1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the implementation of the scalar evolution analysis 10 // engine, which is used primarily to analyze expressions involving induction 11 // variables in loops. 12 // 13 // There are several aspects to this library. First is the representation of 14 // scalar expressions, which are represented as subclasses of the SCEV class. 15 // These classes are used to represent certain types of subexpressions that we 16 // can handle. We only create one SCEV of a particular shape, so 17 // pointer-comparisons for equality are legal. 18 // 19 // One important aspect of the SCEV objects is that they are never cyclic, even 20 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 21 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 22 // recurrence) then we represent it directly as a recurrence node, otherwise we 23 // represent it as a SCEVUnknown node. 24 // 25 // In addition to being able to represent expressions of various types, we also 26 // have folders that are used to build the *canonical* representation for a 27 // particular expression. These folders are capable of using a variety of 28 // rewrite rules to simplify the expressions. 29 // 30 // Once the folders are defined, we can implement the more interesting 31 // higher-level code, such as the code that recognizes PHI nodes of various 32 // types, computes the execution count of a loop, etc. 33 // 34 // TODO: We should use these routines and value representations to implement 35 // dependence analysis! 36 // 37 //===----------------------------------------------------------------------===// 38 // 39 // There are several good references for the techniques used in this analysis. 40 // 41 // Chains of recurrences -- a method to expedite the evaluation 42 // of closed-form functions 43 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 44 // 45 // On computational properties of chains of recurrences 46 // Eugene V. Zima 47 // 48 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 49 // Robert A. van Engelen 50 // 51 // Efficient Symbolic Analysis for Optimizing Compilers 52 // Robert A. van Engelen 53 // 54 // Using the chains of recurrences algebra for data dependence testing and 55 // induction variable substitution 56 // MS Thesis, Johnie Birch 57 // 58 //===----------------------------------------------------------------------===// 59 60 #include "llvm/Analysis/ScalarEvolution.h" 61 #include "llvm/ADT/APInt.h" 62 #include "llvm/ADT/ArrayRef.h" 63 #include "llvm/ADT/DenseMap.h" 64 #include "llvm/ADT/DepthFirstIterator.h" 65 #include "llvm/ADT/EquivalenceClasses.h" 66 #include "llvm/ADT/FoldingSet.h" 67 #include "llvm/ADT/None.h" 68 #include "llvm/ADT/Optional.h" 69 #include "llvm/ADT/STLExtras.h" 70 #include "llvm/ADT/ScopeExit.h" 71 #include "llvm/ADT/Sequence.h" 72 #include "llvm/ADT/SetVector.h" 73 #include "llvm/ADT/SmallPtrSet.h" 74 #include "llvm/ADT/SmallSet.h" 75 #include "llvm/ADT/SmallVector.h" 76 #include "llvm/ADT/Statistic.h" 77 #include "llvm/ADT/StringRef.h" 78 #include "llvm/Analysis/AssumptionCache.h" 79 #include "llvm/Analysis/ConstantFolding.h" 80 #include "llvm/Analysis/InstructionSimplify.h" 81 #include "llvm/Analysis/LoopInfo.h" 82 #include "llvm/Analysis/ScalarEvolutionDivision.h" 83 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 84 #include "llvm/Analysis/TargetLibraryInfo.h" 85 #include "llvm/Analysis/ValueTracking.h" 86 #include "llvm/Config/llvm-config.h" 87 #include "llvm/IR/Argument.h" 88 #include "llvm/IR/BasicBlock.h" 89 #include "llvm/IR/CFG.h" 90 #include "llvm/IR/Constant.h" 91 #include "llvm/IR/ConstantRange.h" 92 #include "llvm/IR/Constants.h" 93 #include "llvm/IR/DataLayout.h" 94 #include "llvm/IR/DerivedTypes.h" 95 #include "llvm/IR/Dominators.h" 96 #include "llvm/IR/Function.h" 97 #include "llvm/IR/GlobalAlias.h" 98 #include "llvm/IR/GlobalValue.h" 99 #include "llvm/IR/GlobalVariable.h" 100 #include "llvm/IR/InstIterator.h" 101 #include "llvm/IR/InstrTypes.h" 102 #include "llvm/IR/Instruction.h" 103 #include "llvm/IR/Instructions.h" 104 #include "llvm/IR/IntrinsicInst.h" 105 #include "llvm/IR/Intrinsics.h" 106 #include "llvm/IR/LLVMContext.h" 107 #include "llvm/IR/Metadata.h" 108 #include "llvm/IR/Operator.h" 109 #include "llvm/IR/PatternMatch.h" 110 #include "llvm/IR/Type.h" 111 #include "llvm/IR/Use.h" 112 #include "llvm/IR/User.h" 113 #include "llvm/IR/Value.h" 114 #include "llvm/IR/Verifier.h" 115 #include "llvm/InitializePasses.h" 116 #include "llvm/Pass.h" 117 #include "llvm/Support/Casting.h" 118 #include "llvm/Support/CommandLine.h" 119 #include "llvm/Support/Compiler.h" 120 #include "llvm/Support/Debug.h" 121 #include "llvm/Support/ErrorHandling.h" 122 #include "llvm/Support/KnownBits.h" 123 #include "llvm/Support/SaveAndRestore.h" 124 #include "llvm/Support/raw_ostream.h" 125 #include <algorithm> 126 #include <cassert> 127 #include <climits> 128 #include <cstddef> 129 #include <cstdint> 130 #include <cstdlib> 131 #include <map> 132 #include <memory> 133 #include <tuple> 134 #include <utility> 135 #include <vector> 136 137 using namespace llvm; 138 using namespace PatternMatch; 139 140 #define DEBUG_TYPE "scalar-evolution" 141 142 STATISTIC(NumTripCountsComputed, 143 "Number of loops with predictable loop counts"); 144 STATISTIC(NumTripCountsNotComputed, 145 "Number of loops without predictable loop counts"); 146 STATISTIC(NumBruteForceTripCountsComputed, 147 "Number of loops with trip counts computed by force"); 148 149 static cl::opt<unsigned> 150 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 151 cl::ZeroOrMore, 152 cl::desc("Maximum number of iterations SCEV will " 153 "symbolically execute a constant " 154 "derived loop"), 155 cl::init(100)); 156 157 // FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean. 158 static cl::opt<bool> VerifySCEV( 159 "verify-scev", cl::Hidden, 160 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)")); 161 static cl::opt<bool> VerifySCEVStrict( 162 "verify-scev-strict", cl::Hidden, 163 cl::desc("Enable stricter verification with -verify-scev is passed")); 164 static cl::opt<bool> 165 VerifySCEVMap("verify-scev-maps", cl::Hidden, 166 cl::desc("Verify no dangling value in ScalarEvolution's " 167 "ExprValueMap (slow)")); 168 169 static cl::opt<bool> VerifyIR( 170 "scev-verify-ir", cl::Hidden, 171 cl::desc("Verify IR correctness when making sensitive SCEV queries (slow)"), 172 cl::init(false)); 173 174 static cl::opt<unsigned> MulOpsInlineThreshold( 175 "scev-mulops-inline-threshold", cl::Hidden, 176 cl::desc("Threshold for inlining multiplication operands into a SCEV"), 177 cl::init(32)); 178 179 static cl::opt<unsigned> AddOpsInlineThreshold( 180 "scev-addops-inline-threshold", cl::Hidden, 181 cl::desc("Threshold for inlining addition operands into a SCEV"), 182 cl::init(500)); 183 184 static cl::opt<unsigned> MaxSCEVCompareDepth( 185 "scalar-evolution-max-scev-compare-depth", cl::Hidden, 186 cl::desc("Maximum depth of recursive SCEV complexity comparisons"), 187 cl::init(32)); 188 189 static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth( 190 "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden, 191 cl::desc("Maximum depth of recursive SCEV operations implication analysis"), 192 cl::init(2)); 193 194 static cl::opt<unsigned> MaxValueCompareDepth( 195 "scalar-evolution-max-value-compare-depth", cl::Hidden, 196 cl::desc("Maximum depth of recursive value complexity comparisons"), 197 cl::init(2)); 198 199 static cl::opt<unsigned> 200 MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden, 201 cl::desc("Maximum depth of recursive arithmetics"), 202 cl::init(32)); 203 204 static cl::opt<unsigned> MaxConstantEvolvingDepth( 205 "scalar-evolution-max-constant-evolving-depth", cl::Hidden, 206 cl::desc("Maximum depth of recursive constant evolving"), cl::init(32)); 207 208 static cl::opt<unsigned> 209 MaxCastDepth("scalar-evolution-max-cast-depth", cl::Hidden, 210 cl::desc("Maximum depth of recursive SExt/ZExt/Trunc"), 211 cl::init(8)); 212 213 static cl::opt<unsigned> 214 MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden, 215 cl::desc("Max coefficients in AddRec during evolving"), 216 cl::init(8)); 217 218 static cl::opt<unsigned> 219 HugeExprThreshold("scalar-evolution-huge-expr-threshold", cl::Hidden, 220 cl::desc("Size of the expression which is considered huge"), 221 cl::init(4096)); 222 223 static cl::opt<bool> 224 ClassifyExpressions("scalar-evolution-classify-expressions", 225 cl::Hidden, cl::init(true), 226 cl::desc("When printing analysis, include information on every instruction")); 227 228 static cl::opt<bool> UseExpensiveRangeSharpening( 229 "scalar-evolution-use-expensive-range-sharpening", cl::Hidden, 230 cl::init(false), 231 cl::desc("Use more powerful methods of sharpening expression ranges. May " 232 "be costly in terms of compile time")); 233 234 //===----------------------------------------------------------------------===// 235 // SCEV class definitions 236 //===----------------------------------------------------------------------===// 237 238 //===----------------------------------------------------------------------===// 239 // Implementation of the SCEV class. 240 // 241 242 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 243 LLVM_DUMP_METHOD void SCEV::dump() const { 244 print(dbgs()); 245 dbgs() << '\n'; 246 } 247 #endif 248 249 void SCEV::print(raw_ostream &OS) const { 250 switch (getSCEVType()) { 251 case scConstant: 252 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false); 253 return; 254 case scPtrToInt: { 255 const SCEVPtrToIntExpr *PtrToInt = cast<SCEVPtrToIntExpr>(this); 256 const SCEV *Op = PtrToInt->getOperand(); 257 OS << "(ptrtoint " << *Op->getType() << " " << *Op << " to " 258 << *PtrToInt->getType() << ")"; 259 return; 260 } 261 case scTruncate: { 262 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this); 263 const SCEV *Op = Trunc->getOperand(); 264 OS << "(trunc " << *Op->getType() << " " << *Op << " to " 265 << *Trunc->getType() << ")"; 266 return; 267 } 268 case scZeroExtend: { 269 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this); 270 const SCEV *Op = ZExt->getOperand(); 271 OS << "(zext " << *Op->getType() << " " << *Op << " to " 272 << *ZExt->getType() << ")"; 273 return; 274 } 275 case scSignExtend: { 276 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this); 277 const SCEV *Op = SExt->getOperand(); 278 OS << "(sext " << *Op->getType() << " " << *Op << " to " 279 << *SExt->getType() << ")"; 280 return; 281 } 282 case scAddRecExpr: { 283 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this); 284 OS << "{" << *AR->getOperand(0); 285 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i) 286 OS << ",+," << *AR->getOperand(i); 287 OS << "}<"; 288 if (AR->hasNoUnsignedWrap()) 289 OS << "nuw><"; 290 if (AR->hasNoSignedWrap()) 291 OS << "nsw><"; 292 if (AR->hasNoSelfWrap() && 293 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW))) 294 OS << "nw><"; 295 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false); 296 OS << ">"; 297 return; 298 } 299 case scAddExpr: 300 case scMulExpr: 301 case scUMaxExpr: 302 case scSMaxExpr: 303 case scUMinExpr: 304 case scSMinExpr: { 305 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this); 306 const char *OpStr = nullptr; 307 switch (NAry->getSCEVType()) { 308 case scAddExpr: OpStr = " + "; break; 309 case scMulExpr: OpStr = " * "; break; 310 case scUMaxExpr: OpStr = " umax "; break; 311 case scSMaxExpr: OpStr = " smax "; break; 312 case scUMinExpr: 313 OpStr = " umin "; 314 break; 315 case scSMinExpr: 316 OpStr = " smin "; 317 break; 318 default: 319 llvm_unreachable("There are no other nary expression types."); 320 } 321 OS << "("; 322 ListSeparator LS(OpStr); 323 for (const SCEV *Op : NAry->operands()) 324 OS << LS << *Op; 325 OS << ")"; 326 switch (NAry->getSCEVType()) { 327 case scAddExpr: 328 case scMulExpr: 329 if (NAry->hasNoUnsignedWrap()) 330 OS << "<nuw>"; 331 if (NAry->hasNoSignedWrap()) 332 OS << "<nsw>"; 333 break; 334 default: 335 // Nothing to print for other nary expressions. 336 break; 337 } 338 return; 339 } 340 case scUDivExpr: { 341 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this); 342 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")"; 343 return; 344 } 345 case scUnknown: { 346 const SCEVUnknown *U = cast<SCEVUnknown>(this); 347 Type *AllocTy; 348 if (U->isSizeOf(AllocTy)) { 349 OS << "sizeof(" << *AllocTy << ")"; 350 return; 351 } 352 if (U->isAlignOf(AllocTy)) { 353 OS << "alignof(" << *AllocTy << ")"; 354 return; 355 } 356 357 Type *CTy; 358 Constant *FieldNo; 359 if (U->isOffsetOf(CTy, FieldNo)) { 360 OS << "offsetof(" << *CTy << ", "; 361 FieldNo->printAsOperand(OS, false); 362 OS << ")"; 363 return; 364 } 365 366 // Otherwise just print it normally. 367 U->getValue()->printAsOperand(OS, false); 368 return; 369 } 370 case scCouldNotCompute: 371 OS << "***COULDNOTCOMPUTE***"; 372 return; 373 } 374 llvm_unreachable("Unknown SCEV kind!"); 375 } 376 377 Type *SCEV::getType() const { 378 switch (getSCEVType()) { 379 case scConstant: 380 return cast<SCEVConstant>(this)->getType(); 381 case scPtrToInt: 382 case scTruncate: 383 case scZeroExtend: 384 case scSignExtend: 385 return cast<SCEVCastExpr>(this)->getType(); 386 case scAddRecExpr: 387 return cast<SCEVAddRecExpr>(this)->getType(); 388 case scMulExpr: 389 return cast<SCEVMulExpr>(this)->getType(); 390 case scUMaxExpr: 391 case scSMaxExpr: 392 case scUMinExpr: 393 case scSMinExpr: 394 return cast<SCEVMinMaxExpr>(this)->getType(); 395 case scAddExpr: 396 return cast<SCEVAddExpr>(this)->getType(); 397 case scUDivExpr: 398 return cast<SCEVUDivExpr>(this)->getType(); 399 case scUnknown: 400 return cast<SCEVUnknown>(this)->getType(); 401 case scCouldNotCompute: 402 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 403 } 404 llvm_unreachable("Unknown SCEV kind!"); 405 } 406 407 bool SCEV::isZero() const { 408 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 409 return SC->getValue()->isZero(); 410 return false; 411 } 412 413 bool SCEV::isOne() const { 414 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 415 return SC->getValue()->isOne(); 416 return false; 417 } 418 419 bool SCEV::isAllOnesValue() const { 420 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 421 return SC->getValue()->isMinusOne(); 422 return false; 423 } 424 425 bool SCEV::isNonConstantNegative() const { 426 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this); 427 if (!Mul) return false; 428 429 // If there is a constant factor, it will be first. 430 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 431 if (!SC) return false; 432 433 // Return true if the value is negative, this matches things like (-42 * V). 434 return SC->getAPInt().isNegative(); 435 } 436 437 SCEVCouldNotCompute::SCEVCouldNotCompute() : 438 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute, 0) {} 439 440 bool SCEVCouldNotCompute::classof(const SCEV *S) { 441 return S->getSCEVType() == scCouldNotCompute; 442 } 443 444 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 445 FoldingSetNodeID ID; 446 ID.AddInteger(scConstant); 447 ID.AddPointer(V); 448 void *IP = nullptr; 449 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 450 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); 451 UniqueSCEVs.InsertNode(S, IP); 452 return S; 453 } 454 455 const SCEV *ScalarEvolution::getConstant(const APInt &Val) { 456 return getConstant(ConstantInt::get(getContext(), Val)); 457 } 458 459 const SCEV * 460 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) { 461 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 462 return getConstant(ConstantInt::get(ITy, V, isSigned)); 463 } 464 465 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, SCEVTypes SCEVTy, 466 const SCEV *op, Type *ty) 467 : SCEV(ID, SCEVTy, computeExpressionSize(op)), Ty(ty) { 468 Operands[0] = op; 469 } 470 471 SCEVPtrToIntExpr::SCEVPtrToIntExpr(const FoldingSetNodeIDRef ID, const SCEV *Op, 472 Type *ITy) 473 : SCEVCastExpr(ID, scPtrToInt, Op, ITy) { 474 assert(getOperand()->getType()->isPointerTy() && Ty->isIntegerTy() && 475 "Must be a non-bit-width-changing pointer-to-integer cast!"); 476 } 477 478 SCEVIntegralCastExpr::SCEVIntegralCastExpr(const FoldingSetNodeIDRef ID, 479 SCEVTypes SCEVTy, const SCEV *op, 480 Type *ty) 481 : SCEVCastExpr(ID, SCEVTy, op, ty) {} 482 483 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, const SCEV *op, 484 Type *ty) 485 : SCEVIntegralCastExpr(ID, scTruncate, op, ty) { 486 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 487 "Cannot truncate non-integer value!"); 488 } 489 490 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 491 const SCEV *op, Type *ty) 492 : SCEVIntegralCastExpr(ID, scZeroExtend, op, ty) { 493 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 494 "Cannot zero extend non-integer value!"); 495 } 496 497 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 498 const SCEV *op, Type *ty) 499 : SCEVIntegralCastExpr(ID, scSignExtend, op, ty) { 500 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 501 "Cannot sign extend non-integer value!"); 502 } 503 504 void SCEVUnknown::deleted() { 505 // Clear this SCEVUnknown from various maps. 506 SE->forgetMemoizedResults(this); 507 508 // Remove this SCEVUnknown from the uniquing map. 509 SE->UniqueSCEVs.RemoveNode(this); 510 511 // Release the value. 512 setValPtr(nullptr); 513 } 514 515 void SCEVUnknown::allUsesReplacedWith(Value *New) { 516 // Remove this SCEVUnknown from the uniquing map. 517 SE->UniqueSCEVs.RemoveNode(this); 518 519 // Update this SCEVUnknown to point to the new value. This is needed 520 // because there may still be outstanding SCEVs which still point to 521 // this SCEVUnknown. 522 setValPtr(New); 523 } 524 525 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const { 526 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 527 if (VCE->getOpcode() == Instruction::PtrToInt) 528 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 529 if (CE->getOpcode() == Instruction::GetElementPtr && 530 CE->getOperand(0)->isNullValue() && 531 CE->getNumOperands() == 2) 532 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) 533 if (CI->isOne()) { 534 AllocTy = cast<GEPOperator>(CE)->getSourceElementType(); 535 return true; 536 } 537 538 return false; 539 } 540 541 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const { 542 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 543 if (VCE->getOpcode() == Instruction::PtrToInt) 544 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 545 if (CE->getOpcode() == Instruction::GetElementPtr && 546 CE->getOperand(0)->isNullValue()) { 547 Type *Ty = cast<GEPOperator>(CE)->getSourceElementType(); 548 if (StructType *STy = dyn_cast<StructType>(Ty)) 549 if (!STy->isPacked() && 550 CE->getNumOperands() == 3 && 551 CE->getOperand(1)->isNullValue()) { 552 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) 553 if (CI->isOne() && 554 STy->getNumElements() == 2 && 555 STy->getElementType(0)->isIntegerTy(1)) { 556 AllocTy = STy->getElementType(1); 557 return true; 558 } 559 } 560 } 561 562 return false; 563 } 564 565 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const { 566 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 567 if (VCE->getOpcode() == Instruction::PtrToInt) 568 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 569 if (CE->getOpcode() == Instruction::GetElementPtr && 570 CE->getNumOperands() == 3 && 571 CE->getOperand(0)->isNullValue() && 572 CE->getOperand(1)->isNullValue()) { 573 Type *Ty = cast<GEPOperator>(CE)->getSourceElementType(); 574 // Ignore vector types here so that ScalarEvolutionExpander doesn't 575 // emit getelementptrs that index into vectors. 576 if (Ty->isStructTy() || Ty->isArrayTy()) { 577 CTy = Ty; 578 FieldNo = CE->getOperand(2); 579 return true; 580 } 581 } 582 583 return false; 584 } 585 586 //===----------------------------------------------------------------------===// 587 // SCEV Utilities 588 //===----------------------------------------------------------------------===// 589 590 /// Compare the two values \p LV and \p RV in terms of their "complexity" where 591 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order 592 /// operands in SCEV expressions. \p EqCache is a set of pairs of values that 593 /// have been previously deemed to be "equally complex" by this routine. It is 594 /// intended to avoid exponential time complexity in cases like: 595 /// 596 /// %a = f(%x, %y) 597 /// %b = f(%a, %a) 598 /// %c = f(%b, %b) 599 /// 600 /// %d = f(%x, %y) 601 /// %e = f(%d, %d) 602 /// %f = f(%e, %e) 603 /// 604 /// CompareValueComplexity(%f, %c) 605 /// 606 /// Since we do not continue running this routine on expression trees once we 607 /// have seen unequal values, there is no need to track them in the cache. 608 static int 609 CompareValueComplexity(EquivalenceClasses<const Value *> &EqCacheValue, 610 const LoopInfo *const LI, Value *LV, Value *RV, 611 unsigned Depth) { 612 if (Depth > MaxValueCompareDepth || EqCacheValue.isEquivalent(LV, RV)) 613 return 0; 614 615 // Order pointer values after integer values. This helps SCEVExpander form 616 // GEPs. 617 bool LIsPointer = LV->getType()->isPointerTy(), 618 RIsPointer = RV->getType()->isPointerTy(); 619 if (LIsPointer != RIsPointer) 620 return (int)LIsPointer - (int)RIsPointer; 621 622 // Compare getValueID values. 623 unsigned LID = LV->getValueID(), RID = RV->getValueID(); 624 if (LID != RID) 625 return (int)LID - (int)RID; 626 627 // Sort arguments by their position. 628 if (const auto *LA = dyn_cast<Argument>(LV)) { 629 const auto *RA = cast<Argument>(RV); 630 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo(); 631 return (int)LArgNo - (int)RArgNo; 632 } 633 634 if (const auto *LGV = dyn_cast<GlobalValue>(LV)) { 635 const auto *RGV = cast<GlobalValue>(RV); 636 637 const auto IsGVNameSemantic = [&](const GlobalValue *GV) { 638 auto LT = GV->getLinkage(); 639 return !(GlobalValue::isPrivateLinkage(LT) || 640 GlobalValue::isInternalLinkage(LT)); 641 }; 642 643 // Use the names to distinguish the two values, but only if the 644 // names are semantically important. 645 if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV)) 646 return LGV->getName().compare(RGV->getName()); 647 } 648 649 // For instructions, compare their loop depth, and their operand count. This 650 // is pretty loose. 651 if (const auto *LInst = dyn_cast<Instruction>(LV)) { 652 const auto *RInst = cast<Instruction>(RV); 653 654 // Compare loop depths. 655 const BasicBlock *LParent = LInst->getParent(), 656 *RParent = RInst->getParent(); 657 if (LParent != RParent) { 658 unsigned LDepth = LI->getLoopDepth(LParent), 659 RDepth = LI->getLoopDepth(RParent); 660 if (LDepth != RDepth) 661 return (int)LDepth - (int)RDepth; 662 } 663 664 // Compare the number of operands. 665 unsigned LNumOps = LInst->getNumOperands(), 666 RNumOps = RInst->getNumOperands(); 667 if (LNumOps != RNumOps) 668 return (int)LNumOps - (int)RNumOps; 669 670 for (unsigned Idx : seq(0u, LNumOps)) { 671 int Result = 672 CompareValueComplexity(EqCacheValue, LI, LInst->getOperand(Idx), 673 RInst->getOperand(Idx), Depth + 1); 674 if (Result != 0) 675 return Result; 676 } 677 } 678 679 EqCacheValue.unionSets(LV, RV); 680 return 0; 681 } 682 683 // Return negative, zero, or positive, if LHS is less than, equal to, or greater 684 // than RHS, respectively. A three-way result allows recursive comparisons to be 685 // more efficient. 686 // If the max analysis depth was reached, return None, assuming we do not know 687 // if they are equivalent for sure. 688 static Optional<int> 689 CompareSCEVComplexity(EquivalenceClasses<const SCEV *> &EqCacheSCEV, 690 EquivalenceClasses<const Value *> &EqCacheValue, 691 const LoopInfo *const LI, const SCEV *LHS, 692 const SCEV *RHS, DominatorTree &DT, unsigned Depth = 0) { 693 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 694 if (LHS == RHS) 695 return 0; 696 697 // Primarily, sort the SCEVs by their getSCEVType(). 698 SCEVTypes LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); 699 if (LType != RType) 700 return (int)LType - (int)RType; 701 702 if (EqCacheSCEV.isEquivalent(LHS, RHS)) 703 return 0; 704 705 if (Depth > MaxSCEVCompareDepth) 706 return None; 707 708 // Aside from the getSCEVType() ordering, the particular ordering 709 // isn't very important except that it's beneficial to be consistent, 710 // so that (a + b) and (b + a) don't end up as different expressions. 711 switch (LType) { 712 case scUnknown: { 713 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS); 714 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 715 716 int X = CompareValueComplexity(EqCacheValue, LI, LU->getValue(), 717 RU->getValue(), Depth + 1); 718 if (X == 0) 719 EqCacheSCEV.unionSets(LHS, RHS); 720 return X; 721 } 722 723 case scConstant: { 724 const SCEVConstant *LC = cast<SCEVConstant>(LHS); 725 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 726 727 // Compare constant values. 728 const APInt &LA = LC->getAPInt(); 729 const APInt &RA = RC->getAPInt(); 730 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth(); 731 if (LBitWidth != RBitWidth) 732 return (int)LBitWidth - (int)RBitWidth; 733 return LA.ult(RA) ? -1 : 1; 734 } 735 736 case scAddRecExpr: { 737 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS); 738 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 739 740 // There is always a dominance between two recs that are used by one SCEV, 741 // so we can safely sort recs by loop header dominance. We require such 742 // order in getAddExpr. 743 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); 744 if (LLoop != RLoop) { 745 const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader(); 746 assert(LHead != RHead && "Two loops share the same header?"); 747 if (DT.dominates(LHead, RHead)) 748 return 1; 749 else 750 assert(DT.dominates(RHead, LHead) && 751 "No dominance between recurrences used by one SCEV?"); 752 return -1; 753 } 754 755 // Addrec complexity grows with operand count. 756 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands(); 757 if (LNumOps != RNumOps) 758 return (int)LNumOps - (int)RNumOps; 759 760 // Lexicographically compare. 761 for (unsigned i = 0; i != LNumOps; ++i) { 762 auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, 763 LA->getOperand(i), RA->getOperand(i), DT, 764 Depth + 1); 765 if (X != 0) 766 return X; 767 } 768 EqCacheSCEV.unionSets(LHS, RHS); 769 return 0; 770 } 771 772 case scAddExpr: 773 case scMulExpr: 774 case scSMaxExpr: 775 case scUMaxExpr: 776 case scSMinExpr: 777 case scUMinExpr: { 778 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS); 779 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 780 781 // Lexicographically compare n-ary expressions. 782 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands(); 783 if (LNumOps != RNumOps) 784 return (int)LNumOps - (int)RNumOps; 785 786 for (unsigned i = 0; i != LNumOps; ++i) { 787 auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, 788 LC->getOperand(i), RC->getOperand(i), DT, 789 Depth + 1); 790 if (X != 0) 791 return X; 792 } 793 EqCacheSCEV.unionSets(LHS, RHS); 794 return 0; 795 } 796 797 case scUDivExpr: { 798 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS); 799 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 800 801 // Lexicographically compare udiv expressions. 802 auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getLHS(), 803 RC->getLHS(), DT, Depth + 1); 804 if (X != 0) 805 return X; 806 X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getRHS(), 807 RC->getRHS(), DT, Depth + 1); 808 if (X == 0) 809 EqCacheSCEV.unionSets(LHS, RHS); 810 return X; 811 } 812 813 case scPtrToInt: 814 case scTruncate: 815 case scZeroExtend: 816 case scSignExtend: { 817 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS); 818 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 819 820 // Compare cast expressions by operand. 821 auto X = 822 CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getOperand(), 823 RC->getOperand(), DT, Depth + 1); 824 if (X == 0) 825 EqCacheSCEV.unionSets(LHS, RHS); 826 return X; 827 } 828 829 case scCouldNotCompute: 830 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 831 } 832 llvm_unreachable("Unknown SCEV kind!"); 833 } 834 835 /// Given a list of SCEV objects, order them by their complexity, and group 836 /// objects of the same complexity together by value. When this routine is 837 /// finished, we know that any duplicates in the vector are consecutive and that 838 /// complexity is monotonically increasing. 839 /// 840 /// Note that we go take special precautions to ensure that we get deterministic 841 /// results from this routine. In other words, we don't want the results of 842 /// this to depend on where the addresses of various SCEV objects happened to 843 /// land in memory. 844 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 845 LoopInfo *LI, DominatorTree &DT) { 846 if (Ops.size() < 2) return; // Noop 847 848 EquivalenceClasses<const SCEV *> EqCacheSCEV; 849 EquivalenceClasses<const Value *> EqCacheValue; 850 851 // Whether LHS has provably less complexity than RHS. 852 auto IsLessComplex = [&](const SCEV *LHS, const SCEV *RHS) { 853 auto Complexity = 854 CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LHS, RHS, DT); 855 return Complexity && *Complexity < 0; 856 }; 857 if (Ops.size() == 2) { 858 // This is the common case, which also happens to be trivially simple. 859 // Special case it. 860 const SCEV *&LHS = Ops[0], *&RHS = Ops[1]; 861 if (IsLessComplex(RHS, LHS)) 862 std::swap(LHS, RHS); 863 return; 864 } 865 866 // Do the rough sort by complexity. 867 llvm::stable_sort(Ops, [&](const SCEV *LHS, const SCEV *RHS) { 868 return IsLessComplex(LHS, RHS); 869 }); 870 871 // Now that we are sorted by complexity, group elements of the same 872 // complexity. Note that this is, at worst, N^2, but the vector is likely to 873 // be extremely short in practice. Note that we take this approach because we 874 // do not want to depend on the addresses of the objects we are grouping. 875 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 876 const SCEV *S = Ops[i]; 877 unsigned Complexity = S->getSCEVType(); 878 879 // If there are any objects of the same complexity and same value as this 880 // one, group them. 881 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 882 if (Ops[j] == S) { // Found a duplicate. 883 // Move it to immediately after i'th element. 884 std::swap(Ops[i+1], Ops[j]); 885 ++i; // no need to rescan it. 886 if (i == e-2) return; // Done! 887 } 888 } 889 } 890 } 891 892 /// Returns true if \p Ops contains a huge SCEV (the subtree of S contains at 893 /// least HugeExprThreshold nodes). 894 static bool hasHugeExpression(ArrayRef<const SCEV *> Ops) { 895 return any_of(Ops, [](const SCEV *S) { 896 return S->getExpressionSize() >= HugeExprThreshold; 897 }); 898 } 899 900 //===----------------------------------------------------------------------===// 901 // Simple SCEV method implementations 902 //===----------------------------------------------------------------------===// 903 904 /// Compute BC(It, K). The result has width W. Assume, K > 0. 905 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 906 ScalarEvolution &SE, 907 Type *ResultTy) { 908 // Handle the simplest case efficiently. 909 if (K == 1) 910 return SE.getTruncateOrZeroExtend(It, ResultTy); 911 912 // We are using the following formula for BC(It, K): 913 // 914 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 915 // 916 // Suppose, W is the bitwidth of the return value. We must be prepared for 917 // overflow. Hence, we must assure that the result of our computation is 918 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 919 // safe in modular arithmetic. 920 // 921 // However, this code doesn't use exactly that formula; the formula it uses 922 // is something like the following, where T is the number of factors of 2 in 923 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 924 // exponentiation: 925 // 926 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 927 // 928 // This formula is trivially equivalent to the previous formula. However, 929 // this formula can be implemented much more efficiently. The trick is that 930 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 931 // arithmetic. To do exact division in modular arithmetic, all we have 932 // to do is multiply by the inverse. Therefore, this step can be done at 933 // width W. 934 // 935 // The next issue is how to safely do the division by 2^T. The way this 936 // is done is by doing the multiplication step at a width of at least W + T 937 // bits. This way, the bottom W+T bits of the product are accurate. Then, 938 // when we perform the division by 2^T (which is equivalent to a right shift 939 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 940 // truncated out after the division by 2^T. 941 // 942 // In comparison to just directly using the first formula, this technique 943 // is much more efficient; using the first formula requires W * K bits, 944 // but this formula less than W + K bits. Also, the first formula requires 945 // a division step, whereas this formula only requires multiplies and shifts. 946 // 947 // It doesn't matter whether the subtraction step is done in the calculation 948 // width or the input iteration count's width; if the subtraction overflows, 949 // the result must be zero anyway. We prefer here to do it in the width of 950 // the induction variable because it helps a lot for certain cases; CodeGen 951 // isn't smart enough to ignore the overflow, which leads to much less 952 // efficient code if the width of the subtraction is wider than the native 953 // register width. 954 // 955 // (It's possible to not widen at all by pulling out factors of 2 before 956 // the multiplication; for example, K=2 can be calculated as 957 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 958 // extra arithmetic, so it's not an obvious win, and it gets 959 // much more complicated for K > 3.) 960 961 // Protection from insane SCEVs; this bound is conservative, 962 // but it probably doesn't matter. 963 if (K > 1000) 964 return SE.getCouldNotCompute(); 965 966 unsigned W = SE.getTypeSizeInBits(ResultTy); 967 968 // Calculate K! / 2^T and T; we divide out the factors of two before 969 // multiplying for calculating K! / 2^T to avoid overflow. 970 // Other overflow doesn't matter because we only care about the bottom 971 // W bits of the result. 972 APInt OddFactorial(W, 1); 973 unsigned T = 1; 974 for (unsigned i = 3; i <= K; ++i) { 975 APInt Mult(W, i); 976 unsigned TwoFactors = Mult.countTrailingZeros(); 977 T += TwoFactors; 978 Mult.lshrInPlace(TwoFactors); 979 OddFactorial *= Mult; 980 } 981 982 // We need at least W + T bits for the multiplication step 983 unsigned CalculationBits = W + T; 984 985 // Calculate 2^T, at width T+W. 986 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T); 987 988 // Calculate the multiplicative inverse of K! / 2^T; 989 // this multiplication factor will perform the exact division by 990 // K! / 2^T. 991 APInt Mod = APInt::getSignedMinValue(W+1); 992 APInt MultiplyFactor = OddFactorial.zext(W+1); 993 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 994 MultiplyFactor = MultiplyFactor.trunc(W); 995 996 // Calculate the product, at width T+W 997 IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 998 CalculationBits); 999 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 1000 for (unsigned i = 1; i != K; ++i) { 1001 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); 1002 Dividend = SE.getMulExpr(Dividend, 1003 SE.getTruncateOrZeroExtend(S, CalculationTy)); 1004 } 1005 1006 // Divide by 2^T 1007 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 1008 1009 // Truncate the result, and divide by K! / 2^T. 1010 1011 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 1012 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 1013 } 1014 1015 /// Return the value of this chain of recurrences at the specified iteration 1016 /// number. We can evaluate this recurrence by multiplying each element in the 1017 /// chain by the binomial coefficient corresponding to it. In other words, we 1018 /// can evaluate {A,+,B,+,C,+,D} as: 1019 /// 1020 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 1021 /// 1022 /// where BC(It, k) stands for binomial coefficient. 1023 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 1024 ScalarEvolution &SE) const { 1025 return evaluateAtIteration(makeArrayRef(op_begin(), op_end()), It, SE); 1026 } 1027 1028 const SCEV * 1029 SCEVAddRecExpr::evaluateAtIteration(ArrayRef<const SCEV *> Operands, 1030 const SCEV *It, ScalarEvolution &SE) { 1031 assert(Operands.size() > 0); 1032 const SCEV *Result = Operands[0]; 1033 for (unsigned i = 1, e = Operands.size(); i != e; ++i) { 1034 // The computation is correct in the face of overflow provided that the 1035 // multiplication is performed _after_ the evaluation of the binomial 1036 // coefficient. 1037 const SCEV *Coeff = BinomialCoefficient(It, i, SE, Result->getType()); 1038 if (isa<SCEVCouldNotCompute>(Coeff)) 1039 return Coeff; 1040 1041 Result = SE.getAddExpr(Result, SE.getMulExpr(Operands[i], Coeff)); 1042 } 1043 return Result; 1044 } 1045 1046 //===----------------------------------------------------------------------===// 1047 // SCEV Expression folder implementations 1048 //===----------------------------------------------------------------------===// 1049 1050 const SCEV *ScalarEvolution::getLosslessPtrToIntExpr(const SCEV *Op, 1051 unsigned Depth) { 1052 assert(Depth <= 1 && 1053 "getLosslessPtrToIntExpr() should self-recurse at most once."); 1054 1055 // We could be called with an integer-typed operands during SCEV rewrites. 1056 // Since the operand is an integer already, just perform zext/trunc/self cast. 1057 if (!Op->getType()->isPointerTy()) 1058 return Op; 1059 1060 // What would be an ID for such a SCEV cast expression? 1061 FoldingSetNodeID ID; 1062 ID.AddInteger(scPtrToInt); 1063 ID.AddPointer(Op); 1064 1065 void *IP = nullptr; 1066 1067 // Is there already an expression for such a cast? 1068 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 1069 return S; 1070 1071 // It isn't legal for optimizations to construct new ptrtoint expressions 1072 // for non-integral pointers. 1073 if (getDataLayout().isNonIntegralPointerType(Op->getType())) 1074 return getCouldNotCompute(); 1075 1076 Type *IntPtrTy = getDataLayout().getIntPtrType(Op->getType()); 1077 1078 // We can only trivially model ptrtoint if SCEV's effective (integer) type 1079 // is sufficiently wide to represent all possible pointer values. 1080 // We could theoretically teach SCEV to truncate wider pointers, but 1081 // that isn't implemented for now. 1082 if (getDataLayout().getTypeSizeInBits(getEffectiveSCEVType(Op->getType())) != 1083 getDataLayout().getTypeSizeInBits(IntPtrTy)) 1084 return getCouldNotCompute(); 1085 1086 // If not, is this expression something we can't reduce any further? 1087 if (auto *U = dyn_cast<SCEVUnknown>(Op)) { 1088 // Perform some basic constant folding. If the operand of the ptr2int cast 1089 // is a null pointer, don't create a ptr2int SCEV expression (that will be 1090 // left as-is), but produce a zero constant. 1091 // NOTE: We could handle a more general case, but lack motivational cases. 1092 if (isa<ConstantPointerNull>(U->getValue())) 1093 return getZero(IntPtrTy); 1094 1095 // Create an explicit cast node. 1096 // We can reuse the existing insert position since if we get here, 1097 // we won't have made any changes which would invalidate it. 1098 SCEV *S = new (SCEVAllocator) 1099 SCEVPtrToIntExpr(ID.Intern(SCEVAllocator), Op, IntPtrTy); 1100 UniqueSCEVs.InsertNode(S, IP); 1101 registerUser(S, Op); 1102 return S; 1103 } 1104 1105 assert(Depth == 0 && "getLosslessPtrToIntExpr() should not self-recurse for " 1106 "non-SCEVUnknown's."); 1107 1108 // Otherwise, we've got some expression that is more complex than just a 1109 // single SCEVUnknown. But we don't want to have a SCEVPtrToIntExpr of an 1110 // arbitrary expression, we want to have SCEVPtrToIntExpr of an SCEVUnknown 1111 // only, and the expressions must otherwise be integer-typed. 1112 // So sink the cast down to the SCEVUnknown's. 1113 1114 /// The SCEVPtrToIntSinkingRewriter takes a scalar evolution expression, 1115 /// which computes a pointer-typed value, and rewrites the whole expression 1116 /// tree so that *all* the computations are done on integers, and the only 1117 /// pointer-typed operands in the expression are SCEVUnknown. 1118 class SCEVPtrToIntSinkingRewriter 1119 : public SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter> { 1120 using Base = SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter>; 1121 1122 public: 1123 SCEVPtrToIntSinkingRewriter(ScalarEvolution &SE) : SCEVRewriteVisitor(SE) {} 1124 1125 static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE) { 1126 SCEVPtrToIntSinkingRewriter Rewriter(SE); 1127 return Rewriter.visit(Scev); 1128 } 1129 1130 const SCEV *visit(const SCEV *S) { 1131 Type *STy = S->getType(); 1132 // If the expression is not pointer-typed, just keep it as-is. 1133 if (!STy->isPointerTy()) 1134 return S; 1135 // Else, recursively sink the cast down into it. 1136 return Base::visit(S); 1137 } 1138 1139 const SCEV *visitAddExpr(const SCEVAddExpr *Expr) { 1140 SmallVector<const SCEV *, 2> Operands; 1141 bool Changed = false; 1142 for (auto *Op : Expr->operands()) { 1143 Operands.push_back(visit(Op)); 1144 Changed |= Op != Operands.back(); 1145 } 1146 return !Changed ? Expr : SE.getAddExpr(Operands, Expr->getNoWrapFlags()); 1147 } 1148 1149 const SCEV *visitMulExpr(const SCEVMulExpr *Expr) { 1150 SmallVector<const SCEV *, 2> Operands; 1151 bool Changed = false; 1152 for (auto *Op : Expr->operands()) { 1153 Operands.push_back(visit(Op)); 1154 Changed |= Op != Operands.back(); 1155 } 1156 return !Changed ? Expr : SE.getMulExpr(Operands, Expr->getNoWrapFlags()); 1157 } 1158 1159 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 1160 assert(Expr->getType()->isPointerTy() && 1161 "Should only reach pointer-typed SCEVUnknown's."); 1162 return SE.getLosslessPtrToIntExpr(Expr, /*Depth=*/1); 1163 } 1164 }; 1165 1166 // And actually perform the cast sinking. 1167 const SCEV *IntOp = SCEVPtrToIntSinkingRewriter::rewrite(Op, *this); 1168 assert(IntOp->getType()->isIntegerTy() && 1169 "We must have succeeded in sinking the cast, " 1170 "and ending up with an integer-typed expression!"); 1171 return IntOp; 1172 } 1173 1174 const SCEV *ScalarEvolution::getPtrToIntExpr(const SCEV *Op, Type *Ty) { 1175 assert(Ty->isIntegerTy() && "Target type must be an integer type!"); 1176 1177 const SCEV *IntOp = getLosslessPtrToIntExpr(Op); 1178 if (isa<SCEVCouldNotCompute>(IntOp)) 1179 return IntOp; 1180 1181 return getTruncateOrZeroExtend(IntOp, Ty); 1182 } 1183 1184 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, Type *Ty, 1185 unsigned Depth) { 1186 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 1187 "This is not a truncating conversion!"); 1188 assert(isSCEVable(Ty) && 1189 "This is not a conversion to a SCEVable type!"); 1190 assert(!Op->getType()->isPointerTy() && "Can't truncate pointer!"); 1191 Ty = getEffectiveSCEVType(Ty); 1192 1193 FoldingSetNodeID ID; 1194 ID.AddInteger(scTruncate); 1195 ID.AddPointer(Op); 1196 ID.AddPointer(Ty); 1197 void *IP = nullptr; 1198 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1199 1200 // Fold if the operand is constant. 1201 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1202 return getConstant( 1203 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty))); 1204 1205 // trunc(trunc(x)) --> trunc(x) 1206 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 1207 return getTruncateExpr(ST->getOperand(), Ty, Depth + 1); 1208 1209 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 1210 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1211 return getTruncateOrSignExtend(SS->getOperand(), Ty, Depth + 1); 1212 1213 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 1214 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1215 return getTruncateOrZeroExtend(SZ->getOperand(), Ty, Depth + 1); 1216 1217 if (Depth > MaxCastDepth) { 1218 SCEV *S = 1219 new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), Op, Ty); 1220 UniqueSCEVs.InsertNode(S, IP); 1221 registerUser(S, Op); 1222 return S; 1223 } 1224 1225 // trunc(x1 + ... + xN) --> trunc(x1) + ... + trunc(xN) and 1226 // trunc(x1 * ... * xN) --> trunc(x1) * ... * trunc(xN), 1227 // if after transforming we have at most one truncate, not counting truncates 1228 // that replace other casts. 1229 if (isa<SCEVAddExpr>(Op) || isa<SCEVMulExpr>(Op)) { 1230 auto *CommOp = cast<SCEVCommutativeExpr>(Op); 1231 SmallVector<const SCEV *, 4> Operands; 1232 unsigned numTruncs = 0; 1233 for (unsigned i = 0, e = CommOp->getNumOperands(); i != e && numTruncs < 2; 1234 ++i) { 1235 const SCEV *S = getTruncateExpr(CommOp->getOperand(i), Ty, Depth + 1); 1236 if (!isa<SCEVIntegralCastExpr>(CommOp->getOperand(i)) && 1237 isa<SCEVTruncateExpr>(S)) 1238 numTruncs++; 1239 Operands.push_back(S); 1240 } 1241 if (numTruncs < 2) { 1242 if (isa<SCEVAddExpr>(Op)) 1243 return getAddExpr(Operands); 1244 else if (isa<SCEVMulExpr>(Op)) 1245 return getMulExpr(Operands); 1246 else 1247 llvm_unreachable("Unexpected SCEV type for Op."); 1248 } 1249 // Although we checked in the beginning that ID is not in the cache, it is 1250 // possible that during recursion and different modification ID was inserted 1251 // into the cache. So if we find it, just return it. 1252 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 1253 return S; 1254 } 1255 1256 // If the input value is a chrec scev, truncate the chrec's operands. 1257 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 1258 SmallVector<const SCEV *, 4> Operands; 1259 for (const SCEV *Op : AddRec->operands()) 1260 Operands.push_back(getTruncateExpr(Op, Ty, Depth + 1)); 1261 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap); 1262 } 1263 1264 // Return zero if truncating to known zeros. 1265 uint32_t MinTrailingZeros = GetMinTrailingZeros(Op); 1266 if (MinTrailingZeros >= getTypeSizeInBits(Ty)) 1267 return getZero(Ty); 1268 1269 // The cast wasn't folded; create an explicit cast node. We can reuse 1270 // the existing insert position since if we get here, we won't have 1271 // made any changes which would invalidate it. 1272 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), 1273 Op, Ty); 1274 UniqueSCEVs.InsertNode(S, IP); 1275 registerUser(S, Op); 1276 return S; 1277 } 1278 1279 // Get the limit of a recurrence such that incrementing by Step cannot cause 1280 // signed overflow as long as the value of the recurrence within the 1281 // loop does not exceed this limit before incrementing. 1282 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step, 1283 ICmpInst::Predicate *Pred, 1284 ScalarEvolution *SE) { 1285 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1286 if (SE->isKnownPositive(Step)) { 1287 *Pred = ICmpInst::ICMP_SLT; 1288 return SE->getConstant(APInt::getSignedMinValue(BitWidth) - 1289 SE->getSignedRangeMax(Step)); 1290 } 1291 if (SE->isKnownNegative(Step)) { 1292 *Pred = ICmpInst::ICMP_SGT; 1293 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) - 1294 SE->getSignedRangeMin(Step)); 1295 } 1296 return nullptr; 1297 } 1298 1299 // Get the limit of a recurrence such that incrementing by Step cannot cause 1300 // unsigned overflow as long as the value of the recurrence within the loop does 1301 // not exceed this limit before incrementing. 1302 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step, 1303 ICmpInst::Predicate *Pred, 1304 ScalarEvolution *SE) { 1305 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1306 *Pred = ICmpInst::ICMP_ULT; 1307 1308 return SE->getConstant(APInt::getMinValue(BitWidth) - 1309 SE->getUnsignedRangeMax(Step)); 1310 } 1311 1312 namespace { 1313 1314 struct ExtendOpTraitsBase { 1315 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *, 1316 unsigned); 1317 }; 1318 1319 // Used to make code generic over signed and unsigned overflow. 1320 template <typename ExtendOp> struct ExtendOpTraits { 1321 // Members present: 1322 // 1323 // static const SCEV::NoWrapFlags WrapType; 1324 // 1325 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr; 1326 // 1327 // static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1328 // ICmpInst::Predicate *Pred, 1329 // ScalarEvolution *SE); 1330 }; 1331 1332 template <> 1333 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase { 1334 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW; 1335 1336 static const GetExtendExprTy GetExtendExpr; 1337 1338 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1339 ICmpInst::Predicate *Pred, 1340 ScalarEvolution *SE) { 1341 return getSignedOverflowLimitForStep(Step, Pred, SE); 1342 } 1343 }; 1344 1345 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1346 SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr; 1347 1348 template <> 1349 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase { 1350 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW; 1351 1352 static const GetExtendExprTy GetExtendExpr; 1353 1354 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1355 ICmpInst::Predicate *Pred, 1356 ScalarEvolution *SE) { 1357 return getUnsignedOverflowLimitForStep(Step, Pred, SE); 1358 } 1359 }; 1360 1361 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1362 SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr; 1363 1364 } // end anonymous namespace 1365 1366 // The recurrence AR has been shown to have no signed/unsigned wrap or something 1367 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as 1368 // easily prove NSW/NUW for its preincrement or postincrement sibling. This 1369 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step + 1370 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the 1371 // expression "Step + sext/zext(PreIncAR)" is congruent with 1372 // "sext/zext(PostIncAR)" 1373 template <typename ExtendOpTy> 1374 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty, 1375 ScalarEvolution *SE, unsigned Depth) { 1376 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1377 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1378 1379 const Loop *L = AR->getLoop(); 1380 const SCEV *Start = AR->getStart(); 1381 const SCEV *Step = AR->getStepRecurrence(*SE); 1382 1383 // Check for a simple looking step prior to loop entry. 1384 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start); 1385 if (!SA) 1386 return nullptr; 1387 1388 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV 1389 // subtraction is expensive. For this purpose, perform a quick and dirty 1390 // difference, by checking for Step in the operand list. 1391 SmallVector<const SCEV *, 4> DiffOps; 1392 for (const SCEV *Op : SA->operands()) 1393 if (Op != Step) 1394 DiffOps.push_back(Op); 1395 1396 if (DiffOps.size() == SA->getNumOperands()) 1397 return nullptr; 1398 1399 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` + 1400 // `Step`: 1401 1402 // 1. NSW/NUW flags on the step increment. 1403 auto PreStartFlags = 1404 ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW); 1405 const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags); 1406 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>( 1407 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap)); 1408 1409 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies 1410 // "S+X does not sign/unsign-overflow". 1411 // 1412 1413 const SCEV *BECount = SE->getBackedgeTakenCount(L); 1414 if (PreAR && PreAR->getNoWrapFlags(WrapType) && 1415 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount)) 1416 return PreStart; 1417 1418 // 2. Direct overflow check on the step operation's expression. 1419 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType()); 1420 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2); 1421 const SCEV *OperandExtendedStart = 1422 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth), 1423 (SE->*GetExtendExpr)(Step, WideTy, Depth)); 1424 if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) { 1425 if (PreAR && AR->getNoWrapFlags(WrapType)) { 1426 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW 1427 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then 1428 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact. 1429 SE->setNoWrapFlags(const_cast<SCEVAddRecExpr *>(PreAR), WrapType); 1430 } 1431 return PreStart; 1432 } 1433 1434 // 3. Loop precondition. 1435 ICmpInst::Predicate Pred; 1436 const SCEV *OverflowLimit = 1437 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE); 1438 1439 if (OverflowLimit && 1440 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) 1441 return PreStart; 1442 1443 return nullptr; 1444 } 1445 1446 // Get the normalized zero or sign extended expression for this AddRec's Start. 1447 template <typename ExtendOpTy> 1448 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty, 1449 ScalarEvolution *SE, 1450 unsigned Depth) { 1451 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1452 1453 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth); 1454 if (!PreStart) 1455 return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth); 1456 1457 return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty, 1458 Depth), 1459 (SE->*GetExtendExpr)(PreStart, Ty, Depth)); 1460 } 1461 1462 // Try to prove away overflow by looking at "nearby" add recurrences. A 1463 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it 1464 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`. 1465 // 1466 // Formally: 1467 // 1468 // {S,+,X} == {S-T,+,X} + T 1469 // => Ext({S,+,X}) == Ext({S-T,+,X} + T) 1470 // 1471 // If ({S-T,+,X} + T) does not overflow ... (1) 1472 // 1473 // RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T) 1474 // 1475 // If {S-T,+,X} does not overflow ... (2) 1476 // 1477 // RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T) 1478 // == {Ext(S-T)+Ext(T),+,Ext(X)} 1479 // 1480 // If (S-T)+T does not overflow ... (3) 1481 // 1482 // RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)} 1483 // == {Ext(S),+,Ext(X)} == LHS 1484 // 1485 // Thus, if (1), (2) and (3) are true for some T, then 1486 // Ext({S,+,X}) == {Ext(S),+,Ext(X)} 1487 // 1488 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T) 1489 // does not overflow" restricted to the 0th iteration. Therefore we only need 1490 // to check for (1) and (2). 1491 // 1492 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T 1493 // is `Delta` (defined below). 1494 template <typename ExtendOpTy> 1495 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start, 1496 const SCEV *Step, 1497 const Loop *L) { 1498 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1499 1500 // We restrict `Start` to a constant to prevent SCEV from spending too much 1501 // time here. It is correct (but more expensive) to continue with a 1502 // non-constant `Start` and do a general SCEV subtraction to compute 1503 // `PreStart` below. 1504 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start); 1505 if (!StartC) 1506 return false; 1507 1508 APInt StartAI = StartC->getAPInt(); 1509 1510 for (unsigned Delta : {-2, -1, 1, 2}) { 1511 const SCEV *PreStart = getConstant(StartAI - Delta); 1512 1513 FoldingSetNodeID ID; 1514 ID.AddInteger(scAddRecExpr); 1515 ID.AddPointer(PreStart); 1516 ID.AddPointer(Step); 1517 ID.AddPointer(L); 1518 void *IP = nullptr; 1519 const auto *PreAR = 1520 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1521 1522 // Give up if we don't already have the add recurrence we need because 1523 // actually constructing an add recurrence is relatively expensive. 1524 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2) 1525 const SCEV *DeltaS = getConstant(StartC->getType(), Delta); 1526 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 1527 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep( 1528 DeltaS, &Pred, this); 1529 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1) 1530 return true; 1531 } 1532 } 1533 1534 return false; 1535 } 1536 1537 // Finds an integer D for an expression (C + x + y + ...) such that the top 1538 // level addition in (D + (C - D + x + y + ...)) would not wrap (signed or 1539 // unsigned) and the number of trailing zeros of (C - D + x + y + ...) is 1540 // maximized, where C is the \p ConstantTerm, x, y, ... are arbitrary SCEVs, and 1541 // the (C + x + y + ...) expression is \p WholeAddExpr. 1542 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE, 1543 const SCEVConstant *ConstantTerm, 1544 const SCEVAddExpr *WholeAddExpr) { 1545 const APInt &C = ConstantTerm->getAPInt(); 1546 const unsigned BitWidth = C.getBitWidth(); 1547 // Find number of trailing zeros of (x + y + ...) w/o the C first: 1548 uint32_t TZ = BitWidth; 1549 for (unsigned I = 1, E = WholeAddExpr->getNumOperands(); I < E && TZ; ++I) 1550 TZ = std::min(TZ, SE.GetMinTrailingZeros(WholeAddExpr->getOperand(I))); 1551 if (TZ) { 1552 // Set D to be as many least significant bits of C as possible while still 1553 // guaranteeing that adding D to (C - D + x + y + ...) won't cause a wrap: 1554 return TZ < BitWidth ? C.trunc(TZ).zext(BitWidth) : C; 1555 } 1556 return APInt(BitWidth, 0); 1557 } 1558 1559 // Finds an integer D for an affine AddRec expression {C,+,x} such that the top 1560 // level addition in (D + {C-D,+,x}) would not wrap (signed or unsigned) and the 1561 // number of trailing zeros of (C - D + x * n) is maximized, where C is the \p 1562 // ConstantStart, x is an arbitrary \p Step, and n is the loop trip count. 1563 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE, 1564 const APInt &ConstantStart, 1565 const SCEV *Step) { 1566 const unsigned BitWidth = ConstantStart.getBitWidth(); 1567 const uint32_t TZ = SE.GetMinTrailingZeros(Step); 1568 if (TZ) 1569 return TZ < BitWidth ? ConstantStart.trunc(TZ).zext(BitWidth) 1570 : ConstantStart; 1571 return APInt(BitWidth, 0); 1572 } 1573 1574 const SCEV * 1575 ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) { 1576 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1577 "This is not an extending conversion!"); 1578 assert(isSCEVable(Ty) && 1579 "This is not a conversion to a SCEVable type!"); 1580 assert(!Op->getType()->isPointerTy() && "Can't extend pointer!"); 1581 Ty = getEffectiveSCEVType(Ty); 1582 1583 // Fold if the operand is constant. 1584 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1585 return getConstant( 1586 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty))); 1587 1588 // zext(zext(x)) --> zext(x) 1589 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1590 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1); 1591 1592 // Before doing any expensive analysis, check to see if we've already 1593 // computed a SCEV for this Op and Ty. 1594 FoldingSetNodeID ID; 1595 ID.AddInteger(scZeroExtend); 1596 ID.AddPointer(Op); 1597 ID.AddPointer(Ty); 1598 void *IP = nullptr; 1599 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1600 if (Depth > MaxCastDepth) { 1601 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1602 Op, Ty); 1603 UniqueSCEVs.InsertNode(S, IP); 1604 registerUser(S, Op); 1605 return S; 1606 } 1607 1608 // zext(trunc(x)) --> zext(x) or x or trunc(x) 1609 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1610 // It's possible the bits taken off by the truncate were all zero bits. If 1611 // so, we should be able to simplify this further. 1612 const SCEV *X = ST->getOperand(); 1613 ConstantRange CR = getUnsignedRange(X); 1614 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1615 unsigned NewBits = getTypeSizeInBits(Ty); 1616 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains( 1617 CR.zextOrTrunc(NewBits))) 1618 return getTruncateOrZeroExtend(X, Ty, Depth); 1619 } 1620 1621 // If the input value is a chrec scev, and we can prove that the value 1622 // did not overflow the old, smaller, value, we can zero extend all of the 1623 // operands (often constants). This allows analysis of something like 1624 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 1625 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1626 if (AR->isAffine()) { 1627 const SCEV *Start = AR->getStart(); 1628 const SCEV *Step = AR->getStepRecurrence(*this); 1629 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1630 const Loop *L = AR->getLoop(); 1631 1632 if (!AR->hasNoUnsignedWrap()) { 1633 auto NewFlags = proveNoWrapViaConstantRanges(AR); 1634 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 1635 } 1636 1637 // If we have special knowledge that this addrec won't overflow, 1638 // we don't need to do any further analysis. 1639 if (AR->hasNoUnsignedWrap()) 1640 return getAddRecExpr( 1641 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1), 1642 getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 1643 1644 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1645 // Note that this serves two purposes: It filters out loops that are 1646 // simply not analyzable, and it covers the case where this code is 1647 // being called from within backedge-taken count analysis, such that 1648 // attempting to ask for the backedge-taken count would likely result 1649 // in infinite recursion. In the later case, the analysis code will 1650 // cope with a conservative value, and it will take care to purge 1651 // that value once it has finished. 1652 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 1653 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1654 // Manually compute the final value for AR, checking for overflow. 1655 1656 // Check whether the backedge-taken count can be losslessly casted to 1657 // the addrec's type. The count is always unsigned. 1658 const SCEV *CastedMaxBECount = 1659 getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth); 1660 const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend( 1661 CastedMaxBECount, MaxBECount->getType(), Depth); 1662 if (MaxBECount == RecastedMaxBECount) { 1663 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1664 // Check whether Start+Step*MaxBECount has no unsigned overflow. 1665 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step, 1666 SCEV::FlagAnyWrap, Depth + 1); 1667 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul, 1668 SCEV::FlagAnyWrap, 1669 Depth + 1), 1670 WideTy, Depth + 1); 1671 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy, Depth + 1); 1672 const SCEV *WideMaxBECount = 1673 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1); 1674 const SCEV *OperandExtendedAdd = 1675 getAddExpr(WideStart, 1676 getMulExpr(WideMaxBECount, 1677 getZeroExtendExpr(Step, WideTy, Depth + 1), 1678 SCEV::FlagAnyWrap, Depth + 1), 1679 SCEV::FlagAnyWrap, Depth + 1); 1680 if (ZAdd == OperandExtendedAdd) { 1681 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1682 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW); 1683 // Return the expression with the addrec on the outside. 1684 return getAddRecExpr( 1685 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1686 Depth + 1), 1687 getZeroExtendExpr(Step, Ty, Depth + 1), L, 1688 AR->getNoWrapFlags()); 1689 } 1690 // Similar to above, only this time treat the step value as signed. 1691 // This covers loops that count down. 1692 OperandExtendedAdd = 1693 getAddExpr(WideStart, 1694 getMulExpr(WideMaxBECount, 1695 getSignExtendExpr(Step, WideTy, Depth + 1), 1696 SCEV::FlagAnyWrap, Depth + 1), 1697 SCEV::FlagAnyWrap, Depth + 1); 1698 if (ZAdd == OperandExtendedAdd) { 1699 // Cache knowledge of AR NW, which is propagated to this AddRec. 1700 // Negative step causes unsigned wrap, but it still can't self-wrap. 1701 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW); 1702 // Return the expression with the addrec on the outside. 1703 return getAddRecExpr( 1704 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1705 Depth + 1), 1706 getSignExtendExpr(Step, Ty, Depth + 1), L, 1707 AR->getNoWrapFlags()); 1708 } 1709 } 1710 } 1711 1712 // Normally, in the cases we can prove no-overflow via a 1713 // backedge guarding condition, we can also compute a backedge 1714 // taken count for the loop. The exceptions are assumptions and 1715 // guards present in the loop -- SCEV is not great at exploiting 1716 // these to compute max backedge taken counts, but can still use 1717 // these to prove lack of overflow. Use this fact to avoid 1718 // doing extra work that may not pay off. 1719 if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards || 1720 !AC.assumptions().empty()) { 1721 1722 auto NewFlags = proveNoUnsignedWrapViaInduction(AR); 1723 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 1724 if (AR->hasNoUnsignedWrap()) { 1725 // Same as nuw case above - duplicated here to avoid a compile time 1726 // issue. It's not clear that the order of checks does matter, but 1727 // it's one of two issue possible causes for a change which was 1728 // reverted. Be conservative for the moment. 1729 return getAddRecExpr( 1730 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1731 Depth + 1), 1732 getZeroExtendExpr(Step, Ty, Depth + 1), L, 1733 AR->getNoWrapFlags()); 1734 } 1735 1736 // For a negative step, we can extend the operands iff doing so only 1737 // traverses values in the range zext([0,UINT_MAX]). 1738 if (isKnownNegative(Step)) { 1739 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 1740 getSignedRangeMin(Step)); 1741 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || 1742 isKnownOnEveryIteration(ICmpInst::ICMP_UGT, AR, N)) { 1743 // Cache knowledge of AR NW, which is propagated to this 1744 // AddRec. Negative step causes unsigned wrap, but it 1745 // still can't self-wrap. 1746 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW); 1747 // Return the expression with the addrec on the outside. 1748 return getAddRecExpr( 1749 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1750 Depth + 1), 1751 getSignExtendExpr(Step, Ty, Depth + 1), L, 1752 AR->getNoWrapFlags()); 1753 } 1754 } 1755 } 1756 1757 // zext({C,+,Step}) --> (zext(D) + zext({C-D,+,Step}))<nuw><nsw> 1758 // if D + (C - D + Step * n) could be proven to not unsigned wrap 1759 // where D maximizes the number of trailing zeros of (C - D + Step * n) 1760 if (const auto *SC = dyn_cast<SCEVConstant>(Start)) { 1761 const APInt &C = SC->getAPInt(); 1762 const APInt &D = extractConstantWithoutWrapping(*this, C, Step); 1763 if (D != 0) { 1764 const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth); 1765 const SCEV *SResidual = 1766 getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags()); 1767 const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1); 1768 return getAddExpr(SZExtD, SZExtR, 1769 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1770 Depth + 1); 1771 } 1772 } 1773 1774 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) { 1775 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW); 1776 return getAddRecExpr( 1777 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1), 1778 getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 1779 } 1780 } 1781 1782 // zext(A % B) --> zext(A) % zext(B) 1783 { 1784 const SCEV *LHS; 1785 const SCEV *RHS; 1786 if (matchURem(Op, LHS, RHS)) 1787 return getURemExpr(getZeroExtendExpr(LHS, Ty, Depth + 1), 1788 getZeroExtendExpr(RHS, Ty, Depth + 1)); 1789 } 1790 1791 // zext(A / B) --> zext(A) / zext(B). 1792 if (auto *Div = dyn_cast<SCEVUDivExpr>(Op)) 1793 return getUDivExpr(getZeroExtendExpr(Div->getLHS(), Ty, Depth + 1), 1794 getZeroExtendExpr(Div->getRHS(), Ty, Depth + 1)); 1795 1796 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1797 // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw> 1798 if (SA->hasNoUnsignedWrap()) { 1799 // If the addition does not unsign overflow then we can, by definition, 1800 // commute the zero extension with the addition operation. 1801 SmallVector<const SCEV *, 4> Ops; 1802 for (const auto *Op : SA->operands()) 1803 Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1)); 1804 return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1); 1805 } 1806 1807 // zext(C + x + y + ...) --> (zext(D) + zext((C - D) + x + y + ...)) 1808 // if D + (C - D + x + y + ...) could be proven to not unsigned wrap 1809 // where D maximizes the number of trailing zeros of (C - D + x + y + ...) 1810 // 1811 // Often address arithmetics contain expressions like 1812 // (zext (add (shl X, C1), C2)), for instance, (zext (5 + (4 * X))). 1813 // This transformation is useful while proving that such expressions are 1814 // equal or differ by a small constant amount, see LoadStoreVectorizer pass. 1815 if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) { 1816 const APInt &D = extractConstantWithoutWrapping(*this, SC, SA); 1817 if (D != 0) { 1818 const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth); 1819 const SCEV *SResidual = 1820 getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth); 1821 const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1); 1822 return getAddExpr(SZExtD, SZExtR, 1823 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1824 Depth + 1); 1825 } 1826 } 1827 } 1828 1829 if (auto *SM = dyn_cast<SCEVMulExpr>(Op)) { 1830 // zext((A * B * ...)<nuw>) --> (zext(A) * zext(B) * ...)<nuw> 1831 if (SM->hasNoUnsignedWrap()) { 1832 // If the multiply does not unsign overflow then we can, by definition, 1833 // commute the zero extension with the multiply operation. 1834 SmallVector<const SCEV *, 4> Ops; 1835 for (const auto *Op : SM->operands()) 1836 Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1)); 1837 return getMulExpr(Ops, SCEV::FlagNUW, Depth + 1); 1838 } 1839 1840 // zext(2^K * (trunc X to iN)) to iM -> 1841 // 2^K * (zext(trunc X to i{N-K}) to iM)<nuw> 1842 // 1843 // Proof: 1844 // 1845 // zext(2^K * (trunc X to iN)) to iM 1846 // = zext((trunc X to iN) << K) to iM 1847 // = zext((trunc X to i{N-K}) << K)<nuw> to iM 1848 // (because shl removes the top K bits) 1849 // = zext((2^K * (trunc X to i{N-K}))<nuw>) to iM 1850 // = (2^K * (zext(trunc X to i{N-K}) to iM))<nuw>. 1851 // 1852 if (SM->getNumOperands() == 2) 1853 if (auto *MulLHS = dyn_cast<SCEVConstant>(SM->getOperand(0))) 1854 if (MulLHS->getAPInt().isPowerOf2()) 1855 if (auto *TruncRHS = dyn_cast<SCEVTruncateExpr>(SM->getOperand(1))) { 1856 int NewTruncBits = getTypeSizeInBits(TruncRHS->getType()) - 1857 MulLHS->getAPInt().logBase2(); 1858 Type *NewTruncTy = IntegerType::get(getContext(), NewTruncBits); 1859 return getMulExpr( 1860 getZeroExtendExpr(MulLHS, Ty), 1861 getZeroExtendExpr( 1862 getTruncateExpr(TruncRHS->getOperand(), NewTruncTy), Ty), 1863 SCEV::FlagNUW, Depth + 1); 1864 } 1865 } 1866 1867 // The cast wasn't folded; create an explicit cast node. 1868 // Recompute the insert position, as it may have been invalidated. 1869 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1870 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1871 Op, Ty); 1872 UniqueSCEVs.InsertNode(S, IP); 1873 registerUser(S, Op); 1874 return S; 1875 } 1876 1877 const SCEV * 1878 ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) { 1879 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1880 "This is not an extending conversion!"); 1881 assert(isSCEVable(Ty) && 1882 "This is not a conversion to a SCEVable type!"); 1883 assert(!Op->getType()->isPointerTy() && "Can't extend pointer!"); 1884 Ty = getEffectiveSCEVType(Ty); 1885 1886 // Fold if the operand is constant. 1887 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1888 return getConstant( 1889 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty))); 1890 1891 // sext(sext(x)) --> sext(x) 1892 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1893 return getSignExtendExpr(SS->getOperand(), Ty, Depth + 1); 1894 1895 // sext(zext(x)) --> zext(x) 1896 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1897 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1); 1898 1899 // Before doing any expensive analysis, check to see if we've already 1900 // computed a SCEV for this Op and Ty. 1901 FoldingSetNodeID ID; 1902 ID.AddInteger(scSignExtend); 1903 ID.AddPointer(Op); 1904 ID.AddPointer(Ty); 1905 void *IP = nullptr; 1906 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1907 // Limit recursion depth. 1908 if (Depth > MaxCastDepth) { 1909 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1910 Op, Ty); 1911 UniqueSCEVs.InsertNode(S, IP); 1912 registerUser(S, Op); 1913 return S; 1914 } 1915 1916 // sext(trunc(x)) --> sext(x) or x or trunc(x) 1917 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1918 // It's possible the bits taken off by the truncate were all sign bits. If 1919 // so, we should be able to simplify this further. 1920 const SCEV *X = ST->getOperand(); 1921 ConstantRange CR = getSignedRange(X); 1922 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1923 unsigned NewBits = getTypeSizeInBits(Ty); 1924 if (CR.truncate(TruncBits).signExtend(NewBits).contains( 1925 CR.sextOrTrunc(NewBits))) 1926 return getTruncateOrSignExtend(X, Ty, Depth); 1927 } 1928 1929 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1930 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 1931 if (SA->hasNoSignedWrap()) { 1932 // If the addition does not sign overflow then we can, by definition, 1933 // commute the sign extension with the addition operation. 1934 SmallVector<const SCEV *, 4> Ops; 1935 for (const auto *Op : SA->operands()) 1936 Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1)); 1937 return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1); 1938 } 1939 1940 // sext(C + x + y + ...) --> (sext(D) + sext((C - D) + x + y + ...)) 1941 // if D + (C - D + x + y + ...) could be proven to not signed wrap 1942 // where D maximizes the number of trailing zeros of (C - D + x + y + ...) 1943 // 1944 // For instance, this will bring two seemingly different expressions: 1945 // 1 + sext(5 + 20 * %x + 24 * %y) and 1946 // sext(6 + 20 * %x + 24 * %y) 1947 // to the same form: 1948 // 2 + sext(4 + 20 * %x + 24 * %y) 1949 if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) { 1950 const APInt &D = extractConstantWithoutWrapping(*this, SC, SA); 1951 if (D != 0) { 1952 const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth); 1953 const SCEV *SResidual = 1954 getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth); 1955 const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1); 1956 return getAddExpr(SSExtD, SSExtR, 1957 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1958 Depth + 1); 1959 } 1960 } 1961 } 1962 // If the input value is a chrec scev, and we can prove that the value 1963 // did not overflow the old, smaller, value, we can sign extend all of the 1964 // operands (often constants). This allows analysis of something like 1965 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 1966 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1967 if (AR->isAffine()) { 1968 const SCEV *Start = AR->getStart(); 1969 const SCEV *Step = AR->getStepRecurrence(*this); 1970 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1971 const Loop *L = AR->getLoop(); 1972 1973 if (!AR->hasNoSignedWrap()) { 1974 auto NewFlags = proveNoWrapViaConstantRanges(AR); 1975 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 1976 } 1977 1978 // If we have special knowledge that this addrec won't overflow, 1979 // we don't need to do any further analysis. 1980 if (AR->hasNoSignedWrap()) 1981 return getAddRecExpr( 1982 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 1983 getSignExtendExpr(Step, Ty, Depth + 1), L, SCEV::FlagNSW); 1984 1985 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1986 // Note that this serves two purposes: It filters out loops that are 1987 // simply not analyzable, and it covers the case where this code is 1988 // being called from within backedge-taken count analysis, such that 1989 // attempting to ask for the backedge-taken count would likely result 1990 // in infinite recursion. In the later case, the analysis code will 1991 // cope with a conservative value, and it will take care to purge 1992 // that value once it has finished. 1993 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 1994 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1995 // Manually compute the final value for AR, checking for 1996 // overflow. 1997 1998 // Check whether the backedge-taken count can be losslessly casted to 1999 // the addrec's type. The count is always unsigned. 2000 const SCEV *CastedMaxBECount = 2001 getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth); 2002 const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend( 2003 CastedMaxBECount, MaxBECount->getType(), Depth); 2004 if (MaxBECount == RecastedMaxBECount) { 2005 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 2006 // Check whether Start+Step*MaxBECount has no signed overflow. 2007 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step, 2008 SCEV::FlagAnyWrap, Depth + 1); 2009 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul, 2010 SCEV::FlagAnyWrap, 2011 Depth + 1), 2012 WideTy, Depth + 1); 2013 const SCEV *WideStart = getSignExtendExpr(Start, WideTy, Depth + 1); 2014 const SCEV *WideMaxBECount = 2015 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1); 2016 const SCEV *OperandExtendedAdd = 2017 getAddExpr(WideStart, 2018 getMulExpr(WideMaxBECount, 2019 getSignExtendExpr(Step, WideTy, Depth + 1), 2020 SCEV::FlagAnyWrap, Depth + 1), 2021 SCEV::FlagAnyWrap, Depth + 1); 2022 if (SAdd == OperandExtendedAdd) { 2023 // Cache knowledge of AR NSW, which is propagated to this AddRec. 2024 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW); 2025 // Return the expression with the addrec on the outside. 2026 return getAddRecExpr( 2027 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, 2028 Depth + 1), 2029 getSignExtendExpr(Step, Ty, Depth + 1), L, 2030 AR->getNoWrapFlags()); 2031 } 2032 // Similar to above, only this time treat the step value as unsigned. 2033 // This covers loops that count up with an unsigned step. 2034 OperandExtendedAdd = 2035 getAddExpr(WideStart, 2036 getMulExpr(WideMaxBECount, 2037 getZeroExtendExpr(Step, WideTy, Depth + 1), 2038 SCEV::FlagAnyWrap, Depth + 1), 2039 SCEV::FlagAnyWrap, Depth + 1); 2040 if (SAdd == OperandExtendedAdd) { 2041 // If AR wraps around then 2042 // 2043 // abs(Step) * MaxBECount > unsigned-max(AR->getType()) 2044 // => SAdd != OperandExtendedAdd 2045 // 2046 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=> 2047 // (SAdd == OperandExtendedAdd => AR is NW) 2048 2049 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW); 2050 2051 // Return the expression with the addrec on the outside. 2052 return getAddRecExpr( 2053 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, 2054 Depth + 1), 2055 getZeroExtendExpr(Step, Ty, Depth + 1), L, 2056 AR->getNoWrapFlags()); 2057 } 2058 } 2059 } 2060 2061 auto NewFlags = proveNoSignedWrapViaInduction(AR); 2062 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 2063 if (AR->hasNoSignedWrap()) { 2064 // Same as nsw case above - duplicated here to avoid a compile time 2065 // issue. It's not clear that the order of checks does matter, but 2066 // it's one of two issue possible causes for a change which was 2067 // reverted. Be conservative for the moment. 2068 return getAddRecExpr( 2069 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 2070 getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 2071 } 2072 2073 // sext({C,+,Step}) --> (sext(D) + sext({C-D,+,Step}))<nuw><nsw> 2074 // if D + (C - D + Step * n) could be proven to not signed wrap 2075 // where D maximizes the number of trailing zeros of (C - D + Step * n) 2076 if (const auto *SC = dyn_cast<SCEVConstant>(Start)) { 2077 const APInt &C = SC->getAPInt(); 2078 const APInt &D = extractConstantWithoutWrapping(*this, C, Step); 2079 if (D != 0) { 2080 const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth); 2081 const SCEV *SResidual = 2082 getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags()); 2083 const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1); 2084 return getAddExpr(SSExtD, SSExtR, 2085 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 2086 Depth + 1); 2087 } 2088 } 2089 2090 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) { 2091 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW); 2092 return getAddRecExpr( 2093 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 2094 getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 2095 } 2096 } 2097 2098 // If the input value is provably positive and we could not simplify 2099 // away the sext build a zext instead. 2100 if (isKnownNonNegative(Op)) 2101 return getZeroExtendExpr(Op, Ty, Depth + 1); 2102 2103 // The cast wasn't folded; create an explicit cast node. 2104 // Recompute the insert position, as it may have been invalidated. 2105 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2106 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 2107 Op, Ty); 2108 UniqueSCEVs.InsertNode(S, IP); 2109 registerUser(S, { Op }); 2110 return S; 2111 } 2112 2113 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 2114 /// unspecified bits out to the given type. 2115 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 2116 Type *Ty) { 2117 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 2118 "This is not an extending conversion!"); 2119 assert(isSCEVable(Ty) && 2120 "This is not a conversion to a SCEVable type!"); 2121 Ty = getEffectiveSCEVType(Ty); 2122 2123 // Sign-extend negative constants. 2124 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 2125 if (SC->getAPInt().isNegative()) 2126 return getSignExtendExpr(Op, Ty); 2127 2128 // Peel off a truncate cast. 2129 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 2130 const SCEV *NewOp = T->getOperand(); 2131 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 2132 return getAnyExtendExpr(NewOp, Ty); 2133 return getTruncateOrNoop(NewOp, Ty); 2134 } 2135 2136 // Next try a zext cast. If the cast is folded, use it. 2137 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 2138 if (!isa<SCEVZeroExtendExpr>(ZExt)) 2139 return ZExt; 2140 2141 // Next try a sext cast. If the cast is folded, use it. 2142 const SCEV *SExt = getSignExtendExpr(Op, Ty); 2143 if (!isa<SCEVSignExtendExpr>(SExt)) 2144 return SExt; 2145 2146 // Force the cast to be folded into the operands of an addrec. 2147 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 2148 SmallVector<const SCEV *, 4> Ops; 2149 for (const SCEV *Op : AR->operands()) 2150 Ops.push_back(getAnyExtendExpr(Op, Ty)); 2151 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW); 2152 } 2153 2154 // If the expression is obviously signed, use the sext cast value. 2155 if (isa<SCEVSMaxExpr>(Op)) 2156 return SExt; 2157 2158 // Absent any other information, use the zext cast value. 2159 return ZExt; 2160 } 2161 2162 /// Process the given Ops list, which is a list of operands to be added under 2163 /// the given scale, update the given map. This is a helper function for 2164 /// getAddRecExpr. As an example of what it does, given a sequence of operands 2165 /// that would form an add expression like this: 2166 /// 2167 /// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r) 2168 /// 2169 /// where A and B are constants, update the map with these values: 2170 /// 2171 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 2172 /// 2173 /// and add 13 + A*B*29 to AccumulatedConstant. 2174 /// This will allow getAddRecExpr to produce this: 2175 /// 2176 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 2177 /// 2178 /// This form often exposes folding opportunities that are hidden in 2179 /// the original operand list. 2180 /// 2181 /// Return true iff it appears that any interesting folding opportunities 2182 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 2183 /// the common case where no interesting opportunities are present, and 2184 /// is also used as a check to avoid infinite recursion. 2185 static bool 2186 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 2187 SmallVectorImpl<const SCEV *> &NewOps, 2188 APInt &AccumulatedConstant, 2189 const SCEV *const *Ops, size_t NumOperands, 2190 const APInt &Scale, 2191 ScalarEvolution &SE) { 2192 bool Interesting = false; 2193 2194 // Iterate over the add operands. They are sorted, with constants first. 2195 unsigned i = 0; 2196 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2197 ++i; 2198 // Pull a buried constant out to the outside. 2199 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) 2200 Interesting = true; 2201 AccumulatedConstant += Scale * C->getAPInt(); 2202 } 2203 2204 // Next comes everything else. We're especially interested in multiplies 2205 // here, but they're in the middle, so just visit the rest with one loop. 2206 for (; i != NumOperands; ++i) { 2207 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 2208 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 2209 APInt NewScale = 2210 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt(); 2211 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 2212 // A multiplication of a constant with another add; recurse. 2213 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); 2214 Interesting |= 2215 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2216 Add->op_begin(), Add->getNumOperands(), 2217 NewScale, SE); 2218 } else { 2219 // A multiplication of a constant with some other value. Update 2220 // the map. 2221 SmallVector<const SCEV *, 4> MulOps(drop_begin(Mul->operands())); 2222 const SCEV *Key = SE.getMulExpr(MulOps); 2223 auto Pair = M.insert({Key, NewScale}); 2224 if (Pair.second) { 2225 NewOps.push_back(Pair.first->first); 2226 } else { 2227 Pair.first->second += NewScale; 2228 // The map already had an entry for this value, which may indicate 2229 // a folding opportunity. 2230 Interesting = true; 2231 } 2232 } 2233 } else { 2234 // An ordinary operand. Update the map. 2235 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 2236 M.insert({Ops[i], Scale}); 2237 if (Pair.second) { 2238 NewOps.push_back(Pair.first->first); 2239 } else { 2240 Pair.first->second += Scale; 2241 // The map already had an entry for this value, which may indicate 2242 // a folding opportunity. 2243 Interesting = true; 2244 } 2245 } 2246 } 2247 2248 return Interesting; 2249 } 2250 2251 bool ScalarEvolution::willNotOverflow(Instruction::BinaryOps BinOp, bool Signed, 2252 const SCEV *LHS, const SCEV *RHS) { 2253 const SCEV *(ScalarEvolution::*Operation)(const SCEV *, const SCEV *, 2254 SCEV::NoWrapFlags, unsigned); 2255 switch (BinOp) { 2256 default: 2257 llvm_unreachable("Unsupported binary op"); 2258 case Instruction::Add: 2259 Operation = &ScalarEvolution::getAddExpr; 2260 break; 2261 case Instruction::Sub: 2262 Operation = &ScalarEvolution::getMinusSCEV; 2263 break; 2264 case Instruction::Mul: 2265 Operation = &ScalarEvolution::getMulExpr; 2266 break; 2267 } 2268 2269 const SCEV *(ScalarEvolution::*Extension)(const SCEV *, Type *, unsigned) = 2270 Signed ? &ScalarEvolution::getSignExtendExpr 2271 : &ScalarEvolution::getZeroExtendExpr; 2272 2273 // Check ext(LHS op RHS) == ext(LHS) op ext(RHS) 2274 auto *NarrowTy = cast<IntegerType>(LHS->getType()); 2275 auto *WideTy = 2276 IntegerType::get(NarrowTy->getContext(), NarrowTy->getBitWidth() * 2); 2277 2278 const SCEV *A = (this->*Extension)( 2279 (this->*Operation)(LHS, RHS, SCEV::FlagAnyWrap, 0), WideTy, 0); 2280 const SCEV *B = (this->*Operation)((this->*Extension)(LHS, WideTy, 0), 2281 (this->*Extension)(RHS, WideTy, 0), 2282 SCEV::FlagAnyWrap, 0); 2283 return A == B; 2284 } 2285 2286 std::pair<SCEV::NoWrapFlags, bool /*Deduced*/> 2287 ScalarEvolution::getStrengthenedNoWrapFlagsFromBinOp( 2288 const OverflowingBinaryOperator *OBO) { 2289 SCEV::NoWrapFlags Flags = SCEV::NoWrapFlags::FlagAnyWrap; 2290 2291 if (OBO->hasNoUnsignedWrap()) 2292 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2293 if (OBO->hasNoSignedWrap()) 2294 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 2295 2296 bool Deduced = false; 2297 2298 if (OBO->hasNoUnsignedWrap() && OBO->hasNoSignedWrap()) 2299 return {Flags, Deduced}; 2300 2301 if (OBO->getOpcode() != Instruction::Add && 2302 OBO->getOpcode() != Instruction::Sub && 2303 OBO->getOpcode() != Instruction::Mul) 2304 return {Flags, Deduced}; 2305 2306 const SCEV *LHS = getSCEV(OBO->getOperand(0)); 2307 const SCEV *RHS = getSCEV(OBO->getOperand(1)); 2308 2309 if (!OBO->hasNoUnsignedWrap() && 2310 willNotOverflow((Instruction::BinaryOps)OBO->getOpcode(), 2311 /* Signed */ false, LHS, RHS)) { 2312 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2313 Deduced = true; 2314 } 2315 2316 if (!OBO->hasNoSignedWrap() && 2317 willNotOverflow((Instruction::BinaryOps)OBO->getOpcode(), 2318 /* Signed */ true, LHS, RHS)) { 2319 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 2320 Deduced = true; 2321 } 2322 2323 return {Flags, Deduced}; 2324 } 2325 2326 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and 2327 // `OldFlags' as can't-wrap behavior. Infer a more aggressive set of 2328 // can't-overflow flags for the operation if possible. 2329 static SCEV::NoWrapFlags 2330 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type, 2331 const ArrayRef<const SCEV *> Ops, 2332 SCEV::NoWrapFlags Flags) { 2333 using namespace std::placeholders; 2334 2335 using OBO = OverflowingBinaryOperator; 2336 2337 bool CanAnalyze = 2338 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr; 2339 (void)CanAnalyze; 2340 assert(CanAnalyze && "don't call from other places!"); 2341 2342 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 2343 SCEV::NoWrapFlags SignOrUnsignWrap = 2344 ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 2345 2346 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 2347 auto IsKnownNonNegative = [&](const SCEV *S) { 2348 return SE->isKnownNonNegative(S); 2349 }; 2350 2351 if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative)) 2352 Flags = 2353 ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 2354 2355 SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 2356 2357 if (SignOrUnsignWrap != SignOrUnsignMask && 2358 (Type == scAddExpr || Type == scMulExpr) && Ops.size() == 2 && 2359 isa<SCEVConstant>(Ops[0])) { 2360 2361 auto Opcode = [&] { 2362 switch (Type) { 2363 case scAddExpr: 2364 return Instruction::Add; 2365 case scMulExpr: 2366 return Instruction::Mul; 2367 default: 2368 llvm_unreachable("Unexpected SCEV op."); 2369 } 2370 }(); 2371 2372 const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt(); 2373 2374 // (A <opcode> C) --> (A <opcode> C)<nsw> if the op doesn't sign overflow. 2375 if (!(SignOrUnsignWrap & SCEV::FlagNSW)) { 2376 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2377 Opcode, C, OBO::NoSignedWrap); 2378 if (NSWRegion.contains(SE->getSignedRange(Ops[1]))) 2379 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 2380 } 2381 2382 // (A <opcode> C) --> (A <opcode> C)<nuw> if the op doesn't unsign overflow. 2383 if (!(SignOrUnsignWrap & SCEV::FlagNUW)) { 2384 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2385 Opcode, C, OBO::NoUnsignedWrap); 2386 if (NUWRegion.contains(SE->getUnsignedRange(Ops[1]))) 2387 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2388 } 2389 } 2390 2391 // <0,+,nonnegative><nw> is also nuw 2392 // TODO: Add corresponding nsw case 2393 if (Type == scAddRecExpr && ScalarEvolution::hasFlags(Flags, SCEV::FlagNW) && 2394 !ScalarEvolution::hasFlags(Flags, SCEV::FlagNUW) && Ops.size() == 2 && 2395 Ops[0]->isZero() && IsKnownNonNegative(Ops[1])) 2396 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2397 2398 // both (udiv X, Y) * Y and Y * (udiv X, Y) are always NUW 2399 if (Type == scMulExpr && !ScalarEvolution::hasFlags(Flags, SCEV::FlagNUW) && 2400 Ops.size() == 2) { 2401 if (auto *UDiv = dyn_cast<SCEVUDivExpr>(Ops[0])) 2402 if (UDiv->getOperand(1) == Ops[1]) 2403 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2404 if (auto *UDiv = dyn_cast<SCEVUDivExpr>(Ops[1])) 2405 if (UDiv->getOperand(1) == Ops[0]) 2406 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2407 } 2408 2409 return Flags; 2410 } 2411 2412 bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) { 2413 return isLoopInvariant(S, L) && properlyDominates(S, L->getHeader()); 2414 } 2415 2416 /// Get a canonical add expression, or something simpler if possible. 2417 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 2418 SCEV::NoWrapFlags OrigFlags, 2419 unsigned Depth) { 2420 assert(!(OrigFlags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && 2421 "only nuw or nsw allowed"); 2422 assert(!Ops.empty() && "Cannot get empty add!"); 2423 if (Ops.size() == 1) return Ops[0]; 2424 #ifndef NDEBUG 2425 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2426 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2427 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2428 "SCEVAddExpr operand types don't match!"); 2429 unsigned NumPtrs = count_if( 2430 Ops, [](const SCEV *Op) { return Op->getType()->isPointerTy(); }); 2431 assert(NumPtrs <= 1 && "add has at most one pointer operand"); 2432 #endif 2433 2434 // Sort by complexity, this groups all similar expression types together. 2435 GroupByComplexity(Ops, &LI, DT); 2436 2437 // If there are any constants, fold them together. 2438 unsigned Idx = 0; 2439 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2440 ++Idx; 2441 assert(Idx < Ops.size()); 2442 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2443 // We found two constants, fold them together! 2444 Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt()); 2445 if (Ops.size() == 2) return Ops[0]; 2446 Ops.erase(Ops.begin()+1); // Erase the folded element 2447 LHSC = cast<SCEVConstant>(Ops[0]); 2448 } 2449 2450 // If we are left with a constant zero being added, strip it off. 2451 if (LHSC->getValue()->isZero()) { 2452 Ops.erase(Ops.begin()); 2453 --Idx; 2454 } 2455 2456 if (Ops.size() == 1) return Ops[0]; 2457 } 2458 2459 // Delay expensive flag strengthening until necessary. 2460 auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) { 2461 return StrengthenNoWrapFlags(this, scAddExpr, Ops, OrigFlags); 2462 }; 2463 2464 // Limit recursion calls depth. 2465 if (Depth > MaxArithDepth || hasHugeExpression(Ops)) 2466 return getOrCreateAddExpr(Ops, ComputeFlags(Ops)); 2467 2468 if (SCEV *S = findExistingSCEVInCache(scAddExpr, Ops)) { 2469 // Don't strengthen flags if we have no new information. 2470 SCEVAddExpr *Add = static_cast<SCEVAddExpr *>(S); 2471 if (Add->getNoWrapFlags(OrigFlags) != OrigFlags) 2472 Add->setNoWrapFlags(ComputeFlags(Ops)); 2473 return S; 2474 } 2475 2476 // Okay, check to see if the same value occurs in the operand list more than 2477 // once. If so, merge them together into an multiply expression. Since we 2478 // sorted the list, these values are required to be adjacent. 2479 Type *Ty = Ops[0]->getType(); 2480 bool FoundMatch = false; 2481 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i) 2482 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 2483 // Scan ahead to count how many equal operands there are. 2484 unsigned Count = 2; 2485 while (i+Count != e && Ops[i+Count] == Ops[i]) 2486 ++Count; 2487 // Merge the values into a multiply. 2488 const SCEV *Scale = getConstant(Ty, Count); 2489 const SCEV *Mul = getMulExpr(Scale, Ops[i], SCEV::FlagAnyWrap, Depth + 1); 2490 if (Ops.size() == Count) 2491 return Mul; 2492 Ops[i] = Mul; 2493 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count); 2494 --i; e -= Count - 1; 2495 FoundMatch = true; 2496 } 2497 if (FoundMatch) 2498 return getAddExpr(Ops, OrigFlags, Depth + 1); 2499 2500 // Check for truncates. If all the operands are truncated from the same 2501 // type, see if factoring out the truncate would permit the result to be 2502 // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y) 2503 // if the contents of the resulting outer trunc fold to something simple. 2504 auto FindTruncSrcType = [&]() -> Type * { 2505 // We're ultimately looking to fold an addrec of truncs and muls of only 2506 // constants and truncs, so if we find any other types of SCEV 2507 // as operands of the addrec then we bail and return nullptr here. 2508 // Otherwise, we return the type of the operand of a trunc that we find. 2509 if (auto *T = dyn_cast<SCEVTruncateExpr>(Ops[Idx])) 2510 return T->getOperand()->getType(); 2511 if (const auto *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 2512 const auto *LastOp = Mul->getOperand(Mul->getNumOperands() - 1); 2513 if (const auto *T = dyn_cast<SCEVTruncateExpr>(LastOp)) 2514 return T->getOperand()->getType(); 2515 } 2516 return nullptr; 2517 }; 2518 if (auto *SrcType = FindTruncSrcType()) { 2519 SmallVector<const SCEV *, 8> LargeOps; 2520 bool Ok = true; 2521 // Check all the operands to see if they can be represented in the 2522 // source type of the truncate. 2523 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 2524 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 2525 if (T->getOperand()->getType() != SrcType) { 2526 Ok = false; 2527 break; 2528 } 2529 LargeOps.push_back(T->getOperand()); 2530 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2531 LargeOps.push_back(getAnyExtendExpr(C, SrcType)); 2532 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 2533 SmallVector<const SCEV *, 8> LargeMulOps; 2534 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 2535 if (const SCEVTruncateExpr *T = 2536 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 2537 if (T->getOperand()->getType() != SrcType) { 2538 Ok = false; 2539 break; 2540 } 2541 LargeMulOps.push_back(T->getOperand()); 2542 } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) { 2543 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); 2544 } else { 2545 Ok = false; 2546 break; 2547 } 2548 } 2549 if (Ok) 2550 LargeOps.push_back(getMulExpr(LargeMulOps, SCEV::FlagAnyWrap, Depth + 1)); 2551 } else { 2552 Ok = false; 2553 break; 2554 } 2555 } 2556 if (Ok) { 2557 // Evaluate the expression in the larger type. 2558 const SCEV *Fold = getAddExpr(LargeOps, SCEV::FlagAnyWrap, Depth + 1); 2559 // If it folds to something simple, use it. Otherwise, don't. 2560 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 2561 return getTruncateExpr(Fold, Ty); 2562 } 2563 } 2564 2565 if (Ops.size() == 2) { 2566 // Check if we have an expression of the form ((X + C1) - C2), where C1 and 2567 // C2 can be folded in a way that allows retaining wrapping flags of (X + 2568 // C1). 2569 const SCEV *A = Ops[0]; 2570 const SCEV *B = Ops[1]; 2571 auto *AddExpr = dyn_cast<SCEVAddExpr>(B); 2572 auto *C = dyn_cast<SCEVConstant>(A); 2573 if (AddExpr && C && isa<SCEVConstant>(AddExpr->getOperand(0))) { 2574 auto C1 = cast<SCEVConstant>(AddExpr->getOperand(0))->getAPInt(); 2575 auto C2 = C->getAPInt(); 2576 SCEV::NoWrapFlags PreservedFlags = SCEV::FlagAnyWrap; 2577 2578 APInt ConstAdd = C1 + C2; 2579 auto AddFlags = AddExpr->getNoWrapFlags(); 2580 // Adding a smaller constant is NUW if the original AddExpr was NUW. 2581 if (ScalarEvolution::hasFlags(AddFlags, SCEV::FlagNUW) && 2582 ConstAdd.ule(C1)) { 2583 PreservedFlags = 2584 ScalarEvolution::setFlags(PreservedFlags, SCEV::FlagNUW); 2585 } 2586 2587 // Adding a constant with the same sign and small magnitude is NSW, if the 2588 // original AddExpr was NSW. 2589 if (ScalarEvolution::hasFlags(AddFlags, SCEV::FlagNSW) && 2590 C1.isSignBitSet() == ConstAdd.isSignBitSet() && 2591 ConstAdd.abs().ule(C1.abs())) { 2592 PreservedFlags = 2593 ScalarEvolution::setFlags(PreservedFlags, SCEV::FlagNSW); 2594 } 2595 2596 if (PreservedFlags != SCEV::FlagAnyWrap) { 2597 SmallVector<const SCEV *, 4> NewOps(AddExpr->operands()); 2598 NewOps[0] = getConstant(ConstAdd); 2599 return getAddExpr(NewOps, PreservedFlags); 2600 } 2601 } 2602 } 2603 2604 // Canonicalize (-1 * urem X, Y) + X --> (Y * X/Y) 2605 if (Ops.size() == 2) { 2606 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[0]); 2607 if (Mul && Mul->getNumOperands() == 2 && 2608 Mul->getOperand(0)->isAllOnesValue()) { 2609 const SCEV *X; 2610 const SCEV *Y; 2611 if (matchURem(Mul->getOperand(1), X, Y) && X == Ops[1]) { 2612 return getMulExpr(Y, getUDivExpr(X, Y)); 2613 } 2614 } 2615 } 2616 2617 // Skip past any other cast SCEVs. 2618 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 2619 ++Idx; 2620 2621 // If there are add operands they would be next. 2622 if (Idx < Ops.size()) { 2623 bool DeletedAdd = false; 2624 // If the original flags and all inlined SCEVAddExprs are NUW, use the 2625 // common NUW flag for expression after inlining. Other flags cannot be 2626 // preserved, because they may depend on the original order of operations. 2627 SCEV::NoWrapFlags CommonFlags = maskFlags(OrigFlags, SCEV::FlagNUW); 2628 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 2629 if (Ops.size() > AddOpsInlineThreshold || 2630 Add->getNumOperands() > AddOpsInlineThreshold) 2631 break; 2632 // If we have an add, expand the add operands onto the end of the operands 2633 // list. 2634 Ops.erase(Ops.begin()+Idx); 2635 Ops.append(Add->op_begin(), Add->op_end()); 2636 DeletedAdd = true; 2637 CommonFlags = maskFlags(CommonFlags, Add->getNoWrapFlags()); 2638 } 2639 2640 // If we deleted at least one add, we added operands to the end of the list, 2641 // and they are not necessarily sorted. Recurse to resort and resimplify 2642 // any operands we just acquired. 2643 if (DeletedAdd) 2644 return getAddExpr(Ops, CommonFlags, Depth + 1); 2645 } 2646 2647 // Skip over the add expression until we get to a multiply. 2648 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2649 ++Idx; 2650 2651 // Check to see if there are any folding opportunities present with 2652 // operands multiplied by constant values. 2653 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 2654 uint64_t BitWidth = getTypeSizeInBits(Ty); 2655 DenseMap<const SCEV *, APInt> M; 2656 SmallVector<const SCEV *, 8> NewOps; 2657 APInt AccumulatedConstant(BitWidth, 0); 2658 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2659 Ops.data(), Ops.size(), 2660 APInt(BitWidth, 1), *this)) { 2661 struct APIntCompare { 2662 bool operator()(const APInt &LHS, const APInt &RHS) const { 2663 return LHS.ult(RHS); 2664 } 2665 }; 2666 2667 // Some interesting folding opportunity is present, so its worthwhile to 2668 // re-generate the operands list. Group the operands by constant scale, 2669 // to avoid multiplying by the same constant scale multiple times. 2670 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 2671 for (const SCEV *NewOp : NewOps) 2672 MulOpLists[M.find(NewOp)->second].push_back(NewOp); 2673 // Re-generate the operands list. 2674 Ops.clear(); 2675 if (AccumulatedConstant != 0) 2676 Ops.push_back(getConstant(AccumulatedConstant)); 2677 for (auto &MulOp : MulOpLists) { 2678 if (MulOp.first == 1) { 2679 Ops.push_back(getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1)); 2680 } else if (MulOp.first != 0) { 2681 Ops.push_back(getMulExpr( 2682 getConstant(MulOp.first), 2683 getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1), 2684 SCEV::FlagAnyWrap, Depth + 1)); 2685 } 2686 } 2687 if (Ops.empty()) 2688 return getZero(Ty); 2689 if (Ops.size() == 1) 2690 return Ops[0]; 2691 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2692 } 2693 } 2694 2695 // If we are adding something to a multiply expression, make sure the 2696 // something is not already an operand of the multiply. If so, merge it into 2697 // the multiply. 2698 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 2699 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 2700 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 2701 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 2702 if (isa<SCEVConstant>(MulOpSCEV)) 2703 continue; 2704 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 2705 if (MulOpSCEV == Ops[AddOp]) { 2706 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 2707 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 2708 if (Mul->getNumOperands() != 2) { 2709 // If the multiply has more than two operands, we must get the 2710 // Y*Z term. 2711 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2712 Mul->op_begin()+MulOp); 2713 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2714 InnerMul = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2715 } 2716 SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul}; 2717 const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2718 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV, 2719 SCEV::FlagAnyWrap, Depth + 1); 2720 if (Ops.size() == 2) return OuterMul; 2721 if (AddOp < Idx) { 2722 Ops.erase(Ops.begin()+AddOp); 2723 Ops.erase(Ops.begin()+Idx-1); 2724 } else { 2725 Ops.erase(Ops.begin()+Idx); 2726 Ops.erase(Ops.begin()+AddOp-1); 2727 } 2728 Ops.push_back(OuterMul); 2729 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2730 } 2731 2732 // Check this multiply against other multiplies being added together. 2733 for (unsigned OtherMulIdx = Idx+1; 2734 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 2735 ++OtherMulIdx) { 2736 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 2737 // If MulOp occurs in OtherMul, we can fold the two multiplies 2738 // together. 2739 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 2740 OMulOp != e; ++OMulOp) 2741 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 2742 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 2743 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 2744 if (Mul->getNumOperands() != 2) { 2745 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2746 Mul->op_begin()+MulOp); 2747 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2748 InnerMul1 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2749 } 2750 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 2751 if (OtherMul->getNumOperands() != 2) { 2752 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), 2753 OtherMul->op_begin()+OMulOp); 2754 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end()); 2755 InnerMul2 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2756 } 2757 SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2}; 2758 const SCEV *InnerMulSum = 2759 getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2760 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum, 2761 SCEV::FlagAnyWrap, Depth + 1); 2762 if (Ops.size() == 2) return OuterMul; 2763 Ops.erase(Ops.begin()+Idx); 2764 Ops.erase(Ops.begin()+OtherMulIdx-1); 2765 Ops.push_back(OuterMul); 2766 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2767 } 2768 } 2769 } 2770 } 2771 2772 // If there are any add recurrences in the operands list, see if any other 2773 // added values are loop invariant. If so, we can fold them into the 2774 // recurrence. 2775 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2776 ++Idx; 2777 2778 // Scan over all recurrences, trying to fold loop invariants into them. 2779 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2780 // Scan all of the other operands to this add and add them to the vector if 2781 // they are loop invariant w.r.t. the recurrence. 2782 SmallVector<const SCEV *, 8> LIOps; 2783 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2784 const Loop *AddRecLoop = AddRec->getLoop(); 2785 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2786 if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) { 2787 LIOps.push_back(Ops[i]); 2788 Ops.erase(Ops.begin()+i); 2789 --i; --e; 2790 } 2791 2792 // If we found some loop invariants, fold them into the recurrence. 2793 if (!LIOps.empty()) { 2794 // Compute nowrap flags for the addition of the loop-invariant ops and 2795 // the addrec. Temporarily push it as an operand for that purpose. These 2796 // flags are valid in the scope of the addrec only. 2797 LIOps.push_back(AddRec); 2798 SCEV::NoWrapFlags Flags = ComputeFlags(LIOps); 2799 LIOps.pop_back(); 2800 2801 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 2802 LIOps.push_back(AddRec->getStart()); 2803 2804 SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands()); 2805 2806 // It is not in general safe to propagate flags valid on an add within 2807 // the addrec scope to one outside it. We must prove that the inner 2808 // scope is guaranteed to execute if the outer one does to be able to 2809 // safely propagate. We know the program is undefined if poison is 2810 // produced on the inner scoped addrec. We also know that *for this use* 2811 // the outer scoped add can't overflow (because of the flags we just 2812 // computed for the inner scoped add) without the program being undefined. 2813 // Proving that entry to the outer scope neccesitates entry to the inner 2814 // scope, thus proves the program undefined if the flags would be violated 2815 // in the outer scope. 2816 SCEV::NoWrapFlags AddFlags = Flags; 2817 if (AddFlags != SCEV::FlagAnyWrap) { 2818 auto *DefI = getDefiningScopeBound(LIOps); 2819 auto *ReachI = &*AddRecLoop->getHeader()->begin(); 2820 if (!isGuaranteedToTransferExecutionTo(DefI, ReachI)) 2821 AddFlags = SCEV::FlagAnyWrap; 2822 } 2823 AddRecOps[0] = getAddExpr(LIOps, AddFlags, Depth + 1); 2824 2825 // Build the new addrec. Propagate the NUW and NSW flags if both the 2826 // outer add and the inner addrec are guaranteed to have no overflow. 2827 // Always propagate NW. 2828 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW)); 2829 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags); 2830 2831 // If all of the other operands were loop invariant, we are done. 2832 if (Ops.size() == 1) return NewRec; 2833 2834 // Otherwise, add the folded AddRec by the non-invariant parts. 2835 for (unsigned i = 0;; ++i) 2836 if (Ops[i] == AddRec) { 2837 Ops[i] = NewRec; 2838 break; 2839 } 2840 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2841 } 2842 2843 // Okay, if there weren't any loop invariants to be folded, check to see if 2844 // there are multiple AddRec's with the same loop induction variable being 2845 // added together. If so, we can fold them. 2846 for (unsigned OtherIdx = Idx+1; 2847 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2848 ++OtherIdx) { 2849 // We expect the AddRecExpr's to be sorted in reverse dominance order, 2850 // so that the 1st found AddRecExpr is dominated by all others. 2851 assert(DT.dominates( 2852 cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(), 2853 AddRec->getLoop()->getHeader()) && 2854 "AddRecExprs are not sorted in reverse dominance order?"); 2855 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 2856 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L> 2857 SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands()); 2858 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2859 ++OtherIdx) { 2860 const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 2861 if (OtherAddRec->getLoop() == AddRecLoop) { 2862 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); 2863 i != e; ++i) { 2864 if (i >= AddRecOps.size()) { 2865 AddRecOps.append(OtherAddRec->op_begin()+i, 2866 OtherAddRec->op_end()); 2867 break; 2868 } 2869 SmallVector<const SCEV *, 2> TwoOps = { 2870 AddRecOps[i], OtherAddRec->getOperand(i)}; 2871 AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2872 } 2873 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2874 } 2875 } 2876 // Step size has changed, so we cannot guarantee no self-wraparound. 2877 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap); 2878 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2879 } 2880 } 2881 2882 // Otherwise couldn't fold anything into this recurrence. Move onto the 2883 // next one. 2884 } 2885 2886 // Okay, it looks like we really DO need an add expr. Check to see if we 2887 // already have one, otherwise create a new one. 2888 return getOrCreateAddExpr(Ops, ComputeFlags(Ops)); 2889 } 2890 2891 const SCEV * 2892 ScalarEvolution::getOrCreateAddExpr(ArrayRef<const SCEV *> Ops, 2893 SCEV::NoWrapFlags Flags) { 2894 FoldingSetNodeID ID; 2895 ID.AddInteger(scAddExpr); 2896 for (const SCEV *Op : Ops) 2897 ID.AddPointer(Op); 2898 void *IP = nullptr; 2899 SCEVAddExpr *S = 2900 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2901 if (!S) { 2902 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2903 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2904 S = new (SCEVAllocator) 2905 SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size()); 2906 UniqueSCEVs.InsertNode(S, IP); 2907 registerUser(S, Ops); 2908 } 2909 S->setNoWrapFlags(Flags); 2910 return S; 2911 } 2912 2913 const SCEV * 2914 ScalarEvolution::getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops, 2915 const Loop *L, SCEV::NoWrapFlags Flags) { 2916 FoldingSetNodeID ID; 2917 ID.AddInteger(scAddRecExpr); 2918 for (const SCEV *Op : Ops) 2919 ID.AddPointer(Op); 2920 ID.AddPointer(L); 2921 void *IP = nullptr; 2922 SCEVAddRecExpr *S = 2923 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2924 if (!S) { 2925 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2926 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2927 S = new (SCEVAllocator) 2928 SCEVAddRecExpr(ID.Intern(SCEVAllocator), O, Ops.size(), L); 2929 UniqueSCEVs.InsertNode(S, IP); 2930 LoopUsers[L].push_back(S); 2931 registerUser(S, Ops); 2932 } 2933 setNoWrapFlags(S, Flags); 2934 return S; 2935 } 2936 2937 const SCEV * 2938 ScalarEvolution::getOrCreateMulExpr(ArrayRef<const SCEV *> Ops, 2939 SCEV::NoWrapFlags Flags) { 2940 FoldingSetNodeID ID; 2941 ID.AddInteger(scMulExpr); 2942 for (const SCEV *Op : Ops) 2943 ID.AddPointer(Op); 2944 void *IP = nullptr; 2945 SCEVMulExpr *S = 2946 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2947 if (!S) { 2948 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2949 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2950 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), 2951 O, Ops.size()); 2952 UniqueSCEVs.InsertNode(S, IP); 2953 registerUser(S, Ops); 2954 } 2955 S->setNoWrapFlags(Flags); 2956 return S; 2957 } 2958 2959 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) { 2960 uint64_t k = i*j; 2961 if (j > 1 && k / j != i) Overflow = true; 2962 return k; 2963 } 2964 2965 /// Compute the result of "n choose k", the binomial coefficient. If an 2966 /// intermediate computation overflows, Overflow will be set and the return will 2967 /// be garbage. Overflow is not cleared on absence of overflow. 2968 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) { 2969 // We use the multiplicative formula: 2970 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 . 2971 // At each iteration, we take the n-th term of the numeral and divide by the 2972 // (k-n)th term of the denominator. This division will always produce an 2973 // integral result, and helps reduce the chance of overflow in the 2974 // intermediate computations. However, we can still overflow even when the 2975 // final result would fit. 2976 2977 if (n == 0 || n == k) return 1; 2978 if (k > n) return 0; 2979 2980 if (k > n/2) 2981 k = n-k; 2982 2983 uint64_t r = 1; 2984 for (uint64_t i = 1; i <= k; ++i) { 2985 r = umul_ov(r, n-(i-1), Overflow); 2986 r /= i; 2987 } 2988 return r; 2989 } 2990 2991 /// Determine if any of the operands in this SCEV are a constant or if 2992 /// any of the add or multiply expressions in this SCEV contain a constant. 2993 static bool containsConstantInAddMulChain(const SCEV *StartExpr) { 2994 struct FindConstantInAddMulChain { 2995 bool FoundConstant = false; 2996 2997 bool follow(const SCEV *S) { 2998 FoundConstant |= isa<SCEVConstant>(S); 2999 return isa<SCEVAddExpr>(S) || isa<SCEVMulExpr>(S); 3000 } 3001 3002 bool isDone() const { 3003 return FoundConstant; 3004 } 3005 }; 3006 3007 FindConstantInAddMulChain F; 3008 SCEVTraversal<FindConstantInAddMulChain> ST(F); 3009 ST.visitAll(StartExpr); 3010 return F.FoundConstant; 3011 } 3012 3013 /// Get a canonical multiply expression, or something simpler if possible. 3014 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 3015 SCEV::NoWrapFlags OrigFlags, 3016 unsigned Depth) { 3017 assert(OrigFlags == maskFlags(OrigFlags, SCEV::FlagNUW | SCEV::FlagNSW) && 3018 "only nuw or nsw allowed"); 3019 assert(!Ops.empty() && "Cannot get empty mul!"); 3020 if (Ops.size() == 1) return Ops[0]; 3021 #ifndef NDEBUG 3022 Type *ETy = Ops[0]->getType(); 3023 assert(!ETy->isPointerTy()); 3024 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 3025 assert(Ops[i]->getType() == ETy && 3026 "SCEVMulExpr operand types don't match!"); 3027 #endif 3028 3029 // Sort by complexity, this groups all similar expression types together. 3030 GroupByComplexity(Ops, &LI, DT); 3031 3032 // If there are any constants, fold them together. 3033 unsigned Idx = 0; 3034 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3035 ++Idx; 3036 assert(Idx < Ops.size()); 3037 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3038 // We found two constants, fold them together! 3039 Ops[0] = getConstant(LHSC->getAPInt() * RHSC->getAPInt()); 3040 if (Ops.size() == 2) return Ops[0]; 3041 Ops.erase(Ops.begin()+1); // Erase the folded element 3042 LHSC = cast<SCEVConstant>(Ops[0]); 3043 } 3044 3045 // If we have a multiply of zero, it will always be zero. 3046 if (LHSC->getValue()->isZero()) 3047 return LHSC; 3048 3049 // If we are left with a constant one being multiplied, strip it off. 3050 if (LHSC->getValue()->isOne()) { 3051 Ops.erase(Ops.begin()); 3052 --Idx; 3053 } 3054 3055 if (Ops.size() == 1) 3056 return Ops[0]; 3057 } 3058 3059 // Delay expensive flag strengthening until necessary. 3060 auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) { 3061 return StrengthenNoWrapFlags(this, scMulExpr, Ops, OrigFlags); 3062 }; 3063 3064 // Limit recursion calls depth. 3065 if (Depth > MaxArithDepth || hasHugeExpression(Ops)) 3066 return getOrCreateMulExpr(Ops, ComputeFlags(Ops)); 3067 3068 if (SCEV *S = findExistingSCEVInCache(scMulExpr, Ops)) { 3069 // Don't strengthen flags if we have no new information. 3070 SCEVMulExpr *Mul = static_cast<SCEVMulExpr *>(S); 3071 if (Mul->getNoWrapFlags(OrigFlags) != OrigFlags) 3072 Mul->setNoWrapFlags(ComputeFlags(Ops)); 3073 return S; 3074 } 3075 3076 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3077 if (Ops.size() == 2) { 3078 // C1*(C2+V) -> C1*C2 + C1*V 3079 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 3080 // If any of Add's ops are Adds or Muls with a constant, apply this 3081 // transformation as well. 3082 // 3083 // TODO: There are some cases where this transformation is not 3084 // profitable; for example, Add = (C0 + X) * Y + Z. Maybe the scope of 3085 // this transformation should be narrowed down. 3086 if (Add->getNumOperands() == 2 && containsConstantInAddMulChain(Add)) 3087 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0), 3088 SCEV::FlagAnyWrap, Depth + 1), 3089 getMulExpr(LHSC, Add->getOperand(1), 3090 SCEV::FlagAnyWrap, Depth + 1), 3091 SCEV::FlagAnyWrap, Depth + 1); 3092 3093 if (Ops[0]->isAllOnesValue()) { 3094 // If we have a mul by -1 of an add, try distributing the -1 among the 3095 // add operands. 3096 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 3097 SmallVector<const SCEV *, 4> NewOps; 3098 bool AnyFolded = false; 3099 for (const SCEV *AddOp : Add->operands()) { 3100 const SCEV *Mul = getMulExpr(Ops[0], AddOp, SCEV::FlagAnyWrap, 3101 Depth + 1); 3102 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 3103 NewOps.push_back(Mul); 3104 } 3105 if (AnyFolded) 3106 return getAddExpr(NewOps, SCEV::FlagAnyWrap, Depth + 1); 3107 } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) { 3108 // Negation preserves a recurrence's no self-wrap property. 3109 SmallVector<const SCEV *, 4> Operands; 3110 for (const SCEV *AddRecOp : AddRec->operands()) 3111 Operands.push_back(getMulExpr(Ops[0], AddRecOp, SCEV::FlagAnyWrap, 3112 Depth + 1)); 3113 3114 return getAddRecExpr(Operands, AddRec->getLoop(), 3115 AddRec->getNoWrapFlags(SCEV::FlagNW)); 3116 } 3117 } 3118 } 3119 } 3120 3121 // Skip over the add expression until we get to a multiply. 3122 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 3123 ++Idx; 3124 3125 // If there are mul operands inline them all into this expression. 3126 if (Idx < Ops.size()) { 3127 bool DeletedMul = false; 3128 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 3129 if (Ops.size() > MulOpsInlineThreshold) 3130 break; 3131 // If we have an mul, expand the mul operands onto the end of the 3132 // operands list. 3133 Ops.erase(Ops.begin()+Idx); 3134 Ops.append(Mul->op_begin(), Mul->op_end()); 3135 DeletedMul = true; 3136 } 3137 3138 // If we deleted at least one mul, we added operands to the end of the 3139 // list, and they are not necessarily sorted. Recurse to resort and 3140 // resimplify any operands we just acquired. 3141 if (DeletedMul) 3142 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 3143 } 3144 3145 // If there are any add recurrences in the operands list, see if any other 3146 // added values are loop invariant. If so, we can fold them into the 3147 // recurrence. 3148 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 3149 ++Idx; 3150 3151 // Scan over all recurrences, trying to fold loop invariants into them. 3152 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 3153 // Scan all of the other operands to this mul and add them to the vector 3154 // if they are loop invariant w.r.t. the recurrence. 3155 SmallVector<const SCEV *, 8> LIOps; 3156 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 3157 const Loop *AddRecLoop = AddRec->getLoop(); 3158 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3159 if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) { 3160 LIOps.push_back(Ops[i]); 3161 Ops.erase(Ops.begin()+i); 3162 --i; --e; 3163 } 3164 3165 // If we found some loop invariants, fold them into the recurrence. 3166 if (!LIOps.empty()) { 3167 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 3168 SmallVector<const SCEV *, 4> NewOps; 3169 NewOps.reserve(AddRec->getNumOperands()); 3170 const SCEV *Scale = getMulExpr(LIOps, SCEV::FlagAnyWrap, Depth + 1); 3171 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 3172 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i), 3173 SCEV::FlagAnyWrap, Depth + 1)); 3174 3175 // Build the new addrec. Propagate the NUW and NSW flags if both the 3176 // outer mul and the inner addrec are guaranteed to have no overflow. 3177 // 3178 // No self-wrap cannot be guaranteed after changing the step size, but 3179 // will be inferred if either NUW or NSW is true. 3180 SCEV::NoWrapFlags Flags = ComputeFlags({Scale, AddRec}); 3181 const SCEV *NewRec = getAddRecExpr( 3182 NewOps, AddRecLoop, AddRec->getNoWrapFlags(Flags)); 3183 3184 // If all of the other operands were loop invariant, we are done. 3185 if (Ops.size() == 1) return NewRec; 3186 3187 // Otherwise, multiply the folded AddRec by the non-invariant parts. 3188 for (unsigned i = 0;; ++i) 3189 if (Ops[i] == AddRec) { 3190 Ops[i] = NewRec; 3191 break; 3192 } 3193 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 3194 } 3195 3196 // Okay, if there weren't any loop invariants to be folded, check to see 3197 // if there are multiple AddRec's with the same loop induction variable 3198 // being multiplied together. If so, we can fold them. 3199 3200 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L> 3201 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [ 3202 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z 3203 // ]]],+,...up to x=2n}. 3204 // Note that the arguments to choose() are always integers with values 3205 // known at compile time, never SCEV objects. 3206 // 3207 // The implementation avoids pointless extra computations when the two 3208 // addrec's are of different length (mathematically, it's equivalent to 3209 // an infinite stream of zeros on the right). 3210 bool OpsModified = false; 3211 for (unsigned OtherIdx = Idx+1; 3212 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 3213 ++OtherIdx) { 3214 const SCEVAddRecExpr *OtherAddRec = 3215 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]); 3216 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop) 3217 continue; 3218 3219 // Limit max number of arguments to avoid creation of unreasonably big 3220 // SCEVAddRecs with very complex operands. 3221 if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 > 3222 MaxAddRecSize || hasHugeExpression({AddRec, OtherAddRec})) 3223 continue; 3224 3225 bool Overflow = false; 3226 Type *Ty = AddRec->getType(); 3227 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64; 3228 SmallVector<const SCEV*, 7> AddRecOps; 3229 for (int x = 0, xe = AddRec->getNumOperands() + 3230 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) { 3231 SmallVector <const SCEV *, 7> SumOps; 3232 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) { 3233 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow); 3234 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1), 3235 ze = std::min(x+1, (int)OtherAddRec->getNumOperands()); 3236 z < ze && !Overflow; ++z) { 3237 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow); 3238 uint64_t Coeff; 3239 if (LargerThan64Bits) 3240 Coeff = umul_ov(Coeff1, Coeff2, Overflow); 3241 else 3242 Coeff = Coeff1*Coeff2; 3243 const SCEV *CoeffTerm = getConstant(Ty, Coeff); 3244 const SCEV *Term1 = AddRec->getOperand(y-z); 3245 const SCEV *Term2 = OtherAddRec->getOperand(z); 3246 SumOps.push_back(getMulExpr(CoeffTerm, Term1, Term2, 3247 SCEV::FlagAnyWrap, Depth + 1)); 3248 } 3249 } 3250 if (SumOps.empty()) 3251 SumOps.push_back(getZero(Ty)); 3252 AddRecOps.push_back(getAddExpr(SumOps, SCEV::FlagAnyWrap, Depth + 1)); 3253 } 3254 if (!Overflow) { 3255 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRecLoop, 3256 SCEV::FlagAnyWrap); 3257 if (Ops.size() == 2) return NewAddRec; 3258 Ops[Idx] = NewAddRec; 3259 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 3260 OpsModified = true; 3261 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec); 3262 if (!AddRec) 3263 break; 3264 } 3265 } 3266 if (OpsModified) 3267 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 3268 3269 // Otherwise couldn't fold anything into this recurrence. Move onto the 3270 // next one. 3271 } 3272 3273 // Okay, it looks like we really DO need an mul expr. Check to see if we 3274 // already have one, otherwise create a new one. 3275 return getOrCreateMulExpr(Ops, ComputeFlags(Ops)); 3276 } 3277 3278 /// Represents an unsigned remainder expression based on unsigned division. 3279 const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS, 3280 const SCEV *RHS) { 3281 assert(getEffectiveSCEVType(LHS->getType()) == 3282 getEffectiveSCEVType(RHS->getType()) && 3283 "SCEVURemExpr operand types don't match!"); 3284 3285 // Short-circuit easy cases 3286 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 3287 // If constant is one, the result is trivial 3288 if (RHSC->getValue()->isOne()) 3289 return getZero(LHS->getType()); // X urem 1 --> 0 3290 3291 // If constant is a power of two, fold into a zext(trunc(LHS)). 3292 if (RHSC->getAPInt().isPowerOf2()) { 3293 Type *FullTy = LHS->getType(); 3294 Type *TruncTy = 3295 IntegerType::get(getContext(), RHSC->getAPInt().logBase2()); 3296 return getZeroExtendExpr(getTruncateExpr(LHS, TruncTy), FullTy); 3297 } 3298 } 3299 3300 // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y) 3301 const SCEV *UDiv = getUDivExpr(LHS, RHS); 3302 const SCEV *Mult = getMulExpr(UDiv, RHS, SCEV::FlagNUW); 3303 return getMinusSCEV(LHS, Mult, SCEV::FlagNUW); 3304 } 3305 3306 /// Get a canonical unsigned division expression, or something simpler if 3307 /// possible. 3308 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 3309 const SCEV *RHS) { 3310 assert(!LHS->getType()->isPointerTy() && 3311 "SCEVUDivExpr operand can't be pointer!"); 3312 assert(LHS->getType() == RHS->getType() && 3313 "SCEVUDivExpr operand types don't match!"); 3314 3315 FoldingSetNodeID ID; 3316 ID.AddInteger(scUDivExpr); 3317 ID.AddPointer(LHS); 3318 ID.AddPointer(RHS); 3319 void *IP = nullptr; 3320 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 3321 return S; 3322 3323 // 0 udiv Y == 0 3324 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) 3325 if (LHSC->getValue()->isZero()) 3326 return LHS; 3327 3328 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 3329 if (RHSC->getValue()->isOne()) 3330 return LHS; // X udiv 1 --> x 3331 // If the denominator is zero, the result of the udiv is undefined. Don't 3332 // try to analyze it, because the resolution chosen here may differ from 3333 // the resolution chosen in other parts of the compiler. 3334 if (!RHSC->getValue()->isZero()) { 3335 // Determine if the division can be folded into the operands of 3336 // its operands. 3337 // TODO: Generalize this to non-constants by using known-bits information. 3338 Type *Ty = LHS->getType(); 3339 unsigned LZ = RHSC->getAPInt().countLeadingZeros(); 3340 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; 3341 // For non-power-of-two values, effectively round the value up to the 3342 // nearest power of two. 3343 if (!RHSC->getAPInt().isPowerOf2()) 3344 ++MaxShiftAmt; 3345 IntegerType *ExtTy = 3346 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 3347 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 3348 if (const SCEVConstant *Step = 3349 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) { 3350 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 3351 const APInt &StepInt = Step->getAPInt(); 3352 const APInt &DivInt = RHSC->getAPInt(); 3353 if (!StepInt.urem(DivInt) && 3354 getZeroExtendExpr(AR, ExtTy) == 3355 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 3356 getZeroExtendExpr(Step, ExtTy), 3357 AR->getLoop(), SCEV::FlagAnyWrap)) { 3358 SmallVector<const SCEV *, 4> Operands; 3359 for (const SCEV *Op : AR->operands()) 3360 Operands.push_back(getUDivExpr(Op, RHS)); 3361 return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW); 3362 } 3363 /// Get a canonical UDivExpr for a recurrence. 3364 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0. 3365 // We can currently only fold X%N if X is constant. 3366 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart()); 3367 if (StartC && !DivInt.urem(StepInt) && 3368 getZeroExtendExpr(AR, ExtTy) == 3369 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 3370 getZeroExtendExpr(Step, ExtTy), 3371 AR->getLoop(), SCEV::FlagAnyWrap)) { 3372 const APInt &StartInt = StartC->getAPInt(); 3373 const APInt &StartRem = StartInt.urem(StepInt); 3374 if (StartRem != 0) { 3375 const SCEV *NewLHS = 3376 getAddRecExpr(getConstant(StartInt - StartRem), Step, 3377 AR->getLoop(), SCEV::FlagNW); 3378 if (LHS != NewLHS) { 3379 LHS = NewLHS; 3380 3381 // Reset the ID to include the new LHS, and check if it is 3382 // already cached. 3383 ID.clear(); 3384 ID.AddInteger(scUDivExpr); 3385 ID.AddPointer(LHS); 3386 ID.AddPointer(RHS); 3387 IP = nullptr; 3388 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 3389 return S; 3390 } 3391 } 3392 } 3393 } 3394 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 3395 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 3396 SmallVector<const SCEV *, 4> Operands; 3397 for (const SCEV *Op : M->operands()) 3398 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 3399 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 3400 // Find an operand that's safely divisible. 3401 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 3402 const SCEV *Op = M->getOperand(i); 3403 const SCEV *Div = getUDivExpr(Op, RHSC); 3404 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 3405 Operands = SmallVector<const SCEV *, 4>(M->operands()); 3406 Operands[i] = Div; 3407 return getMulExpr(Operands); 3408 } 3409 } 3410 } 3411 3412 // (A/B)/C --> A/(B*C) if safe and B*C can be folded. 3413 if (const SCEVUDivExpr *OtherDiv = dyn_cast<SCEVUDivExpr>(LHS)) { 3414 if (auto *DivisorConstant = 3415 dyn_cast<SCEVConstant>(OtherDiv->getRHS())) { 3416 bool Overflow = false; 3417 APInt NewRHS = 3418 DivisorConstant->getAPInt().umul_ov(RHSC->getAPInt(), Overflow); 3419 if (Overflow) { 3420 return getConstant(RHSC->getType(), 0, false); 3421 } 3422 return getUDivExpr(OtherDiv->getLHS(), getConstant(NewRHS)); 3423 } 3424 } 3425 3426 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 3427 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) { 3428 SmallVector<const SCEV *, 4> Operands; 3429 for (const SCEV *Op : A->operands()) 3430 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 3431 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 3432 Operands.clear(); 3433 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 3434 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 3435 if (isa<SCEVUDivExpr>(Op) || 3436 getMulExpr(Op, RHS) != A->getOperand(i)) 3437 break; 3438 Operands.push_back(Op); 3439 } 3440 if (Operands.size() == A->getNumOperands()) 3441 return getAddExpr(Operands); 3442 } 3443 } 3444 3445 // Fold if both operands are constant. 3446 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 3447 Constant *LHSCV = LHSC->getValue(); 3448 Constant *RHSCV = RHSC->getValue(); 3449 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, 3450 RHSCV))); 3451 } 3452 } 3453 } 3454 3455 // The Insertion Point (IP) might be invalid by now (due to UniqueSCEVs 3456 // changes). Make sure we get a new one. 3457 IP = nullptr; 3458 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3459 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), 3460 LHS, RHS); 3461 UniqueSCEVs.InsertNode(S, IP); 3462 registerUser(S, {LHS, RHS}); 3463 return S; 3464 } 3465 3466 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) { 3467 APInt A = C1->getAPInt().abs(); 3468 APInt B = C2->getAPInt().abs(); 3469 uint32_t ABW = A.getBitWidth(); 3470 uint32_t BBW = B.getBitWidth(); 3471 3472 if (ABW > BBW) 3473 B = B.zext(ABW); 3474 else if (ABW < BBW) 3475 A = A.zext(BBW); 3476 3477 return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B)); 3478 } 3479 3480 /// Get a canonical unsigned division expression, or something simpler if 3481 /// possible. There is no representation for an exact udiv in SCEV IR, but we 3482 /// can attempt to remove factors from the LHS and RHS. We can't do this when 3483 /// it's not exact because the udiv may be clearing bits. 3484 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS, 3485 const SCEV *RHS) { 3486 // TODO: we could try to find factors in all sorts of things, but for now we 3487 // just deal with u/exact (multiply, constant). See SCEVDivision towards the 3488 // end of this file for inspiration. 3489 3490 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS); 3491 if (!Mul || !Mul->hasNoUnsignedWrap()) 3492 return getUDivExpr(LHS, RHS); 3493 3494 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) { 3495 // If the mulexpr multiplies by a constant, then that constant must be the 3496 // first element of the mulexpr. 3497 if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 3498 if (LHSCst == RHSCst) { 3499 SmallVector<const SCEV *, 2> Operands(drop_begin(Mul->operands())); 3500 return getMulExpr(Operands); 3501 } 3502 3503 // We can't just assume that LHSCst divides RHSCst cleanly, it could be 3504 // that there's a factor provided by one of the other terms. We need to 3505 // check. 3506 APInt Factor = gcd(LHSCst, RHSCst); 3507 if (!Factor.isIntN(1)) { 3508 LHSCst = 3509 cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor))); 3510 RHSCst = 3511 cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor))); 3512 SmallVector<const SCEV *, 2> Operands; 3513 Operands.push_back(LHSCst); 3514 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 3515 LHS = getMulExpr(Operands); 3516 RHS = RHSCst; 3517 Mul = dyn_cast<SCEVMulExpr>(LHS); 3518 if (!Mul) 3519 return getUDivExactExpr(LHS, RHS); 3520 } 3521 } 3522 } 3523 3524 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) { 3525 if (Mul->getOperand(i) == RHS) { 3526 SmallVector<const SCEV *, 2> Operands; 3527 Operands.append(Mul->op_begin(), Mul->op_begin() + i); 3528 Operands.append(Mul->op_begin() + i + 1, Mul->op_end()); 3529 return getMulExpr(Operands); 3530 } 3531 } 3532 3533 return getUDivExpr(LHS, RHS); 3534 } 3535 3536 /// Get an add recurrence expression for the specified loop. Simplify the 3537 /// expression as much as possible. 3538 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step, 3539 const Loop *L, 3540 SCEV::NoWrapFlags Flags) { 3541 SmallVector<const SCEV *, 4> Operands; 3542 Operands.push_back(Start); 3543 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 3544 if (StepChrec->getLoop() == L) { 3545 Operands.append(StepChrec->op_begin(), StepChrec->op_end()); 3546 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW)); 3547 } 3548 3549 Operands.push_back(Step); 3550 return getAddRecExpr(Operands, L, Flags); 3551 } 3552 3553 /// Get an add recurrence expression for the specified loop. Simplify the 3554 /// expression as much as possible. 3555 const SCEV * 3556 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 3557 const Loop *L, SCEV::NoWrapFlags Flags) { 3558 if (Operands.size() == 1) return Operands[0]; 3559 #ifndef NDEBUG 3560 Type *ETy = getEffectiveSCEVType(Operands[0]->getType()); 3561 for (unsigned i = 1, e = Operands.size(); i != e; ++i) { 3562 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy && 3563 "SCEVAddRecExpr operand types don't match!"); 3564 assert(!Operands[i]->getType()->isPointerTy() && "Step must be integer"); 3565 } 3566 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 3567 assert(isLoopInvariant(Operands[i], L) && 3568 "SCEVAddRecExpr operand is not loop-invariant!"); 3569 #endif 3570 3571 if (Operands.back()->isZero()) { 3572 Operands.pop_back(); 3573 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X 3574 } 3575 3576 // It's tempting to want to call getConstantMaxBackedgeTakenCount count here and 3577 // use that information to infer NUW and NSW flags. However, computing a 3578 // BE count requires calling getAddRecExpr, so we may not yet have a 3579 // meaningful BE count at this point (and if we don't, we'd be stuck 3580 // with a SCEVCouldNotCompute as the cached BE count). 3581 3582 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags); 3583 3584 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 3585 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 3586 const Loop *NestedLoop = NestedAR->getLoop(); 3587 if (L->contains(NestedLoop) 3588 ? (L->getLoopDepth() < NestedLoop->getLoopDepth()) 3589 : (!NestedLoop->contains(L) && 3590 DT.dominates(L->getHeader(), NestedLoop->getHeader()))) { 3591 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->operands()); 3592 Operands[0] = NestedAR->getStart(); 3593 // AddRecs require their operands be loop-invariant with respect to their 3594 // loops. Don't perform this transformation if it would break this 3595 // requirement. 3596 bool AllInvariant = all_of( 3597 Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); }); 3598 3599 if (AllInvariant) { 3600 // Create a recurrence for the outer loop with the same step size. 3601 // 3602 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the 3603 // inner recurrence has the same property. 3604 SCEV::NoWrapFlags OuterFlags = 3605 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags()); 3606 3607 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags); 3608 AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) { 3609 return isLoopInvariant(Op, NestedLoop); 3610 }); 3611 3612 if (AllInvariant) { 3613 // Ok, both add recurrences are valid after the transformation. 3614 // 3615 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if 3616 // the outer recurrence has the same property. 3617 SCEV::NoWrapFlags InnerFlags = 3618 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags); 3619 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags); 3620 } 3621 } 3622 // Reset Operands to its original state. 3623 Operands[0] = NestedAR; 3624 } 3625 } 3626 3627 // Okay, it looks like we really DO need an addrec expr. Check to see if we 3628 // already have one, otherwise create a new one. 3629 return getOrCreateAddRecExpr(Operands, L, Flags); 3630 } 3631 3632 const SCEV * 3633 ScalarEvolution::getGEPExpr(GEPOperator *GEP, 3634 const SmallVectorImpl<const SCEV *> &IndexExprs) { 3635 const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand()); 3636 // getSCEV(Base)->getType() has the same address space as Base->getType() 3637 // because SCEV::getType() preserves the address space. 3638 Type *IntIdxTy = getEffectiveSCEVType(BaseExpr->getType()); 3639 const bool AssumeInBoundsFlags = [&]() { 3640 if (!GEP->isInBounds()) 3641 return false; 3642 3643 // We'd like to propagate flags from the IR to the corresponding SCEV nodes, 3644 // but to do that, we have to ensure that said flag is valid in the entire 3645 // defined scope of the SCEV. 3646 auto *GEPI = dyn_cast<Instruction>(GEP); 3647 // TODO: non-instructions have global scope. We might be able to prove 3648 // some global scope cases 3649 return GEPI && isSCEVExprNeverPoison(GEPI); 3650 }(); 3651 3652 SCEV::NoWrapFlags OffsetWrap = 3653 AssumeInBoundsFlags ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3654 3655 Type *CurTy = GEP->getType(); 3656 bool FirstIter = true; 3657 SmallVector<const SCEV *, 4> Offsets; 3658 for (const SCEV *IndexExpr : IndexExprs) { 3659 // Compute the (potentially symbolic) offset in bytes for this index. 3660 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 3661 // For a struct, add the member offset. 3662 ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue(); 3663 unsigned FieldNo = Index->getZExtValue(); 3664 const SCEV *FieldOffset = getOffsetOfExpr(IntIdxTy, STy, FieldNo); 3665 Offsets.push_back(FieldOffset); 3666 3667 // Update CurTy to the type of the field at Index. 3668 CurTy = STy->getTypeAtIndex(Index); 3669 } else { 3670 // Update CurTy to its element type. 3671 if (FirstIter) { 3672 assert(isa<PointerType>(CurTy) && 3673 "The first index of a GEP indexes a pointer"); 3674 CurTy = GEP->getSourceElementType(); 3675 FirstIter = false; 3676 } else { 3677 CurTy = GetElementPtrInst::getTypeAtIndex(CurTy, (uint64_t)0); 3678 } 3679 // For an array, add the element offset, explicitly scaled. 3680 const SCEV *ElementSize = getSizeOfExpr(IntIdxTy, CurTy); 3681 // Getelementptr indices are signed. 3682 IndexExpr = getTruncateOrSignExtend(IndexExpr, IntIdxTy); 3683 3684 // Multiply the index by the element size to compute the element offset. 3685 const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, OffsetWrap); 3686 Offsets.push_back(LocalOffset); 3687 } 3688 } 3689 3690 // Handle degenerate case of GEP without offsets. 3691 if (Offsets.empty()) 3692 return BaseExpr; 3693 3694 // Add the offsets together, assuming nsw if inbounds. 3695 const SCEV *Offset = getAddExpr(Offsets, OffsetWrap); 3696 // Add the base address and the offset. We cannot use the nsw flag, as the 3697 // base address is unsigned. However, if we know that the offset is 3698 // non-negative, we can use nuw. 3699 SCEV::NoWrapFlags BaseWrap = AssumeInBoundsFlags && isKnownNonNegative(Offset) 3700 ? SCEV::FlagNUW : SCEV::FlagAnyWrap; 3701 auto *GEPExpr = getAddExpr(BaseExpr, Offset, BaseWrap); 3702 assert(BaseExpr->getType() == GEPExpr->getType() && 3703 "GEP should not change type mid-flight."); 3704 return GEPExpr; 3705 } 3706 3707 SCEV *ScalarEvolution::findExistingSCEVInCache(SCEVTypes SCEVType, 3708 ArrayRef<const SCEV *> Ops) { 3709 FoldingSetNodeID ID; 3710 ID.AddInteger(SCEVType); 3711 for (const SCEV *Op : Ops) 3712 ID.AddPointer(Op); 3713 void *IP = nullptr; 3714 return UniqueSCEVs.FindNodeOrInsertPos(ID, IP); 3715 } 3716 3717 const SCEV *ScalarEvolution::getAbsExpr(const SCEV *Op, bool IsNSW) { 3718 SCEV::NoWrapFlags Flags = IsNSW ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3719 return getSMaxExpr(Op, getNegativeSCEV(Op, Flags)); 3720 } 3721 3722 const SCEV *ScalarEvolution::getMinMaxExpr(SCEVTypes Kind, 3723 SmallVectorImpl<const SCEV *> &Ops) { 3724 assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!"); 3725 if (Ops.size() == 1) return Ops[0]; 3726 #ifndef NDEBUG 3727 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3728 for (unsigned i = 1, e = Ops.size(); i != e; ++i) { 3729 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3730 "Operand types don't match!"); 3731 assert(Ops[0]->getType()->isPointerTy() == 3732 Ops[i]->getType()->isPointerTy() && 3733 "min/max should be consistently pointerish"); 3734 } 3735 #endif 3736 3737 bool IsSigned = Kind == scSMaxExpr || Kind == scSMinExpr; 3738 bool IsMax = Kind == scSMaxExpr || Kind == scUMaxExpr; 3739 3740 // Sort by complexity, this groups all similar expression types together. 3741 GroupByComplexity(Ops, &LI, DT); 3742 3743 // Check if we have created the same expression before. 3744 if (const SCEV *S = findExistingSCEVInCache(Kind, Ops)) { 3745 return S; 3746 } 3747 3748 // If there are any constants, fold them together. 3749 unsigned Idx = 0; 3750 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3751 ++Idx; 3752 assert(Idx < Ops.size()); 3753 auto FoldOp = [&](const APInt &LHS, const APInt &RHS) { 3754 if (Kind == scSMaxExpr) 3755 return APIntOps::smax(LHS, RHS); 3756 else if (Kind == scSMinExpr) 3757 return APIntOps::smin(LHS, RHS); 3758 else if (Kind == scUMaxExpr) 3759 return APIntOps::umax(LHS, RHS); 3760 else if (Kind == scUMinExpr) 3761 return APIntOps::umin(LHS, RHS); 3762 llvm_unreachable("Unknown SCEV min/max opcode"); 3763 }; 3764 3765 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3766 // We found two constants, fold them together! 3767 ConstantInt *Fold = ConstantInt::get( 3768 getContext(), FoldOp(LHSC->getAPInt(), RHSC->getAPInt())); 3769 Ops[0] = getConstant(Fold); 3770 Ops.erase(Ops.begin()+1); // Erase the folded element 3771 if (Ops.size() == 1) return Ops[0]; 3772 LHSC = cast<SCEVConstant>(Ops[0]); 3773 } 3774 3775 bool IsMinV = LHSC->getValue()->isMinValue(IsSigned); 3776 bool IsMaxV = LHSC->getValue()->isMaxValue(IsSigned); 3777 3778 if (IsMax ? IsMinV : IsMaxV) { 3779 // If we are left with a constant minimum(/maximum)-int, strip it off. 3780 Ops.erase(Ops.begin()); 3781 --Idx; 3782 } else if (IsMax ? IsMaxV : IsMinV) { 3783 // If we have a max(/min) with a constant maximum(/minimum)-int, 3784 // it will always be the extremum. 3785 return LHSC; 3786 } 3787 3788 if (Ops.size() == 1) return Ops[0]; 3789 } 3790 3791 // Find the first operation of the same kind 3792 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < Kind) 3793 ++Idx; 3794 3795 // Check to see if one of the operands is of the same kind. If so, expand its 3796 // operands onto our operand list, and recurse to simplify. 3797 if (Idx < Ops.size()) { 3798 bool DeletedAny = false; 3799 while (Ops[Idx]->getSCEVType() == Kind) { 3800 const SCEVMinMaxExpr *SMME = cast<SCEVMinMaxExpr>(Ops[Idx]); 3801 Ops.erase(Ops.begin()+Idx); 3802 Ops.append(SMME->op_begin(), SMME->op_end()); 3803 DeletedAny = true; 3804 } 3805 3806 if (DeletedAny) 3807 return getMinMaxExpr(Kind, Ops); 3808 } 3809 3810 // Okay, check to see if the same value occurs in the operand list twice. If 3811 // so, delete one. Since we sorted the list, these values are required to 3812 // be adjacent. 3813 llvm::CmpInst::Predicate GEPred = 3814 IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; 3815 llvm::CmpInst::Predicate LEPred = 3816 IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 3817 llvm::CmpInst::Predicate FirstPred = IsMax ? GEPred : LEPred; 3818 llvm::CmpInst::Predicate SecondPred = IsMax ? LEPred : GEPred; 3819 for (unsigned i = 0, e = Ops.size() - 1; i != e; ++i) { 3820 if (Ops[i] == Ops[i + 1] || 3821 isKnownViaNonRecursiveReasoning(FirstPred, Ops[i], Ops[i + 1])) { 3822 // X op Y op Y --> X op Y 3823 // X op Y --> X, if we know X, Y are ordered appropriately 3824 Ops.erase(Ops.begin() + i + 1, Ops.begin() + i + 2); 3825 --i; 3826 --e; 3827 } else if (isKnownViaNonRecursiveReasoning(SecondPred, Ops[i], 3828 Ops[i + 1])) { 3829 // X op Y --> Y, if we know X, Y are ordered appropriately 3830 Ops.erase(Ops.begin() + i, Ops.begin() + i + 1); 3831 --i; 3832 --e; 3833 } 3834 } 3835 3836 if (Ops.size() == 1) return Ops[0]; 3837 3838 assert(!Ops.empty() && "Reduced smax down to nothing!"); 3839 3840 // Okay, it looks like we really DO need an expr. Check to see if we 3841 // already have one, otherwise create a new one. 3842 FoldingSetNodeID ID; 3843 ID.AddInteger(Kind); 3844 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3845 ID.AddPointer(Ops[i]); 3846 void *IP = nullptr; 3847 const SCEV *ExistingSCEV = UniqueSCEVs.FindNodeOrInsertPos(ID, IP); 3848 if (ExistingSCEV) 3849 return ExistingSCEV; 3850 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3851 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3852 SCEV *S = new (SCEVAllocator) 3853 SCEVMinMaxExpr(ID.Intern(SCEVAllocator), Kind, O, Ops.size()); 3854 3855 UniqueSCEVs.InsertNode(S, IP); 3856 registerUser(S, Ops); 3857 return S; 3858 } 3859 3860 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, const SCEV *RHS) { 3861 SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 3862 return getSMaxExpr(Ops); 3863 } 3864 3865 const SCEV *ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3866 return getMinMaxExpr(scSMaxExpr, Ops); 3867 } 3868 3869 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, const SCEV *RHS) { 3870 SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 3871 return getUMaxExpr(Ops); 3872 } 3873 3874 const SCEV *ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3875 return getMinMaxExpr(scUMaxExpr, Ops); 3876 } 3877 3878 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 3879 const SCEV *RHS) { 3880 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 3881 return getSMinExpr(Ops); 3882 } 3883 3884 const SCEV *ScalarEvolution::getSMinExpr(SmallVectorImpl<const SCEV *> &Ops) { 3885 return getMinMaxExpr(scSMinExpr, Ops); 3886 } 3887 3888 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, 3889 const SCEV *RHS) { 3890 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 3891 return getUMinExpr(Ops); 3892 } 3893 3894 const SCEV *ScalarEvolution::getUMinExpr(SmallVectorImpl<const SCEV *> &Ops) { 3895 return getMinMaxExpr(scUMinExpr, Ops); 3896 } 3897 3898 const SCEV * 3899 ScalarEvolution::getSizeOfScalableVectorExpr(Type *IntTy, 3900 ScalableVectorType *ScalableTy) { 3901 Constant *NullPtr = Constant::getNullValue(ScalableTy->getPointerTo()); 3902 Constant *One = ConstantInt::get(IntTy, 1); 3903 Constant *GEP = ConstantExpr::getGetElementPtr(ScalableTy, NullPtr, One); 3904 // Note that the expression we created is the final expression, we don't 3905 // want to simplify it any further Also, if we call a normal getSCEV(), 3906 // we'll end up in an endless recursion. So just create an SCEVUnknown. 3907 return getUnknown(ConstantExpr::getPtrToInt(GEP, IntTy)); 3908 } 3909 3910 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) { 3911 if (auto *ScalableAllocTy = dyn_cast<ScalableVectorType>(AllocTy)) 3912 return getSizeOfScalableVectorExpr(IntTy, ScalableAllocTy); 3913 // We can bypass creating a target-independent constant expression and then 3914 // folding it back into a ConstantInt. This is just a compile-time 3915 // optimization. 3916 return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy)); 3917 } 3918 3919 const SCEV *ScalarEvolution::getStoreSizeOfExpr(Type *IntTy, Type *StoreTy) { 3920 if (auto *ScalableStoreTy = dyn_cast<ScalableVectorType>(StoreTy)) 3921 return getSizeOfScalableVectorExpr(IntTy, ScalableStoreTy); 3922 // We can bypass creating a target-independent constant expression and then 3923 // folding it back into a ConstantInt. This is just a compile-time 3924 // optimization. 3925 return getConstant(IntTy, getDataLayout().getTypeStoreSize(StoreTy)); 3926 } 3927 3928 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy, 3929 StructType *STy, 3930 unsigned FieldNo) { 3931 // We can bypass creating a target-independent constant expression and then 3932 // folding it back into a ConstantInt. This is just a compile-time 3933 // optimization. 3934 return getConstant( 3935 IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo)); 3936 } 3937 3938 const SCEV *ScalarEvolution::getUnknown(Value *V) { 3939 // Don't attempt to do anything other than create a SCEVUnknown object 3940 // here. createSCEV only calls getUnknown after checking for all other 3941 // interesting possibilities, and any other code that calls getUnknown 3942 // is doing so in order to hide a value from SCEV canonicalization. 3943 3944 FoldingSetNodeID ID; 3945 ID.AddInteger(scUnknown); 3946 ID.AddPointer(V); 3947 void *IP = nullptr; 3948 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { 3949 assert(cast<SCEVUnknown>(S)->getValue() == V && 3950 "Stale SCEVUnknown in uniquing map!"); 3951 return S; 3952 } 3953 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this, 3954 FirstUnknown); 3955 FirstUnknown = cast<SCEVUnknown>(S); 3956 UniqueSCEVs.InsertNode(S, IP); 3957 return S; 3958 } 3959 3960 //===----------------------------------------------------------------------===// 3961 // Basic SCEV Analysis and PHI Idiom Recognition Code 3962 // 3963 3964 /// Test if values of the given type are analyzable within the SCEV 3965 /// framework. This primarily includes integer types, and it can optionally 3966 /// include pointer types if the ScalarEvolution class has access to 3967 /// target-specific information. 3968 bool ScalarEvolution::isSCEVable(Type *Ty) const { 3969 // Integers and pointers are always SCEVable. 3970 return Ty->isIntOrPtrTy(); 3971 } 3972 3973 /// Return the size in bits of the specified type, for which isSCEVable must 3974 /// return true. 3975 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const { 3976 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3977 if (Ty->isPointerTy()) 3978 return getDataLayout().getIndexTypeSizeInBits(Ty); 3979 return getDataLayout().getTypeSizeInBits(Ty); 3980 } 3981 3982 /// Return a type with the same bitwidth as the given type and which represents 3983 /// how SCEV will treat the given type, for which isSCEVable must return 3984 /// true. For pointer types, this is the pointer index sized integer type. 3985 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const { 3986 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3987 3988 if (Ty->isIntegerTy()) 3989 return Ty; 3990 3991 // The only other support type is pointer. 3992 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); 3993 return getDataLayout().getIndexType(Ty); 3994 } 3995 3996 Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const { 3997 return getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2; 3998 } 3999 4000 bool ScalarEvolution::instructionCouldExistWitthOperands(const SCEV *A, 4001 const SCEV *B) { 4002 /// For a valid use point to exist, the defining scope of one operand 4003 /// must dominate the other. 4004 bool PreciseA, PreciseB; 4005 auto *ScopeA = getDefiningScopeBound({A}, PreciseA); 4006 auto *ScopeB = getDefiningScopeBound({B}, PreciseB); 4007 if (!PreciseA || !PreciseB) 4008 // Can't tell. 4009 return false; 4010 return (ScopeA == ScopeB) || DT.dominates(ScopeA, ScopeB) || 4011 DT.dominates(ScopeB, ScopeA); 4012 } 4013 4014 4015 const SCEV *ScalarEvolution::getCouldNotCompute() { 4016 return CouldNotCompute.get(); 4017 } 4018 4019 bool ScalarEvolution::checkValidity(const SCEV *S) const { 4020 bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) { 4021 auto *SU = dyn_cast<SCEVUnknown>(S); 4022 return SU && SU->getValue() == nullptr; 4023 }); 4024 4025 return !ContainsNulls; 4026 } 4027 4028 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) { 4029 HasRecMapType::iterator I = HasRecMap.find(S); 4030 if (I != HasRecMap.end()) 4031 return I->second; 4032 4033 bool FoundAddRec = 4034 SCEVExprContains(S, [](const SCEV *S) { return isa<SCEVAddRecExpr>(S); }); 4035 HasRecMap.insert({S, FoundAddRec}); 4036 return FoundAddRec; 4037 } 4038 4039 /// Try to split a SCEVAddExpr into a pair of {SCEV, ConstantInt}. 4040 /// If \p S is a SCEVAddExpr and is composed of a sub SCEV S' and an 4041 /// offset I, then return {S', I}, else return {\p S, nullptr}. 4042 static std::pair<const SCEV *, ConstantInt *> splitAddExpr(const SCEV *S) { 4043 const auto *Add = dyn_cast<SCEVAddExpr>(S); 4044 if (!Add) 4045 return {S, nullptr}; 4046 4047 if (Add->getNumOperands() != 2) 4048 return {S, nullptr}; 4049 4050 auto *ConstOp = dyn_cast<SCEVConstant>(Add->getOperand(0)); 4051 if (!ConstOp) 4052 return {S, nullptr}; 4053 4054 return {Add->getOperand(1), ConstOp->getValue()}; 4055 } 4056 4057 /// Return the ValueOffsetPair set for \p S. \p S can be represented 4058 /// by the value and offset from any ValueOffsetPair in the set. 4059 ScalarEvolution::ValueOffsetPairSetVector * 4060 ScalarEvolution::getSCEVValues(const SCEV *S) { 4061 ExprValueMapType::iterator SI = ExprValueMap.find_as(S); 4062 if (SI == ExprValueMap.end()) 4063 return nullptr; 4064 #ifndef NDEBUG 4065 if (VerifySCEVMap) { 4066 // Check there is no dangling Value in the set returned. 4067 for (const auto &VE : SI->second) 4068 assert(ValueExprMap.count(VE.first)); 4069 } 4070 #endif 4071 return &SI->second; 4072 } 4073 4074 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V) 4075 /// cannot be used separately. eraseValueFromMap should be used to remove 4076 /// V from ValueExprMap and ExprValueMap at the same time. 4077 void ScalarEvolution::eraseValueFromMap(Value *V) { 4078 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 4079 if (I != ValueExprMap.end()) { 4080 const SCEV *S = I->second; 4081 // Remove {V, 0} from the set of ExprValueMap[S] 4082 if (auto *SV = getSCEVValues(S)) 4083 SV->remove({V, nullptr}); 4084 4085 // Remove {V, Offset} from the set of ExprValueMap[Stripped] 4086 const SCEV *Stripped; 4087 ConstantInt *Offset; 4088 std::tie(Stripped, Offset) = splitAddExpr(S); 4089 if (Offset != nullptr) { 4090 if (auto *SV = getSCEVValues(Stripped)) 4091 SV->remove({V, Offset}); 4092 } 4093 ValueExprMap.erase(V); 4094 } 4095 } 4096 4097 void ScalarEvolution::insertValueToMap(Value *V, const SCEV *S) { 4098 // A recursive query may have already computed the SCEV. It should be 4099 // equivalent, but may not necessarily be exactly the same, e.g. due to lazily 4100 // inferred nowrap flags. 4101 auto It = ValueExprMap.find_as(V); 4102 if (It == ValueExprMap.end()) { 4103 ValueExprMap.insert({SCEVCallbackVH(V, this), S}); 4104 ExprValueMap[S].insert({V, nullptr}); 4105 } 4106 } 4107 4108 /// Return an existing SCEV if it exists, otherwise analyze the expression and 4109 /// create a new one. 4110 const SCEV *ScalarEvolution::getSCEV(Value *V) { 4111 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 4112 4113 const SCEV *S = getExistingSCEV(V); 4114 if (S == nullptr) { 4115 S = createSCEV(V); 4116 // During PHI resolution, it is possible to create two SCEVs for the same 4117 // V, so it is needed to double check whether V->S is inserted into 4118 // ValueExprMap before insert S->{V, 0} into ExprValueMap. 4119 std::pair<ValueExprMapType::iterator, bool> Pair = 4120 ValueExprMap.insert({SCEVCallbackVH(V, this), S}); 4121 if (Pair.second) { 4122 ExprValueMap[S].insert({V, nullptr}); 4123 4124 // If S == Stripped + Offset, add Stripped -> {V, Offset} into 4125 // ExprValueMap. 4126 const SCEV *Stripped = S; 4127 ConstantInt *Offset = nullptr; 4128 std::tie(Stripped, Offset) = splitAddExpr(S); 4129 // If stripped is SCEVUnknown, don't bother to save 4130 // Stripped -> {V, offset}. It doesn't simplify and sometimes even 4131 // increase the complexity of the expansion code. 4132 // If V is GetElementPtrInst, don't save Stripped -> {V, offset} 4133 // because it may generate add/sub instead of GEP in SCEV expansion. 4134 if (Offset != nullptr && !isa<SCEVUnknown>(Stripped) && 4135 !isa<GetElementPtrInst>(V)) 4136 ExprValueMap[Stripped].insert({V, Offset}); 4137 } 4138 } 4139 return S; 4140 } 4141 4142 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) { 4143 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 4144 4145 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 4146 if (I != ValueExprMap.end()) { 4147 const SCEV *S = I->second; 4148 assert(checkValidity(S) && 4149 "existing SCEV has not been properly invalidated"); 4150 return S; 4151 } 4152 return nullptr; 4153 } 4154 4155 /// Return a SCEV corresponding to -V = -1*V 4156 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V, 4157 SCEV::NoWrapFlags Flags) { 4158 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 4159 return getConstant( 4160 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 4161 4162 Type *Ty = V->getType(); 4163 Ty = getEffectiveSCEVType(Ty); 4164 return getMulExpr(V, getMinusOne(Ty), Flags); 4165 } 4166 4167 /// If Expr computes ~A, return A else return nullptr 4168 static const SCEV *MatchNotExpr(const SCEV *Expr) { 4169 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr); 4170 if (!Add || Add->getNumOperands() != 2 || 4171 !Add->getOperand(0)->isAllOnesValue()) 4172 return nullptr; 4173 4174 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1)); 4175 if (!AddRHS || AddRHS->getNumOperands() != 2 || 4176 !AddRHS->getOperand(0)->isAllOnesValue()) 4177 return nullptr; 4178 4179 return AddRHS->getOperand(1); 4180 } 4181 4182 /// Return a SCEV corresponding to ~V = -1-V 4183 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 4184 assert(!V->getType()->isPointerTy() && "Can't negate pointer"); 4185 4186 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 4187 return getConstant( 4188 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 4189 4190 // Fold ~(u|s)(min|max)(~x, ~y) to (u|s)(max|min)(x, y) 4191 if (const SCEVMinMaxExpr *MME = dyn_cast<SCEVMinMaxExpr>(V)) { 4192 auto MatchMinMaxNegation = [&](const SCEVMinMaxExpr *MME) { 4193 SmallVector<const SCEV *, 2> MatchedOperands; 4194 for (const SCEV *Operand : MME->operands()) { 4195 const SCEV *Matched = MatchNotExpr(Operand); 4196 if (!Matched) 4197 return (const SCEV *)nullptr; 4198 MatchedOperands.push_back(Matched); 4199 } 4200 return getMinMaxExpr(SCEVMinMaxExpr::negate(MME->getSCEVType()), 4201 MatchedOperands); 4202 }; 4203 if (const SCEV *Replaced = MatchMinMaxNegation(MME)) 4204 return Replaced; 4205 } 4206 4207 Type *Ty = V->getType(); 4208 Ty = getEffectiveSCEVType(Ty); 4209 return getMinusSCEV(getMinusOne(Ty), V); 4210 } 4211 4212 const SCEV *ScalarEvolution::removePointerBase(const SCEV *P) { 4213 assert(P->getType()->isPointerTy()); 4214 4215 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(P)) { 4216 // The base of an AddRec is the first operand. 4217 SmallVector<const SCEV *> Ops{AddRec->operands()}; 4218 Ops[0] = removePointerBase(Ops[0]); 4219 // Don't try to transfer nowrap flags for now. We could in some cases 4220 // (for example, if pointer operand of the AddRec is a SCEVUnknown). 4221 return getAddRecExpr(Ops, AddRec->getLoop(), SCEV::FlagAnyWrap); 4222 } 4223 if (auto *Add = dyn_cast<SCEVAddExpr>(P)) { 4224 // The base of an Add is the pointer operand. 4225 SmallVector<const SCEV *> Ops{Add->operands()}; 4226 const SCEV **PtrOp = nullptr; 4227 for (const SCEV *&AddOp : Ops) { 4228 if (AddOp->getType()->isPointerTy()) { 4229 assert(!PtrOp && "Cannot have multiple pointer ops"); 4230 PtrOp = &AddOp; 4231 } 4232 } 4233 *PtrOp = removePointerBase(*PtrOp); 4234 // Don't try to transfer nowrap flags for now. We could in some cases 4235 // (for example, if the pointer operand of the Add is a SCEVUnknown). 4236 return getAddExpr(Ops); 4237 } 4238 // Any other expression must be a pointer base. 4239 return getZero(P->getType()); 4240 } 4241 4242 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS, 4243 SCEV::NoWrapFlags Flags, 4244 unsigned Depth) { 4245 // Fast path: X - X --> 0. 4246 if (LHS == RHS) 4247 return getZero(LHS->getType()); 4248 4249 // If we subtract two pointers with different pointer bases, bail. 4250 // Eventually, we're going to add an assertion to getMulExpr that we 4251 // can't multiply by a pointer. 4252 if (RHS->getType()->isPointerTy()) { 4253 if (!LHS->getType()->isPointerTy() || 4254 getPointerBase(LHS) != getPointerBase(RHS)) 4255 return getCouldNotCompute(); 4256 LHS = removePointerBase(LHS); 4257 RHS = removePointerBase(RHS); 4258 } 4259 4260 // We represent LHS - RHS as LHS + (-1)*RHS. This transformation 4261 // makes it so that we cannot make much use of NUW. 4262 auto AddFlags = SCEV::FlagAnyWrap; 4263 const bool RHSIsNotMinSigned = 4264 !getSignedRangeMin(RHS).isMinSignedValue(); 4265 if (hasFlags(Flags, SCEV::FlagNSW)) { 4266 // Let M be the minimum representable signed value. Then (-1)*RHS 4267 // signed-wraps if and only if RHS is M. That can happen even for 4268 // a NSW subtraction because e.g. (-1)*M signed-wraps even though 4269 // -1 - M does not. So to transfer NSW from LHS - RHS to LHS + 4270 // (-1)*RHS, we need to prove that RHS != M. 4271 // 4272 // If LHS is non-negative and we know that LHS - RHS does not 4273 // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap 4274 // either by proving that RHS > M or that LHS >= 0. 4275 if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) { 4276 AddFlags = SCEV::FlagNSW; 4277 } 4278 } 4279 4280 // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS - 4281 // RHS is NSW and LHS >= 0. 4282 // 4283 // The difficulty here is that the NSW flag may have been proven 4284 // relative to a loop that is to be found in a recurrence in LHS and 4285 // not in RHS. Applying NSW to (-1)*M may then let the NSW have a 4286 // larger scope than intended. 4287 auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 4288 4289 return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags, Depth); 4290 } 4291 4292 const SCEV *ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty, 4293 unsigned Depth) { 4294 Type *SrcTy = V->getType(); 4295 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4296 "Cannot truncate or zero extend with non-integer arguments!"); 4297 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4298 return V; // No conversion 4299 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 4300 return getTruncateExpr(V, Ty, Depth); 4301 return getZeroExtendExpr(V, Ty, Depth); 4302 } 4303 4304 const SCEV *ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, Type *Ty, 4305 unsigned Depth) { 4306 Type *SrcTy = V->getType(); 4307 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4308 "Cannot truncate or zero extend with non-integer arguments!"); 4309 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4310 return V; // No conversion 4311 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 4312 return getTruncateExpr(V, Ty, Depth); 4313 return getSignExtendExpr(V, Ty, Depth); 4314 } 4315 4316 const SCEV * 4317 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) { 4318 Type *SrcTy = V->getType(); 4319 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4320 "Cannot noop or zero extend with non-integer arguments!"); 4321 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 4322 "getNoopOrZeroExtend cannot truncate!"); 4323 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4324 return V; // No conversion 4325 return getZeroExtendExpr(V, Ty); 4326 } 4327 4328 const SCEV * 4329 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) { 4330 Type *SrcTy = V->getType(); 4331 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4332 "Cannot noop or sign extend with non-integer arguments!"); 4333 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 4334 "getNoopOrSignExtend cannot truncate!"); 4335 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4336 return V; // No conversion 4337 return getSignExtendExpr(V, Ty); 4338 } 4339 4340 const SCEV * 4341 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) { 4342 Type *SrcTy = V->getType(); 4343 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4344 "Cannot noop or any extend with non-integer arguments!"); 4345 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 4346 "getNoopOrAnyExtend cannot truncate!"); 4347 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4348 return V; // No conversion 4349 return getAnyExtendExpr(V, Ty); 4350 } 4351 4352 const SCEV * 4353 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) { 4354 Type *SrcTy = V->getType(); 4355 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4356 "Cannot truncate or noop with non-integer arguments!"); 4357 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 4358 "getTruncateOrNoop cannot extend!"); 4359 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4360 return V; // No conversion 4361 return getTruncateExpr(V, Ty); 4362 } 4363 4364 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 4365 const SCEV *RHS) { 4366 const SCEV *PromotedLHS = LHS; 4367 const SCEV *PromotedRHS = RHS; 4368 4369 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 4370 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 4371 else 4372 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 4373 4374 return getUMaxExpr(PromotedLHS, PromotedRHS); 4375 } 4376 4377 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 4378 const SCEV *RHS) { 4379 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 4380 return getUMinFromMismatchedTypes(Ops); 4381 } 4382 4383 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes( 4384 SmallVectorImpl<const SCEV *> &Ops) { 4385 assert(!Ops.empty() && "At least one operand must be!"); 4386 // Trivial case. 4387 if (Ops.size() == 1) 4388 return Ops[0]; 4389 4390 // Find the max type first. 4391 Type *MaxType = nullptr; 4392 for (auto *S : Ops) 4393 if (MaxType) 4394 MaxType = getWiderType(MaxType, S->getType()); 4395 else 4396 MaxType = S->getType(); 4397 assert(MaxType && "Failed to find maximum type!"); 4398 4399 // Extend all ops to max type. 4400 SmallVector<const SCEV *, 2> PromotedOps; 4401 for (auto *S : Ops) 4402 PromotedOps.push_back(getNoopOrZeroExtend(S, MaxType)); 4403 4404 // Generate umin. 4405 return getUMinExpr(PromotedOps); 4406 } 4407 4408 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) { 4409 // A pointer operand may evaluate to a nonpointer expression, such as null. 4410 if (!V->getType()->isPointerTy()) 4411 return V; 4412 4413 while (true) { 4414 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 4415 V = AddRec->getStart(); 4416 } else if (auto *Add = dyn_cast<SCEVAddExpr>(V)) { 4417 const SCEV *PtrOp = nullptr; 4418 for (const SCEV *AddOp : Add->operands()) { 4419 if (AddOp->getType()->isPointerTy()) { 4420 assert(!PtrOp && "Cannot have multiple pointer ops"); 4421 PtrOp = AddOp; 4422 } 4423 } 4424 assert(PtrOp && "Must have pointer op"); 4425 V = PtrOp; 4426 } else // Not something we can look further into. 4427 return V; 4428 } 4429 } 4430 4431 /// Push users of the given Instruction onto the given Worklist. 4432 static void PushDefUseChildren(Instruction *I, 4433 SmallVectorImpl<Instruction *> &Worklist, 4434 SmallPtrSetImpl<Instruction *> &Visited) { 4435 // Push the def-use children onto the Worklist stack. 4436 for (User *U : I->users()) { 4437 auto *UserInsn = cast<Instruction>(U); 4438 if (Visited.insert(UserInsn).second) 4439 Worklist.push_back(UserInsn); 4440 } 4441 } 4442 4443 namespace { 4444 4445 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start 4446 /// expression in case its Loop is L. If it is not L then 4447 /// if IgnoreOtherLoops is true then use AddRec itself 4448 /// otherwise rewrite cannot be done. 4449 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done. 4450 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> { 4451 public: 4452 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, 4453 bool IgnoreOtherLoops = true) { 4454 SCEVInitRewriter Rewriter(L, SE); 4455 const SCEV *Result = Rewriter.visit(S); 4456 if (Rewriter.hasSeenLoopVariantSCEVUnknown()) 4457 return SE.getCouldNotCompute(); 4458 return Rewriter.hasSeenOtherLoops() && !IgnoreOtherLoops 4459 ? SE.getCouldNotCompute() 4460 : Result; 4461 } 4462 4463 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4464 if (!SE.isLoopInvariant(Expr, L)) 4465 SeenLoopVariantSCEVUnknown = true; 4466 return Expr; 4467 } 4468 4469 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4470 // Only re-write AddRecExprs for this loop. 4471 if (Expr->getLoop() == L) 4472 return Expr->getStart(); 4473 SeenOtherLoops = true; 4474 return Expr; 4475 } 4476 4477 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; } 4478 4479 bool hasSeenOtherLoops() { return SeenOtherLoops; } 4480 4481 private: 4482 explicit SCEVInitRewriter(const Loop *L, ScalarEvolution &SE) 4483 : SCEVRewriteVisitor(SE), L(L) {} 4484 4485 const Loop *L; 4486 bool SeenLoopVariantSCEVUnknown = false; 4487 bool SeenOtherLoops = false; 4488 }; 4489 4490 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post 4491 /// increment expression in case its Loop is L. If it is not L then 4492 /// use AddRec itself. 4493 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done. 4494 class SCEVPostIncRewriter : public SCEVRewriteVisitor<SCEVPostIncRewriter> { 4495 public: 4496 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE) { 4497 SCEVPostIncRewriter Rewriter(L, SE); 4498 const SCEV *Result = Rewriter.visit(S); 4499 return Rewriter.hasSeenLoopVariantSCEVUnknown() 4500 ? SE.getCouldNotCompute() 4501 : Result; 4502 } 4503 4504 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4505 if (!SE.isLoopInvariant(Expr, L)) 4506 SeenLoopVariantSCEVUnknown = true; 4507 return Expr; 4508 } 4509 4510 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4511 // Only re-write AddRecExprs for this loop. 4512 if (Expr->getLoop() == L) 4513 return Expr->getPostIncExpr(SE); 4514 SeenOtherLoops = true; 4515 return Expr; 4516 } 4517 4518 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; } 4519 4520 bool hasSeenOtherLoops() { return SeenOtherLoops; } 4521 4522 private: 4523 explicit SCEVPostIncRewriter(const Loop *L, ScalarEvolution &SE) 4524 : SCEVRewriteVisitor(SE), L(L) {} 4525 4526 const Loop *L; 4527 bool SeenLoopVariantSCEVUnknown = false; 4528 bool SeenOtherLoops = false; 4529 }; 4530 4531 /// This class evaluates the compare condition by matching it against the 4532 /// condition of loop latch. If there is a match we assume a true value 4533 /// for the condition while building SCEV nodes. 4534 class SCEVBackedgeConditionFolder 4535 : public SCEVRewriteVisitor<SCEVBackedgeConditionFolder> { 4536 public: 4537 static const SCEV *rewrite(const SCEV *S, const Loop *L, 4538 ScalarEvolution &SE) { 4539 bool IsPosBECond = false; 4540 Value *BECond = nullptr; 4541 if (BasicBlock *Latch = L->getLoopLatch()) { 4542 BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator()); 4543 if (BI && BI->isConditional()) { 4544 assert(BI->getSuccessor(0) != BI->getSuccessor(1) && 4545 "Both outgoing branches should not target same header!"); 4546 BECond = BI->getCondition(); 4547 IsPosBECond = BI->getSuccessor(0) == L->getHeader(); 4548 } else { 4549 return S; 4550 } 4551 } 4552 SCEVBackedgeConditionFolder Rewriter(L, BECond, IsPosBECond, SE); 4553 return Rewriter.visit(S); 4554 } 4555 4556 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4557 const SCEV *Result = Expr; 4558 bool InvariantF = SE.isLoopInvariant(Expr, L); 4559 4560 if (!InvariantF) { 4561 Instruction *I = cast<Instruction>(Expr->getValue()); 4562 switch (I->getOpcode()) { 4563 case Instruction::Select: { 4564 SelectInst *SI = cast<SelectInst>(I); 4565 Optional<const SCEV *> Res = 4566 compareWithBackedgeCondition(SI->getCondition()); 4567 if (Res.hasValue()) { 4568 bool IsOne = cast<SCEVConstant>(Res.getValue())->getValue()->isOne(); 4569 Result = SE.getSCEV(IsOne ? SI->getTrueValue() : SI->getFalseValue()); 4570 } 4571 break; 4572 } 4573 default: { 4574 Optional<const SCEV *> Res = compareWithBackedgeCondition(I); 4575 if (Res.hasValue()) 4576 Result = Res.getValue(); 4577 break; 4578 } 4579 } 4580 } 4581 return Result; 4582 } 4583 4584 private: 4585 explicit SCEVBackedgeConditionFolder(const Loop *L, Value *BECond, 4586 bool IsPosBECond, ScalarEvolution &SE) 4587 : SCEVRewriteVisitor(SE), L(L), BackedgeCond(BECond), 4588 IsPositiveBECond(IsPosBECond) {} 4589 4590 Optional<const SCEV *> compareWithBackedgeCondition(Value *IC); 4591 4592 const Loop *L; 4593 /// Loop back condition. 4594 Value *BackedgeCond = nullptr; 4595 /// Set to true if loop back is on positive branch condition. 4596 bool IsPositiveBECond; 4597 }; 4598 4599 Optional<const SCEV *> 4600 SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value *IC) { 4601 4602 // If value matches the backedge condition for loop latch, 4603 // then return a constant evolution node based on loopback 4604 // branch taken. 4605 if (BackedgeCond == IC) 4606 return IsPositiveBECond ? SE.getOne(Type::getInt1Ty(SE.getContext())) 4607 : SE.getZero(Type::getInt1Ty(SE.getContext())); 4608 return None; 4609 } 4610 4611 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> { 4612 public: 4613 static const SCEV *rewrite(const SCEV *S, const Loop *L, 4614 ScalarEvolution &SE) { 4615 SCEVShiftRewriter Rewriter(L, SE); 4616 const SCEV *Result = Rewriter.visit(S); 4617 return Rewriter.isValid() ? Result : SE.getCouldNotCompute(); 4618 } 4619 4620 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4621 // Only allow AddRecExprs for this loop. 4622 if (!SE.isLoopInvariant(Expr, L)) 4623 Valid = false; 4624 return Expr; 4625 } 4626 4627 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4628 if (Expr->getLoop() == L && Expr->isAffine()) 4629 return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE)); 4630 Valid = false; 4631 return Expr; 4632 } 4633 4634 bool isValid() { return Valid; } 4635 4636 private: 4637 explicit SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE) 4638 : SCEVRewriteVisitor(SE), L(L) {} 4639 4640 const Loop *L; 4641 bool Valid = true; 4642 }; 4643 4644 } // end anonymous namespace 4645 4646 SCEV::NoWrapFlags 4647 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) { 4648 if (!AR->isAffine()) 4649 return SCEV::FlagAnyWrap; 4650 4651 using OBO = OverflowingBinaryOperator; 4652 4653 SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap; 4654 4655 if (!AR->hasNoSignedWrap()) { 4656 ConstantRange AddRecRange = getSignedRange(AR); 4657 ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this)); 4658 4659 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 4660 Instruction::Add, IncRange, OBO::NoSignedWrap); 4661 if (NSWRegion.contains(AddRecRange)) 4662 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW); 4663 } 4664 4665 if (!AR->hasNoUnsignedWrap()) { 4666 ConstantRange AddRecRange = getUnsignedRange(AR); 4667 ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this)); 4668 4669 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 4670 Instruction::Add, IncRange, OBO::NoUnsignedWrap); 4671 if (NUWRegion.contains(AddRecRange)) 4672 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW); 4673 } 4674 4675 return Result; 4676 } 4677 4678 SCEV::NoWrapFlags 4679 ScalarEvolution::proveNoSignedWrapViaInduction(const SCEVAddRecExpr *AR) { 4680 SCEV::NoWrapFlags Result = AR->getNoWrapFlags(); 4681 4682 if (AR->hasNoSignedWrap()) 4683 return Result; 4684 4685 if (!AR->isAffine()) 4686 return Result; 4687 4688 const SCEV *Step = AR->getStepRecurrence(*this); 4689 const Loop *L = AR->getLoop(); 4690 4691 // Check whether the backedge-taken count is SCEVCouldNotCompute. 4692 // Note that this serves two purposes: It filters out loops that are 4693 // simply not analyzable, and it covers the case where this code is 4694 // being called from within backedge-taken count analysis, such that 4695 // attempting to ask for the backedge-taken count would likely result 4696 // in infinite recursion. In the later case, the analysis code will 4697 // cope with a conservative value, and it will take care to purge 4698 // that value once it has finished. 4699 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 4700 4701 // Normally, in the cases we can prove no-overflow via a 4702 // backedge guarding condition, we can also compute a backedge 4703 // taken count for the loop. The exceptions are assumptions and 4704 // guards present in the loop -- SCEV is not great at exploiting 4705 // these to compute max backedge taken counts, but can still use 4706 // these to prove lack of overflow. Use this fact to avoid 4707 // doing extra work that may not pay off. 4708 4709 if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards && 4710 AC.assumptions().empty()) 4711 return Result; 4712 4713 // If the backedge is guarded by a comparison with the pre-inc value the 4714 // addrec is safe. Also, if the entry is guarded by a comparison with the 4715 // start value and the backedge is guarded by a comparison with the post-inc 4716 // value, the addrec is safe. 4717 ICmpInst::Predicate Pred; 4718 const SCEV *OverflowLimit = 4719 getSignedOverflowLimitForStep(Step, &Pred, this); 4720 if (OverflowLimit && 4721 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) || 4722 isKnownOnEveryIteration(Pred, AR, OverflowLimit))) { 4723 Result = setFlags(Result, SCEV::FlagNSW); 4724 } 4725 return Result; 4726 } 4727 SCEV::NoWrapFlags 4728 ScalarEvolution::proveNoUnsignedWrapViaInduction(const SCEVAddRecExpr *AR) { 4729 SCEV::NoWrapFlags Result = AR->getNoWrapFlags(); 4730 4731 if (AR->hasNoUnsignedWrap()) 4732 return Result; 4733 4734 if (!AR->isAffine()) 4735 return Result; 4736 4737 const SCEV *Step = AR->getStepRecurrence(*this); 4738 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 4739 const Loop *L = AR->getLoop(); 4740 4741 // Check whether the backedge-taken count is SCEVCouldNotCompute. 4742 // Note that this serves two purposes: It filters out loops that are 4743 // simply not analyzable, and it covers the case where this code is 4744 // being called from within backedge-taken count analysis, such that 4745 // attempting to ask for the backedge-taken count would likely result 4746 // in infinite recursion. In the later case, the analysis code will 4747 // cope with a conservative value, and it will take care to purge 4748 // that value once it has finished. 4749 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 4750 4751 // Normally, in the cases we can prove no-overflow via a 4752 // backedge guarding condition, we can also compute a backedge 4753 // taken count for the loop. The exceptions are assumptions and 4754 // guards present in the loop -- SCEV is not great at exploiting 4755 // these to compute max backedge taken counts, but can still use 4756 // these to prove lack of overflow. Use this fact to avoid 4757 // doing extra work that may not pay off. 4758 4759 if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards && 4760 AC.assumptions().empty()) 4761 return Result; 4762 4763 // If the backedge is guarded by a comparison with the pre-inc value the 4764 // addrec is safe. Also, if the entry is guarded by a comparison with the 4765 // start value and the backedge is guarded by a comparison with the post-inc 4766 // value, the addrec is safe. 4767 if (isKnownPositive(Step)) { 4768 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 4769 getUnsignedRangeMax(Step)); 4770 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 4771 isKnownOnEveryIteration(ICmpInst::ICMP_ULT, AR, N)) { 4772 Result = setFlags(Result, SCEV::FlagNUW); 4773 } 4774 } 4775 4776 return Result; 4777 } 4778 4779 namespace { 4780 4781 /// Represents an abstract binary operation. This may exist as a 4782 /// normal instruction or constant expression, or may have been 4783 /// derived from an expression tree. 4784 struct BinaryOp { 4785 unsigned Opcode; 4786 Value *LHS; 4787 Value *RHS; 4788 bool IsNSW = false; 4789 bool IsNUW = false; 4790 4791 /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or 4792 /// constant expression. 4793 Operator *Op = nullptr; 4794 4795 explicit BinaryOp(Operator *Op) 4796 : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)), 4797 Op(Op) { 4798 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) { 4799 IsNSW = OBO->hasNoSignedWrap(); 4800 IsNUW = OBO->hasNoUnsignedWrap(); 4801 } 4802 } 4803 4804 explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false, 4805 bool IsNUW = false) 4806 : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW) {} 4807 }; 4808 4809 } // end anonymous namespace 4810 4811 /// Try to map \p V into a BinaryOp, and return \c None on failure. 4812 static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) { 4813 auto *Op = dyn_cast<Operator>(V); 4814 if (!Op) 4815 return None; 4816 4817 // Implementation detail: all the cleverness here should happen without 4818 // creating new SCEV expressions -- our caller knowns tricks to avoid creating 4819 // SCEV expressions when possible, and we should not break that. 4820 4821 switch (Op->getOpcode()) { 4822 case Instruction::Add: 4823 case Instruction::Sub: 4824 case Instruction::Mul: 4825 case Instruction::UDiv: 4826 case Instruction::URem: 4827 case Instruction::And: 4828 case Instruction::Or: 4829 case Instruction::AShr: 4830 case Instruction::Shl: 4831 return BinaryOp(Op); 4832 4833 case Instruction::Xor: 4834 if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1))) 4835 // If the RHS of the xor is a signmask, then this is just an add. 4836 // Instcombine turns add of signmask into xor as a strength reduction step. 4837 if (RHSC->getValue().isSignMask()) 4838 return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1)); 4839 return BinaryOp(Op); 4840 4841 case Instruction::LShr: 4842 // Turn logical shift right of a constant into a unsigned divide. 4843 if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) { 4844 uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth(); 4845 4846 // If the shift count is not less than the bitwidth, the result of 4847 // the shift is undefined. Don't try to analyze it, because the 4848 // resolution chosen here may differ from the resolution chosen in 4849 // other parts of the compiler. 4850 if (SA->getValue().ult(BitWidth)) { 4851 Constant *X = 4852 ConstantInt::get(SA->getContext(), 4853 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 4854 return BinaryOp(Instruction::UDiv, Op->getOperand(0), X); 4855 } 4856 } 4857 return BinaryOp(Op); 4858 4859 case Instruction::ExtractValue: { 4860 auto *EVI = cast<ExtractValueInst>(Op); 4861 if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0) 4862 break; 4863 4864 auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand()); 4865 if (!WO) 4866 break; 4867 4868 Instruction::BinaryOps BinOp = WO->getBinaryOp(); 4869 bool Signed = WO->isSigned(); 4870 // TODO: Should add nuw/nsw flags for mul as well. 4871 if (BinOp == Instruction::Mul || !isOverflowIntrinsicNoWrap(WO, DT)) 4872 return BinaryOp(BinOp, WO->getLHS(), WO->getRHS()); 4873 4874 // Now that we know that all uses of the arithmetic-result component of 4875 // CI are guarded by the overflow check, we can go ahead and pretend 4876 // that the arithmetic is non-overflowing. 4877 return BinaryOp(BinOp, WO->getLHS(), WO->getRHS(), 4878 /* IsNSW = */ Signed, /* IsNUW = */ !Signed); 4879 } 4880 4881 default: 4882 break; 4883 } 4884 4885 // Recognise intrinsic loop.decrement.reg, and as this has exactly the same 4886 // semantics as a Sub, return a binary sub expression. 4887 if (auto *II = dyn_cast<IntrinsicInst>(V)) 4888 if (II->getIntrinsicID() == Intrinsic::loop_decrement_reg) 4889 return BinaryOp(Instruction::Sub, II->getOperand(0), II->getOperand(1)); 4890 4891 return None; 4892 } 4893 4894 /// Helper function to createAddRecFromPHIWithCasts. We have a phi 4895 /// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via 4896 /// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the 4897 /// way. This function checks if \p Op, an operand of this SCEVAddExpr, 4898 /// follows one of the following patterns: 4899 /// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) 4900 /// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) 4901 /// If the SCEV expression of \p Op conforms with one of the expected patterns 4902 /// we return the type of the truncation operation, and indicate whether the 4903 /// truncated type should be treated as signed/unsigned by setting 4904 /// \p Signed to true/false, respectively. 4905 static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI, 4906 bool &Signed, ScalarEvolution &SE) { 4907 // The case where Op == SymbolicPHI (that is, with no type conversions on 4908 // the way) is handled by the regular add recurrence creating logic and 4909 // would have already been triggered in createAddRecForPHI. Reaching it here 4910 // means that createAddRecFromPHI had failed for this PHI before (e.g., 4911 // because one of the other operands of the SCEVAddExpr updating this PHI is 4912 // not invariant). 4913 // 4914 // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in 4915 // this case predicates that allow us to prove that Op == SymbolicPHI will 4916 // be added. 4917 if (Op == SymbolicPHI) 4918 return nullptr; 4919 4920 unsigned SourceBits = SE.getTypeSizeInBits(SymbolicPHI->getType()); 4921 unsigned NewBits = SE.getTypeSizeInBits(Op->getType()); 4922 if (SourceBits != NewBits) 4923 return nullptr; 4924 4925 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Op); 4926 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Op); 4927 if (!SExt && !ZExt) 4928 return nullptr; 4929 const SCEVTruncateExpr *Trunc = 4930 SExt ? dyn_cast<SCEVTruncateExpr>(SExt->getOperand()) 4931 : dyn_cast<SCEVTruncateExpr>(ZExt->getOperand()); 4932 if (!Trunc) 4933 return nullptr; 4934 const SCEV *X = Trunc->getOperand(); 4935 if (X != SymbolicPHI) 4936 return nullptr; 4937 Signed = SExt != nullptr; 4938 return Trunc->getType(); 4939 } 4940 4941 static const Loop *isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI) { 4942 if (!PN->getType()->isIntegerTy()) 4943 return nullptr; 4944 const Loop *L = LI.getLoopFor(PN->getParent()); 4945 if (!L || L->getHeader() != PN->getParent()) 4946 return nullptr; 4947 return L; 4948 } 4949 4950 // Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the 4951 // computation that updates the phi follows the following pattern: 4952 // (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum 4953 // which correspond to a phi->trunc->sext/zext->add->phi update chain. 4954 // If so, try to see if it can be rewritten as an AddRecExpr under some 4955 // Predicates. If successful, return them as a pair. Also cache the results 4956 // of the analysis. 4957 // 4958 // Example usage scenario: 4959 // Say the Rewriter is called for the following SCEV: 4960 // 8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step) 4961 // where: 4962 // %X = phi i64 (%Start, %BEValue) 4963 // It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X), 4964 // and call this function with %SymbolicPHI = %X. 4965 // 4966 // The analysis will find that the value coming around the backedge has 4967 // the following SCEV: 4968 // BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step) 4969 // Upon concluding that this matches the desired pattern, the function 4970 // will return the pair {NewAddRec, SmallPredsVec} where: 4971 // NewAddRec = {%Start,+,%Step} 4972 // SmallPredsVec = {P1, P2, P3} as follows: 4973 // P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw> 4974 // P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64) 4975 // P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64) 4976 // The returned pair means that SymbolicPHI can be rewritten into NewAddRec 4977 // under the predicates {P1,P2,P3}. 4978 // This predicated rewrite will be cached in PredicatedSCEVRewrites: 4979 // PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)} 4980 // 4981 // TODO's: 4982 // 4983 // 1) Extend the Induction descriptor to also support inductions that involve 4984 // casts: When needed (namely, when we are called in the context of the 4985 // vectorizer induction analysis), a Set of cast instructions will be 4986 // populated by this method, and provided back to isInductionPHI. This is 4987 // needed to allow the vectorizer to properly record them to be ignored by 4988 // the cost model and to avoid vectorizing them (otherwise these casts, 4989 // which are redundant under the runtime overflow checks, will be 4990 // vectorized, which can be costly). 4991 // 4992 // 2) Support additional induction/PHISCEV patterns: We also want to support 4993 // inductions where the sext-trunc / zext-trunc operations (partly) occur 4994 // after the induction update operation (the induction increment): 4995 // 4996 // (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix) 4997 // which correspond to a phi->add->trunc->sext/zext->phi update chain. 4998 // 4999 // (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix) 5000 // which correspond to a phi->trunc->add->sext/zext->phi update chain. 5001 // 5002 // 3) Outline common code with createAddRecFromPHI to avoid duplication. 5003 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 5004 ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) { 5005 SmallVector<const SCEVPredicate *, 3> Predicates; 5006 5007 // *** Part1: Analyze if we have a phi-with-cast pattern for which we can 5008 // return an AddRec expression under some predicate. 5009 5010 auto *PN = cast<PHINode>(SymbolicPHI->getValue()); 5011 const Loop *L = isIntegerLoopHeaderPHI(PN, LI); 5012 assert(L && "Expecting an integer loop header phi"); 5013 5014 // The loop may have multiple entrances or multiple exits; we can analyze 5015 // this phi as an addrec if it has a unique entry value and a unique 5016 // backedge value. 5017 Value *BEValueV = nullptr, *StartValueV = nullptr; 5018 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 5019 Value *V = PN->getIncomingValue(i); 5020 if (L->contains(PN->getIncomingBlock(i))) { 5021 if (!BEValueV) { 5022 BEValueV = V; 5023 } else if (BEValueV != V) { 5024 BEValueV = nullptr; 5025 break; 5026 } 5027 } else if (!StartValueV) { 5028 StartValueV = V; 5029 } else if (StartValueV != V) { 5030 StartValueV = nullptr; 5031 break; 5032 } 5033 } 5034 if (!BEValueV || !StartValueV) 5035 return None; 5036 5037 const SCEV *BEValue = getSCEV(BEValueV); 5038 5039 // If the value coming around the backedge is an add with the symbolic 5040 // value we just inserted, possibly with casts that we can ignore under 5041 // an appropriate runtime guard, then we found a simple induction variable! 5042 const auto *Add = dyn_cast<SCEVAddExpr>(BEValue); 5043 if (!Add) 5044 return None; 5045 5046 // If there is a single occurrence of the symbolic value, possibly 5047 // casted, replace it with a recurrence. 5048 unsigned FoundIndex = Add->getNumOperands(); 5049 Type *TruncTy = nullptr; 5050 bool Signed; 5051 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5052 if ((TruncTy = 5053 isSimpleCastedPHI(Add->getOperand(i), SymbolicPHI, Signed, *this))) 5054 if (FoundIndex == e) { 5055 FoundIndex = i; 5056 break; 5057 } 5058 5059 if (FoundIndex == Add->getNumOperands()) 5060 return None; 5061 5062 // Create an add with everything but the specified operand. 5063 SmallVector<const SCEV *, 8> Ops; 5064 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5065 if (i != FoundIndex) 5066 Ops.push_back(Add->getOperand(i)); 5067 const SCEV *Accum = getAddExpr(Ops); 5068 5069 // The runtime checks will not be valid if the step amount is 5070 // varying inside the loop. 5071 if (!isLoopInvariant(Accum, L)) 5072 return None; 5073 5074 // *** Part2: Create the predicates 5075 5076 // Analysis was successful: we have a phi-with-cast pattern for which we 5077 // can return an AddRec expression under the following predicates: 5078 // 5079 // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum) 5080 // fits within the truncated type (does not overflow) for i = 0 to n-1. 5081 // P2: An Equal predicate that guarantees that 5082 // Start = (Ext ix (Trunc iy (Start) to ix) to iy) 5083 // P3: An Equal predicate that guarantees that 5084 // Accum = (Ext ix (Trunc iy (Accum) to ix) to iy) 5085 // 5086 // As we next prove, the above predicates guarantee that: 5087 // Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy) 5088 // 5089 // 5090 // More formally, we want to prove that: 5091 // Expr(i+1) = Start + (i+1) * Accum 5092 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum 5093 // 5094 // Given that: 5095 // 1) Expr(0) = Start 5096 // 2) Expr(1) = Start + Accum 5097 // = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2 5098 // 3) Induction hypothesis (step i): 5099 // Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum 5100 // 5101 // Proof: 5102 // Expr(i+1) = 5103 // = Start + (i+1)*Accum 5104 // = (Start + i*Accum) + Accum 5105 // = Expr(i) + Accum 5106 // = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum 5107 // :: from step i 5108 // 5109 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum 5110 // 5111 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) 5112 // + (Ext ix (Trunc iy (Accum) to ix) to iy) 5113 // + Accum :: from P3 5114 // 5115 // = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy) 5116 // + Accum :: from P1: Ext(x)+Ext(y)=>Ext(x+y) 5117 // 5118 // = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum 5119 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum 5120 // 5121 // By induction, the same applies to all iterations 1<=i<n: 5122 // 5123 5124 // Create a truncated addrec for which we will add a no overflow check (P1). 5125 const SCEV *StartVal = getSCEV(StartValueV); 5126 const SCEV *PHISCEV = 5127 getAddRecExpr(getTruncateExpr(StartVal, TruncTy), 5128 getTruncateExpr(Accum, TruncTy), L, SCEV::FlagAnyWrap); 5129 5130 // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr. 5131 // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV 5132 // will be constant. 5133 // 5134 // If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't 5135 // add P1. 5136 if (const auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) { 5137 SCEVWrapPredicate::IncrementWrapFlags AddedFlags = 5138 Signed ? SCEVWrapPredicate::IncrementNSSW 5139 : SCEVWrapPredicate::IncrementNUSW; 5140 const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags); 5141 Predicates.push_back(AddRecPred); 5142 } 5143 5144 // Create the Equal Predicates P2,P3: 5145 5146 // It is possible that the predicates P2 and/or P3 are computable at 5147 // compile time due to StartVal and/or Accum being constants. 5148 // If either one is, then we can check that now and escape if either P2 5149 // or P3 is false. 5150 5151 // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy) 5152 // for each of StartVal and Accum 5153 auto getExtendedExpr = [&](const SCEV *Expr, 5154 bool CreateSignExtend) -> const SCEV * { 5155 assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant"); 5156 const SCEV *TruncatedExpr = getTruncateExpr(Expr, TruncTy); 5157 const SCEV *ExtendedExpr = 5158 CreateSignExtend ? getSignExtendExpr(TruncatedExpr, Expr->getType()) 5159 : getZeroExtendExpr(TruncatedExpr, Expr->getType()); 5160 return ExtendedExpr; 5161 }; 5162 5163 // Given: 5164 // ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy 5165 // = getExtendedExpr(Expr) 5166 // Determine whether the predicate P: Expr == ExtendedExpr 5167 // is known to be false at compile time 5168 auto PredIsKnownFalse = [&](const SCEV *Expr, 5169 const SCEV *ExtendedExpr) -> bool { 5170 return Expr != ExtendedExpr && 5171 isKnownPredicate(ICmpInst::ICMP_NE, Expr, ExtendedExpr); 5172 }; 5173 5174 const SCEV *StartExtended = getExtendedExpr(StartVal, Signed); 5175 if (PredIsKnownFalse(StartVal, StartExtended)) { 5176 LLVM_DEBUG(dbgs() << "P2 is compile-time false\n";); 5177 return None; 5178 } 5179 5180 // The Step is always Signed (because the overflow checks are either 5181 // NSSW or NUSW) 5182 const SCEV *AccumExtended = getExtendedExpr(Accum, /*CreateSignExtend=*/true); 5183 if (PredIsKnownFalse(Accum, AccumExtended)) { 5184 LLVM_DEBUG(dbgs() << "P3 is compile-time false\n";); 5185 return None; 5186 } 5187 5188 auto AppendPredicate = [&](const SCEV *Expr, 5189 const SCEV *ExtendedExpr) -> void { 5190 if (Expr != ExtendedExpr && 5191 !isKnownPredicate(ICmpInst::ICMP_EQ, Expr, ExtendedExpr)) { 5192 const SCEVPredicate *Pred = getEqualPredicate(Expr, ExtendedExpr); 5193 LLVM_DEBUG(dbgs() << "Added Predicate: " << *Pred); 5194 Predicates.push_back(Pred); 5195 } 5196 }; 5197 5198 AppendPredicate(StartVal, StartExtended); 5199 AppendPredicate(Accum, AccumExtended); 5200 5201 // *** Part3: Predicates are ready. Now go ahead and create the new addrec in 5202 // which the casts had been folded away. The caller can rewrite SymbolicPHI 5203 // into NewAR if it will also add the runtime overflow checks specified in 5204 // Predicates. 5205 auto *NewAR = getAddRecExpr(StartVal, Accum, L, SCEV::FlagAnyWrap); 5206 5207 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite = 5208 std::make_pair(NewAR, Predicates); 5209 // Remember the result of the analysis for this SCEV at this locayyytion. 5210 PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite; 5211 return PredRewrite; 5212 } 5213 5214 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 5215 ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) { 5216 auto *PN = cast<PHINode>(SymbolicPHI->getValue()); 5217 const Loop *L = isIntegerLoopHeaderPHI(PN, LI); 5218 if (!L) 5219 return None; 5220 5221 // Check to see if we already analyzed this PHI. 5222 auto I = PredicatedSCEVRewrites.find({SymbolicPHI, L}); 5223 if (I != PredicatedSCEVRewrites.end()) { 5224 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite = 5225 I->second; 5226 // Analysis was done before and failed to create an AddRec: 5227 if (Rewrite.first == SymbolicPHI) 5228 return None; 5229 // Analysis was done before and succeeded to create an AddRec under 5230 // a predicate: 5231 assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec"); 5232 assert(!(Rewrite.second).empty() && "Expected to find Predicates"); 5233 return Rewrite; 5234 } 5235 5236 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 5237 Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI); 5238 5239 // Record in the cache that the analysis failed 5240 if (!Rewrite) { 5241 SmallVector<const SCEVPredicate *, 3> Predicates; 5242 PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates}; 5243 return None; 5244 } 5245 5246 return Rewrite; 5247 } 5248 5249 // FIXME: This utility is currently required because the Rewriter currently 5250 // does not rewrite this expression: 5251 // {0, +, (sext ix (trunc iy to ix) to iy)} 5252 // into {0, +, %step}, 5253 // even when the following Equal predicate exists: 5254 // "%step == (sext ix (trunc iy to ix) to iy)". 5255 bool PredicatedScalarEvolution::areAddRecsEqualWithPreds( 5256 const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const { 5257 if (AR1 == AR2) 5258 return true; 5259 5260 auto areExprsEqual = [&](const SCEV *Expr1, const SCEV *Expr2) -> bool { 5261 if (Expr1 != Expr2 && !Preds.implies(SE.getEqualPredicate(Expr1, Expr2)) && 5262 !Preds.implies(SE.getEqualPredicate(Expr2, Expr1))) 5263 return false; 5264 return true; 5265 }; 5266 5267 if (!areExprsEqual(AR1->getStart(), AR2->getStart()) || 5268 !areExprsEqual(AR1->getStepRecurrence(SE), AR2->getStepRecurrence(SE))) 5269 return false; 5270 return true; 5271 } 5272 5273 /// A helper function for createAddRecFromPHI to handle simple cases. 5274 /// 5275 /// This function tries to find an AddRec expression for the simplest (yet most 5276 /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)). 5277 /// If it fails, createAddRecFromPHI will use a more general, but slow, 5278 /// technique for finding the AddRec expression. 5279 const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN, 5280 Value *BEValueV, 5281 Value *StartValueV) { 5282 const Loop *L = LI.getLoopFor(PN->getParent()); 5283 assert(L && L->getHeader() == PN->getParent()); 5284 assert(BEValueV && StartValueV); 5285 5286 auto BO = MatchBinaryOp(BEValueV, DT); 5287 if (!BO) 5288 return nullptr; 5289 5290 if (BO->Opcode != Instruction::Add) 5291 return nullptr; 5292 5293 const SCEV *Accum = nullptr; 5294 if (BO->LHS == PN && L->isLoopInvariant(BO->RHS)) 5295 Accum = getSCEV(BO->RHS); 5296 else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS)) 5297 Accum = getSCEV(BO->LHS); 5298 5299 if (!Accum) 5300 return nullptr; 5301 5302 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 5303 if (BO->IsNUW) 5304 Flags = setFlags(Flags, SCEV::FlagNUW); 5305 if (BO->IsNSW) 5306 Flags = setFlags(Flags, SCEV::FlagNSW); 5307 5308 const SCEV *StartVal = getSCEV(StartValueV); 5309 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 5310 insertValueToMap(PN, PHISCEV); 5311 5312 // We can add Flags to the post-inc expression only if we 5313 // know that it is *undefined behavior* for BEValueV to 5314 // overflow. 5315 if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) { 5316 assert(isLoopInvariant(Accum, L) && 5317 "Accum is defined outside L, but is not invariant?"); 5318 if (isAddRecNeverPoison(BEInst, L)) 5319 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 5320 } 5321 5322 return PHISCEV; 5323 } 5324 5325 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) { 5326 const Loop *L = LI.getLoopFor(PN->getParent()); 5327 if (!L || L->getHeader() != PN->getParent()) 5328 return nullptr; 5329 5330 // The loop may have multiple entrances or multiple exits; we can analyze 5331 // this phi as an addrec if it has a unique entry value and a unique 5332 // backedge value. 5333 Value *BEValueV = nullptr, *StartValueV = nullptr; 5334 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 5335 Value *V = PN->getIncomingValue(i); 5336 if (L->contains(PN->getIncomingBlock(i))) { 5337 if (!BEValueV) { 5338 BEValueV = V; 5339 } else if (BEValueV != V) { 5340 BEValueV = nullptr; 5341 break; 5342 } 5343 } else if (!StartValueV) { 5344 StartValueV = V; 5345 } else if (StartValueV != V) { 5346 StartValueV = nullptr; 5347 break; 5348 } 5349 } 5350 if (!BEValueV || !StartValueV) 5351 return nullptr; 5352 5353 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() && 5354 "PHI node already processed?"); 5355 5356 // First, try to find AddRec expression without creating a fictituos symbolic 5357 // value for PN. 5358 if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV)) 5359 return S; 5360 5361 // Handle PHI node value symbolically. 5362 const SCEV *SymbolicName = getUnknown(PN); 5363 insertValueToMap(PN, SymbolicName); 5364 5365 // Using this symbolic name for the PHI, analyze the value coming around 5366 // the back-edge. 5367 const SCEV *BEValue = getSCEV(BEValueV); 5368 5369 // NOTE: If BEValue is loop invariant, we know that the PHI node just 5370 // has a special value for the first iteration of the loop. 5371 5372 // If the value coming around the backedge is an add with the symbolic 5373 // value we just inserted, then we found a simple induction variable! 5374 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 5375 // If there is a single occurrence of the symbolic value, replace it 5376 // with a recurrence. 5377 unsigned FoundIndex = Add->getNumOperands(); 5378 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5379 if (Add->getOperand(i) == SymbolicName) 5380 if (FoundIndex == e) { 5381 FoundIndex = i; 5382 break; 5383 } 5384 5385 if (FoundIndex != Add->getNumOperands()) { 5386 // Create an add with everything but the specified operand. 5387 SmallVector<const SCEV *, 8> Ops; 5388 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5389 if (i != FoundIndex) 5390 Ops.push_back(SCEVBackedgeConditionFolder::rewrite(Add->getOperand(i), 5391 L, *this)); 5392 const SCEV *Accum = getAddExpr(Ops); 5393 5394 // This is not a valid addrec if the step amount is varying each 5395 // loop iteration, but is not itself an addrec in this loop. 5396 if (isLoopInvariant(Accum, L) || 5397 (isa<SCEVAddRecExpr>(Accum) && 5398 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 5399 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 5400 5401 if (auto BO = MatchBinaryOp(BEValueV, DT)) { 5402 if (BO->Opcode == Instruction::Add && BO->LHS == PN) { 5403 if (BO->IsNUW) 5404 Flags = setFlags(Flags, SCEV::FlagNUW); 5405 if (BO->IsNSW) 5406 Flags = setFlags(Flags, SCEV::FlagNSW); 5407 } 5408 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) { 5409 // If the increment is an inbounds GEP, then we know the address 5410 // space cannot be wrapped around. We cannot make any guarantee 5411 // about signed or unsigned overflow because pointers are 5412 // unsigned but we may have a negative index from the base 5413 // pointer. We can guarantee that no unsigned wrap occurs if the 5414 // indices form a positive value. 5415 if (GEP->isInBounds() && GEP->getOperand(0) == PN) { 5416 Flags = setFlags(Flags, SCEV::FlagNW); 5417 5418 const SCEV *Ptr = getSCEV(GEP->getPointerOperand()); 5419 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr))) 5420 Flags = setFlags(Flags, SCEV::FlagNUW); 5421 } 5422 5423 // We cannot transfer nuw and nsw flags from subtraction 5424 // operations -- sub nuw X, Y is not the same as add nuw X, -Y 5425 // for instance. 5426 } 5427 5428 const SCEV *StartVal = getSCEV(StartValueV); 5429 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 5430 5431 // Okay, for the entire analysis of this edge we assumed the PHI 5432 // to be symbolic. We now need to go back and purge all of the 5433 // entries for the scalars that use the symbolic expression. 5434 forgetMemoizedResults(SymbolicName); 5435 insertValueToMap(PN, PHISCEV); 5436 5437 // We can add Flags to the post-inc expression only if we 5438 // know that it is *undefined behavior* for BEValueV to 5439 // overflow. 5440 if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) 5441 if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L)) 5442 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 5443 5444 return PHISCEV; 5445 } 5446 } 5447 } else { 5448 // Otherwise, this could be a loop like this: 5449 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 5450 // In this case, j = {1,+,1} and BEValue is j. 5451 // Because the other in-value of i (0) fits the evolution of BEValue 5452 // i really is an addrec evolution. 5453 // 5454 // We can generalize this saying that i is the shifted value of BEValue 5455 // by one iteration: 5456 // PHI(f(0), f({1,+,1})) --> f({0,+,1}) 5457 const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this); 5458 const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this, false); 5459 if (Shifted != getCouldNotCompute() && 5460 Start != getCouldNotCompute()) { 5461 const SCEV *StartVal = getSCEV(StartValueV); 5462 if (Start == StartVal) { 5463 // Okay, for the entire analysis of this edge we assumed the PHI 5464 // to be symbolic. We now need to go back and purge all of the 5465 // entries for the scalars that use the symbolic expression. 5466 forgetMemoizedResults(SymbolicName); 5467 insertValueToMap(PN, Shifted); 5468 return Shifted; 5469 } 5470 } 5471 } 5472 5473 // Remove the temporary PHI node SCEV that has been inserted while intending 5474 // to create an AddRecExpr for this PHI node. We can not keep this temporary 5475 // as it will prevent later (possibly simpler) SCEV expressions to be added 5476 // to the ValueExprMap. 5477 eraseValueFromMap(PN); 5478 5479 return nullptr; 5480 } 5481 5482 // Checks if the SCEV S is available at BB. S is considered available at BB 5483 // if S can be materialized at BB without introducing a fault. 5484 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S, 5485 BasicBlock *BB) { 5486 struct CheckAvailable { 5487 bool TraversalDone = false; 5488 bool Available = true; 5489 5490 const Loop *L = nullptr; // The loop BB is in (can be nullptr) 5491 BasicBlock *BB = nullptr; 5492 DominatorTree &DT; 5493 5494 CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT) 5495 : L(L), BB(BB), DT(DT) {} 5496 5497 bool setUnavailable() { 5498 TraversalDone = true; 5499 Available = false; 5500 return false; 5501 } 5502 5503 bool follow(const SCEV *S) { 5504 switch (S->getSCEVType()) { 5505 case scConstant: 5506 case scPtrToInt: 5507 case scTruncate: 5508 case scZeroExtend: 5509 case scSignExtend: 5510 case scAddExpr: 5511 case scMulExpr: 5512 case scUMaxExpr: 5513 case scSMaxExpr: 5514 case scUMinExpr: 5515 case scSMinExpr: 5516 // These expressions are available if their operand(s) is/are. 5517 return true; 5518 5519 case scAddRecExpr: { 5520 // We allow add recurrences that are on the loop BB is in, or some 5521 // outer loop. This guarantees availability because the value of the 5522 // add recurrence at BB is simply the "current" value of the induction 5523 // variable. We can relax this in the future; for instance an add 5524 // recurrence on a sibling dominating loop is also available at BB. 5525 const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop(); 5526 if (L && (ARLoop == L || ARLoop->contains(L))) 5527 return true; 5528 5529 return setUnavailable(); 5530 } 5531 5532 case scUnknown: { 5533 // For SCEVUnknown, we check for simple dominance. 5534 const auto *SU = cast<SCEVUnknown>(S); 5535 Value *V = SU->getValue(); 5536 5537 if (isa<Argument>(V)) 5538 return false; 5539 5540 if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB)) 5541 return false; 5542 5543 return setUnavailable(); 5544 } 5545 5546 case scUDivExpr: 5547 case scCouldNotCompute: 5548 // We do not try to smart about these at all. 5549 return setUnavailable(); 5550 } 5551 llvm_unreachable("Unknown SCEV kind!"); 5552 } 5553 5554 bool isDone() { return TraversalDone; } 5555 }; 5556 5557 CheckAvailable CA(L, BB, DT); 5558 SCEVTraversal<CheckAvailable> ST(CA); 5559 5560 ST.visitAll(S); 5561 return CA.Available; 5562 } 5563 5564 // Try to match a control flow sequence that branches out at BI and merges back 5565 // at Merge into a "C ? LHS : RHS" select pattern. Return true on a successful 5566 // match. 5567 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge, 5568 Value *&C, Value *&LHS, Value *&RHS) { 5569 C = BI->getCondition(); 5570 5571 BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0)); 5572 BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1)); 5573 5574 if (!LeftEdge.isSingleEdge()) 5575 return false; 5576 5577 assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()"); 5578 5579 Use &LeftUse = Merge->getOperandUse(0); 5580 Use &RightUse = Merge->getOperandUse(1); 5581 5582 if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) { 5583 LHS = LeftUse; 5584 RHS = RightUse; 5585 return true; 5586 } 5587 5588 if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) { 5589 LHS = RightUse; 5590 RHS = LeftUse; 5591 return true; 5592 } 5593 5594 return false; 5595 } 5596 5597 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) { 5598 auto IsReachable = 5599 [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); }; 5600 if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) { 5601 const Loop *L = LI.getLoopFor(PN->getParent()); 5602 5603 // We don't want to break LCSSA, even in a SCEV expression tree. 5604 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 5605 if (LI.getLoopFor(PN->getIncomingBlock(i)) != L) 5606 return nullptr; 5607 5608 // Try to match 5609 // 5610 // br %cond, label %left, label %right 5611 // left: 5612 // br label %merge 5613 // right: 5614 // br label %merge 5615 // merge: 5616 // V = phi [ %x, %left ], [ %y, %right ] 5617 // 5618 // as "select %cond, %x, %y" 5619 5620 BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock(); 5621 assert(IDom && "At least the entry block should dominate PN"); 5622 5623 auto *BI = dyn_cast<BranchInst>(IDom->getTerminator()); 5624 Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr; 5625 5626 if (BI && BI->isConditional() && 5627 BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) && 5628 IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) && 5629 IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent())) 5630 return createNodeForSelectOrPHI(PN, Cond, LHS, RHS); 5631 } 5632 5633 return nullptr; 5634 } 5635 5636 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 5637 if (const SCEV *S = createAddRecFromPHI(PN)) 5638 return S; 5639 5640 if (const SCEV *S = createNodeFromSelectLikePHI(PN)) 5641 return S; 5642 5643 // If the PHI has a single incoming value, follow that value, unless the 5644 // PHI's incoming blocks are in a different loop, in which case doing so 5645 // risks breaking LCSSA form. Instcombine would normally zap these, but 5646 // it doesn't have DominatorTree information, so it may miss cases. 5647 if (Value *V = SimplifyInstruction(PN, {getDataLayout(), &TLI, &DT, &AC})) 5648 if (LI.replacementPreservesLCSSAForm(PN, V)) 5649 return getSCEV(V); 5650 5651 // If it's not a loop phi, we can't handle it yet. 5652 return getUnknown(PN); 5653 } 5654 5655 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I, 5656 Value *Cond, 5657 Value *TrueVal, 5658 Value *FalseVal) { 5659 // Handle "constant" branch or select. This can occur for instance when a 5660 // loop pass transforms an inner loop and moves on to process the outer loop. 5661 if (auto *CI = dyn_cast<ConstantInt>(Cond)) 5662 return getSCEV(CI->isOne() ? TrueVal : FalseVal); 5663 5664 // Try to match some simple smax or umax patterns. 5665 auto *ICI = dyn_cast<ICmpInst>(Cond); 5666 if (!ICI) 5667 return getUnknown(I); 5668 5669 Value *LHS = ICI->getOperand(0); 5670 Value *RHS = ICI->getOperand(1); 5671 5672 switch (ICI->getPredicate()) { 5673 case ICmpInst::ICMP_SLT: 5674 case ICmpInst::ICMP_SLE: 5675 case ICmpInst::ICMP_ULT: 5676 case ICmpInst::ICMP_ULE: 5677 std::swap(LHS, RHS); 5678 LLVM_FALLTHROUGH; 5679 case ICmpInst::ICMP_SGT: 5680 case ICmpInst::ICMP_SGE: 5681 case ICmpInst::ICMP_UGT: 5682 case ICmpInst::ICMP_UGE: 5683 // a > b ? a+x : b+x -> max(a, b)+x 5684 // a > b ? b+x : a+x -> min(a, b)+x 5685 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 5686 bool Signed = ICI->isSigned(); 5687 const SCEV *LA = getSCEV(TrueVal); 5688 const SCEV *RA = getSCEV(FalseVal); 5689 const SCEV *LS = getSCEV(LHS); 5690 const SCEV *RS = getSCEV(RHS); 5691 if (LA->getType()->isPointerTy()) { 5692 // FIXME: Handle cases where LS/RS are pointers not equal to LA/RA. 5693 // Need to make sure we can't produce weird expressions involving 5694 // negated pointers. 5695 if (LA == LS && RA == RS) 5696 return Signed ? getSMaxExpr(LS, RS) : getUMaxExpr(LS, RS); 5697 if (LA == RS && RA == LS) 5698 return Signed ? getSMinExpr(LS, RS) : getUMinExpr(LS, RS); 5699 } 5700 auto CoerceOperand = [&](const SCEV *Op) -> const SCEV * { 5701 if (Op->getType()->isPointerTy()) { 5702 Op = getLosslessPtrToIntExpr(Op); 5703 if (isa<SCEVCouldNotCompute>(Op)) 5704 return Op; 5705 } 5706 if (Signed) 5707 Op = getNoopOrSignExtend(Op, I->getType()); 5708 else 5709 Op = getNoopOrZeroExtend(Op, I->getType()); 5710 return Op; 5711 }; 5712 LS = CoerceOperand(LS); 5713 RS = CoerceOperand(RS); 5714 if (isa<SCEVCouldNotCompute>(LS) || isa<SCEVCouldNotCompute>(RS)) 5715 break; 5716 const SCEV *LDiff = getMinusSCEV(LA, LS); 5717 const SCEV *RDiff = getMinusSCEV(RA, RS); 5718 if (LDiff == RDiff) 5719 return getAddExpr(Signed ? getSMaxExpr(LS, RS) : getUMaxExpr(LS, RS), 5720 LDiff); 5721 LDiff = getMinusSCEV(LA, RS); 5722 RDiff = getMinusSCEV(RA, LS); 5723 if (LDiff == RDiff) 5724 return getAddExpr(Signed ? getSMinExpr(LS, RS) : getUMinExpr(LS, RS), 5725 LDiff); 5726 } 5727 break; 5728 case ICmpInst::ICMP_NE: 5729 // n != 0 ? n+x : 1+x -> umax(n, 1)+x 5730 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 5731 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 5732 const SCEV *One = getOne(I->getType()); 5733 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 5734 const SCEV *LA = getSCEV(TrueVal); 5735 const SCEV *RA = getSCEV(FalseVal); 5736 const SCEV *LDiff = getMinusSCEV(LA, LS); 5737 const SCEV *RDiff = getMinusSCEV(RA, One); 5738 if (LDiff == RDiff) 5739 return getAddExpr(getUMaxExpr(One, LS), LDiff); 5740 } 5741 break; 5742 case ICmpInst::ICMP_EQ: 5743 // n == 0 ? 1+x : n+x -> umax(n, 1)+x 5744 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 5745 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 5746 const SCEV *One = getOne(I->getType()); 5747 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 5748 const SCEV *LA = getSCEV(TrueVal); 5749 const SCEV *RA = getSCEV(FalseVal); 5750 const SCEV *LDiff = getMinusSCEV(LA, One); 5751 const SCEV *RDiff = getMinusSCEV(RA, LS); 5752 if (LDiff == RDiff) 5753 return getAddExpr(getUMaxExpr(One, LS), LDiff); 5754 } 5755 break; 5756 default: 5757 break; 5758 } 5759 5760 return getUnknown(I); 5761 } 5762 5763 /// Expand GEP instructions into add and multiply operations. This allows them 5764 /// to be analyzed by regular SCEV code. 5765 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 5766 // Don't attempt to analyze GEPs over unsized objects. 5767 if (!GEP->getSourceElementType()->isSized()) 5768 return getUnknown(GEP); 5769 5770 SmallVector<const SCEV *, 4> IndexExprs; 5771 for (Value *Index : GEP->indices()) 5772 IndexExprs.push_back(getSCEV(Index)); 5773 return getGEPExpr(GEP, IndexExprs); 5774 } 5775 5776 uint32_t ScalarEvolution::GetMinTrailingZerosImpl(const SCEV *S) { 5777 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 5778 return C->getAPInt().countTrailingZeros(); 5779 5780 if (const SCEVPtrToIntExpr *I = dyn_cast<SCEVPtrToIntExpr>(S)) 5781 return GetMinTrailingZeros(I->getOperand()); 5782 5783 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 5784 return std::min(GetMinTrailingZeros(T->getOperand()), 5785 (uint32_t)getTypeSizeInBits(T->getType())); 5786 5787 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 5788 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 5789 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) 5790 ? getTypeSizeInBits(E->getType()) 5791 : OpRes; 5792 } 5793 5794 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 5795 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 5796 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) 5797 ? getTypeSizeInBits(E->getType()) 5798 : OpRes; 5799 } 5800 5801 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 5802 // The result is the min of all operands results. 5803 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 5804 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 5805 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 5806 return MinOpRes; 5807 } 5808 5809 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 5810 // The result is the sum of all operands results. 5811 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 5812 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 5813 for (unsigned i = 1, e = M->getNumOperands(); 5814 SumOpRes != BitWidth && i != e; ++i) 5815 SumOpRes = 5816 std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), BitWidth); 5817 return SumOpRes; 5818 } 5819 5820 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 5821 // The result is the min of all operands results. 5822 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 5823 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 5824 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 5825 return MinOpRes; 5826 } 5827 5828 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 5829 // The result is the min of all operands results. 5830 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 5831 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 5832 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 5833 return MinOpRes; 5834 } 5835 5836 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 5837 // The result is the min of all operands results. 5838 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 5839 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 5840 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 5841 return MinOpRes; 5842 } 5843 5844 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 5845 // For a SCEVUnknown, ask ValueTracking. 5846 KnownBits Known = computeKnownBits(U->getValue(), getDataLayout(), 0, &AC, nullptr, &DT); 5847 return Known.countMinTrailingZeros(); 5848 } 5849 5850 // SCEVUDivExpr 5851 return 0; 5852 } 5853 5854 uint32_t ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { 5855 auto I = MinTrailingZerosCache.find(S); 5856 if (I != MinTrailingZerosCache.end()) 5857 return I->second; 5858 5859 uint32_t Result = GetMinTrailingZerosImpl(S); 5860 auto InsertPair = MinTrailingZerosCache.insert({S, Result}); 5861 assert(InsertPair.second && "Should insert a new key"); 5862 return InsertPair.first->second; 5863 } 5864 5865 /// Helper method to assign a range to V from metadata present in the IR. 5866 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) { 5867 if (Instruction *I = dyn_cast<Instruction>(V)) 5868 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range)) 5869 return getConstantRangeFromMetadata(*MD); 5870 5871 return None; 5872 } 5873 5874 void ScalarEvolution::setNoWrapFlags(SCEVAddRecExpr *AddRec, 5875 SCEV::NoWrapFlags Flags) { 5876 if (AddRec->getNoWrapFlags(Flags) != Flags) { 5877 AddRec->setNoWrapFlags(Flags); 5878 UnsignedRanges.erase(AddRec); 5879 SignedRanges.erase(AddRec); 5880 } 5881 } 5882 5883 ConstantRange ScalarEvolution:: 5884 getRangeForUnknownRecurrence(const SCEVUnknown *U) { 5885 const DataLayout &DL = getDataLayout(); 5886 5887 unsigned BitWidth = getTypeSizeInBits(U->getType()); 5888 const ConstantRange FullSet(BitWidth, /*isFullSet=*/true); 5889 5890 // Match a simple recurrence of the form: <start, ShiftOp, Step>, and then 5891 // use information about the trip count to improve our available range. Note 5892 // that the trip count independent cases are already handled by known bits. 5893 // WARNING: The definition of recurrence used here is subtly different than 5894 // the one used by AddRec (and thus most of this file). Step is allowed to 5895 // be arbitrarily loop varying here, where AddRec allows only loop invariant 5896 // and other addrecs in the same loop (for non-affine addrecs). The code 5897 // below intentionally handles the case where step is not loop invariant. 5898 auto *P = dyn_cast<PHINode>(U->getValue()); 5899 if (!P) 5900 return FullSet; 5901 5902 // Make sure that no Phi input comes from an unreachable block. Otherwise, 5903 // even the values that are not available in these blocks may come from them, 5904 // and this leads to false-positive recurrence test. 5905 for (auto *Pred : predecessors(P->getParent())) 5906 if (!DT.isReachableFromEntry(Pred)) 5907 return FullSet; 5908 5909 BinaryOperator *BO; 5910 Value *Start, *Step; 5911 if (!matchSimpleRecurrence(P, BO, Start, Step)) 5912 return FullSet; 5913 5914 // If we found a recurrence in reachable code, we must be in a loop. Note 5915 // that BO might be in some subloop of L, and that's completely okay. 5916 auto *L = LI.getLoopFor(P->getParent()); 5917 assert(L && L->getHeader() == P->getParent()); 5918 if (!L->contains(BO->getParent())) 5919 // NOTE: This bailout should be an assert instead. However, asserting 5920 // the condition here exposes a case where LoopFusion is querying SCEV 5921 // with malformed loop information during the midst of the transform. 5922 // There doesn't appear to be an obvious fix, so for the moment bailout 5923 // until the caller issue can be fixed. PR49566 tracks the bug. 5924 return FullSet; 5925 5926 // TODO: Extend to other opcodes such as mul, and div 5927 switch (BO->getOpcode()) { 5928 default: 5929 return FullSet; 5930 case Instruction::AShr: 5931 case Instruction::LShr: 5932 case Instruction::Shl: 5933 break; 5934 }; 5935 5936 if (BO->getOperand(0) != P) 5937 // TODO: Handle the power function forms some day. 5938 return FullSet; 5939 5940 unsigned TC = getSmallConstantMaxTripCount(L); 5941 if (!TC || TC >= BitWidth) 5942 return FullSet; 5943 5944 auto KnownStart = computeKnownBits(Start, DL, 0, &AC, nullptr, &DT); 5945 auto KnownStep = computeKnownBits(Step, DL, 0, &AC, nullptr, &DT); 5946 assert(KnownStart.getBitWidth() == BitWidth && 5947 KnownStep.getBitWidth() == BitWidth); 5948 5949 // Compute total shift amount, being careful of overflow and bitwidths. 5950 auto MaxShiftAmt = KnownStep.getMaxValue(); 5951 APInt TCAP(BitWidth, TC-1); 5952 bool Overflow = false; 5953 auto TotalShift = MaxShiftAmt.umul_ov(TCAP, Overflow); 5954 if (Overflow) 5955 return FullSet; 5956 5957 switch (BO->getOpcode()) { 5958 default: 5959 llvm_unreachable("filtered out above"); 5960 case Instruction::AShr: { 5961 // For each ashr, three cases: 5962 // shift = 0 => unchanged value 5963 // saturation => 0 or -1 5964 // other => a value closer to zero (of the same sign) 5965 // Thus, the end value is closer to zero than the start. 5966 auto KnownEnd = KnownBits::ashr(KnownStart, 5967 KnownBits::makeConstant(TotalShift)); 5968 if (KnownStart.isNonNegative()) 5969 // Analogous to lshr (simply not yet canonicalized) 5970 return ConstantRange::getNonEmpty(KnownEnd.getMinValue(), 5971 KnownStart.getMaxValue() + 1); 5972 if (KnownStart.isNegative()) 5973 // End >=u Start && End <=s Start 5974 return ConstantRange::getNonEmpty(KnownStart.getMinValue(), 5975 KnownEnd.getMaxValue() + 1); 5976 break; 5977 } 5978 case Instruction::LShr: { 5979 // For each lshr, three cases: 5980 // shift = 0 => unchanged value 5981 // saturation => 0 5982 // other => a smaller positive number 5983 // Thus, the low end of the unsigned range is the last value produced. 5984 auto KnownEnd = KnownBits::lshr(KnownStart, 5985 KnownBits::makeConstant(TotalShift)); 5986 return ConstantRange::getNonEmpty(KnownEnd.getMinValue(), 5987 KnownStart.getMaxValue() + 1); 5988 } 5989 case Instruction::Shl: { 5990 // Iff no bits are shifted out, value increases on every shift. 5991 auto KnownEnd = KnownBits::shl(KnownStart, 5992 KnownBits::makeConstant(TotalShift)); 5993 if (TotalShift.ult(KnownStart.countMinLeadingZeros())) 5994 return ConstantRange(KnownStart.getMinValue(), 5995 KnownEnd.getMaxValue() + 1); 5996 break; 5997 } 5998 }; 5999 return FullSet; 6000 } 6001 6002 /// Determine the range for a particular SCEV. If SignHint is 6003 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges 6004 /// with a "cleaner" unsigned (resp. signed) representation. 6005 const ConstantRange & 6006 ScalarEvolution::getRangeRef(const SCEV *S, 6007 ScalarEvolution::RangeSignHint SignHint) { 6008 DenseMap<const SCEV *, ConstantRange> &Cache = 6009 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges 6010 : SignedRanges; 6011 ConstantRange::PreferredRangeType RangeType = 6012 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED 6013 ? ConstantRange::Unsigned : ConstantRange::Signed; 6014 6015 // See if we've computed this range already. 6016 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S); 6017 if (I != Cache.end()) 6018 return I->second; 6019 6020 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 6021 return setRange(C, SignHint, ConstantRange(C->getAPInt())); 6022 6023 unsigned BitWidth = getTypeSizeInBits(S->getType()); 6024 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 6025 using OBO = OverflowingBinaryOperator; 6026 6027 // If the value has known zeros, the maximum value will have those known zeros 6028 // as well. 6029 uint32_t TZ = GetMinTrailingZeros(S); 6030 if (TZ != 0) { 6031 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) 6032 ConservativeResult = 6033 ConstantRange(APInt::getMinValue(BitWidth), 6034 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1); 6035 else 6036 ConservativeResult = ConstantRange( 6037 APInt::getSignedMinValue(BitWidth), 6038 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 6039 } 6040 6041 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 6042 ConstantRange X = getRangeRef(Add->getOperand(0), SignHint); 6043 unsigned WrapType = OBO::AnyWrap; 6044 if (Add->hasNoSignedWrap()) 6045 WrapType |= OBO::NoSignedWrap; 6046 if (Add->hasNoUnsignedWrap()) 6047 WrapType |= OBO::NoUnsignedWrap; 6048 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 6049 X = X.addWithNoWrap(getRangeRef(Add->getOperand(i), SignHint), 6050 WrapType, RangeType); 6051 return setRange(Add, SignHint, 6052 ConservativeResult.intersectWith(X, RangeType)); 6053 } 6054 6055 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 6056 ConstantRange X = getRangeRef(Mul->getOperand(0), SignHint); 6057 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 6058 X = X.multiply(getRangeRef(Mul->getOperand(i), SignHint)); 6059 return setRange(Mul, SignHint, 6060 ConservativeResult.intersectWith(X, RangeType)); 6061 } 6062 6063 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 6064 ConstantRange X = getRangeRef(SMax->getOperand(0), SignHint); 6065 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 6066 X = X.smax(getRangeRef(SMax->getOperand(i), SignHint)); 6067 return setRange(SMax, SignHint, 6068 ConservativeResult.intersectWith(X, RangeType)); 6069 } 6070 6071 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 6072 ConstantRange X = getRangeRef(UMax->getOperand(0), SignHint); 6073 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 6074 X = X.umax(getRangeRef(UMax->getOperand(i), SignHint)); 6075 return setRange(UMax, SignHint, 6076 ConservativeResult.intersectWith(X, RangeType)); 6077 } 6078 6079 if (const SCEVSMinExpr *SMin = dyn_cast<SCEVSMinExpr>(S)) { 6080 ConstantRange X = getRangeRef(SMin->getOperand(0), SignHint); 6081 for (unsigned i = 1, e = SMin->getNumOperands(); i != e; ++i) 6082 X = X.smin(getRangeRef(SMin->getOperand(i), SignHint)); 6083 return setRange(SMin, SignHint, 6084 ConservativeResult.intersectWith(X, RangeType)); 6085 } 6086 6087 if (const SCEVUMinExpr *UMin = dyn_cast<SCEVUMinExpr>(S)) { 6088 ConstantRange X = getRangeRef(UMin->getOperand(0), SignHint); 6089 for (unsigned i = 1, e = UMin->getNumOperands(); i != e; ++i) 6090 X = X.umin(getRangeRef(UMin->getOperand(i), SignHint)); 6091 return setRange(UMin, SignHint, 6092 ConservativeResult.intersectWith(X, RangeType)); 6093 } 6094 6095 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 6096 ConstantRange X = getRangeRef(UDiv->getLHS(), SignHint); 6097 ConstantRange Y = getRangeRef(UDiv->getRHS(), SignHint); 6098 return setRange(UDiv, SignHint, 6099 ConservativeResult.intersectWith(X.udiv(Y), RangeType)); 6100 } 6101 6102 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 6103 ConstantRange X = getRangeRef(ZExt->getOperand(), SignHint); 6104 return setRange(ZExt, SignHint, 6105 ConservativeResult.intersectWith(X.zeroExtend(BitWidth), 6106 RangeType)); 6107 } 6108 6109 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 6110 ConstantRange X = getRangeRef(SExt->getOperand(), SignHint); 6111 return setRange(SExt, SignHint, 6112 ConservativeResult.intersectWith(X.signExtend(BitWidth), 6113 RangeType)); 6114 } 6115 6116 if (const SCEVPtrToIntExpr *PtrToInt = dyn_cast<SCEVPtrToIntExpr>(S)) { 6117 ConstantRange X = getRangeRef(PtrToInt->getOperand(), SignHint); 6118 return setRange(PtrToInt, SignHint, X); 6119 } 6120 6121 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 6122 ConstantRange X = getRangeRef(Trunc->getOperand(), SignHint); 6123 return setRange(Trunc, SignHint, 6124 ConservativeResult.intersectWith(X.truncate(BitWidth), 6125 RangeType)); 6126 } 6127 6128 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 6129 // If there's no unsigned wrap, the value will never be less than its 6130 // initial value. 6131 if (AddRec->hasNoUnsignedWrap()) { 6132 APInt UnsignedMinValue = getUnsignedRangeMin(AddRec->getStart()); 6133 if (!UnsignedMinValue.isZero()) 6134 ConservativeResult = ConservativeResult.intersectWith( 6135 ConstantRange(UnsignedMinValue, APInt(BitWidth, 0)), RangeType); 6136 } 6137 6138 // If there's no signed wrap, and all the operands except initial value have 6139 // the same sign or zero, the value won't ever be: 6140 // 1: smaller than initial value if operands are non negative, 6141 // 2: bigger than initial value if operands are non positive. 6142 // For both cases, value can not cross signed min/max boundary. 6143 if (AddRec->hasNoSignedWrap()) { 6144 bool AllNonNeg = true; 6145 bool AllNonPos = true; 6146 for (unsigned i = 1, e = AddRec->getNumOperands(); i != e; ++i) { 6147 if (!isKnownNonNegative(AddRec->getOperand(i))) 6148 AllNonNeg = false; 6149 if (!isKnownNonPositive(AddRec->getOperand(i))) 6150 AllNonPos = false; 6151 } 6152 if (AllNonNeg) 6153 ConservativeResult = ConservativeResult.intersectWith( 6154 ConstantRange::getNonEmpty(getSignedRangeMin(AddRec->getStart()), 6155 APInt::getSignedMinValue(BitWidth)), 6156 RangeType); 6157 else if (AllNonPos) 6158 ConservativeResult = ConservativeResult.intersectWith( 6159 ConstantRange::getNonEmpty( 6160 APInt::getSignedMinValue(BitWidth), 6161 getSignedRangeMax(AddRec->getStart()) + 1), 6162 RangeType); 6163 } 6164 6165 // TODO: non-affine addrec 6166 if (AddRec->isAffine()) { 6167 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(AddRec->getLoop()); 6168 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 6169 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 6170 auto RangeFromAffine = getRangeForAffineAR( 6171 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, 6172 BitWidth); 6173 ConservativeResult = 6174 ConservativeResult.intersectWith(RangeFromAffine, RangeType); 6175 6176 auto RangeFromFactoring = getRangeViaFactoring( 6177 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, 6178 BitWidth); 6179 ConservativeResult = 6180 ConservativeResult.intersectWith(RangeFromFactoring, RangeType); 6181 } 6182 6183 // Now try symbolic BE count and more powerful methods. 6184 if (UseExpensiveRangeSharpening) { 6185 const SCEV *SymbolicMaxBECount = 6186 getSymbolicMaxBackedgeTakenCount(AddRec->getLoop()); 6187 if (!isa<SCEVCouldNotCompute>(SymbolicMaxBECount) && 6188 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth && 6189 AddRec->hasNoSelfWrap()) { 6190 auto RangeFromAffineNew = getRangeForAffineNoSelfWrappingAR( 6191 AddRec, SymbolicMaxBECount, BitWidth, SignHint); 6192 ConservativeResult = 6193 ConservativeResult.intersectWith(RangeFromAffineNew, RangeType); 6194 } 6195 } 6196 } 6197 6198 return setRange(AddRec, SignHint, std::move(ConservativeResult)); 6199 } 6200 6201 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 6202 6203 // Check if the IR explicitly contains !range metadata. 6204 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue()); 6205 if (MDRange.hasValue()) 6206 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue(), 6207 RangeType); 6208 6209 // Use facts about recurrences in the underlying IR. Note that add 6210 // recurrences are AddRecExprs and thus don't hit this path. This 6211 // primarily handles shift recurrences. 6212 auto CR = getRangeForUnknownRecurrence(U); 6213 ConservativeResult = ConservativeResult.intersectWith(CR); 6214 6215 // See if ValueTracking can give us a useful range. 6216 const DataLayout &DL = getDataLayout(); 6217 KnownBits Known = computeKnownBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 6218 if (Known.getBitWidth() != BitWidth) 6219 Known = Known.zextOrTrunc(BitWidth); 6220 6221 // ValueTracking may be able to compute a tighter result for the number of 6222 // sign bits than for the value of those sign bits. 6223 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 6224 if (U->getType()->isPointerTy()) { 6225 // If the pointer size is larger than the index size type, this can cause 6226 // NS to be larger than BitWidth. So compensate for this. 6227 unsigned ptrSize = DL.getPointerTypeSizeInBits(U->getType()); 6228 int ptrIdxDiff = ptrSize - BitWidth; 6229 if (ptrIdxDiff > 0 && ptrSize > BitWidth && NS > (unsigned)ptrIdxDiff) 6230 NS -= ptrIdxDiff; 6231 } 6232 6233 if (NS > 1) { 6234 // If we know any of the sign bits, we know all of the sign bits. 6235 if (!Known.Zero.getHiBits(NS).isZero()) 6236 Known.Zero.setHighBits(NS); 6237 if (!Known.One.getHiBits(NS).isZero()) 6238 Known.One.setHighBits(NS); 6239 } 6240 6241 if (Known.getMinValue() != Known.getMaxValue() + 1) 6242 ConservativeResult = ConservativeResult.intersectWith( 6243 ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1), 6244 RangeType); 6245 if (NS > 1) 6246 ConservativeResult = ConservativeResult.intersectWith( 6247 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 6248 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1), 6249 RangeType); 6250 6251 // A range of Phi is a subset of union of all ranges of its input. 6252 if (const PHINode *Phi = dyn_cast<PHINode>(U->getValue())) { 6253 // Make sure that we do not run over cycled Phis. 6254 if (PendingPhiRanges.insert(Phi).second) { 6255 ConstantRange RangeFromOps(BitWidth, /*isFullSet=*/false); 6256 for (auto &Op : Phi->operands()) { 6257 auto OpRange = getRangeRef(getSCEV(Op), SignHint); 6258 RangeFromOps = RangeFromOps.unionWith(OpRange); 6259 // No point to continue if we already have a full set. 6260 if (RangeFromOps.isFullSet()) 6261 break; 6262 } 6263 ConservativeResult = 6264 ConservativeResult.intersectWith(RangeFromOps, RangeType); 6265 bool Erased = PendingPhiRanges.erase(Phi); 6266 assert(Erased && "Failed to erase Phi properly?"); 6267 (void) Erased; 6268 } 6269 } 6270 6271 return setRange(U, SignHint, std::move(ConservativeResult)); 6272 } 6273 6274 return setRange(S, SignHint, std::move(ConservativeResult)); 6275 } 6276 6277 // Given a StartRange, Step and MaxBECount for an expression compute a range of 6278 // values that the expression can take. Initially, the expression has a value 6279 // from StartRange and then is changed by Step up to MaxBECount times. Signed 6280 // argument defines if we treat Step as signed or unsigned. 6281 static ConstantRange getRangeForAffineARHelper(APInt Step, 6282 const ConstantRange &StartRange, 6283 const APInt &MaxBECount, 6284 unsigned BitWidth, bool Signed) { 6285 // If either Step or MaxBECount is 0, then the expression won't change, and we 6286 // just need to return the initial range. 6287 if (Step == 0 || MaxBECount == 0) 6288 return StartRange; 6289 6290 // If we don't know anything about the initial value (i.e. StartRange is 6291 // FullRange), then we don't know anything about the final range either. 6292 // Return FullRange. 6293 if (StartRange.isFullSet()) 6294 return ConstantRange::getFull(BitWidth); 6295 6296 // If Step is signed and negative, then we use its absolute value, but we also 6297 // note that we're moving in the opposite direction. 6298 bool Descending = Signed && Step.isNegative(); 6299 6300 if (Signed) 6301 // This is correct even for INT_SMIN. Let's look at i8 to illustrate this: 6302 // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128. 6303 // This equations hold true due to the well-defined wrap-around behavior of 6304 // APInt. 6305 Step = Step.abs(); 6306 6307 // Check if Offset is more than full span of BitWidth. If it is, the 6308 // expression is guaranteed to overflow. 6309 if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount)) 6310 return ConstantRange::getFull(BitWidth); 6311 6312 // Offset is by how much the expression can change. Checks above guarantee no 6313 // overflow here. 6314 APInt Offset = Step * MaxBECount; 6315 6316 // Minimum value of the final range will match the minimal value of StartRange 6317 // if the expression is increasing and will be decreased by Offset otherwise. 6318 // Maximum value of the final range will match the maximal value of StartRange 6319 // if the expression is decreasing and will be increased by Offset otherwise. 6320 APInt StartLower = StartRange.getLower(); 6321 APInt StartUpper = StartRange.getUpper() - 1; 6322 APInt MovedBoundary = Descending ? (StartLower - std::move(Offset)) 6323 : (StartUpper + std::move(Offset)); 6324 6325 // It's possible that the new minimum/maximum value will fall into the initial 6326 // range (due to wrap around). This means that the expression can take any 6327 // value in this bitwidth, and we have to return full range. 6328 if (StartRange.contains(MovedBoundary)) 6329 return ConstantRange::getFull(BitWidth); 6330 6331 APInt NewLower = 6332 Descending ? std::move(MovedBoundary) : std::move(StartLower); 6333 APInt NewUpper = 6334 Descending ? std::move(StartUpper) : std::move(MovedBoundary); 6335 NewUpper += 1; 6336 6337 // No overflow detected, return [StartLower, StartUpper + Offset + 1) range. 6338 return ConstantRange::getNonEmpty(std::move(NewLower), std::move(NewUpper)); 6339 } 6340 6341 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start, 6342 const SCEV *Step, 6343 const SCEV *MaxBECount, 6344 unsigned BitWidth) { 6345 assert(!isa<SCEVCouldNotCompute>(MaxBECount) && 6346 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth && 6347 "Precondition!"); 6348 6349 MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType()); 6350 APInt MaxBECountValue = getUnsignedRangeMax(MaxBECount); 6351 6352 // First, consider step signed. 6353 ConstantRange StartSRange = getSignedRange(Start); 6354 ConstantRange StepSRange = getSignedRange(Step); 6355 6356 // If Step can be both positive and negative, we need to find ranges for the 6357 // maximum absolute step values in both directions and union them. 6358 ConstantRange SR = 6359 getRangeForAffineARHelper(StepSRange.getSignedMin(), StartSRange, 6360 MaxBECountValue, BitWidth, /* Signed = */ true); 6361 SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(), 6362 StartSRange, MaxBECountValue, 6363 BitWidth, /* Signed = */ true)); 6364 6365 // Next, consider step unsigned. 6366 ConstantRange UR = getRangeForAffineARHelper( 6367 getUnsignedRangeMax(Step), getUnsignedRange(Start), 6368 MaxBECountValue, BitWidth, /* Signed = */ false); 6369 6370 // Finally, intersect signed and unsigned ranges. 6371 return SR.intersectWith(UR, ConstantRange::Smallest); 6372 } 6373 6374 ConstantRange ScalarEvolution::getRangeForAffineNoSelfWrappingAR( 6375 const SCEVAddRecExpr *AddRec, const SCEV *MaxBECount, unsigned BitWidth, 6376 ScalarEvolution::RangeSignHint SignHint) { 6377 assert(AddRec->isAffine() && "Non-affine AddRecs are not suppored!\n"); 6378 assert(AddRec->hasNoSelfWrap() && 6379 "This only works for non-self-wrapping AddRecs!"); 6380 const bool IsSigned = SignHint == HINT_RANGE_SIGNED; 6381 const SCEV *Step = AddRec->getStepRecurrence(*this); 6382 // Only deal with constant step to save compile time. 6383 if (!isa<SCEVConstant>(Step)) 6384 return ConstantRange::getFull(BitWidth); 6385 // Let's make sure that we can prove that we do not self-wrap during 6386 // MaxBECount iterations. We need this because MaxBECount is a maximum 6387 // iteration count estimate, and we might infer nw from some exit for which we 6388 // do not know max exit count (or any other side reasoning). 6389 // TODO: Turn into assert at some point. 6390 if (getTypeSizeInBits(MaxBECount->getType()) > 6391 getTypeSizeInBits(AddRec->getType())) 6392 return ConstantRange::getFull(BitWidth); 6393 MaxBECount = getNoopOrZeroExtend(MaxBECount, AddRec->getType()); 6394 const SCEV *RangeWidth = getMinusOne(AddRec->getType()); 6395 const SCEV *StepAbs = getUMinExpr(Step, getNegativeSCEV(Step)); 6396 const SCEV *MaxItersWithoutWrap = getUDivExpr(RangeWidth, StepAbs); 6397 if (!isKnownPredicateViaConstantRanges(ICmpInst::ICMP_ULE, MaxBECount, 6398 MaxItersWithoutWrap)) 6399 return ConstantRange::getFull(BitWidth); 6400 6401 ICmpInst::Predicate LEPred = 6402 IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 6403 ICmpInst::Predicate GEPred = 6404 IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; 6405 const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this); 6406 6407 // We know that there is no self-wrap. Let's take Start and End values and 6408 // look at all intermediate values V1, V2, ..., Vn that IndVar takes during 6409 // the iteration. They either lie inside the range [Min(Start, End), 6410 // Max(Start, End)] or outside it: 6411 // 6412 // Case 1: RangeMin ... Start V1 ... VN End ... RangeMax; 6413 // Case 2: RangeMin Vk ... V1 Start ... End Vn ... Vk + 1 RangeMax; 6414 // 6415 // No self wrap flag guarantees that the intermediate values cannot be BOTH 6416 // outside and inside the range [Min(Start, End), Max(Start, End)]. Using that 6417 // knowledge, let's try to prove that we are dealing with Case 1. It is so if 6418 // Start <= End and step is positive, or Start >= End and step is negative. 6419 const SCEV *Start = AddRec->getStart(); 6420 ConstantRange StartRange = getRangeRef(Start, SignHint); 6421 ConstantRange EndRange = getRangeRef(End, SignHint); 6422 ConstantRange RangeBetween = StartRange.unionWith(EndRange); 6423 // If they already cover full iteration space, we will know nothing useful 6424 // even if we prove what we want to prove. 6425 if (RangeBetween.isFullSet()) 6426 return RangeBetween; 6427 // Only deal with ranges that do not wrap (i.e. RangeMin < RangeMax). 6428 bool IsWrappedSet = IsSigned ? RangeBetween.isSignWrappedSet() 6429 : RangeBetween.isWrappedSet(); 6430 if (IsWrappedSet) 6431 return ConstantRange::getFull(BitWidth); 6432 6433 if (isKnownPositive(Step) && 6434 isKnownPredicateViaConstantRanges(LEPred, Start, End)) 6435 return RangeBetween; 6436 else if (isKnownNegative(Step) && 6437 isKnownPredicateViaConstantRanges(GEPred, Start, End)) 6438 return RangeBetween; 6439 return ConstantRange::getFull(BitWidth); 6440 } 6441 6442 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start, 6443 const SCEV *Step, 6444 const SCEV *MaxBECount, 6445 unsigned BitWidth) { 6446 // RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q}) 6447 // == RangeOf({A,+,P}) union RangeOf({B,+,Q}) 6448 6449 struct SelectPattern { 6450 Value *Condition = nullptr; 6451 APInt TrueValue; 6452 APInt FalseValue; 6453 6454 explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth, 6455 const SCEV *S) { 6456 Optional<unsigned> CastOp; 6457 APInt Offset(BitWidth, 0); 6458 6459 assert(SE.getTypeSizeInBits(S->getType()) == BitWidth && 6460 "Should be!"); 6461 6462 // Peel off a constant offset: 6463 if (auto *SA = dyn_cast<SCEVAddExpr>(S)) { 6464 // In the future we could consider being smarter here and handle 6465 // {Start+Step,+,Step} too. 6466 if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0))) 6467 return; 6468 6469 Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt(); 6470 S = SA->getOperand(1); 6471 } 6472 6473 // Peel off a cast operation 6474 if (auto *SCast = dyn_cast<SCEVIntegralCastExpr>(S)) { 6475 CastOp = SCast->getSCEVType(); 6476 S = SCast->getOperand(); 6477 } 6478 6479 using namespace llvm::PatternMatch; 6480 6481 auto *SU = dyn_cast<SCEVUnknown>(S); 6482 const APInt *TrueVal, *FalseVal; 6483 if (!SU || 6484 !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal), 6485 m_APInt(FalseVal)))) { 6486 Condition = nullptr; 6487 return; 6488 } 6489 6490 TrueValue = *TrueVal; 6491 FalseValue = *FalseVal; 6492 6493 // Re-apply the cast we peeled off earlier 6494 if (CastOp.hasValue()) 6495 switch (*CastOp) { 6496 default: 6497 llvm_unreachable("Unknown SCEV cast type!"); 6498 6499 case scTruncate: 6500 TrueValue = TrueValue.trunc(BitWidth); 6501 FalseValue = FalseValue.trunc(BitWidth); 6502 break; 6503 case scZeroExtend: 6504 TrueValue = TrueValue.zext(BitWidth); 6505 FalseValue = FalseValue.zext(BitWidth); 6506 break; 6507 case scSignExtend: 6508 TrueValue = TrueValue.sext(BitWidth); 6509 FalseValue = FalseValue.sext(BitWidth); 6510 break; 6511 } 6512 6513 // Re-apply the constant offset we peeled off earlier 6514 TrueValue += Offset; 6515 FalseValue += Offset; 6516 } 6517 6518 bool isRecognized() { return Condition != nullptr; } 6519 }; 6520 6521 SelectPattern StartPattern(*this, BitWidth, Start); 6522 if (!StartPattern.isRecognized()) 6523 return ConstantRange::getFull(BitWidth); 6524 6525 SelectPattern StepPattern(*this, BitWidth, Step); 6526 if (!StepPattern.isRecognized()) 6527 return ConstantRange::getFull(BitWidth); 6528 6529 if (StartPattern.Condition != StepPattern.Condition) { 6530 // We don't handle this case today; but we could, by considering four 6531 // possibilities below instead of two. I'm not sure if there are cases where 6532 // that will help over what getRange already does, though. 6533 return ConstantRange::getFull(BitWidth); 6534 } 6535 6536 // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to 6537 // construct arbitrary general SCEV expressions here. This function is called 6538 // from deep in the call stack, and calling getSCEV (on a sext instruction, 6539 // say) can end up caching a suboptimal value. 6540 6541 // FIXME: without the explicit `this` receiver below, MSVC errors out with 6542 // C2352 and C2512 (otherwise it isn't needed). 6543 6544 const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue); 6545 const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue); 6546 const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue); 6547 const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue); 6548 6549 ConstantRange TrueRange = 6550 this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth); 6551 ConstantRange FalseRange = 6552 this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth); 6553 6554 return TrueRange.unionWith(FalseRange); 6555 } 6556 6557 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) { 6558 if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap; 6559 const BinaryOperator *BinOp = cast<BinaryOperator>(V); 6560 6561 // Return early if there are no flags to propagate to the SCEV. 6562 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 6563 if (BinOp->hasNoUnsignedWrap()) 6564 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 6565 if (BinOp->hasNoSignedWrap()) 6566 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 6567 if (Flags == SCEV::FlagAnyWrap) 6568 return SCEV::FlagAnyWrap; 6569 6570 return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap; 6571 } 6572 6573 const Instruction * 6574 ScalarEvolution::getNonTrivialDefiningScopeBound(const SCEV *S) { 6575 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(S)) 6576 return &*AddRec->getLoop()->getHeader()->begin(); 6577 if (auto *U = dyn_cast<SCEVUnknown>(S)) 6578 if (auto *I = dyn_cast<Instruction>(U->getValue())) 6579 return I; 6580 return nullptr; 6581 } 6582 6583 /// Fills \p Ops with unique operands of \p S, if it has operands. If not, 6584 /// \p Ops remains unmodified. 6585 static void collectUniqueOps(const SCEV *S, 6586 SmallVectorImpl<const SCEV *> &Ops) { 6587 SmallPtrSet<const SCEV *, 4> Unique; 6588 auto InsertUnique = [&](const SCEV *S) { 6589 if (Unique.insert(S).second) 6590 Ops.push_back(S); 6591 }; 6592 if (auto *S2 = dyn_cast<SCEVCastExpr>(S)) 6593 for (auto *Op : S2->operands()) 6594 InsertUnique(Op); 6595 else if (auto *S2 = dyn_cast<SCEVNAryExpr>(S)) 6596 for (auto *Op : S2->operands()) 6597 InsertUnique(Op); 6598 else if (auto *S2 = dyn_cast<SCEVUDivExpr>(S)) 6599 for (auto *Op : S2->operands()) 6600 InsertUnique(Op); 6601 } 6602 6603 const Instruction * 6604 ScalarEvolution::getDefiningScopeBound(ArrayRef<const SCEV *> Ops, 6605 bool &Precise) { 6606 Precise = true; 6607 // Do a bounded search of the def relation of the requested SCEVs. 6608 SmallSet<const SCEV *, 16> Visited; 6609 SmallVector<const SCEV *> Worklist; 6610 auto pushOp = [&](const SCEV *S) { 6611 if (!Visited.insert(S).second) 6612 return; 6613 // Threshold of 30 here is arbitrary. 6614 if (Visited.size() > 30) { 6615 Precise = false; 6616 return; 6617 } 6618 Worklist.push_back(S); 6619 }; 6620 6621 for (auto *S : Ops) 6622 pushOp(S); 6623 6624 const Instruction *Bound = nullptr; 6625 while (!Worklist.empty()) { 6626 auto *S = Worklist.pop_back_val(); 6627 if (auto *DefI = getNonTrivialDefiningScopeBound(S)) { 6628 if (!Bound || DT.dominates(Bound, DefI)) 6629 Bound = DefI; 6630 } else { 6631 SmallVector<const SCEV *, 4> Ops; 6632 collectUniqueOps(S, Ops); 6633 for (auto *Op : Ops) 6634 pushOp(Op); 6635 } 6636 } 6637 return Bound ? Bound : &*F.getEntryBlock().begin(); 6638 } 6639 6640 const Instruction * 6641 ScalarEvolution::getDefiningScopeBound(ArrayRef<const SCEV *> Ops) { 6642 bool Discard; 6643 return getDefiningScopeBound(Ops, Discard); 6644 } 6645 6646 bool ScalarEvolution::isGuaranteedToTransferExecutionTo(const Instruction *A, 6647 const Instruction *B) { 6648 if (A->getParent() == B->getParent() && 6649 isGuaranteedToTransferExecutionToSuccessor(A->getIterator(), 6650 B->getIterator())) 6651 return true; 6652 6653 auto *BLoop = LI.getLoopFor(B->getParent()); 6654 if (BLoop && BLoop->getHeader() == B->getParent() && 6655 BLoop->getLoopPreheader() == A->getParent() && 6656 isGuaranteedToTransferExecutionToSuccessor(A->getIterator(), 6657 A->getParent()->end()) && 6658 isGuaranteedToTransferExecutionToSuccessor(B->getParent()->begin(), 6659 B->getIterator())) 6660 return true; 6661 return false; 6662 } 6663 6664 6665 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) { 6666 // Only proceed if we can prove that I does not yield poison. 6667 if (!programUndefinedIfPoison(I)) 6668 return false; 6669 6670 // At this point we know that if I is executed, then it does not wrap 6671 // according to at least one of NSW or NUW. If I is not executed, then we do 6672 // not know if the calculation that I represents would wrap. Multiple 6673 // instructions can map to the same SCEV. If we apply NSW or NUW from I to 6674 // the SCEV, we must guarantee no wrapping for that SCEV also when it is 6675 // derived from other instructions that map to the same SCEV. We cannot make 6676 // that guarantee for cases where I is not executed. So we need to find a 6677 // upper bound on the defining scope for the SCEV, and prove that I is 6678 // executed every time we enter that scope. When the bounding scope is a 6679 // loop (the common case), this is equivalent to proving I executes on every 6680 // iteration of that loop. 6681 SmallVector<const SCEV *> SCEVOps; 6682 for (const Use &Op : I->operands()) { 6683 // I could be an extractvalue from a call to an overflow intrinsic. 6684 // TODO: We can do better here in some cases. 6685 if (isSCEVable(Op->getType())) 6686 SCEVOps.push_back(getSCEV(Op)); 6687 } 6688 auto *DefI = getDefiningScopeBound(SCEVOps); 6689 return isGuaranteedToTransferExecutionTo(DefI, I); 6690 } 6691 6692 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) { 6693 // If we know that \c I can never be poison period, then that's enough. 6694 if (isSCEVExprNeverPoison(I)) 6695 return true; 6696 6697 // For an add recurrence specifically, we assume that infinite loops without 6698 // side effects are undefined behavior, and then reason as follows: 6699 // 6700 // If the add recurrence is poison in any iteration, it is poison on all 6701 // future iterations (since incrementing poison yields poison). If the result 6702 // of the add recurrence is fed into the loop latch condition and the loop 6703 // does not contain any throws or exiting blocks other than the latch, we now 6704 // have the ability to "choose" whether the backedge is taken or not (by 6705 // choosing a sufficiently evil value for the poison feeding into the branch) 6706 // for every iteration including and after the one in which \p I first became 6707 // poison. There are two possibilities (let's call the iteration in which \p 6708 // I first became poison as K): 6709 // 6710 // 1. In the set of iterations including and after K, the loop body executes 6711 // no side effects. In this case executing the backege an infinte number 6712 // of times will yield undefined behavior. 6713 // 6714 // 2. In the set of iterations including and after K, the loop body executes 6715 // at least one side effect. In this case, that specific instance of side 6716 // effect is control dependent on poison, which also yields undefined 6717 // behavior. 6718 6719 auto *ExitingBB = L->getExitingBlock(); 6720 auto *LatchBB = L->getLoopLatch(); 6721 if (!ExitingBB || !LatchBB || ExitingBB != LatchBB) 6722 return false; 6723 6724 SmallPtrSet<const Instruction *, 16> Pushed; 6725 SmallVector<const Instruction *, 8> PoisonStack; 6726 6727 // We start by assuming \c I, the post-inc add recurrence, is poison. Only 6728 // things that are known to be poison under that assumption go on the 6729 // PoisonStack. 6730 Pushed.insert(I); 6731 PoisonStack.push_back(I); 6732 6733 bool LatchControlDependentOnPoison = false; 6734 while (!PoisonStack.empty() && !LatchControlDependentOnPoison) { 6735 const Instruction *Poison = PoisonStack.pop_back_val(); 6736 6737 for (auto *PoisonUser : Poison->users()) { 6738 if (propagatesPoison(cast<Operator>(PoisonUser))) { 6739 if (Pushed.insert(cast<Instruction>(PoisonUser)).second) 6740 PoisonStack.push_back(cast<Instruction>(PoisonUser)); 6741 } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) { 6742 assert(BI->isConditional() && "Only possibility!"); 6743 if (BI->getParent() == LatchBB) { 6744 LatchControlDependentOnPoison = true; 6745 break; 6746 } 6747 } 6748 } 6749 } 6750 6751 return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L); 6752 } 6753 6754 ScalarEvolution::LoopProperties 6755 ScalarEvolution::getLoopProperties(const Loop *L) { 6756 using LoopProperties = ScalarEvolution::LoopProperties; 6757 6758 auto Itr = LoopPropertiesCache.find(L); 6759 if (Itr == LoopPropertiesCache.end()) { 6760 auto HasSideEffects = [](Instruction *I) { 6761 if (auto *SI = dyn_cast<StoreInst>(I)) 6762 return !SI->isSimple(); 6763 6764 return I->mayThrow() || I->mayWriteToMemory(); 6765 }; 6766 6767 LoopProperties LP = {/* HasNoAbnormalExits */ true, 6768 /*HasNoSideEffects*/ true}; 6769 6770 for (auto *BB : L->getBlocks()) 6771 for (auto &I : *BB) { 6772 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 6773 LP.HasNoAbnormalExits = false; 6774 if (HasSideEffects(&I)) 6775 LP.HasNoSideEffects = false; 6776 if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects) 6777 break; // We're already as pessimistic as we can get. 6778 } 6779 6780 auto InsertPair = LoopPropertiesCache.insert({L, LP}); 6781 assert(InsertPair.second && "We just checked!"); 6782 Itr = InsertPair.first; 6783 } 6784 6785 return Itr->second; 6786 } 6787 6788 bool ScalarEvolution::loopIsFiniteByAssumption(const Loop *L) { 6789 // A mustprogress loop without side effects must be finite. 6790 // TODO: The check used here is very conservative. It's only *specific* 6791 // side effects which are well defined in infinite loops. 6792 return isMustProgress(L) && loopHasNoSideEffects(L); 6793 } 6794 6795 const SCEV *ScalarEvolution::createSCEV(Value *V) { 6796 if (!isSCEVable(V->getType())) 6797 return getUnknown(V); 6798 6799 if (Instruction *I = dyn_cast<Instruction>(V)) { 6800 // Don't attempt to analyze instructions in blocks that aren't 6801 // reachable. Such instructions don't matter, and they aren't required 6802 // to obey basic rules for definitions dominating uses which this 6803 // analysis depends on. 6804 if (!DT.isReachableFromEntry(I->getParent())) 6805 return getUnknown(UndefValue::get(V->getType())); 6806 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 6807 return getConstant(CI); 6808 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 6809 return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee()); 6810 else if (!isa<ConstantExpr>(V)) 6811 return getUnknown(V); 6812 6813 Operator *U = cast<Operator>(V); 6814 if (auto BO = MatchBinaryOp(U, DT)) { 6815 switch (BO->Opcode) { 6816 case Instruction::Add: { 6817 // The simple thing to do would be to just call getSCEV on both operands 6818 // and call getAddExpr with the result. However if we're looking at a 6819 // bunch of things all added together, this can be quite inefficient, 6820 // because it leads to N-1 getAddExpr calls for N ultimate operands. 6821 // Instead, gather up all the operands and make a single getAddExpr call. 6822 // LLVM IR canonical form means we need only traverse the left operands. 6823 SmallVector<const SCEV *, 4> AddOps; 6824 do { 6825 if (BO->Op) { 6826 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 6827 AddOps.push_back(OpSCEV); 6828 break; 6829 } 6830 6831 // If a NUW or NSW flag can be applied to the SCEV for this 6832 // addition, then compute the SCEV for this addition by itself 6833 // with a separate call to getAddExpr. We need to do that 6834 // instead of pushing the operands of the addition onto AddOps, 6835 // since the flags are only known to apply to this particular 6836 // addition - they may not apply to other additions that can be 6837 // formed with operands from AddOps. 6838 const SCEV *RHS = getSCEV(BO->RHS); 6839 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 6840 if (Flags != SCEV::FlagAnyWrap) { 6841 const SCEV *LHS = getSCEV(BO->LHS); 6842 if (BO->Opcode == Instruction::Sub) 6843 AddOps.push_back(getMinusSCEV(LHS, RHS, Flags)); 6844 else 6845 AddOps.push_back(getAddExpr(LHS, RHS, Flags)); 6846 break; 6847 } 6848 } 6849 6850 if (BO->Opcode == Instruction::Sub) 6851 AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS))); 6852 else 6853 AddOps.push_back(getSCEV(BO->RHS)); 6854 6855 auto NewBO = MatchBinaryOp(BO->LHS, DT); 6856 if (!NewBO || (NewBO->Opcode != Instruction::Add && 6857 NewBO->Opcode != Instruction::Sub)) { 6858 AddOps.push_back(getSCEV(BO->LHS)); 6859 break; 6860 } 6861 BO = NewBO; 6862 } while (true); 6863 6864 return getAddExpr(AddOps); 6865 } 6866 6867 case Instruction::Mul: { 6868 SmallVector<const SCEV *, 4> MulOps; 6869 do { 6870 if (BO->Op) { 6871 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 6872 MulOps.push_back(OpSCEV); 6873 break; 6874 } 6875 6876 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 6877 if (Flags != SCEV::FlagAnyWrap) { 6878 MulOps.push_back( 6879 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags)); 6880 break; 6881 } 6882 } 6883 6884 MulOps.push_back(getSCEV(BO->RHS)); 6885 auto NewBO = MatchBinaryOp(BO->LHS, DT); 6886 if (!NewBO || NewBO->Opcode != Instruction::Mul) { 6887 MulOps.push_back(getSCEV(BO->LHS)); 6888 break; 6889 } 6890 BO = NewBO; 6891 } while (true); 6892 6893 return getMulExpr(MulOps); 6894 } 6895 case Instruction::UDiv: 6896 return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS)); 6897 case Instruction::URem: 6898 return getURemExpr(getSCEV(BO->LHS), getSCEV(BO->RHS)); 6899 case Instruction::Sub: { 6900 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 6901 if (BO->Op) 6902 Flags = getNoWrapFlagsFromUB(BO->Op); 6903 return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags); 6904 } 6905 case Instruction::And: 6906 // For an expression like x&255 that merely masks off the high bits, 6907 // use zext(trunc(x)) as the SCEV expression. 6908 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 6909 if (CI->isZero()) 6910 return getSCEV(BO->RHS); 6911 if (CI->isMinusOne()) 6912 return getSCEV(BO->LHS); 6913 const APInt &A = CI->getValue(); 6914 6915 // Instcombine's ShrinkDemandedConstant may strip bits out of 6916 // constants, obscuring what would otherwise be a low-bits mask. 6917 // Use computeKnownBits to compute what ShrinkDemandedConstant 6918 // knew about to reconstruct a low-bits mask value. 6919 unsigned LZ = A.countLeadingZeros(); 6920 unsigned TZ = A.countTrailingZeros(); 6921 unsigned BitWidth = A.getBitWidth(); 6922 KnownBits Known(BitWidth); 6923 computeKnownBits(BO->LHS, Known, getDataLayout(), 6924 0, &AC, nullptr, &DT); 6925 6926 APInt EffectiveMask = 6927 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ); 6928 if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) { 6929 const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ)); 6930 const SCEV *LHS = getSCEV(BO->LHS); 6931 const SCEV *ShiftedLHS = nullptr; 6932 if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) { 6933 if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) { 6934 // For an expression like (x * 8) & 8, simplify the multiply. 6935 unsigned MulZeros = OpC->getAPInt().countTrailingZeros(); 6936 unsigned GCD = std::min(MulZeros, TZ); 6937 APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD); 6938 SmallVector<const SCEV*, 4> MulOps; 6939 MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD))); 6940 MulOps.append(LHSMul->op_begin() + 1, LHSMul->op_end()); 6941 auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags()); 6942 ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt)); 6943 } 6944 } 6945 if (!ShiftedLHS) 6946 ShiftedLHS = getUDivExpr(LHS, MulCount); 6947 return getMulExpr( 6948 getZeroExtendExpr( 6949 getTruncateExpr(ShiftedLHS, 6950 IntegerType::get(getContext(), BitWidth - LZ - TZ)), 6951 BO->LHS->getType()), 6952 MulCount); 6953 } 6954 } 6955 break; 6956 6957 case Instruction::Or: 6958 // If the RHS of the Or is a constant, we may have something like: 6959 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 6960 // optimizations will transparently handle this case. 6961 // 6962 // In order for this transformation to be safe, the LHS must be of the 6963 // form X*(2^n) and the Or constant must be less than 2^n. 6964 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 6965 const SCEV *LHS = getSCEV(BO->LHS); 6966 const APInt &CIVal = CI->getValue(); 6967 if (GetMinTrailingZeros(LHS) >= 6968 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) { 6969 // Build a plain add SCEV. 6970 return getAddExpr(LHS, getSCEV(CI), 6971 (SCEV::NoWrapFlags)(SCEV::FlagNUW | SCEV::FlagNSW)); 6972 } 6973 } 6974 break; 6975 6976 case Instruction::Xor: 6977 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 6978 // If the RHS of xor is -1, then this is a not operation. 6979 if (CI->isMinusOne()) 6980 return getNotSCEV(getSCEV(BO->LHS)); 6981 6982 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 6983 // This is a variant of the check for xor with -1, and it handles 6984 // the case where instcombine has trimmed non-demanded bits out 6985 // of an xor with -1. 6986 if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS)) 6987 if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1))) 6988 if (LBO->getOpcode() == Instruction::And && 6989 LCI->getValue() == CI->getValue()) 6990 if (const SCEVZeroExtendExpr *Z = 6991 dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) { 6992 Type *UTy = BO->LHS->getType(); 6993 const SCEV *Z0 = Z->getOperand(); 6994 Type *Z0Ty = Z0->getType(); 6995 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 6996 6997 // If C is a low-bits mask, the zero extend is serving to 6998 // mask off the high bits. Complement the operand and 6999 // re-apply the zext. 7000 if (CI->getValue().isMask(Z0TySize)) 7001 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 7002 7003 // If C is a single bit, it may be in the sign-bit position 7004 // before the zero-extend. In this case, represent the xor 7005 // using an add, which is equivalent, and re-apply the zext. 7006 APInt Trunc = CI->getValue().trunc(Z0TySize); 7007 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() && 7008 Trunc.isSignMask()) 7009 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 7010 UTy); 7011 } 7012 } 7013 break; 7014 7015 case Instruction::Shl: 7016 // Turn shift left of a constant amount into a multiply. 7017 if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) { 7018 uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth(); 7019 7020 // If the shift count is not less than the bitwidth, the result of 7021 // the shift is undefined. Don't try to analyze it, because the 7022 // resolution chosen here may differ from the resolution chosen in 7023 // other parts of the compiler. 7024 if (SA->getValue().uge(BitWidth)) 7025 break; 7026 7027 // We can safely preserve the nuw flag in all cases. It's also safe to 7028 // turn a nuw nsw shl into a nuw nsw mul. However, nsw in isolation 7029 // requires special handling. It can be preserved as long as we're not 7030 // left shifting by bitwidth - 1. 7031 auto Flags = SCEV::FlagAnyWrap; 7032 if (BO->Op) { 7033 auto MulFlags = getNoWrapFlagsFromUB(BO->Op); 7034 if ((MulFlags & SCEV::FlagNSW) && 7035 ((MulFlags & SCEV::FlagNUW) || SA->getValue().ult(BitWidth - 1))) 7036 Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNSW); 7037 if (MulFlags & SCEV::FlagNUW) 7038 Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNUW); 7039 } 7040 7041 Constant *X = ConstantInt::get( 7042 getContext(), APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 7043 return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags); 7044 } 7045 break; 7046 7047 case Instruction::AShr: { 7048 // AShr X, C, where C is a constant. 7049 ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS); 7050 if (!CI) 7051 break; 7052 7053 Type *OuterTy = BO->LHS->getType(); 7054 uint64_t BitWidth = getTypeSizeInBits(OuterTy); 7055 // If the shift count is not less than the bitwidth, the result of 7056 // the shift is undefined. Don't try to analyze it, because the 7057 // resolution chosen here may differ from the resolution chosen in 7058 // other parts of the compiler. 7059 if (CI->getValue().uge(BitWidth)) 7060 break; 7061 7062 if (CI->isZero()) 7063 return getSCEV(BO->LHS); // shift by zero --> noop 7064 7065 uint64_t AShrAmt = CI->getZExtValue(); 7066 Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt); 7067 7068 Operator *L = dyn_cast<Operator>(BO->LHS); 7069 if (L && L->getOpcode() == Instruction::Shl) { 7070 // X = Shl A, n 7071 // Y = AShr X, m 7072 // Both n and m are constant. 7073 7074 const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0)); 7075 if (L->getOperand(1) == BO->RHS) 7076 // For a two-shift sext-inreg, i.e. n = m, 7077 // use sext(trunc(x)) as the SCEV expression. 7078 return getSignExtendExpr( 7079 getTruncateExpr(ShlOp0SCEV, TruncTy), OuterTy); 7080 7081 ConstantInt *ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1)); 7082 if (ShlAmtCI && ShlAmtCI->getValue().ult(BitWidth)) { 7083 uint64_t ShlAmt = ShlAmtCI->getZExtValue(); 7084 if (ShlAmt > AShrAmt) { 7085 // When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV 7086 // expression. We already checked that ShlAmt < BitWidth, so 7087 // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as 7088 // ShlAmt - AShrAmt < Amt. 7089 APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt, 7090 ShlAmt - AShrAmt); 7091 return getSignExtendExpr( 7092 getMulExpr(getTruncateExpr(ShlOp0SCEV, TruncTy), 7093 getConstant(Mul)), OuterTy); 7094 } 7095 } 7096 } 7097 break; 7098 } 7099 } 7100 } 7101 7102 switch (U->getOpcode()) { 7103 case Instruction::Trunc: 7104 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 7105 7106 case Instruction::ZExt: 7107 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 7108 7109 case Instruction::SExt: 7110 if (auto BO = MatchBinaryOp(U->getOperand(0), DT)) { 7111 // The NSW flag of a subtract does not always survive the conversion to 7112 // A + (-1)*B. By pushing sign extension onto its operands we are much 7113 // more likely to preserve NSW and allow later AddRec optimisations. 7114 // 7115 // NOTE: This is effectively duplicating this logic from getSignExtend: 7116 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 7117 // but by that point the NSW information has potentially been lost. 7118 if (BO->Opcode == Instruction::Sub && BO->IsNSW) { 7119 Type *Ty = U->getType(); 7120 auto *V1 = getSignExtendExpr(getSCEV(BO->LHS), Ty); 7121 auto *V2 = getSignExtendExpr(getSCEV(BO->RHS), Ty); 7122 return getMinusSCEV(V1, V2, SCEV::FlagNSW); 7123 } 7124 } 7125 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 7126 7127 case Instruction::BitCast: 7128 // BitCasts are no-op casts so we just eliminate the cast. 7129 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 7130 return getSCEV(U->getOperand(0)); 7131 break; 7132 7133 case Instruction::PtrToInt: { 7134 // Pointer to integer cast is straight-forward, so do model it. 7135 const SCEV *Op = getSCEV(U->getOperand(0)); 7136 Type *DstIntTy = U->getType(); 7137 // But only if effective SCEV (integer) type is wide enough to represent 7138 // all possible pointer values. 7139 const SCEV *IntOp = getPtrToIntExpr(Op, DstIntTy); 7140 if (isa<SCEVCouldNotCompute>(IntOp)) 7141 return getUnknown(V); 7142 return IntOp; 7143 } 7144 case Instruction::IntToPtr: 7145 // Just don't deal with inttoptr casts. 7146 return getUnknown(V); 7147 7148 case Instruction::SDiv: 7149 // If both operands are non-negative, this is just an udiv. 7150 if (isKnownNonNegative(getSCEV(U->getOperand(0))) && 7151 isKnownNonNegative(getSCEV(U->getOperand(1)))) 7152 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1))); 7153 break; 7154 7155 case Instruction::SRem: 7156 // If both operands are non-negative, this is just an urem. 7157 if (isKnownNonNegative(getSCEV(U->getOperand(0))) && 7158 isKnownNonNegative(getSCEV(U->getOperand(1)))) 7159 return getURemExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1))); 7160 break; 7161 7162 case Instruction::GetElementPtr: 7163 return createNodeForGEP(cast<GEPOperator>(U)); 7164 7165 case Instruction::PHI: 7166 return createNodeForPHI(cast<PHINode>(U)); 7167 7168 case Instruction::Select: 7169 // U can also be a select constant expr, which let fall through. Since 7170 // createNodeForSelect only works for a condition that is an `ICmpInst`, and 7171 // constant expressions cannot have instructions as operands, we'd have 7172 // returned getUnknown for a select constant expressions anyway. 7173 if (isa<Instruction>(U)) 7174 return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0), 7175 U->getOperand(1), U->getOperand(2)); 7176 break; 7177 7178 case Instruction::Call: 7179 case Instruction::Invoke: 7180 if (Value *RV = cast<CallBase>(U)->getReturnedArgOperand()) 7181 return getSCEV(RV); 7182 7183 if (auto *II = dyn_cast<IntrinsicInst>(U)) { 7184 switch (II->getIntrinsicID()) { 7185 case Intrinsic::abs: 7186 return getAbsExpr( 7187 getSCEV(II->getArgOperand(0)), 7188 /*IsNSW=*/cast<ConstantInt>(II->getArgOperand(1))->isOne()); 7189 case Intrinsic::umax: 7190 return getUMaxExpr(getSCEV(II->getArgOperand(0)), 7191 getSCEV(II->getArgOperand(1))); 7192 case Intrinsic::umin: 7193 return getUMinExpr(getSCEV(II->getArgOperand(0)), 7194 getSCEV(II->getArgOperand(1))); 7195 case Intrinsic::smax: 7196 return getSMaxExpr(getSCEV(II->getArgOperand(0)), 7197 getSCEV(II->getArgOperand(1))); 7198 case Intrinsic::smin: 7199 return getSMinExpr(getSCEV(II->getArgOperand(0)), 7200 getSCEV(II->getArgOperand(1))); 7201 case Intrinsic::usub_sat: { 7202 const SCEV *X = getSCEV(II->getArgOperand(0)); 7203 const SCEV *Y = getSCEV(II->getArgOperand(1)); 7204 const SCEV *ClampedY = getUMinExpr(X, Y); 7205 return getMinusSCEV(X, ClampedY, SCEV::FlagNUW); 7206 } 7207 case Intrinsic::uadd_sat: { 7208 const SCEV *X = getSCEV(II->getArgOperand(0)); 7209 const SCEV *Y = getSCEV(II->getArgOperand(1)); 7210 const SCEV *ClampedX = getUMinExpr(X, getNotSCEV(Y)); 7211 return getAddExpr(ClampedX, Y, SCEV::FlagNUW); 7212 } 7213 case Intrinsic::start_loop_iterations: 7214 // A start_loop_iterations is just equivalent to the first operand for 7215 // SCEV purposes. 7216 return getSCEV(II->getArgOperand(0)); 7217 default: 7218 break; 7219 } 7220 } 7221 break; 7222 } 7223 7224 return getUnknown(V); 7225 } 7226 7227 //===----------------------------------------------------------------------===// 7228 // Iteration Count Computation Code 7229 // 7230 7231 const SCEV *ScalarEvolution::getTripCountFromExitCount(const SCEV *ExitCount, 7232 bool Extend) { 7233 if (isa<SCEVCouldNotCompute>(ExitCount)) 7234 return getCouldNotCompute(); 7235 7236 auto *ExitCountType = ExitCount->getType(); 7237 assert(ExitCountType->isIntegerTy()); 7238 7239 if (!Extend) 7240 return getAddExpr(ExitCount, getOne(ExitCountType)); 7241 7242 auto *WiderType = Type::getIntNTy(ExitCountType->getContext(), 7243 1 + ExitCountType->getScalarSizeInBits()); 7244 return getAddExpr(getNoopOrZeroExtend(ExitCount, WiderType), 7245 getOne(WiderType)); 7246 } 7247 7248 static unsigned getConstantTripCount(const SCEVConstant *ExitCount) { 7249 if (!ExitCount) 7250 return 0; 7251 7252 ConstantInt *ExitConst = ExitCount->getValue(); 7253 7254 // Guard against huge trip counts. 7255 if (ExitConst->getValue().getActiveBits() > 32) 7256 return 0; 7257 7258 // In case of integer overflow, this returns 0, which is correct. 7259 return ((unsigned)ExitConst->getZExtValue()) + 1; 7260 } 7261 7262 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) { 7263 auto *ExitCount = dyn_cast<SCEVConstant>(getBackedgeTakenCount(L, Exact)); 7264 return getConstantTripCount(ExitCount); 7265 } 7266 7267 unsigned 7268 ScalarEvolution::getSmallConstantTripCount(const Loop *L, 7269 const BasicBlock *ExitingBlock) { 7270 assert(ExitingBlock && "Must pass a non-null exiting block!"); 7271 assert(L->isLoopExiting(ExitingBlock) && 7272 "Exiting block must actually branch out of the loop!"); 7273 const SCEVConstant *ExitCount = 7274 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock)); 7275 return getConstantTripCount(ExitCount); 7276 } 7277 7278 unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) { 7279 const auto *MaxExitCount = 7280 dyn_cast<SCEVConstant>(getConstantMaxBackedgeTakenCount(L)); 7281 return getConstantTripCount(MaxExitCount); 7282 } 7283 7284 const SCEV *ScalarEvolution::getConstantMaxTripCountFromArray(const Loop *L) { 7285 // We can't infer from Array in Irregular Loop. 7286 // FIXME: It's hard to infer loop bound from array operated in Nested Loop. 7287 if (!L->isLoopSimplifyForm() || !L->isInnermost()) 7288 return getCouldNotCompute(); 7289 7290 // FIXME: To make the scene more typical, we only analysis loops that have 7291 // one exiting block and that block must be the latch. To make it easier to 7292 // capture loops that have memory access and memory access will be executed 7293 // in each iteration. 7294 const BasicBlock *LoopLatch = L->getLoopLatch(); 7295 assert(LoopLatch && "See defination of simplify form loop."); 7296 if (L->getExitingBlock() != LoopLatch) 7297 return getCouldNotCompute(); 7298 7299 const DataLayout &DL = getDataLayout(); 7300 SmallVector<const SCEV *> InferCountColl; 7301 for (auto *BB : L->getBlocks()) { 7302 // Go here, we can know that Loop is a single exiting and simplified form 7303 // loop. Make sure that infer from Memory Operation in those BBs must be 7304 // executed in loop. First step, we can make sure that max execution time 7305 // of MemAccessBB in loop represents latch max excution time. 7306 // If MemAccessBB does not dom Latch, skip. 7307 // Entry 7308 // │ 7309 // ┌─────▼─────┐ 7310 // │Loop Header◄─────┐ 7311 // └──┬──────┬─┘ │ 7312 // │ │ │ 7313 // ┌────────▼──┐ ┌─▼─────┐ │ 7314 // │MemAccessBB│ │OtherBB│ │ 7315 // └────────┬──┘ └─┬─────┘ │ 7316 // │ │ │ 7317 // ┌─▼──────▼─┐ │ 7318 // │Loop Latch├─────┘ 7319 // └────┬─────┘ 7320 // ▼ 7321 // Exit 7322 if (!DT.dominates(BB, LoopLatch)) 7323 continue; 7324 7325 for (Instruction &Inst : *BB) { 7326 // Find Memory Operation Instruction. 7327 auto *GEP = getLoadStorePointerOperand(&Inst); 7328 if (!GEP) 7329 continue; 7330 7331 auto *ElemSize = dyn_cast<SCEVConstant>(getElementSize(&Inst)); 7332 // Do not infer from scalar type, eg."ElemSize = sizeof()". 7333 if (!ElemSize) 7334 continue; 7335 7336 // Use a existing polynomial recurrence on the trip count. 7337 auto *AddRec = dyn_cast<SCEVAddRecExpr>(getSCEV(GEP)); 7338 if (!AddRec) 7339 continue; 7340 auto *ArrBase = dyn_cast<SCEVUnknown>(getPointerBase(AddRec)); 7341 auto *Step = dyn_cast<SCEVConstant>(AddRec->getStepRecurrence(*this)); 7342 if (!ArrBase || !Step) 7343 continue; 7344 assert(isLoopInvariant(ArrBase, L) && "See addrec definition"); 7345 7346 // Only handle { %array + step }, 7347 // FIXME: {(SCEVAddRecExpr) + step } could not be analysed here. 7348 if (AddRec->getStart() != ArrBase) 7349 continue; 7350 7351 // Memory operation pattern which have gaps. 7352 // Or repeat memory opreation. 7353 // And index of GEP wraps arround. 7354 if (Step->getAPInt().getActiveBits() > 32 || 7355 Step->getAPInt().getZExtValue() != 7356 ElemSize->getAPInt().getZExtValue() || 7357 Step->isZero() || Step->getAPInt().isNegative()) 7358 continue; 7359 7360 // Only infer from stack array which has certain size. 7361 // Make sure alloca instruction is not excuted in loop. 7362 AllocaInst *AllocateInst = dyn_cast<AllocaInst>(ArrBase->getValue()); 7363 if (!AllocateInst || L->contains(AllocateInst->getParent())) 7364 continue; 7365 7366 // Make sure only handle normal array. 7367 auto *Ty = dyn_cast<ArrayType>(AllocateInst->getAllocatedType()); 7368 auto *ArrSize = dyn_cast<ConstantInt>(AllocateInst->getArraySize()); 7369 if (!Ty || !ArrSize || !ArrSize->isOne()) 7370 continue; 7371 // Also make sure step was increased the same with sizeof allocated 7372 // element type. 7373 const PointerType *GEPT = dyn_cast<PointerType>(GEP->getType()); 7374 if (Ty->getElementType() != GEPT->getElementType()) 7375 continue; 7376 7377 // FIXME: Since gep indices are silently zext to the indexing type, 7378 // we will have a narrow gep index which wraps around rather than 7379 // increasing strictly, we shoule ensure that step is increasing 7380 // strictly by the loop iteration. 7381 // Now we can infer a max execution time by MemLength/StepLength. 7382 const SCEV *MemSize = 7383 getConstant(Step->getType(), DL.getTypeAllocSize(Ty)); 7384 auto *MaxExeCount = 7385 dyn_cast<SCEVConstant>(getUDivCeilSCEV(MemSize, Step)); 7386 if (!MaxExeCount || MaxExeCount->getAPInt().getActiveBits() > 32) 7387 continue; 7388 7389 // If the loop reaches the maximum number of executions, we can not 7390 // access bytes starting outside the statically allocated size without 7391 // being immediate UB. But it is allowed to enter loop header one more 7392 // time. 7393 auto *InferCount = dyn_cast<SCEVConstant>( 7394 getAddExpr(MaxExeCount, getOne(MaxExeCount->getType()))); 7395 // Discard the maximum number of execution times under 32bits. 7396 if (!InferCount || InferCount->getAPInt().getActiveBits() > 32) 7397 continue; 7398 7399 InferCountColl.push_back(InferCount); 7400 } 7401 } 7402 7403 if (InferCountColl.size() == 0) 7404 return getCouldNotCompute(); 7405 7406 return getUMinFromMismatchedTypes(InferCountColl); 7407 } 7408 7409 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) { 7410 SmallVector<BasicBlock *, 8> ExitingBlocks; 7411 L->getExitingBlocks(ExitingBlocks); 7412 7413 Optional<unsigned> Res = None; 7414 for (auto *ExitingBB : ExitingBlocks) { 7415 unsigned Multiple = getSmallConstantTripMultiple(L, ExitingBB); 7416 if (!Res) 7417 Res = Multiple; 7418 Res = (unsigned)GreatestCommonDivisor64(*Res, Multiple); 7419 } 7420 return Res.getValueOr(1); 7421 } 7422 7423 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L, 7424 const SCEV *ExitCount) { 7425 if (ExitCount == getCouldNotCompute()) 7426 return 1; 7427 7428 // Get the trip count 7429 const SCEV *TCExpr = getTripCountFromExitCount(ExitCount); 7430 7431 const SCEVConstant *TC = dyn_cast<SCEVConstant>(TCExpr); 7432 if (!TC) 7433 // Attempt to factor more general cases. Returns the greatest power of 7434 // two divisor. If overflow happens, the trip count expression is still 7435 // divisible by the greatest power of 2 divisor returned. 7436 return 1U << std::min((uint32_t)31, 7437 GetMinTrailingZeros(applyLoopGuards(TCExpr, L))); 7438 7439 ConstantInt *Result = TC->getValue(); 7440 7441 // Guard against huge trip counts (this requires checking 7442 // for zero to handle the case where the trip count == -1 and the 7443 // addition wraps). 7444 if (!Result || Result->getValue().getActiveBits() > 32 || 7445 Result->getValue().getActiveBits() == 0) 7446 return 1; 7447 7448 return (unsigned)Result->getZExtValue(); 7449 } 7450 7451 /// Returns the largest constant divisor of the trip count of this loop as a 7452 /// normal unsigned value, if possible. This means that the actual trip count is 7453 /// always a multiple of the returned value (don't forget the trip count could 7454 /// very well be zero as well!). 7455 /// 7456 /// Returns 1 if the trip count is unknown or not guaranteed to be the 7457 /// multiple of a constant (which is also the case if the trip count is simply 7458 /// constant, use getSmallConstantTripCount for that case), Will also return 1 7459 /// if the trip count is very large (>= 2^32). 7460 /// 7461 /// As explained in the comments for getSmallConstantTripCount, this assumes 7462 /// that control exits the loop via ExitingBlock. 7463 unsigned 7464 ScalarEvolution::getSmallConstantTripMultiple(const Loop *L, 7465 const BasicBlock *ExitingBlock) { 7466 assert(ExitingBlock && "Must pass a non-null exiting block!"); 7467 assert(L->isLoopExiting(ExitingBlock) && 7468 "Exiting block must actually branch out of the loop!"); 7469 const SCEV *ExitCount = getExitCount(L, ExitingBlock); 7470 return getSmallConstantTripMultiple(L, ExitCount); 7471 } 7472 7473 const SCEV *ScalarEvolution::getExitCount(const Loop *L, 7474 const BasicBlock *ExitingBlock, 7475 ExitCountKind Kind) { 7476 switch (Kind) { 7477 case Exact: 7478 case SymbolicMaximum: 7479 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this); 7480 case ConstantMaximum: 7481 return getBackedgeTakenInfo(L).getConstantMax(ExitingBlock, this); 7482 }; 7483 llvm_unreachable("Invalid ExitCountKind!"); 7484 } 7485 7486 const SCEV * 7487 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L, 7488 SCEVUnionPredicate &Preds) { 7489 return getPredicatedBackedgeTakenInfo(L).getExact(L, this, &Preds); 7490 } 7491 7492 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L, 7493 ExitCountKind Kind) { 7494 switch (Kind) { 7495 case Exact: 7496 return getBackedgeTakenInfo(L).getExact(L, this); 7497 case ConstantMaximum: 7498 return getBackedgeTakenInfo(L).getConstantMax(this); 7499 case SymbolicMaximum: 7500 return getBackedgeTakenInfo(L).getSymbolicMax(L, this); 7501 }; 7502 llvm_unreachable("Invalid ExitCountKind!"); 7503 } 7504 7505 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) { 7506 return getBackedgeTakenInfo(L).isConstantMaxOrZero(this); 7507 } 7508 7509 /// Push PHI nodes in the header of the given loop onto the given Worklist. 7510 static void PushLoopPHIs(const Loop *L, 7511 SmallVectorImpl<Instruction *> &Worklist, 7512 SmallPtrSetImpl<Instruction *> &Visited) { 7513 BasicBlock *Header = L->getHeader(); 7514 7515 // Push all Loop-header PHIs onto the Worklist stack. 7516 for (PHINode &PN : Header->phis()) 7517 if (Visited.insert(&PN).second) 7518 Worklist.push_back(&PN); 7519 } 7520 7521 const ScalarEvolution::BackedgeTakenInfo & 7522 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) { 7523 auto &BTI = getBackedgeTakenInfo(L); 7524 if (BTI.hasFullInfo()) 7525 return BTI; 7526 7527 auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 7528 7529 if (!Pair.second) 7530 return Pair.first->second; 7531 7532 BackedgeTakenInfo Result = 7533 computeBackedgeTakenCount(L, /*AllowPredicates=*/true); 7534 7535 return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result); 7536 } 7537 7538 ScalarEvolution::BackedgeTakenInfo & 7539 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 7540 // Initially insert an invalid entry for this loop. If the insertion 7541 // succeeds, proceed to actually compute a backedge-taken count and 7542 // update the value. The temporary CouldNotCompute value tells SCEV 7543 // code elsewhere that it shouldn't attempt to request a new 7544 // backedge-taken count, which could result in infinite recursion. 7545 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 7546 BackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 7547 if (!Pair.second) 7548 return Pair.first->second; 7549 7550 // computeBackedgeTakenCount may allocate memory for its result. Inserting it 7551 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result 7552 // must be cleared in this scope. 7553 BackedgeTakenInfo Result = computeBackedgeTakenCount(L); 7554 7555 // In product build, there are no usage of statistic. 7556 (void)NumTripCountsComputed; 7557 (void)NumTripCountsNotComputed; 7558 #if LLVM_ENABLE_STATS || !defined(NDEBUG) 7559 const SCEV *BEExact = Result.getExact(L, this); 7560 if (BEExact != getCouldNotCompute()) { 7561 assert(isLoopInvariant(BEExact, L) && 7562 isLoopInvariant(Result.getConstantMax(this), L) && 7563 "Computed backedge-taken count isn't loop invariant for loop!"); 7564 ++NumTripCountsComputed; 7565 } else if (Result.getConstantMax(this) == getCouldNotCompute() && 7566 isa<PHINode>(L->getHeader()->begin())) { 7567 // Only count loops that have phi nodes as not being computable. 7568 ++NumTripCountsNotComputed; 7569 } 7570 #endif // LLVM_ENABLE_STATS || !defined(NDEBUG) 7571 7572 // Now that we know more about the trip count for this loop, forget any 7573 // existing SCEV values for PHI nodes in this loop since they are only 7574 // conservative estimates made without the benefit of trip count 7575 // information. This invalidation is not necessary for correctness, and is 7576 // only done to produce more precise results. 7577 if (Result.hasAnyInfo()) { 7578 // Invalidate any expression using an addrec in this loop. 7579 SmallVector<const SCEV *, 8> ToForget; 7580 auto LoopUsersIt = LoopUsers.find(L); 7581 if (LoopUsersIt != LoopUsers.end()) 7582 append_range(ToForget, LoopUsersIt->second); 7583 forgetMemoizedResults(ToForget); 7584 7585 // Invalidate constant-evolved loop header phis. 7586 for (PHINode &PN : L->getHeader()->phis()) 7587 ConstantEvolutionLoopExitValue.erase(&PN); 7588 } 7589 7590 // Re-lookup the insert position, since the call to 7591 // computeBackedgeTakenCount above could result in a 7592 // recusive call to getBackedgeTakenInfo (on a different 7593 // loop), which would invalidate the iterator computed 7594 // earlier. 7595 return BackedgeTakenCounts.find(L)->second = std::move(Result); 7596 } 7597 7598 void ScalarEvolution::forgetAllLoops() { 7599 // This method is intended to forget all info about loops. It should 7600 // invalidate caches as if the following happened: 7601 // - The trip counts of all loops have changed arbitrarily 7602 // - Every llvm::Value has been updated in place to produce a different 7603 // result. 7604 BackedgeTakenCounts.clear(); 7605 PredicatedBackedgeTakenCounts.clear(); 7606 BECountUsers.clear(); 7607 LoopPropertiesCache.clear(); 7608 ConstantEvolutionLoopExitValue.clear(); 7609 ValueExprMap.clear(); 7610 ValuesAtScopes.clear(); 7611 ValuesAtScopesUsers.clear(); 7612 LoopDispositions.clear(); 7613 BlockDispositions.clear(); 7614 UnsignedRanges.clear(); 7615 SignedRanges.clear(); 7616 ExprValueMap.clear(); 7617 HasRecMap.clear(); 7618 MinTrailingZerosCache.clear(); 7619 PredicatedSCEVRewrites.clear(); 7620 } 7621 7622 void ScalarEvolution::forgetLoop(const Loop *L) { 7623 SmallVector<const Loop *, 16> LoopWorklist(1, L); 7624 SmallVector<Instruction *, 32> Worklist; 7625 SmallPtrSet<Instruction *, 16> Visited; 7626 SmallVector<const SCEV *, 16> ToForget; 7627 7628 // Iterate over all the loops and sub-loops to drop SCEV information. 7629 while (!LoopWorklist.empty()) { 7630 auto *CurrL = LoopWorklist.pop_back_val(); 7631 7632 // Drop any stored trip count value. 7633 forgetBackedgeTakenCounts(CurrL, /* Predicated */ false); 7634 forgetBackedgeTakenCounts(CurrL, /* Predicated */ true); 7635 7636 // Drop information about predicated SCEV rewrites for this loop. 7637 for (auto I = PredicatedSCEVRewrites.begin(); 7638 I != PredicatedSCEVRewrites.end();) { 7639 std::pair<const SCEV *, const Loop *> Entry = I->first; 7640 if (Entry.second == CurrL) 7641 PredicatedSCEVRewrites.erase(I++); 7642 else 7643 ++I; 7644 } 7645 7646 auto LoopUsersItr = LoopUsers.find(CurrL); 7647 if (LoopUsersItr != LoopUsers.end()) { 7648 ToForget.insert(ToForget.end(), LoopUsersItr->second.begin(), 7649 LoopUsersItr->second.end()); 7650 LoopUsers.erase(LoopUsersItr); 7651 } 7652 7653 // Drop information about expressions based on loop-header PHIs. 7654 PushLoopPHIs(CurrL, Worklist, Visited); 7655 7656 while (!Worklist.empty()) { 7657 Instruction *I = Worklist.pop_back_val(); 7658 7659 ValueExprMapType::iterator It = 7660 ValueExprMap.find_as(static_cast<Value *>(I)); 7661 if (It != ValueExprMap.end()) { 7662 eraseValueFromMap(It->first); 7663 ToForget.push_back(It->second); 7664 if (PHINode *PN = dyn_cast<PHINode>(I)) 7665 ConstantEvolutionLoopExitValue.erase(PN); 7666 } 7667 7668 PushDefUseChildren(I, Worklist, Visited); 7669 } 7670 7671 LoopPropertiesCache.erase(CurrL); 7672 // Forget all contained loops too, to avoid dangling entries in the 7673 // ValuesAtScopes map. 7674 LoopWorklist.append(CurrL->begin(), CurrL->end()); 7675 } 7676 forgetMemoizedResults(ToForget); 7677 } 7678 7679 void ScalarEvolution::forgetTopmostLoop(const Loop *L) { 7680 while (Loop *Parent = L->getParentLoop()) 7681 L = Parent; 7682 forgetLoop(L); 7683 } 7684 7685 void ScalarEvolution::forgetValue(Value *V) { 7686 Instruction *I = dyn_cast<Instruction>(V); 7687 if (!I) return; 7688 7689 // Drop information about expressions based on loop-header PHIs. 7690 SmallVector<Instruction *, 16> Worklist; 7691 SmallPtrSet<Instruction *, 8> Visited; 7692 SmallVector<const SCEV *, 8> ToForget; 7693 Worklist.push_back(I); 7694 Visited.insert(I); 7695 7696 while (!Worklist.empty()) { 7697 I = Worklist.pop_back_val(); 7698 ValueExprMapType::iterator It = 7699 ValueExprMap.find_as(static_cast<Value *>(I)); 7700 if (It != ValueExprMap.end()) { 7701 eraseValueFromMap(It->first); 7702 ToForget.push_back(It->second); 7703 if (PHINode *PN = dyn_cast<PHINode>(I)) 7704 ConstantEvolutionLoopExitValue.erase(PN); 7705 } 7706 7707 PushDefUseChildren(I, Worklist, Visited); 7708 } 7709 forgetMemoizedResults(ToForget); 7710 } 7711 7712 void ScalarEvolution::forgetLoopDispositions(const Loop *L) { 7713 LoopDispositions.clear(); 7714 } 7715 7716 /// Get the exact loop backedge taken count considering all loop exits. A 7717 /// computable result can only be returned for loops with all exiting blocks 7718 /// dominating the latch. howFarToZero assumes that the limit of each loop test 7719 /// is never skipped. This is a valid assumption as long as the loop exits via 7720 /// that test. For precise results, it is the caller's responsibility to specify 7721 /// the relevant loop exiting block using getExact(ExitingBlock, SE). 7722 const SCEV * 7723 ScalarEvolution::BackedgeTakenInfo::getExact(const Loop *L, ScalarEvolution *SE, 7724 SCEVUnionPredicate *Preds) const { 7725 // If any exits were not computable, the loop is not computable. 7726 if (!isComplete() || ExitNotTaken.empty()) 7727 return SE->getCouldNotCompute(); 7728 7729 const BasicBlock *Latch = L->getLoopLatch(); 7730 // All exiting blocks we have collected must dominate the only backedge. 7731 if (!Latch) 7732 return SE->getCouldNotCompute(); 7733 7734 // All exiting blocks we have gathered dominate loop's latch, so exact trip 7735 // count is simply a minimum out of all these calculated exit counts. 7736 SmallVector<const SCEV *, 2> Ops; 7737 for (auto &ENT : ExitNotTaken) { 7738 const SCEV *BECount = ENT.ExactNotTaken; 7739 assert(BECount != SE->getCouldNotCompute() && "Bad exit SCEV!"); 7740 assert(SE->DT.dominates(ENT.ExitingBlock, Latch) && 7741 "We should only have known counts for exiting blocks that dominate " 7742 "latch!"); 7743 7744 Ops.push_back(BECount); 7745 7746 if (Preds && !ENT.hasAlwaysTruePredicate()) 7747 Preds->add(ENT.Predicate.get()); 7748 7749 assert((Preds || ENT.hasAlwaysTruePredicate()) && 7750 "Predicate should be always true!"); 7751 } 7752 7753 return SE->getUMinFromMismatchedTypes(Ops); 7754 } 7755 7756 /// Get the exact not taken count for this loop exit. 7757 const SCEV * 7758 ScalarEvolution::BackedgeTakenInfo::getExact(const BasicBlock *ExitingBlock, 7759 ScalarEvolution *SE) const { 7760 for (auto &ENT : ExitNotTaken) 7761 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate()) 7762 return ENT.ExactNotTaken; 7763 7764 return SE->getCouldNotCompute(); 7765 } 7766 7767 const SCEV *ScalarEvolution::BackedgeTakenInfo::getConstantMax( 7768 const BasicBlock *ExitingBlock, ScalarEvolution *SE) const { 7769 for (auto &ENT : ExitNotTaken) 7770 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate()) 7771 return ENT.MaxNotTaken; 7772 7773 return SE->getCouldNotCompute(); 7774 } 7775 7776 /// getConstantMax - Get the constant max backedge taken count for the loop. 7777 const SCEV * 7778 ScalarEvolution::BackedgeTakenInfo::getConstantMax(ScalarEvolution *SE) const { 7779 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { 7780 return !ENT.hasAlwaysTruePredicate(); 7781 }; 7782 7783 if (!getConstantMax() || any_of(ExitNotTaken, PredicateNotAlwaysTrue)) 7784 return SE->getCouldNotCompute(); 7785 7786 assert((isa<SCEVCouldNotCompute>(getConstantMax()) || 7787 isa<SCEVConstant>(getConstantMax())) && 7788 "No point in having a non-constant max backedge taken count!"); 7789 return getConstantMax(); 7790 } 7791 7792 const SCEV * 7793 ScalarEvolution::BackedgeTakenInfo::getSymbolicMax(const Loop *L, 7794 ScalarEvolution *SE) { 7795 if (!SymbolicMax) 7796 SymbolicMax = SE->computeSymbolicMaxBackedgeTakenCount(L); 7797 return SymbolicMax; 7798 } 7799 7800 bool ScalarEvolution::BackedgeTakenInfo::isConstantMaxOrZero( 7801 ScalarEvolution *SE) const { 7802 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { 7803 return !ENT.hasAlwaysTruePredicate(); 7804 }; 7805 return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue); 7806 } 7807 7808 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E) 7809 : ExitLimit(E, E, false, None) { 7810 } 7811 7812 ScalarEvolution::ExitLimit::ExitLimit( 7813 const SCEV *E, const SCEV *M, bool MaxOrZero, 7814 ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList) 7815 : ExactNotTaken(E), MaxNotTaken(M), MaxOrZero(MaxOrZero) { 7816 // If we prove the max count is zero, so is the symbolic bound. This happens 7817 // in practice due to differences in a) how context sensitive we've chosen 7818 // to be and b) how we reason about bounds impied by UB. 7819 if (MaxNotTaken->isZero()) 7820 ExactNotTaken = MaxNotTaken; 7821 7822 assert((isa<SCEVCouldNotCompute>(ExactNotTaken) || 7823 !isa<SCEVCouldNotCompute>(MaxNotTaken)) && 7824 "Exact is not allowed to be less precise than Max"); 7825 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 7826 isa<SCEVConstant>(MaxNotTaken)) && 7827 "No point in having a non-constant max backedge taken count!"); 7828 for (auto *PredSet : PredSetList) 7829 for (auto *P : *PredSet) 7830 addPredicate(P); 7831 assert((isa<SCEVCouldNotCompute>(E) || !E->getType()->isPointerTy()) && 7832 "Backedge count should be int"); 7833 assert((isa<SCEVCouldNotCompute>(M) || !M->getType()->isPointerTy()) && 7834 "Max backedge count should be int"); 7835 } 7836 7837 ScalarEvolution::ExitLimit::ExitLimit( 7838 const SCEV *E, const SCEV *M, bool MaxOrZero, 7839 const SmallPtrSetImpl<const SCEVPredicate *> &PredSet) 7840 : ExitLimit(E, M, MaxOrZero, {&PredSet}) { 7841 } 7842 7843 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E, const SCEV *M, 7844 bool MaxOrZero) 7845 : ExitLimit(E, M, MaxOrZero, None) { 7846 } 7847 7848 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each 7849 /// computable exit into a persistent ExitNotTakenInfo array. 7850 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo( 7851 ArrayRef<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo> ExitCounts, 7852 bool IsComplete, const SCEV *ConstantMax, bool MaxOrZero) 7853 : ConstantMax(ConstantMax), IsComplete(IsComplete), MaxOrZero(MaxOrZero) { 7854 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo; 7855 7856 ExitNotTaken.reserve(ExitCounts.size()); 7857 std::transform( 7858 ExitCounts.begin(), ExitCounts.end(), std::back_inserter(ExitNotTaken), 7859 [&](const EdgeExitInfo &EEI) { 7860 BasicBlock *ExitBB = EEI.first; 7861 const ExitLimit &EL = EEI.second; 7862 if (EL.Predicates.empty()) 7863 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken, 7864 nullptr); 7865 7866 std::unique_ptr<SCEVUnionPredicate> Predicate(new SCEVUnionPredicate); 7867 for (auto *Pred : EL.Predicates) 7868 Predicate->add(Pred); 7869 7870 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken, 7871 std::move(Predicate)); 7872 }); 7873 assert((isa<SCEVCouldNotCompute>(ConstantMax) || 7874 isa<SCEVConstant>(ConstantMax)) && 7875 "No point in having a non-constant max backedge taken count!"); 7876 } 7877 7878 /// Compute the number of times the backedge of the specified loop will execute. 7879 ScalarEvolution::BackedgeTakenInfo 7880 ScalarEvolution::computeBackedgeTakenCount(const Loop *L, 7881 bool AllowPredicates) { 7882 SmallVector<BasicBlock *, 8> ExitingBlocks; 7883 L->getExitingBlocks(ExitingBlocks); 7884 7885 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo; 7886 7887 SmallVector<EdgeExitInfo, 4> ExitCounts; 7888 bool CouldComputeBECount = true; 7889 BasicBlock *Latch = L->getLoopLatch(); // may be NULL. 7890 const SCEV *MustExitMaxBECount = nullptr; 7891 const SCEV *MayExitMaxBECount = nullptr; 7892 bool MustExitMaxOrZero = false; 7893 7894 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts 7895 // and compute maxBECount. 7896 // Do a union of all the predicates here. 7897 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 7898 BasicBlock *ExitBB = ExitingBlocks[i]; 7899 7900 // We canonicalize untaken exits to br (constant), ignore them so that 7901 // proving an exit untaken doesn't negatively impact our ability to reason 7902 // about the loop as whole. 7903 if (auto *BI = dyn_cast<BranchInst>(ExitBB->getTerminator())) 7904 if (auto *CI = dyn_cast<ConstantInt>(BI->getCondition())) { 7905 bool ExitIfTrue = !L->contains(BI->getSuccessor(0)); 7906 if (ExitIfTrue == CI->isZero()) 7907 continue; 7908 } 7909 7910 ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates); 7911 7912 assert((AllowPredicates || EL.Predicates.empty()) && 7913 "Predicated exit limit when predicates are not allowed!"); 7914 7915 // 1. For each exit that can be computed, add an entry to ExitCounts. 7916 // CouldComputeBECount is true only if all exits can be computed. 7917 if (EL.ExactNotTaken == getCouldNotCompute()) 7918 // We couldn't compute an exact value for this exit, so 7919 // we won't be able to compute an exact value for the loop. 7920 CouldComputeBECount = false; 7921 else 7922 ExitCounts.emplace_back(ExitBB, EL); 7923 7924 // 2. Derive the loop's MaxBECount from each exit's max number of 7925 // non-exiting iterations. Partition the loop exits into two kinds: 7926 // LoopMustExits and LoopMayExits. 7927 // 7928 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it 7929 // is a LoopMayExit. If any computable LoopMustExit is found, then 7930 // MaxBECount is the minimum EL.MaxNotTaken of computable 7931 // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum 7932 // EL.MaxNotTaken, where CouldNotCompute is considered greater than any 7933 // computable EL.MaxNotTaken. 7934 if (EL.MaxNotTaken != getCouldNotCompute() && Latch && 7935 DT.dominates(ExitBB, Latch)) { 7936 if (!MustExitMaxBECount) { 7937 MustExitMaxBECount = EL.MaxNotTaken; 7938 MustExitMaxOrZero = EL.MaxOrZero; 7939 } else { 7940 MustExitMaxBECount = 7941 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.MaxNotTaken); 7942 } 7943 } else if (MayExitMaxBECount != getCouldNotCompute()) { 7944 if (!MayExitMaxBECount || EL.MaxNotTaken == getCouldNotCompute()) 7945 MayExitMaxBECount = EL.MaxNotTaken; 7946 else { 7947 MayExitMaxBECount = 7948 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.MaxNotTaken); 7949 } 7950 } 7951 } 7952 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount : 7953 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute()); 7954 // The loop backedge will be taken the maximum or zero times if there's 7955 // a single exit that must be taken the maximum or zero times. 7956 bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1); 7957 7958 // Remember which SCEVs are used in exit limits for invalidation purposes. 7959 // We only care about non-constant SCEVs here, so we can ignore EL.MaxNotTaken 7960 // and MaxBECount, which must be SCEVConstant. 7961 for (const auto &Pair : ExitCounts) 7962 if (!isa<SCEVConstant>(Pair.second.ExactNotTaken)) 7963 BECountUsers[Pair.second.ExactNotTaken].insert({L, AllowPredicates}); 7964 return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount, 7965 MaxBECount, MaxOrZero); 7966 } 7967 7968 ScalarEvolution::ExitLimit 7969 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock, 7970 bool AllowPredicates) { 7971 assert(L->contains(ExitingBlock) && "Exit count for non-loop block?"); 7972 // If our exiting block does not dominate the latch, then its connection with 7973 // loop's exit limit may be far from trivial. 7974 const BasicBlock *Latch = L->getLoopLatch(); 7975 if (!Latch || !DT.dominates(ExitingBlock, Latch)) 7976 return getCouldNotCompute(); 7977 7978 bool IsOnlyExit = (L->getExitingBlock() != nullptr); 7979 Instruction *Term = ExitingBlock->getTerminator(); 7980 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) { 7981 assert(BI->isConditional() && "If unconditional, it can't be in loop!"); 7982 bool ExitIfTrue = !L->contains(BI->getSuccessor(0)); 7983 assert(ExitIfTrue == L->contains(BI->getSuccessor(1)) && 7984 "It should have one successor in loop and one exit block!"); 7985 // Proceed to the next level to examine the exit condition expression. 7986 return computeExitLimitFromCond( 7987 L, BI->getCondition(), ExitIfTrue, 7988 /*ControlsExit=*/IsOnlyExit, AllowPredicates); 7989 } 7990 7991 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) { 7992 // For switch, make sure that there is a single exit from the loop. 7993 BasicBlock *Exit = nullptr; 7994 for (auto *SBB : successors(ExitingBlock)) 7995 if (!L->contains(SBB)) { 7996 if (Exit) // Multiple exit successors. 7997 return getCouldNotCompute(); 7998 Exit = SBB; 7999 } 8000 assert(Exit && "Exiting block must have at least one exit"); 8001 return computeExitLimitFromSingleExitSwitch(L, SI, Exit, 8002 /*ControlsExit=*/IsOnlyExit); 8003 } 8004 8005 return getCouldNotCompute(); 8006 } 8007 8008 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond( 8009 const Loop *L, Value *ExitCond, bool ExitIfTrue, 8010 bool ControlsExit, bool AllowPredicates) { 8011 ScalarEvolution::ExitLimitCacheTy Cache(L, ExitIfTrue, AllowPredicates); 8012 return computeExitLimitFromCondCached(Cache, L, ExitCond, ExitIfTrue, 8013 ControlsExit, AllowPredicates); 8014 } 8015 8016 Optional<ScalarEvolution::ExitLimit> 8017 ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond, 8018 bool ExitIfTrue, bool ControlsExit, 8019 bool AllowPredicates) { 8020 (void)this->L; 8021 (void)this->ExitIfTrue; 8022 (void)this->AllowPredicates; 8023 8024 assert(this->L == L && this->ExitIfTrue == ExitIfTrue && 8025 this->AllowPredicates == AllowPredicates && 8026 "Variance in assumed invariant key components!"); 8027 auto Itr = TripCountMap.find({ExitCond, ControlsExit}); 8028 if (Itr == TripCountMap.end()) 8029 return None; 8030 return Itr->second; 8031 } 8032 8033 void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond, 8034 bool ExitIfTrue, 8035 bool ControlsExit, 8036 bool AllowPredicates, 8037 const ExitLimit &EL) { 8038 assert(this->L == L && this->ExitIfTrue == ExitIfTrue && 8039 this->AllowPredicates == AllowPredicates && 8040 "Variance in assumed invariant key components!"); 8041 8042 auto InsertResult = TripCountMap.insert({{ExitCond, ControlsExit}, EL}); 8043 assert(InsertResult.second && "Expected successful insertion!"); 8044 (void)InsertResult; 8045 (void)ExitIfTrue; 8046 } 8047 8048 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached( 8049 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 8050 bool ControlsExit, bool AllowPredicates) { 8051 8052 if (auto MaybeEL = 8053 Cache.find(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates)) 8054 return *MaybeEL; 8055 8056 ExitLimit EL = computeExitLimitFromCondImpl(Cache, L, ExitCond, ExitIfTrue, 8057 ControlsExit, AllowPredicates); 8058 Cache.insert(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates, EL); 8059 return EL; 8060 } 8061 8062 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl( 8063 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 8064 bool ControlsExit, bool AllowPredicates) { 8065 // Handle BinOp conditions (And, Or). 8066 if (auto LimitFromBinOp = computeExitLimitFromCondFromBinOp( 8067 Cache, L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates)) 8068 return *LimitFromBinOp; 8069 8070 // With an icmp, it may be feasible to compute an exact backedge-taken count. 8071 // Proceed to the next level to examine the icmp. 8072 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) { 8073 ExitLimit EL = 8074 computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit); 8075 if (EL.hasFullInfo() || !AllowPredicates) 8076 return EL; 8077 8078 // Try again, but use SCEV predicates this time. 8079 return computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit, 8080 /*AllowPredicates=*/true); 8081 } 8082 8083 // Check for a constant condition. These are normally stripped out by 8084 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to 8085 // preserve the CFG and is temporarily leaving constant conditions 8086 // in place. 8087 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { 8088 if (ExitIfTrue == !CI->getZExtValue()) 8089 // The backedge is always taken. 8090 return getCouldNotCompute(); 8091 else 8092 // The backedge is never taken. 8093 return getZero(CI->getType()); 8094 } 8095 8096 // If it's not an integer or pointer comparison then compute it the hard way. 8097 return computeExitCountExhaustively(L, ExitCond, ExitIfTrue); 8098 } 8099 8100 Optional<ScalarEvolution::ExitLimit> 8101 ScalarEvolution::computeExitLimitFromCondFromBinOp( 8102 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 8103 bool ControlsExit, bool AllowPredicates) { 8104 // Check if the controlling expression for this loop is an And or Or. 8105 Value *Op0, *Op1; 8106 bool IsAnd = false; 8107 if (match(ExitCond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) 8108 IsAnd = true; 8109 else if (match(ExitCond, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) 8110 IsAnd = false; 8111 else 8112 return None; 8113 8114 // EitherMayExit is true in these two cases: 8115 // br (and Op0 Op1), loop, exit 8116 // br (or Op0 Op1), exit, loop 8117 bool EitherMayExit = IsAnd ^ ExitIfTrue; 8118 ExitLimit EL0 = computeExitLimitFromCondCached(Cache, L, Op0, ExitIfTrue, 8119 ControlsExit && !EitherMayExit, 8120 AllowPredicates); 8121 ExitLimit EL1 = computeExitLimitFromCondCached(Cache, L, Op1, ExitIfTrue, 8122 ControlsExit && !EitherMayExit, 8123 AllowPredicates); 8124 8125 // Be robust against unsimplified IR for the form "op i1 X, NeutralElement" 8126 const Constant *NeutralElement = ConstantInt::get(ExitCond->getType(), IsAnd); 8127 if (isa<ConstantInt>(Op1)) 8128 return Op1 == NeutralElement ? EL0 : EL1; 8129 if (isa<ConstantInt>(Op0)) 8130 return Op0 == NeutralElement ? EL1 : EL0; 8131 8132 const SCEV *BECount = getCouldNotCompute(); 8133 const SCEV *MaxBECount = getCouldNotCompute(); 8134 if (EitherMayExit) { 8135 // Both conditions must be same for the loop to continue executing. 8136 // Choose the less conservative count. 8137 // If ExitCond is a short-circuit form (select), using 8138 // umin(EL0.ExactNotTaken, EL1.ExactNotTaken) is unsafe in general. 8139 // To see the detailed examples, please see 8140 // test/Analysis/ScalarEvolution/exit-count-select.ll 8141 bool PoisonSafe = isa<BinaryOperator>(ExitCond); 8142 if (!PoisonSafe) 8143 // Even if ExitCond is select, we can safely derive BECount using both 8144 // EL0 and EL1 in these cases: 8145 // (1) EL0.ExactNotTaken is non-zero 8146 // (2) EL1.ExactNotTaken is non-poison 8147 // (3) EL0.ExactNotTaken is zero (BECount should be simply zero and 8148 // it cannot be umin(0, ..)) 8149 // The PoisonSafe assignment below is simplified and the assertion after 8150 // BECount calculation fully guarantees the condition (3). 8151 PoisonSafe = isa<SCEVConstant>(EL0.ExactNotTaken) || 8152 isa<SCEVConstant>(EL1.ExactNotTaken); 8153 if (EL0.ExactNotTaken != getCouldNotCompute() && 8154 EL1.ExactNotTaken != getCouldNotCompute() && PoisonSafe) { 8155 BECount = 8156 getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken); 8157 8158 // If EL0.ExactNotTaken was zero and ExitCond was a short-circuit form, 8159 // it should have been simplified to zero (see the condition (3) above) 8160 assert(!isa<BinaryOperator>(ExitCond) || !EL0.ExactNotTaken->isZero() || 8161 BECount->isZero()); 8162 } 8163 if (EL0.MaxNotTaken == getCouldNotCompute()) 8164 MaxBECount = EL1.MaxNotTaken; 8165 else if (EL1.MaxNotTaken == getCouldNotCompute()) 8166 MaxBECount = EL0.MaxNotTaken; 8167 else 8168 MaxBECount = getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken); 8169 } else { 8170 // Both conditions must be same at the same time for the loop to exit. 8171 // For now, be conservative. 8172 if (EL0.ExactNotTaken == EL1.ExactNotTaken) 8173 BECount = EL0.ExactNotTaken; 8174 } 8175 8176 // There are cases (e.g. PR26207) where computeExitLimitFromCond is able 8177 // to be more aggressive when computing BECount than when computing 8178 // MaxBECount. In these cases it is possible for EL0.ExactNotTaken and 8179 // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken 8180 // to not. 8181 if (isa<SCEVCouldNotCompute>(MaxBECount) && 8182 !isa<SCEVCouldNotCompute>(BECount)) 8183 MaxBECount = getConstant(getUnsignedRangeMax(BECount)); 8184 8185 return ExitLimit(BECount, MaxBECount, false, 8186 { &EL0.Predicates, &EL1.Predicates }); 8187 } 8188 8189 ScalarEvolution::ExitLimit 8190 ScalarEvolution::computeExitLimitFromICmp(const Loop *L, 8191 ICmpInst *ExitCond, 8192 bool ExitIfTrue, 8193 bool ControlsExit, 8194 bool AllowPredicates) { 8195 // If the condition was exit on true, convert the condition to exit on false 8196 ICmpInst::Predicate Pred; 8197 if (!ExitIfTrue) 8198 Pred = ExitCond->getPredicate(); 8199 else 8200 Pred = ExitCond->getInversePredicate(); 8201 const ICmpInst::Predicate OriginalPred = Pred; 8202 8203 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 8204 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 8205 8206 // Try to evaluate any dependencies out of the loop. 8207 LHS = getSCEVAtScope(LHS, L); 8208 RHS = getSCEVAtScope(RHS, L); 8209 8210 // At this point, we would like to compute how many iterations of the 8211 // loop the predicate will return true for these inputs. 8212 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) { 8213 // If there is a loop-invariant, force it into the RHS. 8214 std::swap(LHS, RHS); 8215 Pred = ICmpInst::getSwappedPredicate(Pred); 8216 } 8217 8218 // Simplify the operands before analyzing them. 8219 (void)SimplifyICmpOperands(Pred, LHS, RHS); 8220 8221 // If we have a comparison of a chrec against a constant, try to use value 8222 // ranges to answer this query. 8223 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 8224 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 8225 if (AddRec->getLoop() == L) { 8226 // Form the constant range. 8227 ConstantRange CompRange = 8228 ConstantRange::makeExactICmpRegion(Pred, RHSC->getAPInt()); 8229 8230 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 8231 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 8232 } 8233 8234 // If this loop must exit based on this condition (or execute undefined 8235 // behaviour), and we can prove the test sequence produced must repeat 8236 // the same values on self-wrap of the IV, then we can infer that IV 8237 // doesn't self wrap because if it did, we'd have an infinite (undefined) 8238 // loop. 8239 if (ControlsExit && isLoopInvariant(RHS, L) && loopHasNoAbnormalExits(L) && 8240 loopIsFiniteByAssumption(L)) { 8241 8242 // TODO: We can peel off any functions which are invertible *in L*. Loop 8243 // invariant terms are effectively constants for our purposes here. 8244 auto *InnerLHS = LHS; 8245 if (auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS)) 8246 InnerLHS = ZExt->getOperand(); 8247 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(InnerLHS)) { 8248 auto *StrideC = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)); 8249 if (!AR->hasNoSelfWrap() && AR->getLoop() == L && AR->isAffine() && 8250 StrideC && StrideC->getAPInt().isPowerOf2()) { 8251 auto Flags = AR->getNoWrapFlags(); 8252 Flags = setFlags(Flags, SCEV::FlagNW); 8253 SmallVector<const SCEV*> Operands{AR->operands()}; 8254 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags); 8255 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), Flags); 8256 } 8257 } 8258 } 8259 8260 switch (Pred) { 8261 case ICmpInst::ICMP_NE: { // while (X != Y) 8262 // Convert to: while (X-Y != 0) 8263 if (LHS->getType()->isPointerTy()) { 8264 LHS = getLosslessPtrToIntExpr(LHS); 8265 if (isa<SCEVCouldNotCompute>(LHS)) 8266 return LHS; 8267 } 8268 if (RHS->getType()->isPointerTy()) { 8269 RHS = getLosslessPtrToIntExpr(RHS); 8270 if (isa<SCEVCouldNotCompute>(RHS)) 8271 return RHS; 8272 } 8273 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit, 8274 AllowPredicates); 8275 if (EL.hasAnyInfo()) return EL; 8276 break; 8277 } 8278 case ICmpInst::ICMP_EQ: { // while (X == Y) 8279 // Convert to: while (X-Y == 0) 8280 if (LHS->getType()->isPointerTy()) { 8281 LHS = getLosslessPtrToIntExpr(LHS); 8282 if (isa<SCEVCouldNotCompute>(LHS)) 8283 return LHS; 8284 } 8285 if (RHS->getType()->isPointerTy()) { 8286 RHS = getLosslessPtrToIntExpr(RHS); 8287 if (isa<SCEVCouldNotCompute>(RHS)) 8288 return RHS; 8289 } 8290 ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L); 8291 if (EL.hasAnyInfo()) return EL; 8292 break; 8293 } 8294 case ICmpInst::ICMP_SLT: 8295 case ICmpInst::ICMP_ULT: { // while (X < Y) 8296 bool IsSigned = Pred == ICmpInst::ICMP_SLT; 8297 ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit, 8298 AllowPredicates); 8299 if (EL.hasAnyInfo()) return EL; 8300 break; 8301 } 8302 case ICmpInst::ICMP_SGT: 8303 case ICmpInst::ICMP_UGT: { // while (X > Y) 8304 bool IsSigned = Pred == ICmpInst::ICMP_SGT; 8305 ExitLimit EL = 8306 howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit, 8307 AllowPredicates); 8308 if (EL.hasAnyInfo()) return EL; 8309 break; 8310 } 8311 default: 8312 break; 8313 } 8314 8315 auto *ExhaustiveCount = 8316 computeExitCountExhaustively(L, ExitCond, ExitIfTrue); 8317 8318 if (!isa<SCEVCouldNotCompute>(ExhaustiveCount)) 8319 return ExhaustiveCount; 8320 8321 return computeShiftCompareExitLimit(ExitCond->getOperand(0), 8322 ExitCond->getOperand(1), L, OriginalPred); 8323 } 8324 8325 ScalarEvolution::ExitLimit 8326 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L, 8327 SwitchInst *Switch, 8328 BasicBlock *ExitingBlock, 8329 bool ControlsExit) { 8330 assert(!L->contains(ExitingBlock) && "Not an exiting block!"); 8331 8332 // Give up if the exit is the default dest of a switch. 8333 if (Switch->getDefaultDest() == ExitingBlock) 8334 return getCouldNotCompute(); 8335 8336 assert(L->contains(Switch->getDefaultDest()) && 8337 "Default case must not exit the loop!"); 8338 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L); 8339 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock)); 8340 8341 // while (X != Y) --> while (X-Y != 0) 8342 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit); 8343 if (EL.hasAnyInfo()) 8344 return EL; 8345 8346 return getCouldNotCompute(); 8347 } 8348 8349 static ConstantInt * 8350 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 8351 ScalarEvolution &SE) { 8352 const SCEV *InVal = SE.getConstant(C); 8353 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 8354 assert(isa<SCEVConstant>(Val) && 8355 "Evaluation of SCEV at constant didn't fold correctly?"); 8356 return cast<SCEVConstant>(Val)->getValue(); 8357 } 8358 8359 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit( 8360 Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) { 8361 ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV); 8362 if (!RHS) 8363 return getCouldNotCompute(); 8364 8365 const BasicBlock *Latch = L->getLoopLatch(); 8366 if (!Latch) 8367 return getCouldNotCompute(); 8368 8369 const BasicBlock *Predecessor = L->getLoopPredecessor(); 8370 if (!Predecessor) 8371 return getCouldNotCompute(); 8372 8373 // Return true if V is of the form "LHS `shift_op` <positive constant>". 8374 // Return LHS in OutLHS and shift_opt in OutOpCode. 8375 auto MatchPositiveShift = 8376 [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) { 8377 8378 using namespace PatternMatch; 8379 8380 ConstantInt *ShiftAmt; 8381 if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 8382 OutOpCode = Instruction::LShr; 8383 else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 8384 OutOpCode = Instruction::AShr; 8385 else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 8386 OutOpCode = Instruction::Shl; 8387 else 8388 return false; 8389 8390 return ShiftAmt->getValue().isStrictlyPositive(); 8391 }; 8392 8393 // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in 8394 // 8395 // loop: 8396 // %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ] 8397 // %iv.shifted = lshr i32 %iv, <positive constant> 8398 // 8399 // Return true on a successful match. Return the corresponding PHI node (%iv 8400 // above) in PNOut and the opcode of the shift operation in OpCodeOut. 8401 auto MatchShiftRecurrence = 8402 [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) { 8403 Optional<Instruction::BinaryOps> PostShiftOpCode; 8404 8405 { 8406 Instruction::BinaryOps OpC; 8407 Value *V; 8408 8409 // If we encounter a shift instruction, "peel off" the shift operation, 8410 // and remember that we did so. Later when we inspect %iv's backedge 8411 // value, we will make sure that the backedge value uses the same 8412 // operation. 8413 // 8414 // Note: the peeled shift operation does not have to be the same 8415 // instruction as the one feeding into the PHI's backedge value. We only 8416 // really care about it being the same *kind* of shift instruction -- 8417 // that's all that is required for our later inferences to hold. 8418 if (MatchPositiveShift(LHS, V, OpC)) { 8419 PostShiftOpCode = OpC; 8420 LHS = V; 8421 } 8422 } 8423 8424 PNOut = dyn_cast<PHINode>(LHS); 8425 if (!PNOut || PNOut->getParent() != L->getHeader()) 8426 return false; 8427 8428 Value *BEValue = PNOut->getIncomingValueForBlock(Latch); 8429 Value *OpLHS; 8430 8431 return 8432 // The backedge value for the PHI node must be a shift by a positive 8433 // amount 8434 MatchPositiveShift(BEValue, OpLHS, OpCodeOut) && 8435 8436 // of the PHI node itself 8437 OpLHS == PNOut && 8438 8439 // and the kind of shift should be match the kind of shift we peeled 8440 // off, if any. 8441 (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut); 8442 }; 8443 8444 PHINode *PN; 8445 Instruction::BinaryOps OpCode; 8446 if (!MatchShiftRecurrence(LHS, PN, OpCode)) 8447 return getCouldNotCompute(); 8448 8449 const DataLayout &DL = getDataLayout(); 8450 8451 // The key rationale for this optimization is that for some kinds of shift 8452 // recurrences, the value of the recurrence "stabilizes" to either 0 or -1 8453 // within a finite number of iterations. If the condition guarding the 8454 // backedge (in the sense that the backedge is taken if the condition is true) 8455 // is false for the value the shift recurrence stabilizes to, then we know 8456 // that the backedge is taken only a finite number of times. 8457 8458 ConstantInt *StableValue = nullptr; 8459 switch (OpCode) { 8460 default: 8461 llvm_unreachable("Impossible case!"); 8462 8463 case Instruction::AShr: { 8464 // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most 8465 // bitwidth(K) iterations. 8466 Value *FirstValue = PN->getIncomingValueForBlock(Predecessor); 8467 KnownBits Known = computeKnownBits(FirstValue, DL, 0, &AC, 8468 Predecessor->getTerminator(), &DT); 8469 auto *Ty = cast<IntegerType>(RHS->getType()); 8470 if (Known.isNonNegative()) 8471 StableValue = ConstantInt::get(Ty, 0); 8472 else if (Known.isNegative()) 8473 StableValue = ConstantInt::get(Ty, -1, true); 8474 else 8475 return getCouldNotCompute(); 8476 8477 break; 8478 } 8479 case Instruction::LShr: 8480 case Instruction::Shl: 8481 // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>} 8482 // stabilize to 0 in at most bitwidth(K) iterations. 8483 StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0); 8484 break; 8485 } 8486 8487 auto *Result = 8488 ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI); 8489 assert(Result->getType()->isIntegerTy(1) && 8490 "Otherwise cannot be an operand to a branch instruction"); 8491 8492 if (Result->isZeroValue()) { 8493 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 8494 const SCEV *UpperBound = 8495 getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth); 8496 return ExitLimit(getCouldNotCompute(), UpperBound, false); 8497 } 8498 8499 return getCouldNotCompute(); 8500 } 8501 8502 /// Return true if we can constant fold an instruction of the specified type, 8503 /// assuming that all operands were constants. 8504 static bool CanConstantFold(const Instruction *I) { 8505 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 8506 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 8507 isa<LoadInst>(I) || isa<ExtractValueInst>(I)) 8508 return true; 8509 8510 if (const CallInst *CI = dyn_cast<CallInst>(I)) 8511 if (const Function *F = CI->getCalledFunction()) 8512 return canConstantFoldCallTo(CI, F); 8513 return false; 8514 } 8515 8516 /// Determine whether this instruction can constant evolve within this loop 8517 /// assuming its operands can all constant evolve. 8518 static bool canConstantEvolve(Instruction *I, const Loop *L) { 8519 // An instruction outside of the loop can't be derived from a loop PHI. 8520 if (!L->contains(I)) return false; 8521 8522 if (isa<PHINode>(I)) { 8523 // We don't currently keep track of the control flow needed to evaluate 8524 // PHIs, so we cannot handle PHIs inside of loops. 8525 return L->getHeader() == I->getParent(); 8526 } 8527 8528 // If we won't be able to constant fold this expression even if the operands 8529 // are constants, bail early. 8530 return CanConstantFold(I); 8531 } 8532 8533 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by 8534 /// recursing through each instruction operand until reaching a loop header phi. 8535 static PHINode * 8536 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L, 8537 DenseMap<Instruction *, PHINode *> &PHIMap, 8538 unsigned Depth) { 8539 if (Depth > MaxConstantEvolvingDepth) 8540 return nullptr; 8541 8542 // Otherwise, we can evaluate this instruction if all of its operands are 8543 // constant or derived from a PHI node themselves. 8544 PHINode *PHI = nullptr; 8545 for (Value *Op : UseInst->operands()) { 8546 if (isa<Constant>(Op)) continue; 8547 8548 Instruction *OpInst = dyn_cast<Instruction>(Op); 8549 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr; 8550 8551 PHINode *P = dyn_cast<PHINode>(OpInst); 8552 if (!P) 8553 // If this operand is already visited, reuse the prior result. 8554 // We may have P != PHI if this is the deepest point at which the 8555 // inconsistent paths meet. 8556 P = PHIMap.lookup(OpInst); 8557 if (!P) { 8558 // Recurse and memoize the results, whether a phi is found or not. 8559 // This recursive call invalidates pointers into PHIMap. 8560 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1); 8561 PHIMap[OpInst] = P; 8562 } 8563 if (!P) 8564 return nullptr; // Not evolving from PHI 8565 if (PHI && PHI != P) 8566 return nullptr; // Evolving from multiple different PHIs. 8567 PHI = P; 8568 } 8569 // This is a expression evolving from a constant PHI! 8570 return PHI; 8571 } 8572 8573 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 8574 /// in the loop that V is derived from. We allow arbitrary operations along the 8575 /// way, but the operands of an operation must either be constants or a value 8576 /// derived from a constant PHI. If this expression does not fit with these 8577 /// constraints, return null. 8578 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 8579 Instruction *I = dyn_cast<Instruction>(V); 8580 if (!I || !canConstantEvolve(I, L)) return nullptr; 8581 8582 if (PHINode *PN = dyn_cast<PHINode>(I)) 8583 return PN; 8584 8585 // Record non-constant instructions contained by the loop. 8586 DenseMap<Instruction *, PHINode *> PHIMap; 8587 return getConstantEvolvingPHIOperands(I, L, PHIMap, 0); 8588 } 8589 8590 /// EvaluateExpression - Given an expression that passes the 8591 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 8592 /// in the loop has the value PHIVal. If we can't fold this expression for some 8593 /// reason, return null. 8594 static Constant *EvaluateExpression(Value *V, const Loop *L, 8595 DenseMap<Instruction *, Constant *> &Vals, 8596 const DataLayout &DL, 8597 const TargetLibraryInfo *TLI) { 8598 // Convenient constant check, but redundant for recursive calls. 8599 if (Constant *C = dyn_cast<Constant>(V)) return C; 8600 Instruction *I = dyn_cast<Instruction>(V); 8601 if (!I) return nullptr; 8602 8603 if (Constant *C = Vals.lookup(I)) return C; 8604 8605 // An instruction inside the loop depends on a value outside the loop that we 8606 // weren't given a mapping for, or a value such as a call inside the loop. 8607 if (!canConstantEvolve(I, L)) return nullptr; 8608 8609 // An unmapped PHI can be due to a branch or another loop inside this loop, 8610 // or due to this not being the initial iteration through a loop where we 8611 // couldn't compute the evolution of this particular PHI last time. 8612 if (isa<PHINode>(I)) return nullptr; 8613 8614 std::vector<Constant*> Operands(I->getNumOperands()); 8615 8616 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 8617 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i)); 8618 if (!Operand) { 8619 Operands[i] = dyn_cast<Constant>(I->getOperand(i)); 8620 if (!Operands[i]) return nullptr; 8621 continue; 8622 } 8623 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI); 8624 Vals[Operand] = C; 8625 if (!C) return nullptr; 8626 Operands[i] = C; 8627 } 8628 8629 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 8630 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 8631 Operands[1], DL, TLI); 8632 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 8633 if (!LI->isVolatile()) 8634 return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL); 8635 } 8636 return ConstantFoldInstOperands(I, Operands, DL, TLI); 8637 } 8638 8639 8640 // If every incoming value to PN except the one for BB is a specific Constant, 8641 // return that, else return nullptr. 8642 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) { 8643 Constant *IncomingVal = nullptr; 8644 8645 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 8646 if (PN->getIncomingBlock(i) == BB) 8647 continue; 8648 8649 auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i)); 8650 if (!CurrentVal) 8651 return nullptr; 8652 8653 if (IncomingVal != CurrentVal) { 8654 if (IncomingVal) 8655 return nullptr; 8656 IncomingVal = CurrentVal; 8657 } 8658 } 8659 8660 return IncomingVal; 8661 } 8662 8663 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 8664 /// in the header of its containing loop, we know the loop executes a 8665 /// constant number of times, and the PHI node is just a recurrence 8666 /// involving constants, fold it. 8667 Constant * 8668 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 8669 const APInt &BEs, 8670 const Loop *L) { 8671 auto I = ConstantEvolutionLoopExitValue.find(PN); 8672 if (I != ConstantEvolutionLoopExitValue.end()) 8673 return I->second; 8674 8675 if (BEs.ugt(MaxBruteForceIterations)) 8676 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it. 8677 8678 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 8679 8680 DenseMap<Instruction *, Constant *> CurrentIterVals; 8681 BasicBlock *Header = L->getHeader(); 8682 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 8683 8684 BasicBlock *Latch = L->getLoopLatch(); 8685 if (!Latch) 8686 return nullptr; 8687 8688 for (PHINode &PHI : Header->phis()) { 8689 if (auto *StartCST = getOtherIncomingValue(&PHI, Latch)) 8690 CurrentIterVals[&PHI] = StartCST; 8691 } 8692 if (!CurrentIterVals.count(PN)) 8693 return RetVal = nullptr; 8694 8695 Value *BEValue = PN->getIncomingValueForBlock(Latch); 8696 8697 // Execute the loop symbolically to determine the exit value. 8698 assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) && 8699 "BEs is <= MaxBruteForceIterations which is an 'unsigned'!"); 8700 8701 unsigned NumIterations = BEs.getZExtValue(); // must be in range 8702 unsigned IterationNum = 0; 8703 const DataLayout &DL = getDataLayout(); 8704 for (; ; ++IterationNum) { 8705 if (IterationNum == NumIterations) 8706 return RetVal = CurrentIterVals[PN]; // Got exit value! 8707 8708 // Compute the value of the PHIs for the next iteration. 8709 // EvaluateExpression adds non-phi values to the CurrentIterVals map. 8710 DenseMap<Instruction *, Constant *> NextIterVals; 8711 Constant *NextPHI = 8712 EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 8713 if (!NextPHI) 8714 return nullptr; // Couldn't evaluate! 8715 NextIterVals[PN] = NextPHI; 8716 8717 bool StoppedEvolving = NextPHI == CurrentIterVals[PN]; 8718 8719 // Also evaluate the other PHI nodes. However, we don't get to stop if we 8720 // cease to be able to evaluate one of them or if they stop evolving, 8721 // because that doesn't necessarily prevent us from computing PN. 8722 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute; 8723 for (const auto &I : CurrentIterVals) { 8724 PHINode *PHI = dyn_cast<PHINode>(I.first); 8725 if (!PHI || PHI == PN || PHI->getParent() != Header) continue; 8726 PHIsToCompute.emplace_back(PHI, I.second); 8727 } 8728 // We use two distinct loops because EvaluateExpression may invalidate any 8729 // iterators into CurrentIterVals. 8730 for (const auto &I : PHIsToCompute) { 8731 PHINode *PHI = I.first; 8732 Constant *&NextPHI = NextIterVals[PHI]; 8733 if (!NextPHI) { // Not already computed. 8734 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 8735 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 8736 } 8737 if (NextPHI != I.second) 8738 StoppedEvolving = false; 8739 } 8740 8741 // If all entries in CurrentIterVals == NextIterVals then we can stop 8742 // iterating, the loop can't continue to change. 8743 if (StoppedEvolving) 8744 return RetVal = CurrentIterVals[PN]; 8745 8746 CurrentIterVals.swap(NextIterVals); 8747 } 8748 } 8749 8750 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L, 8751 Value *Cond, 8752 bool ExitWhen) { 8753 PHINode *PN = getConstantEvolvingPHI(Cond, L); 8754 if (!PN) return getCouldNotCompute(); 8755 8756 // If the loop is canonicalized, the PHI will have exactly two entries. 8757 // That's the only form we support here. 8758 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); 8759 8760 DenseMap<Instruction *, Constant *> CurrentIterVals; 8761 BasicBlock *Header = L->getHeader(); 8762 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 8763 8764 BasicBlock *Latch = L->getLoopLatch(); 8765 assert(Latch && "Should follow from NumIncomingValues == 2!"); 8766 8767 for (PHINode &PHI : Header->phis()) { 8768 if (auto *StartCST = getOtherIncomingValue(&PHI, Latch)) 8769 CurrentIterVals[&PHI] = StartCST; 8770 } 8771 if (!CurrentIterVals.count(PN)) 8772 return getCouldNotCompute(); 8773 8774 // Okay, we find a PHI node that defines the trip count of this loop. Execute 8775 // the loop symbolically to determine when the condition gets a value of 8776 // "ExitWhen". 8777 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 8778 const DataLayout &DL = getDataLayout(); 8779 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){ 8780 auto *CondVal = dyn_cast_or_null<ConstantInt>( 8781 EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI)); 8782 8783 // Couldn't symbolically evaluate. 8784 if (!CondVal) return getCouldNotCompute(); 8785 8786 if (CondVal->getValue() == uint64_t(ExitWhen)) { 8787 ++NumBruteForceTripCountsComputed; 8788 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 8789 } 8790 8791 // Update all the PHI nodes for the next iteration. 8792 DenseMap<Instruction *, Constant *> NextIterVals; 8793 8794 // Create a list of which PHIs we need to compute. We want to do this before 8795 // calling EvaluateExpression on them because that may invalidate iterators 8796 // into CurrentIterVals. 8797 SmallVector<PHINode *, 8> PHIsToCompute; 8798 for (const auto &I : CurrentIterVals) { 8799 PHINode *PHI = dyn_cast<PHINode>(I.first); 8800 if (!PHI || PHI->getParent() != Header) continue; 8801 PHIsToCompute.push_back(PHI); 8802 } 8803 for (PHINode *PHI : PHIsToCompute) { 8804 Constant *&NextPHI = NextIterVals[PHI]; 8805 if (NextPHI) continue; // Already computed! 8806 8807 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 8808 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 8809 } 8810 CurrentIterVals.swap(NextIterVals); 8811 } 8812 8813 // Too many iterations were needed to evaluate. 8814 return getCouldNotCompute(); 8815 } 8816 8817 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 8818 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = 8819 ValuesAtScopes[V]; 8820 // Check to see if we've folded this expression at this loop before. 8821 for (auto &LS : Values) 8822 if (LS.first == L) 8823 return LS.second ? LS.second : V; 8824 8825 Values.emplace_back(L, nullptr); 8826 8827 // Otherwise compute it. 8828 const SCEV *C = computeSCEVAtScope(V, L); 8829 for (auto &LS : reverse(ValuesAtScopes[V])) 8830 if (LS.first == L) { 8831 LS.second = C; 8832 break; 8833 } 8834 8835 if (!isa<SCEVConstant>(C)) 8836 ValuesAtScopesUsers[C].push_back({L, V}); 8837 return C; 8838 } 8839 8840 /// This builds up a Constant using the ConstantExpr interface. That way, we 8841 /// will return Constants for objects which aren't represented by a 8842 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt. 8843 /// Returns NULL if the SCEV isn't representable as a Constant. 8844 static Constant *BuildConstantFromSCEV(const SCEV *V) { 8845 switch (V->getSCEVType()) { 8846 case scCouldNotCompute: 8847 case scAddRecExpr: 8848 return nullptr; 8849 case scConstant: 8850 return cast<SCEVConstant>(V)->getValue(); 8851 case scUnknown: 8852 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue()); 8853 case scSignExtend: { 8854 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V); 8855 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand())) 8856 return ConstantExpr::getSExt(CastOp, SS->getType()); 8857 return nullptr; 8858 } 8859 case scZeroExtend: { 8860 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V); 8861 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand())) 8862 return ConstantExpr::getZExt(CastOp, SZ->getType()); 8863 return nullptr; 8864 } 8865 case scPtrToInt: { 8866 const SCEVPtrToIntExpr *P2I = cast<SCEVPtrToIntExpr>(V); 8867 if (Constant *CastOp = BuildConstantFromSCEV(P2I->getOperand())) 8868 return ConstantExpr::getPtrToInt(CastOp, P2I->getType()); 8869 8870 return nullptr; 8871 } 8872 case scTruncate: { 8873 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V); 8874 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand())) 8875 return ConstantExpr::getTrunc(CastOp, ST->getType()); 8876 return nullptr; 8877 } 8878 case scAddExpr: { 8879 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V); 8880 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) { 8881 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 8882 unsigned AS = PTy->getAddressSpace(); 8883 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 8884 C = ConstantExpr::getBitCast(C, DestPtrTy); 8885 } 8886 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) { 8887 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i)); 8888 if (!C2) 8889 return nullptr; 8890 8891 // First pointer! 8892 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) { 8893 unsigned AS = C2->getType()->getPointerAddressSpace(); 8894 std::swap(C, C2); 8895 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 8896 // The offsets have been converted to bytes. We can add bytes to an 8897 // i8* by GEP with the byte count in the first index. 8898 C = ConstantExpr::getBitCast(C, DestPtrTy); 8899 } 8900 8901 // Don't bother trying to sum two pointers. We probably can't 8902 // statically compute a load that results from it anyway. 8903 if (C2->getType()->isPointerTy()) 8904 return nullptr; 8905 8906 if (C->getType()->isPointerTy()) { 8907 C = ConstantExpr::getGetElementPtr(Type::getInt8Ty(C->getContext()), 8908 C, C2); 8909 } else { 8910 C = ConstantExpr::getAdd(C, C2); 8911 } 8912 } 8913 return C; 8914 } 8915 return nullptr; 8916 } 8917 case scMulExpr: { 8918 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V); 8919 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) { 8920 // Don't bother with pointers at all. 8921 if (C->getType()->isPointerTy()) 8922 return nullptr; 8923 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) { 8924 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i)); 8925 if (!C2 || C2->getType()->isPointerTy()) 8926 return nullptr; 8927 C = ConstantExpr::getMul(C, C2); 8928 } 8929 return C; 8930 } 8931 return nullptr; 8932 } 8933 case scUDivExpr: { 8934 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V); 8935 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS())) 8936 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS())) 8937 if (LHS->getType() == RHS->getType()) 8938 return ConstantExpr::getUDiv(LHS, RHS); 8939 return nullptr; 8940 } 8941 case scSMaxExpr: 8942 case scUMaxExpr: 8943 case scSMinExpr: 8944 case scUMinExpr: 8945 return nullptr; // TODO: smax, umax, smin, umax. 8946 } 8947 llvm_unreachable("Unknown SCEV kind!"); 8948 } 8949 8950 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 8951 if (isa<SCEVConstant>(V)) return V; 8952 8953 // If this instruction is evolved from a constant-evolving PHI, compute the 8954 // exit value from the loop without using SCEVs. 8955 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 8956 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 8957 if (PHINode *PN = dyn_cast<PHINode>(I)) { 8958 const Loop *CurrLoop = this->LI[I->getParent()]; 8959 // Looking for loop exit value. 8960 if (CurrLoop && CurrLoop->getParentLoop() == L && 8961 PN->getParent() == CurrLoop->getHeader()) { 8962 // Okay, there is no closed form solution for the PHI node. Check 8963 // to see if the loop that contains it has a known backedge-taken 8964 // count. If so, we may be able to force computation of the exit 8965 // value. 8966 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(CurrLoop); 8967 // This trivial case can show up in some degenerate cases where 8968 // the incoming IR has not yet been fully simplified. 8969 if (BackedgeTakenCount->isZero()) { 8970 Value *InitValue = nullptr; 8971 bool MultipleInitValues = false; 8972 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) { 8973 if (!CurrLoop->contains(PN->getIncomingBlock(i))) { 8974 if (!InitValue) 8975 InitValue = PN->getIncomingValue(i); 8976 else if (InitValue != PN->getIncomingValue(i)) { 8977 MultipleInitValues = true; 8978 break; 8979 } 8980 } 8981 } 8982 if (!MultipleInitValues && InitValue) 8983 return getSCEV(InitValue); 8984 } 8985 // Do we have a loop invariant value flowing around the backedge 8986 // for a loop which must execute the backedge? 8987 if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && 8988 isKnownPositive(BackedgeTakenCount) && 8989 PN->getNumIncomingValues() == 2) { 8990 8991 unsigned InLoopPred = 8992 CurrLoop->contains(PN->getIncomingBlock(0)) ? 0 : 1; 8993 Value *BackedgeVal = PN->getIncomingValue(InLoopPred); 8994 if (CurrLoop->isLoopInvariant(BackedgeVal)) 8995 return getSCEV(BackedgeVal); 8996 } 8997 if (auto *BTCC = dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 8998 // Okay, we know how many times the containing loop executes. If 8999 // this is a constant evolving PHI node, get the final value at 9000 // the specified iteration number. 9001 Constant *RV = getConstantEvolutionLoopExitValue( 9002 PN, BTCC->getAPInt(), CurrLoop); 9003 if (RV) return getSCEV(RV); 9004 } 9005 } 9006 9007 // If there is a single-input Phi, evaluate it at our scope. If we can 9008 // prove that this replacement does not break LCSSA form, use new value. 9009 if (PN->getNumOperands() == 1) { 9010 const SCEV *Input = getSCEV(PN->getOperand(0)); 9011 const SCEV *InputAtScope = getSCEVAtScope(Input, L); 9012 // TODO: We can generalize it using LI.replacementPreservesLCSSAForm, 9013 // for the simplest case just support constants. 9014 if (isa<SCEVConstant>(InputAtScope)) return InputAtScope; 9015 } 9016 } 9017 9018 // Okay, this is an expression that we cannot symbolically evaluate 9019 // into a SCEV. Check to see if it's possible to symbolically evaluate 9020 // the arguments into constants, and if so, try to constant propagate the 9021 // result. This is particularly useful for computing loop exit values. 9022 if (CanConstantFold(I)) { 9023 SmallVector<Constant *, 4> Operands; 9024 bool MadeImprovement = false; 9025 for (Value *Op : I->operands()) { 9026 if (Constant *C = dyn_cast<Constant>(Op)) { 9027 Operands.push_back(C); 9028 continue; 9029 } 9030 9031 // If any of the operands is non-constant and if they are 9032 // non-integer and non-pointer, don't even try to analyze them 9033 // with scev techniques. 9034 if (!isSCEVable(Op->getType())) 9035 return V; 9036 9037 const SCEV *OrigV = getSCEV(Op); 9038 const SCEV *OpV = getSCEVAtScope(OrigV, L); 9039 MadeImprovement |= OrigV != OpV; 9040 9041 Constant *C = BuildConstantFromSCEV(OpV); 9042 if (!C) return V; 9043 if (C->getType() != Op->getType()) 9044 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 9045 Op->getType(), 9046 false), 9047 C, Op->getType()); 9048 Operands.push_back(C); 9049 } 9050 9051 // Check to see if getSCEVAtScope actually made an improvement. 9052 if (MadeImprovement) { 9053 Constant *C = nullptr; 9054 const DataLayout &DL = getDataLayout(); 9055 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 9056 C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 9057 Operands[1], DL, &TLI); 9058 else if (const LoadInst *Load = dyn_cast<LoadInst>(I)) { 9059 if (!Load->isVolatile()) 9060 C = ConstantFoldLoadFromConstPtr(Operands[0], Load->getType(), 9061 DL); 9062 } else 9063 C = ConstantFoldInstOperands(I, Operands, DL, &TLI); 9064 if (!C) return V; 9065 return getSCEV(C); 9066 } 9067 } 9068 } 9069 9070 // This is some other type of SCEVUnknown, just return it. 9071 return V; 9072 } 9073 9074 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 9075 // Avoid performing the look-up in the common case where the specified 9076 // expression has no loop-variant portions. 9077 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 9078 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 9079 if (OpAtScope != Comm->getOperand(i)) { 9080 // Okay, at least one of these operands is loop variant but might be 9081 // foldable. Build a new instance of the folded commutative expression. 9082 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), 9083 Comm->op_begin()+i); 9084 NewOps.push_back(OpAtScope); 9085 9086 for (++i; i != e; ++i) { 9087 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 9088 NewOps.push_back(OpAtScope); 9089 } 9090 if (isa<SCEVAddExpr>(Comm)) 9091 return getAddExpr(NewOps, Comm->getNoWrapFlags()); 9092 if (isa<SCEVMulExpr>(Comm)) 9093 return getMulExpr(NewOps, Comm->getNoWrapFlags()); 9094 if (isa<SCEVMinMaxExpr>(Comm)) 9095 return getMinMaxExpr(Comm->getSCEVType(), NewOps); 9096 llvm_unreachable("Unknown commutative SCEV type!"); 9097 } 9098 } 9099 // If we got here, all operands are loop invariant. 9100 return Comm; 9101 } 9102 9103 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 9104 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); 9105 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); 9106 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 9107 return Div; // must be loop invariant 9108 return getUDivExpr(LHS, RHS); 9109 } 9110 9111 // If this is a loop recurrence for a loop that does not contain L, then we 9112 // are dealing with the final value computed by the loop. 9113 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 9114 // First, attempt to evaluate each operand. 9115 // Avoid performing the look-up in the common case where the specified 9116 // expression has no loop-variant portions. 9117 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 9118 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); 9119 if (OpAtScope == AddRec->getOperand(i)) 9120 continue; 9121 9122 // Okay, at least one of these operands is loop variant but might be 9123 // foldable. Build a new instance of the folded commutative expression. 9124 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(), 9125 AddRec->op_begin()+i); 9126 NewOps.push_back(OpAtScope); 9127 for (++i; i != e; ++i) 9128 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); 9129 9130 const SCEV *FoldedRec = 9131 getAddRecExpr(NewOps, AddRec->getLoop(), 9132 AddRec->getNoWrapFlags(SCEV::FlagNW)); 9133 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec); 9134 // The addrec may be folded to a nonrecurrence, for example, if the 9135 // induction variable is multiplied by zero after constant folding. Go 9136 // ahead and return the folded value. 9137 if (!AddRec) 9138 return FoldedRec; 9139 break; 9140 } 9141 9142 // If the scope is outside the addrec's loop, evaluate it by using the 9143 // loop exit value of the addrec. 9144 if (!AddRec->getLoop()->contains(L)) { 9145 // To evaluate this recurrence, we need to know how many times the AddRec 9146 // loop iterates. Compute this now. 9147 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 9148 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; 9149 9150 // Then, evaluate the AddRec. 9151 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 9152 } 9153 9154 return AddRec; 9155 } 9156 9157 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { 9158 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 9159 if (Op == Cast->getOperand()) 9160 return Cast; // must be loop invariant 9161 return getZeroExtendExpr(Op, Cast->getType()); 9162 } 9163 9164 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { 9165 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 9166 if (Op == Cast->getOperand()) 9167 return Cast; // must be loop invariant 9168 return getSignExtendExpr(Op, Cast->getType()); 9169 } 9170 9171 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { 9172 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 9173 if (Op == Cast->getOperand()) 9174 return Cast; // must be loop invariant 9175 return getTruncateExpr(Op, Cast->getType()); 9176 } 9177 9178 if (const SCEVPtrToIntExpr *Cast = dyn_cast<SCEVPtrToIntExpr>(V)) { 9179 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 9180 if (Op == Cast->getOperand()) 9181 return Cast; // must be loop invariant 9182 return getPtrToIntExpr(Op, Cast->getType()); 9183 } 9184 9185 llvm_unreachable("Unknown SCEV type!"); 9186 } 9187 9188 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 9189 return getSCEVAtScope(getSCEV(V), L); 9190 } 9191 9192 const SCEV *ScalarEvolution::stripInjectiveFunctions(const SCEV *S) const { 9193 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) 9194 return stripInjectiveFunctions(ZExt->getOperand()); 9195 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) 9196 return stripInjectiveFunctions(SExt->getOperand()); 9197 return S; 9198 } 9199 9200 /// Finds the minimum unsigned root of the following equation: 9201 /// 9202 /// A * X = B (mod N) 9203 /// 9204 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 9205 /// A and B isn't important. 9206 /// 9207 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 9208 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B, 9209 ScalarEvolution &SE) { 9210 uint32_t BW = A.getBitWidth(); 9211 assert(BW == SE.getTypeSizeInBits(B->getType())); 9212 assert(A != 0 && "A must be non-zero."); 9213 9214 // 1. D = gcd(A, N) 9215 // 9216 // The gcd of A and N may have only one prime factor: 2. The number of 9217 // trailing zeros in A is its multiplicity 9218 uint32_t Mult2 = A.countTrailingZeros(); 9219 // D = 2^Mult2 9220 9221 // 2. Check if B is divisible by D. 9222 // 9223 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 9224 // is not less than multiplicity of this prime factor for D. 9225 if (SE.GetMinTrailingZeros(B) < Mult2) 9226 return SE.getCouldNotCompute(); 9227 9228 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 9229 // modulo (N / D). 9230 // 9231 // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent 9232 // (N / D) in general. The inverse itself always fits into BW bits, though, 9233 // so we immediately truncate it. 9234 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 9235 APInt Mod(BW + 1, 0); 9236 Mod.setBit(BW - Mult2); // Mod = N / D 9237 APInt I = AD.multiplicativeInverse(Mod).trunc(BW); 9238 9239 // 4. Compute the minimum unsigned root of the equation: 9240 // I * (B / D) mod (N / D) 9241 // To simplify the computation, we factor out the divide by D: 9242 // (I * B mod N) / D 9243 const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2)); 9244 return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D); 9245 } 9246 9247 /// For a given quadratic addrec, generate coefficients of the corresponding 9248 /// quadratic equation, multiplied by a common value to ensure that they are 9249 /// integers. 9250 /// The returned value is a tuple { A, B, C, M, BitWidth }, where 9251 /// Ax^2 + Bx + C is the quadratic function, M is the value that A, B and C 9252 /// were multiplied by, and BitWidth is the bit width of the original addrec 9253 /// coefficients. 9254 /// This function returns None if the addrec coefficients are not compile- 9255 /// time constants. 9256 static Optional<std::tuple<APInt, APInt, APInt, APInt, unsigned>> 9257 GetQuadraticEquation(const SCEVAddRecExpr *AddRec) { 9258 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 9259 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 9260 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 9261 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 9262 LLVM_DEBUG(dbgs() << __func__ << ": analyzing quadratic addrec: " 9263 << *AddRec << '\n'); 9264 9265 // We currently can only solve this if the coefficients are constants. 9266 if (!LC || !MC || !NC) { 9267 LLVM_DEBUG(dbgs() << __func__ << ": coefficients are not constant\n"); 9268 return None; 9269 } 9270 9271 APInt L = LC->getAPInt(); 9272 APInt M = MC->getAPInt(); 9273 APInt N = NC->getAPInt(); 9274 assert(!N.isZero() && "This is not a quadratic addrec"); 9275 9276 unsigned BitWidth = LC->getAPInt().getBitWidth(); 9277 unsigned NewWidth = BitWidth + 1; 9278 LLVM_DEBUG(dbgs() << __func__ << ": addrec coeff bw: " 9279 << BitWidth << '\n'); 9280 // The sign-extension (as opposed to a zero-extension) here matches the 9281 // extension used in SolveQuadraticEquationWrap (with the same motivation). 9282 N = N.sext(NewWidth); 9283 M = M.sext(NewWidth); 9284 L = L.sext(NewWidth); 9285 9286 // The increments are M, M+N, M+2N, ..., so the accumulated values are 9287 // L+M, (L+M)+(M+N), (L+M)+(M+N)+(M+2N), ..., that is, 9288 // L+M, L+2M+N, L+3M+3N, ... 9289 // After n iterations the accumulated value Acc is L + nM + n(n-1)/2 N. 9290 // 9291 // The equation Acc = 0 is then 9292 // L + nM + n(n-1)/2 N = 0, or 2L + 2M n + n(n-1) N = 0. 9293 // In a quadratic form it becomes: 9294 // N n^2 + (2M-N) n + 2L = 0. 9295 9296 APInt A = N; 9297 APInt B = 2 * M - A; 9298 APInt C = 2 * L; 9299 APInt T = APInt(NewWidth, 2); 9300 LLVM_DEBUG(dbgs() << __func__ << ": equation " << A << "x^2 + " << B 9301 << "x + " << C << ", coeff bw: " << NewWidth 9302 << ", multiplied by " << T << '\n'); 9303 return std::make_tuple(A, B, C, T, BitWidth); 9304 } 9305 9306 /// Helper function to compare optional APInts: 9307 /// (a) if X and Y both exist, return min(X, Y), 9308 /// (b) if neither X nor Y exist, return None, 9309 /// (c) if exactly one of X and Y exists, return that value. 9310 static Optional<APInt> MinOptional(Optional<APInt> X, Optional<APInt> Y) { 9311 if (X.hasValue() && Y.hasValue()) { 9312 unsigned W = std::max(X->getBitWidth(), Y->getBitWidth()); 9313 APInt XW = X->sextOrSelf(W); 9314 APInt YW = Y->sextOrSelf(W); 9315 return XW.slt(YW) ? *X : *Y; 9316 } 9317 if (!X.hasValue() && !Y.hasValue()) 9318 return None; 9319 return X.hasValue() ? *X : *Y; 9320 } 9321 9322 /// Helper function to truncate an optional APInt to a given BitWidth. 9323 /// When solving addrec-related equations, it is preferable to return a value 9324 /// that has the same bit width as the original addrec's coefficients. If the 9325 /// solution fits in the original bit width, truncate it (except for i1). 9326 /// Returning a value of a different bit width may inhibit some optimizations. 9327 /// 9328 /// In general, a solution to a quadratic equation generated from an addrec 9329 /// may require BW+1 bits, where BW is the bit width of the addrec's 9330 /// coefficients. The reason is that the coefficients of the quadratic 9331 /// equation are BW+1 bits wide (to avoid truncation when converting from 9332 /// the addrec to the equation). 9333 static Optional<APInt> TruncIfPossible(Optional<APInt> X, unsigned BitWidth) { 9334 if (!X.hasValue()) 9335 return None; 9336 unsigned W = X->getBitWidth(); 9337 if (BitWidth > 1 && BitWidth < W && X->isIntN(BitWidth)) 9338 return X->trunc(BitWidth); 9339 return X; 9340 } 9341 9342 /// Let c(n) be the value of the quadratic chrec {L,+,M,+,N} after n 9343 /// iterations. The values L, M, N are assumed to be signed, and they 9344 /// should all have the same bit widths. 9345 /// Find the least n >= 0 such that c(n) = 0 in the arithmetic modulo 2^BW, 9346 /// where BW is the bit width of the addrec's coefficients. 9347 /// If the calculated value is a BW-bit integer (for BW > 1), it will be 9348 /// returned as such, otherwise the bit width of the returned value may 9349 /// be greater than BW. 9350 /// 9351 /// This function returns None if 9352 /// (a) the addrec coefficients are not constant, or 9353 /// (b) SolveQuadraticEquationWrap was unable to find a solution. For cases 9354 /// like x^2 = 5, no integer solutions exist, in other cases an integer 9355 /// solution may exist, but SolveQuadraticEquationWrap may fail to find it. 9356 static Optional<APInt> 9357 SolveQuadraticAddRecExact(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 9358 APInt A, B, C, M; 9359 unsigned BitWidth; 9360 auto T = GetQuadraticEquation(AddRec); 9361 if (!T.hasValue()) 9362 return None; 9363 9364 std::tie(A, B, C, M, BitWidth) = *T; 9365 LLVM_DEBUG(dbgs() << __func__ << ": solving for unsigned overflow\n"); 9366 Optional<APInt> X = APIntOps::SolveQuadraticEquationWrap(A, B, C, BitWidth+1); 9367 if (!X.hasValue()) 9368 return None; 9369 9370 ConstantInt *CX = ConstantInt::get(SE.getContext(), *X); 9371 ConstantInt *V = EvaluateConstantChrecAtConstant(AddRec, CX, SE); 9372 if (!V->isZero()) 9373 return None; 9374 9375 return TruncIfPossible(X, BitWidth); 9376 } 9377 9378 /// Let c(n) be the value of the quadratic chrec {0,+,M,+,N} after n 9379 /// iterations. The values M, N are assumed to be signed, and they 9380 /// should all have the same bit widths. 9381 /// Find the least n such that c(n) does not belong to the given range, 9382 /// while c(n-1) does. 9383 /// 9384 /// This function returns None if 9385 /// (a) the addrec coefficients are not constant, or 9386 /// (b) SolveQuadraticEquationWrap was unable to find a solution for the 9387 /// bounds of the range. 9388 static Optional<APInt> 9389 SolveQuadraticAddRecRange(const SCEVAddRecExpr *AddRec, 9390 const ConstantRange &Range, ScalarEvolution &SE) { 9391 assert(AddRec->getOperand(0)->isZero() && 9392 "Starting value of addrec should be 0"); 9393 LLVM_DEBUG(dbgs() << __func__ << ": solving boundary crossing for range " 9394 << Range << ", addrec " << *AddRec << '\n'); 9395 // This case is handled in getNumIterationsInRange. Here we can assume that 9396 // we start in the range. 9397 assert(Range.contains(APInt(SE.getTypeSizeInBits(AddRec->getType()), 0)) && 9398 "Addrec's initial value should be in range"); 9399 9400 APInt A, B, C, M; 9401 unsigned BitWidth; 9402 auto T = GetQuadraticEquation(AddRec); 9403 if (!T.hasValue()) 9404 return None; 9405 9406 // Be careful about the return value: there can be two reasons for not 9407 // returning an actual number. First, if no solutions to the equations 9408 // were found, and second, if the solutions don't leave the given range. 9409 // The first case means that the actual solution is "unknown", the second 9410 // means that it's known, but not valid. If the solution is unknown, we 9411 // cannot make any conclusions. 9412 // Return a pair: the optional solution and a flag indicating if the 9413 // solution was found. 9414 auto SolveForBoundary = [&](APInt Bound) -> std::pair<Optional<APInt>,bool> { 9415 // Solve for signed overflow and unsigned overflow, pick the lower 9416 // solution. 9417 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: checking boundary " 9418 << Bound << " (before multiplying by " << M << ")\n"); 9419 Bound *= M; // The quadratic equation multiplier. 9420 9421 Optional<APInt> SO = None; 9422 if (BitWidth > 1) { 9423 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for " 9424 "signed overflow\n"); 9425 SO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth); 9426 } 9427 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for " 9428 "unsigned overflow\n"); 9429 Optional<APInt> UO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, 9430 BitWidth+1); 9431 9432 auto LeavesRange = [&] (const APInt &X) { 9433 ConstantInt *C0 = ConstantInt::get(SE.getContext(), X); 9434 ConstantInt *V0 = EvaluateConstantChrecAtConstant(AddRec, C0, SE); 9435 if (Range.contains(V0->getValue())) 9436 return false; 9437 // X should be at least 1, so X-1 is non-negative. 9438 ConstantInt *C1 = ConstantInt::get(SE.getContext(), X-1); 9439 ConstantInt *V1 = EvaluateConstantChrecAtConstant(AddRec, C1, SE); 9440 if (Range.contains(V1->getValue())) 9441 return true; 9442 return false; 9443 }; 9444 9445 // If SolveQuadraticEquationWrap returns None, it means that there can 9446 // be a solution, but the function failed to find it. We cannot treat it 9447 // as "no solution". 9448 if (!SO.hasValue() || !UO.hasValue()) 9449 return { None, false }; 9450 9451 // Check the smaller value first to see if it leaves the range. 9452 // At this point, both SO and UO must have values. 9453 Optional<APInt> Min = MinOptional(SO, UO); 9454 if (LeavesRange(*Min)) 9455 return { Min, true }; 9456 Optional<APInt> Max = Min == SO ? UO : SO; 9457 if (LeavesRange(*Max)) 9458 return { Max, true }; 9459 9460 // Solutions were found, but were eliminated, hence the "true". 9461 return { None, true }; 9462 }; 9463 9464 std::tie(A, B, C, M, BitWidth) = *T; 9465 // Lower bound is inclusive, subtract 1 to represent the exiting value. 9466 APInt Lower = Range.getLower().sextOrSelf(A.getBitWidth()) - 1; 9467 APInt Upper = Range.getUpper().sextOrSelf(A.getBitWidth()); 9468 auto SL = SolveForBoundary(Lower); 9469 auto SU = SolveForBoundary(Upper); 9470 // If any of the solutions was unknown, no meaninigful conclusions can 9471 // be made. 9472 if (!SL.second || !SU.second) 9473 return None; 9474 9475 // Claim: The correct solution is not some value between Min and Max. 9476 // 9477 // Justification: Assuming that Min and Max are different values, one of 9478 // them is when the first signed overflow happens, the other is when the 9479 // first unsigned overflow happens. Crossing the range boundary is only 9480 // possible via an overflow (treating 0 as a special case of it, modeling 9481 // an overflow as crossing k*2^W for some k). 9482 // 9483 // The interesting case here is when Min was eliminated as an invalid 9484 // solution, but Max was not. The argument is that if there was another 9485 // overflow between Min and Max, it would also have been eliminated if 9486 // it was considered. 9487 // 9488 // For a given boundary, it is possible to have two overflows of the same 9489 // type (signed/unsigned) without having the other type in between: this 9490 // can happen when the vertex of the parabola is between the iterations 9491 // corresponding to the overflows. This is only possible when the two 9492 // overflows cross k*2^W for the same k. In such case, if the second one 9493 // left the range (and was the first one to do so), the first overflow 9494 // would have to enter the range, which would mean that either we had left 9495 // the range before or that we started outside of it. Both of these cases 9496 // are contradictions. 9497 // 9498 // Claim: In the case where SolveForBoundary returns None, the correct 9499 // solution is not some value between the Max for this boundary and the 9500 // Min of the other boundary. 9501 // 9502 // Justification: Assume that we had such Max_A and Min_B corresponding 9503 // to range boundaries A and B and such that Max_A < Min_B. If there was 9504 // a solution between Max_A and Min_B, it would have to be caused by an 9505 // overflow corresponding to either A or B. It cannot correspond to B, 9506 // since Min_B is the first occurrence of such an overflow. If it 9507 // corresponded to A, it would have to be either a signed or an unsigned 9508 // overflow that is larger than both eliminated overflows for A. But 9509 // between the eliminated overflows and this overflow, the values would 9510 // cover the entire value space, thus crossing the other boundary, which 9511 // is a contradiction. 9512 9513 return TruncIfPossible(MinOptional(SL.first, SU.first), BitWidth); 9514 } 9515 9516 ScalarEvolution::ExitLimit 9517 ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit, 9518 bool AllowPredicates) { 9519 9520 // This is only used for loops with a "x != y" exit test. The exit condition 9521 // is now expressed as a single expression, V = x-y. So the exit test is 9522 // effectively V != 0. We know and take advantage of the fact that this 9523 // expression only being used in a comparison by zero context. 9524 9525 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 9526 // If the value is a constant 9527 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 9528 // If the value is already zero, the branch will execute zero times. 9529 if (C->getValue()->isZero()) return C; 9530 return getCouldNotCompute(); // Otherwise it will loop infinitely. 9531 } 9532 9533 const SCEVAddRecExpr *AddRec = 9534 dyn_cast<SCEVAddRecExpr>(stripInjectiveFunctions(V)); 9535 9536 if (!AddRec && AllowPredicates) 9537 // Try to make this an AddRec using runtime tests, in the first X 9538 // iterations of this loop, where X is the SCEV expression found by the 9539 // algorithm below. 9540 AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates); 9541 9542 if (!AddRec || AddRec->getLoop() != L) 9543 return getCouldNotCompute(); 9544 9545 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 9546 // the quadratic equation to solve it. 9547 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { 9548 // We can only use this value if the chrec ends up with an exact zero 9549 // value at this index. When solving for "X*X != 5", for example, we 9550 // should not accept a root of 2. 9551 if (auto S = SolveQuadraticAddRecExact(AddRec, *this)) { 9552 const auto *R = cast<SCEVConstant>(getConstant(S.getValue())); 9553 return ExitLimit(R, R, false, Predicates); 9554 } 9555 return getCouldNotCompute(); 9556 } 9557 9558 // Otherwise we can only handle this if it is affine. 9559 if (!AddRec->isAffine()) 9560 return getCouldNotCompute(); 9561 9562 // If this is an affine expression, the execution count of this branch is 9563 // the minimum unsigned root of the following equation: 9564 // 9565 // Start + Step*N = 0 (mod 2^BW) 9566 // 9567 // equivalent to: 9568 // 9569 // Step*N = -Start (mod 2^BW) 9570 // 9571 // where BW is the common bit width of Start and Step. 9572 9573 // Get the initial value for the loop. 9574 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 9575 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 9576 9577 // For now we handle only constant steps. 9578 // 9579 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the 9580 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap 9581 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step. 9582 // We have not yet seen any such cases. 9583 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step); 9584 if (!StepC || StepC->getValue()->isZero()) 9585 return getCouldNotCompute(); 9586 9587 // For positive steps (counting up until unsigned overflow): 9588 // N = -Start/Step (as unsigned) 9589 // For negative steps (counting down to zero): 9590 // N = Start/-Step 9591 // First compute the unsigned distance from zero in the direction of Step. 9592 bool CountDown = StepC->getAPInt().isNegative(); 9593 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start); 9594 9595 // Handle unitary steps, which cannot wraparound. 9596 // 1*N = -Start; -1*N = Start (mod 2^BW), so: 9597 // N = Distance (as unsigned) 9598 if (StepC->getValue()->isOne() || StepC->getValue()->isMinusOne()) { 9599 APInt MaxBECount = getUnsignedRangeMax(applyLoopGuards(Distance, L)); 9600 MaxBECount = APIntOps::umin(MaxBECount, getUnsignedRangeMax(Distance)); 9601 9602 // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated, 9603 // we end up with a loop whose backedge-taken count is n - 1. Detect this 9604 // case, and see if we can improve the bound. 9605 // 9606 // Explicitly handling this here is necessary because getUnsignedRange 9607 // isn't context-sensitive; it doesn't know that we only care about the 9608 // range inside the loop. 9609 const SCEV *Zero = getZero(Distance->getType()); 9610 const SCEV *One = getOne(Distance->getType()); 9611 const SCEV *DistancePlusOne = getAddExpr(Distance, One); 9612 if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) { 9613 // If Distance + 1 doesn't overflow, we can compute the maximum distance 9614 // as "unsigned_max(Distance + 1) - 1". 9615 ConstantRange CR = getUnsignedRange(DistancePlusOne); 9616 MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1); 9617 } 9618 return ExitLimit(Distance, getConstant(MaxBECount), false, Predicates); 9619 } 9620 9621 // If the condition controls loop exit (the loop exits only if the expression 9622 // is true) and the addition is no-wrap we can use unsigned divide to 9623 // compute the backedge count. In this case, the step may not divide the 9624 // distance, but we don't care because if the condition is "missed" the loop 9625 // will have undefined behavior due to wrapping. 9626 if (ControlsExit && AddRec->hasNoSelfWrap() && 9627 loopHasNoAbnormalExits(AddRec->getLoop())) { 9628 const SCEV *Exact = 9629 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step); 9630 const SCEV *Max = getCouldNotCompute(); 9631 if (Exact != getCouldNotCompute()) { 9632 APInt MaxInt = getUnsignedRangeMax(applyLoopGuards(Exact, L)); 9633 Max = getConstant(APIntOps::umin(MaxInt, getUnsignedRangeMax(Exact))); 9634 } 9635 return ExitLimit(Exact, Max, false, Predicates); 9636 } 9637 9638 // Solve the general equation. 9639 const SCEV *E = SolveLinEquationWithOverflow(StepC->getAPInt(), 9640 getNegativeSCEV(Start), *this); 9641 9642 const SCEV *M = E; 9643 if (E != getCouldNotCompute()) { 9644 APInt MaxWithGuards = getUnsignedRangeMax(applyLoopGuards(E, L)); 9645 M = getConstant(APIntOps::umin(MaxWithGuards, getUnsignedRangeMax(E))); 9646 } 9647 return ExitLimit(E, M, false, Predicates); 9648 } 9649 9650 ScalarEvolution::ExitLimit 9651 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) { 9652 // Loops that look like: while (X == 0) are very strange indeed. We don't 9653 // handle them yet except for the trivial case. This could be expanded in the 9654 // future as needed. 9655 9656 // If the value is a constant, check to see if it is known to be non-zero 9657 // already. If so, the backedge will execute zero times. 9658 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 9659 if (!C->getValue()->isZero()) 9660 return getZero(C->getType()); 9661 return getCouldNotCompute(); // Otherwise it will loop infinitely. 9662 } 9663 9664 // We could implement others, but I really doubt anyone writes loops like 9665 // this, and if they did, they would already be constant folded. 9666 return getCouldNotCompute(); 9667 } 9668 9669 std::pair<const BasicBlock *, const BasicBlock *> 9670 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(const BasicBlock *BB) 9671 const { 9672 // If the block has a unique predecessor, then there is no path from the 9673 // predecessor to the block that does not go through the direct edge 9674 // from the predecessor to the block. 9675 if (const BasicBlock *Pred = BB->getSinglePredecessor()) 9676 return {Pred, BB}; 9677 9678 // A loop's header is defined to be a block that dominates the loop. 9679 // If the header has a unique predecessor outside the loop, it must be 9680 // a block that has exactly one successor that can reach the loop. 9681 if (const Loop *L = LI.getLoopFor(BB)) 9682 return {L->getLoopPredecessor(), L->getHeader()}; 9683 9684 return {nullptr, nullptr}; 9685 } 9686 9687 /// SCEV structural equivalence is usually sufficient for testing whether two 9688 /// expressions are equal, however for the purposes of looking for a condition 9689 /// guarding a loop, it can be useful to be a little more general, since a 9690 /// front-end may have replicated the controlling expression. 9691 static bool HasSameValue(const SCEV *A, const SCEV *B) { 9692 // Quick check to see if they are the same SCEV. 9693 if (A == B) return true; 9694 9695 auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) { 9696 // Not all instructions that are "identical" compute the same value. For 9697 // instance, two distinct alloca instructions allocating the same type are 9698 // identical and do not read memory; but compute distinct values. 9699 return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A)); 9700 }; 9701 9702 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 9703 // two different instructions with the same value. Check for this case. 9704 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 9705 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 9706 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 9707 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 9708 if (ComputesEqualValues(AI, BI)) 9709 return true; 9710 9711 // Otherwise assume they may have a different value. 9712 return false; 9713 } 9714 9715 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, 9716 const SCEV *&LHS, const SCEV *&RHS, 9717 unsigned Depth) { 9718 bool Changed = false; 9719 // Simplifies ICMP to trivial true or false by turning it into '0 == 0' or 9720 // '0 != 0'. 9721 auto TrivialCase = [&](bool TriviallyTrue) { 9722 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 9723 Pred = TriviallyTrue ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE; 9724 return true; 9725 }; 9726 // If we hit the max recursion limit bail out. 9727 if (Depth >= 3) 9728 return false; 9729 9730 // Canonicalize a constant to the right side. 9731 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 9732 // Check for both operands constant. 9733 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 9734 if (ConstantExpr::getICmp(Pred, 9735 LHSC->getValue(), 9736 RHSC->getValue())->isNullValue()) 9737 return TrivialCase(false); 9738 else 9739 return TrivialCase(true); 9740 } 9741 // Otherwise swap the operands to put the constant on the right. 9742 std::swap(LHS, RHS); 9743 Pred = ICmpInst::getSwappedPredicate(Pred); 9744 Changed = true; 9745 } 9746 9747 // If we're comparing an addrec with a value which is loop-invariant in the 9748 // addrec's loop, put the addrec on the left. Also make a dominance check, 9749 // as both operands could be addrecs loop-invariant in each other's loop. 9750 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { 9751 const Loop *L = AR->getLoop(); 9752 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) { 9753 std::swap(LHS, RHS); 9754 Pred = ICmpInst::getSwappedPredicate(Pred); 9755 Changed = true; 9756 } 9757 } 9758 9759 // If there's a constant operand, canonicalize comparisons with boundary 9760 // cases, and canonicalize *-or-equal comparisons to regular comparisons. 9761 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 9762 const APInt &RA = RC->getAPInt(); 9763 9764 bool SimplifiedByConstantRange = false; 9765 9766 if (!ICmpInst::isEquality(Pred)) { 9767 ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA); 9768 if (ExactCR.isFullSet()) 9769 return TrivialCase(true); 9770 else if (ExactCR.isEmptySet()) 9771 return TrivialCase(false); 9772 9773 APInt NewRHS; 9774 CmpInst::Predicate NewPred; 9775 if (ExactCR.getEquivalentICmp(NewPred, NewRHS) && 9776 ICmpInst::isEquality(NewPred)) { 9777 // We were able to convert an inequality to an equality. 9778 Pred = NewPred; 9779 RHS = getConstant(NewRHS); 9780 Changed = SimplifiedByConstantRange = true; 9781 } 9782 } 9783 9784 if (!SimplifiedByConstantRange) { 9785 switch (Pred) { 9786 default: 9787 break; 9788 case ICmpInst::ICMP_EQ: 9789 case ICmpInst::ICMP_NE: 9790 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b. 9791 if (!RA) 9792 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS)) 9793 if (const SCEVMulExpr *ME = 9794 dyn_cast<SCEVMulExpr>(AE->getOperand(0))) 9795 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 && 9796 ME->getOperand(0)->isAllOnesValue()) { 9797 RHS = AE->getOperand(1); 9798 LHS = ME->getOperand(1); 9799 Changed = true; 9800 } 9801 break; 9802 9803 9804 // The "Should have been caught earlier!" messages refer to the fact 9805 // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above 9806 // should have fired on the corresponding cases, and canonicalized the 9807 // check to trivial case. 9808 9809 case ICmpInst::ICMP_UGE: 9810 assert(!RA.isMinValue() && "Should have been caught earlier!"); 9811 Pred = ICmpInst::ICMP_UGT; 9812 RHS = getConstant(RA - 1); 9813 Changed = true; 9814 break; 9815 case ICmpInst::ICMP_ULE: 9816 assert(!RA.isMaxValue() && "Should have been caught earlier!"); 9817 Pred = ICmpInst::ICMP_ULT; 9818 RHS = getConstant(RA + 1); 9819 Changed = true; 9820 break; 9821 case ICmpInst::ICMP_SGE: 9822 assert(!RA.isMinSignedValue() && "Should have been caught earlier!"); 9823 Pred = ICmpInst::ICMP_SGT; 9824 RHS = getConstant(RA - 1); 9825 Changed = true; 9826 break; 9827 case ICmpInst::ICMP_SLE: 9828 assert(!RA.isMaxSignedValue() && "Should have been caught earlier!"); 9829 Pred = ICmpInst::ICMP_SLT; 9830 RHS = getConstant(RA + 1); 9831 Changed = true; 9832 break; 9833 } 9834 } 9835 } 9836 9837 // Check for obvious equality. 9838 if (HasSameValue(LHS, RHS)) { 9839 if (ICmpInst::isTrueWhenEqual(Pred)) 9840 return TrivialCase(true); 9841 if (ICmpInst::isFalseWhenEqual(Pred)) 9842 return TrivialCase(false); 9843 } 9844 9845 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by 9846 // adding or subtracting 1 from one of the operands. 9847 switch (Pred) { 9848 case ICmpInst::ICMP_SLE: 9849 if (!getSignedRangeMax(RHS).isMaxSignedValue()) { 9850 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 9851 SCEV::FlagNSW); 9852 Pred = ICmpInst::ICMP_SLT; 9853 Changed = true; 9854 } else if (!getSignedRangeMin(LHS).isMinSignedValue()) { 9855 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 9856 SCEV::FlagNSW); 9857 Pred = ICmpInst::ICMP_SLT; 9858 Changed = true; 9859 } 9860 break; 9861 case ICmpInst::ICMP_SGE: 9862 if (!getSignedRangeMin(RHS).isMinSignedValue()) { 9863 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 9864 SCEV::FlagNSW); 9865 Pred = ICmpInst::ICMP_SGT; 9866 Changed = true; 9867 } else if (!getSignedRangeMax(LHS).isMaxSignedValue()) { 9868 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 9869 SCEV::FlagNSW); 9870 Pred = ICmpInst::ICMP_SGT; 9871 Changed = true; 9872 } 9873 break; 9874 case ICmpInst::ICMP_ULE: 9875 if (!getUnsignedRangeMax(RHS).isMaxValue()) { 9876 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 9877 SCEV::FlagNUW); 9878 Pred = ICmpInst::ICMP_ULT; 9879 Changed = true; 9880 } else if (!getUnsignedRangeMin(LHS).isMinValue()) { 9881 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS); 9882 Pred = ICmpInst::ICMP_ULT; 9883 Changed = true; 9884 } 9885 break; 9886 case ICmpInst::ICMP_UGE: 9887 if (!getUnsignedRangeMin(RHS).isMinValue()) { 9888 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS); 9889 Pred = ICmpInst::ICMP_UGT; 9890 Changed = true; 9891 } else if (!getUnsignedRangeMax(LHS).isMaxValue()) { 9892 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 9893 SCEV::FlagNUW); 9894 Pred = ICmpInst::ICMP_UGT; 9895 Changed = true; 9896 } 9897 break; 9898 default: 9899 break; 9900 } 9901 9902 // TODO: More simplifications are possible here. 9903 9904 // Recursively simplify until we either hit a recursion limit or nothing 9905 // changes. 9906 if (Changed) 9907 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1); 9908 9909 return Changed; 9910 } 9911 9912 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 9913 return getSignedRangeMax(S).isNegative(); 9914 } 9915 9916 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 9917 return getSignedRangeMin(S).isStrictlyPositive(); 9918 } 9919 9920 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 9921 return !getSignedRangeMin(S).isNegative(); 9922 } 9923 9924 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 9925 return !getSignedRangeMax(S).isStrictlyPositive(); 9926 } 9927 9928 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 9929 return getUnsignedRangeMin(S) != 0; 9930 } 9931 9932 std::pair<const SCEV *, const SCEV *> 9933 ScalarEvolution::SplitIntoInitAndPostInc(const Loop *L, const SCEV *S) { 9934 // Compute SCEV on entry of loop L. 9935 const SCEV *Start = SCEVInitRewriter::rewrite(S, L, *this); 9936 if (Start == getCouldNotCompute()) 9937 return { Start, Start }; 9938 // Compute post increment SCEV for loop L. 9939 const SCEV *PostInc = SCEVPostIncRewriter::rewrite(S, L, *this); 9940 assert(PostInc != getCouldNotCompute() && "Unexpected could not compute"); 9941 return { Start, PostInc }; 9942 } 9943 9944 bool ScalarEvolution::isKnownViaInduction(ICmpInst::Predicate Pred, 9945 const SCEV *LHS, const SCEV *RHS) { 9946 // First collect all loops. 9947 SmallPtrSet<const Loop *, 8> LoopsUsed; 9948 getUsedLoops(LHS, LoopsUsed); 9949 getUsedLoops(RHS, LoopsUsed); 9950 9951 if (LoopsUsed.empty()) 9952 return false; 9953 9954 // Domination relationship must be a linear order on collected loops. 9955 #ifndef NDEBUG 9956 for (auto *L1 : LoopsUsed) 9957 for (auto *L2 : LoopsUsed) 9958 assert((DT.dominates(L1->getHeader(), L2->getHeader()) || 9959 DT.dominates(L2->getHeader(), L1->getHeader())) && 9960 "Domination relationship is not a linear order"); 9961 #endif 9962 9963 const Loop *MDL = 9964 *std::max_element(LoopsUsed.begin(), LoopsUsed.end(), 9965 [&](const Loop *L1, const Loop *L2) { 9966 return DT.properlyDominates(L1->getHeader(), L2->getHeader()); 9967 }); 9968 9969 // Get init and post increment value for LHS. 9970 auto SplitLHS = SplitIntoInitAndPostInc(MDL, LHS); 9971 // if LHS contains unknown non-invariant SCEV then bail out. 9972 if (SplitLHS.first == getCouldNotCompute()) 9973 return false; 9974 assert (SplitLHS.second != getCouldNotCompute() && "Unexpected CNC"); 9975 // Get init and post increment value for RHS. 9976 auto SplitRHS = SplitIntoInitAndPostInc(MDL, RHS); 9977 // if RHS contains unknown non-invariant SCEV then bail out. 9978 if (SplitRHS.first == getCouldNotCompute()) 9979 return false; 9980 assert (SplitRHS.second != getCouldNotCompute() && "Unexpected CNC"); 9981 // It is possible that init SCEV contains an invariant load but it does 9982 // not dominate MDL and is not available at MDL loop entry, so we should 9983 // check it here. 9984 if (!isAvailableAtLoopEntry(SplitLHS.first, MDL) || 9985 !isAvailableAtLoopEntry(SplitRHS.first, MDL)) 9986 return false; 9987 9988 // It seems backedge guard check is faster than entry one so in some cases 9989 // it can speed up whole estimation by short circuit 9990 return isLoopBackedgeGuardedByCond(MDL, Pred, SplitLHS.second, 9991 SplitRHS.second) && 9992 isLoopEntryGuardedByCond(MDL, Pred, SplitLHS.first, SplitRHS.first); 9993 } 9994 9995 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 9996 const SCEV *LHS, const SCEV *RHS) { 9997 // Canonicalize the inputs first. 9998 (void)SimplifyICmpOperands(Pred, LHS, RHS); 9999 10000 if (isKnownViaInduction(Pred, LHS, RHS)) 10001 return true; 10002 10003 if (isKnownPredicateViaSplitting(Pred, LHS, RHS)) 10004 return true; 10005 10006 // Otherwise see what can be done with some simple reasoning. 10007 return isKnownViaNonRecursiveReasoning(Pred, LHS, RHS); 10008 } 10009 10010 Optional<bool> ScalarEvolution::evaluatePredicate(ICmpInst::Predicate Pred, 10011 const SCEV *LHS, 10012 const SCEV *RHS) { 10013 if (isKnownPredicate(Pred, LHS, RHS)) 10014 return true; 10015 else if (isKnownPredicate(ICmpInst::getInversePredicate(Pred), LHS, RHS)) 10016 return false; 10017 return None; 10018 } 10019 10020 bool ScalarEvolution::isKnownPredicateAt(ICmpInst::Predicate Pred, 10021 const SCEV *LHS, const SCEV *RHS, 10022 const Instruction *CtxI) { 10023 // TODO: Analyze guards and assumes from Context's block. 10024 return isKnownPredicate(Pred, LHS, RHS) || 10025 isBasicBlockEntryGuardedByCond(CtxI->getParent(), Pred, LHS, RHS); 10026 } 10027 10028 Optional<bool> ScalarEvolution::evaluatePredicateAt(ICmpInst::Predicate Pred, 10029 const SCEV *LHS, 10030 const SCEV *RHS, 10031 const Instruction *CtxI) { 10032 Optional<bool> KnownWithoutContext = evaluatePredicate(Pred, LHS, RHS); 10033 if (KnownWithoutContext) 10034 return KnownWithoutContext; 10035 10036 if (isBasicBlockEntryGuardedByCond(CtxI->getParent(), Pred, LHS, RHS)) 10037 return true; 10038 else if (isBasicBlockEntryGuardedByCond(CtxI->getParent(), 10039 ICmpInst::getInversePredicate(Pred), 10040 LHS, RHS)) 10041 return false; 10042 return None; 10043 } 10044 10045 bool ScalarEvolution::isKnownOnEveryIteration(ICmpInst::Predicate Pred, 10046 const SCEVAddRecExpr *LHS, 10047 const SCEV *RHS) { 10048 const Loop *L = LHS->getLoop(); 10049 return isLoopEntryGuardedByCond(L, Pred, LHS->getStart(), RHS) && 10050 isLoopBackedgeGuardedByCond(L, Pred, LHS->getPostIncExpr(*this), RHS); 10051 } 10052 10053 Optional<ScalarEvolution::MonotonicPredicateType> 10054 ScalarEvolution::getMonotonicPredicateType(const SCEVAddRecExpr *LHS, 10055 ICmpInst::Predicate Pred) { 10056 auto Result = getMonotonicPredicateTypeImpl(LHS, Pred); 10057 10058 #ifndef NDEBUG 10059 // Verify an invariant: inverting the predicate should turn a monotonically 10060 // increasing change to a monotonically decreasing one, and vice versa. 10061 if (Result) { 10062 auto ResultSwapped = 10063 getMonotonicPredicateTypeImpl(LHS, ICmpInst::getSwappedPredicate(Pred)); 10064 10065 assert(ResultSwapped.hasValue() && "should be able to analyze both!"); 10066 assert(ResultSwapped.getValue() != Result.getValue() && 10067 "monotonicity should flip as we flip the predicate"); 10068 } 10069 #endif 10070 10071 return Result; 10072 } 10073 10074 Optional<ScalarEvolution::MonotonicPredicateType> 10075 ScalarEvolution::getMonotonicPredicateTypeImpl(const SCEVAddRecExpr *LHS, 10076 ICmpInst::Predicate Pred) { 10077 // A zero step value for LHS means the induction variable is essentially a 10078 // loop invariant value. We don't really depend on the predicate actually 10079 // flipping from false to true (for increasing predicates, and the other way 10080 // around for decreasing predicates), all we care about is that *if* the 10081 // predicate changes then it only changes from false to true. 10082 // 10083 // A zero step value in itself is not very useful, but there may be places 10084 // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be 10085 // as general as possible. 10086 10087 // Only handle LE/LT/GE/GT predicates. 10088 if (!ICmpInst::isRelational(Pred)) 10089 return None; 10090 10091 bool IsGreater = ICmpInst::isGE(Pred) || ICmpInst::isGT(Pred); 10092 assert((IsGreater || ICmpInst::isLE(Pred) || ICmpInst::isLT(Pred)) && 10093 "Should be greater or less!"); 10094 10095 // Check that AR does not wrap. 10096 if (ICmpInst::isUnsigned(Pred)) { 10097 if (!LHS->hasNoUnsignedWrap()) 10098 return None; 10099 return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing; 10100 } else { 10101 assert(ICmpInst::isSigned(Pred) && 10102 "Relational predicate is either signed or unsigned!"); 10103 if (!LHS->hasNoSignedWrap()) 10104 return None; 10105 10106 const SCEV *Step = LHS->getStepRecurrence(*this); 10107 10108 if (isKnownNonNegative(Step)) 10109 return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing; 10110 10111 if (isKnownNonPositive(Step)) 10112 return !IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing; 10113 10114 return None; 10115 } 10116 } 10117 10118 Optional<ScalarEvolution::LoopInvariantPredicate> 10119 ScalarEvolution::getLoopInvariantPredicate(ICmpInst::Predicate Pred, 10120 const SCEV *LHS, const SCEV *RHS, 10121 const Loop *L) { 10122 10123 // If there is a loop-invariant, force it into the RHS, otherwise bail out. 10124 if (!isLoopInvariant(RHS, L)) { 10125 if (!isLoopInvariant(LHS, L)) 10126 return None; 10127 10128 std::swap(LHS, RHS); 10129 Pred = ICmpInst::getSwappedPredicate(Pred); 10130 } 10131 10132 const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS); 10133 if (!ArLHS || ArLHS->getLoop() != L) 10134 return None; 10135 10136 auto MonotonicType = getMonotonicPredicateType(ArLHS, Pred); 10137 if (!MonotonicType) 10138 return None; 10139 // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to 10140 // true as the loop iterates, and the backedge is control dependent on 10141 // "ArLHS `Pred` RHS" == true then we can reason as follows: 10142 // 10143 // * if the predicate was false in the first iteration then the predicate 10144 // is never evaluated again, since the loop exits without taking the 10145 // backedge. 10146 // * if the predicate was true in the first iteration then it will 10147 // continue to be true for all future iterations since it is 10148 // monotonically increasing. 10149 // 10150 // For both the above possibilities, we can replace the loop varying 10151 // predicate with its value on the first iteration of the loop (which is 10152 // loop invariant). 10153 // 10154 // A similar reasoning applies for a monotonically decreasing predicate, by 10155 // replacing true with false and false with true in the above two bullets. 10156 bool Increasing = *MonotonicType == ScalarEvolution::MonotonicallyIncreasing; 10157 auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred); 10158 10159 if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS)) 10160 return None; 10161 10162 return ScalarEvolution::LoopInvariantPredicate(Pred, ArLHS->getStart(), RHS); 10163 } 10164 10165 Optional<ScalarEvolution::LoopInvariantPredicate> 10166 ScalarEvolution::getLoopInvariantExitCondDuringFirstIterations( 10167 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, 10168 const Instruction *CtxI, const SCEV *MaxIter) { 10169 // Try to prove the following set of facts: 10170 // - The predicate is monotonic in the iteration space. 10171 // - If the check does not fail on the 1st iteration: 10172 // - No overflow will happen during first MaxIter iterations; 10173 // - It will not fail on the MaxIter'th iteration. 10174 // If the check does fail on the 1st iteration, we leave the loop and no 10175 // other checks matter. 10176 10177 // If there is a loop-invariant, force it into the RHS, otherwise bail out. 10178 if (!isLoopInvariant(RHS, L)) { 10179 if (!isLoopInvariant(LHS, L)) 10180 return None; 10181 10182 std::swap(LHS, RHS); 10183 Pred = ICmpInst::getSwappedPredicate(Pred); 10184 } 10185 10186 auto *AR = dyn_cast<SCEVAddRecExpr>(LHS); 10187 if (!AR || AR->getLoop() != L) 10188 return None; 10189 10190 // The predicate must be relational (i.e. <, <=, >=, >). 10191 if (!ICmpInst::isRelational(Pred)) 10192 return None; 10193 10194 // TODO: Support steps other than +/- 1. 10195 const SCEV *Step = AR->getStepRecurrence(*this); 10196 auto *One = getOne(Step->getType()); 10197 auto *MinusOne = getNegativeSCEV(One); 10198 if (Step != One && Step != MinusOne) 10199 return None; 10200 10201 // Type mismatch here means that MaxIter is potentially larger than max 10202 // unsigned value in start type, which mean we cannot prove no wrap for the 10203 // indvar. 10204 if (AR->getType() != MaxIter->getType()) 10205 return None; 10206 10207 // Value of IV on suggested last iteration. 10208 const SCEV *Last = AR->evaluateAtIteration(MaxIter, *this); 10209 // Does it still meet the requirement? 10210 if (!isLoopBackedgeGuardedByCond(L, Pred, Last, RHS)) 10211 return None; 10212 // Because step is +/- 1 and MaxIter has same type as Start (i.e. it does 10213 // not exceed max unsigned value of this type), this effectively proves 10214 // that there is no wrap during the iteration. To prove that there is no 10215 // signed/unsigned wrap, we need to check that 10216 // Start <= Last for step = 1 or Start >= Last for step = -1. 10217 ICmpInst::Predicate NoOverflowPred = 10218 CmpInst::isSigned(Pred) ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 10219 if (Step == MinusOne) 10220 NoOverflowPred = CmpInst::getSwappedPredicate(NoOverflowPred); 10221 const SCEV *Start = AR->getStart(); 10222 if (!isKnownPredicateAt(NoOverflowPred, Start, Last, CtxI)) 10223 return None; 10224 10225 // Everything is fine. 10226 return ScalarEvolution::LoopInvariantPredicate(Pred, Start, RHS); 10227 } 10228 10229 bool ScalarEvolution::isKnownPredicateViaConstantRanges( 10230 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) { 10231 if (HasSameValue(LHS, RHS)) 10232 return ICmpInst::isTrueWhenEqual(Pred); 10233 10234 // This code is split out from isKnownPredicate because it is called from 10235 // within isLoopEntryGuardedByCond. 10236 10237 auto CheckRanges = [&](const ConstantRange &RangeLHS, 10238 const ConstantRange &RangeRHS) { 10239 return RangeLHS.icmp(Pred, RangeRHS); 10240 }; 10241 10242 // The check at the top of the function catches the case where the values are 10243 // known to be equal. 10244 if (Pred == CmpInst::ICMP_EQ) 10245 return false; 10246 10247 if (Pred == CmpInst::ICMP_NE) { 10248 if (CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) || 10249 CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS))) 10250 return true; 10251 auto *Diff = getMinusSCEV(LHS, RHS); 10252 return !isa<SCEVCouldNotCompute>(Diff) && isKnownNonZero(Diff); 10253 } 10254 10255 if (CmpInst::isSigned(Pred)) 10256 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)); 10257 10258 return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)); 10259 } 10260 10261 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred, 10262 const SCEV *LHS, 10263 const SCEV *RHS) { 10264 // Match X to (A + C1)<ExpectedFlags> and Y to (A + C2)<ExpectedFlags>, where 10265 // C1 and C2 are constant integers. If either X or Y are not add expressions, 10266 // consider them as X + 0 and Y + 0 respectively. C1 and C2 are returned via 10267 // OutC1 and OutC2. 10268 auto MatchBinaryAddToConst = [this](const SCEV *X, const SCEV *Y, 10269 APInt &OutC1, APInt &OutC2, 10270 SCEV::NoWrapFlags ExpectedFlags) { 10271 const SCEV *XNonConstOp, *XConstOp; 10272 const SCEV *YNonConstOp, *YConstOp; 10273 SCEV::NoWrapFlags XFlagsPresent; 10274 SCEV::NoWrapFlags YFlagsPresent; 10275 10276 if (!splitBinaryAdd(X, XConstOp, XNonConstOp, XFlagsPresent)) { 10277 XConstOp = getZero(X->getType()); 10278 XNonConstOp = X; 10279 XFlagsPresent = ExpectedFlags; 10280 } 10281 if (!isa<SCEVConstant>(XConstOp) || 10282 (XFlagsPresent & ExpectedFlags) != ExpectedFlags) 10283 return false; 10284 10285 if (!splitBinaryAdd(Y, YConstOp, YNonConstOp, YFlagsPresent)) { 10286 YConstOp = getZero(Y->getType()); 10287 YNonConstOp = Y; 10288 YFlagsPresent = ExpectedFlags; 10289 } 10290 10291 if (!isa<SCEVConstant>(YConstOp) || 10292 (YFlagsPresent & ExpectedFlags) != ExpectedFlags) 10293 return false; 10294 10295 if (YNonConstOp != XNonConstOp) 10296 return false; 10297 10298 OutC1 = cast<SCEVConstant>(XConstOp)->getAPInt(); 10299 OutC2 = cast<SCEVConstant>(YConstOp)->getAPInt(); 10300 10301 return true; 10302 }; 10303 10304 APInt C1; 10305 APInt C2; 10306 10307 switch (Pred) { 10308 default: 10309 break; 10310 10311 case ICmpInst::ICMP_SGE: 10312 std::swap(LHS, RHS); 10313 LLVM_FALLTHROUGH; 10314 case ICmpInst::ICMP_SLE: 10315 // (X + C1)<nsw> s<= (X + C2)<nsw> if C1 s<= C2. 10316 if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNSW) && C1.sle(C2)) 10317 return true; 10318 10319 break; 10320 10321 case ICmpInst::ICMP_SGT: 10322 std::swap(LHS, RHS); 10323 LLVM_FALLTHROUGH; 10324 case ICmpInst::ICMP_SLT: 10325 // (X + C1)<nsw> s< (X + C2)<nsw> if C1 s< C2. 10326 if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNSW) && C1.slt(C2)) 10327 return true; 10328 10329 break; 10330 10331 case ICmpInst::ICMP_UGE: 10332 std::swap(LHS, RHS); 10333 LLVM_FALLTHROUGH; 10334 case ICmpInst::ICMP_ULE: 10335 // (X + C1)<nuw> u<= (X + C2)<nuw> for C1 u<= C2. 10336 if (MatchBinaryAddToConst(RHS, LHS, C2, C1, SCEV::FlagNUW) && C1.ule(C2)) 10337 return true; 10338 10339 break; 10340 10341 case ICmpInst::ICMP_UGT: 10342 std::swap(LHS, RHS); 10343 LLVM_FALLTHROUGH; 10344 case ICmpInst::ICMP_ULT: 10345 // (X + C1)<nuw> u< (X + C2)<nuw> if C1 u< C2. 10346 if (MatchBinaryAddToConst(RHS, LHS, C2, C1, SCEV::FlagNUW) && C1.ult(C2)) 10347 return true; 10348 break; 10349 } 10350 10351 return false; 10352 } 10353 10354 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred, 10355 const SCEV *LHS, 10356 const SCEV *RHS) { 10357 if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate) 10358 return false; 10359 10360 // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on 10361 // the stack can result in exponential time complexity. 10362 SaveAndRestore<bool> Restore(ProvingSplitPredicate, true); 10363 10364 // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L 10365 // 10366 // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use 10367 // isKnownPredicate. isKnownPredicate is more powerful, but also more 10368 // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the 10369 // interesting cases seen in practice. We can consider "upgrading" L >= 0 to 10370 // use isKnownPredicate later if needed. 10371 return isKnownNonNegative(RHS) && 10372 isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) && 10373 isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS); 10374 } 10375 10376 bool ScalarEvolution::isImpliedViaGuard(const BasicBlock *BB, 10377 ICmpInst::Predicate Pred, 10378 const SCEV *LHS, const SCEV *RHS) { 10379 // No need to even try if we know the module has no guards. 10380 if (!HasGuards) 10381 return false; 10382 10383 return any_of(*BB, [&](const Instruction &I) { 10384 using namespace llvm::PatternMatch; 10385 10386 Value *Condition; 10387 return match(&I, m_Intrinsic<Intrinsic::experimental_guard>( 10388 m_Value(Condition))) && 10389 isImpliedCond(Pred, LHS, RHS, Condition, false); 10390 }); 10391 } 10392 10393 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 10394 /// protected by a conditional between LHS and RHS. This is used to 10395 /// to eliminate casts. 10396 bool 10397 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 10398 ICmpInst::Predicate Pred, 10399 const SCEV *LHS, const SCEV *RHS) { 10400 // Interpret a null as meaning no loop, where there is obviously no guard 10401 // (interprocedural conditions notwithstanding). 10402 if (!L) return true; 10403 10404 if (VerifyIR) 10405 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) && 10406 "This cannot be done on broken IR!"); 10407 10408 10409 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS)) 10410 return true; 10411 10412 BasicBlock *Latch = L->getLoopLatch(); 10413 if (!Latch) 10414 return false; 10415 10416 BranchInst *LoopContinuePredicate = 10417 dyn_cast<BranchInst>(Latch->getTerminator()); 10418 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() && 10419 isImpliedCond(Pred, LHS, RHS, 10420 LoopContinuePredicate->getCondition(), 10421 LoopContinuePredicate->getSuccessor(0) != L->getHeader())) 10422 return true; 10423 10424 // We don't want more than one activation of the following loops on the stack 10425 // -- that can lead to O(n!) time complexity. 10426 if (WalkingBEDominatingConds) 10427 return false; 10428 10429 SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true); 10430 10431 // See if we can exploit a trip count to prove the predicate. 10432 const auto &BETakenInfo = getBackedgeTakenInfo(L); 10433 const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this); 10434 if (LatchBECount != getCouldNotCompute()) { 10435 // We know that Latch branches back to the loop header exactly 10436 // LatchBECount times. This means the backdege condition at Latch is 10437 // equivalent to "{0,+,1} u< LatchBECount". 10438 Type *Ty = LatchBECount->getType(); 10439 auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW); 10440 const SCEV *LoopCounter = 10441 getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags); 10442 if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter, 10443 LatchBECount)) 10444 return true; 10445 } 10446 10447 // Check conditions due to any @llvm.assume intrinsics. 10448 for (auto &AssumeVH : AC.assumptions()) { 10449 if (!AssumeVH) 10450 continue; 10451 auto *CI = cast<CallInst>(AssumeVH); 10452 if (!DT.dominates(CI, Latch->getTerminator())) 10453 continue; 10454 10455 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 10456 return true; 10457 } 10458 10459 // If the loop is not reachable from the entry block, we risk running into an 10460 // infinite loop as we walk up into the dom tree. These loops do not matter 10461 // anyway, so we just return a conservative answer when we see them. 10462 if (!DT.isReachableFromEntry(L->getHeader())) 10463 return false; 10464 10465 if (isImpliedViaGuard(Latch, Pred, LHS, RHS)) 10466 return true; 10467 10468 for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()]; 10469 DTN != HeaderDTN; DTN = DTN->getIDom()) { 10470 assert(DTN && "should reach the loop header before reaching the root!"); 10471 10472 BasicBlock *BB = DTN->getBlock(); 10473 if (isImpliedViaGuard(BB, Pred, LHS, RHS)) 10474 return true; 10475 10476 BasicBlock *PBB = BB->getSinglePredecessor(); 10477 if (!PBB) 10478 continue; 10479 10480 BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator()); 10481 if (!ContinuePredicate || !ContinuePredicate->isConditional()) 10482 continue; 10483 10484 Value *Condition = ContinuePredicate->getCondition(); 10485 10486 // If we have an edge `E` within the loop body that dominates the only 10487 // latch, the condition guarding `E` also guards the backedge. This 10488 // reasoning works only for loops with a single latch. 10489 10490 BasicBlockEdge DominatingEdge(PBB, BB); 10491 if (DominatingEdge.isSingleEdge()) { 10492 // We're constructively (and conservatively) enumerating edges within the 10493 // loop body that dominate the latch. The dominator tree better agree 10494 // with us on this: 10495 assert(DT.dominates(DominatingEdge, Latch) && "should be!"); 10496 10497 if (isImpliedCond(Pred, LHS, RHS, Condition, 10498 BB != ContinuePredicate->getSuccessor(0))) 10499 return true; 10500 } 10501 } 10502 10503 return false; 10504 } 10505 10506 bool ScalarEvolution::isBasicBlockEntryGuardedByCond(const BasicBlock *BB, 10507 ICmpInst::Predicate Pred, 10508 const SCEV *LHS, 10509 const SCEV *RHS) { 10510 if (VerifyIR) 10511 assert(!verifyFunction(*BB->getParent(), &dbgs()) && 10512 "This cannot be done on broken IR!"); 10513 10514 // If we cannot prove strict comparison (e.g. a > b), maybe we can prove 10515 // the facts (a >= b && a != b) separately. A typical situation is when the 10516 // non-strict comparison is known from ranges and non-equality is known from 10517 // dominating predicates. If we are proving strict comparison, we always try 10518 // to prove non-equality and non-strict comparison separately. 10519 auto NonStrictPredicate = ICmpInst::getNonStrictPredicate(Pred); 10520 const bool ProvingStrictComparison = (Pred != NonStrictPredicate); 10521 bool ProvedNonStrictComparison = false; 10522 bool ProvedNonEquality = false; 10523 10524 auto SplitAndProve = 10525 [&](std::function<bool(ICmpInst::Predicate)> Fn) -> bool { 10526 if (!ProvedNonStrictComparison) 10527 ProvedNonStrictComparison = Fn(NonStrictPredicate); 10528 if (!ProvedNonEquality) 10529 ProvedNonEquality = Fn(ICmpInst::ICMP_NE); 10530 if (ProvedNonStrictComparison && ProvedNonEquality) 10531 return true; 10532 return false; 10533 }; 10534 10535 if (ProvingStrictComparison) { 10536 auto ProofFn = [&](ICmpInst::Predicate P) { 10537 return isKnownViaNonRecursiveReasoning(P, LHS, RHS); 10538 }; 10539 if (SplitAndProve(ProofFn)) 10540 return true; 10541 } 10542 10543 // Try to prove (Pred, LHS, RHS) using isImpliedViaGuard. 10544 auto ProveViaGuard = [&](const BasicBlock *Block) { 10545 if (isImpliedViaGuard(Block, Pred, LHS, RHS)) 10546 return true; 10547 if (ProvingStrictComparison) { 10548 auto ProofFn = [&](ICmpInst::Predicate P) { 10549 return isImpliedViaGuard(Block, P, LHS, RHS); 10550 }; 10551 if (SplitAndProve(ProofFn)) 10552 return true; 10553 } 10554 return false; 10555 }; 10556 10557 // Try to prove (Pred, LHS, RHS) using isImpliedCond. 10558 auto ProveViaCond = [&](const Value *Condition, bool Inverse) { 10559 const Instruction *CtxI = &BB->front(); 10560 if (isImpliedCond(Pred, LHS, RHS, Condition, Inverse, CtxI)) 10561 return true; 10562 if (ProvingStrictComparison) { 10563 auto ProofFn = [&](ICmpInst::Predicate P) { 10564 return isImpliedCond(P, LHS, RHS, Condition, Inverse, CtxI); 10565 }; 10566 if (SplitAndProve(ProofFn)) 10567 return true; 10568 } 10569 return false; 10570 }; 10571 10572 // Starting at the block's predecessor, climb up the predecessor chain, as long 10573 // as there are predecessors that can be found that have unique successors 10574 // leading to the original block. 10575 const Loop *ContainingLoop = LI.getLoopFor(BB); 10576 const BasicBlock *PredBB; 10577 if (ContainingLoop && ContainingLoop->getHeader() == BB) 10578 PredBB = ContainingLoop->getLoopPredecessor(); 10579 else 10580 PredBB = BB->getSinglePredecessor(); 10581 for (std::pair<const BasicBlock *, const BasicBlock *> Pair(PredBB, BB); 10582 Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 10583 if (ProveViaGuard(Pair.first)) 10584 return true; 10585 10586 const BranchInst *LoopEntryPredicate = 10587 dyn_cast<BranchInst>(Pair.first->getTerminator()); 10588 if (!LoopEntryPredicate || 10589 LoopEntryPredicate->isUnconditional()) 10590 continue; 10591 10592 if (ProveViaCond(LoopEntryPredicate->getCondition(), 10593 LoopEntryPredicate->getSuccessor(0) != Pair.second)) 10594 return true; 10595 } 10596 10597 // Check conditions due to any @llvm.assume intrinsics. 10598 for (auto &AssumeVH : AC.assumptions()) { 10599 if (!AssumeVH) 10600 continue; 10601 auto *CI = cast<CallInst>(AssumeVH); 10602 if (!DT.dominates(CI, BB)) 10603 continue; 10604 10605 if (ProveViaCond(CI->getArgOperand(0), false)) 10606 return true; 10607 } 10608 10609 return false; 10610 } 10611 10612 bool ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, 10613 ICmpInst::Predicate Pred, 10614 const SCEV *LHS, 10615 const SCEV *RHS) { 10616 // Interpret a null as meaning no loop, where there is obviously no guard 10617 // (interprocedural conditions notwithstanding). 10618 if (!L) 10619 return false; 10620 10621 // Both LHS and RHS must be available at loop entry. 10622 assert(isAvailableAtLoopEntry(LHS, L) && 10623 "LHS is not available at Loop Entry"); 10624 assert(isAvailableAtLoopEntry(RHS, L) && 10625 "RHS is not available at Loop Entry"); 10626 10627 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS)) 10628 return true; 10629 10630 return isBasicBlockEntryGuardedByCond(L->getHeader(), Pred, LHS, RHS); 10631 } 10632 10633 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, 10634 const SCEV *RHS, 10635 const Value *FoundCondValue, bool Inverse, 10636 const Instruction *CtxI) { 10637 // False conditions implies anything. Do not bother analyzing it further. 10638 if (FoundCondValue == 10639 ConstantInt::getBool(FoundCondValue->getContext(), Inverse)) 10640 return true; 10641 10642 if (!PendingLoopPredicates.insert(FoundCondValue).second) 10643 return false; 10644 10645 auto ClearOnExit = 10646 make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); }); 10647 10648 // Recursively handle And and Or conditions. 10649 const Value *Op0, *Op1; 10650 if (match(FoundCondValue, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 10651 if (!Inverse) 10652 return isImpliedCond(Pred, LHS, RHS, Op0, Inverse, CtxI) || 10653 isImpliedCond(Pred, LHS, RHS, Op1, Inverse, CtxI); 10654 } else if (match(FoundCondValue, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) { 10655 if (Inverse) 10656 return isImpliedCond(Pred, LHS, RHS, Op0, Inverse, CtxI) || 10657 isImpliedCond(Pred, LHS, RHS, Op1, Inverse, CtxI); 10658 } 10659 10660 const ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue); 10661 if (!ICI) return false; 10662 10663 // Now that we found a conditional branch that dominates the loop or controls 10664 // the loop latch. Check to see if it is the comparison we are looking for. 10665 ICmpInst::Predicate FoundPred; 10666 if (Inverse) 10667 FoundPred = ICI->getInversePredicate(); 10668 else 10669 FoundPred = ICI->getPredicate(); 10670 10671 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 10672 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 10673 10674 return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS, CtxI); 10675 } 10676 10677 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, 10678 const SCEV *RHS, 10679 ICmpInst::Predicate FoundPred, 10680 const SCEV *FoundLHS, const SCEV *FoundRHS, 10681 const Instruction *CtxI) { 10682 // Balance the types. 10683 if (getTypeSizeInBits(LHS->getType()) < 10684 getTypeSizeInBits(FoundLHS->getType())) { 10685 // For unsigned and equality predicates, try to prove that both found 10686 // operands fit into narrow unsigned range. If so, try to prove facts in 10687 // narrow types. 10688 if (!CmpInst::isSigned(FoundPred) && !FoundLHS->getType()->isPointerTy()) { 10689 auto *NarrowType = LHS->getType(); 10690 auto *WideType = FoundLHS->getType(); 10691 auto BitWidth = getTypeSizeInBits(NarrowType); 10692 const SCEV *MaxValue = getZeroExtendExpr( 10693 getConstant(APInt::getMaxValue(BitWidth)), WideType); 10694 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, FoundLHS, 10695 MaxValue) && 10696 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, FoundRHS, 10697 MaxValue)) { 10698 const SCEV *TruncFoundLHS = getTruncateExpr(FoundLHS, NarrowType); 10699 const SCEV *TruncFoundRHS = getTruncateExpr(FoundRHS, NarrowType); 10700 if (isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, TruncFoundLHS, 10701 TruncFoundRHS, CtxI)) 10702 return true; 10703 } 10704 } 10705 10706 if (LHS->getType()->isPointerTy()) 10707 return false; 10708 if (CmpInst::isSigned(Pred)) { 10709 LHS = getSignExtendExpr(LHS, FoundLHS->getType()); 10710 RHS = getSignExtendExpr(RHS, FoundLHS->getType()); 10711 } else { 10712 LHS = getZeroExtendExpr(LHS, FoundLHS->getType()); 10713 RHS = getZeroExtendExpr(RHS, FoundLHS->getType()); 10714 } 10715 } else if (getTypeSizeInBits(LHS->getType()) > 10716 getTypeSizeInBits(FoundLHS->getType())) { 10717 if (FoundLHS->getType()->isPointerTy()) 10718 return false; 10719 if (CmpInst::isSigned(FoundPred)) { 10720 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 10721 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 10722 } else { 10723 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 10724 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 10725 } 10726 } 10727 return isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, FoundLHS, 10728 FoundRHS, CtxI); 10729 } 10730 10731 bool ScalarEvolution::isImpliedCondBalancedTypes( 10732 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 10733 ICmpInst::Predicate FoundPred, const SCEV *FoundLHS, const SCEV *FoundRHS, 10734 const Instruction *CtxI) { 10735 assert(getTypeSizeInBits(LHS->getType()) == 10736 getTypeSizeInBits(FoundLHS->getType()) && 10737 "Types should be balanced!"); 10738 // Canonicalize the query to match the way instcombine will have 10739 // canonicalized the comparison. 10740 if (SimplifyICmpOperands(Pred, LHS, RHS)) 10741 if (LHS == RHS) 10742 return CmpInst::isTrueWhenEqual(Pred); 10743 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) 10744 if (FoundLHS == FoundRHS) 10745 return CmpInst::isFalseWhenEqual(FoundPred); 10746 10747 // Check to see if we can make the LHS or RHS match. 10748 if (LHS == FoundRHS || RHS == FoundLHS) { 10749 if (isa<SCEVConstant>(RHS)) { 10750 std::swap(FoundLHS, FoundRHS); 10751 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 10752 } else { 10753 std::swap(LHS, RHS); 10754 Pred = ICmpInst::getSwappedPredicate(Pred); 10755 } 10756 } 10757 10758 // Check whether the found predicate is the same as the desired predicate. 10759 if (FoundPred == Pred) 10760 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI); 10761 10762 // Check whether swapping the found predicate makes it the same as the 10763 // desired predicate. 10764 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 10765 // We can write the implication 10766 // 0. LHS Pred RHS <- FoundLHS SwapPred FoundRHS 10767 // using one of the following ways: 10768 // 1. LHS Pred RHS <- FoundRHS Pred FoundLHS 10769 // 2. RHS SwapPred LHS <- FoundLHS SwapPred FoundRHS 10770 // 3. LHS Pred RHS <- ~FoundLHS Pred ~FoundRHS 10771 // 4. ~LHS SwapPred ~RHS <- FoundLHS SwapPred FoundRHS 10772 // Forms 1. and 2. require swapping the operands of one condition. Don't 10773 // do this if it would break canonical constant/addrec ordering. 10774 if (!isa<SCEVConstant>(RHS) && !isa<SCEVAddRecExpr>(LHS)) 10775 return isImpliedCondOperands(FoundPred, RHS, LHS, FoundLHS, FoundRHS, 10776 CtxI); 10777 if (!isa<SCEVConstant>(FoundRHS) && !isa<SCEVAddRecExpr>(FoundLHS)) 10778 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS, CtxI); 10779 10780 // There's no clear preference between forms 3. and 4., try both. Avoid 10781 // forming getNotSCEV of pointer values as the resulting subtract is 10782 // not legal. 10783 if (!LHS->getType()->isPointerTy() && !RHS->getType()->isPointerTy() && 10784 isImpliedCondOperands(FoundPred, getNotSCEV(LHS), getNotSCEV(RHS), 10785 FoundLHS, FoundRHS, CtxI)) 10786 return true; 10787 10788 if (!FoundLHS->getType()->isPointerTy() && 10789 !FoundRHS->getType()->isPointerTy() && 10790 isImpliedCondOperands(Pred, LHS, RHS, getNotSCEV(FoundLHS), 10791 getNotSCEV(FoundRHS), CtxI)) 10792 return true; 10793 10794 return false; 10795 } 10796 10797 auto IsSignFlippedPredicate = [](CmpInst::Predicate P1, 10798 CmpInst::Predicate P2) { 10799 assert(P1 != P2 && "Handled earlier!"); 10800 return CmpInst::isRelational(P2) && 10801 P1 == CmpInst::getFlippedSignednessPredicate(P2); 10802 }; 10803 if (IsSignFlippedPredicate(Pred, FoundPred)) { 10804 // Unsigned comparison is the same as signed comparison when both the 10805 // operands are non-negative or negative. 10806 if ((isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) || 10807 (isKnownNegative(FoundLHS) && isKnownNegative(FoundRHS))) 10808 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI); 10809 // Create local copies that we can freely swap and canonicalize our 10810 // conditions to "le/lt". 10811 ICmpInst::Predicate CanonicalPred = Pred, CanonicalFoundPred = FoundPred; 10812 const SCEV *CanonicalLHS = LHS, *CanonicalRHS = RHS, 10813 *CanonicalFoundLHS = FoundLHS, *CanonicalFoundRHS = FoundRHS; 10814 if (ICmpInst::isGT(CanonicalPred) || ICmpInst::isGE(CanonicalPred)) { 10815 CanonicalPred = ICmpInst::getSwappedPredicate(CanonicalPred); 10816 CanonicalFoundPred = ICmpInst::getSwappedPredicate(CanonicalFoundPred); 10817 std::swap(CanonicalLHS, CanonicalRHS); 10818 std::swap(CanonicalFoundLHS, CanonicalFoundRHS); 10819 } 10820 assert((ICmpInst::isLT(CanonicalPred) || ICmpInst::isLE(CanonicalPred)) && 10821 "Must be!"); 10822 assert((ICmpInst::isLT(CanonicalFoundPred) || 10823 ICmpInst::isLE(CanonicalFoundPred)) && 10824 "Must be!"); 10825 if (ICmpInst::isSigned(CanonicalPred) && isKnownNonNegative(CanonicalRHS)) 10826 // Use implication: 10827 // x <u y && y >=s 0 --> x <s y. 10828 // If we can prove the left part, the right part is also proven. 10829 return isImpliedCondOperands(CanonicalFoundPred, CanonicalLHS, 10830 CanonicalRHS, CanonicalFoundLHS, 10831 CanonicalFoundRHS); 10832 if (ICmpInst::isUnsigned(CanonicalPred) && isKnownNegative(CanonicalRHS)) 10833 // Use implication: 10834 // x <s y && y <s 0 --> x <u y. 10835 // If we can prove the left part, the right part is also proven. 10836 return isImpliedCondOperands(CanonicalFoundPred, CanonicalLHS, 10837 CanonicalRHS, CanonicalFoundLHS, 10838 CanonicalFoundRHS); 10839 } 10840 10841 // Check if we can make progress by sharpening ranges. 10842 if (FoundPred == ICmpInst::ICMP_NE && 10843 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) { 10844 10845 const SCEVConstant *C = nullptr; 10846 const SCEV *V = nullptr; 10847 10848 if (isa<SCEVConstant>(FoundLHS)) { 10849 C = cast<SCEVConstant>(FoundLHS); 10850 V = FoundRHS; 10851 } else { 10852 C = cast<SCEVConstant>(FoundRHS); 10853 V = FoundLHS; 10854 } 10855 10856 // The guarding predicate tells us that C != V. If the known range 10857 // of V is [C, t), we can sharpen the range to [C + 1, t). The 10858 // range we consider has to correspond to same signedness as the 10859 // predicate we're interested in folding. 10860 10861 APInt Min = ICmpInst::isSigned(Pred) ? 10862 getSignedRangeMin(V) : getUnsignedRangeMin(V); 10863 10864 if (Min == C->getAPInt()) { 10865 // Given (V >= Min && V != Min) we conclude V >= (Min + 1). 10866 // This is true even if (Min + 1) wraps around -- in case of 10867 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)). 10868 10869 APInt SharperMin = Min + 1; 10870 10871 switch (Pred) { 10872 case ICmpInst::ICMP_SGE: 10873 case ICmpInst::ICMP_UGE: 10874 // We know V `Pred` SharperMin. If this implies LHS `Pred` 10875 // RHS, we're done. 10876 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(SharperMin), 10877 CtxI)) 10878 return true; 10879 LLVM_FALLTHROUGH; 10880 10881 case ICmpInst::ICMP_SGT: 10882 case ICmpInst::ICMP_UGT: 10883 // We know from the range information that (V `Pred` Min || 10884 // V == Min). We know from the guarding condition that !(V 10885 // == Min). This gives us 10886 // 10887 // V `Pred` Min || V == Min && !(V == Min) 10888 // => V `Pred` Min 10889 // 10890 // If V `Pred` Min implies LHS `Pred` RHS, we're done. 10891 10892 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min), CtxI)) 10893 return true; 10894 break; 10895 10896 // `LHS < RHS` and `LHS <= RHS` are handled in the same way as `RHS > LHS` and `RHS >= LHS` respectively. 10897 case ICmpInst::ICMP_SLE: 10898 case ICmpInst::ICMP_ULE: 10899 if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS, 10900 LHS, V, getConstant(SharperMin), CtxI)) 10901 return true; 10902 LLVM_FALLTHROUGH; 10903 10904 case ICmpInst::ICMP_SLT: 10905 case ICmpInst::ICMP_ULT: 10906 if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS, 10907 LHS, V, getConstant(Min), CtxI)) 10908 return true; 10909 break; 10910 10911 default: 10912 // No change 10913 break; 10914 } 10915 } 10916 } 10917 10918 // Check whether the actual condition is beyond sufficient. 10919 if (FoundPred == ICmpInst::ICMP_EQ) 10920 if (ICmpInst::isTrueWhenEqual(Pred)) 10921 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI)) 10922 return true; 10923 if (Pred == ICmpInst::ICMP_NE) 10924 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 10925 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS, CtxI)) 10926 return true; 10927 10928 // Otherwise assume the worst. 10929 return false; 10930 } 10931 10932 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr, 10933 const SCEV *&L, const SCEV *&R, 10934 SCEV::NoWrapFlags &Flags) { 10935 const auto *AE = dyn_cast<SCEVAddExpr>(Expr); 10936 if (!AE || AE->getNumOperands() != 2) 10937 return false; 10938 10939 L = AE->getOperand(0); 10940 R = AE->getOperand(1); 10941 Flags = AE->getNoWrapFlags(); 10942 return true; 10943 } 10944 10945 Optional<APInt> ScalarEvolution::computeConstantDifference(const SCEV *More, 10946 const SCEV *Less) { 10947 // We avoid subtracting expressions here because this function is usually 10948 // fairly deep in the call stack (i.e. is called many times). 10949 10950 // X - X = 0. 10951 if (More == Less) 10952 return APInt(getTypeSizeInBits(More->getType()), 0); 10953 10954 if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) { 10955 const auto *LAR = cast<SCEVAddRecExpr>(Less); 10956 const auto *MAR = cast<SCEVAddRecExpr>(More); 10957 10958 if (LAR->getLoop() != MAR->getLoop()) 10959 return None; 10960 10961 // We look at affine expressions only; not for correctness but to keep 10962 // getStepRecurrence cheap. 10963 if (!LAR->isAffine() || !MAR->isAffine()) 10964 return None; 10965 10966 if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this)) 10967 return None; 10968 10969 Less = LAR->getStart(); 10970 More = MAR->getStart(); 10971 10972 // fall through 10973 } 10974 10975 if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) { 10976 const auto &M = cast<SCEVConstant>(More)->getAPInt(); 10977 const auto &L = cast<SCEVConstant>(Less)->getAPInt(); 10978 return M - L; 10979 } 10980 10981 SCEV::NoWrapFlags Flags; 10982 const SCEV *LLess = nullptr, *RLess = nullptr; 10983 const SCEV *LMore = nullptr, *RMore = nullptr; 10984 const SCEVConstant *C1 = nullptr, *C2 = nullptr; 10985 // Compare (X + C1) vs X. 10986 if (splitBinaryAdd(Less, LLess, RLess, Flags)) 10987 if ((C1 = dyn_cast<SCEVConstant>(LLess))) 10988 if (RLess == More) 10989 return -(C1->getAPInt()); 10990 10991 // Compare X vs (X + C2). 10992 if (splitBinaryAdd(More, LMore, RMore, Flags)) 10993 if ((C2 = dyn_cast<SCEVConstant>(LMore))) 10994 if (RMore == Less) 10995 return C2->getAPInt(); 10996 10997 // Compare (X + C1) vs (X + C2). 10998 if (C1 && C2 && RLess == RMore) 10999 return C2->getAPInt() - C1->getAPInt(); 11000 11001 return None; 11002 } 11003 11004 bool ScalarEvolution::isImpliedCondOperandsViaAddRecStart( 11005 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 11006 const SCEV *FoundLHS, const SCEV *FoundRHS, const Instruction *CtxI) { 11007 // Try to recognize the following pattern: 11008 // 11009 // FoundRHS = ... 11010 // ... 11011 // loop: 11012 // FoundLHS = {Start,+,W} 11013 // context_bb: // Basic block from the same loop 11014 // known(Pred, FoundLHS, FoundRHS) 11015 // 11016 // If some predicate is known in the context of a loop, it is also known on 11017 // each iteration of this loop, including the first iteration. Therefore, in 11018 // this case, `FoundLHS Pred FoundRHS` implies `Start Pred FoundRHS`. Try to 11019 // prove the original pred using this fact. 11020 if (!CtxI) 11021 return false; 11022 const BasicBlock *ContextBB = CtxI->getParent(); 11023 // Make sure AR varies in the context block. 11024 if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundLHS)) { 11025 const Loop *L = AR->getLoop(); 11026 // Make sure that context belongs to the loop and executes on 1st iteration 11027 // (if it ever executes at all). 11028 if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch())) 11029 return false; 11030 if (!isAvailableAtLoopEntry(FoundRHS, AR->getLoop())) 11031 return false; 11032 return isImpliedCondOperands(Pred, LHS, RHS, AR->getStart(), FoundRHS); 11033 } 11034 11035 if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundRHS)) { 11036 const Loop *L = AR->getLoop(); 11037 // Make sure that context belongs to the loop and executes on 1st iteration 11038 // (if it ever executes at all). 11039 if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch())) 11040 return false; 11041 if (!isAvailableAtLoopEntry(FoundLHS, AR->getLoop())) 11042 return false; 11043 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, AR->getStart()); 11044 } 11045 11046 return false; 11047 } 11048 11049 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow( 11050 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 11051 const SCEV *FoundLHS, const SCEV *FoundRHS) { 11052 if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT) 11053 return false; 11054 11055 const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS); 11056 if (!AddRecLHS) 11057 return false; 11058 11059 const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS); 11060 if (!AddRecFoundLHS) 11061 return false; 11062 11063 // We'd like to let SCEV reason about control dependencies, so we constrain 11064 // both the inequalities to be about add recurrences on the same loop. This 11065 // way we can use isLoopEntryGuardedByCond later. 11066 11067 const Loop *L = AddRecFoundLHS->getLoop(); 11068 if (L != AddRecLHS->getLoop()) 11069 return false; 11070 11071 // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1) 11072 // 11073 // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C) 11074 // ... (2) 11075 // 11076 // Informal proof for (2), assuming (1) [*]: 11077 // 11078 // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**] 11079 // 11080 // Then 11081 // 11082 // FoundLHS s< FoundRHS s< INT_MIN - C 11083 // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ] 11084 // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ] 11085 // <=> (FoundLHS + INT_MIN + C + INT_MIN) s< 11086 // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ] 11087 // <=> FoundLHS + C s< FoundRHS + C 11088 // 11089 // [*]: (1) can be proved by ruling out overflow. 11090 // 11091 // [**]: This can be proved by analyzing all the four possibilities: 11092 // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and 11093 // (A s>= 0, B s>= 0). 11094 // 11095 // Note: 11096 // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C" 11097 // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS 11098 // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS 11099 // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is 11100 // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS + 11101 // C)". 11102 11103 Optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS); 11104 Optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS); 11105 if (!LDiff || !RDiff || *LDiff != *RDiff) 11106 return false; 11107 11108 if (LDiff->isMinValue()) 11109 return true; 11110 11111 APInt FoundRHSLimit; 11112 11113 if (Pred == CmpInst::ICMP_ULT) { 11114 FoundRHSLimit = -(*RDiff); 11115 } else { 11116 assert(Pred == CmpInst::ICMP_SLT && "Checked above!"); 11117 FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff; 11118 } 11119 11120 // Try to prove (1) or (2), as needed. 11121 return isAvailableAtLoopEntry(FoundRHS, L) && 11122 isLoopEntryGuardedByCond(L, Pred, FoundRHS, 11123 getConstant(FoundRHSLimit)); 11124 } 11125 11126 bool ScalarEvolution::isImpliedViaMerge(ICmpInst::Predicate Pred, 11127 const SCEV *LHS, const SCEV *RHS, 11128 const SCEV *FoundLHS, 11129 const SCEV *FoundRHS, unsigned Depth) { 11130 const PHINode *LPhi = nullptr, *RPhi = nullptr; 11131 11132 auto ClearOnExit = make_scope_exit([&]() { 11133 if (LPhi) { 11134 bool Erased = PendingMerges.erase(LPhi); 11135 assert(Erased && "Failed to erase LPhi!"); 11136 (void)Erased; 11137 } 11138 if (RPhi) { 11139 bool Erased = PendingMerges.erase(RPhi); 11140 assert(Erased && "Failed to erase RPhi!"); 11141 (void)Erased; 11142 } 11143 }); 11144 11145 // Find respective Phis and check that they are not being pending. 11146 if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) 11147 if (auto *Phi = dyn_cast<PHINode>(LU->getValue())) { 11148 if (!PendingMerges.insert(Phi).second) 11149 return false; 11150 LPhi = Phi; 11151 } 11152 if (const SCEVUnknown *RU = dyn_cast<SCEVUnknown>(RHS)) 11153 if (auto *Phi = dyn_cast<PHINode>(RU->getValue())) { 11154 // If we detect a loop of Phi nodes being processed by this method, for 11155 // example: 11156 // 11157 // %a = phi i32 [ %some1, %preheader ], [ %b, %latch ] 11158 // %b = phi i32 [ %some2, %preheader ], [ %a, %latch ] 11159 // 11160 // we don't want to deal with a case that complex, so return conservative 11161 // answer false. 11162 if (!PendingMerges.insert(Phi).second) 11163 return false; 11164 RPhi = Phi; 11165 } 11166 11167 // If none of LHS, RHS is a Phi, nothing to do here. 11168 if (!LPhi && !RPhi) 11169 return false; 11170 11171 // If there is a SCEVUnknown Phi we are interested in, make it left. 11172 if (!LPhi) { 11173 std::swap(LHS, RHS); 11174 std::swap(FoundLHS, FoundRHS); 11175 std::swap(LPhi, RPhi); 11176 Pred = ICmpInst::getSwappedPredicate(Pred); 11177 } 11178 11179 assert(LPhi && "LPhi should definitely be a SCEVUnknown Phi!"); 11180 const BasicBlock *LBB = LPhi->getParent(); 11181 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 11182 11183 auto ProvedEasily = [&](const SCEV *S1, const SCEV *S2) { 11184 return isKnownViaNonRecursiveReasoning(Pred, S1, S2) || 11185 isImpliedCondOperandsViaRanges(Pred, S1, S2, FoundLHS, FoundRHS) || 11186 isImpliedViaOperations(Pred, S1, S2, FoundLHS, FoundRHS, Depth); 11187 }; 11188 11189 if (RPhi && RPhi->getParent() == LBB) { 11190 // Case one: RHS is also a SCEVUnknown Phi from the same basic block. 11191 // If we compare two Phis from the same block, and for each entry block 11192 // the predicate is true for incoming values from this block, then the 11193 // predicate is also true for the Phis. 11194 for (const BasicBlock *IncBB : predecessors(LBB)) { 11195 const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB)); 11196 const SCEV *R = getSCEV(RPhi->getIncomingValueForBlock(IncBB)); 11197 if (!ProvedEasily(L, R)) 11198 return false; 11199 } 11200 } else if (RAR && RAR->getLoop()->getHeader() == LBB) { 11201 // Case two: RHS is also a Phi from the same basic block, and it is an 11202 // AddRec. It means that there is a loop which has both AddRec and Unknown 11203 // PHIs, for it we can compare incoming values of AddRec from above the loop 11204 // and latch with their respective incoming values of LPhi. 11205 // TODO: Generalize to handle loops with many inputs in a header. 11206 if (LPhi->getNumIncomingValues() != 2) return false; 11207 11208 auto *RLoop = RAR->getLoop(); 11209 auto *Predecessor = RLoop->getLoopPredecessor(); 11210 assert(Predecessor && "Loop with AddRec with no predecessor?"); 11211 const SCEV *L1 = getSCEV(LPhi->getIncomingValueForBlock(Predecessor)); 11212 if (!ProvedEasily(L1, RAR->getStart())) 11213 return false; 11214 auto *Latch = RLoop->getLoopLatch(); 11215 assert(Latch && "Loop with AddRec with no latch?"); 11216 const SCEV *L2 = getSCEV(LPhi->getIncomingValueForBlock(Latch)); 11217 if (!ProvedEasily(L2, RAR->getPostIncExpr(*this))) 11218 return false; 11219 } else { 11220 // In all other cases go over inputs of LHS and compare each of them to RHS, 11221 // the predicate is true for (LHS, RHS) if it is true for all such pairs. 11222 // At this point RHS is either a non-Phi, or it is a Phi from some block 11223 // different from LBB. 11224 for (const BasicBlock *IncBB : predecessors(LBB)) { 11225 // Check that RHS is available in this block. 11226 if (!dominates(RHS, IncBB)) 11227 return false; 11228 const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB)); 11229 // Make sure L does not refer to a value from a potentially previous 11230 // iteration of a loop. 11231 if (!properlyDominates(L, IncBB)) 11232 return false; 11233 if (!ProvedEasily(L, RHS)) 11234 return false; 11235 } 11236 } 11237 return true; 11238 } 11239 11240 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 11241 const SCEV *LHS, const SCEV *RHS, 11242 const SCEV *FoundLHS, 11243 const SCEV *FoundRHS, 11244 const Instruction *CtxI) { 11245 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS)) 11246 return true; 11247 11248 if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS)) 11249 return true; 11250 11251 if (isImpliedCondOperandsViaAddRecStart(Pred, LHS, RHS, FoundLHS, FoundRHS, 11252 CtxI)) 11253 return true; 11254 11255 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 11256 FoundLHS, FoundRHS); 11257 } 11258 11259 /// Is MaybeMinMaxExpr an (U|S)(Min|Max) of Candidate and some other values? 11260 template <typename MinMaxExprType> 11261 static bool IsMinMaxConsistingOf(const SCEV *MaybeMinMaxExpr, 11262 const SCEV *Candidate) { 11263 const MinMaxExprType *MinMaxExpr = dyn_cast<MinMaxExprType>(MaybeMinMaxExpr); 11264 if (!MinMaxExpr) 11265 return false; 11266 11267 return is_contained(MinMaxExpr->operands(), Candidate); 11268 } 11269 11270 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE, 11271 ICmpInst::Predicate Pred, 11272 const SCEV *LHS, const SCEV *RHS) { 11273 // If both sides are affine addrecs for the same loop, with equal 11274 // steps, and we know the recurrences don't wrap, then we only 11275 // need to check the predicate on the starting values. 11276 11277 if (!ICmpInst::isRelational(Pred)) 11278 return false; 11279 11280 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 11281 if (!LAR) 11282 return false; 11283 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 11284 if (!RAR) 11285 return false; 11286 if (LAR->getLoop() != RAR->getLoop()) 11287 return false; 11288 if (!LAR->isAffine() || !RAR->isAffine()) 11289 return false; 11290 11291 if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE)) 11292 return false; 11293 11294 SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ? 11295 SCEV::FlagNSW : SCEV::FlagNUW; 11296 if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW)) 11297 return false; 11298 11299 return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart()); 11300 } 11301 11302 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max 11303 /// expression? 11304 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE, 11305 ICmpInst::Predicate Pred, 11306 const SCEV *LHS, const SCEV *RHS) { 11307 switch (Pred) { 11308 default: 11309 return false; 11310 11311 case ICmpInst::ICMP_SGE: 11312 std::swap(LHS, RHS); 11313 LLVM_FALLTHROUGH; 11314 case ICmpInst::ICMP_SLE: 11315 return 11316 // min(A, ...) <= A 11317 IsMinMaxConsistingOf<SCEVSMinExpr>(LHS, RHS) || 11318 // A <= max(A, ...) 11319 IsMinMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS); 11320 11321 case ICmpInst::ICMP_UGE: 11322 std::swap(LHS, RHS); 11323 LLVM_FALLTHROUGH; 11324 case ICmpInst::ICMP_ULE: 11325 return 11326 // min(A, ...) <= A 11327 IsMinMaxConsistingOf<SCEVUMinExpr>(LHS, RHS) || 11328 // A <= max(A, ...) 11329 IsMinMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS); 11330 } 11331 11332 llvm_unreachable("covered switch fell through?!"); 11333 } 11334 11335 bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred, 11336 const SCEV *LHS, const SCEV *RHS, 11337 const SCEV *FoundLHS, 11338 const SCEV *FoundRHS, 11339 unsigned Depth) { 11340 assert(getTypeSizeInBits(LHS->getType()) == 11341 getTypeSizeInBits(RHS->getType()) && 11342 "LHS and RHS have different sizes?"); 11343 assert(getTypeSizeInBits(FoundLHS->getType()) == 11344 getTypeSizeInBits(FoundRHS->getType()) && 11345 "FoundLHS and FoundRHS have different sizes?"); 11346 // We want to avoid hurting the compile time with analysis of too big trees. 11347 if (Depth > MaxSCEVOperationsImplicationDepth) 11348 return false; 11349 11350 // We only want to work with GT comparison so far. 11351 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) { 11352 Pred = CmpInst::getSwappedPredicate(Pred); 11353 std::swap(LHS, RHS); 11354 std::swap(FoundLHS, FoundRHS); 11355 } 11356 11357 // For unsigned, try to reduce it to corresponding signed comparison. 11358 if (Pred == ICmpInst::ICMP_UGT) 11359 // We can replace unsigned predicate with its signed counterpart if all 11360 // involved values are non-negative. 11361 // TODO: We could have better support for unsigned. 11362 if (isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) { 11363 // Knowing that both FoundLHS and FoundRHS are non-negative, and knowing 11364 // FoundLHS >u FoundRHS, we also know that FoundLHS >s FoundRHS. Let us 11365 // use this fact to prove that LHS and RHS are non-negative. 11366 const SCEV *MinusOne = getMinusOne(LHS->getType()); 11367 if (isImpliedCondOperands(ICmpInst::ICMP_SGT, LHS, MinusOne, FoundLHS, 11368 FoundRHS) && 11369 isImpliedCondOperands(ICmpInst::ICMP_SGT, RHS, MinusOne, FoundLHS, 11370 FoundRHS)) 11371 Pred = ICmpInst::ICMP_SGT; 11372 } 11373 11374 if (Pred != ICmpInst::ICMP_SGT) 11375 return false; 11376 11377 auto GetOpFromSExt = [&](const SCEV *S) { 11378 if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S)) 11379 return Ext->getOperand(); 11380 // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off 11381 // the constant in some cases. 11382 return S; 11383 }; 11384 11385 // Acquire values from extensions. 11386 auto *OrigLHS = LHS; 11387 auto *OrigFoundLHS = FoundLHS; 11388 LHS = GetOpFromSExt(LHS); 11389 FoundLHS = GetOpFromSExt(FoundLHS); 11390 11391 // Is the SGT predicate can be proved trivially or using the found context. 11392 auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) { 11393 return isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGT, S1, S2) || 11394 isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS, 11395 FoundRHS, Depth + 1); 11396 }; 11397 11398 if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) { 11399 // We want to avoid creation of any new non-constant SCEV. Since we are 11400 // going to compare the operands to RHS, we should be certain that we don't 11401 // need any size extensions for this. So let's decline all cases when the 11402 // sizes of types of LHS and RHS do not match. 11403 // TODO: Maybe try to get RHS from sext to catch more cases? 11404 if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType())) 11405 return false; 11406 11407 // Should not overflow. 11408 if (!LHSAddExpr->hasNoSignedWrap()) 11409 return false; 11410 11411 auto *LL = LHSAddExpr->getOperand(0); 11412 auto *LR = LHSAddExpr->getOperand(1); 11413 auto *MinusOne = getMinusOne(RHS->getType()); 11414 11415 // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context. 11416 auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) { 11417 return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS); 11418 }; 11419 // Try to prove the following rule: 11420 // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS). 11421 // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS). 11422 if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL)) 11423 return true; 11424 } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) { 11425 Value *LL, *LR; 11426 // FIXME: Once we have SDiv implemented, we can get rid of this matching. 11427 11428 using namespace llvm::PatternMatch; 11429 11430 if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) { 11431 // Rules for division. 11432 // We are going to perform some comparisons with Denominator and its 11433 // derivative expressions. In general case, creating a SCEV for it may 11434 // lead to a complex analysis of the entire graph, and in particular it 11435 // can request trip count recalculation for the same loop. This would 11436 // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid 11437 // this, we only want to create SCEVs that are constants in this section. 11438 // So we bail if Denominator is not a constant. 11439 if (!isa<ConstantInt>(LR)) 11440 return false; 11441 11442 auto *Denominator = cast<SCEVConstant>(getSCEV(LR)); 11443 11444 // We want to make sure that LHS = FoundLHS / Denominator. If it is so, 11445 // then a SCEV for the numerator already exists and matches with FoundLHS. 11446 auto *Numerator = getExistingSCEV(LL); 11447 if (!Numerator || Numerator->getType() != FoundLHS->getType()) 11448 return false; 11449 11450 // Make sure that the numerator matches with FoundLHS and the denominator 11451 // is positive. 11452 if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator)) 11453 return false; 11454 11455 auto *DTy = Denominator->getType(); 11456 auto *FRHSTy = FoundRHS->getType(); 11457 if (DTy->isPointerTy() != FRHSTy->isPointerTy()) 11458 // One of types is a pointer and another one is not. We cannot extend 11459 // them properly to a wider type, so let us just reject this case. 11460 // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help 11461 // to avoid this check. 11462 return false; 11463 11464 // Given that: 11465 // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0. 11466 auto *WTy = getWiderType(DTy, FRHSTy); 11467 auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy); 11468 auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy); 11469 11470 // Try to prove the following rule: 11471 // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS). 11472 // For example, given that FoundLHS > 2. It means that FoundLHS is at 11473 // least 3. If we divide it by Denominator < 4, we will have at least 1. 11474 auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2)); 11475 if (isKnownNonPositive(RHS) && 11476 IsSGTViaContext(FoundRHSExt, DenomMinusTwo)) 11477 return true; 11478 11479 // Try to prove the following rule: 11480 // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS). 11481 // For example, given that FoundLHS > -3. Then FoundLHS is at least -2. 11482 // If we divide it by Denominator > 2, then: 11483 // 1. If FoundLHS is negative, then the result is 0. 11484 // 2. If FoundLHS is non-negative, then the result is non-negative. 11485 // Anyways, the result is non-negative. 11486 auto *MinusOne = getMinusOne(WTy); 11487 auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt); 11488 if (isKnownNegative(RHS) && 11489 IsSGTViaContext(FoundRHSExt, NegDenomMinusOne)) 11490 return true; 11491 } 11492 } 11493 11494 // If our expression contained SCEVUnknown Phis, and we split it down and now 11495 // need to prove something for them, try to prove the predicate for every 11496 // possible incoming values of those Phis. 11497 if (isImpliedViaMerge(Pred, OrigLHS, RHS, OrigFoundLHS, FoundRHS, Depth + 1)) 11498 return true; 11499 11500 return false; 11501 } 11502 11503 static bool isKnownPredicateExtendIdiom(ICmpInst::Predicate Pred, 11504 const SCEV *LHS, const SCEV *RHS) { 11505 // zext x u<= sext x, sext x s<= zext x 11506 switch (Pred) { 11507 case ICmpInst::ICMP_SGE: 11508 std::swap(LHS, RHS); 11509 LLVM_FALLTHROUGH; 11510 case ICmpInst::ICMP_SLE: { 11511 // If operand >=s 0 then ZExt == SExt. If operand <s 0 then SExt <s ZExt. 11512 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(LHS); 11513 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(RHS); 11514 if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand()) 11515 return true; 11516 break; 11517 } 11518 case ICmpInst::ICMP_UGE: 11519 std::swap(LHS, RHS); 11520 LLVM_FALLTHROUGH; 11521 case ICmpInst::ICMP_ULE: { 11522 // If operand >=s 0 then ZExt == SExt. If operand <s 0 then ZExt <u SExt. 11523 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS); 11524 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(RHS); 11525 if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand()) 11526 return true; 11527 break; 11528 } 11529 default: 11530 break; 11531 }; 11532 return false; 11533 } 11534 11535 bool 11536 ScalarEvolution::isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred, 11537 const SCEV *LHS, const SCEV *RHS) { 11538 return isKnownPredicateExtendIdiom(Pred, LHS, RHS) || 11539 isKnownPredicateViaConstantRanges(Pred, LHS, RHS) || 11540 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) || 11541 IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) || 11542 isKnownPredicateViaNoOverflow(Pred, LHS, RHS); 11543 } 11544 11545 bool 11546 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 11547 const SCEV *LHS, const SCEV *RHS, 11548 const SCEV *FoundLHS, 11549 const SCEV *FoundRHS) { 11550 switch (Pred) { 11551 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 11552 case ICmpInst::ICMP_EQ: 11553 case ICmpInst::ICMP_NE: 11554 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 11555 return true; 11556 break; 11557 case ICmpInst::ICMP_SLT: 11558 case ICmpInst::ICMP_SLE: 11559 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 11560 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 11561 return true; 11562 break; 11563 case ICmpInst::ICMP_SGT: 11564 case ICmpInst::ICMP_SGE: 11565 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 11566 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 11567 return true; 11568 break; 11569 case ICmpInst::ICMP_ULT: 11570 case ICmpInst::ICMP_ULE: 11571 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 11572 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 11573 return true; 11574 break; 11575 case ICmpInst::ICMP_UGT: 11576 case ICmpInst::ICMP_UGE: 11577 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 11578 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 11579 return true; 11580 break; 11581 } 11582 11583 // Maybe it can be proved via operations? 11584 if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS)) 11585 return true; 11586 11587 return false; 11588 } 11589 11590 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred, 11591 const SCEV *LHS, 11592 const SCEV *RHS, 11593 const SCEV *FoundLHS, 11594 const SCEV *FoundRHS) { 11595 if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS)) 11596 // The restriction on `FoundRHS` be lifted easily -- it exists only to 11597 // reduce the compile time impact of this optimization. 11598 return false; 11599 11600 Optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS); 11601 if (!Addend) 11602 return false; 11603 11604 const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt(); 11605 11606 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the 11607 // antecedent "`FoundLHS` `Pred` `FoundRHS`". 11608 ConstantRange FoundLHSRange = 11609 ConstantRange::makeExactICmpRegion(Pred, ConstFoundRHS); 11610 11611 // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`: 11612 ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend)); 11613 11614 // We can also compute the range of values for `LHS` that satisfy the 11615 // consequent, "`LHS` `Pred` `RHS`": 11616 const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt(); 11617 // The antecedent implies the consequent if every value of `LHS` that 11618 // satisfies the antecedent also satisfies the consequent. 11619 return LHSRange.icmp(Pred, ConstRHS); 11620 } 11621 11622 bool ScalarEvolution::canIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, 11623 bool IsSigned) { 11624 assert(isKnownPositive(Stride) && "Positive stride expected!"); 11625 11626 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 11627 const SCEV *One = getOne(Stride->getType()); 11628 11629 if (IsSigned) { 11630 APInt MaxRHS = getSignedRangeMax(RHS); 11631 APInt MaxValue = APInt::getSignedMaxValue(BitWidth); 11632 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One)); 11633 11634 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow! 11635 return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS); 11636 } 11637 11638 APInt MaxRHS = getUnsignedRangeMax(RHS); 11639 APInt MaxValue = APInt::getMaxValue(BitWidth); 11640 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One)); 11641 11642 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow! 11643 return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS); 11644 } 11645 11646 bool ScalarEvolution::canIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, 11647 bool IsSigned) { 11648 11649 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 11650 const SCEV *One = getOne(Stride->getType()); 11651 11652 if (IsSigned) { 11653 APInt MinRHS = getSignedRangeMin(RHS); 11654 APInt MinValue = APInt::getSignedMinValue(BitWidth); 11655 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One)); 11656 11657 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow! 11658 return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS); 11659 } 11660 11661 APInt MinRHS = getUnsignedRangeMin(RHS); 11662 APInt MinValue = APInt::getMinValue(BitWidth); 11663 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One)); 11664 11665 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow! 11666 return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS); 11667 } 11668 11669 const SCEV *ScalarEvolution::getUDivCeilSCEV(const SCEV *N, const SCEV *D) { 11670 // umin(N, 1) + floor((N - umin(N, 1)) / D) 11671 // This is equivalent to "1 + floor((N - 1) / D)" for N != 0. The umin 11672 // expression fixes the case of N=0. 11673 const SCEV *MinNOne = getUMinExpr(N, getOne(N->getType())); 11674 const SCEV *NMinusOne = getMinusSCEV(N, MinNOne); 11675 return getAddExpr(MinNOne, getUDivExpr(NMinusOne, D)); 11676 } 11677 11678 const SCEV *ScalarEvolution::computeMaxBECountForLT(const SCEV *Start, 11679 const SCEV *Stride, 11680 const SCEV *End, 11681 unsigned BitWidth, 11682 bool IsSigned) { 11683 // The logic in this function assumes we can represent a positive stride. 11684 // If we can't, the backedge-taken count must be zero. 11685 if (IsSigned && BitWidth == 1) 11686 return getZero(Stride->getType()); 11687 11688 // This code has only been closely audited for negative strides in the 11689 // unsigned comparison case, it may be correct for signed comparison, but 11690 // that needs to be established. 11691 assert((!IsSigned || !isKnownNonPositive(Stride)) && 11692 "Stride is expected strictly positive for signed case!"); 11693 11694 // Calculate the maximum backedge count based on the range of values 11695 // permitted by Start, End, and Stride. 11696 APInt MinStart = 11697 IsSigned ? getSignedRangeMin(Start) : getUnsignedRangeMin(Start); 11698 11699 APInt MinStride = 11700 IsSigned ? getSignedRangeMin(Stride) : getUnsignedRangeMin(Stride); 11701 11702 // We assume either the stride is positive, or the backedge-taken count 11703 // is zero. So force StrideForMaxBECount to be at least one. 11704 APInt One(BitWidth, 1); 11705 APInt StrideForMaxBECount = IsSigned ? APIntOps::smax(One, MinStride) 11706 : APIntOps::umax(One, MinStride); 11707 11708 APInt MaxValue = IsSigned ? APInt::getSignedMaxValue(BitWidth) 11709 : APInt::getMaxValue(BitWidth); 11710 APInt Limit = MaxValue - (StrideForMaxBECount - 1); 11711 11712 // Although End can be a MAX expression we estimate MaxEnd considering only 11713 // the case End = RHS of the loop termination condition. This is safe because 11714 // in the other case (End - Start) is zero, leading to a zero maximum backedge 11715 // taken count. 11716 APInt MaxEnd = IsSigned ? APIntOps::smin(getSignedRangeMax(End), Limit) 11717 : APIntOps::umin(getUnsignedRangeMax(End), Limit); 11718 11719 // MaxBECount = ceil((max(MaxEnd, MinStart) - MinStart) / Stride) 11720 MaxEnd = IsSigned ? APIntOps::smax(MaxEnd, MinStart) 11721 : APIntOps::umax(MaxEnd, MinStart); 11722 11723 return getUDivCeilSCEV(getConstant(MaxEnd - MinStart) /* Delta */, 11724 getConstant(StrideForMaxBECount) /* Step */); 11725 } 11726 11727 ScalarEvolution::ExitLimit 11728 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS, 11729 const Loop *L, bool IsSigned, 11730 bool ControlsExit, bool AllowPredicates) { 11731 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 11732 11733 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 11734 bool PredicatedIV = false; 11735 11736 auto canAssumeNoSelfWrap = [&](const SCEVAddRecExpr *AR) { 11737 // Can we prove this loop *must* be UB if overflow of IV occurs? 11738 // Reasoning goes as follows: 11739 // * Suppose the IV did self wrap. 11740 // * If Stride evenly divides the iteration space, then once wrap 11741 // occurs, the loop must revisit the same values. 11742 // * We know that RHS is invariant, and that none of those values 11743 // caused this exit to be taken previously. Thus, this exit is 11744 // dynamically dead. 11745 // * If this is the sole exit, then a dead exit implies the loop 11746 // must be infinite if there are no abnormal exits. 11747 // * If the loop were infinite, then it must either not be mustprogress 11748 // or have side effects. Otherwise, it must be UB. 11749 // * It can't (by assumption), be UB so we have contradicted our 11750 // premise and can conclude the IV did not in fact self-wrap. 11751 if (!isLoopInvariant(RHS, L)) 11752 return false; 11753 11754 auto *StrideC = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)); 11755 if (!StrideC || !StrideC->getAPInt().isPowerOf2()) 11756 return false; 11757 11758 if (!ControlsExit || !loopHasNoAbnormalExits(L)) 11759 return false; 11760 11761 return loopIsFiniteByAssumption(L); 11762 }; 11763 11764 if (!IV) { 11765 if (auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS)) { 11766 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(ZExt->getOperand()); 11767 if (AR && AR->getLoop() == L && AR->isAffine()) { 11768 auto canProveNUW = [&]() { 11769 if (!isLoopInvariant(RHS, L)) 11770 return false; 11771 11772 if (!isKnownNonZero(AR->getStepRecurrence(*this))) 11773 // We need the sequence defined by AR to strictly increase in the 11774 // unsigned integer domain for the logic below to hold. 11775 return false; 11776 11777 const unsigned InnerBitWidth = getTypeSizeInBits(AR->getType()); 11778 const unsigned OuterBitWidth = getTypeSizeInBits(RHS->getType()); 11779 // If RHS <=u Limit, then there must exist a value V in the sequence 11780 // defined by AR (e.g. {Start,+,Step}) such that V >u RHS, and 11781 // V <=u UINT_MAX. Thus, we must exit the loop before unsigned 11782 // overflow occurs. This limit also implies that a signed comparison 11783 // (in the wide bitwidth) is equivalent to an unsigned comparison as 11784 // the high bits on both sides must be zero. 11785 APInt StrideMax = getUnsignedRangeMax(AR->getStepRecurrence(*this)); 11786 APInt Limit = APInt::getMaxValue(InnerBitWidth) - (StrideMax - 1); 11787 Limit = Limit.zext(OuterBitWidth); 11788 return getUnsignedRangeMax(applyLoopGuards(RHS, L)).ule(Limit); 11789 }; 11790 auto Flags = AR->getNoWrapFlags(); 11791 if (!hasFlags(Flags, SCEV::FlagNUW) && canProveNUW()) 11792 Flags = setFlags(Flags, SCEV::FlagNUW); 11793 11794 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), Flags); 11795 if (AR->hasNoUnsignedWrap()) { 11796 // Emulate what getZeroExtendExpr would have done during construction 11797 // if we'd been able to infer the fact just above at that time. 11798 const SCEV *Step = AR->getStepRecurrence(*this); 11799 Type *Ty = ZExt->getType(); 11800 auto *S = getAddRecExpr( 11801 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 0), 11802 getZeroExtendExpr(Step, Ty, 0), L, AR->getNoWrapFlags()); 11803 IV = dyn_cast<SCEVAddRecExpr>(S); 11804 } 11805 } 11806 } 11807 } 11808 11809 11810 if (!IV && AllowPredicates) { 11811 // Try to make this an AddRec using runtime tests, in the first X 11812 // iterations of this loop, where X is the SCEV expression found by the 11813 // algorithm below. 11814 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); 11815 PredicatedIV = true; 11816 } 11817 11818 // Avoid weird loops 11819 if (!IV || IV->getLoop() != L || !IV->isAffine()) 11820 return getCouldNotCompute(); 11821 11822 // A precondition of this method is that the condition being analyzed 11823 // reaches an exiting branch which dominates the latch. Given that, we can 11824 // assume that an increment which violates the nowrap specification and 11825 // produces poison must cause undefined behavior when the resulting poison 11826 // value is branched upon and thus we can conclude that the backedge is 11827 // taken no more often than would be required to produce that poison value. 11828 // Note that a well defined loop can exit on the iteration which violates 11829 // the nowrap specification if there is another exit (either explicit or 11830 // implicit/exceptional) which causes the loop to execute before the 11831 // exiting instruction we're analyzing would trigger UB. 11832 auto WrapType = IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW; 11833 bool NoWrap = ControlsExit && IV->getNoWrapFlags(WrapType); 11834 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; 11835 11836 const SCEV *Stride = IV->getStepRecurrence(*this); 11837 11838 bool PositiveStride = isKnownPositive(Stride); 11839 11840 // Avoid negative or zero stride values. 11841 if (!PositiveStride) { 11842 // We can compute the correct backedge taken count for loops with unknown 11843 // strides if we can prove that the loop is not an infinite loop with side 11844 // effects. Here's the loop structure we are trying to handle - 11845 // 11846 // i = start 11847 // do { 11848 // A[i] = i; 11849 // i += s; 11850 // } while (i < end); 11851 // 11852 // The backedge taken count for such loops is evaluated as - 11853 // (max(end, start + stride) - start - 1) /u stride 11854 // 11855 // The additional preconditions that we need to check to prove correctness 11856 // of the above formula is as follows - 11857 // 11858 // a) IV is either nuw or nsw depending upon signedness (indicated by the 11859 // NoWrap flag). 11860 // b) the loop is guaranteed to be finite (e.g. is mustprogress and has 11861 // no side effects within the loop) 11862 // c) loop has a single static exit (with no abnormal exits) 11863 // 11864 // Precondition a) implies that if the stride is negative, this is a single 11865 // trip loop. The backedge taken count formula reduces to zero in this case. 11866 // 11867 // Precondition b) and c) combine to imply that if rhs is invariant in L, 11868 // then a zero stride means the backedge can't be taken without executing 11869 // undefined behavior. 11870 // 11871 // The positive stride case is the same as isKnownPositive(Stride) returning 11872 // true (original behavior of the function). 11873 // 11874 if (PredicatedIV || !NoWrap || !loopIsFiniteByAssumption(L) || 11875 !loopHasNoAbnormalExits(L)) 11876 return getCouldNotCompute(); 11877 11878 // This bailout is protecting the logic in computeMaxBECountForLT which 11879 // has not yet been sufficiently auditted or tested with negative strides. 11880 // We used to filter out all known-non-positive cases here, we're in the 11881 // process of being less restrictive bit by bit. 11882 if (IsSigned && isKnownNonPositive(Stride)) 11883 return getCouldNotCompute(); 11884 11885 if (!isKnownNonZero(Stride)) { 11886 // If we have a step of zero, and RHS isn't invariant in L, we don't know 11887 // if it might eventually be greater than start and if so, on which 11888 // iteration. We can't even produce a useful upper bound. 11889 if (!isLoopInvariant(RHS, L)) 11890 return getCouldNotCompute(); 11891 11892 // We allow a potentially zero stride, but we need to divide by stride 11893 // below. Since the loop can't be infinite and this check must control 11894 // the sole exit, we can infer the exit must be taken on the first 11895 // iteration (e.g. backedge count = 0) if the stride is zero. Given that, 11896 // we know the numerator in the divides below must be zero, so we can 11897 // pick an arbitrary non-zero value for the denominator (e.g. stride) 11898 // and produce the right result. 11899 // FIXME: Handle the case where Stride is poison? 11900 auto wouldZeroStrideBeUB = [&]() { 11901 // Proof by contradiction. Suppose the stride were zero. If we can 11902 // prove that the backedge *is* taken on the first iteration, then since 11903 // we know this condition controls the sole exit, we must have an 11904 // infinite loop. We can't have a (well defined) infinite loop per 11905 // check just above. 11906 // Note: The (Start - Stride) term is used to get the start' term from 11907 // (start' + stride,+,stride). Remember that we only care about the 11908 // result of this expression when stride == 0 at runtime. 11909 auto *StartIfZero = getMinusSCEV(IV->getStart(), Stride); 11910 return isLoopEntryGuardedByCond(L, Cond, StartIfZero, RHS); 11911 }; 11912 if (!wouldZeroStrideBeUB()) { 11913 Stride = getUMaxExpr(Stride, getOne(Stride->getType())); 11914 } 11915 } 11916 } else if (!Stride->isOne() && !NoWrap) { 11917 auto isUBOnWrap = [&]() { 11918 // From no-self-wrap, we need to then prove no-(un)signed-wrap. This 11919 // follows trivially from the fact that every (un)signed-wrapped, but 11920 // not self-wrapped value must be LT than the last value before 11921 // (un)signed wrap. Since we know that last value didn't exit, nor 11922 // will any smaller one. 11923 return canAssumeNoSelfWrap(IV); 11924 }; 11925 11926 // Avoid proven overflow cases: this will ensure that the backedge taken 11927 // count will not generate any unsigned overflow. Relaxed no-overflow 11928 // conditions exploit NoWrapFlags, allowing to optimize in presence of 11929 // undefined behaviors like the case of C language. 11930 if (canIVOverflowOnLT(RHS, Stride, IsSigned) && !isUBOnWrap()) 11931 return getCouldNotCompute(); 11932 } 11933 11934 // On all paths just preceeding, we established the following invariant: 11935 // IV can be assumed not to overflow up to and including the exiting 11936 // iteration. We proved this in one of two ways: 11937 // 1) We can show overflow doesn't occur before the exiting iteration 11938 // 1a) canIVOverflowOnLT, and b) step of one 11939 // 2) We can show that if overflow occurs, the loop must execute UB 11940 // before any possible exit. 11941 // Note that we have not yet proved RHS invariant (in general). 11942 11943 const SCEV *Start = IV->getStart(); 11944 11945 // Preserve pointer-typed Start/RHS to pass to isLoopEntryGuardedByCond. 11946 // If we convert to integers, isLoopEntryGuardedByCond will miss some cases. 11947 // Use integer-typed versions for actual computation; we can't subtract 11948 // pointers in general. 11949 const SCEV *OrigStart = Start; 11950 const SCEV *OrigRHS = RHS; 11951 if (Start->getType()->isPointerTy()) { 11952 Start = getLosslessPtrToIntExpr(Start); 11953 if (isa<SCEVCouldNotCompute>(Start)) 11954 return Start; 11955 } 11956 if (RHS->getType()->isPointerTy()) { 11957 RHS = getLosslessPtrToIntExpr(RHS); 11958 if (isa<SCEVCouldNotCompute>(RHS)) 11959 return RHS; 11960 } 11961 11962 // When the RHS is not invariant, we do not know the end bound of the loop and 11963 // cannot calculate the ExactBECount needed by ExitLimit. However, we can 11964 // calculate the MaxBECount, given the start, stride and max value for the end 11965 // bound of the loop (RHS), and the fact that IV does not overflow (which is 11966 // checked above). 11967 if (!isLoopInvariant(RHS, L)) { 11968 const SCEV *MaxBECount = computeMaxBECountForLT( 11969 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned); 11970 return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount, 11971 false /*MaxOrZero*/, Predicates); 11972 } 11973 11974 // We use the expression (max(End,Start)-Start)/Stride to describe the 11975 // backedge count, as if the backedge is taken at least once max(End,Start) 11976 // is End and so the result is as above, and if not max(End,Start) is Start 11977 // so we get a backedge count of zero. 11978 const SCEV *BECount = nullptr; 11979 auto *OrigStartMinusStride = getMinusSCEV(OrigStart, Stride); 11980 assert(isAvailableAtLoopEntry(OrigStartMinusStride, L) && "Must be!"); 11981 assert(isAvailableAtLoopEntry(OrigStart, L) && "Must be!"); 11982 assert(isAvailableAtLoopEntry(OrigRHS, L) && "Must be!"); 11983 // Can we prove (max(RHS,Start) > Start - Stride? 11984 if (isLoopEntryGuardedByCond(L, Cond, OrigStartMinusStride, OrigStart) && 11985 isLoopEntryGuardedByCond(L, Cond, OrigStartMinusStride, OrigRHS)) { 11986 // In this case, we can use a refined formula for computing backedge taken 11987 // count. The general formula remains: 11988 // "End-Start /uceiling Stride" where "End = max(RHS,Start)" 11989 // We want to use the alternate formula: 11990 // "((End - 1) - (Start - Stride)) /u Stride" 11991 // Let's do a quick case analysis to show these are equivalent under 11992 // our precondition that max(RHS,Start) > Start - Stride. 11993 // * For RHS <= Start, the backedge-taken count must be zero. 11994 // "((End - 1) - (Start - Stride)) /u Stride" reduces to 11995 // "((Start - 1) - (Start - Stride)) /u Stride" which simplies to 11996 // "Stride - 1 /u Stride" which is indeed zero for all non-zero values 11997 // of Stride. For 0 stride, we've use umin(1,Stride) above, reducing 11998 // this to the stride of 1 case. 11999 // * For RHS >= Start, the backedge count must be "RHS-Start /uceil Stride". 12000 // "((End - 1) - (Start - Stride)) /u Stride" reduces to 12001 // "((RHS - 1) - (Start - Stride)) /u Stride" reassociates to 12002 // "((RHS - (Start - Stride) - 1) /u Stride". 12003 // Our preconditions trivially imply no overflow in that form. 12004 const SCEV *MinusOne = getMinusOne(Stride->getType()); 12005 const SCEV *Numerator = 12006 getMinusSCEV(getAddExpr(RHS, MinusOne), getMinusSCEV(Start, Stride)); 12007 BECount = getUDivExpr(Numerator, Stride); 12008 } 12009 12010 const SCEV *BECountIfBackedgeTaken = nullptr; 12011 if (!BECount) { 12012 auto canProveRHSGreaterThanEqualStart = [&]() { 12013 auto CondGE = IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; 12014 if (isLoopEntryGuardedByCond(L, CondGE, OrigRHS, OrigStart)) 12015 return true; 12016 12017 // (RHS > Start - 1) implies RHS >= Start. 12018 // * "RHS >= Start" is trivially equivalent to "RHS > Start - 1" if 12019 // "Start - 1" doesn't overflow. 12020 // * For signed comparison, if Start - 1 does overflow, it's equal 12021 // to INT_MAX, and "RHS >s INT_MAX" is trivially false. 12022 // * For unsigned comparison, if Start - 1 does overflow, it's equal 12023 // to UINT_MAX, and "RHS >u UINT_MAX" is trivially false. 12024 // 12025 // FIXME: Should isLoopEntryGuardedByCond do this for us? 12026 auto CondGT = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 12027 auto *StartMinusOne = getAddExpr(OrigStart, 12028 getMinusOne(OrigStart->getType())); 12029 return isLoopEntryGuardedByCond(L, CondGT, OrigRHS, StartMinusOne); 12030 }; 12031 12032 // If we know that RHS >= Start in the context of loop, then we know that 12033 // max(RHS, Start) = RHS at this point. 12034 const SCEV *End; 12035 if (canProveRHSGreaterThanEqualStart()) { 12036 End = RHS; 12037 } else { 12038 // If RHS < Start, the backedge will be taken zero times. So in 12039 // general, we can write the backedge-taken count as: 12040 // 12041 // RHS >= Start ? ceil(RHS - Start) / Stride : 0 12042 // 12043 // We convert it to the following to make it more convenient for SCEV: 12044 // 12045 // ceil(max(RHS, Start) - Start) / Stride 12046 End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start); 12047 12048 // See what would happen if we assume the backedge is taken. This is 12049 // used to compute MaxBECount. 12050 BECountIfBackedgeTaken = getUDivCeilSCEV(getMinusSCEV(RHS, Start), Stride); 12051 } 12052 12053 // At this point, we know: 12054 // 12055 // 1. If IsSigned, Start <=s End; otherwise, Start <=u End 12056 // 2. The index variable doesn't overflow. 12057 // 12058 // Therefore, we know N exists such that 12059 // (Start + Stride * N) >= End, and computing "(Start + Stride * N)" 12060 // doesn't overflow. 12061 // 12062 // Using this information, try to prove whether the addition in 12063 // "(Start - End) + (Stride - 1)" has unsigned overflow. 12064 const SCEV *One = getOne(Stride->getType()); 12065 bool MayAddOverflow = [&] { 12066 if (auto *StrideC = dyn_cast<SCEVConstant>(Stride)) { 12067 if (StrideC->getAPInt().isPowerOf2()) { 12068 // Suppose Stride is a power of two, and Start/End are unsigned 12069 // integers. Let UMAX be the largest representable unsigned 12070 // integer. 12071 // 12072 // By the preconditions of this function, we know 12073 // "(Start + Stride * N) >= End", and this doesn't overflow. 12074 // As a formula: 12075 // 12076 // End <= (Start + Stride * N) <= UMAX 12077 // 12078 // Subtracting Start from all the terms: 12079 // 12080 // End - Start <= Stride * N <= UMAX - Start 12081 // 12082 // Since Start is unsigned, UMAX - Start <= UMAX. Therefore: 12083 // 12084 // End - Start <= Stride * N <= UMAX 12085 // 12086 // Stride * N is a multiple of Stride. Therefore, 12087 // 12088 // End - Start <= Stride * N <= UMAX - (UMAX mod Stride) 12089 // 12090 // Since Stride is a power of two, UMAX + 1 is divisible by Stride. 12091 // Therefore, UMAX mod Stride == Stride - 1. So we can write: 12092 // 12093 // End - Start <= Stride * N <= UMAX - Stride - 1 12094 // 12095 // Dropping the middle term: 12096 // 12097 // End - Start <= UMAX - Stride - 1 12098 // 12099 // Adding Stride - 1 to both sides: 12100 // 12101 // (End - Start) + (Stride - 1) <= UMAX 12102 // 12103 // In other words, the addition doesn't have unsigned overflow. 12104 // 12105 // A similar proof works if we treat Start/End as signed values. 12106 // Just rewrite steps before "End - Start <= Stride * N <= UMAX" to 12107 // use signed max instead of unsigned max. Note that we're trying 12108 // to prove a lack of unsigned overflow in either case. 12109 return false; 12110 } 12111 } 12112 if (Start == Stride || Start == getMinusSCEV(Stride, One)) { 12113 // If Start is equal to Stride, (End - Start) + (Stride - 1) == End - 1. 12114 // If !IsSigned, 0 <u Stride == Start <=u End; so 0 <u End - 1 <u End. 12115 // If IsSigned, 0 <s Stride == Start <=s End; so 0 <s End - 1 <s End. 12116 // 12117 // If Start is equal to Stride - 1, (End - Start) + Stride - 1 == End. 12118 return false; 12119 } 12120 return true; 12121 }(); 12122 12123 const SCEV *Delta = getMinusSCEV(End, Start); 12124 if (!MayAddOverflow) { 12125 // floor((D + (S - 1)) / S) 12126 // We prefer this formulation if it's legal because it's fewer operations. 12127 BECount = 12128 getUDivExpr(getAddExpr(Delta, getMinusSCEV(Stride, One)), Stride); 12129 } else { 12130 BECount = getUDivCeilSCEV(Delta, Stride); 12131 } 12132 } 12133 12134 const SCEV *MaxBECount; 12135 bool MaxOrZero = false; 12136 if (isa<SCEVConstant>(BECount)) { 12137 MaxBECount = BECount; 12138 } else if (BECountIfBackedgeTaken && 12139 isa<SCEVConstant>(BECountIfBackedgeTaken)) { 12140 // If we know exactly how many times the backedge will be taken if it's 12141 // taken at least once, then the backedge count will either be that or 12142 // zero. 12143 MaxBECount = BECountIfBackedgeTaken; 12144 MaxOrZero = true; 12145 } else { 12146 MaxBECount = computeMaxBECountForLT( 12147 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned); 12148 } 12149 12150 if (isa<SCEVCouldNotCompute>(MaxBECount) && 12151 !isa<SCEVCouldNotCompute>(BECount)) 12152 MaxBECount = getConstant(getUnsignedRangeMax(BECount)); 12153 12154 return ExitLimit(BECount, MaxBECount, MaxOrZero, Predicates); 12155 } 12156 12157 ScalarEvolution::ExitLimit 12158 ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS, 12159 const Loop *L, bool IsSigned, 12160 bool ControlsExit, bool AllowPredicates) { 12161 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 12162 // We handle only IV > Invariant 12163 if (!isLoopInvariant(RHS, L)) 12164 return getCouldNotCompute(); 12165 12166 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 12167 if (!IV && AllowPredicates) 12168 // Try to make this an AddRec using runtime tests, in the first X 12169 // iterations of this loop, where X is the SCEV expression found by the 12170 // algorithm below. 12171 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); 12172 12173 // Avoid weird loops 12174 if (!IV || IV->getLoop() != L || !IV->isAffine()) 12175 return getCouldNotCompute(); 12176 12177 auto WrapType = IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW; 12178 bool NoWrap = ControlsExit && IV->getNoWrapFlags(WrapType); 12179 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 12180 12181 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this)); 12182 12183 // Avoid negative or zero stride values 12184 if (!isKnownPositive(Stride)) 12185 return getCouldNotCompute(); 12186 12187 // Avoid proven overflow cases: this will ensure that the backedge taken count 12188 // will not generate any unsigned overflow. Relaxed no-overflow conditions 12189 // exploit NoWrapFlags, allowing to optimize in presence of undefined 12190 // behaviors like the case of C language. 12191 if (!Stride->isOne() && !NoWrap) 12192 if (canIVOverflowOnGT(RHS, Stride, IsSigned)) 12193 return getCouldNotCompute(); 12194 12195 const SCEV *Start = IV->getStart(); 12196 const SCEV *End = RHS; 12197 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) { 12198 // If we know that Start >= RHS in the context of loop, then we know that 12199 // min(RHS, Start) = RHS at this point. 12200 if (isLoopEntryGuardedByCond( 12201 L, IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, Start, RHS)) 12202 End = RHS; 12203 else 12204 End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start); 12205 } 12206 12207 if (Start->getType()->isPointerTy()) { 12208 Start = getLosslessPtrToIntExpr(Start); 12209 if (isa<SCEVCouldNotCompute>(Start)) 12210 return Start; 12211 } 12212 if (End->getType()->isPointerTy()) { 12213 End = getLosslessPtrToIntExpr(End); 12214 if (isa<SCEVCouldNotCompute>(End)) 12215 return End; 12216 } 12217 12218 // Compute ((Start - End) + (Stride - 1)) / Stride. 12219 // FIXME: This can overflow. Holding off on fixing this for now; 12220 // howManyGreaterThans will hopefully be gone soon. 12221 const SCEV *One = getOne(Stride->getType()); 12222 const SCEV *BECount = getUDivExpr( 12223 getAddExpr(getMinusSCEV(Start, End), getMinusSCEV(Stride, One)), Stride); 12224 12225 APInt MaxStart = IsSigned ? getSignedRangeMax(Start) 12226 : getUnsignedRangeMax(Start); 12227 12228 APInt MinStride = IsSigned ? getSignedRangeMin(Stride) 12229 : getUnsignedRangeMin(Stride); 12230 12231 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 12232 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1) 12233 : APInt::getMinValue(BitWidth) + (MinStride - 1); 12234 12235 // Although End can be a MIN expression we estimate MinEnd considering only 12236 // the case End = RHS. This is safe because in the other case (Start - End) 12237 // is zero, leading to a zero maximum backedge taken count. 12238 APInt MinEnd = 12239 IsSigned ? APIntOps::smax(getSignedRangeMin(RHS), Limit) 12240 : APIntOps::umax(getUnsignedRangeMin(RHS), Limit); 12241 12242 const SCEV *MaxBECount = isa<SCEVConstant>(BECount) 12243 ? BECount 12244 : getUDivCeilSCEV(getConstant(MaxStart - MinEnd), 12245 getConstant(MinStride)); 12246 12247 if (isa<SCEVCouldNotCompute>(MaxBECount)) 12248 MaxBECount = BECount; 12249 12250 return ExitLimit(BECount, MaxBECount, false, Predicates); 12251 } 12252 12253 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range, 12254 ScalarEvolution &SE) const { 12255 if (Range.isFullSet()) // Infinite loop. 12256 return SE.getCouldNotCompute(); 12257 12258 // If the start is a non-zero constant, shift the range to simplify things. 12259 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 12260 if (!SC->getValue()->isZero()) { 12261 SmallVector<const SCEV *, 4> Operands(operands()); 12262 Operands[0] = SE.getZero(SC->getType()); 12263 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(), 12264 getNoWrapFlags(FlagNW)); 12265 if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted)) 12266 return ShiftedAddRec->getNumIterationsInRange( 12267 Range.subtract(SC->getAPInt()), SE); 12268 // This is strange and shouldn't happen. 12269 return SE.getCouldNotCompute(); 12270 } 12271 12272 // The only time we can solve this is when we have all constant indices. 12273 // Otherwise, we cannot determine the overflow conditions. 12274 if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); })) 12275 return SE.getCouldNotCompute(); 12276 12277 // Okay at this point we know that all elements of the chrec are constants and 12278 // that the start element is zero. 12279 12280 // First check to see if the range contains zero. If not, the first 12281 // iteration exits. 12282 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 12283 if (!Range.contains(APInt(BitWidth, 0))) 12284 return SE.getZero(getType()); 12285 12286 if (isAffine()) { 12287 // If this is an affine expression then we have this situation: 12288 // Solve {0,+,A} in Range === Ax in Range 12289 12290 // We know that zero is in the range. If A is positive then we know that 12291 // the upper value of the range must be the first possible exit value. 12292 // If A is negative then the lower of the range is the last possible loop 12293 // value. Also note that we already checked for a full range. 12294 APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt(); 12295 APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower(); 12296 12297 // The exit value should be (End+A)/A. 12298 APInt ExitVal = (End + A).udiv(A); 12299 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 12300 12301 // Evaluate at the exit value. If we really did fall out of the valid 12302 // range, then we computed our trip count, otherwise wrap around or other 12303 // things must have happened. 12304 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 12305 if (Range.contains(Val->getValue())) 12306 return SE.getCouldNotCompute(); // Something strange happened 12307 12308 // Ensure that the previous value is in the range. 12309 assert(Range.contains( 12310 EvaluateConstantChrecAtConstant(this, 12311 ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) && 12312 "Linear scev computation is off in a bad way!"); 12313 return SE.getConstant(ExitValue); 12314 } 12315 12316 if (isQuadratic()) { 12317 if (auto S = SolveQuadraticAddRecRange(this, Range, SE)) 12318 return SE.getConstant(S.getValue()); 12319 } 12320 12321 return SE.getCouldNotCompute(); 12322 } 12323 12324 const SCEVAddRecExpr * 12325 SCEVAddRecExpr::getPostIncExpr(ScalarEvolution &SE) const { 12326 assert(getNumOperands() > 1 && "AddRec with zero step?"); 12327 // There is a temptation to just call getAddExpr(this, getStepRecurrence(SE)), 12328 // but in this case we cannot guarantee that the value returned will be an 12329 // AddRec because SCEV does not have a fixed point where it stops 12330 // simplification: it is legal to return ({rec1} + {rec2}). For example, it 12331 // may happen if we reach arithmetic depth limit while simplifying. So we 12332 // construct the returned value explicitly. 12333 SmallVector<const SCEV *, 3> Ops; 12334 // If this is {A,+,B,+,C,...,+,N}, then its step is {B,+,C,+,...,+,N}, and 12335 // (this + Step) is {A+B,+,B+C,+...,+,N}. 12336 for (unsigned i = 0, e = getNumOperands() - 1; i < e; ++i) 12337 Ops.push_back(SE.getAddExpr(getOperand(i), getOperand(i + 1))); 12338 // We know that the last operand is not a constant zero (otherwise it would 12339 // have been popped out earlier). This guarantees us that if the result has 12340 // the same last operand, then it will also not be popped out, meaning that 12341 // the returned value will be an AddRec. 12342 const SCEV *Last = getOperand(getNumOperands() - 1); 12343 assert(!Last->isZero() && "Recurrency with zero step?"); 12344 Ops.push_back(Last); 12345 return cast<SCEVAddRecExpr>(SE.getAddRecExpr(Ops, getLoop(), 12346 SCEV::FlagAnyWrap)); 12347 } 12348 12349 // Return true when S contains at least an undef value. 12350 bool ScalarEvolution::containsUndefs(const SCEV *S) const { 12351 return SCEVExprContains(S, [](const SCEV *S) { 12352 if (const auto *SU = dyn_cast<SCEVUnknown>(S)) 12353 return isa<UndefValue>(SU->getValue()); 12354 return false; 12355 }); 12356 } 12357 12358 /// Return the size of an element read or written by Inst. 12359 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) { 12360 Type *Ty; 12361 if (StoreInst *Store = dyn_cast<StoreInst>(Inst)) 12362 Ty = Store->getValueOperand()->getType(); 12363 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) 12364 Ty = Load->getType(); 12365 else 12366 return nullptr; 12367 12368 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty)); 12369 return getSizeOfExpr(ETy, Ty); 12370 } 12371 12372 //===----------------------------------------------------------------------===// 12373 // SCEVCallbackVH Class Implementation 12374 //===----------------------------------------------------------------------===// 12375 12376 void ScalarEvolution::SCEVCallbackVH::deleted() { 12377 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 12378 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 12379 SE->ConstantEvolutionLoopExitValue.erase(PN); 12380 SE->eraseValueFromMap(getValPtr()); 12381 // this now dangles! 12382 } 12383 12384 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { 12385 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 12386 12387 // Forget all the expressions associated with users of the old value, 12388 // so that future queries will recompute the expressions using the new 12389 // value. 12390 Value *Old = getValPtr(); 12391 SmallVector<User *, 16> Worklist(Old->users()); 12392 SmallPtrSet<User *, 8> Visited; 12393 while (!Worklist.empty()) { 12394 User *U = Worklist.pop_back_val(); 12395 // Deleting the Old value will cause this to dangle. Postpone 12396 // that until everything else is done. 12397 if (U == Old) 12398 continue; 12399 if (!Visited.insert(U).second) 12400 continue; 12401 if (PHINode *PN = dyn_cast<PHINode>(U)) 12402 SE->ConstantEvolutionLoopExitValue.erase(PN); 12403 SE->eraseValueFromMap(U); 12404 llvm::append_range(Worklist, U->users()); 12405 } 12406 // Delete the Old value. 12407 if (PHINode *PN = dyn_cast<PHINode>(Old)) 12408 SE->ConstantEvolutionLoopExitValue.erase(PN); 12409 SE->eraseValueFromMap(Old); 12410 // this now dangles! 12411 } 12412 12413 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 12414 : CallbackVH(V), SE(se) {} 12415 12416 //===----------------------------------------------------------------------===// 12417 // ScalarEvolution Class Implementation 12418 //===----------------------------------------------------------------------===// 12419 12420 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI, 12421 AssumptionCache &AC, DominatorTree &DT, 12422 LoopInfo &LI) 12423 : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI), 12424 CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64), 12425 LoopDispositions(64), BlockDispositions(64) { 12426 // To use guards for proving predicates, we need to scan every instruction in 12427 // relevant basic blocks, and not just terminators. Doing this is a waste of 12428 // time if the IR does not actually contain any calls to 12429 // @llvm.experimental.guard, so do a quick check and remember this beforehand. 12430 // 12431 // This pessimizes the case where a pass that preserves ScalarEvolution wants 12432 // to _add_ guards to the module when there weren't any before, and wants 12433 // ScalarEvolution to optimize based on those guards. For now we prefer to be 12434 // efficient in lieu of being smart in that rather obscure case. 12435 12436 auto *GuardDecl = F.getParent()->getFunction( 12437 Intrinsic::getName(Intrinsic::experimental_guard)); 12438 HasGuards = GuardDecl && !GuardDecl->use_empty(); 12439 } 12440 12441 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg) 12442 : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT), 12443 LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)), 12444 ValueExprMap(std::move(Arg.ValueExprMap)), 12445 PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)), 12446 PendingPhiRanges(std::move(Arg.PendingPhiRanges)), 12447 PendingMerges(std::move(Arg.PendingMerges)), 12448 MinTrailingZerosCache(std::move(Arg.MinTrailingZerosCache)), 12449 BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)), 12450 PredicatedBackedgeTakenCounts( 12451 std::move(Arg.PredicatedBackedgeTakenCounts)), 12452 BECountUsers(std::move(Arg.BECountUsers)), 12453 ConstantEvolutionLoopExitValue( 12454 std::move(Arg.ConstantEvolutionLoopExitValue)), 12455 ValuesAtScopes(std::move(Arg.ValuesAtScopes)), 12456 ValuesAtScopesUsers(std::move(Arg.ValuesAtScopesUsers)), 12457 LoopDispositions(std::move(Arg.LoopDispositions)), 12458 LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)), 12459 BlockDispositions(std::move(Arg.BlockDispositions)), 12460 SCEVUsers(std::move(Arg.SCEVUsers)), 12461 UnsignedRanges(std::move(Arg.UnsignedRanges)), 12462 SignedRanges(std::move(Arg.SignedRanges)), 12463 UniqueSCEVs(std::move(Arg.UniqueSCEVs)), 12464 UniquePreds(std::move(Arg.UniquePreds)), 12465 SCEVAllocator(std::move(Arg.SCEVAllocator)), 12466 LoopUsers(std::move(Arg.LoopUsers)), 12467 PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)), 12468 FirstUnknown(Arg.FirstUnknown) { 12469 Arg.FirstUnknown = nullptr; 12470 } 12471 12472 ScalarEvolution::~ScalarEvolution() { 12473 // Iterate through all the SCEVUnknown instances and call their 12474 // destructors, so that they release their references to their values. 12475 for (SCEVUnknown *U = FirstUnknown; U;) { 12476 SCEVUnknown *Tmp = U; 12477 U = U->Next; 12478 Tmp->~SCEVUnknown(); 12479 } 12480 FirstUnknown = nullptr; 12481 12482 ExprValueMap.clear(); 12483 ValueExprMap.clear(); 12484 HasRecMap.clear(); 12485 BackedgeTakenCounts.clear(); 12486 PredicatedBackedgeTakenCounts.clear(); 12487 12488 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage"); 12489 assert(PendingPhiRanges.empty() && "getRangeRef garbage"); 12490 assert(PendingMerges.empty() && "isImpliedViaMerge garbage"); 12491 assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!"); 12492 assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!"); 12493 } 12494 12495 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 12496 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 12497 } 12498 12499 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 12500 const Loop *L) { 12501 // Print all inner loops first 12502 for (Loop *I : *L) 12503 PrintLoopInfo(OS, SE, I); 12504 12505 OS << "Loop "; 12506 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12507 OS << ": "; 12508 12509 SmallVector<BasicBlock *, 8> ExitingBlocks; 12510 L->getExitingBlocks(ExitingBlocks); 12511 if (ExitingBlocks.size() != 1) 12512 OS << "<multiple exits> "; 12513 12514 if (SE->hasLoopInvariantBackedgeTakenCount(L)) 12515 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L) << "\n"; 12516 else 12517 OS << "Unpredictable backedge-taken count.\n"; 12518 12519 if (ExitingBlocks.size() > 1) 12520 for (BasicBlock *ExitingBlock : ExitingBlocks) { 12521 OS << " exit count for " << ExitingBlock->getName() << ": " 12522 << *SE->getExitCount(L, ExitingBlock) << "\n"; 12523 } 12524 12525 OS << "Loop "; 12526 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12527 OS << ": "; 12528 12529 if (!isa<SCEVCouldNotCompute>(SE->getConstantMaxBackedgeTakenCount(L))) { 12530 OS << "max backedge-taken count is " << *SE->getConstantMaxBackedgeTakenCount(L); 12531 if (SE->isBackedgeTakenCountMaxOrZero(L)) 12532 OS << ", actual taken count either this or zero."; 12533 } else { 12534 OS << "Unpredictable max backedge-taken count. "; 12535 } 12536 12537 OS << "\n" 12538 "Loop "; 12539 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12540 OS << ": "; 12541 12542 SCEVUnionPredicate Pred; 12543 auto PBT = SE->getPredicatedBackedgeTakenCount(L, Pred); 12544 if (!isa<SCEVCouldNotCompute>(PBT)) { 12545 OS << "Predicated backedge-taken count is " << *PBT << "\n"; 12546 OS << " Predicates:\n"; 12547 Pred.print(OS, 4); 12548 } else { 12549 OS << "Unpredictable predicated backedge-taken count. "; 12550 } 12551 OS << "\n"; 12552 12553 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 12554 OS << "Loop "; 12555 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12556 OS << ": "; 12557 OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n"; 12558 } 12559 } 12560 12561 static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) { 12562 switch (LD) { 12563 case ScalarEvolution::LoopVariant: 12564 return "Variant"; 12565 case ScalarEvolution::LoopInvariant: 12566 return "Invariant"; 12567 case ScalarEvolution::LoopComputable: 12568 return "Computable"; 12569 } 12570 llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!"); 12571 } 12572 12573 void ScalarEvolution::print(raw_ostream &OS) const { 12574 // ScalarEvolution's implementation of the print method is to print 12575 // out SCEV values of all instructions that are interesting. Doing 12576 // this potentially causes it to create new SCEV objects though, 12577 // which technically conflicts with the const qualifier. This isn't 12578 // observable from outside the class though, so casting away the 12579 // const isn't dangerous. 12580 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 12581 12582 if (ClassifyExpressions) { 12583 OS << "Classifying expressions for: "; 12584 F.printAsOperand(OS, /*PrintType=*/false); 12585 OS << "\n"; 12586 for (Instruction &I : instructions(F)) 12587 if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) { 12588 OS << I << '\n'; 12589 OS << " --> "; 12590 const SCEV *SV = SE.getSCEV(&I); 12591 SV->print(OS); 12592 if (!isa<SCEVCouldNotCompute>(SV)) { 12593 OS << " U: "; 12594 SE.getUnsignedRange(SV).print(OS); 12595 OS << " S: "; 12596 SE.getSignedRange(SV).print(OS); 12597 } 12598 12599 const Loop *L = LI.getLoopFor(I.getParent()); 12600 12601 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 12602 if (AtUse != SV) { 12603 OS << " --> "; 12604 AtUse->print(OS); 12605 if (!isa<SCEVCouldNotCompute>(AtUse)) { 12606 OS << " U: "; 12607 SE.getUnsignedRange(AtUse).print(OS); 12608 OS << " S: "; 12609 SE.getSignedRange(AtUse).print(OS); 12610 } 12611 } 12612 12613 if (L) { 12614 OS << "\t\t" "Exits: "; 12615 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 12616 if (!SE.isLoopInvariant(ExitValue, L)) { 12617 OS << "<<Unknown>>"; 12618 } else { 12619 OS << *ExitValue; 12620 } 12621 12622 bool First = true; 12623 for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) { 12624 if (First) { 12625 OS << "\t\t" "LoopDispositions: { "; 12626 First = false; 12627 } else { 12628 OS << ", "; 12629 } 12630 12631 Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12632 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter)); 12633 } 12634 12635 for (auto *InnerL : depth_first(L)) { 12636 if (InnerL == L) 12637 continue; 12638 if (First) { 12639 OS << "\t\t" "LoopDispositions: { "; 12640 First = false; 12641 } else { 12642 OS << ", "; 12643 } 12644 12645 InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12646 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL)); 12647 } 12648 12649 OS << " }"; 12650 } 12651 12652 OS << "\n"; 12653 } 12654 } 12655 12656 OS << "Determining loop execution counts for: "; 12657 F.printAsOperand(OS, /*PrintType=*/false); 12658 OS << "\n"; 12659 for (Loop *I : LI) 12660 PrintLoopInfo(OS, &SE, I); 12661 } 12662 12663 ScalarEvolution::LoopDisposition 12664 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) { 12665 auto &Values = LoopDispositions[S]; 12666 for (auto &V : Values) { 12667 if (V.getPointer() == L) 12668 return V.getInt(); 12669 } 12670 Values.emplace_back(L, LoopVariant); 12671 LoopDisposition D = computeLoopDisposition(S, L); 12672 auto &Values2 = LoopDispositions[S]; 12673 for (auto &V : llvm::reverse(Values2)) { 12674 if (V.getPointer() == L) { 12675 V.setInt(D); 12676 break; 12677 } 12678 } 12679 return D; 12680 } 12681 12682 ScalarEvolution::LoopDisposition 12683 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) { 12684 switch (S->getSCEVType()) { 12685 case scConstant: 12686 return LoopInvariant; 12687 case scPtrToInt: 12688 case scTruncate: 12689 case scZeroExtend: 12690 case scSignExtend: 12691 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L); 12692 case scAddRecExpr: { 12693 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 12694 12695 // If L is the addrec's loop, it's computable. 12696 if (AR->getLoop() == L) 12697 return LoopComputable; 12698 12699 // Add recurrences are never invariant in the function-body (null loop). 12700 if (!L) 12701 return LoopVariant; 12702 12703 // Everything that is not defined at loop entry is variant. 12704 if (DT.dominates(L->getHeader(), AR->getLoop()->getHeader())) 12705 return LoopVariant; 12706 assert(!L->contains(AR->getLoop()) && "Containing loop's header does not" 12707 " dominate the contained loop's header?"); 12708 12709 // This recurrence is invariant w.r.t. L if AR's loop contains L. 12710 if (AR->getLoop()->contains(L)) 12711 return LoopInvariant; 12712 12713 // This recurrence is variant w.r.t. L if any of its operands 12714 // are variant. 12715 for (auto *Op : AR->operands()) 12716 if (!isLoopInvariant(Op, L)) 12717 return LoopVariant; 12718 12719 // Otherwise it's loop-invariant. 12720 return LoopInvariant; 12721 } 12722 case scAddExpr: 12723 case scMulExpr: 12724 case scUMaxExpr: 12725 case scSMaxExpr: 12726 case scUMinExpr: 12727 case scSMinExpr: { 12728 bool HasVarying = false; 12729 for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) { 12730 LoopDisposition D = getLoopDisposition(Op, L); 12731 if (D == LoopVariant) 12732 return LoopVariant; 12733 if (D == LoopComputable) 12734 HasVarying = true; 12735 } 12736 return HasVarying ? LoopComputable : LoopInvariant; 12737 } 12738 case scUDivExpr: { 12739 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 12740 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L); 12741 if (LD == LoopVariant) 12742 return LoopVariant; 12743 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L); 12744 if (RD == LoopVariant) 12745 return LoopVariant; 12746 return (LD == LoopInvariant && RD == LoopInvariant) ? 12747 LoopInvariant : LoopComputable; 12748 } 12749 case scUnknown: 12750 // All non-instruction values are loop invariant. All instructions are loop 12751 // invariant if they are not contained in the specified loop. 12752 // Instructions are never considered invariant in the function body 12753 // (null loop) because they are defined within the "loop". 12754 if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) 12755 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant; 12756 return LoopInvariant; 12757 case scCouldNotCompute: 12758 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 12759 } 12760 llvm_unreachable("Unknown SCEV kind!"); 12761 } 12762 12763 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) { 12764 return getLoopDisposition(S, L) == LoopInvariant; 12765 } 12766 12767 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) { 12768 return getLoopDisposition(S, L) == LoopComputable; 12769 } 12770 12771 ScalarEvolution::BlockDisposition 12772 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) { 12773 auto &Values = BlockDispositions[S]; 12774 for (auto &V : Values) { 12775 if (V.getPointer() == BB) 12776 return V.getInt(); 12777 } 12778 Values.emplace_back(BB, DoesNotDominateBlock); 12779 BlockDisposition D = computeBlockDisposition(S, BB); 12780 auto &Values2 = BlockDispositions[S]; 12781 for (auto &V : llvm::reverse(Values2)) { 12782 if (V.getPointer() == BB) { 12783 V.setInt(D); 12784 break; 12785 } 12786 } 12787 return D; 12788 } 12789 12790 ScalarEvolution::BlockDisposition 12791 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) { 12792 switch (S->getSCEVType()) { 12793 case scConstant: 12794 return ProperlyDominatesBlock; 12795 case scPtrToInt: 12796 case scTruncate: 12797 case scZeroExtend: 12798 case scSignExtend: 12799 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB); 12800 case scAddRecExpr: { 12801 // This uses a "dominates" query instead of "properly dominates" query 12802 // to test for proper dominance too, because the instruction which 12803 // produces the addrec's value is a PHI, and a PHI effectively properly 12804 // dominates its entire containing block. 12805 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 12806 if (!DT.dominates(AR->getLoop()->getHeader(), BB)) 12807 return DoesNotDominateBlock; 12808 12809 // Fall through into SCEVNAryExpr handling. 12810 LLVM_FALLTHROUGH; 12811 } 12812 case scAddExpr: 12813 case scMulExpr: 12814 case scUMaxExpr: 12815 case scSMaxExpr: 12816 case scUMinExpr: 12817 case scSMinExpr: { 12818 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 12819 bool Proper = true; 12820 for (const SCEV *NAryOp : NAry->operands()) { 12821 BlockDisposition D = getBlockDisposition(NAryOp, BB); 12822 if (D == DoesNotDominateBlock) 12823 return DoesNotDominateBlock; 12824 if (D == DominatesBlock) 12825 Proper = false; 12826 } 12827 return Proper ? ProperlyDominatesBlock : DominatesBlock; 12828 } 12829 case scUDivExpr: { 12830 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 12831 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS(); 12832 BlockDisposition LD = getBlockDisposition(LHS, BB); 12833 if (LD == DoesNotDominateBlock) 12834 return DoesNotDominateBlock; 12835 BlockDisposition RD = getBlockDisposition(RHS, BB); 12836 if (RD == DoesNotDominateBlock) 12837 return DoesNotDominateBlock; 12838 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ? 12839 ProperlyDominatesBlock : DominatesBlock; 12840 } 12841 case scUnknown: 12842 if (Instruction *I = 12843 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) { 12844 if (I->getParent() == BB) 12845 return DominatesBlock; 12846 if (DT.properlyDominates(I->getParent(), BB)) 12847 return ProperlyDominatesBlock; 12848 return DoesNotDominateBlock; 12849 } 12850 return ProperlyDominatesBlock; 12851 case scCouldNotCompute: 12852 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 12853 } 12854 llvm_unreachable("Unknown SCEV kind!"); 12855 } 12856 12857 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) { 12858 return getBlockDisposition(S, BB) >= DominatesBlock; 12859 } 12860 12861 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) { 12862 return getBlockDisposition(S, BB) == ProperlyDominatesBlock; 12863 } 12864 12865 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const { 12866 return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; }); 12867 } 12868 12869 void ScalarEvolution::forgetBackedgeTakenCounts(const Loop *L, 12870 bool Predicated) { 12871 auto &BECounts = 12872 Predicated ? PredicatedBackedgeTakenCounts : BackedgeTakenCounts; 12873 auto It = BECounts.find(L); 12874 if (It != BECounts.end()) { 12875 for (const ExitNotTakenInfo &ENT : It->second.ExitNotTaken) { 12876 if (!isa<SCEVConstant>(ENT.ExactNotTaken)) { 12877 auto UserIt = BECountUsers.find(ENT.ExactNotTaken); 12878 assert(UserIt != BECountUsers.end()); 12879 UserIt->second.erase({L, Predicated}); 12880 } 12881 } 12882 BECounts.erase(It); 12883 } 12884 } 12885 12886 void ScalarEvolution::forgetMemoizedResults(ArrayRef<const SCEV *> SCEVs) { 12887 SmallPtrSet<const SCEV *, 8> ToForget(SCEVs.begin(), SCEVs.end()); 12888 SmallVector<const SCEV *, 8> Worklist(ToForget.begin(), ToForget.end()); 12889 12890 while (!Worklist.empty()) { 12891 const SCEV *Curr = Worklist.pop_back_val(); 12892 auto Users = SCEVUsers.find(Curr); 12893 if (Users != SCEVUsers.end()) 12894 for (auto *User : Users->second) 12895 if (ToForget.insert(User).second) 12896 Worklist.push_back(User); 12897 } 12898 12899 for (auto *S : ToForget) 12900 forgetMemoizedResultsImpl(S); 12901 12902 for (auto I = PredicatedSCEVRewrites.begin(); 12903 I != PredicatedSCEVRewrites.end();) { 12904 std::pair<const SCEV *, const Loop *> Entry = I->first; 12905 if (ToForget.count(Entry.first)) 12906 PredicatedSCEVRewrites.erase(I++); 12907 else 12908 ++I; 12909 } 12910 } 12911 12912 void ScalarEvolution::forgetMemoizedResultsImpl(const SCEV *S) { 12913 LoopDispositions.erase(S); 12914 BlockDispositions.erase(S); 12915 UnsignedRanges.erase(S); 12916 SignedRanges.erase(S); 12917 HasRecMap.erase(S); 12918 MinTrailingZerosCache.erase(S); 12919 12920 auto ExprIt = ExprValueMap.find(S); 12921 if (ExprIt != ExprValueMap.end()) { 12922 for (auto &ValueAndOffset : ExprIt->second) { 12923 if (ValueAndOffset.second == nullptr) { 12924 auto ValueIt = ValueExprMap.find_as(ValueAndOffset.first); 12925 if (ValueIt != ValueExprMap.end()) 12926 ValueExprMap.erase(ValueIt); 12927 } 12928 } 12929 ExprValueMap.erase(ExprIt); 12930 } 12931 12932 auto ScopeIt = ValuesAtScopes.find(S); 12933 if (ScopeIt != ValuesAtScopes.end()) { 12934 for (const auto &Pair : ScopeIt->second) 12935 if (!isa_and_nonnull<SCEVConstant>(Pair.second)) 12936 erase_value(ValuesAtScopesUsers[Pair.second], 12937 std::make_pair(Pair.first, S)); 12938 ValuesAtScopes.erase(ScopeIt); 12939 } 12940 12941 auto ScopeUserIt = ValuesAtScopesUsers.find(S); 12942 if (ScopeUserIt != ValuesAtScopesUsers.end()) { 12943 for (const auto &Pair : ScopeUserIt->second) 12944 erase_value(ValuesAtScopes[Pair.second], std::make_pair(Pair.first, S)); 12945 ValuesAtScopesUsers.erase(ScopeUserIt); 12946 } 12947 12948 auto BEUsersIt = BECountUsers.find(S); 12949 if (BEUsersIt != BECountUsers.end()) { 12950 // Work on a copy, as forgetBackedgeTakenCounts() will modify the original. 12951 auto Copy = BEUsersIt->second; 12952 for (const auto &Pair : Copy) 12953 forgetBackedgeTakenCounts(Pair.getPointer(), Pair.getInt()); 12954 BECountUsers.erase(BEUsersIt); 12955 } 12956 } 12957 12958 void 12959 ScalarEvolution::getUsedLoops(const SCEV *S, 12960 SmallPtrSetImpl<const Loop *> &LoopsUsed) { 12961 struct FindUsedLoops { 12962 FindUsedLoops(SmallPtrSetImpl<const Loop *> &LoopsUsed) 12963 : LoopsUsed(LoopsUsed) {} 12964 SmallPtrSetImpl<const Loop *> &LoopsUsed; 12965 bool follow(const SCEV *S) { 12966 if (auto *AR = dyn_cast<SCEVAddRecExpr>(S)) 12967 LoopsUsed.insert(AR->getLoop()); 12968 return true; 12969 } 12970 12971 bool isDone() const { return false; } 12972 }; 12973 12974 FindUsedLoops F(LoopsUsed); 12975 SCEVTraversal<FindUsedLoops>(F).visitAll(S); 12976 } 12977 12978 void ScalarEvolution::verify() const { 12979 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 12980 ScalarEvolution SE2(F, TLI, AC, DT, LI); 12981 12982 SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end()); 12983 12984 // Map's SCEV expressions from one ScalarEvolution "universe" to another. 12985 struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> { 12986 SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {} 12987 12988 const SCEV *visitConstant(const SCEVConstant *Constant) { 12989 return SE.getConstant(Constant->getAPInt()); 12990 } 12991 12992 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 12993 return SE.getUnknown(Expr->getValue()); 12994 } 12995 12996 const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) { 12997 return SE.getCouldNotCompute(); 12998 } 12999 }; 13000 13001 SCEVMapper SCM(SE2); 13002 13003 while (!LoopStack.empty()) { 13004 auto *L = LoopStack.pop_back_val(); 13005 llvm::append_range(LoopStack, *L); 13006 13007 auto *CurBECount = SCM.visit( 13008 const_cast<ScalarEvolution *>(this)->getBackedgeTakenCount(L)); 13009 auto *NewBECount = SE2.getBackedgeTakenCount(L); 13010 13011 if (CurBECount == SE2.getCouldNotCompute() || 13012 NewBECount == SE2.getCouldNotCompute()) { 13013 // NB! This situation is legal, but is very suspicious -- whatever pass 13014 // change the loop to make a trip count go from could not compute to 13015 // computable or vice-versa *should have* invalidated SCEV. However, we 13016 // choose not to assert here (for now) since we don't want false 13017 // positives. 13018 continue; 13019 } 13020 13021 if (containsUndefs(CurBECount) || containsUndefs(NewBECount)) { 13022 // SCEV treats "undef" as an unknown but consistent value (i.e. it does 13023 // not propagate undef aggressively). This means we can (and do) fail 13024 // verification in cases where a transform makes the trip count of a loop 13025 // go from "undef" to "undef+1" (say). The transform is fine, since in 13026 // both cases the loop iterates "undef" times, but SCEV thinks we 13027 // increased the trip count of the loop by 1 incorrectly. 13028 continue; 13029 } 13030 13031 if (SE.getTypeSizeInBits(CurBECount->getType()) > 13032 SE.getTypeSizeInBits(NewBECount->getType())) 13033 NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType()); 13034 else if (SE.getTypeSizeInBits(CurBECount->getType()) < 13035 SE.getTypeSizeInBits(NewBECount->getType())) 13036 CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType()); 13037 13038 const SCEV *Delta = SE2.getMinusSCEV(CurBECount, NewBECount); 13039 13040 // Unless VerifySCEVStrict is set, we only compare constant deltas. 13041 if ((VerifySCEVStrict || isa<SCEVConstant>(Delta)) && !Delta->isZero()) { 13042 dbgs() << "Trip Count for " << *L << " Changed!\n"; 13043 dbgs() << "Old: " << *CurBECount << "\n"; 13044 dbgs() << "New: " << *NewBECount << "\n"; 13045 dbgs() << "Delta: " << *Delta << "\n"; 13046 std::abort(); 13047 } 13048 } 13049 13050 // Collect all valid loops currently in LoopInfo. 13051 SmallPtrSet<Loop *, 32> ValidLoops; 13052 SmallVector<Loop *, 32> Worklist(LI.begin(), LI.end()); 13053 while (!Worklist.empty()) { 13054 Loop *L = Worklist.pop_back_val(); 13055 if (ValidLoops.contains(L)) 13056 continue; 13057 ValidLoops.insert(L); 13058 Worklist.append(L->begin(), L->end()); 13059 } 13060 for (auto &KV : ValueExprMap) { 13061 // Check for SCEV expressions referencing invalid/deleted loops. 13062 if (auto *AR = dyn_cast<SCEVAddRecExpr>(KV.second)) { 13063 assert(ValidLoops.contains(AR->getLoop()) && 13064 "AddRec references invalid loop"); 13065 } 13066 13067 // Check that the value is also part of the reverse map. 13068 auto It = ExprValueMap.find(KV.second); 13069 if (It == ExprValueMap.end() || !It->second.contains({KV.first, nullptr})) { 13070 dbgs() << "Value " << *KV.first 13071 << " is in ValueExprMap but not in ExprValueMap\n"; 13072 std::abort(); 13073 } 13074 } 13075 13076 for (const auto &KV : ExprValueMap) { 13077 for (const auto &ValueAndOffset : KV.second) { 13078 if (ValueAndOffset.second != nullptr) 13079 continue; 13080 13081 auto It = ValueExprMap.find_as(ValueAndOffset.first); 13082 if (It == ValueExprMap.end()) { 13083 dbgs() << "Value " << *ValueAndOffset.first 13084 << " is in ExprValueMap but not in ValueExprMap\n"; 13085 std::abort(); 13086 } 13087 if (It->second != KV.first) { 13088 dbgs() << "Value " << *ValueAndOffset.first 13089 << " mapped to " << *It->second 13090 << " rather than " << *KV.first << "\n"; 13091 std::abort(); 13092 } 13093 } 13094 } 13095 13096 // Verify integrity of SCEV users. 13097 for (const auto &S : UniqueSCEVs) { 13098 SmallVector<const SCEV *, 4> Ops; 13099 collectUniqueOps(&S, Ops); 13100 for (const auto *Op : Ops) { 13101 // We do not store dependencies of constants. 13102 if (isa<SCEVConstant>(Op)) 13103 continue; 13104 auto It = SCEVUsers.find(Op); 13105 if (It != SCEVUsers.end() && It->second.count(&S)) 13106 continue; 13107 dbgs() << "Use of operand " << *Op << " by user " << S 13108 << " is not being tracked!\n"; 13109 std::abort(); 13110 } 13111 } 13112 13113 // Verify integrity of ValuesAtScopes users. 13114 for (const auto &ValueAndVec : ValuesAtScopes) { 13115 const SCEV *Value = ValueAndVec.first; 13116 for (const auto &LoopAndValueAtScope : ValueAndVec.second) { 13117 const Loop *L = LoopAndValueAtScope.first; 13118 const SCEV *ValueAtScope = LoopAndValueAtScope.second; 13119 if (!isa<SCEVConstant>(ValueAtScope)) { 13120 auto It = ValuesAtScopesUsers.find(ValueAtScope); 13121 if (It != ValuesAtScopesUsers.end() && 13122 is_contained(It->second, std::make_pair(L, Value))) 13123 continue; 13124 dbgs() << "Value: " << *Value << ", Loop: " << *L << ", ValueAtScope: " 13125 << ValueAtScope << " missing in ValuesAtScopesUsers\n"; 13126 std::abort(); 13127 } 13128 } 13129 } 13130 13131 for (const auto &ValueAtScopeAndVec : ValuesAtScopesUsers) { 13132 const SCEV *ValueAtScope = ValueAtScopeAndVec.first; 13133 for (const auto &LoopAndValue : ValueAtScopeAndVec.second) { 13134 const Loop *L = LoopAndValue.first; 13135 const SCEV *Value = LoopAndValue.second; 13136 assert(!isa<SCEVConstant>(Value)); 13137 auto It = ValuesAtScopes.find(Value); 13138 if (It != ValuesAtScopes.end() && 13139 is_contained(It->second, std::make_pair(L, ValueAtScope))) 13140 continue; 13141 dbgs() << "Value: " << *Value << ", Loop: " << *L << ", ValueAtScope: " 13142 << ValueAtScope << " missing in ValuesAtScopes\n"; 13143 std::abort(); 13144 } 13145 } 13146 13147 // Verify integrity of BECountUsers. 13148 auto VerifyBECountUsers = [&](bool Predicated) { 13149 auto &BECounts = 13150 Predicated ? PredicatedBackedgeTakenCounts : BackedgeTakenCounts; 13151 for (const auto &LoopAndBEInfo : BECounts) { 13152 for (const ExitNotTakenInfo &ENT : LoopAndBEInfo.second.ExitNotTaken) { 13153 if (!isa<SCEVConstant>(ENT.ExactNotTaken)) { 13154 auto UserIt = BECountUsers.find(ENT.ExactNotTaken); 13155 if (UserIt != BECountUsers.end() && 13156 UserIt->second.contains({ LoopAndBEInfo.first, Predicated })) 13157 continue; 13158 dbgs() << "Value " << *ENT.ExactNotTaken << " for loop " 13159 << *LoopAndBEInfo.first << " missing from BECountUsers\n"; 13160 std::abort(); 13161 } 13162 } 13163 } 13164 }; 13165 VerifyBECountUsers(/* Predicated */ false); 13166 VerifyBECountUsers(/* Predicated */ true); 13167 } 13168 13169 bool ScalarEvolution::invalidate( 13170 Function &F, const PreservedAnalyses &PA, 13171 FunctionAnalysisManager::Invalidator &Inv) { 13172 // Invalidate the ScalarEvolution object whenever it isn't preserved or one 13173 // of its dependencies is invalidated. 13174 auto PAC = PA.getChecker<ScalarEvolutionAnalysis>(); 13175 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) || 13176 Inv.invalidate<AssumptionAnalysis>(F, PA) || 13177 Inv.invalidate<DominatorTreeAnalysis>(F, PA) || 13178 Inv.invalidate<LoopAnalysis>(F, PA); 13179 } 13180 13181 AnalysisKey ScalarEvolutionAnalysis::Key; 13182 13183 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F, 13184 FunctionAnalysisManager &AM) { 13185 return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F), 13186 AM.getResult<AssumptionAnalysis>(F), 13187 AM.getResult<DominatorTreeAnalysis>(F), 13188 AM.getResult<LoopAnalysis>(F)); 13189 } 13190 13191 PreservedAnalyses 13192 ScalarEvolutionVerifierPass::run(Function &F, FunctionAnalysisManager &AM) { 13193 AM.getResult<ScalarEvolutionAnalysis>(F).verify(); 13194 return PreservedAnalyses::all(); 13195 } 13196 13197 PreservedAnalyses 13198 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) { 13199 // For compatibility with opt's -analyze feature under legacy pass manager 13200 // which was not ported to NPM. This keeps tests using 13201 // update_analyze_test_checks.py working. 13202 OS << "Printing analysis 'Scalar Evolution Analysis' for function '" 13203 << F.getName() << "':\n"; 13204 AM.getResult<ScalarEvolutionAnalysis>(F).print(OS); 13205 return PreservedAnalyses::all(); 13206 } 13207 13208 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution", 13209 "Scalar Evolution Analysis", false, true) 13210 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 13211 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 13212 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 13213 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 13214 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution", 13215 "Scalar Evolution Analysis", false, true) 13216 13217 char ScalarEvolutionWrapperPass::ID = 0; 13218 13219 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) { 13220 initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry()); 13221 } 13222 13223 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) { 13224 SE.reset(new ScalarEvolution( 13225 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F), 13226 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), 13227 getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 13228 getAnalysis<LoopInfoWrapperPass>().getLoopInfo())); 13229 return false; 13230 } 13231 13232 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); } 13233 13234 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const { 13235 SE->print(OS); 13236 } 13237 13238 void ScalarEvolutionWrapperPass::verifyAnalysis() const { 13239 if (!VerifySCEV) 13240 return; 13241 13242 SE->verify(); 13243 } 13244 13245 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 13246 AU.setPreservesAll(); 13247 AU.addRequiredTransitive<AssumptionCacheTracker>(); 13248 AU.addRequiredTransitive<LoopInfoWrapperPass>(); 13249 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 13250 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); 13251 } 13252 13253 const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS, 13254 const SCEV *RHS) { 13255 FoldingSetNodeID ID; 13256 assert(LHS->getType() == RHS->getType() && 13257 "Type mismatch between LHS and RHS"); 13258 // Unique this node based on the arguments 13259 ID.AddInteger(SCEVPredicate::P_Equal); 13260 ID.AddPointer(LHS); 13261 ID.AddPointer(RHS); 13262 void *IP = nullptr; 13263 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 13264 return S; 13265 SCEVEqualPredicate *Eq = new (SCEVAllocator) 13266 SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS); 13267 UniquePreds.InsertNode(Eq, IP); 13268 return Eq; 13269 } 13270 13271 const SCEVPredicate *ScalarEvolution::getWrapPredicate( 13272 const SCEVAddRecExpr *AR, 13273 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 13274 FoldingSetNodeID ID; 13275 // Unique this node based on the arguments 13276 ID.AddInteger(SCEVPredicate::P_Wrap); 13277 ID.AddPointer(AR); 13278 ID.AddInteger(AddedFlags); 13279 void *IP = nullptr; 13280 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 13281 return S; 13282 auto *OF = new (SCEVAllocator) 13283 SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags); 13284 UniquePreds.InsertNode(OF, IP); 13285 return OF; 13286 } 13287 13288 namespace { 13289 13290 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> { 13291 public: 13292 13293 /// Rewrites \p S in the context of a loop L and the SCEV predication 13294 /// infrastructure. 13295 /// 13296 /// If \p Pred is non-null, the SCEV expression is rewritten to respect the 13297 /// equivalences present in \p Pred. 13298 /// 13299 /// If \p NewPreds is non-null, rewrite is free to add further predicates to 13300 /// \p NewPreds such that the result will be an AddRecExpr. 13301 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, 13302 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, 13303 SCEVUnionPredicate *Pred) { 13304 SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred); 13305 return Rewriter.visit(S); 13306 } 13307 13308 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 13309 if (Pred) { 13310 auto ExprPreds = Pred->getPredicatesForExpr(Expr); 13311 for (auto *Pred : ExprPreds) 13312 if (const auto *IPred = dyn_cast<SCEVEqualPredicate>(Pred)) 13313 if (IPred->getLHS() == Expr) 13314 return IPred->getRHS(); 13315 } 13316 return convertToAddRecWithPreds(Expr); 13317 } 13318 13319 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { 13320 const SCEV *Operand = visit(Expr->getOperand()); 13321 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); 13322 if (AR && AR->getLoop() == L && AR->isAffine()) { 13323 // This couldn't be folded because the operand didn't have the nuw 13324 // flag. Add the nusw flag as an assumption that we could make. 13325 const SCEV *Step = AR->getStepRecurrence(SE); 13326 Type *Ty = Expr->getType(); 13327 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW)) 13328 return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty), 13329 SE.getSignExtendExpr(Step, Ty), L, 13330 AR->getNoWrapFlags()); 13331 } 13332 return SE.getZeroExtendExpr(Operand, Expr->getType()); 13333 } 13334 13335 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { 13336 const SCEV *Operand = visit(Expr->getOperand()); 13337 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); 13338 if (AR && AR->getLoop() == L && AR->isAffine()) { 13339 // This couldn't be folded because the operand didn't have the nsw 13340 // flag. Add the nssw flag as an assumption that we could make. 13341 const SCEV *Step = AR->getStepRecurrence(SE); 13342 Type *Ty = Expr->getType(); 13343 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW)) 13344 return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty), 13345 SE.getSignExtendExpr(Step, Ty), L, 13346 AR->getNoWrapFlags()); 13347 } 13348 return SE.getSignExtendExpr(Operand, Expr->getType()); 13349 } 13350 13351 private: 13352 explicit SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE, 13353 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, 13354 SCEVUnionPredicate *Pred) 13355 : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {} 13356 13357 bool addOverflowAssumption(const SCEVPredicate *P) { 13358 if (!NewPreds) { 13359 // Check if we've already made this assumption. 13360 return Pred && Pred->implies(P); 13361 } 13362 NewPreds->insert(P); 13363 return true; 13364 } 13365 13366 bool addOverflowAssumption(const SCEVAddRecExpr *AR, 13367 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 13368 auto *A = SE.getWrapPredicate(AR, AddedFlags); 13369 return addOverflowAssumption(A); 13370 } 13371 13372 // If \p Expr represents a PHINode, we try to see if it can be represented 13373 // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible 13374 // to add this predicate as a runtime overflow check, we return the AddRec. 13375 // If \p Expr does not meet these conditions (is not a PHI node, or we 13376 // couldn't create an AddRec for it, or couldn't add the predicate), we just 13377 // return \p Expr. 13378 const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) { 13379 if (!isa<PHINode>(Expr->getValue())) 13380 return Expr; 13381 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 13382 PredicatedRewrite = SE.createAddRecFromPHIWithCasts(Expr); 13383 if (!PredicatedRewrite) 13384 return Expr; 13385 for (auto *P : PredicatedRewrite->second){ 13386 // Wrap predicates from outer loops are not supported. 13387 if (auto *WP = dyn_cast<const SCEVWrapPredicate>(P)) { 13388 auto *AR = cast<const SCEVAddRecExpr>(WP->getExpr()); 13389 if (L != AR->getLoop()) 13390 return Expr; 13391 } 13392 if (!addOverflowAssumption(P)) 13393 return Expr; 13394 } 13395 return PredicatedRewrite->first; 13396 } 13397 13398 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds; 13399 SCEVUnionPredicate *Pred; 13400 const Loop *L; 13401 }; 13402 13403 } // end anonymous namespace 13404 13405 const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L, 13406 SCEVUnionPredicate &Preds) { 13407 return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds); 13408 } 13409 13410 const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates( 13411 const SCEV *S, const Loop *L, 13412 SmallPtrSetImpl<const SCEVPredicate *> &Preds) { 13413 SmallPtrSet<const SCEVPredicate *, 4> TransformPreds; 13414 S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr); 13415 auto *AddRec = dyn_cast<SCEVAddRecExpr>(S); 13416 13417 if (!AddRec) 13418 return nullptr; 13419 13420 // Since the transformation was successful, we can now transfer the SCEV 13421 // predicates. 13422 for (auto *P : TransformPreds) 13423 Preds.insert(P); 13424 13425 return AddRec; 13426 } 13427 13428 /// SCEV predicates 13429 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID, 13430 SCEVPredicateKind Kind) 13431 : FastID(ID), Kind(Kind) {} 13432 13433 SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID, 13434 const SCEV *LHS, const SCEV *RHS) 13435 : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) { 13436 assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match"); 13437 assert(LHS != RHS && "LHS and RHS are the same SCEV"); 13438 } 13439 13440 bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const { 13441 const auto *Op = dyn_cast<SCEVEqualPredicate>(N); 13442 13443 if (!Op) 13444 return false; 13445 13446 return Op->LHS == LHS && Op->RHS == RHS; 13447 } 13448 13449 bool SCEVEqualPredicate::isAlwaysTrue() const { return false; } 13450 13451 const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; } 13452 13453 void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const { 13454 OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n"; 13455 } 13456 13457 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID, 13458 const SCEVAddRecExpr *AR, 13459 IncrementWrapFlags Flags) 13460 : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {} 13461 13462 const SCEV *SCEVWrapPredicate::getExpr() const { return AR; } 13463 13464 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const { 13465 const auto *Op = dyn_cast<SCEVWrapPredicate>(N); 13466 13467 return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags; 13468 } 13469 13470 bool SCEVWrapPredicate::isAlwaysTrue() const { 13471 SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags(); 13472 IncrementWrapFlags IFlags = Flags; 13473 13474 if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags) 13475 IFlags = clearFlags(IFlags, IncrementNSSW); 13476 13477 return IFlags == IncrementAnyWrap; 13478 } 13479 13480 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const { 13481 OS.indent(Depth) << *getExpr() << " Added Flags: "; 13482 if (SCEVWrapPredicate::IncrementNUSW & getFlags()) 13483 OS << "<nusw>"; 13484 if (SCEVWrapPredicate::IncrementNSSW & getFlags()) 13485 OS << "<nssw>"; 13486 OS << "\n"; 13487 } 13488 13489 SCEVWrapPredicate::IncrementWrapFlags 13490 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR, 13491 ScalarEvolution &SE) { 13492 IncrementWrapFlags ImpliedFlags = IncrementAnyWrap; 13493 SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags(); 13494 13495 // We can safely transfer the NSW flag as NSSW. 13496 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags) 13497 ImpliedFlags = IncrementNSSW; 13498 13499 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) { 13500 // If the increment is positive, the SCEV NUW flag will also imply the 13501 // WrapPredicate NUSW flag. 13502 if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) 13503 if (Step->getValue()->getValue().isNonNegative()) 13504 ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW); 13505 } 13506 13507 return ImpliedFlags; 13508 } 13509 13510 /// Union predicates don't get cached so create a dummy set ID for it. 13511 SCEVUnionPredicate::SCEVUnionPredicate() 13512 : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {} 13513 13514 bool SCEVUnionPredicate::isAlwaysTrue() const { 13515 return all_of(Preds, 13516 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); }); 13517 } 13518 13519 ArrayRef<const SCEVPredicate *> 13520 SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) { 13521 auto I = SCEVToPreds.find(Expr); 13522 if (I == SCEVToPreds.end()) 13523 return ArrayRef<const SCEVPredicate *>(); 13524 return I->second; 13525 } 13526 13527 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const { 13528 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) 13529 return all_of(Set->Preds, 13530 [this](const SCEVPredicate *I) { return this->implies(I); }); 13531 13532 auto ScevPredsIt = SCEVToPreds.find(N->getExpr()); 13533 if (ScevPredsIt == SCEVToPreds.end()) 13534 return false; 13535 auto &SCEVPreds = ScevPredsIt->second; 13536 13537 return any_of(SCEVPreds, 13538 [N](const SCEVPredicate *I) { return I->implies(N); }); 13539 } 13540 13541 const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; } 13542 13543 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const { 13544 for (auto Pred : Preds) 13545 Pred->print(OS, Depth); 13546 } 13547 13548 void SCEVUnionPredicate::add(const SCEVPredicate *N) { 13549 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) { 13550 for (auto Pred : Set->Preds) 13551 add(Pred); 13552 return; 13553 } 13554 13555 if (implies(N)) 13556 return; 13557 13558 const SCEV *Key = N->getExpr(); 13559 assert(Key && "Only SCEVUnionPredicate doesn't have an " 13560 " associated expression!"); 13561 13562 SCEVToPreds[Key].push_back(N); 13563 Preds.push_back(N); 13564 } 13565 13566 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE, 13567 Loop &L) 13568 : SE(SE), L(L) {} 13569 13570 void ScalarEvolution::registerUser(const SCEV *User, 13571 ArrayRef<const SCEV *> Ops) { 13572 for (auto *Op : Ops) 13573 // We do not expect that forgetting cached data for SCEVConstants will ever 13574 // open any prospects for sharpening or introduce any correctness issues, 13575 // so we don't bother storing their dependencies. 13576 if (!isa<SCEVConstant>(Op)) 13577 SCEVUsers[Op].insert(User); 13578 } 13579 13580 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) { 13581 const SCEV *Expr = SE.getSCEV(V); 13582 RewriteEntry &Entry = RewriteMap[Expr]; 13583 13584 // If we already have an entry and the version matches, return it. 13585 if (Entry.second && Generation == Entry.first) 13586 return Entry.second; 13587 13588 // We found an entry but it's stale. Rewrite the stale entry 13589 // according to the current predicate. 13590 if (Entry.second) 13591 Expr = Entry.second; 13592 13593 const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds); 13594 Entry = {Generation, NewSCEV}; 13595 13596 return NewSCEV; 13597 } 13598 13599 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() { 13600 if (!BackedgeCount) { 13601 SCEVUnionPredicate BackedgePred; 13602 BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, BackedgePred); 13603 addPredicate(BackedgePred); 13604 } 13605 return BackedgeCount; 13606 } 13607 13608 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) { 13609 if (Preds.implies(&Pred)) 13610 return; 13611 Preds.add(&Pred); 13612 updateGeneration(); 13613 } 13614 13615 const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const { 13616 return Preds; 13617 } 13618 13619 void PredicatedScalarEvolution::updateGeneration() { 13620 // If the generation number wrapped recompute everything. 13621 if (++Generation == 0) { 13622 for (auto &II : RewriteMap) { 13623 const SCEV *Rewritten = II.second.second; 13624 II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)}; 13625 } 13626 } 13627 } 13628 13629 void PredicatedScalarEvolution::setNoOverflow( 13630 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 13631 const SCEV *Expr = getSCEV(V); 13632 const auto *AR = cast<SCEVAddRecExpr>(Expr); 13633 13634 auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE); 13635 13636 // Clear the statically implied flags. 13637 Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags); 13638 addPredicate(*SE.getWrapPredicate(AR, Flags)); 13639 13640 auto II = FlagsMap.insert({V, Flags}); 13641 if (!II.second) 13642 II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second); 13643 } 13644 13645 bool PredicatedScalarEvolution::hasNoOverflow( 13646 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 13647 const SCEV *Expr = getSCEV(V); 13648 const auto *AR = cast<SCEVAddRecExpr>(Expr); 13649 13650 Flags = SCEVWrapPredicate::clearFlags( 13651 Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE)); 13652 13653 auto II = FlagsMap.find(V); 13654 13655 if (II != FlagsMap.end()) 13656 Flags = SCEVWrapPredicate::clearFlags(Flags, II->second); 13657 13658 return Flags == SCEVWrapPredicate::IncrementAnyWrap; 13659 } 13660 13661 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) { 13662 const SCEV *Expr = this->getSCEV(V); 13663 SmallPtrSet<const SCEVPredicate *, 4> NewPreds; 13664 auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds); 13665 13666 if (!New) 13667 return nullptr; 13668 13669 for (auto *P : NewPreds) 13670 Preds.add(P); 13671 13672 updateGeneration(); 13673 RewriteMap[SE.getSCEV(V)] = {Generation, New}; 13674 return New; 13675 } 13676 13677 PredicatedScalarEvolution::PredicatedScalarEvolution( 13678 const PredicatedScalarEvolution &Init) 13679 : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds), 13680 Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) { 13681 for (auto I : Init.FlagsMap) 13682 FlagsMap.insert(I); 13683 } 13684 13685 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const { 13686 // For each block. 13687 for (auto *BB : L.getBlocks()) 13688 for (auto &I : *BB) { 13689 if (!SE.isSCEVable(I.getType())) 13690 continue; 13691 13692 auto *Expr = SE.getSCEV(&I); 13693 auto II = RewriteMap.find(Expr); 13694 13695 if (II == RewriteMap.end()) 13696 continue; 13697 13698 // Don't print things that are not interesting. 13699 if (II->second.second == Expr) 13700 continue; 13701 13702 OS.indent(Depth) << "[PSE]" << I << ":\n"; 13703 OS.indent(Depth + 2) << *Expr << "\n"; 13704 OS.indent(Depth + 2) << "--> " << *II->second.second << "\n"; 13705 } 13706 } 13707 13708 // Match the mathematical pattern A - (A / B) * B, where A and B can be 13709 // arbitrary expressions. Also match zext (trunc A to iB) to iY, which is used 13710 // for URem with constant power-of-2 second operands. 13711 // It's not always easy, as A and B can be folded (imagine A is X / 2, and B is 13712 // 4, A / B becomes X / 8). 13713 bool ScalarEvolution::matchURem(const SCEV *Expr, const SCEV *&LHS, 13714 const SCEV *&RHS) { 13715 // Try to match 'zext (trunc A to iB) to iY', which is used 13716 // for URem with constant power-of-2 second operands. Make sure the size of 13717 // the operand A matches the size of the whole expressions. 13718 if (const auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(Expr)) 13719 if (const auto *Trunc = dyn_cast<SCEVTruncateExpr>(ZExt->getOperand(0))) { 13720 LHS = Trunc->getOperand(); 13721 // Bail out if the type of the LHS is larger than the type of the 13722 // expression for now. 13723 if (getTypeSizeInBits(LHS->getType()) > 13724 getTypeSizeInBits(Expr->getType())) 13725 return false; 13726 if (LHS->getType() != Expr->getType()) 13727 LHS = getZeroExtendExpr(LHS, Expr->getType()); 13728 RHS = getConstant(APInt(getTypeSizeInBits(Expr->getType()), 1) 13729 << getTypeSizeInBits(Trunc->getType())); 13730 return true; 13731 } 13732 const auto *Add = dyn_cast<SCEVAddExpr>(Expr); 13733 if (Add == nullptr || Add->getNumOperands() != 2) 13734 return false; 13735 13736 const SCEV *A = Add->getOperand(1); 13737 const auto *Mul = dyn_cast<SCEVMulExpr>(Add->getOperand(0)); 13738 13739 if (Mul == nullptr) 13740 return false; 13741 13742 const auto MatchURemWithDivisor = [&](const SCEV *B) { 13743 // (SomeExpr + (-(SomeExpr / B) * B)). 13744 if (Expr == getURemExpr(A, B)) { 13745 LHS = A; 13746 RHS = B; 13747 return true; 13748 } 13749 return false; 13750 }; 13751 13752 // (SomeExpr + (-1 * (SomeExpr / B) * B)). 13753 if (Mul->getNumOperands() == 3 && isa<SCEVConstant>(Mul->getOperand(0))) 13754 return MatchURemWithDivisor(Mul->getOperand(1)) || 13755 MatchURemWithDivisor(Mul->getOperand(2)); 13756 13757 // (SomeExpr + ((-SomeExpr / B) * B)) or (SomeExpr + ((SomeExpr / B) * -B)). 13758 if (Mul->getNumOperands() == 2) 13759 return MatchURemWithDivisor(Mul->getOperand(1)) || 13760 MatchURemWithDivisor(Mul->getOperand(0)) || 13761 MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(1))) || 13762 MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(0))); 13763 return false; 13764 } 13765 13766 const SCEV * 13767 ScalarEvolution::computeSymbolicMaxBackedgeTakenCount(const Loop *L) { 13768 SmallVector<BasicBlock*, 16> ExitingBlocks; 13769 L->getExitingBlocks(ExitingBlocks); 13770 13771 // Form an expression for the maximum exit count possible for this loop. We 13772 // merge the max and exact information to approximate a version of 13773 // getConstantMaxBackedgeTakenCount which isn't restricted to just constants. 13774 SmallVector<const SCEV*, 4> ExitCounts; 13775 for (BasicBlock *ExitingBB : ExitingBlocks) { 13776 const SCEV *ExitCount = getExitCount(L, ExitingBB); 13777 if (isa<SCEVCouldNotCompute>(ExitCount)) 13778 ExitCount = getExitCount(L, ExitingBB, 13779 ScalarEvolution::ConstantMaximum); 13780 if (!isa<SCEVCouldNotCompute>(ExitCount)) { 13781 assert(DT.dominates(ExitingBB, L->getLoopLatch()) && 13782 "We should only have known counts for exiting blocks that " 13783 "dominate latch!"); 13784 ExitCounts.push_back(ExitCount); 13785 } 13786 } 13787 if (ExitCounts.empty()) 13788 return getCouldNotCompute(); 13789 return getUMinFromMismatchedTypes(ExitCounts); 13790 } 13791 13792 /// A rewriter to replace SCEV expressions in Map with the corresponding entry 13793 /// in the map. It skips AddRecExpr because we cannot guarantee that the 13794 /// replacement is loop invariant in the loop of the AddRec. 13795 /// 13796 /// At the moment only rewriting SCEVUnknown and SCEVZeroExtendExpr is 13797 /// supported. 13798 class SCEVLoopGuardRewriter : public SCEVRewriteVisitor<SCEVLoopGuardRewriter> { 13799 const DenseMap<const SCEV *, const SCEV *> ⤅ 13800 13801 public: 13802 SCEVLoopGuardRewriter(ScalarEvolution &SE, 13803 DenseMap<const SCEV *, const SCEV *> &M) 13804 : SCEVRewriteVisitor(SE), Map(M) {} 13805 13806 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { return Expr; } 13807 13808 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 13809 auto I = Map.find(Expr); 13810 if (I == Map.end()) 13811 return Expr; 13812 return I->second; 13813 } 13814 13815 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { 13816 auto I = Map.find(Expr); 13817 if (I == Map.end()) 13818 return SCEVRewriteVisitor<SCEVLoopGuardRewriter>::visitZeroExtendExpr( 13819 Expr); 13820 return I->second; 13821 } 13822 }; 13823 13824 const SCEV *ScalarEvolution::applyLoopGuards(const SCEV *Expr, const Loop *L) { 13825 SmallVector<const SCEV *> ExprsToRewrite; 13826 auto CollectCondition = [&](ICmpInst::Predicate Predicate, const SCEV *LHS, 13827 const SCEV *RHS, 13828 DenseMap<const SCEV *, const SCEV *> 13829 &RewriteMap) { 13830 // WARNING: It is generally unsound to apply any wrap flags to the proposed 13831 // replacement SCEV which isn't directly implied by the structure of that 13832 // SCEV. In particular, using contextual facts to imply flags is *NOT* 13833 // legal. See the scoping rules for flags in the header to understand why. 13834 13835 // If LHS is a constant, apply information to the other expression. 13836 if (isa<SCEVConstant>(LHS)) { 13837 std::swap(LHS, RHS); 13838 Predicate = CmpInst::getSwappedPredicate(Predicate); 13839 } 13840 13841 // Check for a condition of the form (-C1 + X < C2). InstCombine will 13842 // create this form when combining two checks of the form (X u< C2 + C1) and 13843 // (X >=u C1). 13844 auto MatchRangeCheckIdiom = [this, Predicate, LHS, RHS, &RewriteMap, 13845 &ExprsToRewrite]() { 13846 auto *AddExpr = dyn_cast<SCEVAddExpr>(LHS); 13847 if (!AddExpr || AddExpr->getNumOperands() != 2) 13848 return false; 13849 13850 auto *C1 = dyn_cast<SCEVConstant>(AddExpr->getOperand(0)); 13851 auto *LHSUnknown = dyn_cast<SCEVUnknown>(AddExpr->getOperand(1)); 13852 auto *C2 = dyn_cast<SCEVConstant>(RHS); 13853 if (!C1 || !C2 || !LHSUnknown) 13854 return false; 13855 13856 auto ExactRegion = 13857 ConstantRange::makeExactICmpRegion(Predicate, C2->getAPInt()) 13858 .sub(C1->getAPInt()); 13859 13860 // Bail out, unless we have a non-wrapping, monotonic range. 13861 if (ExactRegion.isWrappedSet() || ExactRegion.isFullSet()) 13862 return false; 13863 auto I = RewriteMap.find(LHSUnknown); 13864 const SCEV *RewrittenLHS = I != RewriteMap.end() ? I->second : LHSUnknown; 13865 RewriteMap[LHSUnknown] = getUMaxExpr( 13866 getConstant(ExactRegion.getUnsignedMin()), 13867 getUMinExpr(RewrittenLHS, getConstant(ExactRegion.getUnsignedMax()))); 13868 ExprsToRewrite.push_back(LHSUnknown); 13869 return true; 13870 }; 13871 if (MatchRangeCheckIdiom()) 13872 return; 13873 13874 // If we have LHS == 0, check if LHS is computing a property of some unknown 13875 // SCEV %v which we can rewrite %v to express explicitly. 13876 const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS); 13877 if (Predicate == CmpInst::ICMP_EQ && RHSC && 13878 RHSC->getValue()->isNullValue()) { 13879 // If LHS is A % B, i.e. A % B == 0, rewrite A to (A /u B) * B to 13880 // explicitly express that. 13881 const SCEV *URemLHS = nullptr; 13882 const SCEV *URemRHS = nullptr; 13883 if (matchURem(LHS, URemLHS, URemRHS)) { 13884 if (const SCEVUnknown *LHSUnknown = dyn_cast<SCEVUnknown>(URemLHS)) { 13885 auto Multiple = getMulExpr(getUDivExpr(URemLHS, URemRHS), URemRHS); 13886 RewriteMap[LHSUnknown] = Multiple; 13887 ExprsToRewrite.push_back(LHSUnknown); 13888 return; 13889 } 13890 } 13891 } 13892 13893 // Do not apply information for constants or if RHS contains an AddRec. 13894 if (isa<SCEVConstant>(LHS) || containsAddRecurrence(RHS)) 13895 return; 13896 13897 // If RHS is SCEVUnknown, make sure the information is applied to it. 13898 if (!isa<SCEVUnknown>(LHS) && isa<SCEVUnknown>(RHS)) { 13899 std::swap(LHS, RHS); 13900 Predicate = CmpInst::getSwappedPredicate(Predicate); 13901 } 13902 13903 // Limit to expressions that can be rewritten. 13904 if (!isa<SCEVUnknown>(LHS) && !isa<SCEVZeroExtendExpr>(LHS)) 13905 return; 13906 13907 // Check whether LHS has already been rewritten. In that case we want to 13908 // chain further rewrites onto the already rewritten value. 13909 auto I = RewriteMap.find(LHS); 13910 const SCEV *RewrittenLHS = I != RewriteMap.end() ? I->second : LHS; 13911 13912 const SCEV *RewrittenRHS = nullptr; 13913 switch (Predicate) { 13914 case CmpInst::ICMP_ULT: 13915 RewrittenRHS = 13916 getUMinExpr(RewrittenLHS, getMinusSCEV(RHS, getOne(RHS->getType()))); 13917 break; 13918 case CmpInst::ICMP_SLT: 13919 RewrittenRHS = 13920 getSMinExpr(RewrittenLHS, getMinusSCEV(RHS, getOne(RHS->getType()))); 13921 break; 13922 case CmpInst::ICMP_ULE: 13923 RewrittenRHS = getUMinExpr(RewrittenLHS, RHS); 13924 break; 13925 case CmpInst::ICMP_SLE: 13926 RewrittenRHS = getSMinExpr(RewrittenLHS, RHS); 13927 break; 13928 case CmpInst::ICMP_UGT: 13929 RewrittenRHS = 13930 getUMaxExpr(RewrittenLHS, getAddExpr(RHS, getOne(RHS->getType()))); 13931 break; 13932 case CmpInst::ICMP_SGT: 13933 RewrittenRHS = 13934 getSMaxExpr(RewrittenLHS, getAddExpr(RHS, getOne(RHS->getType()))); 13935 break; 13936 case CmpInst::ICMP_UGE: 13937 RewrittenRHS = getUMaxExpr(RewrittenLHS, RHS); 13938 break; 13939 case CmpInst::ICMP_SGE: 13940 RewrittenRHS = getSMaxExpr(RewrittenLHS, RHS); 13941 break; 13942 case CmpInst::ICMP_EQ: 13943 if (isa<SCEVConstant>(RHS)) 13944 RewrittenRHS = RHS; 13945 break; 13946 case CmpInst::ICMP_NE: 13947 if (isa<SCEVConstant>(RHS) && 13948 cast<SCEVConstant>(RHS)->getValue()->isNullValue()) 13949 RewrittenRHS = getUMaxExpr(RewrittenLHS, getOne(RHS->getType())); 13950 break; 13951 default: 13952 break; 13953 } 13954 13955 if (RewrittenRHS) { 13956 RewriteMap[LHS] = RewrittenRHS; 13957 if (LHS == RewrittenLHS) 13958 ExprsToRewrite.push_back(LHS); 13959 } 13960 }; 13961 // Starting at the loop predecessor, climb up the predecessor chain, as long 13962 // as there are predecessors that can be found that have unique successors 13963 // leading to the original header. 13964 // TODO: share this logic with isLoopEntryGuardedByCond. 13965 DenseMap<const SCEV *, const SCEV *> RewriteMap; 13966 for (std::pair<const BasicBlock *, const BasicBlock *> Pair( 13967 L->getLoopPredecessor(), L->getHeader()); 13968 Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 13969 13970 const BranchInst *LoopEntryPredicate = 13971 dyn_cast<BranchInst>(Pair.first->getTerminator()); 13972 if (!LoopEntryPredicate || LoopEntryPredicate->isUnconditional()) 13973 continue; 13974 13975 bool EnterIfTrue = LoopEntryPredicate->getSuccessor(0) == Pair.second; 13976 SmallVector<Value *, 8> Worklist; 13977 SmallPtrSet<Value *, 8> Visited; 13978 Worklist.push_back(LoopEntryPredicate->getCondition()); 13979 while (!Worklist.empty()) { 13980 Value *Cond = Worklist.pop_back_val(); 13981 if (!Visited.insert(Cond).second) 13982 continue; 13983 13984 if (auto *Cmp = dyn_cast<ICmpInst>(Cond)) { 13985 auto Predicate = 13986 EnterIfTrue ? Cmp->getPredicate() : Cmp->getInversePredicate(); 13987 CollectCondition(Predicate, getSCEV(Cmp->getOperand(0)), 13988 getSCEV(Cmp->getOperand(1)), RewriteMap); 13989 continue; 13990 } 13991 13992 Value *L, *R; 13993 if (EnterIfTrue ? match(Cond, m_LogicalAnd(m_Value(L), m_Value(R))) 13994 : match(Cond, m_LogicalOr(m_Value(L), m_Value(R)))) { 13995 Worklist.push_back(L); 13996 Worklist.push_back(R); 13997 } 13998 } 13999 } 14000 14001 // Also collect information from assumptions dominating the loop. 14002 for (auto &AssumeVH : AC.assumptions()) { 14003 if (!AssumeVH) 14004 continue; 14005 auto *AssumeI = cast<CallInst>(AssumeVH); 14006 auto *Cmp = dyn_cast<ICmpInst>(AssumeI->getOperand(0)); 14007 if (!Cmp || !DT.dominates(AssumeI, L->getHeader())) 14008 continue; 14009 CollectCondition(Cmp->getPredicate(), getSCEV(Cmp->getOperand(0)), 14010 getSCEV(Cmp->getOperand(1)), RewriteMap); 14011 } 14012 14013 if (RewriteMap.empty()) 14014 return Expr; 14015 14016 // Now that all rewrite information is collect, rewrite the collected 14017 // expressions with the information in the map. This applies information to 14018 // sub-expressions. 14019 if (ExprsToRewrite.size() > 1) { 14020 for (const SCEV *Expr : ExprsToRewrite) { 14021 const SCEV *RewriteTo = RewriteMap[Expr]; 14022 RewriteMap.erase(Expr); 14023 SCEVLoopGuardRewriter Rewriter(*this, RewriteMap); 14024 RewriteMap.insert({Expr, Rewriter.visit(RewriteTo)}); 14025 } 14026 } 14027 14028 SCEVLoopGuardRewriter Rewriter(*this, RewriteMap); 14029 return Rewriter.visit(Expr); 14030 } 14031