[i]);
2788         Ops.erase(Ops.begin()+i);
2789         --i; --e;
2790       }
2791 
2792     // If we found some loop invariants, fold them into the recurrence.
2793     if (!LIOps.empty()) {
2794       // Compute nowrap flags for the addition of the loop-invariant ops and
2795       // the addrec. Temporarily push it as an operand for that purpose. These
2796       // flags are valid in the scope of the addrec only.
2797       LIOps.push_back(AddRec);
2798       SCEV::NoWrapFlags Flags = ComputeFlags(LIOps);
2799       LIOps.pop_back();
2800 
2801       //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
2802       LIOps.push_back(AddRec->getStart());
2803 
2804       SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands());
2805 
2806       // It is not in general safe to propagate flags valid on an add within
2807       // the addrec scope to one outside it.  We must prove that the inner
2808       // scope is guaranteed to execute if the outer one does to be able to
2809       // safely propagate.  We know the program is undefined if poison is
2810       // produced on the inner scoped addrec.  We also know that *for this use*
2811       // the outer scoped add can't overflow (because of the flags we just
2812       // computed for the inner scoped add) without the program being undefined.
2813       // Proving that entry to the outer scope neccesitates entry to the inner
2814       // scope, thus proves the program undefined if the flags would be violated
2815       // in the outer scope.
2816       SCEV::NoWrapFlags AddFlags = Flags;
2817       if (AddFlags != SCEV::FlagAnyWrap) {
2818         auto *DefI = getDefiningScopeBound(LIOps);
2819         auto *ReachI = &*AddRecLoop->getHeader()->begin();
2820         if (!isGuaranteedToTransferExecutionTo(DefI, ReachI))
2821           AddFlags = SCEV::FlagAnyWrap;
2822       }
2823       AddRecOps[0] = getAddExpr(LIOps, AddFlags, Depth + 1);
2824 
2825       // Build the new addrec. Propagate the NUW and NSW flags if both the
2826       // outer add and the inner addrec are guaranteed to have no overflow.
2827       // Always propagate NW.
2828       Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
2829       const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
2830 
2831       // If all of the other operands were loop invariant, we are done.
2832       if (Ops.size() == 1) return NewRec;
2833 
2834       // Otherwise, add the folded AddRec by the non-invariant parts.
2835       for (unsigned i = 0;; ++i)
2836         if (Ops[i] == AddRec) {
2837           Ops[i] = NewRec;
2838           break;
2839         }
2840       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2841     }
2842 
2843     // Okay, if there weren't any loop invariants to be folded, check to see if
2844     // there are multiple AddRec's with the same loop induction variable being
2845     // added together.  If so, we can fold them.
2846     for (unsigned OtherIdx = Idx+1;
2847          OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2848          ++OtherIdx) {
2849       // We expect the AddRecExpr's to be sorted in reverse dominance order,
2850       // so that the 1st found AddRecExpr is dominated by all others.
2851       assert(DT.dominates(
2852            cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(),
2853            AddRec->getLoop()->getHeader()) &&
2854         "AddRecExprs are not sorted in reverse dominance order?");
2855       if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
2856         // Other + {A,+,B}<L> + {C,+,D}<L>  -->  Other + {A+C,+,B+D}<L>
2857         SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands());
2858         for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2859              ++OtherIdx) {
2860           const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2861           if (OtherAddRec->getLoop() == AddRecLoop) {
2862             for (unsigned i = 0, e = OtherAddRec->getNumOperands();
2863                  i != e; ++i) {
2864               if (i >= AddRecOps.size()) {
2865                 AddRecOps.append(OtherAddRec->op_begin()+i,
2866                                  OtherAddRec->op_end());
2867                 break;
2868               }
2869               SmallVector<const SCEV *, 2> TwoOps = {
2870                   AddRecOps[i], OtherAddRec->getOperand(i)};
2871               AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2872             }
2873             Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2874           }
2875         }
2876         // Step size has changed, so we cannot guarantee no self-wraparound.
2877         Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
2878         return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2879       }
2880     }
2881 
2882     // Otherwise couldn't fold anything into this recurrence.  Move onto the
2883     // next one.
2884   }
2885 
2886   // Okay, it looks like we really DO need an add expr.  Check to see if we
2887   // already have one, otherwise create a new one.
2888   return getOrCreateAddExpr(Ops, ComputeFlags(Ops));
2889 }
2890 
2891 const SCEV *
2892 ScalarEvolution::getOrCreateAddExpr(ArrayRef<const SCEV *> Ops,
2893                                     SCEV::NoWrapFlags Flags) {
2894   FoldingSetNodeID ID;
2895   ID.AddInteger(scAddExpr);
2896   for (const SCEV *Op : Ops)
2897     ID.AddPointer(Op);
2898   void *IP = nullptr;
2899   SCEVAddExpr *S =
2900       static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2901   if (!S) {
2902     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2903     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2904     S = new (SCEVAllocator)
2905         SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size());
2906     UniqueSCEVs.InsertNode(S, IP);
2907     registerUser(S, Ops);
2908   }
2909   S->setNoWrapFlags(Flags);
2910   return S;
2911 }
2912 
2913 const SCEV *
2914 ScalarEvolution::getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops,
2915                                        const Loop *L, SCEV::NoWrapFlags Flags) {
2916   FoldingSetNodeID ID;
2917   ID.AddInteger(scAddRecExpr);
2918   for (const SCEV *Op : Ops)
2919     ID.AddPointer(Op);
2920   ID.AddPointer(L);
2921   void *IP = nullptr;
2922   SCEVAddRecExpr *S =
2923       static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2924   if (!S) {
2925     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2926     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2927     S = new (SCEVAllocator)
2928         SCEVAddRecExpr(ID.Intern(SCEVAllocator), O, Ops.size(), L);
2929     UniqueSCEVs.InsertNode(S, IP);
2930     LoopUsers[L].push_back(S);
2931     registerUser(S, Ops);
2932   }
2933   setNoWrapFlags(S, Flags);
2934   return S;
2935 }
2936 
2937 const SCEV *
2938 ScalarEvolution::getOrCreateMulExpr(ArrayRef<const SCEV *> Ops,
2939                                     SCEV::NoWrapFlags Flags) {
2940   FoldingSetNodeID ID;
2941   ID.AddInteger(scMulExpr);
2942   for (const SCEV *Op : Ops)
2943     ID.AddPointer(Op);
2944   void *IP = nullptr;
2945   SCEVMulExpr *S =
2946     static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2947   if (!S) {
2948     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2949     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2950     S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2951                                         O, Ops.size());
2952     UniqueSCEVs.InsertNode(S, IP);
2953     registerUser(S, Ops);
2954   }
2955   S->setNoWrapFlags(Flags);
2956   return S;
2957 }
2958 
2959 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
2960   uint64_t k = i*j;
2961   if (j > 1 && k / j != i) Overflow = true;
2962   return k;
2963 }
2964 
2965 /// Compute the result of "n choose k", the binomial coefficient.  If an
2966 /// intermediate computation overflows, Overflow will be set and the return will
2967 /// be garbage. Overflow is not cleared on absence of overflow.
2968 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
2969   // We use the multiplicative formula:
2970   //     n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
2971   // At each iteration, we take the n-th term of the numeral and divide by the
2972   // (k-n)th term of the denominator.  This division will always produce an
2973   // integral result, and helps reduce the chance of overflow in the
2974   // intermediate computations. However, we can still overflow even when the
2975   // final result would fit.
2976 
2977   if (n == 0 || n == k) return 1;
2978   if (k > n) return 0;
2979 
2980   if (k > n/2)
2981     k = n-k;
2982 
2983   uint64_t r = 1;
2984   for (uint64_t i = 1; i <= k; ++i) {
2985     r = umul_ov(r, n-(i-1), Overflow);
2986     r /= i;
2987   }
2988   return r;
2989 }
2990 
2991 /// Determine if any of the operands in this SCEV are a constant or if
2992 /// any of the add or multiply expressions in this SCEV contain a constant.
2993 static bool containsConstantInAddMulChain(const SCEV *StartExpr) {
2994   struct FindConstantInAddMulChain {
2995     bool FoundConstant = false;
2996 
2997     bool follow(const SCEV *S) {
2998       FoundConstant |= isa<SCEVConstant>(S);
2999       return isa<SCEVAddExpr>(S) || isa<SCEVMulExpr>(S);
3000     }
3001 
3002     bool isDone() const {
3003       return FoundConstant;
3004     }
3005   };
3006 
3007   FindConstantInAddMulChain F;
3008   SCEVTraversal<FindConstantInAddMulChain> ST(F);
3009   ST.visitAll(StartExpr);
3010   return F.FoundConstant;
3011 }
3012 
3013 /// Get a canonical multiply expression, or something simpler if possible.
3014 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
3015                                         SCEV::NoWrapFlags OrigFlags,
3016                                         unsigned Depth) {
3017   assert(OrigFlags == maskFlags(OrigFlags, SCEV::FlagNUW | SCEV::FlagNSW) &&
3018          "only nuw or nsw allowed");
3019   assert(!Ops.empty() && "Cannot get empty mul!");
3020   if (Ops.size() == 1) return Ops[0];
3021 #ifndef NDEBUG
3022   Type *ETy = Ops[0]->getType();
3023   assert(!ETy->isPointerTy());
3024   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
3025     assert(Ops[i]->getType() == ETy &&
3026            "SCEVMulExpr operand types don't match!");
3027 #endif
3028 
3029   // Sort by complexity, this groups all similar expression types together.
3030   GroupByComplexity(Ops, &LI, DT);
3031 
3032   // If there are any constants, fold them together.
3033   unsigned Idx = 0;
3034   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3035     ++Idx;
3036     assert(Idx < Ops.size());
3037     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3038       // We found two constants, fold them together!
3039       Ops[0] = getConstant(LHSC->getAPInt() * RHSC->getAPInt());
3040       if (Ops.size() == 2) return Ops[0];
3041       Ops.erase(Ops.begin()+1);  // Erase the folded element
3042       LHSC = cast<SCEVConstant>(Ops[0]);
3043     }
3044 
3045     // If we have a multiply of zero, it will always be zero.
3046     if (LHSC->getValue()->isZero())
3047       return LHSC;
3048 
3049     // If we are left with a constant one being multiplied, strip it off.
3050     if (LHSC->getValue()->isOne()) {
3051       Ops.erase(Ops.begin());
3052       --Idx;
3053     }
3054 
3055     if (Ops.size() == 1)
3056       return Ops[0];
3057   }
3058 
3059   // Delay expensive flag strengthening until necessary.
3060   auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) {
3061     return StrengthenNoWrapFlags(this, scMulExpr, Ops, OrigFlags);
3062   };
3063 
3064   // Limit recursion calls depth.
3065   if (Depth > MaxArithDepth || hasHugeExpression(Ops))
3066     return getOrCreateMulExpr(Ops, ComputeFlags(Ops));
3067 
3068   if (SCEV *S = findExistingSCEVInCache(scMulExpr, Ops)) {
3069     // Don't strengthen flags if we have no new information.
3070     SCEVMulExpr *Mul = static_cast<SCEVMulExpr *>(S);
3071     if (Mul->getNoWrapFlags(OrigFlags) != OrigFlags)
3072       Mul->setNoWrapFlags(ComputeFlags(Ops));
3073     return S;
3074   }
3075 
3076   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3077     if (Ops.size() == 2) {
3078       // C1*(C2+V) -> C1*C2 + C1*V
3079       if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
3080         // If any of Add's ops are Adds or Muls with a constant, apply this
3081         // transformation as well.
3082         //
3083         // TODO: There are some cases where this transformation is not
3084         // profitable; for example, Add = (C0 + X) * Y + Z.  Maybe the scope of
3085         // this transformation should be narrowed down.
3086         if (Add->getNumOperands() == 2 && containsConstantInAddMulChain(Add))
3087           return getAddExpr(getMulExpr(LHSC, Add->getOperand(0),
3088                                        SCEV::FlagAnyWrap, Depth + 1),
3089                             getMulExpr(LHSC, Add->getOperand(1),
3090                                        SCEV::FlagAnyWrap, Depth + 1),
3091                             SCEV::FlagAnyWrap, Depth + 1);
3092 
3093       if (Ops[0]->isAllOnesValue()) {
3094         // If we have a mul by -1 of an add, try distributing the -1 among the
3095         // add operands.
3096         if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
3097           SmallVector<const SCEV *, 4> NewOps;
3098           bool AnyFolded = false;
3099           for (const SCEV *AddOp : Add->operands()) {
3100             const SCEV *Mul = getMulExpr(Ops[0], AddOp, SCEV::FlagAnyWrap,
3101                                          Depth + 1);
3102             if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
3103             NewOps.push_back(Mul);
3104           }
3105           if (AnyFolded)
3106             return getAddExpr(NewOps, SCEV::FlagAnyWrap, Depth + 1);
3107         } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
3108           // Negation preserves a recurrence's no self-wrap property.
3109           SmallVector<const SCEV *, 4> Operands;
3110           for (const SCEV *AddRecOp : AddRec->operands())
3111             Operands.push_back(getMulExpr(Ops[0], AddRecOp, SCEV::FlagAnyWrap,
3112                                           Depth + 1));
3113 
3114           return getAddRecExpr(Operands, AddRec->getLoop(),
3115                                AddRec->getNoWrapFlags(SCEV::FlagNW));
3116         }
3117       }
3118     }
3119   }
3120 
3121   // Skip over the add expression until we get to a multiply.
3122   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
3123     ++Idx;
3124 
3125   // If there are mul operands inline them all into this expression.
3126   if (Idx < Ops.size()) {
3127     bool DeletedMul = false;
3128     while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
3129       if (Ops.size() > MulOpsInlineThreshold)
3130         break;
3131       // If we have an mul, expand the mul operands onto the end of the
3132       // operands list.
3133       Ops.erase(Ops.begin()+Idx);
3134       Ops.append(Mul->op_begin(), Mul->op_end());
3135       DeletedMul = true;
3136     }
3137 
3138     // If we deleted at least one mul, we added operands to the end of the
3139     // list, and they are not necessarily sorted.  Recurse to resort and
3140     // resimplify any operands we just acquired.
3141     if (DeletedMul)
3142       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3143   }
3144 
3145   // If there are any add recurrences in the operands list, see if any other
3146   // added values are loop invariant.  If so, we can fold them into the
3147   // recurrence.
3148   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
3149     ++Idx;
3150 
3151   // Scan over all recurrences, trying to fold loop invariants into them.
3152   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
3153     // Scan all of the other operands to this mul and add them to the vector
3154     // if they are loop invariant w.r.t. the recurrence.
3155     SmallVector<const SCEV *, 8> LIOps;
3156     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
3157     const Loop *AddRecLoop = AddRec->getLoop();
3158     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3159       if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
3160         LIOps.push_back(Ops[i]);
3161         Ops.erase(Ops.begin()+i);
3162         --i; --e;
3163       }
3164 
3165     // If we found some loop invariants, fold them into the recurrence.
3166     if (!LIOps.empty()) {
3167       //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
3168       SmallVector<const SCEV *, 4> NewOps;
3169       NewOps.reserve(AddRec->getNumOperands());
3170       const SCEV *Scale = getMulExpr(LIOps, SCEV::FlagAnyWrap, Depth + 1);
3171       for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
3172         NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i),
3173                                     SCEV::FlagAnyWrap, Depth + 1));
3174 
3175       // Build the new addrec. Propagate the NUW and NSW flags if both the
3176       // outer mul and the inner addrec are guaranteed to have no overflow.
3177       //
3178       // No self-wrap cannot be guaranteed after changing the step size, but
3179       // will be inferred if either NUW or NSW is true.
3180       SCEV::NoWrapFlags Flags = ComputeFlags({Scale, AddRec});
3181       const SCEV *NewRec = getAddRecExpr(
3182           NewOps, AddRecLoop, AddRec->getNoWrapFlags(Flags));
3183 
3184       // If all of the other operands were loop invariant, we are done.
3185       if (Ops.size() == 1) return NewRec;
3186 
3187       // Otherwise, multiply the folded AddRec by the non-invariant parts.
3188       for (unsigned i = 0;; ++i)
3189         if (Ops[i] == AddRec) {
3190           Ops[i] = NewRec;
3191           break;
3192         }
3193       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3194     }
3195 
3196     // Okay, if there weren't any loop invariants to be folded, check to see
3197     // if there are multiple AddRec's with the same loop induction variable
3198     // being multiplied together.  If so, we can fold them.
3199 
3200     // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
3201     // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
3202     //       choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
3203     //   ]]],+,...up to x=2n}.
3204     // Note that the arguments to choose() are always integers with values
3205     // known at compile time, never SCEV objects.
3206     //
3207     // The implementation avoids pointless extra computations when the two
3208     // addrec's are of different length (mathematically, it's equivalent to
3209     // an infinite stream of zeros on the right).
3210     bool OpsModified = false;
3211     for (unsigned OtherIdx = Idx+1;
3212          OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
3213          ++OtherIdx) {
3214       const SCEVAddRecExpr *OtherAddRec =
3215         dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
3216       if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
3217         continue;
3218 
3219       // Limit max number of arguments to avoid creation of unreasonably big
3220       // SCEVAddRecs with very complex operands.
3221       if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 >
3222           MaxAddRecSize || hasHugeExpression({AddRec, OtherAddRec}))
3223         continue;
3224 
3225       bool Overflow = false;
3226       Type *Ty = AddRec->getType();
3227       bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
3228       SmallVector<const SCEV*, 7> AddRecOps;
3229       for (int x = 0, xe = AddRec->getNumOperands() +
3230              OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
3231         SmallVector <const SCEV *, 7> SumOps;
3232         for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
3233           uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
3234           for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
3235                  ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
3236                z < ze && !Overflow; ++z) {
3237             uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
3238             uint64_t Coeff;
3239             if (LargerThan64Bits)
3240               Coeff = umul_ov(Coeff1, Coeff2, Overflow);
3241             else
3242               Coeff = Coeff1*Coeff2;
3243             const SCEV *CoeffTerm = getConstant(Ty, Coeff);
3244             const SCEV *Term1 = AddRec->getOperand(y-z);
3245             const SCEV *Term2 = OtherAddRec->getOperand(z);
3246             SumOps.push_back(getMulExpr(CoeffTerm, Term1, Term2,
3247                                         SCEV::FlagAnyWrap, Depth + 1));
3248           }
3249         }
3250         if (SumOps.empty())
3251           SumOps.push_back(getZero(Ty));
3252         AddRecOps.push_back(getAddExpr(SumOps, SCEV::FlagAnyWrap, Depth + 1));
3253       }
3254       if (!Overflow) {
3255         const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRecLoop,
3256                                               SCEV::FlagAnyWrap);
3257         if (Ops.size() == 2) return NewAddRec;
3258         Ops[Idx] = NewAddRec;
3259         Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
3260         OpsModified = true;
3261         AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
3262         if (!AddRec)
3263           break;
3264       }
3265     }
3266     if (OpsModified)
3267       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3268 
3269     // Otherwise couldn't fold anything into this recurrence.  Move onto the
3270     // next one.
3271   }
3272 
3273   // Okay, it looks like we really DO need an mul expr.  Check to see if we
3274   // already have one, otherwise create a new one.
3275   return getOrCreateMulExpr(Ops, ComputeFlags(Ops));
3276 }
3277 
3278 /// Represents an unsigned remainder expression based on unsigned division.
3279 const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS,
3280                                          const SCEV *RHS) {
3281   assert(getEffectiveSCEVType(LHS->getType()) ==
3282          getEffectiveSCEVType(RHS->getType()) &&
3283          "SCEVURemExpr operand types don't match!");
3284 
3285   // Short-circuit easy cases
3286   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
3287     // If constant is one, the result is trivial
3288     if (RHSC->getValue()->isOne())
3289       return getZero(LHS->getType()); // X urem 1 --> 0
3290 
3291     // If constant is a power of two, fold into a zext(trunc(LHS)).
3292     if (RHSC->getAPInt().isPowerOf2()) {
3293       Type *FullTy = LHS->getType();
3294       Type *TruncTy =
3295           IntegerType::get(getContext(), RHSC->getAPInt().logBase2());
3296       return getZeroExtendExpr(getTruncateExpr(LHS, TruncTy), FullTy);
3297     }
3298   }
3299 
3300   // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y)
3301   const SCEV *UDiv = getUDivExpr(LHS, RHS);
3302   const SCEV *Mult = getMulExpr(UDiv, RHS, SCEV::FlagNUW);
3303   return getMinusSCEV(LHS, Mult, SCEV::FlagNUW);
3304 }
3305 
3306 /// Get a canonical unsigned division expression, or something simpler if
3307 /// possible.
3308 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
3309                                          const SCEV *RHS) {
3310   assert(!LHS->getType()->isPointerTy() &&
3311          "SCEVUDivExpr operand can't be pointer!");
3312   assert(LHS->getType() == RHS->getType() &&
3313          "SCEVUDivExpr operand types don't match!");
3314 
3315   FoldingSetNodeID ID;
3316   ID.AddInteger(scUDivExpr);
3317   ID.AddPointer(LHS);
3318   ID.AddPointer(RHS);
3319   void *IP = nullptr;
3320   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
3321     return S;
3322 
3323   // 0 udiv Y == 0
3324   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS))
3325     if (LHSC->getValue()->isZero())
3326       return LHS;
3327 
3328   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
3329     if (RHSC->getValue()->isOne())
3330       return LHS;                               // X udiv 1 --> x
3331     // If the denominator is zero, the result of the udiv is undefined. Don't
3332     // try to analyze it, because the resolution chosen here may differ from
3333     // the resolution chosen in other parts of the compiler.
3334     if (!RHSC->getValue()->isZero()) {
3335       // Determine if the division can be folded into the operands of
3336       // its operands.
3337       // TODO: Generalize this to non-constants by using known-bits information.
3338       Type *Ty = LHS->getType();
3339       unsigned LZ = RHSC->getAPInt().countLeadingZeros();
3340       unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
3341       // For non-power-of-two values, effectively round the value up to the
3342       // nearest power of two.
3343       if (!RHSC->getAPInt().isPowerOf2())
3344         ++MaxShiftAmt;
3345       IntegerType *ExtTy =
3346         IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
3347       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
3348         if (const SCEVConstant *Step =
3349             dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
3350           // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
3351           const APInt &StepInt = Step->getAPInt();
3352           const APInt &DivInt = RHSC->getAPInt();
3353           if (!StepInt.urem(DivInt) &&
3354               getZeroExtendExpr(AR, ExtTy) ==
3355               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
3356                             getZeroExtendExpr(Step, ExtTy),
3357                             AR->getLoop(), SCEV::FlagAnyWrap)) {
3358             SmallVector<const SCEV *, 4> Operands;
3359             for (const SCEV *Op : AR->operands())
3360               Operands.push_back(getUDivExpr(Op, RHS));
3361             return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW);
3362           }
3363           /// Get a canonical UDivExpr for a recurrence.
3364           /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
3365           // We can currently only fold X%N if X is constant.
3366           const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
3367           if (StartC && !DivInt.urem(StepInt) &&
3368               getZeroExtendExpr(AR, ExtTy) ==
3369               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
3370                             getZeroExtendExpr(Step, ExtTy),
3371                             AR->getLoop(), SCEV::FlagAnyWrap)) {
3372             const APInt &StartInt = StartC->getAPInt();
3373             const APInt &StartRem = StartInt.urem(StepInt);
3374             if (StartRem != 0) {
3375               const SCEV *NewLHS =
3376                   getAddRecExpr(getConstant(StartInt - StartRem), Step,
3377                                 AR->getLoop(), SCEV::FlagNW);
3378               if (LHS != NewLHS) {
3379                 LHS = NewLHS;
3380 
3381                 // Reset the ID to include the new LHS, and check if it is
3382                 // already cached.
3383                 ID.clear();
3384                 ID.AddInteger(scUDivExpr);
3385                 ID.AddPointer(LHS);
3386                 ID.AddPointer(RHS);
3387                 IP = nullptr;
3388                 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
3389                   return S;
3390               }
3391             }
3392           }
3393         }
3394       // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
3395       if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
3396         SmallVector<const SCEV *, 4> Operands;
3397         for (const SCEV *Op : M->operands())
3398           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
3399         if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
3400           // Find an operand that's safely divisible.
3401           for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
3402             const SCEV *Op = M->getOperand(i);
3403             const SCEV *Div = getUDivExpr(Op, RHSC);
3404             if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
3405               Operands = SmallVector<const SCEV *, 4>(M->operands());
3406               Operands[i] = Div;
3407               return getMulExpr(Operands);
3408             }
3409           }
3410       }
3411 
3412       // (A/B)/C --> A/(B*C) if safe and B*C can be folded.
3413       if (const SCEVUDivExpr *OtherDiv = dyn_cast<SCEVUDivExpr>(LHS)) {
3414         if (auto *DivisorConstant =
3415                 dyn_cast<SCEVConstant>(OtherDiv->getRHS())) {
3416           bool Overflow = false;
3417           APInt NewRHS =
3418               DivisorConstant->getAPInt().umul_ov(RHSC->getAPInt(), Overflow);
3419           if (Overflow) {
3420             return getConstant(RHSC->getType(), 0, false);
3421           }
3422           return getUDivExpr(OtherDiv->getLHS(), getConstant(NewRHS));
3423         }
3424       }
3425 
3426       // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
3427       if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
3428         SmallVector<const SCEV *, 4> Operands;
3429         for (const SCEV *Op : A->operands())
3430           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
3431         if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
3432           Operands.clear();
3433           for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
3434             const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
3435             if (isa<SCEVUDivExpr>(Op) ||
3436                 getMulExpr(Op, RHS) != A->getOperand(i))
3437               break;
3438             Operands.push_back(Op);
3439           }
3440           if (Operands.size() == A->getNumOperands())
3441             return getAddExpr(Operands);
3442         }
3443       }
3444 
3445       // Fold if both operands are constant.
3446       if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
3447         Constant *LHSCV = LHSC->getValue();
3448         Constant *RHSCV = RHSC->getValue();
3449         return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
3450                                                                    RHSCV)));
3451       }
3452     }
3453   }
3454 
3455   // The Insertion Point (IP) might be invalid by now (due to UniqueSCEVs
3456   // changes). Make sure we get a new one.
3457   IP = nullptr;
3458   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
3459   SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
3460                                              LHS, RHS);
3461   UniqueSCEVs.InsertNode(S, IP);
3462   registerUser(S, {LHS, RHS});
3463   return S;
3464 }
3465 
3466 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
3467   APInt A = C1->getAPInt().abs();
3468   APInt B = C2->getAPInt().abs();
3469   uint32_t ABW = A.getBitWidth();
3470   uint32_t BBW = B.getBitWidth();
3471 
3472   if (ABW > BBW)
3473     B = B.zext(ABW);
3474   else if (ABW < BBW)
3475     A = A.zext(BBW);
3476 
3477   return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B));
3478 }
3479 
3480 /// Get a canonical unsigned division expression, or something simpler if
3481 /// possible. There is no representation for an exact udiv in SCEV IR, but we
3482 /// can attempt to remove factors from the LHS and RHS.  We can't do this when
3483 /// it's not exact because the udiv may be clearing bits.
3484 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
3485                                               const SCEV *RHS) {
3486   // TODO: we could try to find factors in all sorts of things, but for now we
3487   // just deal with u/exact (multiply, constant). See SCEVDivision towards the
3488   // end of this file for inspiration.
3489 
3490   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
3491   if (!Mul || !Mul->hasNoUnsignedWrap())
3492     return getUDivExpr(LHS, RHS);
3493 
3494   if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
3495     // If the mulexpr multiplies by a constant, then that constant must be the
3496     // first element of the mulexpr.
3497     if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3498       if (LHSCst == RHSCst) {
3499         SmallVector<const SCEV *, 2> Operands(drop_begin(Mul->operands()));
3500         return getMulExpr(Operands);
3501       }
3502 
3503       // We can't just assume that LHSCst divides RHSCst cleanly, it could be
3504       // that there's a factor provided by one of the other terms. We need to
3505       // check.
3506       APInt Factor = gcd(LHSCst, RHSCst);
3507       if (!Factor.isIntN(1)) {
3508         LHSCst =
3509             cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor)));
3510         RHSCst =
3511             cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor)));
3512         SmallVector<const SCEV *, 2> Operands;
3513         Operands.push_back(LHSCst);
3514         Operands.append(Mul->op_begin() + 1, Mul->op_end());
3515         LHS = getMulExpr(Operands);
3516         RHS = RHSCst;
3517         Mul = dyn_cast<SCEVMulExpr>(LHS);
3518         if (!Mul)
3519           return getUDivExactExpr(LHS, RHS);
3520       }
3521     }
3522   }
3523 
3524   for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
3525     if (Mul->getOperand(i) == RHS) {
3526       SmallVector<const SCEV *, 2> Operands;
3527       Operands.append(Mul->op_begin(), Mul->op_begin() + i);
3528       Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
3529       return getMulExpr(Operands);
3530     }
3531   }
3532 
3533   return getUDivExpr(LHS, RHS);
3534 }
3535 
3536 /// Get an add recurrence expression for the specified loop.  Simplify the
3537 /// expression as much as possible.
3538 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
3539                                            const Loop *L,
3540                                            SCEV::NoWrapFlags Flags) {
3541   SmallVector<const SCEV *, 4> Operands;
3542   Operands.push_back(Start);
3543   if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
3544     if (StepChrec->getLoop() == L) {
3545       Operands.append(StepChrec->op_begin(), StepChrec->op_end());
3546       return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
3547     }
3548 
3549   Operands.push_back(Step);
3550   return getAddRecExpr(Operands, L, Flags);
3551 }
3552 
3553 /// Get an add recurrence expression for the specified loop.  Simplify the
3554 /// expression as much as possible.
3555 const SCEV *
3556 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
3557                                const Loop *L, SCEV::NoWrapFlags Flags) {
3558   if (Operands.size() == 1) return Operands[0];
3559 #ifndef NDEBUG
3560   Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
3561   for (unsigned i = 1, e = Operands.size(); i != e; ++i) {
3562     assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
3563            "SCEVAddRecExpr operand types don't match!");
3564     assert(!Operands[i]->getType()->isPointerTy() && "Step must be integer");
3565   }
3566   for (unsigned i = 0, e = Operands.size(); i != e; ++i)
3567     assert(isLoopInvariant(Operands[i], L) &&
3568            "SCEVAddRecExpr operand is not loop-invariant!");
3569 #endif
3570 
3571   if (Operands.back()->isZero()) {
3572     Operands.pop_back();
3573     return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0}  -->  X
3574   }
3575 
3576   // It's tempting to want to call getConstantMaxBackedgeTakenCount count here and
3577   // use that information to infer NUW and NSW flags. However, computing a
3578   // BE count requires calling getAddRecExpr, so we may not yet have a
3579   // meaningful BE count at this point (and if we don't, we'd be stuck
3580   // with a SCEVCouldNotCompute as the cached BE count).
3581 
3582   Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
3583 
3584   // Canonicalize nested AddRecs in by nesting them in order of loop depth.
3585   if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
3586     const Loop *NestedLoop = NestedAR->getLoop();
3587     if (L->contains(NestedLoop)
3588             ? (L->getLoopDepth() < NestedLoop->getLoopDepth())
3589             : (!NestedLoop->contains(L) &&
3590                DT.dominates(L->getHeader(), NestedLoop->getHeader()))) {
3591       SmallVector<const SCEV *, 4> NestedOperands(NestedAR->operands());
3592       Operands[0] = NestedAR->getStart();
3593       // AddRecs require their operands be loop-invariant with respect to their
3594       // loops. Don't perform this transformation if it would break this
3595       // requirement.
3596       bool AllInvariant = all_of(
3597           Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); });
3598 
3599       if (AllInvariant) {
3600         // Create a recurrence for the outer loop with the same step size.
3601         //
3602         // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
3603         // inner recurrence has the same property.
3604         SCEV::NoWrapFlags OuterFlags =
3605           maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
3606 
3607         NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
3608         AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) {
3609           return isLoopInvariant(Op, NestedLoop);
3610         });
3611 
3612         if (AllInvariant) {
3613           // Ok, both add recurrences are valid after the transformation.
3614           //
3615           // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
3616           // the outer recurrence has the same property.
3617           SCEV::NoWrapFlags InnerFlags =
3618             maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
3619           return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
3620         }
3621       }
3622       // Reset Operands to its original state.
3623       Operands[0] = NestedAR;
3624     }
3625   }
3626 
3627   // Okay, it looks like we really DO need an addrec expr.  Check to see if we
3628   // already have one, otherwise create a new one.
3629   return getOrCreateAddRecExpr(Operands, L, Flags);
3630 }
3631 
3632 const SCEV *
3633 ScalarEvolution::getGEPExpr(GEPOperator *GEP,
3634                             const SmallVectorImpl<const SCEV *> &IndexExprs) {
3635   const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand());
3636   // getSCEV(Base)->getType() has the same address space as Base->getType()
3637   // because SCEV::getType() preserves the address space.
3638   Type *IntIdxTy = getEffectiveSCEVType(BaseExpr->getType());
3639   const bool AssumeInBoundsFlags = [&]() {
3640     if (!GEP->isInBounds())
3641       return false;
3642 
3643     // We'd like to propagate flags from the IR to the corresponding SCEV nodes,
3644     // but to do that, we have to ensure that said flag is valid in the entire
3645     // defined scope of the SCEV.
3646     auto *GEPI = dyn_cast<Instruction>(GEP);
3647     // TODO: non-instructions have global scope.  We might be able to prove
3648     // some global scope cases
3649     return GEPI && isSCEVExprNeverPoison(GEPI);
3650   }();
3651 
3652   SCEV::NoWrapFlags OffsetWrap =
3653     AssumeInBoundsFlags ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3654 
3655   Type *CurTy = GEP->getType();
3656   bool FirstIter = true;
3657   SmallVector<const SCEV *, 4> Offsets;
3658   for (const SCEV *IndexExpr : IndexExprs) {
3659     // Compute the (potentially symbolic) offset in bytes for this index.
3660     if (StructType *STy = dyn_cast<StructType>(CurTy)) {
3661       // For a struct, add the member offset.
3662       ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue();
3663       unsigned FieldNo = Index->getZExtValue();
3664       const SCEV *FieldOffset = getOffsetOfExpr(IntIdxTy, STy, FieldNo);
3665       Offsets.push_back(FieldOffset);
3666 
3667       // Update CurTy to the type of the field at Index.
3668       CurTy = STy->getTypeAtIndex(Index);
3669     } else {
3670       // Update CurTy to its element type.
3671       if (FirstIter) {
3672         assert(isa<PointerType>(CurTy) &&
3673                "The first index of a GEP indexes a pointer");
3674         CurTy = GEP->getSourceElementType();
3675         FirstIter = false;
3676       } else {
3677         CurTy = GetElementPtrInst::getTypeAtIndex(CurTy, (uint64_t)0);
3678       }
3679       // For an array, add the element offset, explicitly scaled.
3680       const SCEV *ElementSize = getSizeOfExpr(IntIdxTy, CurTy);
3681       // Getelementptr indices are signed.
3682       IndexExpr = getTruncateOrSignExtend(IndexExpr, IntIdxTy);
3683 
3684       // Multiply the index by the element size to compute the element offset.
3685       const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, OffsetWrap);
3686       Offsets.push_back(LocalOffset);
3687     }
3688   }
3689 
3690   // Handle degenerate case of GEP without offsets.
3691   if (Offsets.empty())
3692     return BaseExpr;
3693 
3694   // Add the offsets together, assuming nsw if inbounds.
3695   const SCEV *Offset = getAddExpr(Offsets, OffsetWrap);
3696   // Add the base address and the offset. We cannot use the nsw flag, as the
3697   // base address is unsigned. However, if we know that the offset is
3698   // non-negative, we can use nuw.
3699   SCEV::NoWrapFlags BaseWrap = AssumeInBoundsFlags && isKnownNonNegative(Offset)
3700                                    ? SCEV::FlagNUW : SCEV::FlagAnyWrap;
3701   auto *GEPExpr = getAddExpr(BaseExpr, Offset, BaseWrap);
3702   assert(BaseExpr->getType() == GEPExpr->getType() &&
3703          "GEP should not change type mid-flight.");
3704   return GEPExpr;
3705 }
3706 
3707 SCEV *ScalarEvolution::findExistingSCEVInCache(SCEVTypes SCEVType,
3708                                                ArrayRef<const SCEV *> Ops) {
3709   FoldingSetNodeID ID;
3710   ID.AddInteger(SCEVType);
3711   for (const SCEV *Op : Ops)
3712     ID.AddPointer(Op);
3713   void *IP = nullptr;
3714   return UniqueSCEVs.FindNodeOrInsertPos(ID, IP);
3715 }
3716 
3717 const SCEV *ScalarEvolution::getAbsExpr(const SCEV *Op, bool IsNSW) {
3718   SCEV::NoWrapFlags Flags = IsNSW ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3719   return getSMaxExpr(Op, getNegativeSCEV(Op, Flags));
3720 }
3721 
3722 const SCEV *ScalarEvolution::getMinMaxExpr(SCEVTypes Kind,
3723                                            SmallVectorImpl<const SCEV *> &Ops) {
3724   assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!");
3725   if (Ops.size() == 1) return Ops[0];
3726 #ifndef NDEBUG
3727   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
3728   for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
3729     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
3730            "Operand types don't match!");
3731     assert(Ops[0]->getType()->isPointerTy() ==
3732                Ops[i]->getType()->isPointerTy() &&
3733            "min/max should be consistently pointerish");
3734   }
3735 #endif
3736 
3737   bool IsSigned = Kind == scSMaxExpr || Kind == scSMinExpr;
3738   bool IsMax = Kind == scSMaxExpr || Kind == scUMaxExpr;
3739 
3740   // Sort by complexity, this groups all similar expression types together.
3741   GroupByComplexity(Ops, &LI, DT);
3742 
3743   // Check if we have created the same expression before.
3744   if (const SCEV *S = findExistingSCEVInCache(Kind, Ops)) {
3745     return S;
3746   }
3747 
3748   // If there are any constants, fold them together.
3749   unsigned Idx = 0;
3750   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3751     ++Idx;
3752     assert(Idx < Ops.size());
3753     auto FoldOp = [&](const APInt &LHS, const APInt &RHS) {
3754       if (Kind == scSMaxExpr)
3755         return APIntOps::smax(LHS, RHS);
3756       else if (Kind == scSMinExpr)
3757         return APIntOps::smin(LHS, RHS);
3758       else if (Kind == scUMaxExpr)
3759         return APIntOps::umax(LHS, RHS);
3760       else if (Kind == scUMinExpr)
3761         return APIntOps::umin(LHS, RHS);
3762       llvm_unreachable("Unknown SCEV min/max opcode");
3763     };
3764 
3765     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3766       // We found two constants, fold them together!
3767       ConstantInt *Fold = ConstantInt::get(
3768           getContext(), FoldOp(LHSC->getAPInt(), RHSC->getAPInt()));
3769       Ops[0] = getConstant(Fold);
3770       Ops.erase(Ops.begin()+1);  // Erase the folded element
3771       if (Ops.size() == 1) return Ops[0];
3772       LHSC = cast<SCEVConstant>(Ops[0]);
3773     }
3774 
3775     bool IsMinV = LHSC->getValue()->isMinValue(IsSigned);
3776     bool IsMaxV = LHSC->getValue()->isMaxValue(IsSigned);
3777 
3778     if (IsMax ? IsMinV : IsMaxV) {
3779       // If we are left with a constant minimum(/maximum)-int, strip it off.
3780       Ops.erase(Ops.begin());
3781       --Idx;
3782     } else if (IsMax ? IsMaxV : IsMinV) {
3783       // If we have a max(/min) with a constant maximum(/minimum)-int,
3784       // it will always be the extremum.
3785       return LHSC;
3786     }
3787 
3788     if (Ops.size() == 1) return Ops[0];
3789   }
3790 
3791   // Find the first operation of the same kind
3792   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < Kind)
3793     ++Idx;
3794 
3795   // Check to see if one of the operands is of the same kind. If so, expand its
3796   // operands onto our operand list, and recurse to simplify.
3797   if (Idx < Ops.size()) {
3798     bool DeletedAny = false;
3799     while (Ops[Idx]->getSCEVType() == Kind) {
3800       const SCEVMinMaxExpr *SMME = cast<SCEVMinMaxExpr>(Ops[Idx]);
3801       Ops.erase(Ops.begin()+Idx);
3802       Ops.append(SMME->op_begin(), SMME->op_end());
3803       DeletedAny = true;
3804     }
3805 
3806     if (DeletedAny)
3807       return getMinMaxExpr(Kind, Ops);
3808   }
3809 
3810   // Okay, check to see if the same value occurs in the operand list twice.  If
3811   // so, delete one.  Since we sorted the list, these values are required to
3812   // be adjacent.
3813   llvm::CmpInst::Predicate GEPred =
3814       IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
3815   llvm::CmpInst::Predicate LEPred =
3816       IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
3817   llvm::CmpInst::Predicate FirstPred = IsMax ? GEPred : LEPred;
3818   llvm::CmpInst::Predicate SecondPred = IsMax ? LEPred : GEPred;
3819   for (unsigned i = 0, e = Ops.size() - 1; i != e; ++i) {
3820     if (Ops[i] == Ops[i + 1] ||
3821         isKnownViaNonRecursiveReasoning(FirstPred, Ops[i], Ops[i + 1])) {
3822       //  X op Y op Y  -->  X op Y
3823       //  X op Y       -->  X, if we know X, Y are ordered appropriately
3824       Ops.erase(Ops.begin() + i + 1, Ops.begin() + i + 2);
3825       --i;
3826       --e;
3827     } else if (isKnownViaNonRecursiveReasoning(SecondPred, Ops[i],
3828                                                Ops[i + 1])) {
3829       //  X op Y       -->  Y, if we know X, Y are ordered appropriately
3830       Ops.erase(Ops.begin() + i, Ops.begin() + i + 1);
3831       --i;
3832       --e;
3833     }
3834   }
3835 
3836   if (Ops.size() == 1) return Ops[0];
3837 
3838   assert(!Ops.empty() && "Reduced smax down to nothing!");
3839 
3840   // Okay, it looks like we really DO need an expr.  Check to see if we
3841   // already have one, otherwise create a new one.
3842   FoldingSetNodeID ID;
3843   ID.AddInteger(Kind);
3844   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3845     ID.AddPointer(Ops[i]);
3846   void *IP = nullptr;
3847   const SCEV *ExistingSCEV = UniqueSCEVs.FindNodeOrInsertPos(ID, IP);
3848   if (ExistingSCEV)
3849     return ExistingSCEV;
3850   const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3851   std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3852   SCEV *S = new (SCEVAllocator)
3853       SCEVMinMaxExpr(ID.Intern(SCEVAllocator), Kind, O, Ops.size());
3854 
3855   UniqueSCEVs.InsertNode(S, IP);
3856   registerUser(S, Ops);
3857   return S;
3858 }
3859 
3860 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, const SCEV *RHS) {
3861   SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
3862   return getSMaxExpr(Ops);
3863 }
3864 
3865 const SCEV *ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3866   return getMinMaxExpr(scSMaxExpr, Ops);
3867 }
3868 
3869 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, const SCEV *RHS) {
3870   SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
3871   return getUMaxExpr(Ops);
3872 }
3873 
3874 const SCEV *ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3875   return getMinMaxExpr(scUMaxExpr, Ops);
3876 }
3877 
3878 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
3879                                          const SCEV *RHS) {
3880   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
3881   return getSMinExpr(Ops);
3882 }
3883 
3884 const SCEV *ScalarEvolution::getSMinExpr(SmallVectorImpl<const SCEV *> &Ops) {
3885   return getMinMaxExpr(scSMinExpr, Ops);
3886 }
3887 
3888 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
3889                                          const SCEV *RHS) {
3890   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
3891   return getUMinExpr(Ops);
3892 }
3893 
3894 const SCEV *ScalarEvolution::getUMinExpr(SmallVectorImpl<const SCEV *> &Ops) {
3895   return getMinMaxExpr(scUMinExpr, Ops);
3896 }
3897 
3898 const SCEV *
3899 ScalarEvolution::getSizeOfScalableVectorExpr(Type *IntTy,
3900                                              ScalableVectorType *ScalableTy) {
3901   Constant *NullPtr = Constant::getNullValue(ScalableTy->getPointerTo());
3902   Constant *One = ConstantInt::get(IntTy, 1);
3903   Constant *GEP = ConstantExpr::getGetElementPtr(ScalableTy, NullPtr, One);
3904   // Note that the expression we created is the final expression, we don't
3905   // want to simplify it any further Also, if we call a normal getSCEV(),
3906   // we'll end up in an endless recursion. So just create an SCEVUnknown.
3907   return getUnknown(ConstantExpr::getPtrToInt(GEP, IntTy));
3908 }
3909 
3910 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
3911   if (auto *ScalableAllocTy = dyn_cast<ScalableVectorType>(AllocTy))
3912     return getSizeOfScalableVectorExpr(IntTy, ScalableAllocTy);
3913   // We can bypass creating a target-independent constant expression and then
3914   // folding it back into a ConstantInt. This is just a compile-time
3915   // optimization.
3916   return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy));
3917 }
3918 
3919 const SCEV *ScalarEvolution::getStoreSizeOfExpr(Type *IntTy, Type *StoreTy) {
3920   if (auto *ScalableStoreTy = dyn_cast<ScalableVectorType>(StoreTy))
3921     return getSizeOfScalableVectorExpr(IntTy, ScalableStoreTy);
3922   // We can bypass creating a target-independent constant expression and then
3923   // folding it back into a ConstantInt. This is just a compile-time
3924   // optimization.
3925   return getConstant(IntTy, getDataLayout().getTypeStoreSize(StoreTy));
3926 }
3927 
3928 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
3929                                              StructType *STy,
3930                                              unsigned FieldNo) {
3931   // We can bypass creating a target-independent constant expression and then
3932   // folding it back into a ConstantInt. This is just a compile-time
3933   // optimization.
3934   return getConstant(
3935       IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo));
3936 }
3937 
3938 const SCEV *ScalarEvolution::getUnknown(Value *V) {
3939   // Don't attempt to do anything other than create a SCEVUnknown object
3940   // here.  createSCEV only calls getUnknown after checking for all other
3941   // interesting possibilities, and any other code that calls getUnknown
3942   // is doing so in order to hide a value from SCEV canonicalization.
3943 
3944   FoldingSetNodeID ID;
3945   ID.AddInteger(scUnknown);
3946   ID.AddPointer(V);
3947   void *IP = nullptr;
3948   if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
3949     assert(cast<SCEVUnknown>(S)->getValue() == V &&
3950            "Stale SCEVUnknown in uniquing map!");
3951     return S;
3952   }
3953   SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
3954                                             FirstUnknown);
3955   FirstUnknown = cast<SCEVUnknown>(S);
3956   UniqueSCEVs.InsertNode(S, IP);
3957   return S;
3958 }
3959 
3960 //===----------------------------------------------------------------------===//
3961 //            Basic SCEV Analysis and PHI Idiom Recognition Code
3962 //
3963 
3964 /// Test if values of the given type are analyzable within the SCEV
3965 /// framework. This primarily includes integer types, and it can optionally
3966 /// include pointer types if the ScalarEvolution class has access to
3967 /// target-specific information.
3968 bool ScalarEvolution::isSCEVable(Type *Ty) const {
3969   // Integers and pointers are always SCEVable.
3970   return Ty->isIntOrPtrTy();
3971 }
3972 
3973 /// Return the size in bits of the specified type, for which isSCEVable must
3974 /// return true.
3975 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
3976   assert(isSCEVable(Ty) && "Type is not SCEVable!");
3977   if (Ty->isPointerTy())
3978     return getDataLayout().getIndexTypeSizeInBits(Ty);
3979   return getDataLayout().getTypeSizeInBits(Ty);
3980 }
3981 
3982 /// Return a type with the same bitwidth as the given type and which represents
3983 /// how SCEV will treat the given type, for which isSCEVable must return
3984 /// true. For pointer types, this is the pointer index sized integer type.
3985 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
3986   assert(isSCEVable(Ty) && "Type is not SCEVable!");
3987 
3988   if (Ty->isIntegerTy())
3989     return Ty;
3990 
3991   // The only other support type is pointer.
3992   assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
3993   return getDataLayout().getIndexType(Ty);
3994 }
3995 
3996 Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const {
3997   return  getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2;
3998 }
3999 
4000 bool ScalarEvolution::instructionCouldExistWitthOperands(const SCEV *A,
4001                                                          const SCEV *B) {
4002   /// For a valid use point to exist, the defining scope of one operand
4003   /// must dominate the other.
4004   bool PreciseA, PreciseB;
4005   auto *ScopeA = getDefiningScopeBound({A}, PreciseA);
4006   auto *ScopeB = getDefiningScopeBound({B}, PreciseB);
4007   if (!PreciseA || !PreciseB)
4008     // Can't tell.
4009     return false;
4010   return (ScopeA == ScopeB) || DT.dominates(ScopeA, ScopeB) ||
4011     DT.dominates(ScopeB, ScopeA);
4012 }
4013 
4014 
4015 const SCEV *ScalarEvolution::getCouldNotCompute() {
4016   return CouldNotCompute.get();
4017 }
4018 
4019 bool ScalarEvolution::checkValidity(const SCEV *S) const {
4020   bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) {
4021     auto *SU = dyn_cast<SCEVUnknown>(S);
4022     return SU && SU->getValue() == nullptr;
4023   });
4024 
4025   return !ContainsNulls;
4026 }
4027 
4028 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) {
4029   HasRecMapType::iterator I = HasRecMap.find(S);
4030   if (I != HasRecMap.end())
4031     return I->second;
4032 
4033   bool FoundAddRec =
4034       SCEVExprContains(S, [](const SCEV *S) { return isa<SCEVAddRecExpr>(S); });
4035   HasRecMap.insert({S, FoundAddRec});
4036   return FoundAddRec;
4037 }
4038 
4039 /// Try to split a SCEVAddExpr into a pair of {SCEV, ConstantInt}.
4040 /// If \p S is a SCEVAddExpr and is composed of a sub SCEV S' and an
4041 /// offset I, then return {S', I}, else return {\p S, nullptr}.
4042 static std::pair<const SCEV *, ConstantInt *> splitAddExpr(const SCEV *S) {
4043   const auto *Add = dyn_cast<SCEVAddExpr>(S);
4044   if (!Add)
4045     return {S, nullptr};
4046 
4047   if (Add->getNumOperands() != 2)
4048     return {S, nullptr};
4049 
4050   auto *ConstOp = dyn_cast<SCEVConstant>(Add->getOperand(0));
4051   if (!ConstOp)
4052     return {S, nullptr};
4053 
4054   return {Add->getOperand(1), ConstOp->getValue()};
4055 }
4056 
4057 /// Return the ValueOffsetPair set for \p S. \p S can be represented
4058 /// by the value and offset from any ValueOffsetPair in the set.
4059 ScalarEvolution::ValueOffsetPairSetVector *
4060 ScalarEvolution::getSCEVValues(const SCEV *S) {
4061   ExprValueMapType::iterator SI = ExprValueMap.find_as(S);
4062   if (SI == ExprValueMap.end())
4063     return nullptr;
4064 #ifndef NDEBUG
4065   if (VerifySCEVMap) {
4066     // Check there is no dangling Value in the set returned.
4067     for (const auto &VE : SI->second)
4068       assert(ValueExprMap.count(VE.first));
4069   }
4070 #endif
4071   return &SI->second;
4072 }
4073 
4074 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V)
4075 /// cannot be used separately. eraseValueFromMap should be used to remove
4076 /// V from ValueExprMap and ExprValueMap at the same time.
4077 void ScalarEvolution::eraseValueFromMap(Value *V) {
4078   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
4079   if (I != ValueExprMap.end()) {
4080     const SCEV *S = I->second;
4081     // Remove {V, 0} from the set of ExprValueMap[S]
4082     if (auto *SV = getSCEVValues(S))
4083       SV->remove({V, nullptr});
4084 
4085     // Remove {V, Offset} from the set of ExprValueMap[Stripped]
4086     const SCEV *Stripped;
4087     ConstantInt *Offset;
4088     std::tie(Stripped, Offset) = splitAddExpr(S);
4089     if (Offset != nullptr) {
4090       if (auto *SV = getSCEVValues(Stripped))
4091         SV->remove({V, Offset});
4092     }
4093     ValueExprMap.erase(V);
4094   }
4095 }
4096 
4097 void ScalarEvolution::insertValueToMap(Value *V, const SCEV *S) {
4098   // A recursive query may have already computed the SCEV. It should be
4099   // equivalent, but may not necessarily be exactly the same, e.g. due to lazily
4100   // inferred nowrap flags.
4101   auto It = ValueExprMap.find_as(V);
4102   if (It == ValueExprMap.end()) {
4103     ValueExprMap.insert({SCEVCallbackVH(V, this), S});
4104     ExprValueMap[S].insert({V, nullptr});
4105   }
4106 }
4107 
4108 /// Return an existing SCEV if it exists, otherwise analyze the expression and
4109 /// create a new one.
4110 const SCEV *ScalarEvolution::getSCEV(Value *V) {
4111   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
4112 
4113   const SCEV *S = getExistingSCEV(V);
4114   if (S == nullptr) {
4115     S = createSCEV(V);
4116     // During PHI resolution, it is possible to create two SCEVs for the same
4117     // V, so it is needed to double check whether V->S is inserted into
4118     // ValueExprMap before insert S->{V, 0} into ExprValueMap.
4119     std::pair<ValueExprMapType::iterator, bool> Pair =
4120         ValueExprMap.insert({SCEVCallbackVH(V, this), S});
4121     if (Pair.second) {
4122       ExprValueMap[S].insert({V, nullptr});
4123 
4124       // If S == Stripped + Offset, add Stripped -> {V, Offset} into
4125       // ExprValueMap.
4126       const SCEV *Stripped = S;
4127       ConstantInt *Offset = nullptr;
4128       std::tie(Stripped, Offset) = splitAddExpr(S);
4129       // If stripped is SCEVUnknown, don't bother to save
4130       // Stripped -> {V, offset}. It doesn't simplify and sometimes even
4131       // increase the complexity of the expansion code.
4132       // If V is GetElementPtrInst, don't save Stripped -> {V, offset}
4133       // because it may generate add/sub instead of GEP in SCEV expansion.
4134       if (Offset != nullptr && !isa<SCEVUnknown>(Stripped) &&
4135           !isa<GetElementPtrInst>(V))
4136         ExprValueMap[Stripped].insert({V, Offset});
4137     }
4138   }
4139   return S;
4140 }
4141 
4142 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) {
4143   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
4144 
4145   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
4146   if (I != ValueExprMap.end()) {
4147     const SCEV *S = I->second;
4148     assert(checkValidity(S) &&
4149            "existing SCEV has not been properly invalidated");
4150     return S;
4151   }
4152   return nullptr;
4153 }
4154 
4155 /// Return a SCEV corresponding to -V = -1*V
4156 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V,
4157                                              SCEV::NoWrapFlags Flags) {
4158   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
4159     return getConstant(
4160                cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
4161 
4162   Type *Ty = V->getType();
4163   Ty = getEffectiveSCEVType(Ty);
4164   return getMulExpr(V, getMinusOne(Ty), Flags);
4165 }
4166 
4167 /// If Expr computes ~A, return A else return nullptr
4168 static const SCEV *MatchNotExpr(const SCEV *Expr) {
4169   const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr);
4170   if (!Add || Add->getNumOperands() != 2 ||
4171       !Add->getOperand(0)->isAllOnesValue())
4172     return nullptr;
4173 
4174   const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
4175   if (!AddRHS || AddRHS->getNumOperands() != 2 ||
4176       !AddRHS->getOperand(0)->isAllOnesValue())
4177     return nullptr;
4178 
4179   return AddRHS->getOperand(1);
4180 }
4181 
4182 /// Return a SCEV corresponding to ~V = -1-V
4183 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
4184   assert(!V->getType()->isPointerTy() && "Can't negate pointer");
4185 
4186   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
4187     return getConstant(
4188                 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
4189 
4190   // Fold ~(u|s)(min|max)(~x, ~y) to (u|s)(max|min)(x, y)
4191   if (const SCEVMinMaxExpr *MME = dyn_cast<SCEVMinMaxExpr>(V)) {
4192     auto MatchMinMaxNegation = [&](const SCEVMinMaxExpr *MME) {
4193       SmallVector<const SCEV *, 2> MatchedOperands;
4194       for (const SCEV *Operand : MME->operands()) {
4195         const SCEV *Matched = MatchNotExpr(Operand);
4196         if (!Matched)
4197           return (const SCEV *)nullptr;
4198         MatchedOperands.push_back(Matched);
4199       }
4200       return getMinMaxExpr(SCEVMinMaxExpr::negate(MME->getSCEVType()),
4201                            MatchedOperands);
4202     };
4203     if (const SCEV *Replaced = MatchMinMaxNegation(MME))
4204       return Replaced;
4205   }
4206 
4207   Type *Ty = V->getType();
4208   Ty = getEffectiveSCEVType(Ty);
4209   return getMinusSCEV(getMinusOne(Ty), V);
4210 }
4211 
4212 const SCEV *ScalarEvolution::removePointerBase(const SCEV *P) {
4213   assert(P->getType()->isPointerTy());
4214 
4215   if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(P)) {
4216     // The base of an AddRec is the first operand.
4217     SmallVector<const SCEV *> Ops{AddRec->operands()};
4218     Ops[0] = removePointerBase(Ops[0]);
4219     // Don't try to transfer nowrap flags for now. We could in some cases
4220     // (for example, if pointer operand of the AddRec is a SCEVUnknown).
4221     return getAddRecExpr(Ops, AddRec->getLoop(), SCEV::FlagAnyWrap);
4222   }
4223   if (auto *Add = dyn_cast<SCEVAddExpr>(P)) {
4224     // The base of an Add is the pointer operand.
4225     SmallVector<const SCEV *> Ops{Add->operands()};
4226     const SCEV **PtrOp = nullptr;
4227     for (const SCEV *&AddOp : Ops) {
4228       if (AddOp->getType()->isPointerTy()) {
4229         assert(!PtrOp && "Cannot have multiple pointer ops");
4230         PtrOp = &AddOp;
4231       }
4232     }
4233     *PtrOp = removePointerBase(*PtrOp);
4234     // Don't try to transfer nowrap flags for now. We could in some cases
4235     // (for example, if the pointer operand of the Add is a SCEVUnknown).
4236     return getAddExpr(Ops);
4237   }
4238   // Any other expression must be a pointer base.
4239   return getZero(P->getType());
4240 }
4241 
4242 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
4243                                           SCEV::NoWrapFlags Flags,
4244                                           unsigned Depth) {
4245   // Fast path: X - X --> 0.
4246   if (LHS == RHS)
4247     return getZero(LHS->getType());
4248 
4249   // If we subtract two pointers with different pointer bases, bail.
4250   // Eventually, we're going to add an assertion to getMulExpr that we
4251   // can't multiply by a pointer.
4252   if (RHS->getType()->isPointerTy()) {
4253     if (!LHS->getType()->isPointerTy() ||
4254         getPointerBase(LHS) != getPointerBase(RHS))
4255       return getCouldNotCompute();
4256     LHS = removePointerBase(LHS);
4257     RHS = removePointerBase(RHS);
4258   }
4259 
4260   // We represent LHS - RHS as LHS + (-1)*RHS. This transformation
4261   // makes it so that we cannot make much use of NUW.
4262   auto AddFlags = SCEV::FlagAnyWrap;
4263   const bool RHSIsNotMinSigned =
4264       !getSignedRangeMin(RHS).isMinSignedValue();
4265   if (hasFlags(Flags, SCEV::FlagNSW)) {
4266     // Let M be the minimum representable signed value. Then (-1)*RHS
4267     // signed-wraps if and only if RHS is M. That can happen even for
4268     // a NSW subtraction because e.g. (-1)*M signed-wraps even though
4269     // -1 - M does not. So to transfer NSW from LHS - RHS to LHS +
4270     // (-1)*RHS, we need to prove that RHS != M.
4271     //
4272     // If LHS is non-negative and we know that LHS - RHS does not
4273     // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap
4274     // either by proving that RHS > M or that LHS >= 0.
4275     if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) {
4276       AddFlags = SCEV::FlagNSW;
4277     }
4278   }
4279 
4280   // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS -
4281   // RHS is NSW and LHS >= 0.
4282   //
4283   // The difficulty here is that the NSW flag may have been proven
4284   // relative to a loop that is to be found in a recurrence in LHS and
4285   // not in RHS. Applying NSW to (-1)*M may then let the NSW have a
4286   // larger scope than intended.
4287   auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
4288 
4289   return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags, Depth);
4290 }
4291 
4292 const SCEV *ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty,
4293                                                      unsigned Depth) {
4294   Type *SrcTy = V->getType();
4295   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4296          "Cannot truncate or zero extend with non-integer arguments!");
4297   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4298     return V;  // No conversion
4299   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
4300     return getTruncateExpr(V, Ty, Depth);
4301   return getZeroExtendExpr(V, Ty, Depth);
4302 }
4303 
4304 const SCEV *ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, Type *Ty,
4305                                                      unsigned Depth) {
4306   Type *SrcTy = V->getType();
4307   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4308          "Cannot truncate or zero extend with non-integer arguments!");
4309   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4310     return V;  // No conversion
4311   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
4312     return getTruncateExpr(V, Ty, Depth);
4313   return getSignExtendExpr(V, Ty, Depth);
4314 }
4315 
4316 const SCEV *
4317 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
4318   Type *SrcTy = V->getType();
4319   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4320          "Cannot noop or zero extend with non-integer arguments!");
4321   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4322          "getNoopOrZeroExtend cannot truncate!");
4323   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4324     return V;  // No conversion
4325   return getZeroExtendExpr(V, Ty);
4326 }
4327 
4328 const SCEV *
4329 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
4330   Type *SrcTy = V->getType();
4331   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4332          "Cannot noop or sign extend with non-integer arguments!");
4333   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4334          "getNoopOrSignExtend cannot truncate!");
4335   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4336     return V;  // No conversion
4337   return getSignExtendExpr(V, Ty);
4338 }
4339 
4340 const SCEV *
4341 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
4342   Type *SrcTy = V->getType();
4343   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4344          "Cannot noop or any extend with non-integer arguments!");
4345   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4346          "getNoopOrAnyExtend cannot truncate!");
4347   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4348     return V;  // No conversion
4349   return getAnyExtendExpr(V, Ty);
4350 }
4351 
4352 const SCEV *
4353 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
4354   Type *SrcTy = V->getType();
4355   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4356          "Cannot truncate or noop with non-integer arguments!");
4357   assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
4358          "getTruncateOrNoop cannot extend!");
4359   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4360     return V;  // No conversion
4361   return getTruncateExpr(V, Ty);
4362 }
4363 
4364 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
4365                                                         const SCEV *RHS) {
4366   const SCEV *PromotedLHS = LHS;
4367   const SCEV *PromotedRHS = RHS;
4368 
4369   if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
4370     PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
4371   else
4372     PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
4373 
4374   return getUMaxExpr(PromotedLHS, PromotedRHS);
4375 }
4376 
4377 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
4378                                                         const SCEV *RHS) {
4379   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
4380   return getUMinFromMismatchedTypes(Ops);
4381 }
4382 
4383 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(
4384     SmallVectorImpl<const SCEV *> &Ops) {
4385   assert(!Ops.empty() && "At least one operand must be!");
4386   // Trivial case.
4387   if (Ops.size() == 1)
4388     return Ops[0];
4389 
4390   // Find the max type first.
4391   Type *MaxType = nullptr;
4392   for (auto *S : Ops)
4393     if (MaxType)
4394       MaxType = getWiderType(MaxType, S->getType());
4395     else
4396       MaxType = S->getType();
4397   assert(MaxType && "Failed to find maximum type!");
4398 
4399   // Extend all ops to max type.
4400   SmallVector<const SCEV *, 2> PromotedOps;
4401   for (auto *S : Ops)
4402     PromotedOps.push_back(getNoopOrZeroExtend(S, MaxType));
4403 
4404   // Generate umin.
4405   return getUMinExpr(PromotedOps);
4406 }
4407 
4408 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
4409   // A pointer operand may evaluate to a nonpointer expression, such as null.
4410   if (!V->getType()->isPointerTy())
4411     return V;
4412 
4413   while (true) {
4414     if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
4415       V = AddRec->getStart();
4416     } else if (auto *Add = dyn_cast<SCEVAddExpr>(V)) {
4417       const SCEV *PtrOp = nullptr;
4418       for (const SCEV *AddOp : Add->operands()) {
4419         if (AddOp->getType()->isPointerTy()) {
4420           assert(!PtrOp && "Cannot have multiple pointer ops");
4421           PtrOp = AddOp;
4422         }
4423       }
4424       assert(PtrOp && "Must have pointer op");
4425       V = PtrOp;
4426     } else // Not something we can look further into.
4427       return V;
4428   }
4429 }
4430 
4431 /// Push users of the given Instruction onto the given Worklist.
4432 static void PushDefUseChildren(Instruction *I,
4433                                SmallVectorImpl<Instruction *> &Worklist,
4434                                SmallPtrSetImpl<Instruction *> &Visited) {
4435   // Push the def-use children onto the Worklist stack.
4436   for (User *U : I->users()) {
4437     auto *UserInsn = cast<Instruction>(U);
4438     if (Visited.insert(UserInsn).second)
4439       Worklist.push_back(UserInsn);
4440   }
4441 }
4442 
4443 namespace {
4444 
4445 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start
4446 /// expression in case its Loop is L. If it is not L then
4447 /// if IgnoreOtherLoops is true then use AddRec itself
4448 /// otherwise rewrite cannot be done.
4449 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4450 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> {
4451 public:
4452   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
4453                              bool IgnoreOtherLoops = true) {
4454     SCEVInitRewriter Rewriter(L, SE);
4455     const SCEV *Result = Rewriter.visit(S);
4456     if (Rewriter.hasSeenLoopVariantSCEVUnknown())
4457       return SE.getCouldNotCompute();
4458     return Rewriter.hasSeenOtherLoops() && !IgnoreOtherLoops
4459                ? SE.getCouldNotCompute()
4460                : Result;
4461   }
4462 
4463   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4464     if (!SE.isLoopInvariant(Expr, L))
4465       SeenLoopVariantSCEVUnknown = true;
4466     return Expr;
4467   }
4468 
4469   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4470     // Only re-write AddRecExprs for this loop.
4471     if (Expr->getLoop() == L)
4472       return Expr->getStart();
4473     SeenOtherLoops = true;
4474     return Expr;
4475   }
4476 
4477   bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
4478 
4479   bool hasSeenOtherLoops() { return SeenOtherLoops; }
4480 
4481 private:
4482   explicit SCEVInitRewriter(const Loop *L, ScalarEvolution &SE)
4483       : SCEVRewriteVisitor(SE), L(L) {}
4484 
4485   const Loop *L;
4486   bool SeenLoopVariantSCEVUnknown = false;
4487   bool SeenOtherLoops = false;
4488 };
4489 
4490 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post
4491 /// increment expression in case its Loop is L. If it is not L then
4492 /// use AddRec itself.
4493 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4494 class SCEVPostIncRewriter : public SCEVRewriteVisitor<SCEVPostIncRewriter> {
4495 public:
4496   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE) {
4497     SCEVPostIncRewriter Rewriter(L, SE);
4498     const SCEV *Result = Rewriter.visit(S);
4499     return Rewriter.hasSeenLoopVariantSCEVUnknown()
4500         ? SE.getCouldNotCompute()
4501         : Result;
4502   }
4503 
4504   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4505     if (!SE.isLoopInvariant(Expr, L))
4506       SeenLoopVariantSCEVUnknown = true;
4507     return Expr;
4508   }
4509 
4510   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4511     // Only re-write AddRecExprs for this loop.
4512     if (Expr->getLoop() == L)
4513       return Expr->getPostIncExpr(SE);
4514     SeenOtherLoops = true;
4515     return Expr;
4516   }
4517 
4518   bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
4519 
4520   bool hasSeenOtherLoops() { return SeenOtherLoops; }
4521 
4522 private:
4523   explicit SCEVPostIncRewriter(const Loop *L, ScalarEvolution &SE)
4524       : SCEVRewriteVisitor(SE), L(L) {}
4525 
4526   const Loop *L;
4527   bool SeenLoopVariantSCEVUnknown = false;
4528   bool SeenOtherLoops = false;
4529 };
4530 
4531 /// This class evaluates the compare condition by matching it against the
4532 /// condition of loop latch. If there is a match we assume a true value
4533 /// for the condition while building SCEV nodes.
4534 class SCEVBackedgeConditionFolder
4535     : public SCEVRewriteVisitor<SCEVBackedgeConditionFolder> {
4536 public:
4537   static const SCEV *rewrite(const SCEV *S, const Loop *L,
4538                              ScalarEvolution &SE) {
4539     bool IsPosBECond = false;
4540     Value *BECond = nullptr;
4541     if (BasicBlock *Latch = L->getLoopLatch()) {
4542       BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator());
4543       if (BI && BI->isConditional()) {
4544         assert(BI->getSuccessor(0) != BI->getSuccessor(1) &&
4545                "Both outgoing branches should not target same header!");
4546         BECond = BI->getCondition();
4547         IsPosBECond = BI->getSuccessor(0) == L->getHeader();
4548       } else {
4549         return S;
4550       }
4551     }
4552     SCEVBackedgeConditionFolder Rewriter(L, BECond, IsPosBECond, SE);
4553     return Rewriter.visit(S);
4554   }
4555 
4556   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4557     const SCEV *Result = Expr;
4558     bool InvariantF = SE.isLoopInvariant(Expr, L);
4559 
4560     if (!InvariantF) {
4561       Instruction *I = cast<Instruction>(Expr->getValue());
4562       switch (I->getOpcode()) {
4563       case Instruction::Select: {
4564         SelectInst *SI = cast<SelectInst>(I);
4565         Optional<const SCEV *> Res =
4566             compareWithBackedgeCondition(SI->getCondition());
4567         if (Res.hasValue()) {
4568           bool IsOne = cast<SCEVConstant>(Res.getValue())->getValue()->isOne();
4569           Result = SE.getSCEV(IsOne ? SI->getTrueValue() : SI->getFalseValue());
4570         }
4571         break;
4572       }
4573       default: {
4574         Optional<const SCEV *> Res = compareWithBackedgeCondition(I);
4575         if (Res.hasValue())
4576           Result = Res.getValue();
4577         break;
4578       }
4579       }
4580     }
4581     return Result;
4582   }
4583 
4584 private:
4585   explicit SCEVBackedgeConditionFolder(const Loop *L, Value *BECond,
4586                                        bool IsPosBECond, ScalarEvolution &SE)
4587       : SCEVRewriteVisitor(SE), L(L), BackedgeCond(BECond),
4588         IsPositiveBECond(IsPosBECond) {}
4589 
4590   Optional<const SCEV *> compareWithBackedgeCondition(Value *IC);
4591 
4592   const Loop *L;
4593   /// Loop back condition.
4594   Value *BackedgeCond = nullptr;
4595   /// Set to true if loop back is on positive branch condition.
4596   bool IsPositiveBECond;
4597 };
4598 
4599 Optional<const SCEV *>
4600 SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value *IC) {
4601 
4602   // If value matches the backedge condition for loop latch,
4603   // then return a constant evolution node based on loopback
4604   // branch taken.
4605   if (BackedgeCond == IC)
4606     return IsPositiveBECond ? SE.getOne(Type::getInt1Ty(SE.getContext()))
4607                             : SE.getZero(Type::getInt1Ty(SE.getContext()));
4608   return None;
4609 }
4610 
4611 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> {
4612 public:
4613   static const SCEV *rewrite(const SCEV *S, const Loop *L,
4614                              ScalarEvolution &SE) {
4615     SCEVShiftRewriter Rewriter(L, SE);
4616     const SCEV *Result = Rewriter.visit(S);
4617     return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
4618   }
4619 
4620   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4621     // Only allow AddRecExprs for this loop.
4622     if (!SE.isLoopInvariant(Expr, L))
4623       Valid = false;
4624     return Expr;
4625   }
4626 
4627   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4628     if (Expr->getLoop() == L && Expr->isAffine())
4629       return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE));
4630     Valid = false;
4631     return Expr;
4632   }
4633 
4634   bool isValid() { return Valid; }
4635 
4636 private:
4637   explicit SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE)
4638       : SCEVRewriteVisitor(SE), L(L) {}
4639 
4640   const Loop *L;
4641   bool Valid = true;
4642 };
4643 
4644 } // end anonymous namespace
4645 
4646 SCEV::NoWrapFlags
4647 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) {
4648   if (!AR->isAffine())
4649     return SCEV::FlagAnyWrap;
4650 
4651   using OBO = OverflowingBinaryOperator;
4652 
4653   SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap;
4654 
4655   if (!AR->hasNoSignedWrap()) {
4656     ConstantRange AddRecRange = getSignedRange(AR);
4657     ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this));
4658 
4659     auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
4660         Instruction::Add, IncRange, OBO::NoSignedWrap);
4661     if (NSWRegion.contains(AddRecRange))
4662       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW);
4663   }
4664 
4665   if (!AR->hasNoUnsignedWrap()) {
4666     ConstantRange AddRecRange = getUnsignedRange(AR);
4667     ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this));
4668 
4669     auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
4670         Instruction::Add, IncRange, OBO::NoUnsignedWrap);
4671     if (NUWRegion.contains(AddRecRange))
4672       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW);
4673   }
4674 
4675   return Result;
4676 }
4677 
4678 SCEV::NoWrapFlags
4679 ScalarEvolution::proveNoSignedWrapViaInduction(const SCEVAddRecExpr *AR) {
4680   SCEV::NoWrapFlags Result = AR->getNoWrapFlags();
4681 
4682   if (AR->hasNoSignedWrap())
4683     return Result;
4684 
4685   if (!AR->isAffine())
4686     return Result;
4687 
4688   const SCEV *Step = AR->getStepRecurrence(*this);
4689   const Loop *L = AR->getLoop();
4690 
4691   // Check whether the backedge-taken count is SCEVCouldNotCompute.
4692   // Note that this serves two purposes: It filters out loops that are
4693   // simply not analyzable, and it covers the case where this code is
4694   // being called from within backedge-taken count analysis, such that
4695   // attempting to ask for the backedge-taken count would likely result
4696   // in infinite recursion. In the later case, the analysis code will
4697   // cope with a conservative value, and it will take care to purge
4698   // that value once it has finished.
4699   const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
4700 
4701   // Normally, in the cases we can prove no-overflow via a
4702   // backedge guarding condition, we can also compute a backedge
4703   // taken count for the loop.  The exceptions are assumptions and
4704   // guards present in the loop -- SCEV is not great at exploiting
4705   // these to compute max backedge taken counts, but can still use
4706   // these to prove lack of overflow.  Use this fact to avoid
4707   // doing extra work that may not pay off.
4708 
4709   if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards &&
4710       AC.assumptions().empty())
4711     return Result;
4712 
4713   // If the backedge is guarded by a comparison with the pre-inc  value the
4714   // addrec is safe. Also, if the entry is guarded by a comparison with the
4715   // start value and the backedge is guarded by a comparison with the post-inc
4716   // value, the addrec is safe.
4717   ICmpInst::Predicate Pred;
4718   const SCEV *OverflowLimit =
4719     getSignedOverflowLimitForStep(Step, &Pred, this);
4720   if (OverflowLimit &&
4721       (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
4722        isKnownOnEveryIteration(Pred, AR, OverflowLimit))) {
4723     Result = setFlags(Result, SCEV::FlagNSW);
4724   }
4725   return Result;
4726 }
4727 SCEV::NoWrapFlags
4728 ScalarEvolution::proveNoUnsignedWrapViaInduction(const SCEVAddRecExpr *AR) {
4729   SCEV::NoWrapFlags Result = AR->getNoWrapFlags();
4730 
4731   if (AR->hasNoUnsignedWrap())
4732     return Result;
4733 
4734   if (!AR->isAffine())
4735     return Result;
4736 
4737   const SCEV *Step = AR->getStepRecurrence(*this);
4738   unsigned BitWidth = getTypeSizeInBits(AR->getType());
4739   const Loop *L = AR->getLoop();
4740 
4741   // Check whether the backedge-taken count is SCEVCouldNotCompute.
4742   // Note that this serves two purposes: It filters out loops that are
4743   // simply not analyzable, and it covers the case where this code is
4744   // being called from within backedge-taken count analysis, such that
4745   // attempting to ask for the backedge-taken count would likely result
4746   // in infinite recursion. In the later case, the analysis code will
4747   // cope with a conservative value, and it will take care to purge
4748   // that value once it has finished.
4749   const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
4750 
4751   // Normally, in the cases we can prove no-overflow via a
4752   // backedge guarding condition, we can also compute a backedge
4753   // taken count for the loop.  The exceptions are assumptions and
4754   // guards present in the loop -- SCEV is not great at exploiting
4755   // these to compute max backedge taken counts, but can still use
4756   // these to prove lack of overflow.  Use this fact to avoid
4757   // doing extra work that may not pay off.
4758 
4759   if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards &&
4760       AC.assumptions().empty())
4761     return Result;
4762 
4763   // If the backedge is guarded by a comparison with the pre-inc  value the
4764   // addrec is safe. Also, if the entry is guarded by a comparison with the
4765   // start value and the backedge is guarded by a comparison with the post-inc
4766   // value, the addrec is safe.
4767   if (isKnownPositive(Step)) {
4768     const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
4769                                 getUnsignedRangeMax(Step));
4770     if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
4771         isKnownOnEveryIteration(ICmpInst::ICMP_ULT, AR, N)) {
4772       Result = setFlags(Result, SCEV::FlagNUW);
4773     }
4774   }
4775 
4776   return Result;
4777 }
4778 
4779 namespace {
4780 
4781 /// Represents an abstract binary operation.  This may exist as a
4782 /// normal instruction or constant expression, or may have been
4783 /// derived from an expression tree.
4784 struct BinaryOp {
4785   unsigned Opcode;
4786   Value *LHS;
4787   Value *RHS;
4788   bool IsNSW = false;
4789   bool IsNUW = false;
4790 
4791   /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or
4792   /// constant expression.
4793   Operator *Op = nullptr;
4794 
4795   explicit BinaryOp(Operator *Op)
4796       : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)),
4797         Op(Op) {
4798     if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) {
4799       IsNSW = OBO->hasNoSignedWrap();
4800       IsNUW = OBO->hasNoUnsignedWrap();
4801     }
4802   }
4803 
4804   explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false,
4805                     bool IsNUW = false)
4806       : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW) {}
4807 };
4808 
4809 } // end anonymous namespace
4810 
4811 /// Try to map \p V into a BinaryOp, and return \c None on failure.
4812 static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) {
4813   auto *Op = dyn_cast<Operator>(V);
4814   if (!Op)
4815     return None;
4816 
4817   // Implementation detail: all the cleverness here should happen without
4818   // creating new SCEV expressions -- our caller knowns tricks to avoid creating
4819   // SCEV expressions when possible, and we should not break that.
4820 
4821   switch (Op->getOpcode()) {
4822   case Instruction::Add:
4823   case Instruction::Sub:
4824   case Instruction::Mul:
4825   case Instruction::UDiv:
4826   case Instruction::URem:
4827   case Instruction::And:
4828   case Instruction::Or:
4829   case Instruction::AShr:
4830   case Instruction::Shl:
4831     return BinaryOp(Op);
4832 
4833   case Instruction::Xor:
4834     if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1)))
4835       // If the RHS of the xor is a signmask, then this is just an add.
4836       // Instcombine turns add of signmask into xor as a strength reduction step.
4837       if (RHSC->getValue().isSignMask())
4838         return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1));
4839     return BinaryOp(Op);
4840 
4841   case Instruction::LShr:
4842     // Turn logical shift right of a constant into a unsigned divide.
4843     if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) {
4844       uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth();
4845 
4846       // If the shift count is not less than the bitwidth, the result of
4847       // the shift is undefined. Don't try to analyze it, because the
4848       // resolution chosen here may differ from the resolution chosen in
4849       // other parts of the compiler.
4850       if (SA->getValue().ult(BitWidth)) {
4851         Constant *X =
4852             ConstantInt::get(SA->getContext(),
4853                              APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
4854         return BinaryOp(Instruction::UDiv, Op->getOperand(0), X);
4855       }
4856     }
4857     return BinaryOp(Op);
4858 
4859   case Instruction::ExtractValue: {
4860     auto *EVI = cast<ExtractValueInst>(Op);
4861     if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0)
4862       break;
4863 
4864     auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand());
4865     if (!WO)
4866       break;
4867 
4868     Instruction::BinaryOps BinOp = WO->getBinaryOp();
4869     bool Signed = WO->isSigned();
4870     // TODO: Should add nuw/nsw flags for mul as well.
4871     if (BinOp == Instruction::Mul || !isOverflowIntrinsicNoWrap(WO, DT))
4872       return BinaryOp(BinOp, WO->getLHS(), WO->getRHS());
4873 
4874     // Now that we know that all uses of the arithmetic-result component of
4875     // CI are guarded by the overflow check, we can go ahead and pretend
4876     // that the arithmetic is non-overflowing.
4877     return BinaryOp(BinOp, WO->getLHS(), WO->getRHS(),
4878                     /* IsNSW = */ Signed, /* IsNUW = */ !Signed);
4879   }
4880 
4881   default:
4882     break;
4883   }
4884 
4885   // Recognise intrinsic loop.decrement.reg, and as this has exactly the same
4886   // semantics as a Sub, return a binary sub expression.
4887   if (auto *II = dyn_cast<IntrinsicInst>(V))
4888     if (II->getIntrinsicID() == Intrinsic::loop_decrement_reg)
4889       return BinaryOp(Instruction::Sub, II->getOperand(0), II->getOperand(1));
4890 
4891   return None;
4892 }
4893 
4894 /// Helper function to createAddRecFromPHIWithCasts. We have a phi
4895 /// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via
4896 /// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the
4897 /// way. This function checks if \p Op, an operand of this SCEVAddExpr,
4898 /// follows one of the following patterns:
4899 /// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
4900 /// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
4901 /// If the SCEV expression of \p Op conforms with one of the expected patterns
4902 /// we return the type of the truncation operation, and indicate whether the
4903 /// truncated type should be treated as signed/unsigned by setting
4904 /// \p Signed to true/false, respectively.
4905 static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI,
4906                                bool &Signed, ScalarEvolution &SE) {
4907   // The case where Op == SymbolicPHI (that is, with no type conversions on
4908   // the way) is handled by the regular add recurrence creating logic and
4909   // would have already been triggered in createAddRecForPHI. Reaching it here
4910   // means that createAddRecFromPHI had failed for this PHI before (e.g.,
4911   // because one of the other operands of the SCEVAddExpr updating this PHI is
4912   // not invariant).
4913   //
4914   // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in
4915   // this case predicates that allow us to prove that Op == SymbolicPHI will
4916   // be added.
4917   if (Op == SymbolicPHI)
4918     return nullptr;
4919 
4920   unsigned SourceBits = SE.getTypeSizeInBits(SymbolicPHI->getType());
4921   unsigned NewBits = SE.getTypeSizeInBits(Op->getType());
4922   if (SourceBits != NewBits)
4923     return nullptr;
4924 
4925   const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Op);
4926   const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Op);
4927   if (!SExt && !ZExt)
4928     return nullptr;
4929   const SCEVTruncateExpr *Trunc =
4930       SExt ? dyn_cast<SCEVTruncateExpr>(SExt->getOperand())
4931            : dyn_cast<SCEVTruncateExpr>(ZExt->getOperand());
4932   if (!Trunc)
4933     return nullptr;
4934   const SCEV *X = Trunc->getOperand();
4935   if (X != SymbolicPHI)
4936     return nullptr;
4937   Signed = SExt != nullptr;
4938   return Trunc->getType();
4939 }
4940 
4941 static const Loop *isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI) {
4942   if (!PN->getType()->isIntegerTy())
4943     return nullptr;
4944   const Loop *L = LI.getLoopFor(PN->getParent());
4945   if (!L || L->getHeader() != PN->getParent())
4946     return nullptr;
4947   return L;
4948 }
4949 
4950 // Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the
4951 // computation that updates the phi follows the following pattern:
4952 //   (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum
4953 // which correspond to a phi->trunc->sext/zext->add->phi update chain.
4954 // If so, try to see if it can be rewritten as an AddRecExpr under some
4955 // Predicates. If successful, return them as a pair. Also cache the results
4956 // of the analysis.
4957 //
4958 // Example usage scenario:
4959 //    Say the Rewriter is called for the following SCEV:
4960 //         8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
4961 //    where:
4962 //         %X = phi i64 (%Start, %BEValue)
4963 //    It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X),
4964 //    and call this function with %SymbolicPHI = %X.
4965 //
4966 //    The analysis will find that the value coming around the backedge has
4967 //    the following SCEV:
4968 //         BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
4969 //    Upon concluding that this matches the desired pattern, the function
4970 //    will return the pair {NewAddRec, SmallPredsVec} where:
4971 //         NewAddRec = {%Start,+,%Step}
4972 //         SmallPredsVec = {P1, P2, P3} as follows:
4973 //           P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw>
4974 //           P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64)
4975 //           P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64)
4976 //    The returned pair means that SymbolicPHI can be rewritten into NewAddRec
4977 //    under the predicates {P1,P2,P3}.
4978 //    This predicated rewrite will be cached in PredicatedSCEVRewrites:
4979 //         PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)}
4980 //
4981 // TODO's:
4982 //
4983 // 1) Extend the Induction descriptor to also support inductions that involve
4984 //    casts: When needed (namely, when we are called in the context of the
4985 //    vectorizer induction analysis), a Set of cast instructions will be
4986 //    populated by this method, and provided back to isInductionPHI. This is
4987 //    needed to allow the vectorizer to properly record them to be ignored by
4988 //    the cost model and to avoid vectorizing them (otherwise these casts,
4989 //    which are redundant under the runtime overflow checks, will be
4990 //    vectorized, which can be costly).
4991 //
4992 // 2) Support additional induction/PHISCEV patterns: We also want to support
4993 //    inductions where the sext-trunc / zext-trunc operations (partly) occur
4994 //    after the induction update operation (the induction increment):
4995 //
4996 //      (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix)
4997 //    which correspond to a phi->add->trunc->sext/zext->phi update chain.
4998 //
4999 //      (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix)
5000 //    which correspond to a phi->trunc->add->sext/zext->phi update chain.
5001 //
5002 // 3) Outline common code with createAddRecFromPHI to avoid duplication.
5003 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
5004 ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) {
5005   SmallVector<const SCEVPredicate *, 3> Predicates;
5006 
5007   // *** Part1: Analyze if we have a phi-with-cast pattern for which we can
5008   // return an AddRec expression under some predicate.
5009 
5010   auto *PN = cast<PHINode>(SymbolicPHI->getValue());
5011   const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
5012   assert(L && "Expecting an integer loop header phi");
5013 
5014   // The loop may have multiple entrances or multiple exits; we can analyze
5015   // this phi as an addrec if it has a unique entry value and a unique
5016   // backedge value.
5017   Value *BEValueV = nullptr, *StartValueV = nullptr;
5018   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
5019     Value *V = PN->getIncomingValue(i);
5020     if (L->contains(PN->getIncomingBlock(i))) {
5021       if (!BEValueV) {
5022         BEValueV = V;
5023       } else if (BEValueV != V) {
5024         BEValueV = nullptr;
5025         break;
5026       }
5027     } else if (!StartValueV) {
5028       StartValueV = V;
5029     } else if (StartValueV != V) {
5030       StartValueV = nullptr;
5031       break;
5032     }
5033   }
5034   if (!BEValueV || !StartValueV)
5035     return None;
5036 
5037   const SCEV *BEValue = getSCEV(BEValueV);
5038 
5039   // If the value coming around the backedge is an add with the symbolic
5040   // value we just inserted, possibly with casts that we can ignore under
5041   // an appropriate runtime guard, then we found a simple induction variable!
5042   const auto *Add = dyn_cast<SCEVAddExpr>(BEValue);
5043   if (!Add)
5044     return None;
5045 
5046   // If there is a single occurrence of the symbolic value, possibly
5047   // casted, replace it with a recurrence.
5048   unsigned FoundIndex = Add->getNumOperands();
5049   Type *TruncTy = nullptr;
5050   bool Signed;
5051   for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5052     if ((TruncTy =
5053              isSimpleCastedPHI(Add->getOperand(i), SymbolicPHI, Signed, *this)))
5054       if (FoundIndex == e) {
5055         FoundIndex = i;
5056         break;
5057       }
5058 
5059   if (FoundIndex == Add->getNumOperands())
5060     return None;
5061 
5062   // Create an add with everything but the specified operand.
5063   SmallVector<const SCEV *, 8> Ops;
5064   for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5065     if (i != FoundIndex)
5066       Ops.push_back(Add->getOperand(i));
5067   const SCEV *Accum = getAddExpr(Ops);
5068 
5069   // The runtime checks will not be valid if the step amount is
5070   // varying inside the loop.
5071   if (!isLoopInvariant(Accum, L))
5072     return None;
5073 
5074   // *** Part2: Create the predicates
5075 
5076   // Analysis was successful: we have a phi-with-cast pattern for which we
5077   // can return an AddRec expression under the following predicates:
5078   //
5079   // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum)
5080   //     fits within the truncated type (does not overflow) for i = 0 to n-1.
5081   // P2: An Equal predicate that guarantees that
5082   //     Start = (Ext ix (Trunc iy (Start) to ix) to iy)
5083   // P3: An Equal predicate that guarantees that
5084   //     Accum = (Ext ix (Trunc iy (Accum) to ix) to iy)
5085   //
5086   // As we next prove, the above predicates guarantee that:
5087   //     Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy)
5088   //
5089   //
5090   // More formally, we want to prove that:
5091   //     Expr(i+1) = Start + (i+1) * Accum
5092   //               = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
5093   //
5094   // Given that:
5095   // 1) Expr(0) = Start
5096   // 2) Expr(1) = Start + Accum
5097   //            = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2
5098   // 3) Induction hypothesis (step i):
5099   //    Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum
5100   //
5101   // Proof:
5102   //  Expr(i+1) =
5103   //   = Start + (i+1)*Accum
5104   //   = (Start + i*Accum) + Accum
5105   //   = Expr(i) + Accum
5106   //   = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum
5107   //                                                             :: from step i
5108   //
5109   //   = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum
5110   //
5111   //   = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy)
5112   //     + (Ext ix (Trunc iy (Accum) to ix) to iy)
5113   //     + Accum                                                     :: from P3
5114   //
5115   //   = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy)
5116   //     + Accum                            :: from P1: Ext(x)+Ext(y)=>Ext(x+y)
5117   //
5118   //   = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum
5119   //   = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
5120   //
5121   // By induction, the same applies to all iterations 1<=i<n:
5122   //
5123 
5124   // Create a truncated addrec for which we will add a no overflow check (P1).
5125   const SCEV *StartVal = getSCEV(StartValueV);
5126   const SCEV *PHISCEV =
5127       getAddRecExpr(getTruncateExpr(StartVal, TruncTy),
5128                     getTruncateExpr(Accum, TruncTy), L, SCEV::FlagAnyWrap);
5129 
5130   // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr.
5131   // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV
5132   // will be constant.
5133   //
5134   //  If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't
5135   // add P1.
5136   if (const auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) {
5137     SCEVWrapPredicate::IncrementWrapFlags AddedFlags =
5138         Signed ? SCEVWrapPredicate::IncrementNSSW
5139                : SCEVWrapPredicate::IncrementNUSW;
5140     const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags);
5141     Predicates.push_back(AddRecPred);
5142   }
5143 
5144   // Create the Equal Predicates P2,P3:
5145 
5146   // It is possible that the predicates P2 and/or P3 are computable at
5147   // compile time due to StartVal and/or Accum being constants.
5148   // If either one is, then we can check that now and escape if either P2
5149   // or P3 is false.
5150 
5151   // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy)
5152   // for each of StartVal and Accum
5153   auto getExtendedExpr = [&](const SCEV *Expr,
5154                              bool CreateSignExtend) -> const SCEV * {
5155     assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant");
5156     const SCEV *TruncatedExpr = getTruncateExpr(Expr, TruncTy);
5157     const SCEV *ExtendedExpr =
5158         CreateSignExtend ? getSignExtendExpr(TruncatedExpr, Expr->getType())
5159                          : getZeroExtendExpr(TruncatedExpr, Expr->getType());
5160     return ExtendedExpr;
5161   };
5162 
5163   // Given:
5164   //  ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy
5165   //               = getExtendedExpr(Expr)
5166   // Determine whether the predicate P: Expr == ExtendedExpr
5167   // is known to be false at compile time
5168   auto PredIsKnownFalse = [&](const SCEV *Expr,
5169                               const SCEV *ExtendedExpr) -> bool {
5170     return Expr != ExtendedExpr &&
5171            isKnownPredicate(ICmpInst::ICMP_NE, Expr, ExtendedExpr);
5172   };
5173 
5174   const SCEV *StartExtended = getExtendedExpr(StartVal, Signed);
5175   if (PredIsKnownFalse(StartVal, StartExtended)) {
5176     LLVM_DEBUG(dbgs() << "P2 is compile-time false\n";);
5177     return None;
5178   }
5179 
5180   // The Step is always Signed (because the overflow checks are either
5181   // NSSW or NUSW)
5182   const SCEV *AccumExtended = getExtendedExpr(Accum, /*CreateSignExtend=*/true);
5183   if (PredIsKnownFalse(Accum, AccumExtended)) {
5184     LLVM_DEBUG(dbgs() << "P3 is compile-time false\n";);
5185     return None;
5186   }
5187 
5188   auto AppendPredicate = [&](const SCEV *Expr,
5189                              const SCEV *ExtendedExpr) -> void {
5190     if (Expr != ExtendedExpr &&
5191         !isKnownPredicate(ICmpInst::ICMP_EQ, Expr, ExtendedExpr)) {
5192       const SCEVPredicate *Pred = getEqualPredicate(Expr, ExtendedExpr);
5193       LLVM_DEBUG(dbgs() << "Added Predicate: " << *Pred);
5194       Predicates.push_back(Pred);
5195     }
5196   };
5197 
5198   AppendPredicate(StartVal, StartExtended);
5199   AppendPredicate(Accum, AccumExtended);
5200 
5201   // *** Part3: Predicates are ready. Now go ahead and create the new addrec in
5202   // which the casts had been folded away. The caller can rewrite SymbolicPHI
5203   // into NewAR if it will also add the runtime overflow checks specified in
5204   // Predicates.
5205   auto *NewAR = getAddRecExpr(StartVal, Accum, L, SCEV::FlagAnyWrap);
5206 
5207   std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite =
5208       std::make_pair(NewAR, Predicates);
5209   // Remember the result of the analysis for this SCEV at this locayyytion.
5210   PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite;
5211   return PredRewrite;
5212 }
5213 
5214 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
5215 ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) {
5216   auto *PN = cast<PHINode>(SymbolicPHI->getValue());
5217   const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
5218   if (!L)
5219     return None;
5220 
5221   // Check to see if we already analyzed this PHI.
5222   auto I = PredicatedSCEVRewrites.find({SymbolicPHI, L});
5223   if (I != PredicatedSCEVRewrites.end()) {
5224     std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite =
5225         I->second;
5226     // Analysis was done before and failed to create an AddRec:
5227     if (Rewrite.first == SymbolicPHI)
5228       return None;
5229     // Analysis was done before and succeeded to create an AddRec under
5230     // a predicate:
5231     assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec");
5232     assert(!(Rewrite.second).empty() && "Expected to find Predicates");
5233     return Rewrite;
5234   }
5235 
5236   Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
5237     Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI);
5238 
5239   // Record in the cache that the analysis failed
5240   if (!Rewrite) {
5241     SmallVector<const SCEVPredicate *, 3> Predicates;
5242     PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates};
5243     return None;
5244   }
5245 
5246   return Rewrite;
5247 }
5248 
5249 // FIXME: This utility is currently required because the Rewriter currently
5250 // does not rewrite this expression:
5251 // {0, +, (sext ix (trunc iy to ix) to iy)}
5252 // into {0, +, %step},
5253 // even when the following Equal predicate exists:
5254 // "%step == (sext ix (trunc iy to ix) to iy)".
5255 bool PredicatedScalarEvolution::areAddRecsEqualWithPreds(
5256     const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const {
5257   if (AR1 == AR2)
5258     return true;
5259 
5260   auto areExprsEqual = [&](const SCEV *Expr1, const SCEV *Expr2) -> bool {
5261     if (Expr1 != Expr2 && !Preds.implies(SE.getEqualPredicate(Expr1, Expr2)) &&
5262         !Preds.implies(SE.getEqualPredicate(Expr2, Expr1)))
5263       return false;
5264     return true;
5265   };
5266 
5267   if (!areExprsEqual(AR1->getStart(), AR2->getStart()) ||
5268       !areExprsEqual(AR1->getStepRecurrence(SE), AR2->getStepRecurrence(SE)))
5269     return false;
5270   return true;
5271 }
5272 
5273 /// A helper function for createAddRecFromPHI to handle simple cases.
5274 ///
5275 /// This function tries to find an AddRec expression for the simplest (yet most
5276 /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)).
5277 /// If it fails, createAddRecFromPHI will use a more general, but slow,
5278 /// technique for finding the AddRec expression.
5279 const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN,
5280                                                       Value *BEValueV,
5281                                                       Value *StartValueV) {
5282   const Loop *L = LI.getLoopFor(PN->getParent());
5283   assert(L && L->getHeader() == PN->getParent());
5284   assert(BEValueV && StartValueV);
5285 
5286   auto BO = MatchBinaryOp(BEValueV, DT);
5287   if (!BO)
5288     return nullptr;
5289 
5290   if (BO->Opcode != Instruction::Add)
5291     return nullptr;
5292 
5293   const SCEV *Accum = nullptr;
5294   if (BO->LHS == PN && L->isLoopInvariant(BO->RHS))
5295     Accum = getSCEV(BO->RHS);
5296   else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS))
5297     Accum = getSCEV(BO->LHS);
5298 
5299   if (!Accum)
5300     return nullptr;
5301 
5302   SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5303   if (BO->IsNUW)
5304     Flags = setFlags(Flags, SCEV::FlagNUW);
5305   if (BO->IsNSW)
5306     Flags = setFlags(Flags, SCEV::FlagNSW);
5307 
5308   const SCEV *StartVal = getSCEV(StartValueV);
5309   const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
5310   insertValueToMap(PN, PHISCEV);
5311 
5312   // We can add Flags to the post-inc expression only if we
5313   // know that it is *undefined behavior* for BEValueV to
5314   // overflow.
5315   if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) {
5316     assert(isLoopInvariant(Accum, L) &&
5317            "Accum is defined outside L, but is not invariant?");
5318     if (isAddRecNeverPoison(BEInst, L))
5319       (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
5320   }
5321 
5322   return PHISCEV;
5323 }
5324 
5325 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) {
5326   const Loop *L = LI.getLoopFor(PN->getParent());
5327   if (!L || L->getHeader() != PN->getParent())
5328     return nullptr;
5329 
5330   // The loop may have multiple entrances or multiple exits; we can analyze
5331   // this phi as an addrec if it has a unique entry value and a unique
5332   // backedge value.
5333   Value *BEValueV = nullptr, *StartValueV = nullptr;
5334   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
5335     Value *V = PN->getIncomingValue(i);
5336     if (L->contains(PN->getIncomingBlock(i))) {
5337       if (!BEValueV) {
5338         BEValueV = V;
5339       } else if (BEValueV != V) {
5340         BEValueV = nullptr;
5341         break;
5342       }
5343     } else if (!StartValueV) {
5344       StartValueV = V;
5345     } else if (StartValueV != V) {
5346       StartValueV = nullptr;
5347       break;
5348     }
5349   }
5350   if (!BEValueV || !StartValueV)
5351     return nullptr;
5352 
5353   assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
5354          "PHI node already processed?");
5355 
5356   // First, try to find AddRec expression without creating a fictituos symbolic
5357   // value for PN.
5358   if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV))
5359     return S;
5360 
5361   // Handle PHI node value symbolically.
5362   const SCEV *SymbolicName = getUnknown(PN);
5363   insertValueToMap(PN, SymbolicName);
5364 
5365   // Using this symbolic name for the PHI, analyze the value coming around
5366   // the back-edge.
5367   const SCEV *BEValue = getSCEV(BEValueV);
5368 
5369   // NOTE: If BEValue is loop invariant, we know that the PHI node just
5370   // has a special value for the first iteration of the loop.
5371 
5372   // If the value coming around the backedge is an add with the symbolic
5373   // value we just inserted, then we found a simple induction variable!
5374   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
5375     // If there is a single occurrence of the symbolic value, replace it
5376     // with a recurrence.
5377     unsigned FoundIndex = Add->getNumOperands();
5378     for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5379       if (Add->getOperand(i) == SymbolicName)
5380         if (FoundIndex == e) {
5381           FoundIndex = i;
5382           break;
5383         }
5384 
5385     if (FoundIndex != Add->getNumOperands()) {
5386       // Create an add with everything but the specified operand.
5387       SmallVector<const SCEV *, 8> Ops;
5388       for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5389         if (i != FoundIndex)
5390           Ops.push_back(SCEVBackedgeConditionFolder::rewrite(Add->getOperand(i),
5391                                                              L, *this));
5392       const SCEV *Accum = getAddExpr(Ops);
5393 
5394       // This is not a valid addrec if the step amount is varying each
5395       // loop iteration, but is not itself an addrec in this loop.
5396       if (isLoopInvariant(Accum, L) ||
5397           (isa<SCEVAddRecExpr>(Accum) &&
5398            cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
5399         SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5400 
5401         if (auto BO = MatchBinaryOp(BEValueV, DT)) {
5402           if (BO->Opcode == Instruction::Add && BO->LHS == PN) {
5403             if (BO->IsNUW)
5404               Flags = setFlags(Flags, SCEV::FlagNUW);
5405             if (BO->IsNSW)
5406               Flags = setFlags(Flags, SCEV::FlagNSW);
5407           }
5408         } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
5409           // If the increment is an inbounds GEP, then we know the address
5410           // space cannot be wrapped around. We cannot make any guarantee
5411           // about signed or unsigned overflow because pointers are
5412           // unsigned but we may have a negative index from the base
5413           // pointer. We can guarantee that no unsigned wrap occurs if the
5414           // indices form a positive value.
5415           if (GEP->isInBounds() && GEP->getOperand(0) == PN) {
5416             Flags = setFlags(Flags, SCEV::FlagNW);
5417 
5418             const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
5419             if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
5420               Flags = setFlags(Flags, SCEV::FlagNUW);
5421           }
5422 
5423           // We cannot transfer nuw and nsw flags from subtraction
5424           // operations -- sub nuw X, Y is not the same as add nuw X, -Y
5425           // for instance.
5426         }
5427 
5428         const SCEV *StartVal = getSCEV(StartValueV);
5429         const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
5430 
5431         // Okay, for the entire analysis of this edge we assumed the PHI
5432         // to be symbolic.  We now need to go back and purge all of the
5433         // entries for the scalars that use the symbolic expression.
5434         forgetMemoizedResults(SymbolicName);
5435         insertValueToMap(PN, PHISCEV);
5436 
5437         // We can add Flags to the post-inc expression only if we
5438         // know that it is *undefined behavior* for BEValueV to
5439         // overflow.
5440         if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
5441           if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
5442             (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
5443 
5444         return PHISCEV;
5445       }
5446     }
5447   } else {
5448     // Otherwise, this could be a loop like this:
5449     //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
5450     // In this case, j = {1,+,1}  and BEValue is j.
5451     // Because the other in-value of i (0) fits the evolution of BEValue
5452     // i really is an addrec evolution.
5453     //
5454     // We can generalize this saying that i is the shifted value of BEValue
5455     // by one iteration:
5456     //   PHI(f(0), f({1,+,1})) --> f({0,+,1})
5457     const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this);
5458     const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this, false);
5459     if (Shifted != getCouldNotCompute() &&
5460         Start != getCouldNotCompute()) {
5461       const SCEV *StartVal = getSCEV(StartValueV);
5462       if (Start == StartVal) {
5463         // Okay, for the entire analysis of this edge we assumed the PHI
5464         // to be symbolic.  We now need to go back and purge all of the
5465         // entries for the scalars that use the symbolic expression.
5466         forgetMemoizedResults(SymbolicName);
5467         insertValueToMap(PN, Shifted);
5468         return Shifted;
5469       }
5470     }
5471   }
5472 
5473   // Remove the temporary PHI node SCEV that has been inserted while intending
5474   // to create an AddRecExpr for this PHI node. We can not keep this temporary
5475   // as it will prevent later (possibly simpler) SCEV expressions to be added
5476   // to the ValueExprMap.
5477   eraseValueFromMap(PN);
5478 
5479   return nullptr;
5480 }
5481 
5482 // Checks if the SCEV S is available at BB.  S is considered available at BB
5483 // if S can be materialized at BB without introducing a fault.
5484 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S,
5485                                BasicBlock *BB) {
5486   struct CheckAvailable {
5487     bool TraversalDone = false;
5488     bool Available = true;
5489 
5490     const Loop *L = nullptr;  // The loop BB is in (can be nullptr)
5491     BasicBlock *BB = nullptr;
5492     DominatorTree &DT;
5493 
5494     CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT)
5495       : L(L), BB(BB), DT(DT) {}
5496 
5497     bool setUnavailable() {
5498       TraversalDone = true;
5499       Available = false;
5500       return false;
5501     }
5502 
5503     bool follow(const SCEV *S) {
5504       switch (S->getSCEVType()) {
5505       case scConstant:
5506       case scPtrToInt:
5507       case scTruncate:
5508       case scZeroExtend:
5509       case scSignExtend:
5510       case scAddExpr:
5511       case scMulExpr:
5512       case scUMaxExpr:
5513       case scSMaxExpr:
5514       case scUMinExpr:
5515       case scSMinExpr:
5516         // These expressions are available if their operand(s) is/are.
5517         return true;
5518 
5519       case scAddRecExpr: {
5520         // We allow add recurrences that are on the loop BB is in, or some
5521         // outer loop.  This guarantees availability because the value of the
5522         // add recurrence at BB is simply the "current" value of the induction
5523         // variable.  We can relax this in the future; for instance an add
5524         // recurrence on a sibling dominating loop is also available at BB.
5525         const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop();
5526         if (L && (ARLoop == L || ARLoop->contains(L)))
5527           return true;
5528 
5529         return setUnavailable();
5530       }
5531 
5532       case scUnknown: {
5533         // For SCEVUnknown, we check for simple dominance.
5534         const auto *SU = cast<SCEVUnknown>(S);
5535         Value *V = SU->getValue();
5536 
5537         if (isa<Argument>(V))
5538           return false;
5539 
5540         if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB))
5541           return false;
5542 
5543         return setUnavailable();
5544       }
5545 
5546       case scUDivExpr:
5547       case scCouldNotCompute:
5548         // We do not try to smart about these at all.
5549         return setUnavailable();
5550       }
5551       llvm_unreachable("Unknown SCEV kind!");
5552     }
5553 
5554     bool isDone() { return TraversalDone; }
5555   };
5556 
5557   CheckAvailable CA(L, BB, DT);
5558   SCEVTraversal<CheckAvailable> ST(CA);
5559 
5560   ST.visitAll(S);
5561   return CA.Available;
5562 }
5563 
5564 // Try to match a control flow sequence that branches out at BI and merges back
5565 // at Merge into a "C ? LHS : RHS" select pattern.  Return true on a successful
5566 // match.
5567 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge,
5568                           Value *&C, Value *&LHS, Value *&RHS) {
5569   C = BI->getCondition();
5570 
5571   BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0));
5572   BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1));
5573 
5574   if (!LeftEdge.isSingleEdge())
5575     return false;
5576 
5577   assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()");
5578 
5579   Use &LeftUse = Merge->getOperandUse(0);
5580   Use &RightUse = Merge->getOperandUse(1);
5581 
5582   if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) {
5583     LHS = LeftUse;
5584     RHS = RightUse;
5585     return true;
5586   }
5587 
5588   if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) {
5589     LHS = RightUse;
5590     RHS = LeftUse;
5591     return true;
5592   }
5593 
5594   return false;
5595 }
5596 
5597 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) {
5598   auto IsReachable =
5599       [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); };
5600   if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) {
5601     const Loop *L = LI.getLoopFor(PN->getParent());
5602 
5603     // We don't want to break LCSSA, even in a SCEV expression tree.
5604     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
5605       if (LI.getLoopFor(PN->getIncomingBlock(i)) != L)
5606         return nullptr;
5607 
5608     // Try to match
5609     //
5610     //  br %cond, label %left, label %right
5611     // left:
5612     //  br label %merge
5613     // right:
5614     //  br label %merge
5615     // merge:
5616     //  V = phi [ %x, %left ], [ %y, %right ]
5617     //
5618     // as "select %cond, %x, %y"
5619 
5620     BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock();
5621     assert(IDom && "At least the entry block should dominate PN");
5622 
5623     auto *BI = dyn_cast<BranchInst>(IDom->getTerminator());
5624     Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr;
5625 
5626     if (BI && BI->isConditional() &&
5627         BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) &&
5628         IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) &&
5629         IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent()))
5630       return createNodeForSelectOrPHI(PN, Cond, LHS, RHS);
5631   }
5632 
5633   return nullptr;
5634 }
5635 
5636 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
5637   if (const SCEV *S = createAddRecFromPHI(PN))
5638     return S;
5639 
5640   if (const SCEV *S = createNodeFromSelectLikePHI(PN))
5641     return S;
5642 
5643   // If the PHI has a single incoming value, follow that value, unless the
5644   // PHI's incoming blocks are in a different loop, in which case doing so
5645   // risks breaking LCSSA form. Instcombine would normally zap these, but
5646   // it doesn't have DominatorTree information, so it may miss cases.
5647   if (Value *V = SimplifyInstruction(PN, {getDataLayout(), &TLI, &DT, &AC}))
5648     if (LI.replacementPreservesLCSSAForm(PN, V))
5649       return getSCEV(V);
5650 
5651   // If it's not a loop phi, we can't handle it yet.
5652   return getUnknown(PN);
5653 }
5654 
5655 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I,
5656                                                       Value *Cond,
5657                                                       Value *TrueVal,
5658                                                       Value *FalseVal) {
5659   // Handle "constant" branch or select. This can occur for instance when a
5660   // loop pass transforms an inner loop and moves on to process the outer loop.
5661   if (auto *CI = dyn_cast<ConstantInt>(Cond))
5662     return getSCEV(CI->isOne() ? TrueVal : FalseVal);
5663 
5664   // Try to match some simple smax or umax patterns.
5665   auto *ICI = dyn_cast<ICmpInst>(Cond);
5666   if (!ICI)
5667     return getUnknown(I);
5668 
5669   Value *LHS = ICI->getOperand(0);
5670   Value *RHS = ICI->getOperand(1);
5671 
5672   switch (ICI->getPredicate()) {
5673   case ICmpInst::ICMP_SLT:
5674   case ICmpInst::ICMP_SLE:
5675   case ICmpInst::ICMP_ULT:
5676   case ICmpInst::ICMP_ULE:
5677     std::swap(LHS, RHS);
5678     LLVM_FALLTHROUGH;
5679   case ICmpInst::ICMP_SGT:
5680   case ICmpInst::ICMP_SGE:
5681   case ICmpInst::ICMP_UGT:
5682   case ICmpInst::ICMP_UGE:
5683     // a > b ? a+x : b+x  ->  max(a, b)+x
5684     // a > b ? b+x : a+x  ->  min(a, b)+x
5685     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
5686       bool Signed = ICI->isSigned();
5687       const SCEV *LA = getSCEV(TrueVal);
5688       const SCEV *RA = getSCEV(FalseVal);
5689       const SCEV *LS = getSCEV(LHS);
5690       const SCEV *RS = getSCEV(RHS);
5691       if (LA->getType()->isPointerTy()) {
5692         // FIXME: Handle cases where LS/RS are pointers not equal to LA/RA.
5693         // Need to make sure we can't produce weird expressions involving
5694         // negated pointers.
5695         if (LA == LS && RA == RS)
5696           return Signed ? getSMaxExpr(LS, RS) : getUMaxExpr(LS, RS);
5697         if (LA == RS && RA == LS)
5698           return Signed ? getSMinExpr(LS, RS) : getUMinExpr(LS, RS);
5699       }
5700       auto CoerceOperand = [&](const SCEV *Op) -> const SCEV * {
5701         if (Op->getType()->isPointerTy()) {
5702           Op = getLosslessPtrToIntExpr(Op);
5703           if (isa<SCEVCouldNotCompute>(Op))
5704             return Op;
5705         }
5706         if (Signed)
5707           Op = getNoopOrSignExtend(Op, I->getType());
5708         else
5709           Op = getNoopOrZeroExtend(Op, I->getType());
5710         return Op;
5711       };
5712       LS = CoerceOperand(LS);
5713       RS = CoerceOperand(RS);
5714       if (isa<SCEVCouldNotCompute>(LS) || isa<SCEVCouldNotCompute>(RS))
5715         break;
5716       const SCEV *LDiff = getMinusSCEV(LA, LS);
5717       const SCEV *RDiff = getMinusSCEV(RA, RS);
5718       if (LDiff == RDiff)
5719         return getAddExpr(Signed ? getSMaxExpr(LS, RS) : getUMaxExpr(LS, RS),
5720                           LDiff);
5721       LDiff = getMinusSCEV(LA, RS);
5722       RDiff = getMinusSCEV(RA, LS);
5723       if (LDiff == RDiff)
5724         return getAddExpr(Signed ? getSMinExpr(LS, RS) : getUMinExpr(LS, RS),
5725                           LDiff);
5726     }
5727     break;
5728   case ICmpInst::ICMP_NE:
5729     // n != 0 ? n+x : 1+x  ->  umax(n, 1)+x
5730     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
5731         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
5732       const SCEV *One = getOne(I->getType());
5733       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5734       const SCEV *LA = getSCEV(TrueVal);
5735       const SCEV *RA = getSCEV(FalseVal);
5736       const SCEV *LDiff = getMinusSCEV(LA, LS);
5737       const SCEV *RDiff = getMinusSCEV(RA, One);
5738       if (LDiff == RDiff)
5739         return getAddExpr(getUMaxExpr(One, LS), LDiff);
5740     }
5741     break;
5742   case ICmpInst::ICMP_EQ:
5743     // n == 0 ? 1+x : n+x  ->  umax(n, 1)+x
5744     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
5745         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
5746       const SCEV *One = getOne(I->getType());
5747       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5748       const SCEV *LA = getSCEV(TrueVal);
5749       const SCEV *RA = getSCEV(FalseVal);
5750       const SCEV *LDiff = getMinusSCEV(LA, One);
5751       const SCEV *RDiff = getMinusSCEV(RA, LS);
5752       if (LDiff == RDiff)
5753         return getAddExpr(getUMaxExpr(One, LS), LDiff);
5754     }
5755     break;
5756   default:
5757     break;
5758   }
5759 
5760   return getUnknown(I);
5761 }
5762 
5763 /// Expand GEP instructions into add and multiply operations. This allows them
5764 /// to be analyzed by regular SCEV code.
5765 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
5766   // Don't attempt to analyze GEPs over unsized objects.
5767   if (!GEP->getSourceElementType()->isSized())
5768     return getUnknown(GEP);
5769 
5770   SmallVector<const SCEV *, 4> IndexExprs;
5771   for (Value *Index : GEP->indices())
5772     IndexExprs.push_back(getSCEV(Index));
5773   return getGEPExpr(GEP, IndexExprs);
5774 }
5775 
5776 uint32_t ScalarEvolution::GetMinTrailingZerosImpl(const SCEV *S) {
5777   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
5778     return C->getAPInt().countTrailingZeros();
5779 
5780   if (const SCEVPtrToIntExpr *I = dyn_cast<SCEVPtrToIntExpr>(S))
5781     return GetMinTrailingZeros(I->getOperand());
5782 
5783   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
5784     return std::min(GetMinTrailingZeros(T->getOperand()),
5785                     (uint32_t)getTypeSizeInBits(T->getType()));
5786 
5787   if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
5788     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
5789     return OpRes == getTypeSizeInBits(E->getOperand()->getType())
5790                ? getTypeSizeInBits(E->getType())
5791                : OpRes;
5792   }
5793 
5794   if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
5795     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
5796     return OpRes == getTypeSizeInBits(E->getOperand()->getType())
5797                ? getTypeSizeInBits(E->getType())
5798                : OpRes;
5799   }
5800 
5801   if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
5802     // The result is the min of all operands results.
5803     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
5804     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
5805       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
5806     return MinOpRes;
5807   }
5808 
5809   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
5810     // The result is the sum of all operands results.
5811     uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
5812     uint32_t BitWidth = getTypeSizeInBits(M->getType());
5813     for (unsigned i = 1, e = M->getNumOperands();
5814          SumOpRes != BitWidth && i != e; ++i)
5815       SumOpRes =
5816           std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), BitWidth);
5817     return SumOpRes;
5818   }
5819 
5820   if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
5821     // The result is the min of all operands results.
5822     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
5823     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
5824       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
5825     return MinOpRes;
5826   }
5827 
5828   if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
5829     // The result is the min of all operands results.
5830     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
5831     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
5832       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
5833     return MinOpRes;
5834   }
5835 
5836   if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
5837     // The result is the min of all operands results.
5838     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
5839     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
5840       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
5841     return MinOpRes;
5842   }
5843 
5844   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
5845     // For a SCEVUnknown, ask ValueTracking.
5846     KnownBits Known = computeKnownBits(U->getValue(), getDataLayout(), 0, &AC, nullptr, &DT);
5847     return Known.countMinTrailingZeros();
5848   }
5849 
5850   // SCEVUDivExpr
5851   return 0;
5852 }
5853 
5854 uint32_t ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
5855   auto I = MinTrailingZerosCache.find(S);
5856   if (I != MinTrailingZerosCache.end())
5857     return I->second;
5858 
5859   uint32_t Result = GetMinTrailingZerosImpl(S);
5860   auto InsertPair = MinTrailingZerosCache.insert({S, Result});
5861   assert(InsertPair.second && "Should insert a new key");
5862   return InsertPair.first->second;
5863 }
5864 
5865 /// Helper method to assign a range to V from metadata present in the IR.
5866 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) {
5867   if (Instruction *I = dyn_cast<Instruction>(V))
5868     if (MDNode *MD = I->getMetadata(LLVMContext::MD_range))
5869       return getConstantRangeFromMetadata(*MD);
5870 
5871   return None;
5872 }
5873 
5874 void ScalarEvolution::setNoWrapFlags(SCEVAddRecExpr *AddRec,
5875                                      SCEV::NoWrapFlags Flags) {
5876   if (AddRec->getNoWrapFlags(Flags) != Flags) {
5877     AddRec->setNoWrapFlags(Flags);
5878     UnsignedRanges.erase(AddRec);
5879     SignedRanges.erase(AddRec);
5880   }
5881 }
5882 
5883 ConstantRange ScalarEvolution::
5884 getRangeForUnknownRecurrence(const SCEVUnknown *U) {
5885   const DataLayout &DL = getDataLayout();
5886 
5887   unsigned BitWidth = getTypeSizeInBits(U->getType());
5888   const ConstantRange FullSet(BitWidth, /*isFullSet=*/true);
5889 
5890   // Match a simple recurrence of the form: <start, ShiftOp, Step>, and then
5891   // use information about the trip count to improve our available range.  Note
5892   // that the trip count independent cases are already handled by known bits.
5893   // WARNING: The definition of recurrence used here is subtly different than
5894   // the one used by AddRec (and thus most of this file).  Step is allowed to
5895   // be arbitrarily loop varying here, where AddRec allows only loop invariant
5896   // and other addrecs in the same loop (for non-affine addrecs).  The code
5897   // below intentionally handles the case where step is not loop invariant.
5898   auto *P = dyn_cast<PHINode>(U->getValue());
5899   if (!P)
5900     return FullSet;
5901 
5902   // Make sure that no Phi input comes from an unreachable block. Otherwise,
5903   // even the values that are not available in these blocks may come from them,
5904   // and this leads to false-positive recurrence test.
5905   for (auto *Pred : predecessors(P->getParent()))
5906     if (!DT.isReachableFromEntry(Pred))
5907       return FullSet;
5908 
5909   BinaryOperator *BO;
5910   Value *Start, *Step;
5911   if (!matchSimpleRecurrence(P, BO, Start, Step))
5912     return FullSet;
5913 
5914   // If we found a recurrence in reachable code, we must be in a loop. Note
5915   // that BO might be in some subloop of L, and that's completely okay.
5916   auto *L = LI.getLoopFor(P->getParent());
5917   assert(L && L->getHeader() == P->getParent());
5918   if (!L->contains(BO->getParent()))
5919     // NOTE: This bailout should be an assert instead.  However, asserting
5920     // the condition here exposes a case where LoopFusion is querying SCEV
5921     // with malformed loop information during the midst of the transform.
5922     // There doesn't appear to be an obvious fix, so for the moment bailout
5923     // until the caller issue can be fixed.  PR49566 tracks the bug.
5924     return FullSet;
5925 
5926   // TODO: Extend to other opcodes such as mul, and div
5927   switch (BO->getOpcode()) {
5928   default:
5929     return FullSet;
5930   case Instruction::AShr:
5931   case Instruction::LShr:
5932   case Instruction::Shl:
5933     break;
5934   };
5935 
5936   if (BO->getOperand(0) != P)
5937     // TODO: Handle the power function forms some day.
5938     return FullSet;
5939 
5940   unsigned TC = getSmallConstantMaxTripCount(L);
5941   if (!TC || TC >= BitWidth)
5942     return FullSet;
5943 
5944   auto KnownStart = computeKnownBits(Start, DL, 0, &AC, nullptr, &DT);
5945   auto KnownStep = computeKnownBits(Step, DL, 0, &AC, nullptr, &DT);
5946   assert(KnownStart.getBitWidth() == BitWidth &&
5947          KnownStep.getBitWidth() == BitWidth);
5948 
5949   // Compute total shift amount, being careful of overflow and bitwidths.
5950   auto MaxShiftAmt = KnownStep.getMaxValue();
5951   APInt TCAP(BitWidth, TC-1);
5952   bool Overflow = false;
5953   auto TotalShift = MaxShiftAmt.umul_ov(TCAP, Overflow);
5954   if (Overflow)
5955     return FullSet;
5956 
5957   switch (BO->getOpcode()) {
5958   default:
5959     llvm_unreachable("filtered out above");
5960   case Instruction::AShr: {
5961     // For each ashr, three cases:
5962     //   shift = 0 => unchanged value
5963     //   saturation => 0 or -1
5964     //   other => a value closer to zero (of the same sign)
5965     // Thus, the end value is closer to zero than the start.
5966     auto KnownEnd = KnownBits::ashr(KnownStart,
5967                                     KnownBits::makeConstant(TotalShift));
5968     if (KnownStart.isNonNegative())
5969       // Analogous to lshr (simply not yet canonicalized)
5970       return ConstantRange::getNonEmpty(KnownEnd.getMinValue(),
5971                                         KnownStart.getMaxValue() + 1);
5972     if (KnownStart.isNegative())
5973       // End >=u Start && End <=s Start
5974       return ConstantRange::getNonEmpty(KnownStart.getMinValue(),
5975                                         KnownEnd.getMaxValue() + 1);
5976     break;
5977   }
5978   case Instruction::LShr: {
5979     // For each lshr, three cases:
5980     //   shift = 0 => unchanged value
5981     //   saturation => 0
5982     //   other => a smaller positive number
5983     // Thus, the low end of the unsigned range is the last value produced.
5984     auto KnownEnd = KnownBits::lshr(KnownStart,
5985                                     KnownBits::makeConstant(TotalShift));
5986     return ConstantRange::getNonEmpty(KnownEnd.getMinValue(),
5987                                       KnownStart.getMaxValue() + 1);
5988   }
5989   case Instruction::Shl: {
5990     // Iff no bits are shifted out, value increases on every shift.
5991     auto KnownEnd = KnownBits::shl(KnownStart,
5992                                    KnownBits::makeConstant(TotalShift));
5993     if (TotalShift.ult(KnownStart.countMinLeadingZeros()))
5994       return ConstantRange(KnownStart.getMinValue(),
5995                            KnownEnd.getMaxValue() + 1);
5996     break;
5997   }
5998   };
5999   return FullSet;
6000 }
6001 
6002 /// Determine the range for a particular SCEV.  If SignHint is
6003 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges
6004 /// with a "cleaner" unsigned (resp. signed) representation.
6005 const ConstantRange &
6006 ScalarEvolution::getRangeRef(const SCEV *S,
6007                              ScalarEvolution::RangeSignHint SignHint) {
6008   DenseMap<const SCEV *, ConstantRange> &Cache =
6009       SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
6010                                                        : SignedRanges;
6011   ConstantRange::PreferredRangeType RangeType =
6012       SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED
6013           ? ConstantRange::Unsigned : ConstantRange::Signed;
6014 
6015   // See if we've computed this range already.
6016   DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S);
6017   if (I != Cache.end())
6018     return I->second;
6019 
6020   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
6021     return setRange(C, SignHint, ConstantRange(C->getAPInt()));
6022 
6023   unsigned BitWidth = getTypeSizeInBits(S->getType());
6024   ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
6025   using OBO = OverflowingBinaryOperator;
6026 
6027   // If the value has known zeros, the maximum value will have those known zeros
6028   // as well.
6029   uint32_t TZ = GetMinTrailingZeros(S);
6030   if (TZ != 0) {
6031     if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED)
6032       ConservativeResult =
6033           ConstantRange(APInt::getMinValue(BitWidth),
6034                         APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
6035     else
6036       ConservativeResult = ConstantRange(
6037           APInt::getSignedMinValue(BitWidth),
6038           APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
6039   }
6040 
6041   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
6042     ConstantRange X = getRangeRef(Add->getOperand(0), SignHint);
6043     unsigned WrapType = OBO::AnyWrap;
6044     if (Add->hasNoSignedWrap())
6045       WrapType |= OBO::NoSignedWrap;
6046     if (Add->hasNoUnsignedWrap())
6047       WrapType |= OBO::NoUnsignedWrap;
6048     for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
6049       X = X.addWithNoWrap(getRangeRef(Add->getOperand(i), SignHint),
6050                           WrapType, RangeType);
6051     return setRange(Add, SignHint,
6052                     ConservativeResult.intersectWith(X, RangeType));
6053   }
6054 
6055   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
6056     ConstantRange X = getRangeRef(Mul->getOperand(0), SignHint);
6057     for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
6058       X = X.multiply(getRangeRef(Mul->getOperand(i), SignHint));
6059     return setRange(Mul, SignHint,
6060                     ConservativeResult.intersectWith(X, RangeType));
6061   }
6062 
6063   if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
6064     ConstantRange X = getRangeRef(SMax->getOperand(0), SignHint);
6065     for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
6066       X = X.smax(getRangeRef(SMax->getOperand(i), SignHint));
6067     return setRange(SMax, SignHint,
6068                     ConservativeResult.intersectWith(X, RangeType));
6069   }
6070 
6071   if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
6072     ConstantRange X = getRangeRef(UMax->getOperand(0), SignHint);
6073     for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
6074       X = X.umax(getRangeRef(UMax->getOperand(i), SignHint));
6075     return setRange(UMax, SignHint,
6076                     ConservativeResult.intersectWith(X, RangeType));
6077   }
6078 
6079   if (const SCEVSMinExpr *SMin = dyn_cast<SCEVSMinExpr>(S)) {
6080     ConstantRange X = getRangeRef(SMin->getOperand(0), SignHint);
6081     for (unsigned i = 1, e = SMin->getNumOperands(); i != e; ++i)
6082       X = X.smin(getRangeRef(SMin->getOperand(i), SignHint));
6083     return setRange(SMin, SignHint,
6084                     ConservativeResult.intersectWith(X, RangeType));
6085   }
6086 
6087   if (const SCEVUMinExpr *UMin = dyn_cast<SCEVUMinExpr>(S)) {
6088     ConstantRange X = getRangeRef(UMin->getOperand(0), SignHint);
6089     for (unsigned i = 1, e = UMin->getNumOperands(); i != e; ++i)
6090       X = X.umin(getRangeRef(UMin->getOperand(i), SignHint));
6091     return setRange(UMin, SignHint,
6092                     ConservativeResult.intersectWith(X, RangeType));
6093   }
6094 
6095   if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
6096     ConstantRange X = getRangeRef(UDiv->getLHS(), SignHint);
6097     ConstantRange Y = getRangeRef(UDiv->getRHS(), SignHint);
6098     return setRange(UDiv, SignHint,
6099                     ConservativeResult.intersectWith(X.udiv(Y), RangeType));
6100   }
6101 
6102   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
6103     ConstantRange X = getRangeRef(ZExt->getOperand(), SignHint);
6104     return setRange(ZExt, SignHint,
6105                     ConservativeResult.intersectWith(X.zeroExtend(BitWidth),
6106                                                      RangeType));
6107   }
6108 
6109   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
6110     ConstantRange X = getRangeRef(SExt->getOperand(), SignHint);
6111     return setRange(SExt, SignHint,
6112                     ConservativeResult.intersectWith(X.signExtend(BitWidth),
6113                                                      RangeType));
6114   }
6115 
6116   if (const SCEVPtrToIntExpr *PtrToInt = dyn_cast<SCEVPtrToIntExpr>(S)) {
6117     ConstantRange X = getRangeRef(PtrToInt->getOperand(), SignHint);
6118     return setRange(PtrToInt, SignHint, X);
6119   }
6120 
6121   if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
6122     ConstantRange X = getRangeRef(Trunc->getOperand(), SignHint);
6123     return setRange(Trunc, SignHint,
6124                     ConservativeResult.intersectWith(X.truncate(BitWidth),
6125                                                      RangeType));
6126   }
6127 
6128   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
6129     // If there's no unsigned wrap, the value will never be less than its
6130     // initial value.
6131     if (AddRec->hasNoUnsignedWrap()) {
6132       APInt UnsignedMinValue = getUnsignedRangeMin(AddRec->getStart());
6133       if (!UnsignedMinValue.isZero())
6134         ConservativeResult = ConservativeResult.intersectWith(
6135             ConstantRange(UnsignedMinValue, APInt(BitWidth, 0)), RangeType);
6136     }
6137 
6138     // If there's no signed wrap, and all the operands except initial value have
6139     // the same sign or zero, the value won't ever be:
6140     // 1: smaller than initial value if operands are non negative,
6141     // 2: bigger than initial value if operands are non positive.
6142     // For both cases, value can not cross signed min/max boundary.
6143     if (AddRec->hasNoSignedWrap()) {
6144       bool AllNonNeg = true;
6145       bool AllNonPos = true;
6146       for (unsigned i = 1, e = AddRec->getNumOperands(); i != e; ++i) {
6147         if (!isKnownNonNegative(AddRec->getOperand(i)))
6148           AllNonNeg = false;
6149         if (!isKnownNonPositive(AddRec->getOperand(i)))
6150           AllNonPos = false;
6151       }
6152       if (AllNonNeg)
6153         ConservativeResult = ConservativeResult.intersectWith(
6154             ConstantRange::getNonEmpty(getSignedRangeMin(AddRec->getStart()),
6155                                        APInt::getSignedMinValue(BitWidth)),
6156             RangeType);
6157       else if (AllNonPos)
6158         ConservativeResult = ConservativeResult.intersectWith(
6159             ConstantRange::getNonEmpty(
6160                 APInt::getSignedMinValue(BitWidth),
6161                 getSignedRangeMax(AddRec->getStart()) + 1),
6162             RangeType);
6163     }
6164 
6165     // TODO: non-affine addrec
6166     if (AddRec->isAffine()) {
6167       const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(AddRec->getLoop());
6168       if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
6169           getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
6170         auto RangeFromAffine = getRangeForAffineAR(
6171             AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
6172             BitWidth);
6173         ConservativeResult =
6174             ConservativeResult.intersectWith(RangeFromAffine, RangeType);
6175 
6176         auto RangeFromFactoring = getRangeViaFactoring(
6177             AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
6178             BitWidth);
6179         ConservativeResult =
6180             ConservativeResult.intersectWith(RangeFromFactoring, RangeType);
6181       }
6182 
6183       // Now try symbolic BE count and more powerful methods.
6184       if (UseExpensiveRangeSharpening) {
6185         const SCEV *SymbolicMaxBECount =
6186             getSymbolicMaxBackedgeTakenCount(AddRec->getLoop());
6187         if (!isa<SCEVCouldNotCompute>(SymbolicMaxBECount) &&
6188             getTypeSizeInBits(MaxBECount->getType()) <= BitWidth &&
6189             AddRec->hasNoSelfWrap()) {
6190           auto RangeFromAffineNew = getRangeForAffineNoSelfWrappingAR(
6191               AddRec, SymbolicMaxBECount, BitWidth, SignHint);
6192           ConservativeResult =
6193               ConservativeResult.intersectWith(RangeFromAffineNew, RangeType);
6194         }
6195       }
6196     }
6197 
6198     return setRange(AddRec, SignHint, std::move(ConservativeResult));
6199   }
6200 
6201   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
6202 
6203     // Check if the IR explicitly contains !range metadata.
6204     Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
6205     if (MDRange.hasValue())
6206       ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue(),
6207                                                             RangeType);
6208 
6209     // Use facts about recurrences in the underlying IR.  Note that add
6210     // recurrences are AddRecExprs and thus don't hit this path.  This
6211     // primarily handles shift recurrences.
6212     auto CR = getRangeForUnknownRecurrence(U);
6213     ConservativeResult = ConservativeResult.intersectWith(CR);
6214 
6215     // See if ValueTracking can give us a useful range.
6216     const DataLayout &DL = getDataLayout();
6217     KnownBits Known = computeKnownBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
6218     if (Known.getBitWidth() != BitWidth)
6219       Known = Known.zextOrTrunc(BitWidth);
6220 
6221     // ValueTracking may be able to compute a tighter result for the number of
6222     // sign bits than for the value of those sign bits.
6223     unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
6224     if (U->getType()->isPointerTy()) {
6225       // If the pointer size is larger than the index size type, this can cause
6226       // NS to be larger than BitWidth. So compensate for this.
6227       unsigned ptrSize = DL.getPointerTypeSizeInBits(U->getType());
6228       int ptrIdxDiff = ptrSize - BitWidth;
6229       if (ptrIdxDiff > 0 && ptrSize > BitWidth && NS > (unsigned)ptrIdxDiff)
6230         NS -= ptrIdxDiff;
6231     }
6232 
6233     if (NS > 1) {
6234       // If we know any of the sign bits, we know all of the sign bits.
6235       if (!Known.Zero.getHiBits(NS).isZero())
6236         Known.Zero.setHighBits(NS);
6237       if (!Known.One.getHiBits(NS).isZero())
6238         Known.One.setHighBits(NS);
6239     }
6240 
6241     if (Known.getMinValue() != Known.getMaxValue() + 1)
6242       ConservativeResult = ConservativeResult.intersectWith(
6243           ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1),
6244           RangeType);
6245     if (NS > 1)
6246       ConservativeResult = ConservativeResult.intersectWith(
6247           ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
6248                         APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1),
6249           RangeType);
6250 
6251     // A range of Phi is a subset of union of all ranges of its input.
6252     if (const PHINode *Phi = dyn_cast<PHINode>(U->getValue())) {
6253       // Make sure that we do not run over cycled Phis.
6254       if (PendingPhiRanges.insert(Phi).second) {
6255         ConstantRange RangeFromOps(BitWidth, /*isFullSet=*/false);
6256         for (auto &Op : Phi->operands()) {
6257           auto OpRange = getRangeRef(getSCEV(Op), SignHint);
6258           RangeFromOps = RangeFromOps.unionWith(OpRange);
6259           // No point to continue if we already have a full set.
6260           if (RangeFromOps.isFullSet())
6261             break;
6262         }
6263         ConservativeResult =
6264             ConservativeResult.intersectWith(RangeFromOps, RangeType);
6265         bool Erased = PendingPhiRanges.erase(Phi);
6266         assert(Erased && "Failed to erase Phi properly?");
6267         (void) Erased;
6268       }
6269     }
6270 
6271     return setRange(U, SignHint, std::move(ConservativeResult));
6272   }
6273 
6274   return setRange(S, SignHint, std::move(ConservativeResult));
6275 }
6276 
6277 // Given a StartRange, Step and MaxBECount for an expression compute a range of
6278 // values that the expression can take. Initially, the expression has a value
6279 // from StartRange and then is changed by Step up to MaxBECount times. Signed
6280 // argument defines if we treat Step as signed or unsigned.
6281 static ConstantRange getRangeForAffineARHelper(APInt Step,
6282                                                const ConstantRange &StartRange,
6283                                                const APInt &MaxBECount,
6284                                                unsigned BitWidth, bool Signed) {
6285   // If either Step or MaxBECount is 0, then the expression won't change, and we
6286   // just need to return the initial range.
6287   if (Step == 0 || MaxBECount == 0)
6288     return StartRange;
6289 
6290   // If we don't know anything about the initial value (i.e. StartRange is
6291   // FullRange), then we don't know anything about the final range either.
6292   // Return FullRange.
6293   if (StartRange.isFullSet())
6294     return ConstantRange::getFull(BitWidth);
6295 
6296   // If Step is signed and negative, then we use its absolute value, but we also
6297   // note that we're moving in the opposite direction.
6298   bool Descending = Signed && Step.isNegative();
6299 
6300   if (Signed)
6301     // This is correct even for INT_SMIN. Let's look at i8 to illustrate this:
6302     // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128.
6303     // This equations hold true due to the well-defined wrap-around behavior of
6304     // APInt.
6305     Step = Step.abs();
6306 
6307   // Check if Offset is more than full span of BitWidth. If it is, the
6308   // expression is guaranteed to overflow.
6309   if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount))
6310     return ConstantRange::getFull(BitWidth);
6311 
6312   // Offset is by how much the expression can change. Checks above guarantee no
6313   // overflow here.
6314   APInt Offset = Step * MaxBECount;
6315 
6316   // Minimum value of the final range will match the minimal value of StartRange
6317   // if the expression is increasing and will be decreased by Offset otherwise.
6318   // Maximum value of the final range will match the maximal value of StartRange
6319   // if the expression is decreasing and will be increased by Offset otherwise.
6320   APInt StartLower = StartRange.getLower();
6321   APInt StartUpper = StartRange.getUpper() - 1;
6322   APInt MovedBoundary = Descending ? (StartLower - std::move(Offset))
6323                                    : (StartUpper + std::move(Offset));
6324 
6325   // It's possible that the new minimum/maximum value will fall into the initial
6326   // range (due to wrap around). This means that the expression can take any
6327   // value in this bitwidth, and we have to return full range.
6328   if (StartRange.contains(MovedBoundary))
6329     return ConstantRange::getFull(BitWidth);
6330 
6331   APInt NewLower =
6332       Descending ? std::move(MovedBoundary) : std::move(StartLower);
6333   APInt NewUpper =
6334       Descending ? std::move(StartUpper) : std::move(MovedBoundary);
6335   NewUpper += 1;
6336 
6337   // No overflow detected, return [StartLower, StartUpper + Offset + 1) range.
6338   return ConstantRange::getNonEmpty(std::move(NewLower), std::move(NewUpper));
6339 }
6340 
6341 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start,
6342                                                    const SCEV *Step,
6343                                                    const SCEV *MaxBECount,
6344                                                    unsigned BitWidth) {
6345   assert(!isa<SCEVCouldNotCompute>(MaxBECount) &&
6346          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth &&
6347          "Precondition!");
6348 
6349   MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType());
6350   APInt MaxBECountValue = getUnsignedRangeMax(MaxBECount);
6351 
6352   // First, consider step signed.
6353   ConstantRange StartSRange = getSignedRange(Start);
6354   ConstantRange StepSRange = getSignedRange(Step);
6355 
6356   // If Step can be both positive and negative, we need to find ranges for the
6357   // maximum absolute step values in both directions and union them.
6358   ConstantRange SR =
6359       getRangeForAffineARHelper(StepSRange.getSignedMin(), StartSRange,
6360                                 MaxBECountValue, BitWidth, /* Signed = */ true);
6361   SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(),
6362                                               StartSRange, MaxBECountValue,
6363                                               BitWidth, /* Signed = */ true));
6364 
6365   // Next, consider step unsigned.
6366   ConstantRange UR = getRangeForAffineARHelper(
6367       getUnsignedRangeMax(Step), getUnsignedRange(Start),
6368       MaxBECountValue, BitWidth, /* Signed = */ false);
6369 
6370   // Finally, intersect signed and unsigned ranges.
6371   return SR.intersectWith(UR, ConstantRange::Smallest);
6372 }
6373 
6374 ConstantRange ScalarEvolution::getRangeForAffineNoSelfWrappingAR(
6375     const SCEVAddRecExpr *AddRec, const SCEV *MaxBECount, unsigned BitWidth,
6376     ScalarEvolution::RangeSignHint SignHint) {
6377   assert(AddRec->isAffine() && "Non-affine AddRecs are not suppored!\n");
6378   assert(AddRec->hasNoSelfWrap() &&
6379          "This only works for non-self-wrapping AddRecs!");
6380   const bool IsSigned = SignHint == HINT_RANGE_SIGNED;
6381   const SCEV *Step = AddRec->getStepRecurrence(*this);
6382   // Only deal with constant step to save compile time.
6383   if (!isa<SCEVConstant>(Step))
6384     return ConstantRange::getFull(BitWidth);
6385   // Let's make sure that we can prove that we do not self-wrap during
6386   // MaxBECount iterations. We need this because MaxBECount is a maximum
6387   // iteration count estimate, and we might infer nw from some exit for which we
6388   // do not know max exit count (or any other side reasoning).
6389   // TODO: Turn into assert at some point.
6390   if (getTypeSizeInBits(MaxBECount->getType()) >
6391       getTypeSizeInBits(AddRec->getType()))
6392     return ConstantRange::getFull(BitWidth);
6393   MaxBECount = getNoopOrZeroExtend(MaxBECount, AddRec->getType());
6394   const SCEV *RangeWidth = getMinusOne(AddRec->getType());
6395   const SCEV *StepAbs = getUMinExpr(Step, getNegativeSCEV(Step));
6396   const SCEV *MaxItersWithoutWrap = getUDivExpr(RangeWidth, StepAbs);
6397   if (!isKnownPredicateViaConstantRanges(ICmpInst::ICMP_ULE, MaxBECount,
6398                                          MaxItersWithoutWrap))
6399     return ConstantRange::getFull(BitWidth);
6400 
6401   ICmpInst::Predicate LEPred =
6402       IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
6403   ICmpInst::Predicate GEPred =
6404       IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
6405   const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this);
6406 
6407   // We know that there is no self-wrap. Let's take Start and End values and
6408   // look at all intermediate values V1, V2, ..., Vn that IndVar takes during
6409   // the iteration. They either lie inside the range [Min(Start, End),
6410   // Max(Start, End)] or outside it:
6411   //
6412   // Case 1:   RangeMin    ...    Start V1 ... VN End ...           RangeMax;
6413   // Case 2:   RangeMin Vk ... V1 Start    ...    End Vn ... Vk + 1 RangeMax;
6414   //
6415   // No self wrap flag guarantees that the intermediate values cannot be BOTH
6416   // outside and inside the range [Min(Start, End), Max(Start, End)]. Using that
6417   // knowledge, let's try to prove that we are dealing with Case 1. It is so if
6418   // Start <= End and step is positive, or Start >= End and step is negative.
6419   const SCEV *Start = AddRec->getStart();
6420   ConstantRange StartRange = getRangeRef(Start, SignHint);
6421   ConstantRange EndRange = getRangeRef(End, SignHint);
6422   ConstantRange RangeBetween = StartRange.unionWith(EndRange);
6423   // If they already cover full iteration space, we will know nothing useful
6424   // even if we prove what we want to prove.
6425   if (RangeBetween.isFullSet())
6426     return RangeBetween;
6427   // Only deal with ranges that do not wrap (i.e. RangeMin < RangeMax).
6428   bool IsWrappedSet = IsSigned ? RangeBetween.isSignWrappedSet()
6429                                : RangeBetween.isWrappedSet();
6430   if (IsWrappedSet)
6431     return ConstantRange::getFull(BitWidth);
6432 
6433   if (isKnownPositive(Step) &&
6434       isKnownPredicateViaConstantRanges(LEPred, Start, End))
6435     return RangeBetween;
6436   else if (isKnownNegative(Step) &&
6437            isKnownPredicateViaConstantRanges(GEPred, Start, End))
6438     return RangeBetween;
6439   return ConstantRange::getFull(BitWidth);
6440 }
6441 
6442 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start,
6443                                                     const SCEV *Step,
6444                                                     const SCEV *MaxBECount,
6445                                                     unsigned BitWidth) {
6446   //    RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q})
6447   // == RangeOf({A,+,P}) union RangeOf({B,+,Q})
6448 
6449   struct SelectPattern {
6450     Value *Condition = nullptr;
6451     APInt TrueValue;
6452     APInt FalseValue;
6453 
6454     explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth,
6455                            const SCEV *S) {
6456       Optional<unsigned> CastOp;
6457       APInt Offset(BitWidth, 0);
6458 
6459       assert(SE.getTypeSizeInBits(S->getType()) == BitWidth &&
6460              "Should be!");
6461 
6462       // Peel off a constant offset:
6463       if (auto *SA = dyn_cast<SCEVAddExpr>(S)) {
6464         // In the future we could consider being smarter here and handle
6465         // {Start+Step,+,Step} too.
6466         if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0)))
6467           return;
6468 
6469         Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt();
6470         S = SA->getOperand(1);
6471       }
6472 
6473       // Peel off a cast operation
6474       if (auto *SCast = dyn_cast<SCEVIntegralCastExpr>(S)) {
6475         CastOp = SCast->getSCEVType();
6476         S = SCast->getOperand();
6477       }
6478 
6479       using namespace llvm::PatternMatch;
6480 
6481       auto *SU = dyn_cast<SCEVUnknown>(S);
6482       const APInt *TrueVal, *FalseVal;
6483       if (!SU ||
6484           !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal),
6485                                           m_APInt(FalseVal)))) {
6486         Condition = nullptr;
6487         return;
6488       }
6489 
6490       TrueValue = *TrueVal;
6491       FalseValue = *FalseVal;
6492 
6493       // Re-apply the cast we peeled off earlier
6494       if (CastOp.hasValue())
6495         switch (*CastOp) {
6496         default:
6497           llvm_unreachable("Unknown SCEV cast type!");
6498 
6499         case scTruncate:
6500           TrueValue = TrueValue.trunc(BitWidth);
6501           FalseValue = FalseValue.trunc(BitWidth);
6502           break;
6503         case scZeroExtend:
6504           TrueValue = TrueValue.zext(BitWidth);
6505           FalseValue = FalseValue.zext(BitWidth);
6506           break;
6507         case scSignExtend:
6508           TrueValue = TrueValue.sext(BitWidth);
6509           FalseValue = FalseValue.sext(BitWidth);
6510           break;
6511         }
6512 
6513       // Re-apply the constant offset we peeled off earlier
6514       TrueValue += Offset;
6515       FalseValue += Offset;
6516     }
6517 
6518     bool isRecognized() { return Condition != nullptr; }
6519   };
6520 
6521   SelectPattern StartPattern(*this, BitWidth, Start);
6522   if (!StartPattern.isRecognized())
6523     return ConstantRange::getFull(BitWidth);
6524 
6525   SelectPattern StepPattern(*this, BitWidth, Step);
6526   if (!StepPattern.isRecognized())
6527     return ConstantRange::getFull(BitWidth);
6528 
6529   if (StartPattern.Condition != StepPattern.Condition) {
6530     // We don't handle this case today; but we could, by considering four
6531     // possibilities below instead of two. I'm not sure if there are cases where
6532     // that will help over what getRange already does, though.
6533     return ConstantRange::getFull(BitWidth);
6534   }
6535 
6536   // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to
6537   // construct arbitrary general SCEV expressions here.  This function is called
6538   // from deep in the call stack, and calling getSCEV (on a sext instruction,
6539   // say) can end up caching a suboptimal value.
6540 
6541   // FIXME: without the explicit `this` receiver below, MSVC errors out with
6542   // C2352 and C2512 (otherwise it isn't needed).
6543 
6544   const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue);
6545   const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue);
6546   const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue);
6547   const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue);
6548 
6549   ConstantRange TrueRange =
6550       this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth);
6551   ConstantRange FalseRange =
6552       this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth);
6553 
6554   return TrueRange.unionWith(FalseRange);
6555 }
6556 
6557 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) {
6558   if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap;
6559   const BinaryOperator *BinOp = cast<BinaryOperator>(V);
6560 
6561   // Return early if there are no flags to propagate to the SCEV.
6562   SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
6563   if (BinOp->hasNoUnsignedWrap())
6564     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
6565   if (BinOp->hasNoSignedWrap())
6566     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
6567   if (Flags == SCEV::FlagAnyWrap)
6568     return SCEV::FlagAnyWrap;
6569 
6570   return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap;
6571 }
6572 
6573 const Instruction *
6574 ScalarEvolution::getNonTrivialDefiningScopeBound(const SCEV *S) {
6575   if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(S))
6576     return &*AddRec->getLoop()->getHeader()->begin();
6577   if (auto *U = dyn_cast<SCEVUnknown>(S))
6578     if (auto *I = dyn_cast<Instruction>(U->getValue()))
6579       return I;
6580   return nullptr;
6581 }
6582 
6583 /// Fills \p Ops with unique operands of \p S, if it has operands. If not,
6584 /// \p Ops remains unmodified.
6585 static void collectUniqueOps(const SCEV *S,
6586                              SmallVectorImpl<const SCEV *> &Ops) {
6587   SmallPtrSet<const SCEV *, 4> Unique;
6588   auto InsertUnique = [&](const SCEV *S) {
6589     if (Unique.insert(S).second)
6590       Ops.push_back(S);
6591   };
6592   if (auto *S2 = dyn_cast<SCEVCastExpr>(S))
6593     for (auto *Op : S2->operands())
6594       InsertUnique(Op);
6595   else if (auto *S2 = dyn_cast<SCEVNAryExpr>(S))
6596     for (auto *Op : S2->operands())
6597       InsertUnique(Op);
6598   else if (auto *S2 = dyn_cast<SCEVUDivExpr>(S))
6599     for (auto *Op : S2->operands())
6600       InsertUnique(Op);
6601 }
6602 
6603 const Instruction *
6604 ScalarEvolution::getDefiningScopeBound(ArrayRef<const SCEV *> Ops,
6605                                        bool &Precise) {
6606   Precise = true;
6607   // Do a bounded search of the def relation of the requested SCEVs.
6608   SmallSet<const SCEV *, 16> Visited;
6609   SmallVector<const SCEV *> Worklist;
6610   auto pushOp = [&](const SCEV *S) {
6611     if (!Visited.insert(S).second)
6612       return;
6613     // Threshold of 30 here is arbitrary.
6614     if (Visited.size() > 30) {
6615       Precise = false;
6616       return;
6617     }
6618     Worklist.push_back(S);
6619   };
6620 
6621   for (auto *S : Ops)
6622     pushOp(S);
6623 
6624   const Instruction *Bound = nullptr;
6625   while (!Worklist.empty()) {
6626     auto *S = Worklist.pop_back_val();
6627     if (auto *DefI = getNonTrivialDefiningScopeBound(S)) {
6628       if (!Bound || DT.dominates(Bound, DefI))
6629         Bound = DefI;
6630     } else {
6631       SmallVector<const SCEV *, 4> Ops;
6632       collectUniqueOps(S, Ops);
6633       for (auto *Op : Ops)
6634         pushOp(Op);
6635     }
6636   }
6637   return Bound ? Bound : &*F.getEntryBlock().begin();
6638 }
6639 
6640 const Instruction *
6641 ScalarEvolution::getDefiningScopeBound(ArrayRef<const SCEV *> Ops) {
6642   bool Discard;
6643   return getDefiningScopeBound(Ops, Discard);
6644 }
6645 
6646 bool ScalarEvolution::isGuaranteedToTransferExecutionTo(const Instruction *A,
6647                                                         const Instruction *B) {
6648   if (A->getParent() == B->getParent() &&
6649       isGuaranteedToTransferExecutionToSuccessor(A->getIterator(),
6650                                                  B->getIterator()))
6651     return true;
6652 
6653   auto *BLoop = LI.getLoopFor(B->getParent());
6654   if (BLoop && BLoop->getHeader() == B->getParent() &&
6655       BLoop->getLoopPreheader() == A->getParent() &&
6656       isGuaranteedToTransferExecutionToSuccessor(A->getIterator(),
6657                                                  A->getParent()->end()) &&
6658       isGuaranteedToTransferExecutionToSuccessor(B->getParent()->begin(),
6659                                                  B->getIterator()))
6660     return true;
6661   return false;
6662 }
6663 
6664 
6665 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) {
6666   // Only proceed if we can prove that I does not yield poison.
6667   if (!programUndefinedIfPoison(I))
6668     return false;
6669 
6670   // At this point we know that if I is executed, then it does not wrap
6671   // according to at least one of NSW or NUW. If I is not executed, then we do
6672   // not know if the calculation that I represents would wrap. Multiple
6673   // instructions can map to the same SCEV. If we apply NSW or NUW from I to
6674   // the SCEV, we must guarantee no wrapping for that SCEV also when it is
6675   // derived from other instructions that map to the same SCEV. We cannot make
6676   // that guarantee for cases where I is not executed. So we need to find a
6677   // upper bound on the defining scope for the SCEV, and prove that I is
6678   // executed every time we enter that scope.  When the bounding scope is a
6679   // loop (the common case), this is equivalent to proving I executes on every
6680   // iteration of that loop.
6681   SmallVector<const SCEV *> SCEVOps;
6682   for (const Use &Op : I->operands()) {
6683     // I could be an extractvalue from a call to an overflow intrinsic.
6684     // TODO: We can do better here in some cases.
6685     if (isSCEVable(Op->getType()))
6686       SCEVOps.push_back(getSCEV(Op));
6687   }
6688   auto *DefI = getDefiningScopeBound(SCEVOps);
6689   return isGuaranteedToTransferExecutionTo(DefI, I);
6690 }
6691 
6692 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) {
6693   // If we know that \c I can never be poison period, then that's enough.
6694   if (isSCEVExprNeverPoison(I))
6695     return true;
6696 
6697   // For an add recurrence specifically, we assume that infinite loops without
6698   // side effects are undefined behavior, and then reason as follows:
6699   //
6700   // If the add recurrence is poison in any iteration, it is poison on all
6701   // future iterations (since incrementing poison yields poison). If the result
6702   // of the add recurrence is fed into the loop latch condition and the loop
6703   // does not contain any throws or exiting blocks other than the latch, we now
6704   // have the ability to "choose" whether the backedge is taken or not (by
6705   // choosing a sufficiently evil value for the poison feeding into the branch)
6706   // for every iteration including and after the one in which \p I first became
6707   // poison.  There are two possibilities (let's call the iteration in which \p
6708   // I first became poison as K):
6709   //
6710   //  1. In the set of iterations including and after K, the loop body executes
6711   //     no side effects.  In this case executing the backege an infinte number
6712   //     of times will yield undefined behavior.
6713   //
6714   //  2. In the set of iterations including and after K, the loop body executes
6715   //     at least one side effect.  In this case, that specific instance of side
6716   //     effect is control dependent on poison, which also yields undefined
6717   //     behavior.
6718 
6719   auto *ExitingBB = L->getExitingBlock();
6720   auto *LatchBB = L->getLoopLatch();
6721   if (!ExitingBB || !LatchBB || ExitingBB != LatchBB)
6722     return false;
6723 
6724   SmallPtrSet<const Instruction *, 16> Pushed;
6725   SmallVector<const Instruction *, 8> PoisonStack;
6726 
6727   // We start by assuming \c I, the post-inc add recurrence, is poison.  Only
6728   // things that are known to be poison under that assumption go on the
6729   // PoisonStack.
6730   Pushed.insert(I);
6731   PoisonStack.push_back(I);
6732 
6733   bool LatchControlDependentOnPoison = false;
6734   while (!PoisonStack.empty() && !LatchControlDependentOnPoison) {
6735     const Instruction *Poison = PoisonStack.pop_back_val();
6736 
6737     for (auto *PoisonUser : Poison->users()) {
6738       if (propagatesPoison(cast<Operator>(PoisonUser))) {
6739         if (Pushed.insert(cast<Instruction>(PoisonUser)).second)
6740           PoisonStack.push_back(cast<Instruction>(PoisonUser));
6741       } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) {
6742         assert(BI->isConditional() && "Only possibility!");
6743         if (BI->getParent() == LatchBB) {
6744           LatchControlDependentOnPoison = true;
6745           break;
6746         }
6747       }
6748     }
6749   }
6750 
6751   return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L);
6752 }
6753 
6754 ScalarEvolution::LoopProperties
6755 ScalarEvolution::getLoopProperties(const Loop *L) {
6756   using LoopProperties = ScalarEvolution::LoopProperties;
6757 
6758   auto Itr = LoopPropertiesCache.find(L);
6759   if (Itr == LoopPropertiesCache.end()) {
6760     auto HasSideEffects = [](Instruction *I) {
6761       if (auto *SI = dyn_cast<StoreInst>(I))
6762         return !SI->isSimple();
6763 
6764       return I->mayThrow() || I->mayWriteToMemory();
6765     };
6766 
6767     LoopProperties LP = {/* HasNoAbnormalExits */ true,
6768                          /*HasNoSideEffects*/ true};
6769 
6770     for (auto *BB : L->getBlocks())
6771       for (auto &I : *BB) {
6772         if (!isGuaranteedToTransferExecutionToSuccessor(&I))
6773           LP.HasNoAbnormalExits = false;
6774         if (HasSideEffects(&I))
6775           LP.HasNoSideEffects = false;
6776         if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects)
6777           break; // We're already as pessimistic as we can get.
6778       }
6779 
6780     auto InsertPair = LoopPropertiesCache.insert({L, LP});
6781     assert(InsertPair.second && "We just checked!");
6782     Itr = InsertPair.first;
6783   }
6784 
6785   return Itr->second;
6786 }
6787 
6788 bool ScalarEvolution::loopIsFiniteByAssumption(const Loop *L) {
6789   // A mustprogress loop without side effects must be finite.
6790   // TODO: The check used here is very conservative.  It's only *specific*
6791   // side effects which are well defined in infinite loops.
6792   return isMustProgress(L) && loopHasNoSideEffects(L);
6793 }
6794 
6795 const SCEV *ScalarEvolution::createSCEV(Value *V) {
6796   if (!isSCEVable(V->getType()))
6797     return getUnknown(V);
6798 
6799   if (Instruction *I = dyn_cast<Instruction>(V)) {
6800     // Don't attempt to analyze instructions in blocks that aren't
6801     // reachable. Such instructions don't matter, and they aren't required
6802     // to obey basic rules for definitions dominating uses which this
6803     // analysis depends on.
6804     if (!DT.isReachableFromEntry(I->getParent()))
6805       return getUnknown(UndefValue::get(V->getType()));
6806   } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
6807     return getConstant(CI);
6808   else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
6809     return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee());
6810   else if (!isa<ConstantExpr>(V))
6811     return getUnknown(V);
6812 
6813   Operator *U = cast<Operator>(V);
6814   if (auto BO = MatchBinaryOp(U, DT)) {
6815     switch (BO->Opcode) {
6816     case Instruction::Add: {
6817       // The simple thing to do would be to just call getSCEV on both operands
6818       // and call getAddExpr with the result. However if we're looking at a
6819       // bunch of things all added together, this can be quite inefficient,
6820       // because it leads to N-1 getAddExpr calls for N ultimate operands.
6821       // Instead, gather up all the operands and make a single getAddExpr call.
6822       // LLVM IR canonical form means we need only traverse the left operands.
6823       SmallVector<const SCEV *, 4> AddOps;
6824       do {
6825         if (BO->Op) {
6826           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
6827             AddOps.push_back(OpSCEV);
6828             break;
6829           }
6830 
6831           // If a NUW or NSW flag can be applied to the SCEV for this
6832           // addition, then compute the SCEV for this addition by itself
6833           // with a separate call to getAddExpr. We need to do that
6834           // instead of pushing the operands of the addition onto AddOps,
6835           // since the flags are only known to apply to this particular
6836           // addition - they may not apply to other additions that can be
6837           // formed with operands from AddOps.
6838           const SCEV *RHS = getSCEV(BO->RHS);
6839           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
6840           if (Flags != SCEV::FlagAnyWrap) {
6841             const SCEV *LHS = getSCEV(BO->LHS);
6842             if (BO->Opcode == Instruction::Sub)
6843               AddOps.push_back(getMinusSCEV(LHS, RHS, Flags));
6844             else
6845               AddOps.push_back(getAddExpr(LHS, RHS, Flags));
6846             break;
6847           }
6848         }
6849 
6850         if (BO->Opcode == Instruction::Sub)
6851           AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS)));
6852         else
6853           AddOps.push_back(getSCEV(BO->RHS));
6854 
6855         auto NewBO = MatchBinaryOp(BO->LHS, DT);
6856         if (!NewBO || (NewBO->Opcode != Instruction::Add &&
6857                        NewBO->Opcode != Instruction::Sub)) {
6858           AddOps.push_back(getSCEV(BO->LHS));
6859           break;
6860         }
6861         BO = NewBO;
6862       } while (true);
6863 
6864       return getAddExpr(AddOps);
6865     }
6866 
6867     case Instruction::Mul: {
6868       SmallVector<const SCEV *, 4> MulOps;
6869       do {
6870         if (BO->Op) {
6871           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
6872             MulOps.push_back(OpSCEV);
6873             break;
6874           }
6875 
6876           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
6877           if (Flags != SCEV::FlagAnyWrap) {
6878             MulOps.push_back(
6879                 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags));
6880             break;
6881           }
6882         }
6883 
6884         MulOps.push_back(getSCEV(BO->RHS));
6885         auto NewBO = MatchBinaryOp(BO->LHS, DT);
6886         if (!NewBO || NewBO->Opcode != Instruction::Mul) {
6887           MulOps.push_back(getSCEV(BO->LHS));
6888           break;
6889         }
6890         BO = NewBO;
6891       } while (true);
6892 
6893       return getMulExpr(MulOps);
6894     }
6895     case Instruction::UDiv:
6896       return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
6897     case Instruction::URem:
6898       return getURemExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
6899     case Instruction::Sub: {
6900       SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
6901       if (BO->Op)
6902         Flags = getNoWrapFlagsFromUB(BO->Op);
6903       return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags);
6904     }
6905     case Instruction::And:
6906       // For an expression like x&255 that merely masks off the high bits,
6907       // use zext(trunc(x)) as the SCEV expression.
6908       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6909         if (CI->isZero())
6910           return getSCEV(BO->RHS);
6911         if (CI->isMinusOne())
6912           return getSCEV(BO->LHS);
6913         const APInt &A = CI->getValue();
6914 
6915         // Instcombine's ShrinkDemandedConstant may strip bits out of
6916         // constants, obscuring what would otherwise be a low-bits mask.
6917         // Use computeKnownBits to compute what ShrinkDemandedConstant
6918         // knew about to reconstruct a low-bits mask value.
6919         unsigned LZ = A.countLeadingZeros();
6920         unsigned TZ = A.countTrailingZeros();
6921         unsigned BitWidth = A.getBitWidth();
6922         KnownBits Known(BitWidth);
6923         computeKnownBits(BO->LHS, Known, getDataLayout(),
6924                          0, &AC, nullptr, &DT);
6925 
6926         APInt EffectiveMask =
6927             APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
6928         if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) {
6929           const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ));
6930           const SCEV *LHS = getSCEV(BO->LHS);
6931           const SCEV *ShiftedLHS = nullptr;
6932           if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) {
6933             if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) {
6934               // For an expression like (x * 8) & 8, simplify the multiply.
6935               unsigned MulZeros = OpC->getAPInt().countTrailingZeros();
6936               unsigned GCD = std::min(MulZeros, TZ);
6937               APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD);
6938               SmallVector<const SCEV*, 4> MulOps;
6939               MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD)));
6940               MulOps.append(LHSMul->op_begin() + 1, LHSMul->op_end());
6941               auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags());
6942               ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt));
6943             }
6944           }
6945           if (!ShiftedLHS)
6946             ShiftedLHS = getUDivExpr(LHS, MulCount);
6947           return getMulExpr(
6948               getZeroExtendExpr(
6949                   getTruncateExpr(ShiftedLHS,
6950                       IntegerType::get(getContext(), BitWidth - LZ - TZ)),
6951                   BO->LHS->getType()),
6952               MulCount);
6953         }
6954       }
6955       break;
6956 
6957     case Instruction::Or:
6958       // If the RHS of the Or is a constant, we may have something like:
6959       // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
6960       // optimizations will transparently handle this case.
6961       //
6962       // In order for this transformation to be safe, the LHS must be of the
6963       // form X*(2^n) and the Or constant must be less than 2^n.
6964       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6965         const SCEV *LHS = getSCEV(BO->LHS);
6966         const APInt &CIVal = CI->getValue();
6967         if (GetMinTrailingZeros(LHS) >=
6968             (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
6969           // Build a plain add SCEV.
6970           return getAddExpr(LHS, getSCEV(CI),
6971                             (SCEV::NoWrapFlags)(SCEV::FlagNUW | SCEV::FlagNSW));
6972         }
6973       }
6974       break;
6975 
6976     case Instruction::Xor:
6977       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6978         // If the RHS of xor is -1, then this is a not operation.
6979         if (CI->isMinusOne())
6980           return getNotSCEV(getSCEV(BO->LHS));
6981 
6982         // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
6983         // This is a variant of the check for xor with -1, and it handles
6984         // the case where instcombine has trimmed non-demanded bits out
6985         // of an xor with -1.
6986         if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS))
6987           if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1)))
6988             if (LBO->getOpcode() == Instruction::And &&
6989                 LCI->getValue() == CI->getValue())
6990               if (const SCEVZeroExtendExpr *Z =
6991                       dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) {
6992                 Type *UTy = BO->LHS->getType();
6993                 const SCEV *Z0 = Z->getOperand();
6994                 Type *Z0Ty = Z0->getType();
6995                 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
6996 
6997                 // If C is a low-bits mask, the zero extend is serving to
6998                 // mask off the high bits. Complement the operand and
6999                 // re-apply the zext.
7000                 if (CI->getValue().isMask(Z0TySize))
7001                   return getZeroExtendExpr(getNotSCEV(Z0), UTy);
7002 
7003                 // If C is a single bit, it may be in the sign-bit position
7004                 // before the zero-extend. In this case, represent the xor
7005                 // using an add, which is equivalent, and re-apply the zext.
7006                 APInt Trunc = CI->getValue().trunc(Z0TySize);
7007                 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
7008                     Trunc.isSignMask())
7009                   return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
7010                                            UTy);
7011               }
7012       }
7013       break;
7014 
7015     case Instruction::Shl:
7016       // Turn shift left of a constant amount into a multiply.
7017       if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) {
7018         uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth();
7019 
7020         // If the shift count is not less than the bitwidth, the result of
7021         // the shift is undefined. Don't try to analyze it, because the
7022         // resolution chosen here may differ from the resolution chosen in
7023         // other parts of the compiler.
7024         if (SA->getValue().uge(BitWidth))
7025           break;
7026 
7027         // We can safely preserve the nuw flag in all cases. It's also safe to
7028         // turn a nuw nsw shl into a nuw nsw mul. However, nsw in isolation
7029         // requires special handling. It can be preserved as long as we're not
7030         // left shifting by bitwidth - 1.
7031         auto Flags = SCEV::FlagAnyWrap;
7032         if (BO->Op) {
7033           auto MulFlags = getNoWrapFlagsFromUB(BO->Op);
7034           if ((MulFlags & SCEV::FlagNSW) &&
7035               ((MulFlags & SCEV::FlagNUW) || SA->getValue().ult(BitWidth - 1)))
7036             Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNSW);
7037           if (MulFlags & SCEV::FlagNUW)
7038             Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNUW);
7039         }
7040 
7041         Constant *X = ConstantInt::get(
7042             getContext(), APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
7043         return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags);
7044       }
7045       break;
7046 
7047     case Instruction::AShr: {
7048       // AShr X, C, where C is a constant.
7049       ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS);
7050       if (!CI)
7051         break;
7052 
7053       Type *OuterTy = BO->LHS->getType();
7054       uint64_t BitWidth = getTypeSizeInBits(OuterTy);
7055       // If the shift count is not less than the bitwidth, the result of
7056       // the shift is undefined. Don't try to analyze it, because the
7057       // resolution chosen here may differ from the resolution chosen in
7058       // other parts of the compiler.
7059       if (CI->getValue().uge(BitWidth))
7060         break;
7061 
7062       if (CI->isZero())
7063         return getSCEV(BO->LHS); // shift by zero --> noop
7064 
7065       uint64_t AShrAmt = CI->getZExtValue();
7066       Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt);
7067 
7068       Operator *L = dyn_cast<Operator>(BO->LHS);
7069       if (L && L->getOpcode() == Instruction::Shl) {
7070         // X = Shl A, n
7071         // Y = AShr X, m
7072         // Both n and m are constant.
7073 
7074         const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0));
7075         if (L->getOperand(1) == BO->RHS)
7076           // For a two-shift sext-inreg, i.e. n = m,
7077           // use sext(trunc(x)) as the SCEV expression.
7078           return getSignExtendExpr(
7079               getTruncateExpr(ShlOp0SCEV, TruncTy), OuterTy);
7080 
7081         ConstantInt *ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1));
7082         if (ShlAmtCI && ShlAmtCI->getValue().ult(BitWidth)) {
7083           uint64_t ShlAmt = ShlAmtCI->getZExtValue();
7084           if (ShlAmt > AShrAmt) {
7085             // When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV
7086             // expression. We already checked that ShlAmt < BitWidth, so
7087             // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as
7088             // ShlAmt - AShrAmt < Amt.
7089             APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt,
7090                                             ShlAmt - AShrAmt);
7091             return getSignExtendExpr(
7092                 getMulExpr(getTruncateExpr(ShlOp0SCEV, TruncTy),
7093                 getConstant(Mul)), OuterTy);
7094           }
7095         }
7096       }
7097       break;
7098     }
7099     }
7100   }
7101 
7102   switch (U->getOpcode()) {
7103   case Instruction::Trunc:
7104     return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
7105 
7106   case Instruction::ZExt:
7107     return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
7108 
7109   case Instruction::SExt:
7110     if (auto BO = MatchBinaryOp(U->getOperand(0), DT)) {
7111       // The NSW flag of a subtract does not always survive the conversion to
7112       // A + (-1)*B.  By pushing sign extension onto its operands we are much
7113       // more likely to preserve NSW and allow later AddRec optimisations.
7114       //
7115       // NOTE: This is effectively duplicating this logic from getSignExtend:
7116       //   sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
7117       // but by that point the NSW information has potentially been lost.
7118       if (BO->Opcode == Instruction::Sub && BO->IsNSW) {
7119         Type *Ty = U->getType();
7120         auto *V1 = getSignExtendExpr(getSCEV(BO->LHS), Ty);
7121         auto *V2 = getSignExtendExpr(getSCEV(BO->RHS), Ty);
7122         return getMinusSCEV(V1, V2, SCEV::FlagNSW);
7123       }
7124     }
7125     return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
7126 
7127   case Instruction::BitCast:
7128     // BitCasts are no-op casts so we just eliminate the cast.
7129     if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
7130       return getSCEV(U->getOperand(0));
7131     break;
7132 
7133   case Instruction::PtrToInt: {
7134     // Pointer to integer cast is straight-forward, so do model it.
7135     const SCEV *Op = getSCEV(U->getOperand(0));
7136     Type *DstIntTy = U->getType();
7137     // But only if effective SCEV (integer) type is wide enough to represent
7138     // all possible pointer values.
7139     const SCEV *IntOp = getPtrToIntExpr(Op, DstIntTy);
7140     if (isa<SCEVCouldNotCompute>(IntOp))
7141       return getUnknown(V);
7142     return IntOp;
7143   }
7144   case Instruction::IntToPtr:
7145     // Just don't deal with inttoptr casts.
7146     return getUnknown(V);
7147 
7148   case Instruction::SDiv:
7149     // If both operands are non-negative, this is just an udiv.
7150     if (isKnownNonNegative(getSCEV(U->getOperand(0))) &&
7151         isKnownNonNegative(getSCEV(U->getOperand(1))))
7152       return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)));
7153     break;
7154 
7155   case Instruction::SRem:
7156     // If both operands are non-negative, this is just an urem.
7157     if (isKnownNonNegative(getSCEV(U->getOperand(0))) &&
7158         isKnownNonNegative(getSCEV(U->getOperand(1))))
7159       return getURemExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)));
7160     break;
7161 
7162   case Instruction::GetElementPtr:
7163     return createNodeForGEP(cast<GEPOperator>(U));
7164 
7165   case Instruction::PHI:
7166     return createNodeForPHI(cast<PHINode>(U));
7167 
7168   case Instruction::Select:
7169     // U can also be a select constant expr, which let fall through.  Since
7170     // createNodeForSelect only works for a condition that is an `ICmpInst`, and
7171     // constant expressions cannot have instructions as operands, we'd have
7172     // returned getUnknown for a select constant expressions anyway.
7173     if (isa<Instruction>(U))
7174       return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0),
7175                                       U->getOperand(1), U->getOperand(2));
7176     break;
7177 
7178   case Instruction::Call:
7179   case Instruction::Invoke:
7180     if (Value *RV = cast<CallBase>(U)->getReturnedArgOperand())
7181       return getSCEV(RV);
7182 
7183     if (auto *II = dyn_cast<IntrinsicInst>(U)) {
7184       switch (II->getIntrinsicID()) {
7185       case Intrinsic::abs:
7186         return getAbsExpr(
7187             getSCEV(II->getArgOperand(0)),
7188             /*IsNSW=*/cast<ConstantInt>(II->getArgOperand(1))->isOne());
7189       case Intrinsic::umax:
7190         return getUMaxExpr(getSCEV(II->getArgOperand(0)),
7191                            getSCEV(II->getArgOperand(1)));
7192       case Intrinsic::umin:
7193         return getUMinExpr(getSCEV(II->getArgOperand(0)),
7194                            getSCEV(II->getArgOperand(1)));
7195       case Intrinsic::smax:
7196         return getSMaxExpr(getSCEV(II->getArgOperand(0)),
7197                            getSCEV(II->getArgOperand(1)));
7198       case Intrinsic::smin:
7199         return getSMinExpr(getSCEV(II->getArgOperand(0)),
7200                            getSCEV(II->getArgOperand(1)));
7201       case Intrinsic::usub_sat: {
7202         const SCEV *X = getSCEV(II->getArgOperand(0));
7203         const SCEV *Y = getSCEV(II->getArgOperand(1));
7204         const SCEV *ClampedY = getUMinExpr(X, Y);
7205         return getMinusSCEV(X, ClampedY, SCEV::FlagNUW);
7206       }
7207       case Intrinsic::uadd_sat: {
7208         const SCEV *X = getSCEV(II->getArgOperand(0));
7209         const SCEV *Y = getSCEV(II->getArgOperand(1));
7210         const SCEV *ClampedX = getUMinExpr(X, getNotSCEV(Y));
7211         return getAddExpr(ClampedX, Y, SCEV::FlagNUW);
7212       }
7213       case Intrinsic::start_loop_iterations:
7214         // A start_loop_iterations is just equivalent to the first operand for
7215         // SCEV purposes.
7216         return getSCEV(II->getArgOperand(0));
7217       default:
7218         break;
7219       }
7220     }
7221     break;
7222   }
7223 
7224   return getUnknown(V);
7225 }
7226 
7227 //===----------------------------------------------------------------------===//
7228 //                   Iteration Count Computation Code
7229 //
7230 
7231 const SCEV *ScalarEvolution::getTripCountFromExitCount(const SCEV *ExitCount,
7232                                                        bool Extend) {
7233   if (isa<SCEVCouldNotCompute>(ExitCount))
7234     return getCouldNotCompute();
7235 
7236   auto *ExitCountType = ExitCount->getType();
7237   assert(ExitCountType->isIntegerTy());
7238 
7239   if (!Extend)
7240     return getAddExpr(ExitCount, getOne(ExitCountType));
7241 
7242   auto *WiderType = Type::getIntNTy(ExitCountType->getContext(),
7243                                     1 + ExitCountType->getScalarSizeInBits());
7244   return getAddExpr(getNoopOrZeroExtend(ExitCount, WiderType),
7245                     getOne(WiderType));
7246 }
7247 
7248 static unsigned getConstantTripCount(const SCEVConstant *ExitCount) {
7249   if (!ExitCount)
7250     return 0;
7251 
7252   ConstantInt *ExitConst = ExitCount->getValue();
7253 
7254   // Guard against huge trip counts.
7255   if (ExitConst->getValue().getActiveBits() > 32)
7256     return 0;
7257 
7258   // In case of integer overflow, this returns 0, which is correct.
7259   return ((unsigned)ExitConst->getZExtValue()) + 1;
7260 }
7261 
7262 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) {
7263   auto *ExitCount = dyn_cast<SCEVConstant>(getBackedgeTakenCount(L, Exact));
7264   return getConstantTripCount(ExitCount);
7265 }
7266 
7267 unsigned
7268 ScalarEvolution::getSmallConstantTripCount(const Loop *L,
7269                                            const BasicBlock *ExitingBlock) {
7270   assert(ExitingBlock && "Must pass a non-null exiting block!");
7271   assert(L->isLoopExiting(ExitingBlock) &&
7272          "Exiting block must actually branch out of the loop!");
7273   const SCEVConstant *ExitCount =
7274       dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
7275   return getConstantTripCount(ExitCount);
7276 }
7277 
7278 unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) {
7279   const auto *MaxExitCount =
7280       dyn_cast<SCEVConstant>(getConstantMaxBackedgeTakenCount(L));
7281   return getConstantTripCount(MaxExitCount);
7282 }
7283 
7284 const SCEV *ScalarEvolution::getConstantMaxTripCountFromArray(const Loop *L) {
7285   // We can't infer from Array in Irregular Loop.
7286   // FIXME: It's hard to infer loop bound from array operated in Nested Loop.
7287   if (!L->isLoopSimplifyForm() || !L->isInnermost())
7288     return getCouldNotCompute();
7289 
7290   // FIXME: To make the scene more typical, we only analysis loops that have
7291   // one exiting block and that block must be the latch. To make it easier to
7292   // capture loops that have memory access and memory access will be executed
7293   // in each iteration.
7294   const BasicBlock *LoopLatch = L->getLoopLatch();
7295   assert(LoopLatch && "See defination of simplify form loop.");
7296   if (L->getExitingBlock() != LoopLatch)
7297     return getCouldNotCompute();
7298 
7299   const DataLayout &DL = getDataLayout();
7300   SmallVector<const SCEV *> InferCountColl;
7301   for (auto *BB : L->getBlocks()) {
7302     // Go here, we can know that Loop is a single exiting and simplified form
7303     // loop. Make sure that infer from Memory Operation in those BBs must be
7304     // executed in loop. First step, we can make sure that max execution time
7305     // of MemAccessBB in loop represents latch max excution time.
7306     // If MemAccessBB does not dom Latch, skip.
7307     //            Entry
7308     //              │
7309     //        ┌─────▼─────┐
7310     //        │Loop Header◄─────┐
7311     //        └──┬──────┬─┘     │
7312     //           │      │       │
7313     //  ┌────────▼──┐ ┌─▼─────┐ │
7314     //  │MemAccessBB│ │OtherBB│ │
7315     //  └────────┬──┘ └─┬─────┘ │
7316     //           │      │       │
7317     //         ┌─▼──────▼─┐     │
7318     //         │Loop Latch├─────┘
7319     //         └────┬─────┘
7320     //              ▼
7321     //             Exit
7322     if (!DT.dominates(BB, LoopLatch))
7323       continue;
7324 
7325     for (Instruction &Inst : *BB) {
7326       // Find Memory Operation Instruction.
7327       auto *GEP = getLoadStorePointerOperand(&Inst);
7328       if (!GEP)
7329         continue;
7330 
7331       auto *ElemSize = dyn_cast<SCEVConstant>(getElementSize(&Inst));
7332       // Do not infer from scalar type, eg."ElemSize = sizeof()".
7333       if (!ElemSize)
7334         continue;
7335 
7336       // Use a existing polynomial recurrence on the trip count.
7337       auto *AddRec = dyn_cast<SCEVAddRecExpr>(getSCEV(GEP));
7338       if (!AddRec)
7339         continue;
7340       auto *ArrBase = dyn_cast<SCEVUnknown>(getPointerBase(AddRec));
7341       auto *Step = dyn_cast<SCEVConstant>(AddRec->getStepRecurrence(*this));
7342       if (!ArrBase || !Step)
7343         continue;
7344       assert(isLoopInvariant(ArrBase, L) && "See addrec definition");
7345 
7346       // Only handle { %array + step },
7347       // FIXME: {(SCEVAddRecExpr) + step } could not be analysed here.
7348       if (AddRec->getStart() != ArrBase)
7349         continue;
7350 
7351       // Memory operation pattern which have gaps.
7352       // Or repeat memory opreation.
7353       // And index of GEP wraps arround.
7354       if (Step->getAPInt().getActiveBits() > 32 ||
7355           Step->getAPInt().getZExtValue() !=
7356               ElemSize->getAPInt().getZExtValue() ||
7357           Step->isZero() || Step->getAPInt().isNegative())
7358         continue;
7359 
7360       // Only infer from stack array which has certain size.
7361       // Make sure alloca instruction is not excuted in loop.
7362       AllocaInst *AllocateInst = dyn_cast<AllocaInst>(ArrBase->getValue());
7363       if (!AllocateInst || L->contains(AllocateInst->getParent()))
7364         continue;
7365 
7366       // Make sure only handle normal array.
7367       auto *Ty = dyn_cast<ArrayType>(AllocateInst->getAllocatedType());
7368       auto *ArrSize = dyn_cast<ConstantInt>(AllocateInst->getArraySize());
7369       if (!Ty || !ArrSize || !ArrSize->isOne())
7370         continue;
7371       // Also make sure step was increased the same with sizeof allocated
7372       // element type.
7373       const PointerType *GEPT = dyn_cast<PointerType>(GEP->getType());
7374       if (Ty->getElementType() != GEPT->getElementType())
7375         continue;
7376 
7377       // FIXME: Since gep indices are silently zext to the indexing type,
7378       // we will have a narrow gep index which wraps around rather than
7379       // increasing strictly, we shoule ensure that step is increasing
7380       // strictly by the loop iteration.
7381       // Now we can infer a max execution time by MemLength/StepLength.
7382       const SCEV *MemSize =
7383           getConstant(Step->getType(), DL.getTypeAllocSize(Ty));
7384       auto *MaxExeCount =
7385           dyn_cast<SCEVConstant>(getUDivCeilSCEV(MemSize, Step));
7386       if (!MaxExeCount || MaxExeCount->getAPInt().getActiveBits() > 32)
7387         continue;
7388 
7389       // If the loop reaches the maximum number of executions, we can not
7390       // access bytes starting outside the statically allocated size without
7391       // being immediate UB. But it is allowed to enter loop header one more
7392       // time.
7393       auto *InferCount = dyn_cast<SCEVConstant>(
7394           getAddExpr(MaxExeCount, getOne(MaxExeCount->getType())));
7395       // Discard the maximum number of execution times under 32bits.
7396       if (!InferCount || InferCount->getAPInt().getActiveBits() > 32)
7397         continue;
7398 
7399       InferCountColl.push_back(InferCount);
7400     }
7401   }
7402 
7403   if (InferCountColl.size() == 0)
7404     return getCouldNotCompute();
7405 
7406   return getUMinFromMismatchedTypes(InferCountColl);
7407 }
7408 
7409 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) {
7410   SmallVector<BasicBlock *, 8> ExitingBlocks;
7411   L->getExitingBlocks(ExitingBlocks);
7412 
7413   Optional<unsigned> Res = None;
7414   for (auto *ExitingBB : ExitingBlocks) {
7415     unsigned Multiple = getSmallConstantTripMultiple(L, ExitingBB);
7416     if (!Res)
7417       Res = Multiple;
7418     Res = (unsigned)GreatestCommonDivisor64(*Res, Multiple);
7419   }
7420   return Res.getValueOr(1);
7421 }
7422 
7423 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L,
7424                                                        const SCEV *ExitCount) {
7425   if (ExitCount == getCouldNotCompute())
7426     return 1;
7427 
7428   // Get the trip count
7429   const SCEV *TCExpr = getTripCountFromExitCount(ExitCount);
7430 
7431   const SCEVConstant *TC = dyn_cast<SCEVConstant>(TCExpr);
7432   if (!TC)
7433     // Attempt to factor more general cases. Returns the greatest power of
7434     // two divisor. If overflow happens, the trip count expression is still
7435     // divisible by the greatest power of 2 divisor returned.
7436     return 1U << std::min((uint32_t)31,
7437                           GetMinTrailingZeros(applyLoopGuards(TCExpr, L)));
7438 
7439   ConstantInt *Result = TC->getValue();
7440 
7441   // Guard against huge trip counts (this requires checking
7442   // for zero to handle the case where the trip count == -1 and the
7443   // addition wraps).
7444   if (!Result || Result->getValue().getActiveBits() > 32 ||
7445       Result->getValue().getActiveBits() == 0)
7446     return 1;
7447 
7448   return (unsigned)Result->getZExtValue();
7449 }
7450 
7451 /// Returns the largest constant divisor of the trip count of this loop as a
7452 /// normal unsigned value, if possible. This means that the actual trip count is
7453 /// always a multiple of the returned value (don't forget the trip count could
7454 /// very well be zero as well!).
7455 ///
7456 /// Returns 1 if the trip count is unknown or not guaranteed to be the
7457 /// multiple of a constant (which is also the case if the trip count is simply
7458 /// constant, use getSmallConstantTripCount for that case), Will also return 1
7459 /// if the trip count is very large (>= 2^32).
7460 ///
7461 /// As explained in the comments for getSmallConstantTripCount, this assumes
7462 /// that control exits the loop via ExitingBlock.
7463 unsigned
7464 ScalarEvolution::getSmallConstantTripMultiple(const Loop *L,
7465                                               const BasicBlock *ExitingBlock) {
7466   assert(ExitingBlock && "Must pass a non-null exiting block!");
7467   assert(L->isLoopExiting(ExitingBlock) &&
7468          "Exiting block must actually branch out of the loop!");
7469   const SCEV *ExitCount = getExitCount(L, ExitingBlock);
7470   return getSmallConstantTripMultiple(L, ExitCount);
7471 }
7472 
7473 const SCEV *ScalarEvolution::getExitCount(const Loop *L,
7474                                           const BasicBlock *ExitingBlock,
7475                                           ExitCountKind Kind) {
7476   switch (Kind) {
7477   case Exact:
7478   case SymbolicMaximum:
7479     return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
7480   case ConstantMaximum:
7481     return getBackedgeTakenInfo(L).getConstantMax(ExitingBlock, this);
7482   };
7483   llvm_unreachable("Invalid ExitCountKind!");
7484 }
7485 
7486 const SCEV *
7487 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L,
7488                                                  SCEVUnionPredicate &Preds) {
7489   return getPredicatedBackedgeTakenInfo(L).getExact(L, this, &Preds);
7490 }
7491 
7492 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L,
7493                                                    ExitCountKind Kind) {
7494   switch (Kind) {
7495   case Exact:
7496     return getBackedgeTakenInfo(L).getExact(L, this);
7497   case ConstantMaximum:
7498     return getBackedgeTakenInfo(L).getConstantMax(this);
7499   case SymbolicMaximum:
7500     return getBackedgeTakenInfo(L).getSymbolicMax(L, this);
7501   };
7502   llvm_unreachable("Invalid ExitCountKind!");
7503 }
7504 
7505 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) {
7506   return getBackedgeTakenInfo(L).isConstantMaxOrZero(this);
7507 }
7508 
7509 /// Push PHI nodes in the header of the given loop onto the given Worklist.
7510 static void PushLoopPHIs(const Loop *L,
7511                          SmallVectorImpl<Instruction *> &Worklist,
7512                          SmallPtrSetImpl<Instruction *> &Visited) {
7513   BasicBlock *Header = L->getHeader();
7514 
7515   // Push all Loop-header PHIs onto the Worklist stack.
7516   for (PHINode &PN : Header->phis())
7517     if (Visited.insert(&PN).second)
7518       Worklist.push_back(&PN);
7519 }
7520 
7521 const ScalarEvolution::BackedgeTakenInfo &
7522 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) {
7523   auto &BTI = getBackedgeTakenInfo(L);
7524   if (BTI.hasFullInfo())
7525     return BTI;
7526 
7527   auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
7528 
7529   if (!Pair.second)
7530     return Pair.first->second;
7531 
7532   BackedgeTakenInfo Result =
7533       computeBackedgeTakenCount(L, /*AllowPredicates=*/true);
7534 
7535   return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result);
7536 }
7537 
7538 ScalarEvolution::BackedgeTakenInfo &
7539 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
7540   // Initially insert an invalid entry for this loop. If the insertion
7541   // succeeds, proceed to actually compute a backedge-taken count and
7542   // update the value. The temporary CouldNotCompute value tells SCEV
7543   // code elsewhere that it shouldn't attempt to request a new
7544   // backedge-taken count, which could result in infinite recursion.
7545   std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
7546       BackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
7547   if (!Pair.second)
7548     return Pair.first->second;
7549 
7550   // computeBackedgeTakenCount may allocate memory for its result. Inserting it
7551   // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
7552   // must be cleared in this scope.
7553   BackedgeTakenInfo Result = computeBackedgeTakenCount(L);
7554 
7555   // In product build, there are no usage of statistic.
7556   (void)NumTripCountsComputed;
7557   (void)NumTripCountsNotComputed;
7558 #if LLVM_ENABLE_STATS || !defined(NDEBUG)
7559   const SCEV *BEExact = Result.getExact(L, this);
7560   if (BEExact != getCouldNotCompute()) {
7561     assert(isLoopInvariant(BEExact, L) &&
7562            isLoopInvariant(Result.getConstantMax(this), L) &&
7563            "Computed backedge-taken count isn't loop invariant for loop!");
7564     ++NumTripCountsComputed;
7565   } else if (Result.getConstantMax(this) == getCouldNotCompute() &&
7566              isa<PHINode>(L->getHeader()->begin())) {
7567     // Only count loops that have phi nodes as not being computable.
7568     ++NumTripCountsNotComputed;
7569   }
7570 #endif // LLVM_ENABLE_STATS || !defined(NDEBUG)
7571 
7572   // Now that we know more about the trip count for this loop, forget any
7573   // existing SCEV values for PHI nodes in this loop since they are only
7574   // conservative estimates made without the benefit of trip count
7575   // information. This invalidation is not necessary for correctness, and is
7576   // only done to produce more precise results.
7577   if (Result.hasAnyInfo()) {
7578     // Invalidate any expression using an addrec in this loop.
7579     SmallVector<const SCEV *, 8> ToForget;
7580     auto LoopUsersIt = LoopUsers.find(L);
7581     if (LoopUsersIt != LoopUsers.end())
7582       append_range(ToForget, LoopUsersIt->second);
7583     forgetMemoizedResults(ToForget);
7584 
7585     // Invalidate constant-evolved loop header phis.
7586     for (PHINode &PN : L->getHeader()->phis())
7587       ConstantEvolutionLoopExitValue.erase(&PN);
7588   }
7589 
7590   // Re-lookup the insert position, since the call to
7591   // computeBackedgeTakenCount above could result in a
7592   // recusive call to getBackedgeTakenInfo (on a different
7593   // loop), which would invalidate the iterator computed
7594   // earlier.
7595   return BackedgeTakenCounts.find(L)->second = std::move(Result);
7596 }
7597 
7598 void ScalarEvolution::forgetAllLoops() {
7599   // This method is intended to forget all info about loops. It should
7600   // invalidate caches as if the following happened:
7601   // - The trip counts of all loops have changed arbitrarily
7602   // - Every llvm::Value has been updated in place to produce a different
7603   // result.
7604   BackedgeTakenCounts.clear();
7605   PredicatedBackedgeTakenCounts.clear();
7606   BECountUsers.clear();
7607   LoopPropertiesCache.clear();
7608   ConstantEvolutionLoopExitValue.clear();
7609   ValueExprMap.clear();
7610   ValuesAtScopes.clear();
7611   ValuesAtScopesUsers.clear();
7612   LoopDispositions.clear();
7613   BlockDispositions.clear();
7614   UnsignedRanges.clear();
7615   SignedRanges.clear();
7616   ExprValueMap.clear();
7617   HasRecMap.clear();
7618   MinTrailingZerosCache.clear();
7619   PredicatedSCEVRewrites.clear();
7620 }
7621 
7622 void ScalarEvolution::forgetLoop(const Loop *L) {
7623   SmallVector<const Loop *, 16> LoopWorklist(1, L);
7624   SmallVector<Instruction *, 32> Worklist;
7625   SmallPtrSet<Instruction *, 16> Visited;
7626   SmallVector<const SCEV *, 16> ToForget;
7627 
7628   // Iterate over all the loops and sub-loops to drop SCEV information.
7629   while (!LoopWorklist.empty()) {
7630     auto *CurrL = LoopWorklist.pop_back_val();
7631 
7632     // Drop any stored trip count value.
7633     forgetBackedgeTakenCounts(CurrL, /* Predicated */ false);
7634     forgetBackedgeTakenCounts(CurrL, /* Predicated */ true);
7635 
7636     // Drop information about predicated SCEV rewrites for this loop.
7637     for (auto I = PredicatedSCEVRewrites.begin();
7638          I != PredicatedSCEVRewrites.end();) {
7639       std::pair<const SCEV *, const Loop *> Entry = I->first;
7640       if (Entry.second == CurrL)
7641         PredicatedSCEVRewrites.erase(I++);
7642       else
7643         ++I;
7644     }
7645 
7646     auto LoopUsersItr = LoopUsers.find(CurrL);
7647     if (LoopUsersItr != LoopUsers.end()) {
7648       ToForget.insert(ToForget.end(), LoopUsersItr->second.begin(),
7649                 LoopUsersItr->second.end());
7650       LoopUsers.erase(LoopUsersItr);
7651     }
7652 
7653     // Drop information about expressions based on loop-header PHIs.
7654     PushLoopPHIs(CurrL, Worklist, Visited);
7655 
7656     while (!Worklist.empty()) {
7657       Instruction *I = Worklist.pop_back_val();
7658 
7659       ValueExprMapType::iterator It =
7660           ValueExprMap.find_as(static_cast<Value *>(I));
7661       if (It != ValueExprMap.end()) {
7662         eraseValueFromMap(It->first);
7663         ToForget.push_back(It->second);
7664         if (PHINode *PN = dyn_cast<PHINode>(I))
7665           ConstantEvolutionLoopExitValue.erase(PN);
7666       }
7667 
7668       PushDefUseChildren(I, Worklist, Visited);
7669     }
7670 
7671     LoopPropertiesCache.erase(CurrL);
7672     // Forget all contained loops too, to avoid dangling entries in the
7673     // ValuesAtScopes map.
7674     LoopWorklist.append(CurrL->begin(), CurrL->end());
7675   }
7676   forgetMemoizedResults(ToForget);
7677 }
7678 
7679 void ScalarEvolution::forgetTopmostLoop(const Loop *L) {
7680   while (Loop *Parent = L->getParentLoop())
7681     L = Parent;
7682   forgetLoop(L);
7683 }
7684 
7685 void ScalarEvolution::forgetValue(Value *V) {
7686   Instruction *I = dyn_cast<Instruction>(V);
7687   if (!I) return;
7688 
7689   // Drop information about expressions based on loop-header PHIs.
7690   SmallVector<Instruction *, 16> Worklist;
7691   SmallPtrSet<Instruction *, 8> Visited;
7692   SmallVector<const SCEV *, 8> ToForget;
7693   Worklist.push_back(I);
7694   Visited.insert(I);
7695 
7696   while (!Worklist.empty()) {
7697     I = Worklist.pop_back_val();
7698     ValueExprMapType::iterator It =
7699       ValueExprMap.find_as(static_cast<Value *>(I));
7700     if (It != ValueExprMap.end()) {
7701       eraseValueFromMap(It->first);
7702       ToForget.push_back(It->second);
7703       if (PHINode *PN = dyn_cast<PHINode>(I))
7704         ConstantEvolutionLoopExitValue.erase(PN);
7705     }
7706 
7707     PushDefUseChildren(I, Worklist, Visited);
7708   }
7709   forgetMemoizedResults(ToForget);
7710 }
7711 
7712 void ScalarEvolution::forgetLoopDispositions(const Loop *L) {
7713   LoopDispositions.clear();
7714 }
7715 
7716 /// Get the exact loop backedge taken count considering all loop exits. A
7717 /// computable result can only be returned for loops with all exiting blocks
7718 /// dominating the latch. howFarToZero assumes that the limit of each loop test
7719 /// is never skipped. This is a valid assumption as long as the loop exits via
7720 /// that test. For precise results, it is the caller's responsibility to specify
7721 /// the relevant loop exiting block using getExact(ExitingBlock, SE).
7722 const SCEV *
7723 ScalarEvolution::BackedgeTakenInfo::getExact(const Loop *L, ScalarEvolution *SE,
7724                                              SCEVUnionPredicate *Preds) const {
7725   // If any exits were not computable, the loop is not computable.
7726   if (!isComplete() || ExitNotTaken.empty())
7727     return SE->getCouldNotCompute();
7728 
7729   const BasicBlock *Latch = L->getLoopLatch();
7730   // All exiting blocks we have collected must dominate the only backedge.
7731   if (!Latch)
7732     return SE->getCouldNotCompute();
7733 
7734   // All exiting blocks we have gathered dominate loop's latch, so exact trip
7735   // count is simply a minimum out of all these calculated exit counts.
7736   SmallVector<const SCEV *, 2> Ops;
7737   for (auto &ENT : ExitNotTaken) {
7738     const SCEV *BECount = ENT.ExactNotTaken;
7739     assert(BECount != SE->getCouldNotCompute() && "Bad exit SCEV!");
7740     assert(SE->DT.dominates(ENT.ExitingBlock, Latch) &&
7741            "We should only have known counts for exiting blocks that dominate "
7742            "latch!");
7743 
7744     Ops.push_back(BECount);
7745 
7746     if (Preds && !ENT.hasAlwaysTruePredicate())
7747       Preds->add(ENT.Predicate.get());
7748 
7749     assert((Preds || ENT.hasAlwaysTruePredicate()) &&
7750            "Predicate should be always true!");
7751   }
7752 
7753   return SE->getUMinFromMismatchedTypes(Ops);
7754 }
7755 
7756 /// Get the exact not taken count for this loop exit.
7757 const SCEV *
7758 ScalarEvolution::BackedgeTakenInfo::getExact(const BasicBlock *ExitingBlock,
7759                                              ScalarEvolution *SE) const {
7760   for (auto &ENT : ExitNotTaken)
7761     if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
7762       return ENT.ExactNotTaken;
7763 
7764   return SE->getCouldNotCompute();
7765 }
7766 
7767 const SCEV *ScalarEvolution::BackedgeTakenInfo::getConstantMax(
7768     const BasicBlock *ExitingBlock, ScalarEvolution *SE) const {
7769   for (auto &ENT : ExitNotTaken)
7770     if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
7771       return ENT.MaxNotTaken;
7772 
7773   return SE->getCouldNotCompute();
7774 }
7775 
7776 /// getConstantMax - Get the constant max backedge taken count for the loop.
7777 const SCEV *
7778 ScalarEvolution::BackedgeTakenInfo::getConstantMax(ScalarEvolution *SE) const {
7779   auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
7780     return !ENT.hasAlwaysTruePredicate();
7781   };
7782 
7783   if (!getConstantMax() || any_of(ExitNotTaken, PredicateNotAlwaysTrue))
7784     return SE->getCouldNotCompute();
7785 
7786   assert((isa<SCEVCouldNotCompute>(getConstantMax()) ||
7787           isa<SCEVConstant>(getConstantMax())) &&
7788          "No point in having a non-constant max backedge taken count!");
7789   return getConstantMax();
7790 }
7791 
7792 const SCEV *
7793 ScalarEvolution::BackedgeTakenInfo::getSymbolicMax(const Loop *L,
7794                                                    ScalarEvolution *SE) {
7795   if (!SymbolicMax)
7796     SymbolicMax = SE->computeSymbolicMaxBackedgeTakenCount(L);
7797   return SymbolicMax;
7798 }
7799 
7800 bool ScalarEvolution::BackedgeTakenInfo::isConstantMaxOrZero(
7801     ScalarEvolution *SE) const {
7802   auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
7803     return !ENT.hasAlwaysTruePredicate();
7804   };
7805   return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue);
7806 }
7807 
7808 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E)
7809     : ExitLimit(E, E, false, None) {
7810 }
7811 
7812 ScalarEvolution::ExitLimit::ExitLimit(
7813     const SCEV *E, const SCEV *M, bool MaxOrZero,
7814     ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList)
7815     : ExactNotTaken(E), MaxNotTaken(M), MaxOrZero(MaxOrZero) {
7816   // If we prove the max count is zero, so is the symbolic bound.  This happens
7817   // in practice due to differences in a) how context sensitive we've chosen
7818   // to be and b) how we reason about bounds impied by UB.
7819   if (MaxNotTaken->isZero())
7820     ExactNotTaken = MaxNotTaken;
7821 
7822   assert((isa<SCEVCouldNotCompute>(ExactNotTaken) ||
7823           !isa<SCEVCouldNotCompute>(MaxNotTaken)) &&
7824          "Exact is not allowed to be less precise than Max");
7825   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
7826           isa<SCEVConstant>(MaxNotTaken)) &&
7827          "No point in having a non-constant max backedge taken count!");
7828   for (auto *PredSet : PredSetList)
7829     for (auto *P : *PredSet)
7830       addPredicate(P);
7831   assert((isa<SCEVCouldNotCompute>(E) || !E->getType()->isPointerTy()) &&
7832          "Backedge count should be int");
7833   assert((isa<SCEVCouldNotCompute>(M) || !M->getType()->isPointerTy()) &&
7834          "Max backedge count should be int");
7835 }
7836 
7837 ScalarEvolution::ExitLimit::ExitLimit(
7838     const SCEV *E, const SCEV *M, bool MaxOrZero,
7839     const SmallPtrSetImpl<const SCEVPredicate *> &PredSet)
7840     : ExitLimit(E, M, MaxOrZero, {&PredSet}) {
7841 }
7842 
7843 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E, const SCEV *M,
7844                                       bool MaxOrZero)
7845     : ExitLimit(E, M, MaxOrZero, None) {
7846 }
7847 
7848 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
7849 /// computable exit into a persistent ExitNotTakenInfo array.
7850 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
7851     ArrayRef<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo> ExitCounts,
7852     bool IsComplete, const SCEV *ConstantMax, bool MaxOrZero)
7853     : ConstantMax(ConstantMax), IsComplete(IsComplete), MaxOrZero(MaxOrZero) {
7854   using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
7855 
7856   ExitNotTaken.reserve(ExitCounts.size());
7857   std::transform(
7858       ExitCounts.begin(), ExitCounts.end(), std::back_inserter(ExitNotTaken),
7859       [&](const EdgeExitInfo &EEI) {
7860         BasicBlock *ExitBB = EEI.first;
7861         const ExitLimit &EL = EEI.second;
7862         if (EL.Predicates.empty())
7863           return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken,
7864                                   nullptr);
7865 
7866         std::unique_ptr<SCEVUnionPredicate> Predicate(new SCEVUnionPredicate);
7867         for (auto *Pred : EL.Predicates)
7868           Predicate->add(Pred);
7869 
7870         return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken,
7871                                 std::move(Predicate));
7872       });
7873   assert((isa<SCEVCouldNotCompute>(ConstantMax) ||
7874           isa<SCEVConstant>(ConstantMax)) &&
7875          "No point in having a non-constant max backedge taken count!");
7876 }
7877 
7878 /// Compute the number of times the backedge of the specified loop will execute.
7879 ScalarEvolution::BackedgeTakenInfo
7880 ScalarEvolution::computeBackedgeTakenCount(const Loop *L,
7881                                            bool AllowPredicates) {
7882   SmallVector<BasicBlock *, 8> ExitingBlocks;
7883   L->getExitingBlocks(ExitingBlocks);
7884 
7885   using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
7886 
7887   SmallVector<EdgeExitInfo, 4> ExitCounts;
7888   bool CouldComputeBECount = true;
7889   BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
7890   const SCEV *MustExitMaxBECount = nullptr;
7891   const SCEV *MayExitMaxBECount = nullptr;
7892   bool MustExitMaxOrZero = false;
7893 
7894   // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
7895   // and compute maxBECount.
7896   // Do a union of all the predicates here.
7897   for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
7898     BasicBlock *ExitBB = ExitingBlocks[i];
7899 
7900     // We canonicalize untaken exits to br (constant), ignore them so that
7901     // proving an exit untaken doesn't negatively impact our ability to reason
7902     // about the loop as whole.
7903     if (auto *BI = dyn_cast<BranchInst>(ExitBB->getTerminator()))
7904       if (auto *CI = dyn_cast<ConstantInt>(BI->getCondition())) {
7905         bool ExitIfTrue = !L->contains(BI->getSuccessor(0));
7906         if (ExitIfTrue == CI->isZero())
7907           continue;
7908       }
7909 
7910     ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates);
7911 
7912     assert((AllowPredicates || EL.Predicates.empty()) &&
7913            "Predicated exit limit when predicates are not allowed!");
7914 
7915     // 1. For each exit that can be computed, add an entry to ExitCounts.
7916     // CouldComputeBECount is true only if all exits can be computed.
7917     if (EL.ExactNotTaken == getCouldNotCompute())
7918       // We couldn't compute an exact value for this exit, so
7919       // we won't be able to compute an exact value for the loop.
7920       CouldComputeBECount = false;
7921     else
7922       ExitCounts.emplace_back(ExitBB, EL);
7923 
7924     // 2. Derive the loop's MaxBECount from each exit's max number of
7925     // non-exiting iterations. Partition the loop exits into two kinds:
7926     // LoopMustExits and LoopMayExits.
7927     //
7928     // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
7929     // is a LoopMayExit.  If any computable LoopMustExit is found, then
7930     // MaxBECount is the minimum EL.MaxNotTaken of computable
7931     // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum
7932     // EL.MaxNotTaken, where CouldNotCompute is considered greater than any
7933     // computable EL.MaxNotTaken.
7934     if (EL.MaxNotTaken != getCouldNotCompute() && Latch &&
7935         DT.dominates(ExitBB, Latch)) {
7936       if (!MustExitMaxBECount) {
7937         MustExitMaxBECount = EL.MaxNotTaken;
7938         MustExitMaxOrZero = EL.MaxOrZero;
7939       } else {
7940         MustExitMaxBECount =
7941             getUMinFromMismatchedTypes(MustExitMaxBECount, EL.MaxNotTaken);
7942       }
7943     } else if (MayExitMaxBECount != getCouldNotCompute()) {
7944       if (!MayExitMaxBECount || EL.MaxNotTaken == getCouldNotCompute())
7945         MayExitMaxBECount = EL.MaxNotTaken;
7946       else {
7947         MayExitMaxBECount =
7948             getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.MaxNotTaken);
7949       }
7950     }
7951   }
7952   const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
7953     (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
7954   // The loop backedge will be taken the maximum or zero times if there's
7955   // a single exit that must be taken the maximum or zero times.
7956   bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1);
7957 
7958   // Remember which SCEVs are used in exit limits for invalidation purposes.
7959   // We only care about non-constant SCEVs here, so we can ignore EL.MaxNotTaken
7960   // and MaxBECount, which must be SCEVConstant.
7961   for (const auto &Pair : ExitCounts)
7962     if (!isa<SCEVConstant>(Pair.second.ExactNotTaken))
7963       BECountUsers[Pair.second.ExactNotTaken].insert({L, AllowPredicates});
7964   return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount,
7965                            MaxBECount, MaxOrZero);
7966 }
7967 
7968 ScalarEvolution::ExitLimit
7969 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock,
7970                                       bool AllowPredicates) {
7971   assert(L->contains(ExitingBlock) && "Exit count for non-loop block?");
7972   // If our exiting block does not dominate the latch, then its connection with
7973   // loop's exit limit may be far from trivial.
7974   const BasicBlock *Latch = L->getLoopLatch();
7975   if (!Latch || !DT.dominates(ExitingBlock, Latch))
7976     return getCouldNotCompute();
7977 
7978   bool IsOnlyExit = (L->getExitingBlock() != nullptr);
7979   Instruction *Term = ExitingBlock->getTerminator();
7980   if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
7981     assert(BI->isConditional() && "If unconditional, it can't be in loop!");
7982     bool ExitIfTrue = !L->contains(BI->getSuccessor(0));
7983     assert(ExitIfTrue == L->contains(BI->getSuccessor(1)) &&
7984            "It should have one successor in loop and one exit block!");
7985     // Proceed to the next level to examine the exit condition expression.
7986     return computeExitLimitFromCond(
7987         L, BI->getCondition(), ExitIfTrue,
7988         /*ControlsExit=*/IsOnlyExit, AllowPredicates);
7989   }
7990 
7991   if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) {
7992     // For switch, make sure that there is a single exit from the loop.
7993     BasicBlock *Exit = nullptr;
7994     for (auto *SBB : successors(ExitingBlock))
7995       if (!L->contains(SBB)) {
7996         if (Exit) // Multiple exit successors.
7997           return getCouldNotCompute();
7998         Exit = SBB;
7999       }
8000     assert(Exit && "Exiting block must have at least one exit");
8001     return computeExitLimitFromSingleExitSwitch(L, SI, Exit,
8002                                                 /*ControlsExit=*/IsOnlyExit);
8003   }
8004 
8005   return getCouldNotCompute();
8006 }
8007 
8008 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond(
8009     const Loop *L, Value *ExitCond, bool ExitIfTrue,
8010     bool ControlsExit, bool AllowPredicates) {
8011   ScalarEvolution::ExitLimitCacheTy Cache(L, ExitIfTrue, AllowPredicates);
8012   return computeExitLimitFromCondCached(Cache, L, ExitCond, ExitIfTrue,
8013                                         ControlsExit, AllowPredicates);
8014 }
8015 
8016 Optional<ScalarEvolution::ExitLimit>
8017 ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond,
8018                                       bool ExitIfTrue, bool ControlsExit,
8019                                       bool AllowPredicates) {
8020   (void)this->L;
8021   (void)this->ExitIfTrue;
8022   (void)this->AllowPredicates;
8023 
8024   assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
8025          this->AllowPredicates == AllowPredicates &&
8026          "Variance in assumed invariant key components!");
8027   auto Itr = TripCountMap.find({ExitCond, ControlsExit});
8028   if (Itr == TripCountMap.end())
8029     return None;
8030   return Itr->second;
8031 }
8032 
8033 void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond,
8034                                              bool ExitIfTrue,
8035                                              bool ControlsExit,
8036                                              bool AllowPredicates,
8037                                              const ExitLimit &EL) {
8038   assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
8039          this->AllowPredicates == AllowPredicates &&
8040          "Variance in assumed invariant key components!");
8041 
8042   auto InsertResult = TripCountMap.insert({{ExitCond, ControlsExit}, EL});
8043   assert(InsertResult.second && "Expected successful insertion!");
8044   (void)InsertResult;
8045   (void)ExitIfTrue;
8046 }
8047 
8048 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached(
8049     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
8050     bool ControlsExit, bool AllowPredicates) {
8051 
8052   if (auto MaybeEL =
8053           Cache.find(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates))
8054     return *MaybeEL;
8055 
8056   ExitLimit EL = computeExitLimitFromCondImpl(Cache, L, ExitCond, ExitIfTrue,
8057                                               ControlsExit, AllowPredicates);
8058   Cache.insert(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates, EL);
8059   return EL;
8060 }
8061 
8062 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl(
8063     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
8064     bool ControlsExit, bool AllowPredicates) {
8065   // Handle BinOp conditions (And, Or).
8066   if (auto LimitFromBinOp = computeExitLimitFromCondFromBinOp(
8067           Cache, L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates))
8068     return *LimitFromBinOp;
8069 
8070   // With an icmp, it may be feasible to compute an exact backedge-taken count.
8071   // Proceed to the next level to examine the icmp.
8072   if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) {
8073     ExitLimit EL =
8074         computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit);
8075     if (EL.hasFullInfo() || !AllowPredicates)
8076       return EL;
8077 
8078     // Try again, but use SCEV predicates this time.
8079     return computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit,
8080                                     /*AllowPredicates=*/true);
8081   }
8082 
8083   // Check for a constant condition. These are normally stripped out by
8084   // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
8085   // preserve the CFG and is temporarily leaving constant conditions
8086   // in place.
8087   if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
8088     if (ExitIfTrue == !CI->getZExtValue())
8089       // The backedge is always taken.
8090       return getCouldNotCompute();
8091     else
8092       // The backedge is never taken.
8093       return getZero(CI->getType());
8094   }
8095 
8096   // If it's not an integer or pointer comparison then compute it the hard way.
8097   return computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
8098 }
8099 
8100 Optional<ScalarEvolution::ExitLimit>
8101 ScalarEvolution::computeExitLimitFromCondFromBinOp(
8102     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
8103     bool ControlsExit, bool AllowPredicates) {
8104   // Check if the controlling expression for this loop is an And or Or.
8105   Value *Op0, *Op1;
8106   bool IsAnd = false;
8107   if (match(ExitCond, m_LogicalAnd(m_Value(Op0), m_Value(Op1))))
8108     IsAnd = true;
8109   else if (match(ExitCond, m_LogicalOr(m_Value(Op0), m_Value(Op1))))
8110     IsAnd = false;
8111   else
8112     return None;
8113 
8114   // EitherMayExit is true in these two cases:
8115   //   br (and Op0 Op1), loop, exit
8116   //   br (or  Op0 Op1), exit, loop
8117   bool EitherMayExit = IsAnd ^ ExitIfTrue;
8118   ExitLimit EL0 = computeExitLimitFromCondCached(Cache, L, Op0, ExitIfTrue,
8119                                                  ControlsExit && !EitherMayExit,
8120                                                  AllowPredicates);
8121   ExitLimit EL1 = computeExitLimitFromCondCached(Cache, L, Op1, ExitIfTrue,
8122                                                  ControlsExit && !EitherMayExit,
8123                                                  AllowPredicates);
8124 
8125   // Be robust against unsimplified IR for the form "op i1 X, NeutralElement"
8126   const Constant *NeutralElement = ConstantInt::get(ExitCond->getType(), IsAnd);
8127   if (isa<ConstantInt>(Op1))
8128     return Op1 == NeutralElement ? EL0 : EL1;
8129   if (isa<ConstantInt>(Op0))
8130     return Op0 == NeutralElement ? EL1 : EL0;
8131 
8132   const SCEV *BECount = getCouldNotCompute();
8133   const SCEV *MaxBECount = getCouldNotCompute();
8134   if (EitherMayExit) {
8135     // Both conditions must be same for the loop to continue executing.
8136     // Choose the less conservative count.
8137     // If ExitCond is a short-circuit form (select), using
8138     // umin(EL0.ExactNotTaken, EL1.ExactNotTaken) is unsafe in general.
8139     // To see the detailed examples, please see
8140     // test/Analysis/ScalarEvolution/exit-count-select.ll
8141     bool PoisonSafe = isa<BinaryOperator>(ExitCond);
8142     if (!PoisonSafe)
8143       // Even if ExitCond is select, we can safely derive BECount using both
8144       // EL0 and EL1 in these cases:
8145       // (1) EL0.ExactNotTaken is non-zero
8146       // (2) EL1.ExactNotTaken is non-poison
8147       // (3) EL0.ExactNotTaken is zero (BECount should be simply zero and
8148       //     it cannot be umin(0, ..))
8149       // The PoisonSafe assignment below is simplified and the assertion after
8150       // BECount calculation fully guarantees the condition (3).
8151       PoisonSafe = isa<SCEVConstant>(EL0.ExactNotTaken) ||
8152                    isa<SCEVConstant>(EL1.ExactNotTaken);
8153     if (EL0.ExactNotTaken != getCouldNotCompute() &&
8154         EL1.ExactNotTaken != getCouldNotCompute() && PoisonSafe) {
8155       BECount =
8156           getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken);
8157 
8158       // If EL0.ExactNotTaken was zero and ExitCond was a short-circuit form,
8159       // it should have been simplified to zero (see the condition (3) above)
8160       assert(!isa<BinaryOperator>(ExitCond) || !EL0.ExactNotTaken->isZero() ||
8161              BECount->isZero());
8162     }
8163     if (EL0.MaxNotTaken == getCouldNotCompute())
8164       MaxBECount = EL1.MaxNotTaken;
8165     else if (EL1.MaxNotTaken == getCouldNotCompute())
8166       MaxBECount = EL0.MaxNotTaken;
8167     else
8168       MaxBECount = getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken);
8169   } else {
8170     // Both conditions must be same at the same time for the loop to exit.
8171     // For now, be conservative.
8172     if (EL0.ExactNotTaken == EL1.ExactNotTaken)
8173       BECount = EL0.ExactNotTaken;
8174   }
8175 
8176   // There are cases (e.g. PR26207) where computeExitLimitFromCond is able
8177   // to be more aggressive when computing BECount than when computing
8178   // MaxBECount.  In these cases it is possible for EL0.ExactNotTaken and
8179   // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken
8180   // to not.
8181   if (isa<SCEVCouldNotCompute>(MaxBECount) &&
8182       !isa<SCEVCouldNotCompute>(BECount))
8183     MaxBECount = getConstant(getUnsignedRangeMax(BECount));
8184 
8185   return ExitLimit(BECount, MaxBECount, false,
8186                    { &EL0.Predicates, &EL1.Predicates });
8187 }
8188 
8189 ScalarEvolution::ExitLimit
8190 ScalarEvolution::computeExitLimitFromICmp(const Loop *L,
8191                                           ICmpInst *ExitCond,
8192                                           bool ExitIfTrue,
8193                                           bool ControlsExit,
8194                                           bool AllowPredicates) {
8195   // If the condition was exit on true, convert the condition to exit on false
8196   ICmpInst::Predicate Pred;
8197   if (!ExitIfTrue)
8198     Pred = ExitCond->getPredicate();
8199   else
8200     Pred = ExitCond->getInversePredicate();
8201   const ICmpInst::Predicate OriginalPred = Pred;
8202 
8203   const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
8204   const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
8205 
8206   // Try to evaluate any dependencies out of the loop.
8207   LHS = getSCEVAtScope(LHS, L);
8208   RHS = getSCEVAtScope(RHS, L);
8209 
8210   // At this point, we would like to compute how many iterations of the
8211   // loop the predicate will return true for these inputs.
8212   if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
8213     // If there is a loop-invariant, force it into the RHS.
8214     std::swap(LHS, RHS);
8215     Pred = ICmpInst::getSwappedPredicate(Pred);
8216   }
8217 
8218   // Simplify the operands before analyzing them.
8219   (void)SimplifyICmpOperands(Pred, LHS, RHS);
8220 
8221   // If we have a comparison of a chrec against a constant, try to use value
8222   // ranges to answer this query.
8223   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
8224     if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
8225       if (AddRec->getLoop() == L) {
8226         // Form the constant range.
8227         ConstantRange CompRange =
8228             ConstantRange::makeExactICmpRegion(Pred, RHSC->getAPInt());
8229 
8230         const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
8231         if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
8232       }
8233 
8234   // If this loop must exit based on this condition (or execute undefined
8235   // behaviour), and we can prove the test sequence produced must repeat
8236   // the same values on self-wrap of the IV, then we can infer that IV
8237   // doesn't self wrap because if it did, we'd have an infinite (undefined)
8238   // loop.
8239   if (ControlsExit && isLoopInvariant(RHS, L) && loopHasNoAbnormalExits(L) &&
8240       loopIsFiniteByAssumption(L)) {
8241 
8242     // TODO: We can peel off any functions which are invertible *in L*.  Loop
8243     // invariant terms are effectively constants for our purposes here.
8244     auto *InnerLHS = LHS;
8245     if (auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS))
8246       InnerLHS = ZExt->getOperand();
8247     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(InnerLHS)) {
8248       auto *StrideC = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this));
8249       if (!AR->hasNoSelfWrap() && AR->getLoop() == L && AR->isAffine() &&
8250           StrideC && StrideC->getAPInt().isPowerOf2()) {
8251         auto Flags = AR->getNoWrapFlags();
8252         Flags = setFlags(Flags, SCEV::FlagNW);
8253         SmallVector<const SCEV*> Operands{AR->operands()};
8254         Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
8255         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), Flags);
8256       }
8257     }
8258   }
8259 
8260   switch (Pred) {
8261   case ICmpInst::ICMP_NE: {                     // while (X != Y)
8262     // Convert to: while (X-Y != 0)
8263     if (LHS->getType()->isPointerTy()) {
8264       LHS = getLosslessPtrToIntExpr(LHS);
8265       if (isa<SCEVCouldNotCompute>(LHS))
8266         return LHS;
8267     }
8268     if (RHS->getType()->isPointerTy()) {
8269       RHS = getLosslessPtrToIntExpr(RHS);
8270       if (isa<SCEVCouldNotCompute>(RHS))
8271         return RHS;
8272     }
8273     ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit,
8274                                 AllowPredicates);
8275     if (EL.hasAnyInfo()) return EL;
8276     break;
8277   }
8278   case ICmpInst::ICMP_EQ: {                     // while (X == Y)
8279     // Convert to: while (X-Y == 0)
8280     if (LHS->getType()->isPointerTy()) {
8281       LHS = getLosslessPtrToIntExpr(LHS);
8282       if (isa<SCEVCouldNotCompute>(LHS))
8283         return LHS;
8284     }
8285     if (RHS->getType()->isPointerTy()) {
8286       RHS = getLosslessPtrToIntExpr(RHS);
8287       if (isa<SCEVCouldNotCompute>(RHS))
8288         return RHS;
8289     }
8290     ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L);
8291     if (EL.hasAnyInfo()) return EL;
8292     break;
8293   }
8294   case ICmpInst::ICMP_SLT:
8295   case ICmpInst::ICMP_ULT: {                    // while (X < Y)
8296     bool IsSigned = Pred == ICmpInst::ICMP_SLT;
8297     ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit,
8298                                     AllowPredicates);
8299     if (EL.hasAnyInfo()) return EL;
8300     break;
8301   }
8302   case ICmpInst::ICMP_SGT:
8303   case ICmpInst::ICMP_UGT: {                    // while (X > Y)
8304     bool IsSigned = Pred == ICmpInst::ICMP_SGT;
8305     ExitLimit EL =
8306         howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit,
8307                             AllowPredicates);
8308     if (EL.hasAnyInfo()) return EL;
8309     break;
8310   }
8311   default:
8312     break;
8313   }
8314 
8315   auto *ExhaustiveCount =
8316       computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
8317 
8318   if (!isa<SCEVCouldNotCompute>(ExhaustiveCount))
8319     return ExhaustiveCount;
8320 
8321   return computeShiftCompareExitLimit(ExitCond->getOperand(0),
8322                                       ExitCond->getOperand(1), L, OriginalPred);
8323 }
8324 
8325 ScalarEvolution::ExitLimit
8326 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L,
8327                                                       SwitchInst *Switch,
8328                                                       BasicBlock *ExitingBlock,
8329                                                       bool ControlsExit) {
8330   assert(!L->contains(ExitingBlock) && "Not an exiting block!");
8331 
8332   // Give up if the exit is the default dest of a switch.
8333   if (Switch->getDefaultDest() == ExitingBlock)
8334     return getCouldNotCompute();
8335 
8336   assert(L->contains(Switch->getDefaultDest()) &&
8337          "Default case must not exit the loop!");
8338   const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
8339   const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
8340 
8341   // while (X != Y) --> while (X-Y != 0)
8342   ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
8343   if (EL.hasAnyInfo())
8344     return EL;
8345 
8346   return getCouldNotCompute();
8347 }
8348 
8349 static ConstantInt *
8350 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
8351                                 ScalarEvolution &SE) {
8352   const SCEV *InVal = SE.getConstant(C);
8353   const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
8354   assert(isa<SCEVConstant>(Val) &&
8355          "Evaluation of SCEV at constant didn't fold correctly?");
8356   return cast<SCEVConstant>(Val)->getValue();
8357 }
8358 
8359 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit(
8360     Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) {
8361   ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV);
8362   if (!RHS)
8363     return getCouldNotCompute();
8364 
8365   const BasicBlock *Latch = L->getLoopLatch();
8366   if (!Latch)
8367     return getCouldNotCompute();
8368 
8369   const BasicBlock *Predecessor = L->getLoopPredecessor();
8370   if (!Predecessor)
8371     return getCouldNotCompute();
8372 
8373   // Return true if V is of the form "LHS `shift_op` <positive constant>".
8374   // Return LHS in OutLHS and shift_opt in OutOpCode.
8375   auto MatchPositiveShift =
8376       [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) {
8377 
8378     using namespace PatternMatch;
8379 
8380     ConstantInt *ShiftAmt;
8381     if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
8382       OutOpCode = Instruction::LShr;
8383     else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
8384       OutOpCode = Instruction::AShr;
8385     else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
8386       OutOpCode = Instruction::Shl;
8387     else
8388       return false;
8389 
8390     return ShiftAmt->getValue().isStrictlyPositive();
8391   };
8392 
8393   // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in
8394   //
8395   // loop:
8396   //   %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ]
8397   //   %iv.shifted = lshr i32 %iv, <positive constant>
8398   //
8399   // Return true on a successful match.  Return the corresponding PHI node (%iv
8400   // above) in PNOut and the opcode of the shift operation in OpCodeOut.
8401   auto MatchShiftRecurrence =
8402       [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) {
8403     Optional<Instruction::BinaryOps> PostShiftOpCode;
8404 
8405     {
8406       Instruction::BinaryOps OpC;
8407       Value *V;
8408 
8409       // If we encounter a shift instruction, "peel off" the shift operation,
8410       // and remember that we did so.  Later when we inspect %iv's backedge
8411       // value, we will make sure that the backedge value uses the same
8412       // operation.
8413       //
8414       // Note: the peeled shift operation does not have to be the same
8415       // instruction as the one feeding into the PHI's backedge value.  We only
8416       // really care about it being the same *kind* of shift instruction --
8417       // that's all that is required for our later inferences to hold.
8418       if (MatchPositiveShift(LHS, V, OpC)) {
8419         PostShiftOpCode = OpC;
8420         LHS = V;
8421       }
8422     }
8423 
8424     PNOut = dyn_cast<PHINode>(LHS);
8425     if (!PNOut || PNOut->getParent() != L->getHeader())
8426       return false;
8427 
8428     Value *BEValue = PNOut->getIncomingValueForBlock(Latch);
8429     Value *OpLHS;
8430 
8431     return
8432         // The backedge value for the PHI node must be a shift by a positive
8433         // amount
8434         MatchPositiveShift(BEValue, OpLHS, OpCodeOut) &&
8435 
8436         // of the PHI node itself
8437         OpLHS == PNOut &&
8438 
8439         // and the kind of shift should be match the kind of shift we peeled
8440         // off, if any.
8441         (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut);
8442   };
8443 
8444   PHINode *PN;
8445   Instruction::BinaryOps OpCode;
8446   if (!MatchShiftRecurrence(LHS, PN, OpCode))
8447     return getCouldNotCompute();
8448 
8449   const DataLayout &DL = getDataLayout();
8450 
8451   // The key rationale for this optimization is that for some kinds of shift
8452   // recurrences, the value of the recurrence "stabilizes" to either 0 or -1
8453   // within a finite number of iterations.  If the condition guarding the
8454   // backedge (in the sense that the backedge is taken if the condition is true)
8455   // is false for the value the shift recurrence stabilizes to, then we know
8456   // that the backedge is taken only a finite number of times.
8457 
8458   ConstantInt *StableValue = nullptr;
8459   switch (OpCode) {
8460   default:
8461     llvm_unreachable("Impossible case!");
8462 
8463   case Instruction::AShr: {
8464     // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most
8465     // bitwidth(K) iterations.
8466     Value *FirstValue = PN->getIncomingValueForBlock(Predecessor);
8467     KnownBits Known = computeKnownBits(FirstValue, DL, 0, &AC,
8468                                        Predecessor->getTerminator(), &DT);
8469     auto *Ty = cast<IntegerType>(RHS->getType());
8470     if (Known.isNonNegative())
8471       StableValue = ConstantInt::get(Ty, 0);
8472     else if (Known.isNegative())
8473       StableValue = ConstantInt::get(Ty, -1, true);
8474     else
8475       return getCouldNotCompute();
8476 
8477     break;
8478   }
8479   case Instruction::LShr:
8480   case Instruction::Shl:
8481     // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>}
8482     // stabilize to 0 in at most bitwidth(K) iterations.
8483     StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0);
8484     break;
8485   }
8486 
8487   auto *Result =
8488       ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI);
8489   assert(Result->getType()->isIntegerTy(1) &&
8490          "Otherwise cannot be an operand to a branch instruction");
8491 
8492   if (Result->isZeroValue()) {
8493     unsigned BitWidth = getTypeSizeInBits(RHS->getType());
8494     const SCEV *UpperBound =
8495         getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth);
8496     return ExitLimit(getCouldNotCompute(), UpperBound, false);
8497   }
8498 
8499   return getCouldNotCompute();
8500 }
8501 
8502 /// Return true if we can constant fold an instruction of the specified type,
8503 /// assuming that all operands were constants.
8504 static bool CanConstantFold(const Instruction *I) {
8505   if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
8506       isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
8507       isa<LoadInst>(I) || isa<ExtractValueInst>(I))
8508     return true;
8509 
8510   if (const CallInst *CI = dyn_cast<CallInst>(I))
8511     if (const Function *F = CI->getCalledFunction())
8512       return canConstantFoldCallTo(CI, F);
8513   return false;
8514 }
8515 
8516 /// Determine whether this instruction can constant evolve within this loop
8517 /// assuming its operands can all constant evolve.
8518 static bool canConstantEvolve(Instruction *I, const Loop *L) {
8519   // An instruction outside of the loop can't be derived from a loop PHI.
8520   if (!L->contains(I)) return false;
8521 
8522   if (isa<PHINode>(I)) {
8523     // We don't currently keep track of the control flow needed to evaluate
8524     // PHIs, so we cannot handle PHIs inside of loops.
8525     return L->getHeader() == I->getParent();
8526   }
8527 
8528   // If we won't be able to constant fold this expression even if the operands
8529   // are constants, bail early.
8530   return CanConstantFold(I);
8531 }
8532 
8533 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
8534 /// recursing through each instruction operand until reaching a loop header phi.
8535 static PHINode *
8536 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
8537                                DenseMap<Instruction *, PHINode *> &PHIMap,
8538                                unsigned Depth) {
8539   if (Depth > MaxConstantEvolvingDepth)
8540     return nullptr;
8541 
8542   // Otherwise, we can evaluate this instruction if all of its operands are
8543   // constant or derived from a PHI node themselves.
8544   PHINode *PHI = nullptr;
8545   for (Value *Op : UseInst->operands()) {
8546     if (isa<Constant>(Op)) continue;
8547 
8548     Instruction *OpInst = dyn_cast<Instruction>(Op);
8549     if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
8550 
8551     PHINode *P = dyn_cast<PHINode>(OpInst);
8552     if (!P)
8553       // If this operand is already visited, reuse the prior result.
8554       // We may have P != PHI if this is the deepest point at which the
8555       // inconsistent paths meet.
8556       P = PHIMap.lookup(OpInst);
8557     if (!P) {
8558       // Recurse and memoize the results, whether a phi is found or not.
8559       // This recursive call invalidates pointers into PHIMap.
8560       P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1);
8561       PHIMap[OpInst] = P;
8562     }
8563     if (!P)
8564       return nullptr;  // Not evolving from PHI
8565     if (PHI && PHI != P)
8566       return nullptr;  // Evolving from multiple different PHIs.
8567     PHI = P;
8568   }
8569   // This is a expression evolving from a constant PHI!
8570   return PHI;
8571 }
8572 
8573 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
8574 /// in the loop that V is derived from.  We allow arbitrary operations along the
8575 /// way, but the operands of an operation must either be constants or a value
8576 /// derived from a constant PHI.  If this expression does not fit with these
8577 /// constraints, return null.
8578 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
8579   Instruction *I = dyn_cast<Instruction>(V);
8580   if (!I || !canConstantEvolve(I, L)) return nullptr;
8581 
8582   if (PHINode *PN = dyn_cast<PHINode>(I))
8583     return PN;
8584 
8585   // Record non-constant instructions contained by the loop.
8586   DenseMap<Instruction *, PHINode *> PHIMap;
8587   return getConstantEvolvingPHIOperands(I, L, PHIMap, 0);
8588 }
8589 
8590 /// EvaluateExpression - Given an expression that passes the
8591 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
8592 /// in the loop has the value PHIVal.  If we can't fold this expression for some
8593 /// reason, return null.
8594 static Constant *EvaluateExpression(Value *V, const Loop *L,
8595                                     DenseMap<Instruction *, Constant *> &Vals,
8596                                     const DataLayout &DL,
8597                                     const TargetLibraryInfo *TLI) {
8598   // Convenient constant check, but redundant for recursive calls.
8599   if (Constant *C = dyn_cast<Constant>(V)) return C;
8600   Instruction *I = dyn_cast<Instruction>(V);
8601   if (!I) return nullptr;
8602 
8603   if (Constant *C = Vals.lookup(I)) return C;
8604 
8605   // An instruction inside the loop depends on a value outside the loop that we
8606   // weren't given a mapping for, or a value such as a call inside the loop.
8607   if (!canConstantEvolve(I, L)) return nullptr;
8608 
8609   // An unmapped PHI can be due to a branch or another loop inside this loop,
8610   // or due to this not being the initial iteration through a loop where we
8611   // couldn't compute the evolution of this particular PHI last time.
8612   if (isa<PHINode>(I)) return nullptr;
8613 
8614   std::vector<Constant*> Operands(I->getNumOperands());
8615 
8616   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
8617     Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
8618     if (!Operand) {
8619       Operands[i] = dyn_cast<Constant>(I->getOperand(i));
8620       if (!Operands[i]) return nullptr;
8621       continue;
8622     }
8623     Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
8624     Vals[Operand] = C;
8625     if (!C) return nullptr;
8626     Operands[i] = C;
8627   }
8628 
8629   if (CmpInst *CI = dyn_cast<CmpInst>(I))
8630     return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
8631                                            Operands[1], DL, TLI);
8632   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
8633     if (!LI->isVolatile())
8634       return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
8635   }
8636   return ConstantFoldInstOperands(I, Operands, DL, TLI);
8637 }
8638 
8639 
8640 // If every incoming value to PN except the one for BB is a specific Constant,
8641 // return that, else return nullptr.
8642 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) {
8643   Constant *IncomingVal = nullptr;
8644 
8645   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
8646     if (PN->getIncomingBlock(i) == BB)
8647       continue;
8648 
8649     auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i));
8650     if (!CurrentVal)
8651       return nullptr;
8652 
8653     if (IncomingVal != CurrentVal) {
8654       if (IncomingVal)
8655         return nullptr;
8656       IncomingVal = CurrentVal;
8657     }
8658   }
8659 
8660   return IncomingVal;
8661 }
8662 
8663 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
8664 /// in the header of its containing loop, we know the loop executes a
8665 /// constant number of times, and the PHI node is just a recurrence
8666 /// involving constants, fold it.
8667 Constant *
8668 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
8669                                                    const APInt &BEs,
8670                                                    const Loop *L) {
8671   auto I = ConstantEvolutionLoopExitValue.find(PN);
8672   if (I != ConstantEvolutionLoopExitValue.end())
8673     return I->second;
8674 
8675   if (BEs.ugt(MaxBruteForceIterations))
8676     return ConstantEvolutionLoopExitValue[PN] = nullptr;  // Not going to evaluate it.
8677 
8678   Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
8679 
8680   DenseMap<Instruction *, Constant *> CurrentIterVals;
8681   BasicBlock *Header = L->getHeader();
8682   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
8683 
8684   BasicBlock *Latch = L->getLoopLatch();
8685   if (!Latch)
8686     return nullptr;
8687 
8688   for (PHINode &PHI : Header->phis()) {
8689     if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
8690       CurrentIterVals[&PHI] = StartCST;
8691   }
8692   if (!CurrentIterVals.count(PN))
8693     return RetVal = nullptr;
8694 
8695   Value *BEValue = PN->getIncomingValueForBlock(Latch);
8696 
8697   // Execute the loop symbolically to determine the exit value.
8698   assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) &&
8699          "BEs is <= MaxBruteForceIterations which is an 'unsigned'!");
8700 
8701   unsigned NumIterations = BEs.getZExtValue(); // must be in range
8702   unsigned IterationNum = 0;
8703   const DataLayout &DL = getDataLayout();
8704   for (; ; ++IterationNum) {
8705     if (IterationNum == NumIterations)
8706       return RetVal = CurrentIterVals[PN];  // Got exit value!
8707 
8708     // Compute the value of the PHIs for the next iteration.
8709     // EvaluateExpression adds non-phi values to the CurrentIterVals map.
8710     DenseMap<Instruction *, Constant *> NextIterVals;
8711     Constant *NextPHI =
8712         EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
8713     if (!NextPHI)
8714       return nullptr;        // Couldn't evaluate!
8715     NextIterVals[PN] = NextPHI;
8716 
8717     bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
8718 
8719     // Also evaluate the other PHI nodes.  However, we don't get to stop if we
8720     // cease to be able to evaluate one of them or if they stop evolving,
8721     // because that doesn't necessarily prevent us from computing PN.
8722     SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
8723     for (const auto &I : CurrentIterVals) {
8724       PHINode *PHI = dyn_cast<PHINode>(I.first);
8725       if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
8726       PHIsToCompute.emplace_back(PHI, I.second);
8727     }
8728     // We use two distinct loops because EvaluateExpression may invalidate any
8729     // iterators into CurrentIterVals.
8730     for (const auto &I : PHIsToCompute) {
8731       PHINode *PHI = I.first;
8732       Constant *&NextPHI = NextIterVals[PHI];
8733       if (!NextPHI) {   // Not already computed.
8734         Value *BEValue = PHI->getIncomingValueForBlock(Latch);
8735         NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
8736       }
8737       if (NextPHI != I.second)
8738         StoppedEvolving = false;
8739     }
8740 
8741     // If all entries in CurrentIterVals == NextIterVals then we can stop
8742     // iterating, the loop can't continue to change.
8743     if (StoppedEvolving)
8744       return RetVal = CurrentIterVals[PN];
8745 
8746     CurrentIterVals.swap(NextIterVals);
8747   }
8748 }
8749 
8750 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L,
8751                                                           Value *Cond,
8752                                                           bool ExitWhen) {
8753   PHINode *PN = getConstantEvolvingPHI(Cond, L);
8754   if (!PN) return getCouldNotCompute();
8755 
8756   // If the loop is canonicalized, the PHI will have exactly two entries.
8757   // That's the only form we support here.
8758   if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
8759 
8760   DenseMap<Instruction *, Constant *> CurrentIterVals;
8761   BasicBlock *Header = L->getHeader();
8762   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
8763 
8764   BasicBlock *Latch = L->getLoopLatch();
8765   assert(Latch && "Should follow from NumIncomingValues == 2!");
8766 
8767   for (PHINode &PHI : Header->phis()) {
8768     if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
8769       CurrentIterVals[&PHI] = StartCST;
8770   }
8771   if (!CurrentIterVals.count(PN))
8772     return getCouldNotCompute();
8773 
8774   // Okay, we find a PHI node that defines the trip count of this loop.  Execute
8775   // the loop symbolically to determine when the condition gets a value of
8776   // "ExitWhen".
8777   unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
8778   const DataLayout &DL = getDataLayout();
8779   for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
8780     auto *CondVal = dyn_cast_or_null<ConstantInt>(
8781         EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI));
8782 
8783     // Couldn't symbolically evaluate.
8784     if (!CondVal) return getCouldNotCompute();
8785 
8786     if (CondVal->getValue() == uint64_t(ExitWhen)) {
8787       ++NumBruteForceTripCountsComputed;
8788       return getConstant(Type::getInt32Ty(getContext()), IterationNum);
8789     }
8790 
8791     // Update all the PHI nodes for the next iteration.
8792     DenseMap<Instruction *, Constant *> NextIterVals;
8793 
8794     // Create a list of which PHIs we need to compute. We want to do this before
8795     // calling EvaluateExpression on them because that may invalidate iterators
8796     // into CurrentIterVals.
8797     SmallVector<PHINode *, 8> PHIsToCompute;
8798     for (const auto &I : CurrentIterVals) {
8799       PHINode *PHI = dyn_cast<PHINode>(I.first);
8800       if (!PHI || PHI->getParent() != Header) continue;
8801       PHIsToCompute.push_back(PHI);
8802     }
8803     for (PHINode *PHI : PHIsToCompute) {
8804       Constant *&NextPHI = NextIterVals[PHI];
8805       if (NextPHI) continue;    // Already computed!
8806 
8807       Value *BEValue = PHI->getIncomingValueForBlock(Latch);
8808       NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
8809     }
8810     CurrentIterVals.swap(NextIterVals);
8811   }
8812 
8813   // Too many iterations were needed to evaluate.
8814   return getCouldNotCompute();
8815 }
8816 
8817 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
8818   SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values =
8819       ValuesAtScopes[V];
8820   // Check to see if we've folded this expression at this loop before.
8821   for (auto &LS : Values)
8822     if (LS.first == L)
8823       return LS.second ? LS.second : V;
8824 
8825   Values.emplace_back(L, nullptr);
8826 
8827   // Otherwise compute it.
8828   const SCEV *C = computeSCEVAtScope(V, L);
8829   for (auto &LS : reverse(ValuesAtScopes[V]))
8830     if (LS.first == L) {
8831       LS.second = C;
8832       break;
8833     }
8834 
8835   if (!isa<SCEVConstant>(C))
8836     ValuesAtScopesUsers[C].push_back({L, V});
8837   return C;
8838 }
8839 
8840 /// This builds up a Constant using the ConstantExpr interface.  That way, we
8841 /// will return Constants for objects which aren't represented by a
8842 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
8843 /// Returns NULL if the SCEV isn't representable as a Constant.
8844 static Constant *BuildConstantFromSCEV(const SCEV *V) {
8845   switch (V->getSCEVType()) {
8846   case scCouldNotCompute:
8847   case scAddRecExpr:
8848     return nullptr;
8849   case scConstant:
8850     return cast<SCEVConstant>(V)->getValue();
8851   case scUnknown:
8852     return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
8853   case scSignExtend: {
8854     const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
8855     if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
8856       return ConstantExpr::getSExt(CastOp, SS->getType());
8857     return nullptr;
8858   }
8859   case scZeroExtend: {
8860     const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
8861     if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
8862       return ConstantExpr::getZExt(CastOp, SZ->getType());
8863     return nullptr;
8864   }
8865   case scPtrToInt: {
8866     const SCEVPtrToIntExpr *P2I = cast<SCEVPtrToIntExpr>(V);
8867     if (Constant *CastOp = BuildConstantFromSCEV(P2I->getOperand()))
8868       return ConstantExpr::getPtrToInt(CastOp, P2I->getType());
8869 
8870     return nullptr;
8871   }
8872   case scTruncate: {
8873     const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
8874     if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
8875       return ConstantExpr::getTrunc(CastOp, ST->getType());
8876     return nullptr;
8877   }
8878   case scAddExpr: {
8879     const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
8880     if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
8881       if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
8882         unsigned AS = PTy->getAddressSpace();
8883         Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
8884         C = ConstantExpr::getBitCast(C, DestPtrTy);
8885       }
8886       for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
8887         Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
8888         if (!C2)
8889           return nullptr;
8890 
8891         // First pointer!
8892         if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
8893           unsigned AS = C2->getType()->getPointerAddressSpace();
8894           std::swap(C, C2);
8895           Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
8896           // The offsets have been converted to bytes.  We can add bytes to an
8897           // i8* by GEP with the byte count in the first index.
8898           C = ConstantExpr::getBitCast(C, DestPtrTy);
8899         }
8900 
8901         // Don't bother trying to sum two pointers. We probably can't
8902         // statically compute a load that results from it anyway.
8903         if (C2->getType()->isPointerTy())
8904           return nullptr;
8905 
8906         if (C->getType()->isPointerTy()) {
8907           C = ConstantExpr::getGetElementPtr(Type::getInt8Ty(C->getContext()),
8908                                              C, C2);
8909         } else {
8910           C = ConstantExpr::getAdd(C, C2);
8911         }
8912       }
8913       return C;
8914     }
8915     return nullptr;
8916   }
8917   case scMulExpr: {
8918     const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
8919     if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
8920       // Don't bother with pointers at all.
8921       if (C->getType()->isPointerTy())
8922         return nullptr;
8923       for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
8924         Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
8925         if (!C2 || C2->getType()->isPointerTy())
8926           return nullptr;
8927         C = ConstantExpr::getMul(C, C2);
8928       }
8929       return C;
8930     }
8931     return nullptr;
8932   }
8933   case scUDivExpr: {
8934     const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
8935     if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
8936       if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
8937         if (LHS->getType() == RHS->getType())
8938           return ConstantExpr::getUDiv(LHS, RHS);
8939     return nullptr;
8940   }
8941   case scSMaxExpr:
8942   case scUMaxExpr:
8943   case scSMinExpr:
8944   case scUMinExpr:
8945     return nullptr; // TODO: smax, umax, smin, umax.
8946   }
8947   llvm_unreachable("Unknown SCEV kind!");
8948 }
8949 
8950 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
8951   if (isa<SCEVConstant>(V)) return V;
8952 
8953   // If this instruction is evolved from a constant-evolving PHI, compute the
8954   // exit value from the loop without using SCEVs.
8955   if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
8956     if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
8957       if (PHINode *PN = dyn_cast<PHINode>(I)) {
8958         const Loop *CurrLoop = this->LI[I->getParent()];
8959         // Looking for loop exit value.
8960         if (CurrLoop && CurrLoop->getParentLoop() == L &&
8961             PN->getParent() == CurrLoop->getHeader()) {
8962           // Okay, there is no closed form solution for the PHI node.  Check
8963           // to see if the loop that contains it has a known backedge-taken
8964           // count.  If so, we may be able to force computation of the exit
8965           // value.
8966           const SCEV *BackedgeTakenCount = getBackedgeTakenCount(CurrLoop);
8967           // This trivial case can show up in some degenerate cases where
8968           // the incoming IR has not yet been fully simplified.
8969           if (BackedgeTakenCount->isZero()) {
8970             Value *InitValue = nullptr;
8971             bool MultipleInitValues = false;
8972             for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
8973               if (!CurrLoop->contains(PN->getIncomingBlock(i))) {
8974                 if (!InitValue)
8975                   InitValue = PN->getIncomingValue(i);
8976                 else if (InitValue != PN->getIncomingValue(i)) {
8977                   MultipleInitValues = true;
8978                   break;
8979                 }
8980               }
8981             }
8982             if (!MultipleInitValues && InitValue)
8983               return getSCEV(InitValue);
8984           }
8985           // Do we have a loop invariant value flowing around the backedge
8986           // for a loop which must execute the backedge?
8987           if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
8988               isKnownPositive(BackedgeTakenCount) &&
8989               PN->getNumIncomingValues() == 2) {
8990 
8991             unsigned InLoopPred =
8992                 CurrLoop->contains(PN->getIncomingBlock(0)) ? 0 : 1;
8993             Value *BackedgeVal = PN->getIncomingValue(InLoopPred);
8994             if (CurrLoop->isLoopInvariant(BackedgeVal))
8995               return getSCEV(BackedgeVal);
8996           }
8997           if (auto *BTCC = dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
8998             // Okay, we know how many times the containing loop executes.  If
8999             // this is a constant evolving PHI node, get the final value at
9000             // the specified iteration number.
9001             Constant *RV = getConstantEvolutionLoopExitValue(
9002                 PN, BTCC->getAPInt(), CurrLoop);
9003             if (RV) return getSCEV(RV);
9004           }
9005         }
9006 
9007         // If there is a single-input Phi, evaluate it at our scope. If we can
9008         // prove that this replacement does not break LCSSA form, use new value.
9009         if (PN->getNumOperands() == 1) {
9010           const SCEV *Input = getSCEV(PN->getOperand(0));
9011           const SCEV *InputAtScope = getSCEVAtScope(Input, L);
9012           // TODO: We can generalize it using LI.replacementPreservesLCSSAForm,
9013           // for the simplest case just support constants.
9014           if (isa<SCEVConstant>(InputAtScope)) return InputAtScope;
9015         }
9016       }
9017 
9018       // Okay, this is an expression that we cannot symbolically evaluate
9019       // into a SCEV.  Check to see if it's possible to symbolically evaluate
9020       // the arguments into constants, and if so, try to constant propagate the
9021       // result.  This is particularly useful for computing loop exit values.
9022       if (CanConstantFold(I)) {
9023         SmallVector<Constant *, 4> Operands;
9024         bool MadeImprovement = false;
9025         for (Value *Op : I->operands()) {
9026           if (Constant *C = dyn_cast<Constant>(Op)) {
9027             Operands.push_back(C);
9028             continue;
9029           }
9030 
9031           // If any of the operands is non-constant and if they are
9032           // non-integer and non-pointer, don't even try to analyze them
9033           // with scev techniques.
9034           if (!isSCEVable(Op->getType()))
9035             return V;
9036 
9037           const SCEV *OrigV = getSCEV(Op);
9038           const SCEV *OpV = getSCEVAtScope(OrigV, L);
9039           MadeImprovement |= OrigV != OpV;
9040 
9041           Constant *C = BuildConstantFromSCEV(OpV);
9042           if (!C) return V;
9043           if (C->getType() != Op->getType())
9044             C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
9045                                                               Op->getType(),
9046                                                               false),
9047                                       C, Op->getType());
9048           Operands.push_back(C);
9049         }
9050 
9051         // Check to see if getSCEVAtScope actually made an improvement.
9052         if (MadeImprovement) {
9053           Constant *C = nullptr;
9054           const DataLayout &DL = getDataLayout();
9055           if (const CmpInst *CI = dyn_cast<CmpInst>(I))
9056             C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
9057                                                 Operands[1], DL, &TLI);
9058           else if (const LoadInst *Load = dyn_cast<LoadInst>(I)) {
9059             if (!Load->isVolatile())
9060               C = ConstantFoldLoadFromConstPtr(Operands[0], Load->getType(),
9061                                                DL);
9062           } else
9063             C = ConstantFoldInstOperands(I, Operands, DL, &TLI);
9064           if (!C) return V;
9065           return getSCEV(C);
9066         }
9067       }
9068     }
9069 
9070     // This is some other type of SCEVUnknown, just return it.
9071     return V;
9072   }
9073 
9074   if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
9075     // Avoid performing the look-up in the common case where the specified
9076     // expression has no loop-variant portions.
9077     for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
9078       const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
9079       if (OpAtScope != Comm->getOperand(i)) {
9080         // Okay, at least one of these operands is loop variant but might be
9081         // foldable.  Build a new instance of the folded commutative expression.
9082         SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
9083                                             Comm->op_begin()+i);
9084         NewOps.push_back(OpAtScope);
9085 
9086         for (++i; i != e; ++i) {
9087           OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
9088           NewOps.push_back(OpAtScope);
9089         }
9090         if (isa<SCEVAddExpr>(Comm))
9091           return getAddExpr(NewOps, Comm->getNoWrapFlags());
9092         if (isa<SCEVMulExpr>(Comm))
9093           return getMulExpr(NewOps, Comm->getNoWrapFlags());
9094         if (isa<SCEVMinMaxExpr>(Comm))
9095           return getMinMaxExpr(Comm->getSCEVType(), NewOps);
9096         llvm_unreachable("Unknown commutative SCEV type!");
9097       }
9098     }
9099     // If we got here, all operands are loop invariant.
9100     return Comm;
9101   }
9102 
9103   if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
9104     const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
9105     const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
9106     if (LHS == Div->getLHS() && RHS == Div->getRHS())
9107       return Div;   // must be loop invariant
9108     return getUDivExpr(LHS, RHS);
9109   }
9110 
9111   // If this is a loop recurrence for a loop that does not contain L, then we
9112   // are dealing with the final value computed by the loop.
9113   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
9114     // First, attempt to evaluate each operand.
9115     // Avoid performing the look-up in the common case where the specified
9116     // expression has no loop-variant portions.
9117     for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
9118       const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
9119       if (OpAtScope == AddRec->getOperand(i))
9120         continue;
9121 
9122       // Okay, at least one of these operands is loop variant but might be
9123       // foldable.  Build a new instance of the folded commutative expression.
9124       SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
9125                                           AddRec->op_begin()+i);
9126       NewOps.push_back(OpAtScope);
9127       for (++i; i != e; ++i)
9128         NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
9129 
9130       const SCEV *FoldedRec =
9131         getAddRecExpr(NewOps, AddRec->getLoop(),
9132                       AddRec->getNoWrapFlags(SCEV::FlagNW));
9133       AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
9134       // The addrec may be folded to a nonrecurrence, for example, if the
9135       // induction variable is multiplied by zero after constant folding. Go
9136       // ahead and return the folded value.
9137       if (!AddRec)
9138         return FoldedRec;
9139       break;
9140     }
9141 
9142     // If the scope is outside the addrec's loop, evaluate it by using the
9143     // loop exit value of the addrec.
9144     if (!AddRec->getLoop()->contains(L)) {
9145       // To evaluate this recurrence, we need to know how many times the AddRec
9146       // loop iterates.  Compute this now.
9147       const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
9148       if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
9149 
9150       // Then, evaluate the AddRec.
9151       return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
9152     }
9153 
9154     return AddRec;
9155   }
9156 
9157   if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
9158     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
9159     if (Op == Cast->getOperand())
9160       return Cast;  // must be loop invariant
9161     return getZeroExtendExpr(Op, Cast->getType());
9162   }
9163 
9164   if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
9165     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
9166     if (Op == Cast->getOperand())
9167       return Cast;  // must be loop invariant
9168     return getSignExtendExpr(Op, Cast->getType());
9169   }
9170 
9171   if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
9172     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
9173     if (Op == Cast->getOperand())
9174       return Cast;  // must be loop invariant
9175     return getTruncateExpr(Op, Cast->getType());
9176   }
9177 
9178   if (const SCEVPtrToIntExpr *Cast = dyn_cast<SCEVPtrToIntExpr>(V)) {
9179     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
9180     if (Op == Cast->getOperand())
9181       return Cast; // must be loop invariant
9182     return getPtrToIntExpr(Op, Cast->getType());
9183   }
9184 
9185   llvm_unreachable("Unknown SCEV type!");
9186 }
9187 
9188 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
9189   return getSCEVAtScope(getSCEV(V), L);
9190 }
9191 
9192 const SCEV *ScalarEvolution::stripInjectiveFunctions(const SCEV *S) const {
9193   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S))
9194     return stripInjectiveFunctions(ZExt->getOperand());
9195   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S))
9196     return stripInjectiveFunctions(SExt->getOperand());
9197   return S;
9198 }
9199 
9200 /// Finds the minimum unsigned root of the following equation:
9201 ///
9202 ///     A * X = B (mod N)
9203 ///
9204 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of
9205 /// A and B isn't important.
9206 ///
9207 /// If the equation does not have a solution, SCEVCouldNotCompute is returned.
9208 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B,
9209                                                ScalarEvolution &SE) {
9210   uint32_t BW = A.getBitWidth();
9211   assert(BW == SE.getTypeSizeInBits(B->getType()));
9212   assert(A != 0 && "A must be non-zero.");
9213 
9214   // 1. D = gcd(A, N)
9215   //
9216   // The gcd of A and N may have only one prime factor: 2. The number of
9217   // trailing zeros in A is its multiplicity
9218   uint32_t Mult2 = A.countTrailingZeros();
9219   // D = 2^Mult2
9220 
9221   // 2. Check if B is divisible by D.
9222   //
9223   // B is divisible by D if and only if the multiplicity of prime factor 2 for B
9224   // is not less than multiplicity of this prime factor for D.
9225   if (SE.GetMinTrailingZeros(B) < Mult2)
9226     return SE.getCouldNotCompute();
9227 
9228   // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
9229   // modulo (N / D).
9230   //
9231   // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent
9232   // (N / D) in general. The inverse itself always fits into BW bits, though,
9233   // so we immediately truncate it.
9234   APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
9235   APInt Mod(BW + 1, 0);
9236   Mod.setBit(BW - Mult2);  // Mod = N / D
9237   APInt I = AD.multiplicativeInverse(Mod).trunc(BW);
9238 
9239   // 4. Compute the minimum unsigned root of the equation:
9240   // I * (B / D) mod (N / D)
9241   // To simplify the computation, we factor out the divide by D:
9242   // (I * B mod N) / D
9243   const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2));
9244   return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D);
9245 }
9246 
9247 /// For a given quadratic addrec, generate coefficients of the corresponding
9248 /// quadratic equation, multiplied by a common value to ensure that they are
9249 /// integers.
9250 /// The returned value is a tuple { A, B, C, M, BitWidth }, where
9251 /// Ax^2 + Bx + C is the quadratic function, M is the value that A, B and C
9252 /// were multiplied by, and BitWidth is the bit width of the original addrec
9253 /// coefficients.
9254 /// This function returns None if the addrec coefficients are not compile-
9255 /// time constants.
9256 static Optional<std::tuple<APInt, APInt, APInt, APInt, unsigned>>
9257 GetQuadraticEquation(const SCEVAddRecExpr *AddRec) {
9258   assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
9259   const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
9260   const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
9261   const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
9262   LLVM_DEBUG(dbgs() << __func__ << ": analyzing quadratic addrec: "
9263                     << *AddRec << '\n');
9264 
9265   // We currently can only solve this if the coefficients are constants.
9266   if (!LC || !MC || !NC) {
9267     LLVM_DEBUG(dbgs() << __func__ << ": coefficients are not constant\n");
9268     return None;
9269   }
9270 
9271   APInt L = LC->getAPInt();
9272   APInt M = MC->getAPInt();
9273   APInt N = NC->getAPInt();
9274   assert(!N.isZero() && "This is not a quadratic addrec");
9275 
9276   unsigned BitWidth = LC->getAPInt().getBitWidth();
9277   unsigned NewWidth = BitWidth + 1;
9278   LLVM_DEBUG(dbgs() << __func__ << ": addrec coeff bw: "
9279                     << BitWidth << '\n');
9280   // The sign-extension (as opposed to a zero-extension) here matches the
9281   // extension used in SolveQuadraticEquationWrap (with the same motivation).
9282   N = N.sext(NewWidth);
9283   M = M.sext(NewWidth);
9284   L = L.sext(NewWidth);
9285 
9286   // The increments are M, M+N, M+2N, ..., so the accumulated values are
9287   //   L+M, (L+M)+(M+N), (L+M)+(M+N)+(M+2N), ..., that is,
9288   //   L+M, L+2M+N, L+3M+3N, ...
9289   // After n iterations the accumulated value Acc is L + nM + n(n-1)/2 N.
9290   //
9291   // The equation Acc = 0 is then
9292   //   L + nM + n(n-1)/2 N = 0,  or  2L + 2M n + n(n-1) N = 0.
9293   // In a quadratic form it becomes:
9294   //   N n^2 + (2M-N) n + 2L = 0.
9295 
9296   APInt A = N;
9297   APInt B = 2 * M - A;
9298   APInt C = 2 * L;
9299   APInt T = APInt(NewWidth, 2);
9300   LLVM_DEBUG(dbgs() << __func__ << ": equation " << A << "x^2 + " << B
9301                     << "x + " << C << ", coeff bw: " << NewWidth
9302                     << ", multiplied by " << T << '\n');
9303   return std::make_tuple(A, B, C, T, BitWidth);
9304 }
9305 
9306 /// Helper function to compare optional APInts:
9307 /// (a) if X and Y both exist, return min(X, Y),
9308 /// (b) if neither X nor Y exist, return None,
9309 /// (c) if exactly one of X and Y exists, return that value.
9310 static Optional<APInt> MinOptional(Optional<APInt> X, Optional<APInt> Y) {
9311   if (X.hasValue() && Y.hasValue()) {
9312     unsigned W = std::max(X->getBitWidth(), Y->getBitWidth());
9313     APInt XW = X->sextOrSelf(W);
9314     APInt YW = Y->sextOrSelf(W);
9315     return XW.slt(YW) ? *X : *Y;
9316   }
9317   if (!X.hasValue() && !Y.hasValue())
9318     return None;
9319   return X.hasValue() ? *X : *Y;
9320 }
9321 
9322 /// Helper function to truncate an optional APInt to a given BitWidth.
9323 /// When solving addrec-related equations, it is preferable to return a value
9324 /// that has the same bit width as the original addrec's coefficients. If the
9325 /// solution fits in the original bit width, truncate it (except for i1).
9326 /// Returning a value of a different bit width may inhibit some optimizations.
9327 ///
9328 /// In general, a solution to a quadratic equation generated from an addrec
9329 /// may require BW+1 bits, where BW is the bit width of the addrec's
9330 /// coefficients. The reason is that the coefficients of the quadratic
9331 /// equation are BW+1 bits wide (to avoid truncation when converting from
9332 /// the addrec to the equation).
9333 static Optional<APInt> TruncIfPossible(Optional<APInt> X, unsigned BitWidth) {
9334   if (!X.hasValue())
9335     return None;
9336   unsigned W = X->getBitWidth();
9337   if (BitWidth > 1 && BitWidth < W && X->isIntN(BitWidth))
9338     return X->trunc(BitWidth);
9339   return X;
9340 }
9341 
9342 /// Let c(n) be the value of the quadratic chrec {L,+,M,+,N} after n
9343 /// iterations. The values L, M, N are assumed to be signed, and they
9344 /// should all have the same bit widths.
9345 /// Find the least n >= 0 such that c(n) = 0 in the arithmetic modulo 2^BW,
9346 /// where BW is the bit width of the addrec's coefficients.
9347 /// If the calculated value is a BW-bit integer (for BW > 1), it will be
9348 /// returned as such, otherwise the bit width of the returned value may
9349 /// be greater than BW.
9350 ///
9351 /// This function returns None if
9352 /// (a) the addrec coefficients are not constant, or
9353 /// (b) SolveQuadraticEquationWrap was unable to find a solution. For cases
9354 ///     like x^2 = 5, no integer solutions exist, in other cases an integer
9355 ///     solution may exist, but SolveQuadraticEquationWrap may fail to find it.
9356 static Optional<APInt>
9357 SolveQuadraticAddRecExact(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
9358   APInt A, B, C, M;
9359   unsigned BitWidth;
9360   auto T = GetQuadraticEquation(AddRec);
9361   if (!T.hasValue())
9362     return None;
9363 
9364   std::tie(A, B, C, M, BitWidth) = *T;
9365   LLVM_DEBUG(dbgs() << __func__ << ": solving for unsigned overflow\n");
9366   Optional<APInt> X = APIntOps::SolveQuadraticEquationWrap(A, B, C, BitWidth+1);
9367   if (!X.hasValue())
9368     return None;
9369 
9370   ConstantInt *CX = ConstantInt::get(SE.getContext(), *X);
9371   ConstantInt *V = EvaluateConstantChrecAtConstant(AddRec, CX, SE);
9372   if (!V->isZero())
9373     return None;
9374 
9375   return TruncIfPossible(X, BitWidth);
9376 }
9377 
9378 /// Let c(n) be the value of the quadratic chrec {0,+,M,+,N} after n
9379 /// iterations. The values M, N are assumed to be signed, and they
9380 /// should all have the same bit widths.
9381 /// Find the least n such that c(n) does not belong to the given range,
9382 /// while c(n-1) does.
9383 ///
9384 /// This function returns None if
9385 /// (a) the addrec coefficients are not constant, or
9386 /// (b) SolveQuadraticEquationWrap was unable to find a solution for the
9387 ///     bounds of the range.
9388 static Optional<APInt>
9389 SolveQuadraticAddRecRange(const SCEVAddRecExpr *AddRec,
9390                           const ConstantRange &Range, ScalarEvolution &SE) {
9391   assert(AddRec->getOperand(0)->isZero() &&
9392          "Starting value of addrec should be 0");
9393   LLVM_DEBUG(dbgs() << __func__ << ": solving boundary crossing for range "
9394                     << Range << ", addrec " << *AddRec << '\n');
9395   // This case is handled in getNumIterationsInRange. Here we can assume that
9396   // we start in the range.
9397   assert(Range.contains(APInt(SE.getTypeSizeInBits(AddRec->getType()), 0)) &&
9398          "Addrec's initial value should be in range");
9399 
9400   APInt A, B, C, M;
9401   unsigned BitWidth;
9402   auto T = GetQuadraticEquation(AddRec);
9403   if (!T.hasValue())
9404     return None;
9405 
9406   // Be careful about the return value: there can be two reasons for not
9407   // returning an actual number. First, if no solutions to the equations
9408   // were found, and second, if the solutions don't leave the given range.
9409   // The first case means that the actual solution is "unknown", the second
9410   // means that it's known, but not valid. If the solution is unknown, we
9411   // cannot make any conclusions.
9412   // Return a pair: the optional solution and a flag indicating if the
9413   // solution was found.
9414   auto SolveForBoundary = [&](APInt Bound) -> std::pair<Optional<APInt>,bool> {
9415     // Solve for signed overflow and unsigned overflow, pick the lower
9416     // solution.
9417     LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: checking boundary "
9418                       << Bound << " (before multiplying by " << M << ")\n");
9419     Bound *= M; // The quadratic equation multiplier.
9420 
9421     Optional<APInt> SO = None;
9422     if (BitWidth > 1) {
9423       LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
9424                            "signed overflow\n");
9425       SO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth);
9426     }
9427     LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
9428                          "unsigned overflow\n");
9429     Optional<APInt> UO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound,
9430                                                               BitWidth+1);
9431 
9432     auto LeavesRange = [&] (const APInt &X) {
9433       ConstantInt *C0 = ConstantInt::get(SE.getContext(), X);
9434       ConstantInt *V0 = EvaluateConstantChrecAtConstant(AddRec, C0, SE);
9435       if (Range.contains(V0->getValue()))
9436         return false;
9437       // X should be at least 1, so X-1 is non-negative.
9438       ConstantInt *C1 = ConstantInt::get(SE.getContext(), X-1);
9439       ConstantInt *V1 = EvaluateConstantChrecAtConstant(AddRec, C1, SE);
9440       if (Range.contains(V1->getValue()))
9441         return true;
9442       return false;
9443     };
9444 
9445     // If SolveQuadraticEquationWrap returns None, it means that there can
9446     // be a solution, but the function failed to find it. We cannot treat it
9447     // as "no solution".
9448     if (!SO.hasValue() || !UO.hasValue())
9449       return { None, false };
9450 
9451     // Check the smaller value first to see if it leaves the range.
9452     // At this point, both SO and UO must have values.
9453     Optional<APInt> Min = MinOptional(SO, UO);
9454     if (LeavesRange(*Min))
9455       return { Min, true };
9456     Optional<APInt> Max = Min == SO ? UO : SO;
9457     if (LeavesRange(*Max))
9458       return { Max, true };
9459 
9460     // Solutions were found, but were eliminated, hence the "true".
9461     return { None, true };
9462   };
9463 
9464   std::tie(A, B, C, M, BitWidth) = *T;
9465   // Lower bound is inclusive, subtract 1 to represent the exiting value.
9466   APInt Lower = Range.getLower().sextOrSelf(A.getBitWidth()) - 1;
9467   APInt Upper = Range.getUpper().sextOrSelf(A.getBitWidth());
9468   auto SL = SolveForBoundary(Lower);
9469   auto SU = SolveForBoundary(Upper);
9470   // If any of the solutions was unknown, no meaninigful conclusions can
9471   // be made.
9472   if (!SL.second || !SU.second)
9473     return None;
9474 
9475   // Claim: The correct solution is not some value between Min and Max.
9476   //
9477   // Justification: Assuming that Min and Max are different values, one of
9478   // them is when the first signed overflow happens, the other is when the
9479   // first unsigned overflow happens. Crossing the range boundary is only
9480   // possible via an overflow (treating 0 as a special case of it, modeling
9481   // an overflow as crossing k*2^W for some k).
9482   //
9483   // The interesting case here is when Min was eliminated as an invalid
9484   // solution, but Max was not. The argument is that if there was another
9485   // overflow between Min and Max, it would also have been eliminated if
9486   // it was considered.
9487   //
9488   // For a given boundary, it is possible to have two overflows of the same
9489   // type (signed/unsigned) without having the other type in between: this
9490   // can happen when the vertex of the parabola is between the iterations
9491   // corresponding to the overflows. This is only possible when the two
9492   // overflows cross k*2^W for the same k. In such case, if the second one
9493   // left the range (and was the first one to do so), the first overflow
9494   // would have to enter the range, which would mean that either we had left
9495   // the range before or that we started outside of it. Both of these cases
9496   // are contradictions.
9497   //
9498   // Claim: In the case where SolveForBoundary returns None, the correct
9499   // solution is not some value between the Max for this boundary and the
9500   // Min of the other boundary.
9501   //
9502   // Justification: Assume that we had such Max_A and Min_B corresponding
9503   // to range boundaries A and B and such that Max_A < Min_B. If there was
9504   // a solution between Max_A and Min_B, it would have to be caused by an
9505   // overflow corresponding to either A or B. It cannot correspond to B,
9506   // since Min_B is the first occurrence of such an overflow. If it
9507   // corresponded to A, it would have to be either a signed or an unsigned
9508   // overflow that is larger than both eliminated overflows for A. But
9509   // between the eliminated overflows and this overflow, the values would
9510   // cover the entire value space, thus crossing the other boundary, which
9511   // is a contradiction.
9512 
9513   return TruncIfPossible(MinOptional(SL.first, SU.first), BitWidth);
9514 }
9515 
9516 ScalarEvolution::ExitLimit
9517 ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit,
9518                               bool AllowPredicates) {
9519 
9520   // This is only used for loops with a "x != y" exit test. The exit condition
9521   // is now expressed as a single expression, V = x-y. So the exit test is
9522   // effectively V != 0.  We know and take advantage of the fact that this
9523   // expression only being used in a comparison by zero context.
9524 
9525   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
9526   // If the value is a constant
9527   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
9528     // If the value is already zero, the branch will execute zero times.
9529     if (C->getValue()->isZero()) return C;
9530     return getCouldNotCompute();  // Otherwise it will loop infinitely.
9531   }
9532 
9533   const SCEVAddRecExpr *AddRec =
9534       dyn_cast<SCEVAddRecExpr>(stripInjectiveFunctions(V));
9535 
9536   if (!AddRec && AllowPredicates)
9537     // Try to make this an AddRec using runtime tests, in the first X
9538     // iterations of this loop, where X is the SCEV expression found by the
9539     // algorithm below.
9540     AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates);
9541 
9542   if (!AddRec || AddRec->getLoop() != L)
9543     return getCouldNotCompute();
9544 
9545   // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
9546   // the quadratic equation to solve it.
9547   if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
9548     // We can only use this value if the chrec ends up with an exact zero
9549     // value at this index.  When solving for "X*X != 5", for example, we
9550     // should not accept a root of 2.
9551     if (auto S = SolveQuadraticAddRecExact(AddRec, *this)) {
9552       const auto *R = cast<SCEVConstant>(getConstant(S.getValue()));
9553       return ExitLimit(R, R, false, Predicates);
9554     }
9555     return getCouldNotCompute();
9556   }
9557 
9558   // Otherwise we can only handle this if it is affine.
9559   if (!AddRec->isAffine())
9560     return getCouldNotCompute();
9561 
9562   // If this is an affine expression, the execution count of this branch is
9563   // the minimum unsigned root of the following equation:
9564   //
9565   //     Start + Step*N = 0 (mod 2^BW)
9566   //
9567   // equivalent to:
9568   //
9569   //             Step*N = -Start (mod 2^BW)
9570   //
9571   // where BW is the common bit width of Start and Step.
9572 
9573   // Get the initial value for the loop.
9574   const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
9575   const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
9576 
9577   // For now we handle only constant steps.
9578   //
9579   // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
9580   // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
9581   // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
9582   // We have not yet seen any such cases.
9583   const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
9584   if (!StepC || StepC->getValue()->isZero())
9585     return getCouldNotCompute();
9586 
9587   // For positive steps (counting up until unsigned overflow):
9588   //   N = -Start/Step (as unsigned)
9589   // For negative steps (counting down to zero):
9590   //   N = Start/-Step
9591   // First compute the unsigned distance from zero in the direction of Step.
9592   bool CountDown = StepC->getAPInt().isNegative();
9593   const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
9594 
9595   // Handle unitary steps, which cannot wraparound.
9596   // 1*N = -Start; -1*N = Start (mod 2^BW), so:
9597   //   N = Distance (as unsigned)
9598   if (StepC->getValue()->isOne() || StepC->getValue()->isMinusOne()) {
9599     APInt MaxBECount = getUnsignedRangeMax(applyLoopGuards(Distance, L));
9600     MaxBECount = APIntOps::umin(MaxBECount, getUnsignedRangeMax(Distance));
9601 
9602     // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated,
9603     // we end up with a loop whose backedge-taken count is n - 1.  Detect this
9604     // case, and see if we can improve the bound.
9605     //
9606     // Explicitly handling this here is necessary because getUnsignedRange
9607     // isn't context-sensitive; it doesn't know that we only care about the
9608     // range inside the loop.
9609     const SCEV *Zero = getZero(Distance->getType());
9610     const SCEV *One = getOne(Distance->getType());
9611     const SCEV *DistancePlusOne = getAddExpr(Distance, One);
9612     if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) {
9613       // If Distance + 1 doesn't overflow, we can compute the maximum distance
9614       // as "unsigned_max(Distance + 1) - 1".
9615       ConstantRange CR = getUnsignedRange(DistancePlusOne);
9616       MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1);
9617     }
9618     return ExitLimit(Distance, getConstant(MaxBECount), false, Predicates);
9619   }
9620 
9621   // If the condition controls loop exit (the loop exits only if the expression
9622   // is true) and the addition is no-wrap we can use unsigned divide to
9623   // compute the backedge count.  In this case, the step may not divide the
9624   // distance, but we don't care because if the condition is "missed" the loop
9625   // will have undefined behavior due to wrapping.
9626   if (ControlsExit && AddRec->hasNoSelfWrap() &&
9627       loopHasNoAbnormalExits(AddRec->getLoop())) {
9628     const SCEV *Exact =
9629         getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
9630     const SCEV *Max = getCouldNotCompute();
9631     if (Exact != getCouldNotCompute()) {
9632       APInt MaxInt = getUnsignedRangeMax(applyLoopGuards(Exact, L));
9633       Max = getConstant(APIntOps::umin(MaxInt, getUnsignedRangeMax(Exact)));
9634     }
9635     return ExitLimit(Exact, Max, false, Predicates);
9636   }
9637 
9638   // Solve the general equation.
9639   const SCEV *E = SolveLinEquationWithOverflow(StepC->getAPInt(),
9640                                                getNegativeSCEV(Start), *this);
9641 
9642   const SCEV *M = E;
9643   if (E != getCouldNotCompute()) {
9644     APInt MaxWithGuards = getUnsignedRangeMax(applyLoopGuards(E, L));
9645     M = getConstant(APIntOps::umin(MaxWithGuards, getUnsignedRangeMax(E)));
9646   }
9647   return ExitLimit(E, M, false, Predicates);
9648 }
9649 
9650 ScalarEvolution::ExitLimit
9651 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) {
9652   // Loops that look like: while (X == 0) are very strange indeed.  We don't
9653   // handle them yet except for the trivial case.  This could be expanded in the
9654   // future as needed.
9655 
9656   // If the value is a constant, check to see if it is known to be non-zero
9657   // already.  If so, the backedge will execute zero times.
9658   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
9659     if (!C->getValue()->isZero())
9660       return getZero(C->getType());
9661     return getCouldNotCompute();  // Otherwise it will loop infinitely.
9662   }
9663 
9664   // We could implement others, but I really doubt anyone writes loops like
9665   // this, and if they did, they would already be constant folded.
9666   return getCouldNotCompute();
9667 }
9668 
9669 std::pair<const BasicBlock *, const BasicBlock *>
9670 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(const BasicBlock *BB)
9671     const {
9672   // If the block has a unique predecessor, then there is no path from the
9673   // predecessor to the block that does not go through the direct edge
9674   // from the predecessor to the block.
9675   if (const BasicBlock *Pred = BB->getSinglePredecessor())
9676     return {Pred, BB};
9677 
9678   // A loop's header is defined to be a block that dominates the loop.
9679   // If the header has a unique predecessor outside the loop, it must be
9680   // a block that has exactly one successor that can reach the loop.
9681   if (const Loop *L = LI.getLoopFor(BB))
9682     return {L->getLoopPredecessor(), L->getHeader()};
9683 
9684   return {nullptr, nullptr};
9685 }
9686 
9687 /// SCEV structural equivalence is usually sufficient for testing whether two
9688 /// expressions are equal, however for the purposes of looking for a condition
9689 /// guarding a loop, it can be useful to be a little more general, since a
9690 /// front-end may have replicated the controlling expression.
9691 static bool HasSameValue(const SCEV *A, const SCEV *B) {
9692   // Quick check to see if they are the same SCEV.
9693   if (A == B) return true;
9694 
9695   auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) {
9696     // Not all instructions that are "identical" compute the same value.  For
9697     // instance, two distinct alloca instructions allocating the same type are
9698     // identical and do not read memory; but compute distinct values.
9699     return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A));
9700   };
9701 
9702   // Otherwise, if they're both SCEVUnknown, it's possible that they hold
9703   // two different instructions with the same value. Check for this case.
9704   if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
9705     if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
9706       if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
9707         if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
9708           if (ComputesEqualValues(AI, BI))
9709             return true;
9710 
9711   // Otherwise assume they may have a different value.
9712   return false;
9713 }
9714 
9715 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
9716                                            const SCEV *&LHS, const SCEV *&RHS,
9717                                            unsigned Depth) {
9718   bool Changed = false;
9719   // Simplifies ICMP to trivial true or false by turning it into '0 == 0' or
9720   // '0 != 0'.
9721   auto TrivialCase = [&](bool TriviallyTrue) {
9722     LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
9723     Pred = TriviallyTrue ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
9724     return true;
9725   };
9726   // If we hit the max recursion limit bail out.
9727   if (Depth >= 3)
9728     return false;
9729 
9730   // Canonicalize a constant to the right side.
9731   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
9732     // Check for both operands constant.
9733     if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
9734       if (ConstantExpr::getICmp(Pred,
9735                                 LHSC->getValue(),
9736                                 RHSC->getValue())->isNullValue())
9737         return TrivialCase(false);
9738       else
9739         return TrivialCase(true);
9740     }
9741     // Otherwise swap the operands to put the constant on the right.
9742     std::swap(LHS, RHS);
9743     Pred = ICmpInst::getSwappedPredicate(Pred);
9744     Changed = true;
9745   }
9746 
9747   // If we're comparing an addrec with a value which is loop-invariant in the
9748   // addrec's loop, put the addrec on the left. Also make a dominance check,
9749   // as both operands could be addrecs loop-invariant in each other's loop.
9750   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
9751     const Loop *L = AR->getLoop();
9752     if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
9753       std::swap(LHS, RHS);
9754       Pred = ICmpInst::getSwappedPredicate(Pred);
9755       Changed = true;
9756     }
9757   }
9758 
9759   // If there's a constant operand, canonicalize comparisons with boundary
9760   // cases, and canonicalize *-or-equal comparisons to regular comparisons.
9761   if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
9762     const APInt &RA = RC->getAPInt();
9763 
9764     bool SimplifiedByConstantRange = false;
9765 
9766     if (!ICmpInst::isEquality(Pred)) {
9767       ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA);
9768       if (ExactCR.isFullSet())
9769         return TrivialCase(true);
9770       else if (ExactCR.isEmptySet())
9771         return TrivialCase(false);
9772 
9773       APInt NewRHS;
9774       CmpInst::Predicate NewPred;
9775       if (ExactCR.getEquivalentICmp(NewPred, NewRHS) &&
9776           ICmpInst::isEquality(NewPred)) {
9777         // We were able to convert an inequality to an equality.
9778         Pred = NewPred;
9779         RHS = getConstant(NewRHS);
9780         Changed = SimplifiedByConstantRange = true;
9781       }
9782     }
9783 
9784     if (!SimplifiedByConstantRange) {
9785       switch (Pred) {
9786       default:
9787         break;
9788       case ICmpInst::ICMP_EQ:
9789       case ICmpInst::ICMP_NE:
9790         // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
9791         if (!RA)
9792           if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
9793             if (const SCEVMulExpr *ME =
9794                     dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
9795               if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
9796                   ME->getOperand(0)->isAllOnesValue()) {
9797                 RHS = AE->getOperand(1);
9798                 LHS = ME->getOperand(1);
9799                 Changed = true;
9800               }
9801         break;
9802 
9803 
9804         // The "Should have been caught earlier!" messages refer to the fact
9805         // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above
9806         // should have fired on the corresponding cases, and canonicalized the
9807         // check to trivial case.
9808 
9809       case ICmpInst::ICMP_UGE:
9810         assert(!RA.isMinValue() && "Should have been caught earlier!");
9811         Pred = ICmpInst::ICMP_UGT;
9812         RHS = getConstant(RA - 1);
9813         Changed = true;
9814         break;
9815       case ICmpInst::ICMP_ULE:
9816         assert(!RA.isMaxValue() && "Should have been caught earlier!");
9817         Pred = ICmpInst::ICMP_ULT;
9818         RHS = getConstant(RA + 1);
9819         Changed = true;
9820         break;
9821       case ICmpInst::ICMP_SGE:
9822         assert(!RA.isMinSignedValue() && "Should have been caught earlier!");
9823         Pred = ICmpInst::ICMP_SGT;
9824         RHS = getConstant(RA - 1);
9825         Changed = true;
9826         break;
9827       case ICmpInst::ICMP_SLE:
9828         assert(!RA.isMaxSignedValue() && "Should have been caught earlier!");
9829         Pred = ICmpInst::ICMP_SLT;
9830         RHS = getConstant(RA + 1);
9831         Changed = true;
9832         break;
9833       }
9834     }
9835   }
9836 
9837   // Check for obvious equality.
9838   if (HasSameValue(LHS, RHS)) {
9839     if (ICmpInst::isTrueWhenEqual(Pred))
9840       return TrivialCase(true);
9841     if (ICmpInst::isFalseWhenEqual(Pred))
9842       return TrivialCase(false);
9843   }
9844 
9845   // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
9846   // adding or subtracting 1 from one of the operands.
9847   switch (Pred) {
9848   case ICmpInst::ICMP_SLE:
9849     if (!getSignedRangeMax(RHS).isMaxSignedValue()) {
9850       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
9851                        SCEV::FlagNSW);
9852       Pred = ICmpInst::ICMP_SLT;
9853       Changed = true;
9854     } else if (!getSignedRangeMin(LHS).isMinSignedValue()) {
9855       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
9856                        SCEV::FlagNSW);
9857       Pred = ICmpInst::ICMP_SLT;
9858       Changed = true;
9859     }
9860     break;
9861   case ICmpInst::ICMP_SGE:
9862     if (!getSignedRangeMin(RHS).isMinSignedValue()) {
9863       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
9864                        SCEV::FlagNSW);
9865       Pred = ICmpInst::ICMP_SGT;
9866       Changed = true;
9867     } else if (!getSignedRangeMax(LHS).isMaxSignedValue()) {
9868       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
9869                        SCEV::FlagNSW);
9870       Pred = ICmpInst::ICMP_SGT;
9871       Changed = true;
9872     }
9873     break;
9874   case ICmpInst::ICMP_ULE:
9875     if (!getUnsignedRangeMax(RHS).isMaxValue()) {
9876       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
9877                        SCEV::FlagNUW);
9878       Pred = ICmpInst::ICMP_ULT;
9879       Changed = true;
9880     } else if (!getUnsignedRangeMin(LHS).isMinValue()) {
9881       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS);
9882       Pred = ICmpInst::ICMP_ULT;
9883       Changed = true;
9884     }
9885     break;
9886   case ICmpInst::ICMP_UGE:
9887     if (!getUnsignedRangeMin(RHS).isMinValue()) {
9888       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS);
9889       Pred = ICmpInst::ICMP_UGT;
9890       Changed = true;
9891     } else if (!getUnsignedRangeMax(LHS).isMaxValue()) {
9892       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
9893                        SCEV::FlagNUW);
9894       Pred = ICmpInst::ICMP_UGT;
9895       Changed = true;
9896     }
9897     break;
9898   default:
9899     break;
9900   }
9901 
9902   // TODO: More simplifications are possible here.
9903 
9904   // Recursively simplify until we either hit a recursion limit or nothing
9905   // changes.
9906   if (Changed)
9907     return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
9908 
9909   return Changed;
9910 }
9911 
9912 bool ScalarEvolution::isKnownNegative(const SCEV *S) {
9913   return getSignedRangeMax(S).isNegative();
9914 }
9915 
9916 bool ScalarEvolution::isKnownPositive(const SCEV *S) {
9917   return getSignedRangeMin(S).isStrictlyPositive();
9918 }
9919 
9920 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
9921   return !getSignedRangeMin(S).isNegative();
9922 }
9923 
9924 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
9925   return !getSignedRangeMax(S).isStrictlyPositive();
9926 }
9927 
9928 bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
9929   return getUnsignedRangeMin(S) != 0;
9930 }
9931 
9932 std::pair<const SCEV *, const SCEV *>
9933 ScalarEvolution::SplitIntoInitAndPostInc(const Loop *L, const SCEV *S) {
9934   // Compute SCEV on entry of loop L.
9935   const SCEV *Start = SCEVInitRewriter::rewrite(S, L, *this);
9936   if (Start == getCouldNotCompute())
9937     return { Start, Start };
9938   // Compute post increment SCEV for loop L.
9939   const SCEV *PostInc = SCEVPostIncRewriter::rewrite(S, L, *this);
9940   assert(PostInc != getCouldNotCompute() && "Unexpected could not compute");
9941   return { Start, PostInc };
9942 }
9943 
9944 bool ScalarEvolution::isKnownViaInduction(ICmpInst::Predicate Pred,
9945                                           const SCEV *LHS, const SCEV *RHS) {
9946   // First collect all loops.
9947   SmallPtrSet<const Loop *, 8> LoopsUsed;
9948   getUsedLoops(LHS, LoopsUsed);
9949   getUsedLoops(RHS, LoopsUsed);
9950 
9951   if (LoopsUsed.empty())
9952     return false;
9953 
9954   // Domination relationship must be a linear order on collected loops.
9955 #ifndef NDEBUG
9956   for (auto *L1 : LoopsUsed)
9957     for (auto *L2 : LoopsUsed)
9958       assert((DT.dominates(L1->getHeader(), L2->getHeader()) ||
9959               DT.dominates(L2->getHeader(), L1->getHeader())) &&
9960              "Domination relationship is not a linear order");
9961 #endif
9962 
9963   const Loop *MDL =
9964       *std::max_element(LoopsUsed.begin(), LoopsUsed.end(),
9965                         [&](const Loop *L1, const Loop *L2) {
9966          return DT.properlyDominates(L1->getHeader(), L2->getHeader());
9967        });
9968 
9969   // Get init and post increment value for LHS.
9970   auto SplitLHS = SplitIntoInitAndPostInc(MDL, LHS);
9971   // if LHS contains unknown non-invariant SCEV then bail out.
9972   if (SplitLHS.first == getCouldNotCompute())
9973     return false;
9974   assert (SplitLHS.second != getCouldNotCompute() && "Unexpected CNC");
9975   // Get init and post increment value for RHS.
9976   auto SplitRHS = SplitIntoInitAndPostInc(MDL, RHS);
9977   // if RHS contains unknown non-invariant SCEV then bail out.
9978   if (SplitRHS.first == getCouldNotCompute())
9979     return false;
9980   assert (SplitRHS.second != getCouldNotCompute() && "Unexpected CNC");
9981   // It is possible that init SCEV contains an invariant load but it does
9982   // not dominate MDL and is not available at MDL loop entry, so we should
9983   // check it here.
9984   if (!isAvailableAtLoopEntry(SplitLHS.first, MDL) ||
9985       !isAvailableAtLoopEntry(SplitRHS.first, MDL))
9986     return false;
9987 
9988   // It seems backedge guard check is faster than entry one so in some cases
9989   // it can speed up whole estimation by short circuit
9990   return isLoopBackedgeGuardedByCond(MDL, Pred, SplitLHS.second,
9991                                      SplitRHS.second) &&
9992          isLoopEntryGuardedByCond(MDL, Pred, SplitLHS.first, SplitRHS.first);
9993 }
9994 
9995 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
9996                                        const SCEV *LHS, const SCEV *RHS) {
9997   // Canonicalize the inputs first.
9998   (void)SimplifyICmpOperands(Pred, LHS, RHS);
9999 
10000   if (isKnownViaInduction(Pred, LHS, RHS))
10001     return true;
10002 
10003   if (isKnownPredicateViaSplitting(Pred, LHS, RHS))
10004     return true;
10005 
10006   // Otherwise see what can be done with some simple reasoning.
10007   return isKnownViaNonRecursiveReasoning(Pred, LHS, RHS);
10008 }
10009 
10010 Optional<bool> ScalarEvolution::evaluatePredicate(ICmpInst::Predicate Pred,
10011                                                   const SCEV *LHS,
10012                                                   const SCEV *RHS) {
10013   if (isKnownPredicate(Pred, LHS, RHS))
10014     return true;
10015   else if (isKnownPredicate(ICmpInst::getInversePredicate(Pred), LHS, RHS))
10016     return false;
10017   return None;
10018 }
10019 
10020 bool ScalarEvolution::isKnownPredicateAt(ICmpInst::Predicate Pred,
10021                                          const SCEV *LHS, const SCEV *RHS,
10022                                          const Instruction *CtxI) {
10023   // TODO: Analyze guards and assumes from Context's block.
10024   return isKnownPredicate(Pred, LHS, RHS) ||
10025          isBasicBlockEntryGuardedByCond(CtxI->getParent(), Pred, LHS, RHS);
10026 }
10027 
10028 Optional<bool> ScalarEvolution::evaluatePredicateAt(ICmpInst::Predicate Pred,
10029                                                     const SCEV *LHS,
10030                                                     const SCEV *RHS,
10031                                                     const Instruction *CtxI) {
10032   Optional<bool> KnownWithoutContext = evaluatePredicate(Pred, LHS, RHS);
10033   if (KnownWithoutContext)
10034     return KnownWithoutContext;
10035 
10036   if (isBasicBlockEntryGuardedByCond(CtxI->getParent(), Pred, LHS, RHS))
10037     return true;
10038   else if (isBasicBlockEntryGuardedByCond(CtxI->getParent(),
10039                                           ICmpInst::getInversePredicate(Pred),
10040                                           LHS, RHS))
10041     return false;
10042   return None;
10043 }
10044 
10045 bool ScalarEvolution::isKnownOnEveryIteration(ICmpInst::Predicate Pred,
10046                                               const SCEVAddRecExpr *LHS,
10047                                               const SCEV *RHS) {
10048   const Loop *L = LHS->getLoop();
10049   return isLoopEntryGuardedByCond(L, Pred, LHS->getStart(), RHS) &&
10050          isLoopBackedgeGuardedByCond(L, Pred, LHS->getPostIncExpr(*this), RHS);
10051 }
10052 
10053 Optional<ScalarEvolution::MonotonicPredicateType>
10054 ScalarEvolution::getMonotonicPredicateType(const SCEVAddRecExpr *LHS,
10055                                            ICmpInst::Predicate Pred) {
10056   auto Result = getMonotonicPredicateTypeImpl(LHS, Pred);
10057 
10058 #ifndef NDEBUG
10059   // Verify an invariant: inverting the predicate should turn a monotonically
10060   // increasing change to a monotonically decreasing one, and vice versa.
10061   if (Result) {
10062     auto ResultSwapped =
10063         getMonotonicPredicateTypeImpl(LHS, ICmpInst::getSwappedPredicate(Pred));
10064 
10065     assert(ResultSwapped.hasValue() && "should be able to analyze both!");
10066     assert(ResultSwapped.getValue() != Result.getValue() &&
10067            "monotonicity should flip as we flip the predicate");
10068   }
10069 #endif
10070 
10071   return Result;
10072 }
10073 
10074 Optional<ScalarEvolution::MonotonicPredicateType>
10075 ScalarEvolution::getMonotonicPredicateTypeImpl(const SCEVAddRecExpr *LHS,
10076                                                ICmpInst::Predicate Pred) {
10077   // A zero step value for LHS means the induction variable is essentially a
10078   // loop invariant value. We don't really depend on the predicate actually
10079   // flipping from false to true (for increasing predicates, and the other way
10080   // around for decreasing predicates), all we care about is that *if* the
10081   // predicate changes then it only changes from false to true.
10082   //
10083   // A zero step value in itself is not very useful, but there may be places
10084   // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be
10085   // as general as possible.
10086 
10087   // Only handle LE/LT/GE/GT predicates.
10088   if (!ICmpInst::isRelational(Pred))
10089     return None;
10090 
10091   bool IsGreater = ICmpInst::isGE(Pred) || ICmpInst::isGT(Pred);
10092   assert((IsGreater || ICmpInst::isLE(Pred) || ICmpInst::isLT(Pred)) &&
10093          "Should be greater or less!");
10094 
10095   // Check that AR does not wrap.
10096   if (ICmpInst::isUnsigned(Pred)) {
10097     if (!LHS->hasNoUnsignedWrap())
10098       return None;
10099     return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing;
10100   } else {
10101     assert(ICmpInst::isSigned(Pred) &&
10102            "Relational predicate is either signed or unsigned!");
10103     if (!LHS->hasNoSignedWrap())
10104       return None;
10105 
10106     const SCEV *Step = LHS->getStepRecurrence(*this);
10107 
10108     if (isKnownNonNegative(Step))
10109       return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing;
10110 
10111     if (isKnownNonPositive(Step))
10112       return !IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing;
10113 
10114     return None;
10115   }
10116 }
10117 
10118 Optional<ScalarEvolution::LoopInvariantPredicate>
10119 ScalarEvolution::getLoopInvariantPredicate(ICmpInst::Predicate Pred,
10120                                            const SCEV *LHS, const SCEV *RHS,
10121                                            const Loop *L) {
10122 
10123   // If there is a loop-invariant, force it into the RHS, otherwise bail out.
10124   if (!isLoopInvariant(RHS, L)) {
10125     if (!isLoopInvariant(LHS, L))
10126       return None;
10127 
10128     std::swap(LHS, RHS);
10129     Pred = ICmpInst::getSwappedPredicate(Pred);
10130   }
10131 
10132   const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS);
10133   if (!ArLHS || ArLHS->getLoop() != L)
10134     return None;
10135 
10136   auto MonotonicType = getMonotonicPredicateType(ArLHS, Pred);
10137   if (!MonotonicType)
10138     return None;
10139   // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to
10140   // true as the loop iterates, and the backedge is control dependent on
10141   // "ArLHS `Pred` RHS" == true then we can reason as follows:
10142   //
10143   //   * if the predicate was false in the first iteration then the predicate
10144   //     is never evaluated again, since the loop exits without taking the
10145   //     backedge.
10146   //   * if the predicate was true in the first iteration then it will
10147   //     continue to be true for all future iterations since it is
10148   //     monotonically increasing.
10149   //
10150   // For both the above possibilities, we can replace the loop varying
10151   // predicate with its value on the first iteration of the loop (which is
10152   // loop invariant).
10153   //
10154   // A similar reasoning applies for a monotonically decreasing predicate, by
10155   // replacing true with false and false with true in the above two bullets.
10156   bool Increasing = *MonotonicType == ScalarEvolution::MonotonicallyIncreasing;
10157   auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred);
10158 
10159   if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS))
10160     return None;
10161 
10162   return ScalarEvolution::LoopInvariantPredicate(Pred, ArLHS->getStart(), RHS);
10163 }
10164 
10165 Optional<ScalarEvolution::LoopInvariantPredicate>
10166 ScalarEvolution::getLoopInvariantExitCondDuringFirstIterations(
10167     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
10168     const Instruction *CtxI, const SCEV *MaxIter) {
10169   // Try to prove the following set of facts:
10170   // - The predicate is monotonic in the iteration space.
10171   // - If the check does not fail on the 1st iteration:
10172   //   - No overflow will happen during first MaxIter iterations;
10173   //   - It will not fail on the MaxIter'th iteration.
10174   // If the check does fail on the 1st iteration, we leave the loop and no
10175   // other checks matter.
10176 
10177   // If there is a loop-invariant, force it into the RHS, otherwise bail out.
10178   if (!isLoopInvariant(RHS, L)) {
10179     if (!isLoopInvariant(LHS, L))
10180       return None;
10181 
10182     std::swap(LHS, RHS);
10183     Pred = ICmpInst::getSwappedPredicate(Pred);
10184   }
10185 
10186   auto *AR = dyn_cast<SCEVAddRecExpr>(LHS);
10187   if (!AR || AR->getLoop() != L)
10188     return None;
10189 
10190   // The predicate must be relational (i.e. <, <=, >=, >).
10191   if (!ICmpInst::isRelational(Pred))
10192     return None;
10193 
10194   // TODO: Support steps other than +/- 1.
10195   const SCEV *Step = AR->getStepRecurrence(*this);
10196   auto *One = getOne(Step->getType());
10197   auto *MinusOne = getNegativeSCEV(One);
10198   if (Step != One && Step != MinusOne)
10199     return None;
10200 
10201   // Type mismatch here means that MaxIter is potentially larger than max
10202   // unsigned value in start type, which mean we cannot prove no wrap for the
10203   // indvar.
10204   if (AR->getType() != MaxIter->getType())
10205     return None;
10206 
10207   // Value of IV on suggested last iteration.
10208   const SCEV *Last = AR->evaluateAtIteration(MaxIter, *this);
10209   // Does it still meet the requirement?
10210   if (!isLoopBackedgeGuardedByCond(L, Pred, Last, RHS))
10211     return None;
10212   // Because step is +/- 1 and MaxIter has same type as Start (i.e. it does
10213   // not exceed max unsigned value of this type), this effectively proves
10214   // that there is no wrap during the iteration. To prove that there is no
10215   // signed/unsigned wrap, we need to check that
10216   // Start <= Last for step = 1 or Start >= Last for step = -1.
10217   ICmpInst::Predicate NoOverflowPred =
10218       CmpInst::isSigned(Pred) ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
10219   if (Step == MinusOne)
10220     NoOverflowPred = CmpInst::getSwappedPredicate(NoOverflowPred);
10221   const SCEV *Start = AR->getStart();
10222   if (!isKnownPredicateAt(NoOverflowPred, Start, Last, CtxI))
10223     return None;
10224 
10225   // Everything is fine.
10226   return ScalarEvolution::LoopInvariantPredicate(Pred, Start, RHS);
10227 }
10228 
10229 bool ScalarEvolution::isKnownPredicateViaConstantRanges(
10230     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
10231   if (HasSameValue(LHS, RHS))
10232     return ICmpInst::isTrueWhenEqual(Pred);
10233 
10234   // This code is split out from isKnownPredicate because it is called from
10235   // within isLoopEntryGuardedByCond.
10236 
10237   auto CheckRanges = [&](const ConstantRange &RangeLHS,
10238                          const ConstantRange &RangeRHS) {
10239     return RangeLHS.icmp(Pred, RangeRHS);
10240   };
10241 
10242   // The check at the top of the function catches the case where the values are
10243   // known to be equal.
10244   if (Pred == CmpInst::ICMP_EQ)
10245     return false;
10246 
10247   if (Pred == CmpInst::ICMP_NE) {
10248     if (CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) ||
10249         CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)))
10250       return true;
10251     auto *Diff = getMinusSCEV(LHS, RHS);
10252     return !isa<SCEVCouldNotCompute>(Diff) && isKnownNonZero(Diff);
10253   }
10254 
10255   if (CmpInst::isSigned(Pred))
10256     return CheckRanges(getSignedRange(LHS), getSignedRange(RHS));
10257 
10258   return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS));
10259 }
10260 
10261 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred,
10262                                                     const SCEV *LHS,
10263                                                     const SCEV *RHS) {
10264   // Match X to (A + C1)<ExpectedFlags> and Y to (A + C2)<ExpectedFlags>, where
10265   // C1 and C2 are constant integers. If either X or Y are not add expressions,
10266   // consider them as X + 0 and Y + 0 respectively. C1 and C2 are returned via
10267   // OutC1 and OutC2.
10268   auto MatchBinaryAddToConst = [this](const SCEV *X, const SCEV *Y,
10269                                       APInt &OutC1, APInt &OutC2,
10270                                       SCEV::NoWrapFlags ExpectedFlags) {
10271     const SCEV *XNonConstOp, *XConstOp;
10272     const SCEV *YNonConstOp, *YConstOp;
10273     SCEV::NoWrapFlags XFlagsPresent;
10274     SCEV::NoWrapFlags YFlagsPresent;
10275 
10276     if (!splitBinaryAdd(X, XConstOp, XNonConstOp, XFlagsPresent)) {
10277       XConstOp = getZero(X->getType());
10278       XNonConstOp = X;
10279       XFlagsPresent = ExpectedFlags;
10280     }
10281     if (!isa<SCEVConstant>(XConstOp) ||
10282         (XFlagsPresent & ExpectedFlags) != ExpectedFlags)
10283       return false;
10284 
10285     if (!splitBinaryAdd(Y, YConstOp, YNonConstOp, YFlagsPresent)) {
10286       YConstOp = getZero(Y->getType());
10287       YNonConstOp = Y;
10288       YFlagsPresent = ExpectedFlags;
10289     }
10290 
10291     if (!isa<SCEVConstant>(YConstOp) ||
10292         (YFlagsPresent & ExpectedFlags) != ExpectedFlags)
10293       return false;
10294 
10295     if (YNonConstOp != XNonConstOp)
10296       return false;
10297 
10298     OutC1 = cast<SCEVConstant>(XConstOp)->getAPInt();
10299     OutC2 = cast<SCEVConstant>(YConstOp)->getAPInt();
10300 
10301     return true;
10302   };
10303 
10304   APInt C1;
10305   APInt C2;
10306 
10307   switch (Pred) {
10308   default:
10309     break;
10310 
10311   case ICmpInst::ICMP_SGE:
10312     std::swap(LHS, RHS);
10313     LLVM_FALLTHROUGH;
10314   case ICmpInst::ICMP_SLE:
10315     // (X + C1)<nsw> s<= (X + C2)<nsw> if C1 s<= C2.
10316     if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNSW) && C1.sle(C2))
10317       return true;
10318 
10319     break;
10320 
10321   case ICmpInst::ICMP_SGT:
10322     std::swap(LHS, RHS);
10323     LLVM_FALLTHROUGH;
10324   case ICmpInst::ICMP_SLT:
10325     // (X + C1)<nsw> s< (X + C2)<nsw> if C1 s< C2.
10326     if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNSW) && C1.slt(C2))
10327       return true;
10328 
10329     break;
10330 
10331   case ICmpInst::ICMP_UGE:
10332     std::swap(LHS, RHS);
10333     LLVM_FALLTHROUGH;
10334   case ICmpInst::ICMP_ULE:
10335     // (X + C1)<nuw> u<= (X + C2)<nuw> for C1 u<= C2.
10336     if (MatchBinaryAddToConst(RHS, LHS, C2, C1, SCEV::FlagNUW) && C1.ule(C2))
10337       return true;
10338 
10339     break;
10340 
10341   case ICmpInst::ICMP_UGT:
10342     std::swap(LHS, RHS);
10343     LLVM_FALLTHROUGH;
10344   case ICmpInst::ICMP_ULT:
10345     // (X + C1)<nuw> u< (X + C2)<nuw> if C1 u< C2.
10346     if (MatchBinaryAddToConst(RHS, LHS, C2, C1, SCEV::FlagNUW) && C1.ult(C2))
10347       return true;
10348     break;
10349   }
10350 
10351   return false;
10352 }
10353 
10354 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred,
10355                                                    const SCEV *LHS,
10356                                                    const SCEV *RHS) {
10357   if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate)
10358     return false;
10359 
10360   // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on
10361   // the stack can result in exponential time complexity.
10362   SaveAndRestore<bool> Restore(ProvingSplitPredicate, true);
10363 
10364   // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L
10365   //
10366   // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use
10367   // isKnownPredicate.  isKnownPredicate is more powerful, but also more
10368   // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the
10369   // interesting cases seen in practice.  We can consider "upgrading" L >= 0 to
10370   // use isKnownPredicate later if needed.
10371   return isKnownNonNegative(RHS) &&
10372          isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) &&
10373          isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS);
10374 }
10375 
10376 bool ScalarEvolution::isImpliedViaGuard(const BasicBlock *BB,
10377                                         ICmpInst::Predicate Pred,
10378                                         const SCEV *LHS, const SCEV *RHS) {
10379   // No need to even try if we know the module has no guards.
10380   if (!HasGuards)
10381     return false;
10382 
10383   return any_of(*BB, [&](const Instruction &I) {
10384     using namespace llvm::PatternMatch;
10385 
10386     Value *Condition;
10387     return match(&I, m_Intrinsic<Intrinsic::experimental_guard>(
10388                          m_Value(Condition))) &&
10389            isImpliedCond(Pred, LHS, RHS, Condition, false);
10390   });
10391 }
10392 
10393 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
10394 /// protected by a conditional between LHS and RHS.  This is used to
10395 /// to eliminate casts.
10396 bool
10397 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
10398                                              ICmpInst::Predicate Pred,
10399                                              const SCEV *LHS, const SCEV *RHS) {
10400   // Interpret a null as meaning no loop, where there is obviously no guard
10401   // (interprocedural conditions notwithstanding).
10402   if (!L) return true;
10403 
10404   if (VerifyIR)
10405     assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) &&
10406            "This cannot be done on broken IR!");
10407 
10408 
10409   if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
10410     return true;
10411 
10412   BasicBlock *Latch = L->getLoopLatch();
10413   if (!Latch)
10414     return false;
10415 
10416   BranchInst *LoopContinuePredicate =
10417     dyn_cast<BranchInst>(Latch->getTerminator());
10418   if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
10419       isImpliedCond(Pred, LHS, RHS,
10420                     LoopContinuePredicate->getCondition(),
10421                     LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
10422     return true;
10423 
10424   // We don't want more than one activation of the following loops on the stack
10425   // -- that can lead to O(n!) time complexity.
10426   if (WalkingBEDominatingConds)
10427     return false;
10428 
10429   SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true);
10430 
10431   // See if we can exploit a trip count to prove the predicate.
10432   const auto &BETakenInfo = getBackedgeTakenInfo(L);
10433   const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this);
10434   if (LatchBECount != getCouldNotCompute()) {
10435     // We know that Latch branches back to the loop header exactly
10436     // LatchBECount times.  This means the backdege condition at Latch is
10437     // equivalent to  "{0,+,1} u< LatchBECount".
10438     Type *Ty = LatchBECount->getType();
10439     auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW);
10440     const SCEV *LoopCounter =
10441       getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags);
10442     if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter,
10443                       LatchBECount))
10444       return true;
10445   }
10446 
10447   // Check conditions due to any @llvm.assume intrinsics.
10448   for (auto &AssumeVH : AC.assumptions()) {
10449     if (!AssumeVH)
10450       continue;
10451     auto *CI = cast<CallInst>(AssumeVH);
10452     if (!DT.dominates(CI, Latch->getTerminator()))
10453       continue;
10454 
10455     if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
10456       return true;
10457   }
10458 
10459   // If the loop is not reachable from the entry block, we risk running into an
10460   // infinite loop as we walk up into the dom tree.  These loops do not matter
10461   // anyway, so we just return a conservative answer when we see them.
10462   if (!DT.isReachableFromEntry(L->getHeader()))
10463     return false;
10464 
10465   if (isImpliedViaGuard(Latch, Pred, LHS, RHS))
10466     return true;
10467 
10468   for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()];
10469        DTN != HeaderDTN; DTN = DTN->getIDom()) {
10470     assert(DTN && "should reach the loop header before reaching the root!");
10471 
10472     BasicBlock *BB = DTN->getBlock();
10473     if (isImpliedViaGuard(BB, Pred, LHS, RHS))
10474       return true;
10475 
10476     BasicBlock *PBB = BB->getSinglePredecessor();
10477     if (!PBB)
10478       continue;
10479 
10480     BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator());
10481     if (!ContinuePredicate || !ContinuePredicate->isConditional())
10482       continue;
10483 
10484     Value *Condition = ContinuePredicate->getCondition();
10485 
10486     // If we have an edge `E` within the loop body that dominates the only
10487     // latch, the condition guarding `E` also guards the backedge.  This
10488     // reasoning works only for loops with a single latch.
10489 
10490     BasicBlockEdge DominatingEdge(PBB, BB);
10491     if (DominatingEdge.isSingleEdge()) {
10492       // We're constructively (and conservatively) enumerating edges within the
10493       // loop body that dominate the latch.  The dominator tree better agree
10494       // with us on this:
10495       assert(DT.dominates(DominatingEdge, Latch) && "should be!");
10496 
10497       if (isImpliedCond(Pred, LHS, RHS, Condition,
10498                         BB != ContinuePredicate->getSuccessor(0)))
10499         return true;
10500     }
10501   }
10502 
10503   return false;
10504 }
10505 
10506 bool ScalarEvolution::isBasicBlockEntryGuardedByCond(const BasicBlock *BB,
10507                                                      ICmpInst::Predicate Pred,
10508                                                      const SCEV *LHS,
10509                                                      const SCEV *RHS) {
10510   if (VerifyIR)
10511     assert(!verifyFunction(*BB->getParent(), &dbgs()) &&
10512            "This cannot be done on broken IR!");
10513 
10514   // If we cannot prove strict comparison (e.g. a > b), maybe we can prove
10515   // the facts (a >= b && a != b) separately. A typical situation is when the
10516   // non-strict comparison is known from ranges and non-equality is known from
10517   // dominating predicates. If we are proving strict comparison, we always try
10518   // to prove non-equality and non-strict comparison separately.
10519   auto NonStrictPredicate = ICmpInst::getNonStrictPredicate(Pred);
10520   const bool ProvingStrictComparison = (Pred != NonStrictPredicate);
10521   bool ProvedNonStrictComparison = false;
10522   bool ProvedNonEquality = false;
10523 
10524   auto SplitAndProve =
10525     [&](std::function<bool(ICmpInst::Predicate)> Fn) -> bool {
10526     if (!ProvedNonStrictComparison)
10527       ProvedNonStrictComparison = Fn(NonStrictPredicate);
10528     if (!ProvedNonEquality)
10529       ProvedNonEquality = Fn(ICmpInst::ICMP_NE);
10530     if (ProvedNonStrictComparison && ProvedNonEquality)
10531       return true;
10532     return false;
10533   };
10534 
10535   if (ProvingStrictComparison) {
10536     auto ProofFn = [&](ICmpInst::Predicate P) {
10537       return isKnownViaNonRecursiveReasoning(P, LHS, RHS);
10538     };
10539     if (SplitAndProve(ProofFn))
10540       return true;
10541   }
10542 
10543   // Try to prove (Pred, LHS, RHS) using isImpliedViaGuard.
10544   auto ProveViaGuard = [&](const BasicBlock *Block) {
10545     if (isImpliedViaGuard(Block, Pred, LHS, RHS))
10546       return true;
10547     if (ProvingStrictComparison) {
10548       auto ProofFn = [&](ICmpInst::Predicate P) {
10549         return isImpliedViaGuard(Block, P, LHS, RHS);
10550       };
10551       if (SplitAndProve(ProofFn))
10552         return true;
10553     }
10554     return false;
10555   };
10556 
10557   // Try to prove (Pred, LHS, RHS) using isImpliedCond.
10558   auto ProveViaCond = [&](const Value *Condition, bool Inverse) {
10559     const Instruction *CtxI = &BB->front();
10560     if (isImpliedCond(Pred, LHS, RHS, Condition, Inverse, CtxI))
10561       return true;
10562     if (ProvingStrictComparison) {
10563       auto ProofFn = [&](ICmpInst::Predicate P) {
10564         return isImpliedCond(P, LHS, RHS, Condition, Inverse, CtxI);
10565       };
10566       if (SplitAndProve(ProofFn))
10567         return true;
10568     }
10569     return false;
10570   };
10571 
10572   // Starting at the block's predecessor, climb up the predecessor chain, as long
10573   // as there are predecessors that can be found that have unique successors
10574   // leading to the original block.
10575   const Loop *ContainingLoop = LI.getLoopFor(BB);
10576   const BasicBlock *PredBB;
10577   if (ContainingLoop && ContainingLoop->getHeader() == BB)
10578     PredBB = ContainingLoop->getLoopPredecessor();
10579   else
10580     PredBB = BB->getSinglePredecessor();
10581   for (std::pair<const BasicBlock *, const BasicBlock *> Pair(PredBB, BB);
10582        Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
10583     if (ProveViaGuard(Pair.first))
10584       return true;
10585 
10586     const BranchInst *LoopEntryPredicate =
10587         dyn_cast<BranchInst>(Pair.first->getTerminator());
10588     if (!LoopEntryPredicate ||
10589         LoopEntryPredicate->isUnconditional())
10590       continue;
10591 
10592     if (ProveViaCond(LoopEntryPredicate->getCondition(),
10593                      LoopEntryPredicate->getSuccessor(0) != Pair.second))
10594       return true;
10595   }
10596 
10597   // Check conditions due to any @llvm.assume intrinsics.
10598   for (auto &AssumeVH : AC.assumptions()) {
10599     if (!AssumeVH)
10600       continue;
10601     auto *CI = cast<CallInst>(AssumeVH);
10602     if (!DT.dominates(CI, BB))
10603       continue;
10604 
10605     if (ProveViaCond(CI->getArgOperand(0), false))
10606       return true;
10607   }
10608 
10609   return false;
10610 }
10611 
10612 bool ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
10613                                                ICmpInst::Predicate Pred,
10614                                                const SCEV *LHS,
10615                                                const SCEV *RHS) {
10616   // Interpret a null as meaning no loop, where there is obviously no guard
10617   // (interprocedural conditions notwithstanding).
10618   if (!L)
10619     return false;
10620 
10621   // Both LHS and RHS must be available at loop entry.
10622   assert(isAvailableAtLoopEntry(LHS, L) &&
10623          "LHS is not available at Loop Entry");
10624   assert(isAvailableAtLoopEntry(RHS, L) &&
10625          "RHS is not available at Loop Entry");
10626 
10627   if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
10628     return true;
10629 
10630   return isBasicBlockEntryGuardedByCond(L->getHeader(), Pred, LHS, RHS);
10631 }
10632 
10633 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
10634                                     const SCEV *RHS,
10635                                     const Value *FoundCondValue, bool Inverse,
10636                                     const Instruction *CtxI) {
10637   // False conditions implies anything. Do not bother analyzing it further.
10638   if (FoundCondValue ==
10639       ConstantInt::getBool(FoundCondValue->getContext(), Inverse))
10640     return true;
10641 
10642   if (!PendingLoopPredicates.insert(FoundCondValue).second)
10643     return false;
10644 
10645   auto ClearOnExit =
10646       make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); });
10647 
10648   // Recursively handle And and Or conditions.
10649   const Value *Op0, *Op1;
10650   if (match(FoundCondValue, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
10651     if (!Inverse)
10652       return isImpliedCond(Pred, LHS, RHS, Op0, Inverse, CtxI) ||
10653              isImpliedCond(Pred, LHS, RHS, Op1, Inverse, CtxI);
10654   } else if (match(FoundCondValue, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) {
10655     if (Inverse)
10656       return isImpliedCond(Pred, LHS, RHS, Op0, Inverse, CtxI) ||
10657              isImpliedCond(Pred, LHS, RHS, Op1, Inverse, CtxI);
10658   }
10659 
10660   const ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
10661   if (!ICI) return false;
10662 
10663   // Now that we found a conditional branch that dominates the loop or controls
10664   // the loop latch. Check to see if it is the comparison we are looking for.
10665   ICmpInst::Predicate FoundPred;
10666   if (Inverse)
10667     FoundPred = ICI->getInversePredicate();
10668   else
10669     FoundPred = ICI->getPredicate();
10670 
10671   const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
10672   const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
10673 
10674   return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS, CtxI);
10675 }
10676 
10677 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
10678                                     const SCEV *RHS,
10679                                     ICmpInst::Predicate FoundPred,
10680                                     const SCEV *FoundLHS, const SCEV *FoundRHS,
10681                                     const Instruction *CtxI) {
10682   // Balance the types.
10683   if (getTypeSizeInBits(LHS->getType()) <
10684       getTypeSizeInBits(FoundLHS->getType())) {
10685     // For unsigned and equality predicates, try to prove that both found
10686     // operands fit into narrow unsigned range. If so, try to prove facts in
10687     // narrow types.
10688     if (!CmpInst::isSigned(FoundPred) && !FoundLHS->getType()->isPointerTy()) {
10689       auto *NarrowType = LHS->getType();
10690       auto *WideType = FoundLHS->getType();
10691       auto BitWidth = getTypeSizeInBits(NarrowType);
10692       const SCEV *MaxValue = getZeroExtendExpr(
10693           getConstant(APInt::getMaxValue(BitWidth)), WideType);
10694       if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, FoundLHS,
10695                                           MaxValue) &&
10696           isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, FoundRHS,
10697                                           MaxValue)) {
10698         const SCEV *TruncFoundLHS = getTruncateExpr(FoundLHS, NarrowType);
10699         const SCEV *TruncFoundRHS = getTruncateExpr(FoundRHS, NarrowType);
10700         if (isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, TruncFoundLHS,
10701                                        TruncFoundRHS, CtxI))
10702           return true;
10703       }
10704     }
10705 
10706     if (LHS->getType()->isPointerTy())
10707       return false;
10708     if (CmpInst::isSigned(Pred)) {
10709       LHS = getSignExtendExpr(LHS, FoundLHS->getType());
10710       RHS = getSignExtendExpr(RHS, FoundLHS->getType());
10711     } else {
10712       LHS = getZeroExtendExpr(LHS, FoundLHS->getType());
10713       RHS = getZeroExtendExpr(RHS, FoundLHS->getType());
10714     }
10715   } else if (getTypeSizeInBits(LHS->getType()) >
10716       getTypeSizeInBits(FoundLHS->getType())) {
10717     if (FoundLHS->getType()->isPointerTy())
10718       return false;
10719     if (CmpInst::isSigned(FoundPred)) {
10720       FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
10721       FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
10722     } else {
10723       FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
10724       FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
10725     }
10726   }
10727   return isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, FoundLHS,
10728                                     FoundRHS, CtxI);
10729 }
10730 
10731 bool ScalarEvolution::isImpliedCondBalancedTypes(
10732     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
10733     ICmpInst::Predicate FoundPred, const SCEV *FoundLHS, const SCEV *FoundRHS,
10734     const Instruction *CtxI) {
10735   assert(getTypeSizeInBits(LHS->getType()) ==
10736              getTypeSizeInBits(FoundLHS->getType()) &&
10737          "Types should be balanced!");
10738   // Canonicalize the query to match the way instcombine will have
10739   // canonicalized the comparison.
10740   if (SimplifyICmpOperands(Pred, LHS, RHS))
10741     if (LHS == RHS)
10742       return CmpInst::isTrueWhenEqual(Pred);
10743   if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
10744     if (FoundLHS == FoundRHS)
10745       return CmpInst::isFalseWhenEqual(FoundPred);
10746 
10747   // Check to see if we can make the LHS or RHS match.
10748   if (LHS == FoundRHS || RHS == FoundLHS) {
10749     if (isa<SCEVConstant>(RHS)) {
10750       std::swap(FoundLHS, FoundRHS);
10751       FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
10752     } else {
10753       std::swap(LHS, RHS);
10754       Pred = ICmpInst::getSwappedPredicate(Pred);
10755     }
10756   }
10757 
10758   // Check whether the found predicate is the same as the desired predicate.
10759   if (FoundPred == Pred)
10760     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI);
10761 
10762   // Check whether swapping the found predicate makes it the same as the
10763   // desired predicate.
10764   if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
10765     // We can write the implication
10766     // 0.  LHS Pred      RHS  <-   FoundLHS SwapPred  FoundRHS
10767     // using one of the following ways:
10768     // 1.  LHS Pred      RHS  <-   FoundRHS Pred      FoundLHS
10769     // 2.  RHS SwapPred  LHS  <-   FoundLHS SwapPred  FoundRHS
10770     // 3.  LHS Pred      RHS  <-  ~FoundLHS Pred     ~FoundRHS
10771     // 4. ~LHS SwapPred ~RHS  <-   FoundLHS SwapPred  FoundRHS
10772     // Forms 1. and 2. require swapping the operands of one condition. Don't
10773     // do this if it would break canonical constant/addrec ordering.
10774     if (!isa<SCEVConstant>(RHS) && !isa<SCEVAddRecExpr>(LHS))
10775       return isImpliedCondOperands(FoundPred, RHS, LHS, FoundLHS, FoundRHS,
10776                                    CtxI);
10777     if (!isa<SCEVConstant>(FoundRHS) && !isa<SCEVAddRecExpr>(FoundLHS))
10778       return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS, CtxI);
10779 
10780     // There's no clear preference between forms 3. and 4., try both.  Avoid
10781     // forming getNotSCEV of pointer values as the resulting subtract is
10782     // not legal.
10783     if (!LHS->getType()->isPointerTy() && !RHS->getType()->isPointerTy() &&
10784         isImpliedCondOperands(FoundPred, getNotSCEV(LHS), getNotSCEV(RHS),
10785                               FoundLHS, FoundRHS, CtxI))
10786       return true;
10787 
10788     if (!FoundLHS->getType()->isPointerTy() &&
10789         !FoundRHS->getType()->isPointerTy() &&
10790         isImpliedCondOperands(Pred, LHS, RHS, getNotSCEV(FoundLHS),
10791                               getNotSCEV(FoundRHS), CtxI))
10792       return true;
10793 
10794     return false;
10795   }
10796 
10797   auto IsSignFlippedPredicate = [](CmpInst::Predicate P1,
10798                                    CmpInst::Predicate P2) {
10799     assert(P1 != P2 && "Handled earlier!");
10800     return CmpInst::isRelational(P2) &&
10801            P1 == CmpInst::getFlippedSignednessPredicate(P2);
10802   };
10803   if (IsSignFlippedPredicate(Pred, FoundPred)) {
10804     // Unsigned comparison is the same as signed comparison when both the
10805     // operands are non-negative or negative.
10806     if ((isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) ||
10807         (isKnownNegative(FoundLHS) && isKnownNegative(FoundRHS)))
10808       return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI);
10809     // Create local copies that we can freely swap and canonicalize our
10810     // conditions to "le/lt".
10811     ICmpInst::Predicate CanonicalPred = Pred, CanonicalFoundPred = FoundPred;
10812     const SCEV *CanonicalLHS = LHS, *CanonicalRHS = RHS,
10813                *CanonicalFoundLHS = FoundLHS, *CanonicalFoundRHS = FoundRHS;
10814     if (ICmpInst::isGT(CanonicalPred) || ICmpInst::isGE(CanonicalPred)) {
10815       CanonicalPred = ICmpInst::getSwappedPredicate(CanonicalPred);
10816       CanonicalFoundPred = ICmpInst::getSwappedPredicate(CanonicalFoundPred);
10817       std::swap(CanonicalLHS, CanonicalRHS);
10818       std::swap(CanonicalFoundLHS, CanonicalFoundRHS);
10819     }
10820     assert((ICmpInst::isLT(CanonicalPred) || ICmpInst::isLE(CanonicalPred)) &&
10821            "Must be!");
10822     assert((ICmpInst::isLT(CanonicalFoundPred) ||
10823             ICmpInst::isLE(CanonicalFoundPred)) &&
10824            "Must be!");
10825     if (ICmpInst::isSigned(CanonicalPred) && isKnownNonNegative(CanonicalRHS))
10826       // Use implication:
10827       // x <u y && y >=s 0 --> x <s y.
10828       // If we can prove the left part, the right part is also proven.
10829       return isImpliedCondOperands(CanonicalFoundPred, CanonicalLHS,
10830                                    CanonicalRHS, CanonicalFoundLHS,
10831                                    CanonicalFoundRHS);
10832     if (ICmpInst::isUnsigned(CanonicalPred) && isKnownNegative(CanonicalRHS))
10833       // Use implication:
10834       // x <s y && y <s 0 --> x <u y.
10835       // If we can prove the left part, the right part is also proven.
10836       return isImpliedCondOperands(CanonicalFoundPred, CanonicalLHS,
10837                                    CanonicalRHS, CanonicalFoundLHS,
10838                                    CanonicalFoundRHS);
10839   }
10840 
10841   // Check if we can make progress by sharpening ranges.
10842   if (FoundPred == ICmpInst::ICMP_NE &&
10843       (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) {
10844 
10845     const SCEVConstant *C = nullptr;
10846     const SCEV *V = nullptr;
10847 
10848     if (isa<SCEVConstant>(FoundLHS)) {
10849       C = cast<SCEVConstant>(FoundLHS);
10850       V = FoundRHS;
10851     } else {
10852       C = cast<SCEVConstant>(FoundRHS);
10853       V = FoundLHS;
10854     }
10855 
10856     // The guarding predicate tells us that C != V. If the known range
10857     // of V is [C, t), we can sharpen the range to [C + 1, t).  The
10858     // range we consider has to correspond to same signedness as the
10859     // predicate we're interested in folding.
10860 
10861     APInt Min = ICmpInst::isSigned(Pred) ?
10862         getSignedRangeMin(V) : getUnsignedRangeMin(V);
10863 
10864     if (Min == C->getAPInt()) {
10865       // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
10866       // This is true even if (Min + 1) wraps around -- in case of
10867       // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
10868 
10869       APInt SharperMin = Min + 1;
10870 
10871       switch (Pred) {
10872         case ICmpInst::ICMP_SGE:
10873         case ICmpInst::ICMP_UGE:
10874           // We know V `Pred` SharperMin.  If this implies LHS `Pred`
10875           // RHS, we're done.
10876           if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(SharperMin),
10877                                     CtxI))
10878             return true;
10879           LLVM_FALLTHROUGH;
10880 
10881         case ICmpInst::ICMP_SGT:
10882         case ICmpInst::ICMP_UGT:
10883           // We know from the range information that (V `Pred` Min ||
10884           // V == Min).  We know from the guarding condition that !(V
10885           // == Min).  This gives us
10886           //
10887           //       V `Pred` Min || V == Min && !(V == Min)
10888           //   =>  V `Pred` Min
10889           //
10890           // If V `Pred` Min implies LHS `Pred` RHS, we're done.
10891 
10892           if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min), CtxI))
10893             return true;
10894           break;
10895 
10896         // `LHS < RHS` and `LHS <= RHS` are handled in the same way as `RHS > LHS` and `RHS >= LHS` respectively.
10897         case ICmpInst::ICMP_SLE:
10898         case ICmpInst::ICMP_ULE:
10899           if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS,
10900                                     LHS, V, getConstant(SharperMin), CtxI))
10901             return true;
10902           LLVM_FALLTHROUGH;
10903 
10904         case ICmpInst::ICMP_SLT:
10905         case ICmpInst::ICMP_ULT:
10906           if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS,
10907                                     LHS, V, getConstant(Min), CtxI))
10908             return true;
10909           break;
10910 
10911         default:
10912           // No change
10913           break;
10914       }
10915     }
10916   }
10917 
10918   // Check whether the actual condition is beyond sufficient.
10919   if (FoundPred == ICmpInst::ICMP_EQ)
10920     if (ICmpInst::isTrueWhenEqual(Pred))
10921       if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI))
10922         return true;
10923   if (Pred == ICmpInst::ICMP_NE)
10924     if (!ICmpInst::isTrueWhenEqual(FoundPred))
10925       if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS, CtxI))
10926         return true;
10927 
10928   // Otherwise assume the worst.
10929   return false;
10930 }
10931 
10932 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr,
10933                                      const SCEV *&L, const SCEV *&R,
10934                                      SCEV::NoWrapFlags &Flags) {
10935   const auto *AE = dyn_cast<SCEVAddExpr>(Expr);
10936   if (!AE || AE->getNumOperands() != 2)
10937     return false;
10938 
10939   L = AE->getOperand(0);
10940   R = AE->getOperand(1);
10941   Flags = AE->getNoWrapFlags();
10942   return true;
10943 }
10944 
10945 Optional<APInt> ScalarEvolution::computeConstantDifference(const SCEV *More,
10946                                                            const SCEV *Less) {
10947   // We avoid subtracting expressions here because this function is usually
10948   // fairly deep in the call stack (i.e. is called many times).
10949 
10950   // X - X = 0.
10951   if (More == Less)
10952     return APInt(getTypeSizeInBits(More->getType()), 0);
10953 
10954   if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) {
10955     const auto *LAR = cast<SCEVAddRecExpr>(Less);
10956     const auto *MAR = cast<SCEVAddRecExpr>(More);
10957 
10958     if (LAR->getLoop() != MAR->getLoop())
10959       return None;
10960 
10961     // We look at affine expressions only; not for correctness but to keep
10962     // getStepRecurrence cheap.
10963     if (!LAR->isAffine() || !MAR->isAffine())
10964       return None;
10965 
10966     if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this))
10967       return None;
10968 
10969     Less = LAR->getStart();
10970     More = MAR->getStart();
10971 
10972     // fall through
10973   }
10974 
10975   if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) {
10976     const auto &M = cast<SCEVConstant>(More)->getAPInt();
10977     const auto &L = cast<SCEVConstant>(Less)->getAPInt();
10978     return M - L;
10979   }
10980 
10981   SCEV::NoWrapFlags Flags;
10982   const SCEV *LLess = nullptr, *RLess = nullptr;
10983   const SCEV *LMore = nullptr, *RMore = nullptr;
10984   const SCEVConstant *C1 = nullptr, *C2 = nullptr;
10985   // Compare (X + C1) vs X.
10986   if (splitBinaryAdd(Less, LLess, RLess, Flags))
10987     if ((C1 = dyn_cast<SCEVConstant>(LLess)))
10988       if (RLess == More)
10989         return -(C1->getAPInt());
10990 
10991   // Compare X vs (X + C2).
10992   if (splitBinaryAdd(More, LMore, RMore, Flags))
10993     if ((C2 = dyn_cast<SCEVConstant>(LMore)))
10994       if (RMore == Less)
10995         return C2->getAPInt();
10996 
10997   // Compare (X + C1) vs (X + C2).
10998   if (C1 && C2 && RLess == RMore)
10999     return C2->getAPInt() - C1->getAPInt();
11000 
11001   return None;
11002 }
11003 
11004 bool ScalarEvolution::isImpliedCondOperandsViaAddRecStart(
11005     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
11006     const SCEV *FoundLHS, const SCEV *FoundRHS, const Instruction *CtxI) {
11007   // Try to recognize the following pattern:
11008   //
11009   //   FoundRHS = ...
11010   // ...
11011   // loop:
11012   //   FoundLHS = {Start,+,W}
11013   // context_bb: // Basic block from the same loop
11014   //   known(Pred, FoundLHS, FoundRHS)
11015   //
11016   // If some predicate is known in the context of a loop, it is also known on
11017   // each iteration of this loop, including the first iteration. Therefore, in
11018   // this case, `FoundLHS Pred FoundRHS` implies `Start Pred FoundRHS`. Try to
11019   // prove the original pred using this fact.
11020   if (!CtxI)
11021     return false;
11022   const BasicBlock *ContextBB = CtxI->getParent();
11023   // Make sure AR varies in the context block.
11024   if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundLHS)) {
11025     const Loop *L = AR->getLoop();
11026     // Make sure that context belongs to the loop and executes on 1st iteration
11027     // (if it ever executes at all).
11028     if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch()))
11029       return false;
11030     if (!isAvailableAtLoopEntry(FoundRHS, AR->getLoop()))
11031       return false;
11032     return isImpliedCondOperands(Pred, LHS, RHS, AR->getStart(), FoundRHS);
11033   }
11034 
11035   if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundRHS)) {
11036     const Loop *L = AR->getLoop();
11037     // Make sure that context belongs to the loop and executes on 1st iteration
11038     // (if it ever executes at all).
11039     if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch()))
11040       return false;
11041     if (!isAvailableAtLoopEntry(FoundLHS, AR->getLoop()))
11042       return false;
11043     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, AR->getStart());
11044   }
11045 
11046   return false;
11047 }
11048 
11049 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow(
11050     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
11051     const SCEV *FoundLHS, const SCEV *FoundRHS) {
11052   if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT)
11053     return false;
11054 
11055   const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS);
11056   if (!AddRecLHS)
11057     return false;
11058 
11059   const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS);
11060   if (!AddRecFoundLHS)
11061     return false;
11062 
11063   // We'd like to let SCEV reason about control dependencies, so we constrain
11064   // both the inequalities to be about add recurrences on the same loop.  This
11065   // way we can use isLoopEntryGuardedByCond later.
11066 
11067   const Loop *L = AddRecFoundLHS->getLoop();
11068   if (L != AddRecLHS->getLoop())
11069     return false;
11070 
11071   //  FoundLHS u< FoundRHS u< -C =>  (FoundLHS + C) u< (FoundRHS + C) ... (1)
11072   //
11073   //  FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C)
11074   //                                                                  ... (2)
11075   //
11076   // Informal proof for (2), assuming (1) [*]:
11077   //
11078   // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**]
11079   //
11080   // Then
11081   //
11082   //       FoundLHS s< FoundRHS s< INT_MIN - C
11083   // <=>  (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C   [ using (3) ]
11084   // <=>  (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ]
11085   // <=>  (FoundLHS + INT_MIN + C + INT_MIN) s<
11086   //                        (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ]
11087   // <=>  FoundLHS + C s< FoundRHS + C
11088   //
11089   // [*]: (1) can be proved by ruling out overflow.
11090   //
11091   // [**]: This can be proved by analyzing all the four possibilities:
11092   //    (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and
11093   //    (A s>= 0, B s>= 0).
11094   //
11095   // Note:
11096   // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C"
11097   // will not sign underflow.  For instance, say FoundLHS = (i8 -128), FoundRHS
11098   // = (i8 -127) and C = (i8 -100).  Then INT_MIN - C = (i8 -28), and FoundRHS
11099   // s< (INT_MIN - C).  Lack of sign overflow / underflow in "FoundRHS + C" is
11100   // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS +
11101   // C)".
11102 
11103   Optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS);
11104   Optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS);
11105   if (!LDiff || !RDiff || *LDiff != *RDiff)
11106     return false;
11107 
11108   if (LDiff->isMinValue())
11109     return true;
11110 
11111   APInt FoundRHSLimit;
11112 
11113   if (Pred == CmpInst::ICMP_ULT) {
11114     FoundRHSLimit = -(*RDiff);
11115   } else {
11116     assert(Pred == CmpInst::ICMP_SLT && "Checked above!");
11117     FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff;
11118   }
11119 
11120   // Try to prove (1) or (2), as needed.
11121   return isAvailableAtLoopEntry(FoundRHS, L) &&
11122          isLoopEntryGuardedByCond(L, Pred, FoundRHS,
11123                                   getConstant(FoundRHSLimit));
11124 }
11125 
11126 bool ScalarEvolution::isImpliedViaMerge(ICmpInst::Predicate Pred,
11127                                         const SCEV *LHS, const SCEV *RHS,
11128                                         const SCEV *FoundLHS,
11129                                         const SCEV *FoundRHS, unsigned Depth) {
11130   const PHINode *LPhi = nullptr, *RPhi = nullptr;
11131 
11132   auto ClearOnExit = make_scope_exit([&]() {
11133     if (LPhi) {
11134       bool Erased = PendingMerges.erase(LPhi);
11135       assert(Erased && "Failed to erase LPhi!");
11136       (void)Erased;
11137     }
11138     if (RPhi) {
11139       bool Erased = PendingMerges.erase(RPhi);
11140       assert(Erased && "Failed to erase RPhi!");
11141       (void)Erased;
11142     }
11143   });
11144 
11145   // Find respective Phis and check that they are not being pending.
11146   if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS))
11147     if (auto *Phi = dyn_cast<PHINode>(LU->getValue())) {
11148       if (!PendingMerges.insert(Phi).second)
11149         return false;
11150       LPhi = Phi;
11151     }
11152   if (const SCEVUnknown *RU = dyn_cast<SCEVUnknown>(RHS))
11153     if (auto *Phi = dyn_cast<PHINode>(RU->getValue())) {
11154       // If we detect a loop of Phi nodes being processed by this method, for
11155       // example:
11156       //
11157       //   %a = phi i32 [ %some1, %preheader ], [ %b, %latch ]
11158       //   %b = phi i32 [ %some2, %preheader ], [ %a, %latch ]
11159       //
11160       // we don't want to deal with a case that complex, so return conservative
11161       // answer false.
11162       if (!PendingMerges.insert(Phi).second)
11163         return false;
11164       RPhi = Phi;
11165     }
11166 
11167   // If none of LHS, RHS is a Phi, nothing to do here.
11168   if (!LPhi && !RPhi)
11169     return false;
11170 
11171   // If there is a SCEVUnknown Phi we are interested in, make it left.
11172   if (!LPhi) {
11173     std::swap(LHS, RHS);
11174     std::swap(FoundLHS, FoundRHS);
11175     std::swap(LPhi, RPhi);
11176     Pred = ICmpInst::getSwappedPredicate(Pred);
11177   }
11178 
11179   assert(LPhi && "LPhi should definitely be a SCEVUnknown Phi!");
11180   const BasicBlock *LBB = LPhi->getParent();
11181   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
11182 
11183   auto ProvedEasily = [&](const SCEV *S1, const SCEV *S2) {
11184     return isKnownViaNonRecursiveReasoning(Pred, S1, S2) ||
11185            isImpliedCondOperandsViaRanges(Pred, S1, S2, FoundLHS, FoundRHS) ||
11186            isImpliedViaOperations(Pred, S1, S2, FoundLHS, FoundRHS, Depth);
11187   };
11188 
11189   if (RPhi && RPhi->getParent() == LBB) {
11190     // Case one: RHS is also a SCEVUnknown Phi from the same basic block.
11191     // If we compare two Phis from the same block, and for each entry block
11192     // the predicate is true for incoming values from this block, then the
11193     // predicate is also true for the Phis.
11194     for (const BasicBlock *IncBB : predecessors(LBB)) {
11195       const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB));
11196       const SCEV *R = getSCEV(RPhi->getIncomingValueForBlock(IncBB));
11197       if (!ProvedEasily(L, R))
11198         return false;
11199     }
11200   } else if (RAR && RAR->getLoop()->getHeader() == LBB) {
11201     // Case two: RHS is also a Phi from the same basic block, and it is an
11202     // AddRec. It means that there is a loop which has both AddRec and Unknown
11203     // PHIs, for it we can compare incoming values of AddRec from above the loop
11204     // and latch with their respective incoming values of LPhi.
11205     // TODO: Generalize to handle loops with many inputs in a header.
11206     if (LPhi->getNumIncomingValues() != 2) return false;
11207 
11208     auto *RLoop = RAR->getLoop();
11209     auto *Predecessor = RLoop->getLoopPredecessor();
11210     assert(Predecessor && "Loop with AddRec with no predecessor?");
11211     const SCEV *L1 = getSCEV(LPhi->getIncomingValueForBlock(Predecessor));
11212     if (!ProvedEasily(L1, RAR->getStart()))
11213       return false;
11214     auto *Latch = RLoop->getLoopLatch();
11215     assert(Latch && "Loop with AddRec with no latch?");
11216     const SCEV *L2 = getSCEV(LPhi->getIncomingValueForBlock(Latch));
11217     if (!ProvedEasily(L2, RAR->getPostIncExpr(*this)))
11218       return false;
11219   } else {
11220     // In all other cases go over inputs of LHS and compare each of them to RHS,
11221     // the predicate is true for (LHS, RHS) if it is true for all such pairs.
11222     // At this point RHS is either a non-Phi, or it is a Phi from some block
11223     // different from LBB.
11224     for (const BasicBlock *IncBB : predecessors(LBB)) {
11225       // Check that RHS is available in this block.
11226       if (!dominates(RHS, IncBB))
11227         return false;
11228       const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB));
11229       // Make sure L does not refer to a value from a potentially previous
11230       // iteration of a loop.
11231       if (!properlyDominates(L, IncBB))
11232         return false;
11233       if (!ProvedEasily(L, RHS))
11234         return false;
11235     }
11236   }
11237   return true;
11238 }
11239 
11240 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
11241                                             const SCEV *LHS, const SCEV *RHS,
11242                                             const SCEV *FoundLHS,
11243                                             const SCEV *FoundRHS,
11244                                             const Instruction *CtxI) {
11245   if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS))
11246     return true;
11247 
11248   if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS))
11249     return true;
11250 
11251   if (isImpliedCondOperandsViaAddRecStart(Pred, LHS, RHS, FoundLHS, FoundRHS,
11252                                           CtxI))
11253     return true;
11254 
11255   return isImpliedCondOperandsHelper(Pred, LHS, RHS,
11256                                      FoundLHS, FoundRHS);
11257 }
11258 
11259 /// Is MaybeMinMaxExpr an (U|S)(Min|Max) of Candidate and some other values?
11260 template <typename MinMaxExprType>
11261 static bool IsMinMaxConsistingOf(const SCEV *MaybeMinMaxExpr,
11262                                  const SCEV *Candidate) {
11263   const MinMaxExprType *MinMaxExpr = dyn_cast<MinMaxExprType>(MaybeMinMaxExpr);
11264   if (!MinMaxExpr)
11265     return false;
11266 
11267   return is_contained(MinMaxExpr->operands(), Candidate);
11268 }
11269 
11270 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE,
11271                                            ICmpInst::Predicate Pred,
11272                                            const SCEV *LHS, const SCEV *RHS) {
11273   // If both sides are affine addrecs for the same loop, with equal
11274   // steps, and we know the recurrences don't wrap, then we only
11275   // need to check the predicate on the starting values.
11276 
11277   if (!ICmpInst::isRelational(Pred))
11278     return false;
11279 
11280   const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
11281   if (!LAR)
11282     return false;
11283   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
11284   if (!RAR)
11285     return false;
11286   if (LAR->getLoop() != RAR->getLoop())
11287     return false;
11288   if (!LAR->isAffine() || !RAR->isAffine())
11289     return false;
11290 
11291   if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE))
11292     return false;
11293 
11294   SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ?
11295                          SCEV::FlagNSW : SCEV::FlagNUW;
11296   if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW))
11297     return false;
11298 
11299   return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart());
11300 }
11301 
11302 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
11303 /// expression?
11304 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE,
11305                                         ICmpInst::Predicate Pred,
11306                                         const SCEV *LHS, const SCEV *RHS) {
11307   switch (Pred) {
11308   default:
11309     return false;
11310 
11311   case ICmpInst::ICMP_SGE:
11312     std::swap(LHS, RHS);
11313     LLVM_FALLTHROUGH;
11314   case ICmpInst::ICMP_SLE:
11315     return
11316         // min(A, ...) <= A
11317         IsMinMaxConsistingOf<SCEVSMinExpr>(LHS, RHS) ||
11318         // A <= max(A, ...)
11319         IsMinMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS);
11320 
11321   case ICmpInst::ICMP_UGE:
11322     std::swap(LHS, RHS);
11323     LLVM_FALLTHROUGH;
11324   case ICmpInst::ICMP_ULE:
11325     return
11326         // min(A, ...) <= A
11327         IsMinMaxConsistingOf<SCEVUMinExpr>(LHS, RHS) ||
11328         // A <= max(A, ...)
11329         IsMinMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS);
11330   }
11331 
11332   llvm_unreachable("covered switch fell through?!");
11333 }
11334 
11335 bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred,
11336                                              const SCEV *LHS, const SCEV *RHS,
11337                                              const SCEV *FoundLHS,
11338                                              const SCEV *FoundRHS,
11339                                              unsigned Depth) {
11340   assert(getTypeSizeInBits(LHS->getType()) ==
11341              getTypeSizeInBits(RHS->getType()) &&
11342          "LHS and RHS have different sizes?");
11343   assert(getTypeSizeInBits(FoundLHS->getType()) ==
11344              getTypeSizeInBits(FoundRHS->getType()) &&
11345          "FoundLHS and FoundRHS have different sizes?");
11346   // We want to avoid hurting the compile time with analysis of too big trees.
11347   if (Depth > MaxSCEVOperationsImplicationDepth)
11348     return false;
11349 
11350   // We only want to work with GT comparison so far.
11351   if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) {
11352     Pred = CmpInst::getSwappedPredicate(Pred);
11353     std::swap(LHS, RHS);
11354     std::swap(FoundLHS, FoundRHS);
11355   }
11356 
11357   // For unsigned, try to reduce it to corresponding signed comparison.
11358   if (Pred == ICmpInst::ICMP_UGT)
11359     // We can replace unsigned predicate with its signed counterpart if all
11360     // involved values are non-negative.
11361     // TODO: We could have better support for unsigned.
11362     if (isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) {
11363       // Knowing that both FoundLHS and FoundRHS are non-negative, and knowing
11364       // FoundLHS >u FoundRHS, we also know that FoundLHS >s FoundRHS. Let us
11365       // use this fact to prove that LHS and RHS are non-negative.
11366       const SCEV *MinusOne = getMinusOne(LHS->getType());
11367       if (isImpliedCondOperands(ICmpInst::ICMP_SGT, LHS, MinusOne, FoundLHS,
11368                                 FoundRHS) &&
11369           isImpliedCondOperands(ICmpInst::ICMP_SGT, RHS, MinusOne, FoundLHS,
11370                                 FoundRHS))
11371         Pred = ICmpInst::ICMP_SGT;
11372     }
11373 
11374   if (Pred != ICmpInst::ICMP_SGT)
11375     return false;
11376 
11377   auto GetOpFromSExt = [&](const SCEV *S) {
11378     if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S))
11379       return Ext->getOperand();
11380     // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off
11381     // the constant in some cases.
11382     return S;
11383   };
11384 
11385   // Acquire values from extensions.
11386   auto *OrigLHS = LHS;
11387   auto *OrigFoundLHS = FoundLHS;
11388   LHS = GetOpFromSExt(LHS);
11389   FoundLHS = GetOpFromSExt(FoundLHS);
11390 
11391   // Is the SGT predicate can be proved trivially or using the found context.
11392   auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) {
11393     return isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGT, S1, S2) ||
11394            isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS,
11395                                   FoundRHS, Depth + 1);
11396   };
11397 
11398   if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) {
11399     // We want to avoid creation of any new non-constant SCEV. Since we are
11400     // going to compare the operands to RHS, we should be certain that we don't
11401     // need any size extensions for this. So let's decline all cases when the
11402     // sizes of types of LHS and RHS do not match.
11403     // TODO: Maybe try to get RHS from sext to catch more cases?
11404     if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType()))
11405       return false;
11406 
11407     // Should not overflow.
11408     if (!LHSAddExpr->hasNoSignedWrap())
11409       return false;
11410 
11411     auto *LL = LHSAddExpr->getOperand(0);
11412     auto *LR = LHSAddExpr->getOperand(1);
11413     auto *MinusOne = getMinusOne(RHS->getType());
11414 
11415     // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context.
11416     auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) {
11417       return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS);
11418     };
11419     // Try to prove the following rule:
11420     // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS).
11421     // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS).
11422     if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL))
11423       return true;
11424   } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) {
11425     Value *LL, *LR;
11426     // FIXME: Once we have SDiv implemented, we can get rid of this matching.
11427 
11428     using namespace llvm::PatternMatch;
11429 
11430     if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) {
11431       // Rules for division.
11432       // We are going to perform some comparisons with Denominator and its
11433       // derivative expressions. In general case, creating a SCEV for it may
11434       // lead to a complex analysis of the entire graph, and in particular it
11435       // can request trip count recalculation for the same loop. This would
11436       // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid
11437       // this, we only want to create SCEVs that are constants in this section.
11438       // So we bail if Denominator is not a constant.
11439       if (!isa<ConstantInt>(LR))
11440         return false;
11441 
11442       auto *Denominator = cast<SCEVConstant>(getSCEV(LR));
11443 
11444       // We want to make sure that LHS = FoundLHS / Denominator. If it is so,
11445       // then a SCEV for the numerator already exists and matches with FoundLHS.
11446       auto *Numerator = getExistingSCEV(LL);
11447       if (!Numerator || Numerator->getType() != FoundLHS->getType())
11448         return false;
11449 
11450       // Make sure that the numerator matches with FoundLHS and the denominator
11451       // is positive.
11452       if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator))
11453         return false;
11454 
11455       auto *DTy = Denominator->getType();
11456       auto *FRHSTy = FoundRHS->getType();
11457       if (DTy->isPointerTy() != FRHSTy->isPointerTy())
11458         // One of types is a pointer and another one is not. We cannot extend
11459         // them properly to a wider type, so let us just reject this case.
11460         // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help
11461         // to avoid this check.
11462         return false;
11463 
11464       // Given that:
11465       // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0.
11466       auto *WTy = getWiderType(DTy, FRHSTy);
11467       auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy);
11468       auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy);
11469 
11470       // Try to prove the following rule:
11471       // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS).
11472       // For example, given that FoundLHS > 2. It means that FoundLHS is at
11473       // least 3. If we divide it by Denominator < 4, we will have at least 1.
11474       auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2));
11475       if (isKnownNonPositive(RHS) &&
11476           IsSGTViaContext(FoundRHSExt, DenomMinusTwo))
11477         return true;
11478 
11479       // Try to prove the following rule:
11480       // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS).
11481       // For example, given that FoundLHS > -3. Then FoundLHS is at least -2.
11482       // If we divide it by Denominator > 2, then:
11483       // 1. If FoundLHS is negative, then the result is 0.
11484       // 2. If FoundLHS is non-negative, then the result is non-negative.
11485       // Anyways, the result is non-negative.
11486       auto *MinusOne = getMinusOne(WTy);
11487       auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt);
11488       if (isKnownNegative(RHS) &&
11489           IsSGTViaContext(FoundRHSExt, NegDenomMinusOne))
11490         return true;
11491     }
11492   }
11493 
11494   // If our expression contained SCEVUnknown Phis, and we split it down and now
11495   // need to prove something for them, try to prove the predicate for every
11496   // possible incoming values of those Phis.
11497   if (isImpliedViaMerge(Pred, OrigLHS, RHS, OrigFoundLHS, FoundRHS, Depth + 1))
11498     return true;
11499 
11500   return false;
11501 }
11502 
11503 static bool isKnownPredicateExtendIdiom(ICmpInst::Predicate Pred,
11504                                         const SCEV *LHS, const SCEV *RHS) {
11505   // zext x u<= sext x, sext x s<= zext x
11506   switch (Pred) {
11507   case ICmpInst::ICMP_SGE:
11508     std::swap(LHS, RHS);
11509     LLVM_FALLTHROUGH;
11510   case ICmpInst::ICMP_SLE: {
11511     // If operand >=s 0 then ZExt == SExt.  If operand <s 0 then SExt <s ZExt.
11512     const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(LHS);
11513     const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(RHS);
11514     if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand())
11515       return true;
11516     break;
11517   }
11518   case ICmpInst::ICMP_UGE:
11519     std::swap(LHS, RHS);
11520     LLVM_FALLTHROUGH;
11521   case ICmpInst::ICMP_ULE: {
11522     // If operand >=s 0 then ZExt == SExt.  If operand <s 0 then ZExt <u SExt.
11523     const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS);
11524     const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(RHS);
11525     if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand())
11526       return true;
11527     break;
11528   }
11529   default:
11530     break;
11531   };
11532   return false;
11533 }
11534 
11535 bool
11536 ScalarEvolution::isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred,
11537                                            const SCEV *LHS, const SCEV *RHS) {
11538   return isKnownPredicateExtendIdiom(Pred, LHS, RHS) ||
11539          isKnownPredicateViaConstantRanges(Pred, LHS, RHS) ||
11540          IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) ||
11541          IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) ||
11542          isKnownPredicateViaNoOverflow(Pred, LHS, RHS);
11543 }
11544 
11545 bool
11546 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
11547                                              const SCEV *LHS, const SCEV *RHS,
11548                                              const SCEV *FoundLHS,
11549                                              const SCEV *FoundRHS) {
11550   switch (Pred) {
11551   default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
11552   case ICmpInst::ICMP_EQ:
11553   case ICmpInst::ICMP_NE:
11554     if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
11555       return true;
11556     break;
11557   case ICmpInst::ICMP_SLT:
11558   case ICmpInst::ICMP_SLE:
11559     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
11560         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS))
11561       return true;
11562     break;
11563   case ICmpInst::ICMP_SGT:
11564   case ICmpInst::ICMP_SGE:
11565     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
11566         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS))
11567       return true;
11568     break;
11569   case ICmpInst::ICMP_ULT:
11570   case ICmpInst::ICMP_ULE:
11571     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
11572         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS))
11573       return true;
11574     break;
11575   case ICmpInst::ICMP_UGT:
11576   case ICmpInst::ICMP_UGE:
11577     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
11578         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS))
11579       return true;
11580     break;
11581   }
11582 
11583   // Maybe it can be proved via operations?
11584   if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS))
11585     return true;
11586 
11587   return false;
11588 }
11589 
11590 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,
11591                                                      const SCEV *LHS,
11592                                                      const SCEV *RHS,
11593                                                      const SCEV *FoundLHS,
11594                                                      const SCEV *FoundRHS) {
11595   if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS))
11596     // The restriction on `FoundRHS` be lifted easily -- it exists only to
11597     // reduce the compile time impact of this optimization.
11598     return false;
11599 
11600   Optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS);
11601   if (!Addend)
11602     return false;
11603 
11604   const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt();
11605 
11606   // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the
11607   // antecedent "`FoundLHS` `Pred` `FoundRHS`".
11608   ConstantRange FoundLHSRange =
11609       ConstantRange::makeExactICmpRegion(Pred, ConstFoundRHS);
11610 
11611   // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`:
11612   ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend));
11613 
11614   // We can also compute the range of values for `LHS` that satisfy the
11615   // consequent, "`LHS` `Pred` `RHS`":
11616   const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt();
11617   // The antecedent implies the consequent if every value of `LHS` that
11618   // satisfies the antecedent also satisfies the consequent.
11619   return LHSRange.icmp(Pred, ConstRHS);
11620 }
11621 
11622 bool ScalarEvolution::canIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
11623                                         bool IsSigned) {
11624   assert(isKnownPositive(Stride) && "Positive stride expected!");
11625 
11626   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
11627   const SCEV *One = getOne(Stride->getType());
11628 
11629   if (IsSigned) {
11630     APInt MaxRHS = getSignedRangeMax(RHS);
11631     APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
11632     APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
11633 
11634     // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
11635     return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS);
11636   }
11637 
11638   APInt MaxRHS = getUnsignedRangeMax(RHS);
11639   APInt MaxValue = APInt::getMaxValue(BitWidth);
11640   APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
11641 
11642   // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
11643   return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS);
11644 }
11645 
11646 bool ScalarEvolution::canIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
11647                                         bool IsSigned) {
11648 
11649   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
11650   const SCEV *One = getOne(Stride->getType());
11651 
11652   if (IsSigned) {
11653     APInt MinRHS = getSignedRangeMin(RHS);
11654     APInt MinValue = APInt::getSignedMinValue(BitWidth);
11655     APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
11656 
11657     // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
11658     return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS);
11659   }
11660 
11661   APInt MinRHS = getUnsignedRangeMin(RHS);
11662   APInt MinValue = APInt::getMinValue(BitWidth);
11663   APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
11664 
11665   // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
11666   return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS);
11667 }
11668 
11669 const SCEV *ScalarEvolution::getUDivCeilSCEV(const SCEV *N, const SCEV *D) {
11670   // umin(N, 1) + floor((N - umin(N, 1)) / D)
11671   // This is equivalent to "1 + floor((N - 1) / D)" for N != 0. The umin
11672   // expression fixes the case of N=0.
11673   const SCEV *MinNOne = getUMinExpr(N, getOne(N->getType()));
11674   const SCEV *NMinusOne = getMinusSCEV(N, MinNOne);
11675   return getAddExpr(MinNOne, getUDivExpr(NMinusOne, D));
11676 }
11677 
11678 const SCEV *ScalarEvolution::computeMaxBECountForLT(const SCEV *Start,
11679                                                     const SCEV *Stride,
11680                                                     const SCEV *End,
11681                                                     unsigned BitWidth,
11682                                                     bool IsSigned) {
11683   // The logic in this function assumes we can represent a positive stride.
11684   // If we can't, the backedge-taken count must be zero.
11685   if (IsSigned && BitWidth == 1)
11686     return getZero(Stride->getType());
11687 
11688   // This code has only been closely audited for negative strides in the
11689   // unsigned comparison case, it may be correct for signed comparison, but
11690   // that needs to be established.
11691   assert((!IsSigned || !isKnownNonPositive(Stride)) &&
11692          "Stride is expected strictly positive for signed case!");
11693 
11694   // Calculate the maximum backedge count based on the range of values
11695   // permitted by Start, End, and Stride.
11696   APInt MinStart =
11697       IsSigned ? getSignedRangeMin(Start) : getUnsignedRangeMin(Start);
11698 
11699   APInt MinStride =
11700       IsSigned ? getSignedRangeMin(Stride) : getUnsignedRangeMin(Stride);
11701 
11702   // We assume either the stride is positive, or the backedge-taken count
11703   // is zero. So force StrideForMaxBECount to be at least one.
11704   APInt One(BitWidth, 1);
11705   APInt StrideForMaxBECount = IsSigned ? APIntOps::smax(One, MinStride)
11706                                        : APIntOps::umax(One, MinStride);
11707 
11708   APInt MaxValue = IsSigned ? APInt::getSignedMaxValue(BitWidth)
11709                             : APInt::getMaxValue(BitWidth);
11710   APInt Limit = MaxValue - (StrideForMaxBECount - 1);
11711 
11712   // Although End can be a MAX expression we estimate MaxEnd considering only
11713   // the case End = RHS of the loop termination condition. This is safe because
11714   // in the other case (End - Start) is zero, leading to a zero maximum backedge
11715   // taken count.
11716   APInt MaxEnd = IsSigned ? APIntOps::smin(getSignedRangeMax(End), Limit)
11717                           : APIntOps::umin(getUnsignedRangeMax(End), Limit);
11718 
11719   // MaxBECount = ceil((max(MaxEnd, MinStart) - MinStart) / Stride)
11720   MaxEnd = IsSigned ? APIntOps::smax(MaxEnd, MinStart)
11721                     : APIntOps::umax(MaxEnd, MinStart);
11722 
11723   return getUDivCeilSCEV(getConstant(MaxEnd - MinStart) /* Delta */,
11724                          getConstant(StrideForMaxBECount) /* Step */);
11725 }
11726 
11727 ScalarEvolution::ExitLimit
11728 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS,
11729                                   const Loop *L, bool IsSigned,
11730                                   bool ControlsExit, bool AllowPredicates) {
11731   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
11732 
11733   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
11734   bool PredicatedIV = false;
11735 
11736   auto canAssumeNoSelfWrap = [&](const SCEVAddRecExpr *AR) {
11737     // Can we prove this loop *must* be UB if overflow of IV occurs?
11738     // Reasoning goes as follows:
11739     // * Suppose the IV did self wrap.
11740     // * If Stride evenly divides the iteration space, then once wrap
11741     //   occurs, the loop must revisit the same values.
11742     // * We know that RHS is invariant, and that none of those values
11743     //   caused this exit to be taken previously.  Thus, this exit is
11744     //   dynamically dead.
11745     // * If this is the sole exit, then a dead exit implies the loop
11746     //   must be infinite if there are no abnormal exits.
11747     // * If the loop were infinite, then it must either not be mustprogress
11748     //   or have side effects. Otherwise, it must be UB.
11749     // * It can't (by assumption), be UB so we have contradicted our
11750     //   premise and can conclude the IV did not in fact self-wrap.
11751     if (!isLoopInvariant(RHS, L))
11752       return false;
11753 
11754     auto *StrideC = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this));
11755     if (!StrideC || !StrideC->getAPInt().isPowerOf2())
11756       return false;
11757 
11758     if (!ControlsExit || !loopHasNoAbnormalExits(L))
11759       return false;
11760 
11761     return loopIsFiniteByAssumption(L);
11762   };
11763 
11764   if (!IV) {
11765     if (auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS)) {
11766       const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(ZExt->getOperand());
11767       if (AR && AR->getLoop() == L && AR->isAffine()) {
11768         auto canProveNUW = [&]() {
11769           if (!isLoopInvariant(RHS, L))
11770             return false;
11771 
11772           if (!isKnownNonZero(AR->getStepRecurrence(*this)))
11773             // We need the sequence defined by AR to strictly increase in the
11774             // unsigned integer domain for the logic below to hold.
11775             return false;
11776 
11777           const unsigned InnerBitWidth = getTypeSizeInBits(AR->getType());
11778           const unsigned OuterBitWidth = getTypeSizeInBits(RHS->getType());
11779           // If RHS <=u Limit, then there must exist a value V in the sequence
11780           // defined by AR (e.g. {Start,+,Step}) such that V >u RHS, and
11781           // V <=u UINT_MAX.  Thus, we must exit the loop before unsigned
11782           // overflow occurs.  This limit also implies that a signed comparison
11783           // (in the wide bitwidth) is equivalent to an unsigned comparison as
11784           // the high bits on both sides must be zero.
11785           APInt StrideMax = getUnsignedRangeMax(AR->getStepRecurrence(*this));
11786           APInt Limit = APInt::getMaxValue(InnerBitWidth) - (StrideMax - 1);
11787           Limit = Limit.zext(OuterBitWidth);
11788           return getUnsignedRangeMax(applyLoopGuards(RHS, L)).ule(Limit);
11789         };
11790         auto Flags = AR->getNoWrapFlags();
11791         if (!hasFlags(Flags, SCEV::FlagNUW) && canProveNUW())
11792           Flags = setFlags(Flags, SCEV::FlagNUW);
11793 
11794         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), Flags);
11795         if (AR->hasNoUnsignedWrap()) {
11796           // Emulate what getZeroExtendExpr would have done during construction
11797           // if we'd been able to infer the fact just above at that time.
11798           const SCEV *Step = AR->getStepRecurrence(*this);
11799           Type *Ty = ZExt->getType();
11800           auto *S = getAddRecExpr(
11801             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 0),
11802             getZeroExtendExpr(Step, Ty, 0), L, AR->getNoWrapFlags());
11803           IV = dyn_cast<SCEVAddRecExpr>(S);
11804         }
11805       }
11806     }
11807   }
11808 
11809 
11810   if (!IV && AllowPredicates) {
11811     // Try to make this an AddRec using runtime tests, in the first X
11812     // iterations of this loop, where X is the SCEV expression found by the
11813     // algorithm below.
11814     IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
11815     PredicatedIV = true;
11816   }
11817 
11818   // Avoid weird loops
11819   if (!IV || IV->getLoop() != L || !IV->isAffine())
11820     return getCouldNotCompute();
11821 
11822   // A precondition of this method is that the condition being analyzed
11823   // reaches an exiting branch which dominates the latch.  Given that, we can
11824   // assume that an increment which violates the nowrap specification and
11825   // produces poison must cause undefined behavior when the resulting poison
11826   // value is branched upon and thus we can conclude that the backedge is
11827   // taken no more often than would be required to produce that poison value.
11828   // Note that a well defined loop can exit on the iteration which violates
11829   // the nowrap specification if there is another exit (either explicit or
11830   // implicit/exceptional) which causes the loop to execute before the
11831   // exiting instruction we're analyzing would trigger UB.
11832   auto WrapType = IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW;
11833   bool NoWrap = ControlsExit && IV->getNoWrapFlags(WrapType);
11834   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
11835 
11836   const SCEV *Stride = IV->getStepRecurrence(*this);
11837 
11838   bool PositiveStride = isKnownPositive(Stride);
11839 
11840   // Avoid negative or zero stride values.
11841   if (!PositiveStride) {
11842     // We can compute the correct backedge taken count for loops with unknown
11843     // strides if we can prove that the loop is not an infinite loop with side
11844     // effects. Here's the loop structure we are trying to handle -
11845     //
11846     // i = start
11847     // do {
11848     //   A[i] = i;
11849     //   i += s;
11850     // } while (i < end);
11851     //
11852     // The backedge taken count for such loops is evaluated as -
11853     // (max(end, start + stride) - start - 1) /u stride
11854     //
11855     // The additional preconditions that we need to check to prove correctness
11856     // of the above formula is as follows -
11857     //
11858     // a) IV is either nuw or nsw depending upon signedness (indicated by the
11859     //    NoWrap flag).
11860     // b) the loop is guaranteed to be finite (e.g. is mustprogress and has
11861     //    no side effects within the loop)
11862     // c) loop has a single static exit (with no abnormal exits)
11863     //
11864     // Precondition a) implies that if the stride is negative, this is a single
11865     // trip loop. The backedge taken count formula reduces to zero in this case.
11866     //
11867     // Precondition b) and c) combine to imply that if rhs is invariant in L,
11868     // then a zero stride means the backedge can't be taken without executing
11869     // undefined behavior.
11870     //
11871     // The positive stride case is the same as isKnownPositive(Stride) returning
11872     // true (original behavior of the function).
11873     //
11874     if (PredicatedIV || !NoWrap || !loopIsFiniteByAssumption(L) ||
11875         !loopHasNoAbnormalExits(L))
11876       return getCouldNotCompute();
11877 
11878     // This bailout is protecting the logic in computeMaxBECountForLT which
11879     // has not yet been sufficiently auditted or tested with negative strides.
11880     // We used to filter out all known-non-positive cases here, we're in the
11881     // process of being less restrictive bit by bit.
11882     if (IsSigned && isKnownNonPositive(Stride))
11883       return getCouldNotCompute();
11884 
11885     if (!isKnownNonZero(Stride)) {
11886       // If we have a step of zero, and RHS isn't invariant in L, we don't know
11887       // if it might eventually be greater than start and if so, on which
11888       // iteration.  We can't even produce a useful upper bound.
11889       if (!isLoopInvariant(RHS, L))
11890         return getCouldNotCompute();
11891 
11892       // We allow a potentially zero stride, but we need to divide by stride
11893       // below.  Since the loop can't be infinite and this check must control
11894       // the sole exit, we can infer the exit must be taken on the first
11895       // iteration (e.g. backedge count = 0) if the stride is zero.  Given that,
11896       // we know the numerator in the divides below must be zero, so we can
11897       // pick an arbitrary non-zero value for the denominator (e.g. stride)
11898       // and produce the right result.
11899       // FIXME: Handle the case where Stride is poison?
11900       auto wouldZeroStrideBeUB = [&]() {
11901         // Proof by contradiction.  Suppose the stride were zero.  If we can
11902         // prove that the backedge *is* taken on the first iteration, then since
11903         // we know this condition controls the sole exit, we must have an
11904         // infinite loop.  We can't have a (well defined) infinite loop per
11905         // check just above.
11906         // Note: The (Start - Stride) term is used to get the start' term from
11907         // (start' + stride,+,stride). Remember that we only care about the
11908         // result of this expression when stride == 0 at runtime.
11909         auto *StartIfZero = getMinusSCEV(IV->getStart(), Stride);
11910         return isLoopEntryGuardedByCond(L, Cond, StartIfZero, RHS);
11911       };
11912       if (!wouldZeroStrideBeUB()) {
11913         Stride = getUMaxExpr(Stride, getOne(Stride->getType()));
11914       }
11915     }
11916   } else if (!Stride->isOne() && !NoWrap) {
11917     auto isUBOnWrap = [&]() {
11918       // From no-self-wrap, we need to then prove no-(un)signed-wrap.  This
11919       // follows trivially from the fact that every (un)signed-wrapped, but
11920       // not self-wrapped value must be LT than the last value before
11921       // (un)signed wrap.  Since we know that last value didn't exit, nor
11922       // will any smaller one.
11923       return canAssumeNoSelfWrap(IV);
11924     };
11925 
11926     // Avoid proven overflow cases: this will ensure that the backedge taken
11927     // count will not generate any unsigned overflow. Relaxed no-overflow
11928     // conditions exploit NoWrapFlags, allowing to optimize in presence of
11929     // undefined behaviors like the case of C language.
11930     if (canIVOverflowOnLT(RHS, Stride, IsSigned) && !isUBOnWrap())
11931       return getCouldNotCompute();
11932   }
11933 
11934   // On all paths just preceeding, we established the following invariant:
11935   //   IV can be assumed not to overflow up to and including the exiting
11936   //   iteration.  We proved this in one of two ways:
11937   //   1) We can show overflow doesn't occur before the exiting iteration
11938   //      1a) canIVOverflowOnLT, and b) step of one
11939   //   2) We can show that if overflow occurs, the loop must execute UB
11940   //      before any possible exit.
11941   // Note that we have not yet proved RHS invariant (in general).
11942 
11943   const SCEV *Start = IV->getStart();
11944 
11945   // Preserve pointer-typed Start/RHS to pass to isLoopEntryGuardedByCond.
11946   // If we convert to integers, isLoopEntryGuardedByCond will miss some cases.
11947   // Use integer-typed versions for actual computation; we can't subtract
11948   // pointers in general.
11949   const SCEV *OrigStart = Start;
11950   const SCEV *OrigRHS = RHS;
11951   if (Start->getType()->isPointerTy()) {
11952     Start = getLosslessPtrToIntExpr(Start);
11953     if (isa<SCEVCouldNotCompute>(Start))
11954       return Start;
11955   }
11956   if (RHS->getType()->isPointerTy()) {
11957     RHS = getLosslessPtrToIntExpr(RHS);
11958     if (isa<SCEVCouldNotCompute>(RHS))
11959       return RHS;
11960   }
11961 
11962   // When the RHS is not invariant, we do not know the end bound of the loop and
11963   // cannot calculate the ExactBECount needed by ExitLimit. However, we can
11964   // calculate the MaxBECount, given the start, stride and max value for the end
11965   // bound of the loop (RHS), and the fact that IV does not overflow (which is
11966   // checked above).
11967   if (!isLoopInvariant(RHS, L)) {
11968     const SCEV *MaxBECount = computeMaxBECountForLT(
11969         Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
11970     return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount,
11971                      false /*MaxOrZero*/, Predicates);
11972   }
11973 
11974   // We use the expression (max(End,Start)-Start)/Stride to describe the
11975   // backedge count, as if the backedge is taken at least once max(End,Start)
11976   // is End and so the result is as above, and if not max(End,Start) is Start
11977   // so we get a backedge count of zero.
11978   const SCEV *BECount = nullptr;
11979   auto *OrigStartMinusStride = getMinusSCEV(OrigStart, Stride);
11980   assert(isAvailableAtLoopEntry(OrigStartMinusStride, L) && "Must be!");
11981   assert(isAvailableAtLoopEntry(OrigStart, L) && "Must be!");
11982   assert(isAvailableAtLoopEntry(OrigRHS, L) && "Must be!");
11983   // Can we prove (max(RHS,Start) > Start - Stride?
11984   if (isLoopEntryGuardedByCond(L, Cond, OrigStartMinusStride, OrigStart) &&
11985       isLoopEntryGuardedByCond(L, Cond, OrigStartMinusStride, OrigRHS)) {
11986     // In this case, we can use a refined formula for computing backedge taken
11987     // count.  The general formula remains:
11988     //   "End-Start /uceiling Stride" where "End = max(RHS,Start)"
11989     // We want to use the alternate formula:
11990     //   "((End - 1) - (Start - Stride)) /u Stride"
11991     // Let's do a quick case analysis to show these are equivalent under
11992     // our precondition that max(RHS,Start) > Start - Stride.
11993     // * For RHS <= Start, the backedge-taken count must be zero.
11994     //   "((End - 1) - (Start - Stride)) /u Stride" reduces to
11995     //   "((Start - 1) - (Start - Stride)) /u Stride" which simplies to
11996     //   "Stride - 1 /u Stride" which is indeed zero for all non-zero values
11997     //     of Stride.  For 0 stride, we've use umin(1,Stride) above, reducing
11998     //     this to the stride of 1 case.
11999     // * For RHS >= Start, the backedge count must be "RHS-Start /uceil Stride".
12000     //   "((End - 1) - (Start - Stride)) /u Stride" reduces to
12001     //   "((RHS - 1) - (Start - Stride)) /u Stride" reassociates to
12002     //   "((RHS - (Start - Stride) - 1) /u Stride".
12003     //   Our preconditions trivially imply no overflow in that form.
12004     const SCEV *MinusOne = getMinusOne(Stride->getType());
12005     const SCEV *Numerator =
12006         getMinusSCEV(getAddExpr(RHS, MinusOne), getMinusSCEV(Start, Stride));
12007     BECount = getUDivExpr(Numerator, Stride);
12008   }
12009 
12010   const SCEV *BECountIfBackedgeTaken = nullptr;
12011   if (!BECount) {
12012     auto canProveRHSGreaterThanEqualStart = [&]() {
12013       auto CondGE = IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
12014       if (isLoopEntryGuardedByCond(L, CondGE, OrigRHS, OrigStart))
12015         return true;
12016 
12017       // (RHS > Start - 1) implies RHS >= Start.
12018       // * "RHS >= Start" is trivially equivalent to "RHS > Start - 1" if
12019       //   "Start - 1" doesn't overflow.
12020       // * For signed comparison, if Start - 1 does overflow, it's equal
12021       //   to INT_MAX, and "RHS >s INT_MAX" is trivially false.
12022       // * For unsigned comparison, if Start - 1 does overflow, it's equal
12023       //   to UINT_MAX, and "RHS >u UINT_MAX" is trivially false.
12024       //
12025       // FIXME: Should isLoopEntryGuardedByCond do this for us?
12026       auto CondGT = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
12027       auto *StartMinusOne = getAddExpr(OrigStart,
12028                                        getMinusOne(OrigStart->getType()));
12029       return isLoopEntryGuardedByCond(L, CondGT, OrigRHS, StartMinusOne);
12030     };
12031 
12032     // If we know that RHS >= Start in the context of loop, then we know that
12033     // max(RHS, Start) = RHS at this point.
12034     const SCEV *End;
12035     if (canProveRHSGreaterThanEqualStart()) {
12036       End = RHS;
12037     } else {
12038       // If RHS < Start, the backedge will be taken zero times.  So in
12039       // general, we can write the backedge-taken count as:
12040       //
12041       //     RHS >= Start ? ceil(RHS - Start) / Stride : 0
12042       //
12043       // We convert it to the following to make it more convenient for SCEV:
12044       //
12045       //     ceil(max(RHS, Start) - Start) / Stride
12046       End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start);
12047 
12048       // See what would happen if we assume the backedge is taken. This is
12049       // used to compute MaxBECount.
12050       BECountIfBackedgeTaken = getUDivCeilSCEV(getMinusSCEV(RHS, Start), Stride);
12051     }
12052 
12053     // At this point, we know:
12054     //
12055     // 1. If IsSigned, Start <=s End; otherwise, Start <=u End
12056     // 2. The index variable doesn't overflow.
12057     //
12058     // Therefore, we know N exists such that
12059     // (Start + Stride * N) >= End, and computing "(Start + Stride * N)"
12060     // doesn't overflow.
12061     //
12062     // Using this information, try to prove whether the addition in
12063     // "(Start - End) + (Stride - 1)" has unsigned overflow.
12064     const SCEV *One = getOne(Stride->getType());
12065     bool MayAddOverflow = [&] {
12066       if (auto *StrideC = dyn_cast<SCEVConstant>(Stride)) {
12067         if (StrideC->getAPInt().isPowerOf2()) {
12068           // Suppose Stride is a power of two, and Start/End are unsigned
12069           // integers.  Let UMAX be the largest representable unsigned
12070           // integer.
12071           //
12072           // By the preconditions of this function, we know
12073           // "(Start + Stride * N) >= End", and this doesn't overflow.
12074           // As a formula:
12075           //
12076           //   End <= (Start + Stride * N) <= UMAX
12077           //
12078           // Subtracting Start from all the terms:
12079           //
12080           //   End - Start <= Stride * N <= UMAX - Start
12081           //
12082           // Since Start is unsigned, UMAX - Start <= UMAX.  Therefore:
12083           //
12084           //   End - Start <= Stride * N <= UMAX
12085           //
12086           // Stride * N is a multiple of Stride. Therefore,
12087           //
12088           //   End - Start <= Stride * N <= UMAX - (UMAX mod Stride)
12089           //
12090           // Since Stride is a power of two, UMAX + 1 is divisible by Stride.
12091           // Therefore, UMAX mod Stride == Stride - 1.  So we can write:
12092           //
12093           //   End - Start <= Stride * N <= UMAX - Stride - 1
12094           //
12095           // Dropping the middle term:
12096           //
12097           //   End - Start <= UMAX - Stride - 1
12098           //
12099           // Adding Stride - 1 to both sides:
12100           //
12101           //   (End - Start) + (Stride - 1) <= UMAX
12102           //
12103           // In other words, the addition doesn't have unsigned overflow.
12104           //
12105           // A similar proof works if we treat Start/End as signed values.
12106           // Just rewrite steps before "End - Start <= Stride * N <= UMAX" to
12107           // use signed max instead of unsigned max. Note that we're trying
12108           // to prove a lack of unsigned overflow in either case.
12109           return false;
12110         }
12111       }
12112       if (Start == Stride || Start == getMinusSCEV(Stride, One)) {
12113         // If Start is equal to Stride, (End - Start) + (Stride - 1) == End - 1.
12114         // If !IsSigned, 0 <u Stride == Start <=u End; so 0 <u End - 1 <u End.
12115         // If IsSigned, 0 <s Stride == Start <=s End; so 0 <s End - 1 <s End.
12116         //
12117         // If Start is equal to Stride - 1, (End - Start) + Stride - 1 == End.
12118         return false;
12119       }
12120       return true;
12121     }();
12122 
12123     const SCEV *Delta = getMinusSCEV(End, Start);
12124     if (!MayAddOverflow) {
12125       // floor((D + (S - 1)) / S)
12126       // We prefer this formulation if it's legal because it's fewer operations.
12127       BECount =
12128           getUDivExpr(getAddExpr(Delta, getMinusSCEV(Stride, One)), Stride);
12129     } else {
12130       BECount = getUDivCeilSCEV(Delta, Stride);
12131     }
12132   }
12133 
12134   const SCEV *MaxBECount;
12135   bool MaxOrZero = false;
12136   if (isa<SCEVConstant>(BECount)) {
12137     MaxBECount = BECount;
12138   } else if (BECountIfBackedgeTaken &&
12139              isa<SCEVConstant>(BECountIfBackedgeTaken)) {
12140     // If we know exactly how many times the backedge will be taken if it's
12141     // taken at least once, then the backedge count will either be that or
12142     // zero.
12143     MaxBECount = BECountIfBackedgeTaken;
12144     MaxOrZero = true;
12145   } else {
12146     MaxBECount = computeMaxBECountForLT(
12147         Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
12148   }
12149 
12150   if (isa<SCEVCouldNotCompute>(MaxBECount) &&
12151       !isa<SCEVCouldNotCompute>(BECount))
12152     MaxBECount = getConstant(getUnsignedRangeMax(BECount));
12153 
12154   return ExitLimit(BECount, MaxBECount, MaxOrZero, Predicates);
12155 }
12156 
12157 ScalarEvolution::ExitLimit
12158 ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
12159                                      const Loop *L, bool IsSigned,
12160                                      bool ControlsExit, bool AllowPredicates) {
12161   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
12162   // We handle only IV > Invariant
12163   if (!isLoopInvariant(RHS, L))
12164     return getCouldNotCompute();
12165 
12166   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
12167   if (!IV && AllowPredicates)
12168     // Try to make this an AddRec using runtime tests, in the first X
12169     // iterations of this loop, where X is the SCEV expression found by the
12170     // algorithm below.
12171     IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
12172 
12173   // Avoid weird loops
12174   if (!IV || IV->getLoop() != L || !IV->isAffine())
12175     return getCouldNotCompute();
12176 
12177   auto WrapType = IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW;
12178   bool NoWrap = ControlsExit && IV->getNoWrapFlags(WrapType);
12179   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
12180 
12181   const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
12182 
12183   // Avoid negative or zero stride values
12184   if (!isKnownPositive(Stride))
12185     return getCouldNotCompute();
12186 
12187   // Avoid proven overflow cases: this will ensure that the backedge taken count
12188   // will not generate any unsigned overflow. Relaxed no-overflow conditions
12189   // exploit NoWrapFlags, allowing to optimize in presence of undefined
12190   // behaviors like the case of C language.
12191   if (!Stride->isOne() && !NoWrap)
12192     if (canIVOverflowOnGT(RHS, Stride, IsSigned))
12193       return getCouldNotCompute();
12194 
12195   const SCEV *Start = IV->getStart();
12196   const SCEV *End = RHS;
12197   if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) {
12198     // If we know that Start >= RHS in the context of loop, then we know that
12199     // min(RHS, Start) = RHS at this point.
12200     if (isLoopEntryGuardedByCond(
12201             L, IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, Start, RHS))
12202       End = RHS;
12203     else
12204       End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start);
12205   }
12206 
12207   if (Start->getType()->isPointerTy()) {
12208     Start = getLosslessPtrToIntExpr(Start);
12209     if (isa<SCEVCouldNotCompute>(Start))
12210       return Start;
12211   }
12212   if (End->getType()->isPointerTy()) {
12213     End = getLosslessPtrToIntExpr(End);
12214     if (isa<SCEVCouldNotCompute>(End))
12215       return End;
12216   }
12217 
12218   // Compute ((Start - End) + (Stride - 1)) / Stride.
12219   // FIXME: This can overflow. Holding off on fixing this for now;
12220   // howManyGreaterThans will hopefully be gone soon.
12221   const SCEV *One = getOne(Stride->getType());
12222   const SCEV *BECount = getUDivExpr(
12223       getAddExpr(getMinusSCEV(Start, End), getMinusSCEV(Stride, One)), Stride);
12224 
12225   APInt MaxStart = IsSigned ? getSignedRangeMax(Start)
12226                             : getUnsignedRangeMax(Start);
12227 
12228   APInt MinStride = IsSigned ? getSignedRangeMin(Stride)
12229                              : getUnsignedRangeMin(Stride);
12230 
12231   unsigned BitWidth = getTypeSizeInBits(LHS->getType());
12232   APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
12233                          : APInt::getMinValue(BitWidth) + (MinStride - 1);
12234 
12235   // Although End can be a MIN expression we estimate MinEnd considering only
12236   // the case End = RHS. This is safe because in the other case (Start - End)
12237   // is zero, leading to a zero maximum backedge taken count.
12238   APInt MinEnd =
12239     IsSigned ? APIntOps::smax(getSignedRangeMin(RHS), Limit)
12240              : APIntOps::umax(getUnsignedRangeMin(RHS), Limit);
12241 
12242   const SCEV *MaxBECount = isa<SCEVConstant>(BECount)
12243                                ? BECount
12244                                : getUDivCeilSCEV(getConstant(MaxStart - MinEnd),
12245                                                  getConstant(MinStride));
12246 
12247   if (isa<SCEVCouldNotCompute>(MaxBECount))
12248     MaxBECount = BECount;
12249 
12250   return ExitLimit(BECount, MaxBECount, false, Predicates);
12251 }
12252 
12253 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range,
12254                                                     ScalarEvolution &SE) const {
12255   if (Range.isFullSet())  // Infinite loop.
12256     return SE.getCouldNotCompute();
12257 
12258   // If the start is a non-zero constant, shift the range to simplify things.
12259   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
12260     if (!SC->getValue()->isZero()) {
12261       SmallVector<const SCEV *, 4> Operands(operands());
12262       Operands[0] = SE.getZero(SC->getType());
12263       const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
12264                                              getNoWrapFlags(FlagNW));
12265       if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
12266         return ShiftedAddRec->getNumIterationsInRange(
12267             Range.subtract(SC->getAPInt()), SE);
12268       // This is strange and shouldn't happen.
12269       return SE.getCouldNotCompute();
12270     }
12271 
12272   // The only time we can solve this is when we have all constant indices.
12273   // Otherwise, we cannot determine the overflow conditions.
12274   if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); }))
12275     return SE.getCouldNotCompute();
12276 
12277   // Okay at this point we know that all elements of the chrec are constants and
12278   // that the start element is zero.
12279 
12280   // First check to see if the range contains zero.  If not, the first
12281   // iteration exits.
12282   unsigned BitWidth = SE.getTypeSizeInBits(getType());
12283   if (!Range.contains(APInt(BitWidth, 0)))
12284     return SE.getZero(getType());
12285 
12286   if (isAffine()) {
12287     // If this is an affine expression then we have this situation:
12288     //   Solve {0,+,A} in Range  ===  Ax in Range
12289 
12290     // We know that zero is in the range.  If A is positive then we know that
12291     // the upper value of the range must be the first possible exit value.
12292     // If A is negative then the lower of the range is the last possible loop
12293     // value.  Also note that we already checked for a full range.
12294     APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt();
12295     APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower();
12296 
12297     // The exit value should be (End+A)/A.
12298     APInt ExitVal = (End + A).udiv(A);
12299     ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
12300 
12301     // Evaluate at the exit value.  If we really did fall out of the valid
12302     // range, then we computed our trip count, otherwise wrap around or other
12303     // things must have happened.
12304     ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
12305     if (Range.contains(Val->getValue()))
12306       return SE.getCouldNotCompute();  // Something strange happened
12307 
12308     // Ensure that the previous value is in the range.
12309     assert(Range.contains(
12310            EvaluateConstantChrecAtConstant(this,
12311            ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) &&
12312            "Linear scev computation is off in a bad way!");
12313     return SE.getConstant(ExitValue);
12314   }
12315 
12316   if (isQuadratic()) {
12317     if (auto S = SolveQuadraticAddRecRange(this, Range, SE))
12318       return SE.getConstant(S.getValue());
12319   }
12320 
12321   return SE.getCouldNotCompute();
12322 }
12323 
12324 const SCEVAddRecExpr *
12325 SCEVAddRecExpr::getPostIncExpr(ScalarEvolution &SE) const {
12326   assert(getNumOperands() > 1 && "AddRec with zero step?");
12327   // There is a temptation to just call getAddExpr(this, getStepRecurrence(SE)),
12328   // but in this case we cannot guarantee that the value returned will be an
12329   // AddRec because SCEV does not have a fixed point where it stops
12330   // simplification: it is legal to return ({rec1} + {rec2}). For example, it
12331   // may happen if we reach arithmetic depth limit while simplifying. So we
12332   // construct the returned value explicitly.
12333   SmallVector<const SCEV *, 3> Ops;
12334   // If this is {A,+,B,+,C,...,+,N}, then its step is {B,+,C,+,...,+,N}, and
12335   // (this + Step) is {A+B,+,B+C,+...,+,N}.
12336   for (unsigned i = 0, e = getNumOperands() - 1; i < e; ++i)
12337     Ops.push_back(SE.getAddExpr(getOperand(i), getOperand(i + 1)));
12338   // We know that the last operand is not a constant zero (otherwise it would
12339   // have been popped out earlier). This guarantees us that if the result has
12340   // the same last operand, then it will also not be popped out, meaning that
12341   // the returned value will be an AddRec.
12342   const SCEV *Last = getOperand(getNumOperands() - 1);
12343   assert(!Last->isZero() && "Recurrency with zero step?");
12344   Ops.push_back(Last);
12345   return cast<SCEVAddRecExpr>(SE.getAddRecExpr(Ops, getLoop(),
12346                                                SCEV::FlagAnyWrap));
12347 }
12348 
12349 // Return true when S contains at least an undef value.
12350 bool ScalarEvolution::containsUndefs(const SCEV *S) const {
12351   return SCEVExprContains(S, [](const SCEV *S) {
12352     if (const auto *SU = dyn_cast<SCEVUnknown>(S))
12353       return isa<UndefValue>(SU->getValue());
12354     return false;
12355   });
12356 }
12357 
12358 /// Return the size of an element read or written by Inst.
12359 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
12360   Type *Ty;
12361   if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
12362     Ty = Store->getValueOperand()->getType();
12363   else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
12364     Ty = Load->getType();
12365   else
12366     return nullptr;
12367 
12368   Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
12369   return getSizeOfExpr(ETy, Ty);
12370 }
12371 
12372 //===----------------------------------------------------------------------===//
12373 //                   SCEVCallbackVH Class Implementation
12374 //===----------------------------------------------------------------------===//
12375 
12376 void ScalarEvolution::SCEVCallbackVH::deleted() {
12377   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
12378   if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
12379     SE->ConstantEvolutionLoopExitValue.erase(PN);
12380   SE->eraseValueFromMap(getValPtr());
12381   // this now dangles!
12382 }
12383 
12384 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
12385   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
12386 
12387   // Forget all the expressions associated with users of the old value,
12388   // so that future queries will recompute the expressions using the new
12389   // value.
12390   Value *Old = getValPtr();
12391   SmallVector<User *, 16> Worklist(Old->users());
12392   SmallPtrSet<User *, 8> Visited;
12393   while (!Worklist.empty()) {
12394     User *U = Worklist.pop_back_val();
12395     // Deleting the Old value will cause this to dangle. Postpone
12396     // that until everything else is done.
12397     if (U == Old)
12398       continue;
12399     if (!Visited.insert(U).second)
12400       continue;
12401     if (PHINode *PN = dyn_cast<PHINode>(U))
12402       SE->ConstantEvolutionLoopExitValue.erase(PN);
12403     SE->eraseValueFromMap(U);
12404     llvm::append_range(Worklist, U->users());
12405   }
12406   // Delete the Old value.
12407   if (PHINode *PN = dyn_cast<PHINode>(Old))
12408     SE->ConstantEvolutionLoopExitValue.erase(PN);
12409   SE->eraseValueFromMap(Old);
12410   // this now dangles!
12411 }
12412 
12413 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
12414   : CallbackVH(V), SE(se) {}
12415 
12416 //===----------------------------------------------------------------------===//
12417 //                   ScalarEvolution Class Implementation
12418 //===----------------------------------------------------------------------===//
12419 
12420 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI,
12421                                  AssumptionCache &AC, DominatorTree &DT,
12422                                  LoopInfo &LI)
12423     : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI),
12424       CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64),
12425       LoopDispositions(64), BlockDispositions(64) {
12426   // To use guards for proving predicates, we need to scan every instruction in
12427   // relevant basic blocks, and not just terminators.  Doing this is a waste of
12428   // time if the IR does not actually contain any calls to
12429   // @llvm.experimental.guard, so do a quick check and remember this beforehand.
12430   //
12431   // This pessimizes the case where a pass that preserves ScalarEvolution wants
12432   // to _add_ guards to the module when there weren't any before, and wants
12433   // ScalarEvolution to optimize based on those guards.  For now we prefer to be
12434   // efficient in lieu of being smart in that rather obscure case.
12435 
12436   auto *GuardDecl = F.getParent()->getFunction(
12437       Intrinsic::getName(Intrinsic::experimental_guard));
12438   HasGuards = GuardDecl && !GuardDecl->use_empty();
12439 }
12440 
12441 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg)
12442     : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT),
12443       LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)),
12444       ValueExprMap(std::move(Arg.ValueExprMap)),
12445       PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)),
12446       PendingPhiRanges(std::move(Arg.PendingPhiRanges)),
12447       PendingMerges(std::move(Arg.PendingMerges)),
12448       MinTrailingZerosCache(std::move(Arg.MinTrailingZerosCache)),
12449       BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)),
12450       PredicatedBackedgeTakenCounts(
12451           std::move(Arg.PredicatedBackedgeTakenCounts)),
12452       BECountUsers(std::move(Arg.BECountUsers)),
12453       ConstantEvolutionLoopExitValue(
12454           std::move(Arg.ConstantEvolutionLoopExitValue)),
12455       ValuesAtScopes(std::move(Arg.ValuesAtScopes)),
12456       ValuesAtScopesUsers(std::move(Arg.ValuesAtScopesUsers)),
12457       LoopDispositions(std::move(Arg.LoopDispositions)),
12458       LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)),
12459       BlockDispositions(std::move(Arg.BlockDispositions)),
12460       SCEVUsers(std::move(Arg.SCEVUsers)),
12461       UnsignedRanges(std::move(Arg.UnsignedRanges)),
12462       SignedRanges(std::move(Arg.SignedRanges)),
12463       UniqueSCEVs(std::move(Arg.UniqueSCEVs)),
12464       UniquePreds(std::move(Arg.UniquePreds)),
12465       SCEVAllocator(std::move(Arg.SCEVAllocator)),
12466       LoopUsers(std::move(Arg.LoopUsers)),
12467       PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)),
12468       FirstUnknown(Arg.FirstUnknown) {
12469   Arg.FirstUnknown = nullptr;
12470 }
12471 
12472 ScalarEvolution::~ScalarEvolution() {
12473   // Iterate through all the SCEVUnknown instances and call their
12474   // destructors, so that they release their references to their values.
12475   for (SCEVUnknown *U = FirstUnknown; U;) {
12476     SCEVUnknown *Tmp = U;
12477     U = U->Next;
12478     Tmp->~SCEVUnknown();
12479   }
12480   FirstUnknown = nullptr;
12481 
12482   ExprValueMap.clear();
12483   ValueExprMap.clear();
12484   HasRecMap.clear();
12485   BackedgeTakenCounts.clear();
12486   PredicatedBackedgeTakenCounts.clear();
12487 
12488   assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
12489   assert(PendingPhiRanges.empty() && "getRangeRef garbage");
12490   assert(PendingMerges.empty() && "isImpliedViaMerge garbage");
12491   assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!");
12492   assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!");
12493 }
12494 
12495 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
12496   return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
12497 }
12498 
12499 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
12500                           const Loop *L) {
12501   // Print all inner loops first
12502   for (Loop *I : *L)
12503     PrintLoopInfo(OS, SE, I);
12504 
12505   OS << "Loop ";
12506   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12507   OS << ": ";
12508 
12509   SmallVector<BasicBlock *, 8> ExitingBlocks;
12510   L->getExitingBlocks(ExitingBlocks);
12511   if (ExitingBlocks.size() != 1)
12512     OS << "<multiple exits> ";
12513 
12514   if (SE->hasLoopInvariantBackedgeTakenCount(L))
12515     OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L) << "\n";
12516   else
12517     OS << "Unpredictable backedge-taken count.\n";
12518 
12519   if (ExitingBlocks.size() > 1)
12520     for (BasicBlock *ExitingBlock : ExitingBlocks) {
12521       OS << "  exit count for " << ExitingBlock->getName() << ": "
12522          << *SE->getExitCount(L, ExitingBlock) << "\n";
12523     }
12524 
12525   OS << "Loop ";
12526   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12527   OS << ": ";
12528 
12529   if (!isa<SCEVCouldNotCompute>(SE->getConstantMaxBackedgeTakenCount(L))) {
12530     OS << "max backedge-taken count is " << *SE->getConstantMaxBackedgeTakenCount(L);
12531     if (SE->isBackedgeTakenCountMaxOrZero(L))
12532       OS << ", actual taken count either this or zero.";
12533   } else {
12534     OS << "Unpredictable max backedge-taken count. ";
12535   }
12536 
12537   OS << "\n"
12538         "Loop ";
12539   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12540   OS << ": ";
12541 
12542   SCEVUnionPredicate Pred;
12543   auto PBT = SE->getPredicatedBackedgeTakenCount(L, Pred);
12544   if (!isa<SCEVCouldNotCompute>(PBT)) {
12545     OS << "Predicated backedge-taken count is " << *PBT << "\n";
12546     OS << " Predicates:\n";
12547     Pred.print(OS, 4);
12548   } else {
12549     OS << "Unpredictable predicated backedge-taken count. ";
12550   }
12551   OS << "\n";
12552 
12553   if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
12554     OS << "Loop ";
12555     L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12556     OS << ": ";
12557     OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n";
12558   }
12559 }
12560 
12561 static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) {
12562   switch (LD) {
12563   case ScalarEvolution::LoopVariant:
12564     return "Variant";
12565   case ScalarEvolution::LoopInvariant:
12566     return "Invariant";
12567   case ScalarEvolution::LoopComputable:
12568     return "Computable";
12569   }
12570   llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!");
12571 }
12572 
12573 void ScalarEvolution::print(raw_ostream &OS) const {
12574   // ScalarEvolution's implementation of the print method is to print
12575   // out SCEV values of all instructions that are interesting. Doing
12576   // this potentially causes it to create new SCEV objects though,
12577   // which technically conflicts with the const qualifier. This isn't
12578   // observable from outside the class though, so casting away the
12579   // const isn't dangerous.
12580   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
12581 
12582   if (ClassifyExpressions) {
12583     OS << "Classifying expressions for: ";
12584     F.printAsOperand(OS, /*PrintType=*/false);
12585     OS << "\n";
12586     for (Instruction &I : instructions(F))
12587       if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) {
12588         OS << I << '\n';
12589         OS << "  -->  ";
12590         const SCEV *SV = SE.getSCEV(&I);
12591         SV->print(OS);
12592         if (!isa<SCEVCouldNotCompute>(SV)) {
12593           OS << " U: ";
12594           SE.getUnsignedRange(SV).print(OS);
12595           OS << " S: ";
12596           SE.getSignedRange(SV).print(OS);
12597         }
12598 
12599         const Loop *L = LI.getLoopFor(I.getParent());
12600 
12601         const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
12602         if (AtUse != SV) {
12603           OS << "  -->  ";
12604           AtUse->print(OS);
12605           if (!isa<SCEVCouldNotCompute>(AtUse)) {
12606             OS << " U: ";
12607             SE.getUnsignedRange(AtUse).print(OS);
12608             OS << " S: ";
12609             SE.getSignedRange(AtUse).print(OS);
12610           }
12611         }
12612 
12613         if (L) {
12614           OS << "\t\t" "Exits: ";
12615           const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
12616           if (!SE.isLoopInvariant(ExitValue, L)) {
12617             OS << "<<Unknown>>";
12618           } else {
12619             OS << *ExitValue;
12620           }
12621 
12622           bool First = true;
12623           for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) {
12624             if (First) {
12625               OS << "\t\t" "LoopDispositions: { ";
12626               First = false;
12627             } else {
12628               OS << ", ";
12629             }
12630 
12631             Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12632             OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter));
12633           }
12634 
12635           for (auto *InnerL : depth_first(L)) {
12636             if (InnerL == L)
12637               continue;
12638             if (First) {
12639               OS << "\t\t" "LoopDispositions: { ";
12640               First = false;
12641             } else {
12642               OS << ", ";
12643             }
12644 
12645             InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12646             OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL));
12647           }
12648 
12649           OS << " }";
12650         }
12651 
12652         OS << "\n";
12653       }
12654   }
12655 
12656   OS << "Determining loop execution counts for: ";
12657   F.printAsOperand(OS, /*PrintType=*/false);
12658   OS << "\n";
12659   for (Loop *I : LI)
12660     PrintLoopInfo(OS, &SE, I);
12661 }
12662 
12663 ScalarEvolution::LoopDisposition
12664 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
12665   auto &Values = LoopDispositions[S];
12666   for (auto &V : Values) {
12667     if (V.getPointer() == L)
12668       return V.getInt();
12669   }
12670   Values.emplace_back(L, LoopVariant);
12671   LoopDisposition D = computeLoopDisposition(S, L);
12672   auto &Values2 = LoopDispositions[S];
12673   for (auto &V : llvm::reverse(Values2)) {
12674     if (V.getPointer() == L) {
12675       V.setInt(D);
12676       break;
12677     }
12678   }
12679   return D;
12680 }
12681 
12682 ScalarEvolution::LoopDisposition
12683 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
12684   switch (S->getSCEVType()) {
12685   case scConstant:
12686     return LoopInvariant;
12687   case scPtrToInt:
12688   case scTruncate:
12689   case scZeroExtend:
12690   case scSignExtend:
12691     return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
12692   case scAddRecExpr: {
12693     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
12694 
12695     // If L is the addrec's loop, it's computable.
12696     if (AR->getLoop() == L)
12697       return LoopComputable;
12698 
12699     // Add recurrences are never invariant in the function-body (null loop).
12700     if (!L)
12701       return LoopVariant;
12702 
12703     // Everything that is not defined at loop entry is variant.
12704     if (DT.dominates(L->getHeader(), AR->getLoop()->getHeader()))
12705       return LoopVariant;
12706     assert(!L->contains(AR->getLoop()) && "Containing loop's header does not"
12707            " dominate the contained loop's header?");
12708 
12709     // This recurrence is invariant w.r.t. L if AR's loop contains L.
12710     if (AR->getLoop()->contains(L))
12711       return LoopInvariant;
12712 
12713     // This recurrence is variant w.r.t. L if any of its operands
12714     // are variant.
12715     for (auto *Op : AR->operands())
12716       if (!isLoopInvariant(Op, L))
12717         return LoopVariant;
12718 
12719     // Otherwise it's loop-invariant.
12720     return LoopInvariant;
12721   }
12722   case scAddExpr:
12723   case scMulExpr:
12724   case scUMaxExpr:
12725   case scSMaxExpr:
12726   case scUMinExpr:
12727   case scSMinExpr: {
12728     bool HasVarying = false;
12729     for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) {
12730       LoopDisposition D = getLoopDisposition(Op, L);
12731       if (D == LoopVariant)
12732         return LoopVariant;
12733       if (D == LoopComputable)
12734         HasVarying = true;
12735     }
12736     return HasVarying ? LoopComputable : LoopInvariant;
12737   }
12738   case scUDivExpr: {
12739     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
12740     LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
12741     if (LD == LoopVariant)
12742       return LoopVariant;
12743     LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
12744     if (RD == LoopVariant)
12745       return LoopVariant;
12746     return (LD == LoopInvariant && RD == LoopInvariant) ?
12747            LoopInvariant : LoopComputable;
12748   }
12749   case scUnknown:
12750     // All non-instruction values are loop invariant.  All instructions are loop
12751     // invariant if they are not contained in the specified loop.
12752     // Instructions are never considered invariant in the function body
12753     // (null loop) because they are defined within the "loop".
12754     if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
12755       return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
12756     return LoopInvariant;
12757   case scCouldNotCompute:
12758     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
12759   }
12760   llvm_unreachable("Unknown SCEV kind!");
12761 }
12762 
12763 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
12764   return getLoopDisposition(S, L) == LoopInvariant;
12765 }
12766 
12767 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
12768   return getLoopDisposition(S, L) == LoopComputable;
12769 }
12770 
12771 ScalarEvolution::BlockDisposition
12772 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
12773   auto &Values = BlockDispositions[S];
12774   for (auto &V : Values) {
12775     if (V.getPointer() == BB)
12776       return V.getInt();
12777   }
12778   Values.emplace_back(BB, DoesNotDominateBlock);
12779   BlockDisposition D = computeBlockDisposition(S, BB);
12780   auto &Values2 = BlockDispositions[S];
12781   for (auto &V : llvm::reverse(Values2)) {
12782     if (V.getPointer() == BB) {
12783       V.setInt(D);
12784       break;
12785     }
12786   }
12787   return D;
12788 }
12789 
12790 ScalarEvolution::BlockDisposition
12791 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
12792   switch (S->getSCEVType()) {
12793   case scConstant:
12794     return ProperlyDominatesBlock;
12795   case scPtrToInt:
12796   case scTruncate:
12797   case scZeroExtend:
12798   case scSignExtend:
12799     return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
12800   case scAddRecExpr: {
12801     // This uses a "dominates" query instead of "properly dominates" query
12802     // to test for proper dominance too, because the instruction which
12803     // produces the addrec's value is a PHI, and a PHI effectively properly
12804     // dominates its entire containing block.
12805     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
12806     if (!DT.dominates(AR->getLoop()->getHeader(), BB))
12807       return DoesNotDominateBlock;
12808 
12809     // Fall through into SCEVNAryExpr handling.
12810     LLVM_FALLTHROUGH;
12811   }
12812   case scAddExpr:
12813   case scMulExpr:
12814   case scUMaxExpr:
12815   case scSMaxExpr:
12816   case scUMinExpr:
12817   case scSMinExpr: {
12818     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
12819     bool Proper = true;
12820     for (const SCEV *NAryOp : NAry->operands()) {
12821       BlockDisposition D = getBlockDisposition(NAryOp, BB);
12822       if (D == DoesNotDominateBlock)
12823         return DoesNotDominateBlock;
12824       if (D == DominatesBlock)
12825         Proper = false;
12826     }
12827     return Proper ? ProperlyDominatesBlock : DominatesBlock;
12828   }
12829   case scUDivExpr: {
12830     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
12831     const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
12832     BlockDisposition LD = getBlockDisposition(LHS, BB);
12833     if (LD == DoesNotDominateBlock)
12834       return DoesNotDominateBlock;
12835     BlockDisposition RD = getBlockDisposition(RHS, BB);
12836     if (RD == DoesNotDominateBlock)
12837       return DoesNotDominateBlock;
12838     return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
12839       ProperlyDominatesBlock : DominatesBlock;
12840   }
12841   case scUnknown:
12842     if (Instruction *I =
12843           dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
12844       if (I->getParent() == BB)
12845         return DominatesBlock;
12846       if (DT.properlyDominates(I->getParent(), BB))
12847         return ProperlyDominatesBlock;
12848       return DoesNotDominateBlock;
12849     }
12850     return ProperlyDominatesBlock;
12851   case scCouldNotCompute:
12852     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
12853   }
12854   llvm_unreachable("Unknown SCEV kind!");
12855 }
12856 
12857 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
12858   return getBlockDisposition(S, BB) >= DominatesBlock;
12859 }
12860 
12861 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
12862   return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
12863 }
12864 
12865 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
12866   return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; });
12867 }
12868 
12869 void ScalarEvolution::forgetBackedgeTakenCounts(const Loop *L,
12870                                                 bool Predicated) {
12871   auto &BECounts =
12872       Predicated ? PredicatedBackedgeTakenCounts : BackedgeTakenCounts;
12873   auto It = BECounts.find(L);
12874   if (It != BECounts.end()) {
12875     for (const ExitNotTakenInfo &ENT : It->second.ExitNotTaken) {
12876       if (!isa<SCEVConstant>(ENT.ExactNotTaken)) {
12877         auto UserIt = BECountUsers.find(ENT.ExactNotTaken);
12878         assert(UserIt != BECountUsers.end());
12879         UserIt->second.erase({L, Predicated});
12880       }
12881     }
12882     BECounts.erase(It);
12883   }
12884 }
12885 
12886 void ScalarEvolution::forgetMemoizedResults(ArrayRef<const SCEV *> SCEVs) {
12887   SmallPtrSet<const SCEV *, 8> ToForget(SCEVs.begin(), SCEVs.end());
12888   SmallVector<const SCEV *, 8> Worklist(ToForget.begin(), ToForget.end());
12889 
12890   while (!Worklist.empty()) {
12891     const SCEV *Curr = Worklist.pop_back_val();
12892     auto Users = SCEVUsers.find(Curr);
12893     if (Users != SCEVUsers.end())
12894       for (auto *User : Users->second)
12895         if (ToForget.insert(User).second)
12896           Worklist.push_back(User);
12897   }
12898 
12899   for (auto *S : ToForget)
12900     forgetMemoizedResultsImpl(S);
12901 
12902   for (auto I = PredicatedSCEVRewrites.begin();
12903        I != PredicatedSCEVRewrites.end();) {
12904     std::pair<const SCEV *, const Loop *> Entry = I->first;
12905     if (ToForget.count(Entry.first))
12906       PredicatedSCEVRewrites.erase(I++);
12907     else
12908       ++I;
12909   }
12910 }
12911 
12912 void ScalarEvolution::forgetMemoizedResultsImpl(const SCEV *S) {
12913   LoopDispositions.erase(S);
12914   BlockDispositions.erase(S);
12915   UnsignedRanges.erase(S);
12916   SignedRanges.erase(S);
12917   HasRecMap.erase(S);
12918   MinTrailingZerosCache.erase(S);
12919 
12920   auto ExprIt = ExprValueMap.find(S);
12921   if (ExprIt != ExprValueMap.end()) {
12922     for (auto &ValueAndOffset : ExprIt->second) {
12923       if (ValueAndOffset.second == nullptr) {
12924         auto ValueIt = ValueExprMap.find_as(ValueAndOffset.first);
12925         if (ValueIt != ValueExprMap.end())
12926           ValueExprMap.erase(ValueIt);
12927       }
12928     }
12929     ExprValueMap.erase(ExprIt);
12930   }
12931 
12932   auto ScopeIt = ValuesAtScopes.find(S);
12933   if (ScopeIt != ValuesAtScopes.end()) {
12934     for (const auto &Pair : ScopeIt->second)
12935       if (!isa_and_nonnull<SCEVConstant>(Pair.second))
12936         erase_value(ValuesAtScopesUsers[Pair.second],
12937                     std::make_pair(Pair.first, S));
12938     ValuesAtScopes.erase(ScopeIt);
12939   }
12940 
12941   auto ScopeUserIt = ValuesAtScopesUsers.find(S);
12942   if (ScopeUserIt != ValuesAtScopesUsers.end()) {
12943     for (const auto &Pair : ScopeUserIt->second)
12944       erase_value(ValuesAtScopes[Pair.second], std::make_pair(Pair.first, S));
12945     ValuesAtScopesUsers.erase(ScopeUserIt);
12946   }
12947 
12948   auto BEUsersIt = BECountUsers.find(S);
12949   if (BEUsersIt != BECountUsers.end()) {
12950     // Work on a copy, as forgetBackedgeTakenCounts() will modify the original.
12951     auto Copy = BEUsersIt->second;
12952     for (const auto &Pair : Copy)
12953       forgetBackedgeTakenCounts(Pair.getPointer(), Pair.getInt());
12954     BECountUsers.erase(BEUsersIt);
12955   }
12956 }
12957 
12958 void
12959 ScalarEvolution::getUsedLoops(const SCEV *S,
12960                               SmallPtrSetImpl<const Loop *> &LoopsUsed) {
12961   struct FindUsedLoops {
12962     FindUsedLoops(SmallPtrSetImpl<const Loop *> &LoopsUsed)
12963         : LoopsUsed(LoopsUsed) {}
12964     SmallPtrSetImpl<const Loop *> &LoopsUsed;
12965     bool follow(const SCEV *S) {
12966       if (auto *AR = dyn_cast<SCEVAddRecExpr>(S))
12967         LoopsUsed.insert(AR->getLoop());
12968       return true;
12969     }
12970 
12971     bool isDone() const { return false; }
12972   };
12973 
12974   FindUsedLoops F(LoopsUsed);
12975   SCEVTraversal<FindUsedLoops>(F).visitAll(S);
12976 }
12977 
12978 void ScalarEvolution::verify() const {
12979   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
12980   ScalarEvolution SE2(F, TLI, AC, DT, LI);
12981 
12982   SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end());
12983 
12984   // Map's SCEV expressions from one ScalarEvolution "universe" to another.
12985   struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> {
12986     SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {}
12987 
12988     const SCEV *visitConstant(const SCEVConstant *Constant) {
12989       return SE.getConstant(Constant->getAPInt());
12990     }
12991 
12992     const SCEV *visitUnknown(const SCEVUnknown *Expr) {
12993       return SE.getUnknown(Expr->getValue());
12994     }
12995 
12996     const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) {
12997       return SE.getCouldNotCompute();
12998     }
12999   };
13000 
13001   SCEVMapper SCM(SE2);
13002 
13003   while (!LoopStack.empty()) {
13004     auto *L = LoopStack.pop_back_val();
13005     llvm::append_range(LoopStack, *L);
13006 
13007     auto *CurBECount = SCM.visit(
13008         const_cast<ScalarEvolution *>(this)->getBackedgeTakenCount(L));
13009     auto *NewBECount = SE2.getBackedgeTakenCount(L);
13010 
13011     if (CurBECount == SE2.getCouldNotCompute() ||
13012         NewBECount == SE2.getCouldNotCompute()) {
13013       // NB! This situation is legal, but is very suspicious -- whatever pass
13014       // change the loop to make a trip count go from could not compute to
13015       // computable or vice-versa *should have* invalidated SCEV.  However, we
13016       // choose not to assert here (for now) since we don't want false
13017       // positives.
13018       continue;
13019     }
13020 
13021     if (containsUndefs(CurBECount) || containsUndefs(NewBECount)) {
13022       // SCEV treats "undef" as an unknown but consistent value (i.e. it does
13023       // not propagate undef aggressively).  This means we can (and do) fail
13024       // verification in cases where a transform makes the trip count of a loop
13025       // go from "undef" to "undef+1" (say).  The transform is fine, since in
13026       // both cases the loop iterates "undef" times, but SCEV thinks we
13027       // increased the trip count of the loop by 1 incorrectly.
13028       continue;
13029     }
13030 
13031     if (SE.getTypeSizeInBits(CurBECount->getType()) >
13032         SE.getTypeSizeInBits(NewBECount->getType()))
13033       NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType());
13034     else if (SE.getTypeSizeInBits(CurBECount->getType()) <
13035              SE.getTypeSizeInBits(NewBECount->getType()))
13036       CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType());
13037 
13038     const SCEV *Delta = SE2.getMinusSCEV(CurBECount, NewBECount);
13039 
13040     // Unless VerifySCEVStrict is set, we only compare constant deltas.
13041     if ((VerifySCEVStrict || isa<SCEVConstant>(Delta)) && !Delta->isZero()) {
13042       dbgs() << "Trip Count for " << *L << " Changed!\n";
13043       dbgs() << "Old: " << *CurBECount << "\n";
13044       dbgs() << "New: " << *NewBECount << "\n";
13045       dbgs() << "Delta: " << *Delta << "\n";
13046       std::abort();
13047     }
13048   }
13049 
13050   // Collect all valid loops currently in LoopInfo.
13051   SmallPtrSet<Loop *, 32> ValidLoops;
13052   SmallVector<Loop *, 32> Worklist(LI.begin(), LI.end());
13053   while (!Worklist.empty()) {
13054     Loop *L = Worklist.pop_back_val();
13055     if (ValidLoops.contains(L))
13056       continue;
13057     ValidLoops.insert(L);
13058     Worklist.append(L->begin(), L->end());
13059   }
13060   for (auto &KV : ValueExprMap) {
13061     // Check for SCEV expressions referencing invalid/deleted loops.
13062     if (auto *AR = dyn_cast<SCEVAddRecExpr>(KV.second)) {
13063       assert(ValidLoops.contains(AR->getLoop()) &&
13064              "AddRec references invalid loop");
13065     }
13066 
13067     // Check that the value is also part of the reverse map.
13068     auto It = ExprValueMap.find(KV.second);
13069     if (It == ExprValueMap.end() || !It->second.contains({KV.first, nullptr})) {
13070       dbgs() << "Value " << *KV.first
13071              << " is in ValueExprMap but not in ExprValueMap\n";
13072       std::abort();
13073     }
13074   }
13075 
13076   for (const auto &KV : ExprValueMap) {
13077     for (const auto &ValueAndOffset : KV.second) {
13078       if (ValueAndOffset.second != nullptr)
13079         continue;
13080 
13081       auto It = ValueExprMap.find_as(ValueAndOffset.first);
13082       if (It == ValueExprMap.end()) {
13083         dbgs() << "Value " << *ValueAndOffset.first
13084                << " is in ExprValueMap but not in ValueExprMap\n";
13085         std::abort();
13086       }
13087       if (It->second != KV.first) {
13088         dbgs() << "Value " << *ValueAndOffset.first
13089                << " mapped to " << *It->second
13090                << " rather than " << *KV.first << "\n";
13091         std::abort();
13092       }
13093     }
13094   }
13095 
13096   // Verify integrity of SCEV users.
13097   for (const auto &S : UniqueSCEVs) {
13098     SmallVector<const SCEV *, 4> Ops;
13099     collectUniqueOps(&S, Ops);
13100     for (const auto *Op : Ops) {
13101       // We do not store dependencies of constants.
13102       if (isa<SCEVConstant>(Op))
13103         continue;
13104       auto It = SCEVUsers.find(Op);
13105       if (It != SCEVUsers.end() && It->second.count(&S))
13106         continue;
13107       dbgs() << "Use of operand  " << *Op << " by user " << S
13108              << " is not being tracked!\n";
13109       std::abort();
13110     }
13111   }
13112 
13113   // Verify integrity of ValuesAtScopes users.
13114   for (const auto &ValueAndVec : ValuesAtScopes) {
13115     const SCEV *Value = ValueAndVec.first;
13116     for (const auto &LoopAndValueAtScope : ValueAndVec.second) {
13117       const Loop *L = LoopAndValueAtScope.first;
13118       const SCEV *ValueAtScope = LoopAndValueAtScope.second;
13119       if (!isa<SCEVConstant>(ValueAtScope)) {
13120         auto It = ValuesAtScopesUsers.find(ValueAtScope);
13121         if (It != ValuesAtScopesUsers.end() &&
13122             is_contained(It->second, std::make_pair(L, Value)))
13123           continue;
13124         dbgs() << "Value: " << *Value << ", Loop: " << *L << ", ValueAtScope: "
13125                << ValueAtScope << " missing in ValuesAtScopesUsers\n";
13126         std::abort();
13127       }
13128     }
13129   }
13130 
13131   for (const auto &ValueAtScopeAndVec : ValuesAtScopesUsers) {
13132     const SCEV *ValueAtScope = ValueAtScopeAndVec.first;
13133     for (const auto &LoopAndValue : ValueAtScopeAndVec.second) {
13134       const Loop *L = LoopAndValue.first;
13135       const SCEV *Value = LoopAndValue.second;
13136       assert(!isa<SCEVConstant>(Value));
13137       auto It = ValuesAtScopes.find(Value);
13138       if (It != ValuesAtScopes.end() &&
13139           is_contained(It->second, std::make_pair(L, ValueAtScope)))
13140         continue;
13141       dbgs() << "Value: " << *Value << ", Loop: " << *L << ", ValueAtScope: "
13142              << ValueAtScope << " missing in ValuesAtScopes\n";
13143       std::abort();
13144     }
13145   }
13146 
13147   // Verify integrity of BECountUsers.
13148   auto VerifyBECountUsers = [&](bool Predicated) {
13149     auto &BECounts =
13150         Predicated ? PredicatedBackedgeTakenCounts : BackedgeTakenCounts;
13151     for (const auto &LoopAndBEInfo : BECounts) {
13152       for (const ExitNotTakenInfo &ENT : LoopAndBEInfo.second.ExitNotTaken) {
13153         if (!isa<SCEVConstant>(ENT.ExactNotTaken)) {
13154           auto UserIt = BECountUsers.find(ENT.ExactNotTaken);
13155           if (UserIt != BECountUsers.end() &&
13156               UserIt->second.contains({ LoopAndBEInfo.first, Predicated }))
13157             continue;
13158           dbgs() << "Value " << *ENT.ExactNotTaken << " for loop "
13159                  << *LoopAndBEInfo.first << " missing from BECountUsers\n";
13160           std::abort();
13161         }
13162       }
13163     }
13164   };
13165   VerifyBECountUsers(/* Predicated */ false);
13166   VerifyBECountUsers(/* Predicated */ true);
13167 }
13168 
13169 bool ScalarEvolution::invalidate(
13170     Function &F, const PreservedAnalyses &PA,
13171     FunctionAnalysisManager::Invalidator &Inv) {
13172   // Invalidate the ScalarEvolution object whenever it isn't preserved or one
13173   // of its dependencies is invalidated.
13174   auto PAC = PA.getChecker<ScalarEvolutionAnalysis>();
13175   return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) ||
13176          Inv.invalidate<AssumptionAnalysis>(F, PA) ||
13177          Inv.invalidate<DominatorTreeAnalysis>(F, PA) ||
13178          Inv.invalidate<LoopAnalysis>(F, PA);
13179 }
13180 
13181 AnalysisKey ScalarEvolutionAnalysis::Key;
13182 
13183 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F,
13184                                              FunctionAnalysisManager &AM) {
13185   return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F),
13186                          AM.getResult<AssumptionAnalysis>(F),
13187                          AM.getResult<DominatorTreeAnalysis>(F),
13188                          AM.getResult<LoopAnalysis>(F));
13189 }
13190 
13191 PreservedAnalyses
13192 ScalarEvolutionVerifierPass::run(Function &F, FunctionAnalysisManager &AM) {
13193   AM.getResult<ScalarEvolutionAnalysis>(F).verify();
13194   return PreservedAnalyses::all();
13195 }
13196 
13197 PreservedAnalyses
13198 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) {
13199   // For compatibility with opt's -analyze feature under legacy pass manager
13200   // which was not ported to NPM. This keeps tests using
13201   // update_analyze_test_checks.py working.
13202   OS << "Printing analysis 'Scalar Evolution Analysis' for function '"
13203      << F.getName() << "':\n";
13204   AM.getResult<ScalarEvolutionAnalysis>(F).print(OS);
13205   return PreservedAnalyses::all();
13206 }
13207 
13208 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution",
13209                       "Scalar Evolution Analysis", false, true)
13210 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
13211 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
13212 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
13213 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
13214 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution",
13215                     "Scalar Evolution Analysis", false, true)
13216 
13217 char ScalarEvolutionWrapperPass::ID = 0;
13218 
13219 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) {
13220   initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry());
13221 }
13222 
13223 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) {
13224   SE.reset(new ScalarEvolution(
13225       F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F),
13226       getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
13227       getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
13228       getAnalysis<LoopInfoWrapperPass>().getLoopInfo()));
13229   return false;
13230 }
13231 
13232 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); }
13233 
13234 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const {
13235   SE->print(OS);
13236 }
13237 
13238 void ScalarEvolutionWrapperPass::verifyAnalysis() const {
13239   if (!VerifySCEV)
13240     return;
13241 
13242   SE->verify();
13243 }
13244 
13245 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
13246   AU.setPreservesAll();
13247   AU.addRequiredTransitive<AssumptionCacheTracker>();
13248   AU.addRequiredTransitive<LoopInfoWrapperPass>();
13249   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
13250   AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
13251 }
13252 
13253 const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS,
13254                                                         const SCEV *RHS) {
13255   FoldingSetNodeID ID;
13256   assert(LHS->getType() == RHS->getType() &&
13257          "Type mismatch between LHS and RHS");
13258   // Unique this node based on the arguments
13259   ID.AddInteger(SCEVPredicate::P_Equal);
13260   ID.AddPointer(LHS);
13261   ID.AddPointer(RHS);
13262   void *IP = nullptr;
13263   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
13264     return S;
13265   SCEVEqualPredicate *Eq = new (SCEVAllocator)
13266       SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS);
13267   UniquePreds.InsertNode(Eq, IP);
13268   return Eq;
13269 }
13270 
13271 const SCEVPredicate *ScalarEvolution::getWrapPredicate(
13272     const SCEVAddRecExpr *AR,
13273     SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
13274   FoldingSetNodeID ID;
13275   // Unique this node based on the arguments
13276   ID.AddInteger(SCEVPredicate::P_Wrap);
13277   ID.AddPointer(AR);
13278   ID.AddInteger(AddedFlags);
13279   void *IP = nullptr;
13280   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
13281     return S;
13282   auto *OF = new (SCEVAllocator)
13283       SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags);
13284   UniquePreds.InsertNode(OF, IP);
13285   return OF;
13286 }
13287 
13288 namespace {
13289 
13290 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> {
13291 public:
13292 
13293   /// Rewrites \p S in the context of a loop L and the SCEV predication
13294   /// infrastructure.
13295   ///
13296   /// If \p Pred is non-null, the SCEV expression is rewritten to respect the
13297   /// equivalences present in \p Pred.
13298   ///
13299   /// If \p NewPreds is non-null, rewrite is free to add further predicates to
13300   /// \p NewPreds such that the result will be an AddRecExpr.
13301   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
13302                              SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
13303                              SCEVUnionPredicate *Pred) {
13304     SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred);
13305     return Rewriter.visit(S);
13306   }
13307 
13308   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
13309     if (Pred) {
13310       auto ExprPreds = Pred->getPredicatesForExpr(Expr);
13311       for (auto *Pred : ExprPreds)
13312         if (const auto *IPred = dyn_cast<SCEVEqualPredicate>(Pred))
13313           if (IPred->getLHS() == Expr)
13314             return IPred->getRHS();
13315     }
13316     return convertToAddRecWithPreds(Expr);
13317   }
13318 
13319   const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
13320     const SCEV *Operand = visit(Expr->getOperand());
13321     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
13322     if (AR && AR->getLoop() == L && AR->isAffine()) {
13323       // This couldn't be folded because the operand didn't have the nuw
13324       // flag. Add the nusw flag as an assumption that we could make.
13325       const SCEV *Step = AR->getStepRecurrence(SE);
13326       Type *Ty = Expr->getType();
13327       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW))
13328         return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty),
13329                                 SE.getSignExtendExpr(Step, Ty), L,
13330                                 AR->getNoWrapFlags());
13331     }
13332     return SE.getZeroExtendExpr(Operand, Expr->getType());
13333   }
13334 
13335   const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
13336     const SCEV *Operand = visit(Expr->getOperand());
13337     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
13338     if (AR && AR->getLoop() == L && AR->isAffine()) {
13339       // This couldn't be folded because the operand didn't have the nsw
13340       // flag. Add the nssw flag as an assumption that we could make.
13341       const SCEV *Step = AR->getStepRecurrence(SE);
13342       Type *Ty = Expr->getType();
13343       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW))
13344         return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty),
13345                                 SE.getSignExtendExpr(Step, Ty), L,
13346                                 AR->getNoWrapFlags());
13347     }
13348     return SE.getSignExtendExpr(Operand, Expr->getType());
13349   }
13350 
13351 private:
13352   explicit SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE,
13353                         SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
13354                         SCEVUnionPredicate *Pred)
13355       : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {}
13356 
13357   bool addOverflowAssumption(const SCEVPredicate *P) {
13358     if (!NewPreds) {
13359       // Check if we've already made this assumption.
13360       return Pred && Pred->implies(P);
13361     }
13362     NewPreds->insert(P);
13363     return true;
13364   }
13365 
13366   bool addOverflowAssumption(const SCEVAddRecExpr *AR,
13367                              SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
13368     auto *A = SE.getWrapPredicate(AR, AddedFlags);
13369     return addOverflowAssumption(A);
13370   }
13371 
13372   // If \p Expr represents a PHINode, we try to see if it can be represented
13373   // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible
13374   // to add this predicate as a runtime overflow check, we return the AddRec.
13375   // If \p Expr does not meet these conditions (is not a PHI node, or we
13376   // couldn't create an AddRec for it, or couldn't add the predicate), we just
13377   // return \p Expr.
13378   const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) {
13379     if (!isa<PHINode>(Expr->getValue()))
13380       return Expr;
13381     Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
13382     PredicatedRewrite = SE.createAddRecFromPHIWithCasts(Expr);
13383     if (!PredicatedRewrite)
13384       return Expr;
13385     for (auto *P : PredicatedRewrite->second){
13386       // Wrap predicates from outer loops are not supported.
13387       if (auto *WP = dyn_cast<const SCEVWrapPredicate>(P)) {
13388         auto *AR = cast<const SCEVAddRecExpr>(WP->getExpr());
13389         if (L != AR->getLoop())
13390           return Expr;
13391       }
13392       if (!addOverflowAssumption(P))
13393         return Expr;
13394     }
13395     return PredicatedRewrite->first;
13396   }
13397 
13398   SmallPtrSetImpl<const SCEVPredicate *> *NewPreds;
13399   SCEVUnionPredicate *Pred;
13400   const Loop *L;
13401 };
13402 
13403 } // end anonymous namespace
13404 
13405 const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L,
13406                                                    SCEVUnionPredicate &Preds) {
13407   return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds);
13408 }
13409 
13410 const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates(
13411     const SCEV *S, const Loop *L,
13412     SmallPtrSetImpl<const SCEVPredicate *> &Preds) {
13413   SmallPtrSet<const SCEVPredicate *, 4> TransformPreds;
13414   S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr);
13415   auto *AddRec = dyn_cast<SCEVAddRecExpr>(S);
13416 
13417   if (!AddRec)
13418     return nullptr;
13419 
13420   // Since the transformation was successful, we can now transfer the SCEV
13421   // predicates.
13422   for (auto *P : TransformPreds)
13423     Preds.insert(P);
13424 
13425   return AddRec;
13426 }
13427 
13428 /// SCEV predicates
13429 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID,
13430                              SCEVPredicateKind Kind)
13431     : FastID(ID), Kind(Kind) {}
13432 
13433 SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID,
13434                                        const SCEV *LHS, const SCEV *RHS)
13435     : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) {
13436   assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match");
13437   assert(LHS != RHS && "LHS and RHS are the same SCEV");
13438 }
13439 
13440 bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const {
13441   const auto *Op = dyn_cast<SCEVEqualPredicate>(N);
13442 
13443   if (!Op)
13444     return false;
13445 
13446   return Op->LHS == LHS && Op->RHS == RHS;
13447 }
13448 
13449 bool SCEVEqualPredicate::isAlwaysTrue() const { return false; }
13450 
13451 const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; }
13452 
13453 void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const {
13454   OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n";
13455 }
13456 
13457 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID,
13458                                      const SCEVAddRecExpr *AR,
13459                                      IncrementWrapFlags Flags)
13460     : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {}
13461 
13462 const SCEV *SCEVWrapPredicate::getExpr() const { return AR; }
13463 
13464 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const {
13465   const auto *Op = dyn_cast<SCEVWrapPredicate>(N);
13466 
13467   return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags;
13468 }
13469 
13470 bool SCEVWrapPredicate::isAlwaysTrue() const {
13471   SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags();
13472   IncrementWrapFlags IFlags = Flags;
13473 
13474   if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags)
13475     IFlags = clearFlags(IFlags, IncrementNSSW);
13476 
13477   return IFlags == IncrementAnyWrap;
13478 }
13479 
13480 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const {
13481   OS.indent(Depth) << *getExpr() << " Added Flags: ";
13482   if (SCEVWrapPredicate::IncrementNUSW & getFlags())
13483     OS << "<nusw>";
13484   if (SCEVWrapPredicate::IncrementNSSW & getFlags())
13485     OS << "<nssw>";
13486   OS << "\n";
13487 }
13488 
13489 SCEVWrapPredicate::IncrementWrapFlags
13490 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR,
13491                                    ScalarEvolution &SE) {
13492   IncrementWrapFlags ImpliedFlags = IncrementAnyWrap;
13493   SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags();
13494 
13495   // We can safely transfer the NSW flag as NSSW.
13496   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags)
13497     ImpliedFlags = IncrementNSSW;
13498 
13499   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) {
13500     // If the increment is positive, the SCEV NUW flag will also imply the
13501     // WrapPredicate NUSW flag.
13502     if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE)))
13503       if (Step->getValue()->getValue().isNonNegative())
13504         ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW);
13505   }
13506 
13507   return ImpliedFlags;
13508 }
13509 
13510 /// Union predicates don't get cached so create a dummy set ID for it.
13511 SCEVUnionPredicate::SCEVUnionPredicate()
13512     : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {}
13513 
13514 bool SCEVUnionPredicate::isAlwaysTrue() const {
13515   return all_of(Preds,
13516                 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); });
13517 }
13518 
13519 ArrayRef<const SCEVPredicate *>
13520 SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) {
13521   auto I = SCEVToPreds.find(Expr);
13522   if (I == SCEVToPreds.end())
13523     return ArrayRef<const SCEVPredicate *>();
13524   return I->second;
13525 }
13526 
13527 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const {
13528   if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N))
13529     return all_of(Set->Preds,
13530                   [this](const SCEVPredicate *I) { return this->implies(I); });
13531 
13532   auto ScevPredsIt = SCEVToPreds.find(N->getExpr());
13533   if (ScevPredsIt == SCEVToPreds.end())
13534     return false;
13535   auto &SCEVPreds = ScevPredsIt->second;
13536 
13537   return any_of(SCEVPreds,
13538                 [N](const SCEVPredicate *I) { return I->implies(N); });
13539 }
13540 
13541 const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; }
13542 
13543 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const {
13544   for (auto Pred : Preds)
13545     Pred->print(OS, Depth);
13546 }
13547 
13548 void SCEVUnionPredicate::add(const SCEVPredicate *N) {
13549   if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) {
13550     for (auto Pred : Set->Preds)
13551       add(Pred);
13552     return;
13553   }
13554 
13555   if (implies(N))
13556     return;
13557 
13558   const SCEV *Key = N->getExpr();
13559   assert(Key && "Only SCEVUnionPredicate doesn't have an "
13560                 " associated expression!");
13561 
13562   SCEVToPreds[Key].push_back(N);
13563   Preds.push_back(N);
13564 }
13565 
13566 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE,
13567                                                      Loop &L)
13568     : SE(SE), L(L) {}
13569 
13570 void ScalarEvolution::registerUser(const SCEV *User,
13571                                    ArrayRef<const SCEV *> Ops) {
13572   for (auto *Op : Ops)
13573     // We do not expect that forgetting cached data for SCEVConstants will ever
13574     // open any prospects for sharpening or introduce any correctness issues,
13575     // so we don't bother storing their dependencies.
13576     if (!isa<SCEVConstant>(Op))
13577       SCEVUsers[Op].insert(User);
13578 }
13579 
13580 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) {
13581   const SCEV *Expr = SE.getSCEV(V);
13582   RewriteEntry &Entry = RewriteMap[Expr];
13583 
13584   // If we already have an entry and the version matches, return it.
13585   if (Entry.second && Generation == Entry.first)
13586     return Entry.second;
13587 
13588   // We found an entry but it's stale. Rewrite the stale entry
13589   // according to the current predicate.
13590   if (Entry.second)
13591     Expr = Entry.second;
13592 
13593   const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds);
13594   Entry = {Generation, NewSCEV};
13595 
13596   return NewSCEV;
13597 }
13598 
13599 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() {
13600   if (!BackedgeCount) {
13601     SCEVUnionPredicate BackedgePred;
13602     BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, BackedgePred);
13603     addPredicate(BackedgePred);
13604   }
13605   return BackedgeCount;
13606 }
13607 
13608 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) {
13609   if (Preds.implies(&Pred))
13610     return;
13611   Preds.add(&Pred);
13612   updateGeneration();
13613 }
13614 
13615 const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const {
13616   return Preds;
13617 }
13618 
13619 void PredicatedScalarEvolution::updateGeneration() {
13620   // If the generation number wrapped recompute everything.
13621   if (++Generation == 0) {
13622     for (auto &II : RewriteMap) {
13623       const SCEV *Rewritten = II.second.second;
13624       II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)};
13625     }
13626   }
13627 }
13628 
13629 void PredicatedScalarEvolution::setNoOverflow(
13630     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
13631   const SCEV *Expr = getSCEV(V);
13632   const auto *AR = cast<SCEVAddRecExpr>(Expr);
13633 
13634   auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE);
13635 
13636   // Clear the statically implied flags.
13637   Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags);
13638   addPredicate(*SE.getWrapPredicate(AR, Flags));
13639 
13640   auto II = FlagsMap.insert({V, Flags});
13641   if (!II.second)
13642     II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second);
13643 }
13644 
13645 bool PredicatedScalarEvolution::hasNoOverflow(
13646     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
13647   const SCEV *Expr = getSCEV(V);
13648   const auto *AR = cast<SCEVAddRecExpr>(Expr);
13649 
13650   Flags = SCEVWrapPredicate::clearFlags(
13651       Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE));
13652 
13653   auto II = FlagsMap.find(V);
13654 
13655   if (II != FlagsMap.end())
13656     Flags = SCEVWrapPredicate::clearFlags(Flags, II->second);
13657 
13658   return Flags == SCEVWrapPredicate::IncrementAnyWrap;
13659 }
13660 
13661 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) {
13662   const SCEV *Expr = this->getSCEV(V);
13663   SmallPtrSet<const SCEVPredicate *, 4> NewPreds;
13664   auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds);
13665 
13666   if (!New)
13667     return nullptr;
13668 
13669   for (auto *P : NewPreds)
13670     Preds.add(P);
13671 
13672   updateGeneration();
13673   RewriteMap[SE.getSCEV(V)] = {Generation, New};
13674   return New;
13675 }
13676 
13677 PredicatedScalarEvolution::PredicatedScalarEvolution(
13678     const PredicatedScalarEvolution &Init)
13679     : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds),
13680       Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) {
13681   for (auto I : Init.FlagsMap)
13682     FlagsMap.insert(I);
13683 }
13684 
13685 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const {
13686   // For each block.
13687   for (auto *BB : L.getBlocks())
13688     for (auto &I : *BB) {
13689       if (!SE.isSCEVable(I.getType()))
13690         continue;
13691 
13692       auto *Expr = SE.getSCEV(&I);
13693       auto II = RewriteMap.find(Expr);
13694 
13695       if (II == RewriteMap.end())
13696         continue;
13697 
13698       // Don't print things that are not interesting.
13699       if (II->second.second == Expr)
13700         continue;
13701 
13702       OS.indent(Depth) << "[PSE]" << I << ":\n";
13703       OS.indent(Depth + 2) << *Expr << "\n";
13704       OS.indent(Depth + 2) << "--> " << *II->second.second << "\n";
13705     }
13706 }
13707 
13708 // Match the mathematical pattern A - (A / B) * B, where A and B can be
13709 // arbitrary expressions. Also match zext (trunc A to iB) to iY, which is used
13710 // for URem with constant power-of-2 second operands.
13711 // It's not always easy, as A and B can be folded (imagine A is X / 2, and B is
13712 // 4, A / B becomes X / 8).
13713 bool ScalarEvolution::matchURem(const SCEV *Expr, const SCEV *&LHS,
13714                                 const SCEV *&RHS) {
13715   // Try to match 'zext (trunc A to iB) to iY', which is used
13716   // for URem with constant power-of-2 second operands. Make sure the size of
13717   // the operand A matches the size of the whole expressions.
13718   if (const auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(Expr))
13719     if (const auto *Trunc = dyn_cast<SCEVTruncateExpr>(ZExt->getOperand(0))) {
13720       LHS = Trunc->getOperand();
13721       // Bail out if the type of the LHS is larger than the type of the
13722       // expression for now.
13723       if (getTypeSizeInBits(LHS->getType()) >
13724           getTypeSizeInBits(Expr->getType()))
13725         return false;
13726       if (LHS->getType() != Expr->getType())
13727         LHS = getZeroExtendExpr(LHS, Expr->getType());
13728       RHS = getConstant(APInt(getTypeSizeInBits(Expr->getType()), 1)
13729                         << getTypeSizeInBits(Trunc->getType()));
13730       return true;
13731     }
13732   const auto *Add = dyn_cast<SCEVAddExpr>(Expr);
13733   if (Add == nullptr || Add->getNumOperands() != 2)
13734     return false;
13735 
13736   const SCEV *A = Add->getOperand(1);
13737   const auto *Mul = dyn_cast<SCEVMulExpr>(Add->getOperand(0));
13738 
13739   if (Mul == nullptr)
13740     return false;
13741 
13742   const auto MatchURemWithDivisor = [&](const SCEV *B) {
13743     // (SomeExpr + (-(SomeExpr / B) * B)).
13744     if (Expr == getURemExpr(A, B)) {
13745       LHS = A;
13746       RHS = B;
13747       return true;
13748     }
13749     return false;
13750   };
13751 
13752   // (SomeExpr + (-1 * (SomeExpr / B) * B)).
13753   if (Mul->getNumOperands() == 3 && isa<SCEVConstant>(Mul->getOperand(0)))
13754     return MatchURemWithDivisor(Mul->getOperand(1)) ||
13755            MatchURemWithDivisor(Mul->getOperand(2));
13756 
13757   // (SomeExpr + ((-SomeExpr / B) * B)) or (SomeExpr + ((SomeExpr / B) * -B)).
13758   if (Mul->getNumOperands() == 2)
13759     return MatchURemWithDivisor(Mul->getOperand(1)) ||
13760            MatchURemWithDivisor(Mul->getOperand(0)) ||
13761            MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(1))) ||
13762            MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(0)));
13763   return false;
13764 }
13765 
13766 const SCEV *
13767 ScalarEvolution::computeSymbolicMaxBackedgeTakenCount(const Loop *L) {
13768   SmallVector<BasicBlock*, 16> ExitingBlocks;
13769   L->getExitingBlocks(ExitingBlocks);
13770 
13771   // Form an expression for the maximum exit count possible for this loop. We
13772   // merge the max and exact information to approximate a version of
13773   // getConstantMaxBackedgeTakenCount which isn't restricted to just constants.
13774   SmallVector<const SCEV*, 4> ExitCounts;
13775   for (BasicBlock *ExitingBB : ExitingBlocks) {
13776     const SCEV *ExitCount = getExitCount(L, ExitingBB);
13777     if (isa<SCEVCouldNotCompute>(ExitCount))
13778       ExitCount = getExitCount(L, ExitingBB,
13779                                   ScalarEvolution::ConstantMaximum);
13780     if (!isa<SCEVCouldNotCompute>(ExitCount)) {
13781       assert(DT.dominates(ExitingBB, L->getLoopLatch()) &&
13782              "We should only have known counts for exiting blocks that "
13783              "dominate latch!");
13784       ExitCounts.push_back(ExitCount);
13785     }
13786   }
13787   if (ExitCounts.empty())
13788     return getCouldNotCompute();
13789   return getUMinFromMismatchedTypes(ExitCounts);
13790 }
13791 
13792 /// A rewriter to replace SCEV expressions in Map with the corresponding entry
13793 /// in the map. It skips AddRecExpr because we cannot guarantee that the
13794 /// replacement is loop invariant in the loop of the AddRec.
13795 ///
13796 /// At the moment only rewriting SCEVUnknown and SCEVZeroExtendExpr is
13797 /// supported.
13798 class SCEVLoopGuardRewriter : public SCEVRewriteVisitor<SCEVLoopGuardRewriter> {
13799   const DenseMap<const SCEV *, const SCEV *> &Map;
13800 
13801 public:
13802   SCEVLoopGuardRewriter(ScalarEvolution &SE,
13803                         DenseMap<const SCEV *, const SCEV *> &M)
13804       : SCEVRewriteVisitor(SE), Map(M) {}
13805 
13806   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { return Expr; }
13807 
13808   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
13809     auto I = Map.find(Expr);
13810     if (I == Map.end())
13811       return Expr;
13812     return I->second;
13813   }
13814 
13815   const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
13816     auto I = Map.find(Expr);
13817     if (I == Map.end())
13818       return SCEVRewriteVisitor<SCEVLoopGuardRewriter>::visitZeroExtendExpr(
13819           Expr);
13820     return I->second;
13821   }
13822 };
13823 
13824 const SCEV *ScalarEvolution::applyLoopGuards(const SCEV *Expr, const Loop *L) {
13825   SmallVector<const SCEV *> ExprsToRewrite;
13826   auto CollectCondition = [&](ICmpInst::Predicate Predicate, const SCEV *LHS,
13827                               const SCEV *RHS,
13828                               DenseMap<const SCEV *, const SCEV *>
13829                                   &RewriteMap) {
13830     // WARNING: It is generally unsound to apply any wrap flags to the proposed
13831     // replacement SCEV which isn't directly implied by the structure of that
13832     // SCEV.  In particular, using contextual facts to imply flags is *NOT*
13833     // legal.  See the scoping rules for flags in the header to understand why.
13834 
13835     // If LHS is a constant, apply information to the other expression.
13836     if (isa<SCEVConstant>(LHS)) {
13837       std::swap(LHS, RHS);
13838       Predicate = CmpInst::getSwappedPredicate(Predicate);
13839     }
13840 
13841     // Check for a condition of the form (-C1 + X < C2).  InstCombine will
13842     // create this form when combining two checks of the form (X u< C2 + C1) and
13843     // (X >=u C1).
13844     auto MatchRangeCheckIdiom = [this, Predicate, LHS, RHS, &RewriteMap,
13845                                  &ExprsToRewrite]() {
13846       auto *AddExpr = dyn_cast<SCEVAddExpr>(LHS);
13847       if (!AddExpr || AddExpr->getNumOperands() != 2)
13848         return false;
13849 
13850       auto *C1 = dyn_cast<SCEVConstant>(AddExpr->getOperand(0));
13851       auto *LHSUnknown = dyn_cast<SCEVUnknown>(AddExpr->getOperand(1));
13852       auto *C2 = dyn_cast<SCEVConstant>(RHS);
13853       if (!C1 || !C2 || !LHSUnknown)
13854         return false;
13855 
13856       auto ExactRegion =
13857           ConstantRange::makeExactICmpRegion(Predicate, C2->getAPInt())
13858               .sub(C1->getAPInt());
13859 
13860       // Bail out, unless we have a non-wrapping, monotonic range.
13861       if (ExactRegion.isWrappedSet() || ExactRegion.isFullSet())
13862         return false;
13863       auto I = RewriteMap.find(LHSUnknown);
13864       const SCEV *RewrittenLHS = I != RewriteMap.end() ? I->second : LHSUnknown;
13865       RewriteMap[LHSUnknown] = getUMaxExpr(
13866           getConstant(ExactRegion.getUnsignedMin()),
13867           getUMinExpr(RewrittenLHS, getConstant(ExactRegion.getUnsignedMax())));
13868       ExprsToRewrite.push_back(LHSUnknown);
13869       return true;
13870     };
13871     if (MatchRangeCheckIdiom())
13872       return;
13873 
13874     // If we have LHS == 0, check if LHS is computing a property of some unknown
13875     // SCEV %v which we can rewrite %v to express explicitly.
13876     const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS);
13877     if (Predicate == CmpInst::ICMP_EQ && RHSC &&
13878         RHSC->getValue()->isNullValue()) {
13879       // If LHS is A % B, i.e. A % B == 0, rewrite A to (A /u B) * B to
13880       // explicitly express that.
13881       const SCEV *URemLHS = nullptr;
13882       const SCEV *URemRHS = nullptr;
13883       if (matchURem(LHS, URemLHS, URemRHS)) {
13884         if (const SCEVUnknown *LHSUnknown = dyn_cast<SCEVUnknown>(URemLHS)) {
13885           auto Multiple = getMulExpr(getUDivExpr(URemLHS, URemRHS), URemRHS);
13886           RewriteMap[LHSUnknown] = Multiple;
13887           ExprsToRewrite.push_back(LHSUnknown);
13888           return;
13889         }
13890       }
13891     }
13892 
13893     // Do not apply information for constants or if RHS contains an AddRec.
13894     if (isa<SCEVConstant>(LHS) || containsAddRecurrence(RHS))
13895       return;
13896 
13897     // If RHS is SCEVUnknown, make sure the information is applied to it.
13898     if (!isa<SCEVUnknown>(LHS) && isa<SCEVUnknown>(RHS)) {
13899       std::swap(LHS, RHS);
13900       Predicate = CmpInst::getSwappedPredicate(Predicate);
13901     }
13902 
13903     // Limit to expressions that can be rewritten.
13904     if (!isa<SCEVUnknown>(LHS) && !isa<SCEVZeroExtendExpr>(LHS))
13905       return;
13906 
13907     // Check whether LHS has already been rewritten. In that case we want to
13908     // chain further rewrites onto the already rewritten value.
13909     auto I = RewriteMap.find(LHS);
13910     const SCEV *RewrittenLHS = I != RewriteMap.end() ? I->second : LHS;
13911 
13912     const SCEV *RewrittenRHS = nullptr;
13913     switch (Predicate) {
13914     case CmpInst::ICMP_ULT:
13915       RewrittenRHS =
13916           getUMinExpr(RewrittenLHS, getMinusSCEV(RHS, getOne(RHS->getType())));
13917       break;
13918     case CmpInst::ICMP_SLT:
13919       RewrittenRHS =
13920           getSMinExpr(RewrittenLHS, getMinusSCEV(RHS, getOne(RHS->getType())));
13921       break;
13922     case CmpInst::ICMP_ULE:
13923       RewrittenRHS = getUMinExpr(RewrittenLHS, RHS);
13924       break;
13925     case CmpInst::ICMP_SLE:
13926       RewrittenRHS = getSMinExpr(RewrittenLHS, RHS);
13927       break;
13928     case CmpInst::ICMP_UGT:
13929       RewrittenRHS =
13930           getUMaxExpr(RewrittenLHS, getAddExpr(RHS, getOne(RHS->getType())));
13931       break;
13932     case CmpInst::ICMP_SGT:
13933       RewrittenRHS =
13934           getSMaxExpr(RewrittenLHS, getAddExpr(RHS, getOne(RHS->getType())));
13935       break;
13936     case CmpInst::ICMP_UGE:
13937       RewrittenRHS = getUMaxExpr(RewrittenLHS, RHS);
13938       break;
13939     case CmpInst::ICMP_SGE:
13940       RewrittenRHS = getSMaxExpr(RewrittenLHS, RHS);
13941       break;
13942     case CmpInst::ICMP_EQ:
13943       if (isa<SCEVConstant>(RHS))
13944         RewrittenRHS = RHS;
13945       break;
13946     case CmpInst::ICMP_NE:
13947       if (isa<SCEVConstant>(RHS) &&
13948           cast<SCEVConstant>(RHS)->getValue()->isNullValue())
13949         RewrittenRHS = getUMaxExpr(RewrittenLHS, getOne(RHS->getType()));
13950       break;
13951     default:
13952       break;
13953     }
13954 
13955     if (RewrittenRHS) {
13956       RewriteMap[LHS] = RewrittenRHS;
13957       if (LHS == RewrittenLHS)
13958         ExprsToRewrite.push_back(LHS);
13959     }
13960   };
13961   // Starting at the loop predecessor, climb up the predecessor chain, as long
13962   // as there are predecessors that can be found that have unique successors
13963   // leading to the original header.
13964   // TODO: share this logic with isLoopEntryGuardedByCond.
13965   DenseMap<const SCEV *, const SCEV *> RewriteMap;
13966   for (std::pair<const BasicBlock *, const BasicBlock *> Pair(
13967            L->getLoopPredecessor(), L->getHeader());
13968        Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
13969 
13970     const BranchInst *LoopEntryPredicate =
13971         dyn_cast<BranchInst>(Pair.first->getTerminator());
13972     if (!LoopEntryPredicate || LoopEntryPredicate->isUnconditional())
13973       continue;
13974 
13975     bool EnterIfTrue = LoopEntryPredicate->getSuccessor(0) == Pair.second;
13976     SmallVector<Value *, 8> Worklist;
13977     SmallPtrSet<Value *, 8> Visited;
13978     Worklist.push_back(LoopEntryPredicate->getCondition());
13979     while (!Worklist.empty()) {
13980       Value *Cond = Worklist.pop_back_val();
13981       if (!Visited.insert(Cond).second)
13982         continue;
13983 
13984       if (auto *Cmp = dyn_cast<ICmpInst>(Cond)) {
13985         auto Predicate =
13986             EnterIfTrue ? Cmp->getPredicate() : Cmp->getInversePredicate();
13987         CollectCondition(Predicate, getSCEV(Cmp->getOperand(0)),
13988                          getSCEV(Cmp->getOperand(1)), RewriteMap);
13989         continue;
13990       }
13991 
13992       Value *L, *R;
13993       if (EnterIfTrue ? match(Cond, m_LogicalAnd(m_Value(L), m_Value(R)))
13994                       : match(Cond, m_LogicalOr(m_Value(L), m_Value(R)))) {
13995         Worklist.push_back(L);
13996         Worklist.push_back(R);
13997       }
13998     }
13999   }
14000 
14001   // Also collect information from assumptions dominating the loop.
14002   for (auto &AssumeVH : AC.assumptions()) {
14003     if (!AssumeVH)
14004       continue;
14005     auto *AssumeI = cast<CallInst>(AssumeVH);
14006     auto *Cmp = dyn_cast<ICmpInst>(AssumeI->getOperand(0));
14007     if (!Cmp || !DT.dominates(AssumeI, L->getHeader()))
14008       continue;
14009     CollectCondition(Cmp->getPredicate(), getSCEV(Cmp->getOperand(0)),
14010                      getSCEV(Cmp->getOperand(1)), RewriteMap);
14011   }
14012 
14013   if (RewriteMap.empty())
14014     return Expr;
14015 
14016   // Now that all rewrite information is collect, rewrite the collected
14017   // expressions with the information in the map. This applies information to
14018   // sub-expressions.
14019   if (ExprsToRewrite.size() > 1) {
14020     for (const SCEV *Expr : ExprsToRewrite) {
14021       const SCEV *RewriteTo = RewriteMap[Expr];
14022       RewriteMap.erase(Expr);
14023       SCEVLoopGuardRewriter Rewriter(*this, RewriteMap);
14024       RewriteMap.insert({Expr, Rewriter.visit(RewriteTo)});
14025     }
14026   }
14027 
14028   SCEVLoopGuardRewriter Rewriter(*this, RewriteMap);
14029   return Rewriter.visit(Expr);
14030 }
14031