xref: /freebsd-src/contrib/llvm-project/llvm/lib/Analysis/LoopAccessAnalysis.cpp (revision 62987288060ff68c817b7056815aa9fb8ba8ecd7)
10b57cec5SDimitry Andric //===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==//
20b57cec5SDimitry Andric //
30b57cec5SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
40b57cec5SDimitry Andric // See https://llvm.org/LICENSE.txt for license information.
50b57cec5SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
60b57cec5SDimitry Andric //
70b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
80b57cec5SDimitry Andric //
90b57cec5SDimitry Andric // The implementation for the loop memory dependence that was originally
100b57cec5SDimitry Andric // developed for the loop vectorizer.
110b57cec5SDimitry Andric //
120b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
130b57cec5SDimitry Andric 
140b57cec5SDimitry Andric #include "llvm/Analysis/LoopAccessAnalysis.h"
150b57cec5SDimitry Andric #include "llvm/ADT/APInt.h"
160b57cec5SDimitry Andric #include "llvm/ADT/DenseMap.h"
170b57cec5SDimitry Andric #include "llvm/ADT/EquivalenceClasses.h"
180b57cec5SDimitry Andric #include "llvm/ADT/PointerIntPair.h"
190b57cec5SDimitry Andric #include "llvm/ADT/STLExtras.h"
200b57cec5SDimitry Andric #include "llvm/ADT/SetVector.h"
210b57cec5SDimitry Andric #include "llvm/ADT/SmallPtrSet.h"
220b57cec5SDimitry Andric #include "llvm/ADT/SmallSet.h"
230b57cec5SDimitry Andric #include "llvm/ADT/SmallVector.h"
240b57cec5SDimitry Andric #include "llvm/Analysis/AliasAnalysis.h"
250b57cec5SDimitry Andric #include "llvm/Analysis/AliasSetTracker.h"
260b57cec5SDimitry Andric #include "llvm/Analysis/LoopAnalysisManager.h"
270b57cec5SDimitry Andric #include "llvm/Analysis/LoopInfo.h"
28bdd1243dSDimitry Andric #include "llvm/Analysis/LoopIterator.h"
290b57cec5SDimitry Andric #include "llvm/Analysis/MemoryLocation.h"
300b57cec5SDimitry Andric #include "llvm/Analysis/OptimizationRemarkEmitter.h"
310b57cec5SDimitry Andric #include "llvm/Analysis/ScalarEvolution.h"
320b57cec5SDimitry Andric #include "llvm/Analysis/ScalarEvolutionExpressions.h"
330b57cec5SDimitry Andric #include "llvm/Analysis/TargetLibraryInfo.h"
340fca6ea1SDimitry Andric #include "llvm/Analysis/TargetTransformInfo.h"
350b57cec5SDimitry Andric #include "llvm/Analysis/ValueTracking.h"
360b57cec5SDimitry Andric #include "llvm/Analysis/VectorUtils.h"
370b57cec5SDimitry Andric #include "llvm/IR/BasicBlock.h"
380b57cec5SDimitry Andric #include "llvm/IR/Constants.h"
390b57cec5SDimitry Andric #include "llvm/IR/DataLayout.h"
400b57cec5SDimitry Andric #include "llvm/IR/DebugLoc.h"
410b57cec5SDimitry Andric #include "llvm/IR/DerivedTypes.h"
420b57cec5SDimitry Andric #include "llvm/IR/DiagnosticInfo.h"
430b57cec5SDimitry Andric #include "llvm/IR/Dominators.h"
440b57cec5SDimitry Andric #include "llvm/IR/Function.h"
4506c3fb27SDimitry Andric #include "llvm/IR/GetElementPtrTypeIterator.h"
460b57cec5SDimitry Andric #include "llvm/IR/InstrTypes.h"
470b57cec5SDimitry Andric #include "llvm/IR/Instruction.h"
480b57cec5SDimitry Andric #include "llvm/IR/Instructions.h"
490b57cec5SDimitry Andric #include "llvm/IR/Operator.h"
500b57cec5SDimitry Andric #include "llvm/IR/PassManager.h"
5181ad6265SDimitry Andric #include "llvm/IR/PatternMatch.h"
520b57cec5SDimitry Andric #include "llvm/IR/Type.h"
530b57cec5SDimitry Andric #include "llvm/IR/Value.h"
540b57cec5SDimitry Andric #include "llvm/IR/ValueHandle.h"
550b57cec5SDimitry Andric #include "llvm/Support/Casting.h"
560b57cec5SDimitry Andric #include "llvm/Support/CommandLine.h"
570b57cec5SDimitry Andric #include "llvm/Support/Debug.h"
580b57cec5SDimitry Andric #include "llvm/Support/ErrorHandling.h"
590b57cec5SDimitry Andric #include "llvm/Support/raw_ostream.h"
600b57cec5SDimitry Andric #include <algorithm>
610b57cec5SDimitry Andric #include <cassert>
620b57cec5SDimitry Andric #include <cstdint>
630b57cec5SDimitry Andric #include <iterator>
640b57cec5SDimitry Andric #include <utility>
655f757f3fSDimitry Andric #include <variant>
660b57cec5SDimitry Andric #include <vector>
670b57cec5SDimitry Andric 
680b57cec5SDimitry Andric using namespace llvm;
6981ad6265SDimitry Andric using namespace llvm::PatternMatch;
700b57cec5SDimitry Andric 
710b57cec5SDimitry Andric #define DEBUG_TYPE "loop-accesses"
720b57cec5SDimitry Andric 
730b57cec5SDimitry Andric static cl::opt<unsigned, true>
740b57cec5SDimitry Andric VectorizationFactor("force-vector-width", cl::Hidden,
750b57cec5SDimitry Andric                     cl::desc("Sets the SIMD width. Zero is autoselect."),
760b57cec5SDimitry Andric                     cl::location(VectorizerParams::VectorizationFactor));
770b57cec5SDimitry Andric unsigned VectorizerParams::VectorizationFactor;
780b57cec5SDimitry Andric 
790b57cec5SDimitry Andric static cl::opt<unsigned, true>
800b57cec5SDimitry Andric VectorizationInterleave("force-vector-interleave", cl::Hidden,
810b57cec5SDimitry Andric                         cl::desc("Sets the vectorization interleave count. "
820b57cec5SDimitry Andric                                  "Zero is autoselect."),
830b57cec5SDimitry Andric                         cl::location(
840b57cec5SDimitry Andric                             VectorizerParams::VectorizationInterleave));
850b57cec5SDimitry Andric unsigned VectorizerParams::VectorizationInterleave;
860b57cec5SDimitry Andric 
870b57cec5SDimitry Andric static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold(
880b57cec5SDimitry Andric     "runtime-memory-check-threshold", cl::Hidden,
890b57cec5SDimitry Andric     cl::desc("When performing memory disambiguation checks at runtime do not "
900b57cec5SDimitry Andric              "generate more than this number of comparisons (default = 8)."),
910b57cec5SDimitry Andric     cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8));
920b57cec5SDimitry Andric unsigned VectorizerParams::RuntimeMemoryCheckThreshold;
930b57cec5SDimitry Andric 
940b57cec5SDimitry Andric /// The maximum iterations used to merge memory checks
950b57cec5SDimitry Andric static cl::opt<unsigned> MemoryCheckMergeThreshold(
960b57cec5SDimitry Andric     "memory-check-merge-threshold", cl::Hidden,
970b57cec5SDimitry Andric     cl::desc("Maximum number of comparisons done when trying to merge "
980b57cec5SDimitry Andric              "runtime memory checks. (default = 100)"),
990b57cec5SDimitry Andric     cl::init(100));
1000b57cec5SDimitry Andric 
1010b57cec5SDimitry Andric /// Maximum SIMD width.
1020b57cec5SDimitry Andric const unsigned VectorizerParams::MaxVectorWidth = 64;
1030b57cec5SDimitry Andric 
1040b57cec5SDimitry Andric /// We collect dependences up to this threshold.
1050b57cec5SDimitry Andric static cl::opt<unsigned>
1060b57cec5SDimitry Andric     MaxDependences("max-dependences", cl::Hidden,
1070b57cec5SDimitry Andric                    cl::desc("Maximum number of dependences collected by "
1080b57cec5SDimitry Andric                             "loop-access analysis (default = 100)"),
1090b57cec5SDimitry Andric                    cl::init(100));
1100b57cec5SDimitry Andric 
1110b57cec5SDimitry Andric /// This enables versioning on the strides of symbolically striding memory
1120b57cec5SDimitry Andric /// accesses in code like the following.
1130b57cec5SDimitry Andric ///   for (i = 0; i < N; ++i)
1140b57cec5SDimitry Andric ///     A[i * Stride1] += B[i * Stride2] ...
1150b57cec5SDimitry Andric ///
1160b57cec5SDimitry Andric /// Will be roughly translated to
1170b57cec5SDimitry Andric ///    if (Stride1 == 1 && Stride2 == 1) {
1180b57cec5SDimitry Andric ///      for (i = 0; i < N; i+=4)
1190b57cec5SDimitry Andric ///       A[i:i+3] += ...
1200b57cec5SDimitry Andric ///    } else
1210b57cec5SDimitry Andric ///      ...
1220b57cec5SDimitry Andric static cl::opt<bool> EnableMemAccessVersioning(
1230b57cec5SDimitry Andric     "enable-mem-access-versioning", cl::init(true), cl::Hidden,
1240b57cec5SDimitry Andric     cl::desc("Enable symbolic stride memory access versioning"));
1250b57cec5SDimitry Andric 
1260b57cec5SDimitry Andric /// Enable store-to-load forwarding conflict detection. This option can
1270b57cec5SDimitry Andric /// be disabled for correctness testing.
1280b57cec5SDimitry Andric static cl::opt<bool> EnableForwardingConflictDetection(
1290b57cec5SDimitry Andric     "store-to-load-forwarding-conflict-detection", cl::Hidden,
1300b57cec5SDimitry Andric     cl::desc("Enable conflict detection in loop-access analysis"),
1310b57cec5SDimitry Andric     cl::init(true));
1320b57cec5SDimitry Andric 
133fcaf7f86SDimitry Andric static cl::opt<unsigned> MaxForkedSCEVDepth(
134fcaf7f86SDimitry Andric     "max-forked-scev-depth", cl::Hidden,
135fcaf7f86SDimitry Andric     cl::desc("Maximum recursion depth when finding forked SCEVs (default = 5)"),
136fcaf7f86SDimitry Andric     cl::init(5));
137fcaf7f86SDimitry Andric 
13806c3fb27SDimitry Andric static cl::opt<bool> SpeculateUnitStride(
13906c3fb27SDimitry Andric     "laa-speculate-unit-stride", cl::Hidden,
14006c3fb27SDimitry Andric     cl::desc("Speculate that non-constant strides are unit in LAA"),
14106c3fb27SDimitry Andric     cl::init(true));
14206c3fb27SDimitry Andric 
1435f757f3fSDimitry Andric static cl::opt<bool, true> HoistRuntimeChecks(
1445f757f3fSDimitry Andric     "hoist-runtime-checks", cl::Hidden,
1455f757f3fSDimitry Andric     cl::desc(
1465f757f3fSDimitry Andric         "Hoist inner loop runtime memory checks to outer loop if possible"),
147cb14a3feSDimitry Andric     cl::location(VectorizerParams::HoistRuntimeChecks), cl::init(true));
1485f757f3fSDimitry Andric bool VectorizerParams::HoistRuntimeChecks;
1495f757f3fSDimitry Andric 
1500b57cec5SDimitry Andric bool VectorizerParams::isInterleaveForced() {
1510b57cec5SDimitry Andric   return ::VectorizationInterleave.getNumOccurrences() > 0;
1520b57cec5SDimitry Andric }
1530b57cec5SDimitry Andric 
1540b57cec5SDimitry Andric const SCEV *llvm::replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE,
15506c3fb27SDimitry Andric                                             const DenseMap<Value *, const SCEV *> &PtrToStride,
156349cc55cSDimitry Andric                                             Value *Ptr) {
1570b57cec5SDimitry Andric   const SCEV *OrigSCEV = PSE.getSCEV(Ptr);
1580b57cec5SDimitry Andric 
1590b57cec5SDimitry Andric   // If there is an entry in the map return the SCEV of the pointer with the
1600b57cec5SDimitry Andric   // symbolic stride replaced by one.
16106c3fb27SDimitry Andric   DenseMap<Value *, const SCEV *>::const_iterator SI = PtrToStride.find(Ptr);
162e8d8bef9SDimitry Andric   if (SI == PtrToStride.end())
163e8d8bef9SDimitry Andric     // For a non-symbolic stride, just return the original expression.
164e8d8bef9SDimitry Andric     return OrigSCEV;
1650b57cec5SDimitry Andric 
16606c3fb27SDimitry Andric   const SCEV *StrideSCEV = SI->second;
16706c3fb27SDimitry Andric   // Note: This assert is both overly strong and overly weak.  The actual
16806c3fb27SDimitry Andric   // invariant here is that StrideSCEV should be loop invariant.  The only
16906c3fb27SDimitry Andric   // such invariant strides we happen to speculate right now are unknowns
17006c3fb27SDimitry Andric   // and thus this is a reasonable proxy of the actual invariant.
17106c3fb27SDimitry Andric   assert(isa<SCEVUnknown>(StrideSCEV) && "shouldn't be in map");
1720b57cec5SDimitry Andric 
1730b57cec5SDimitry Andric   ScalarEvolution *SE = PSE.getSE();
17406c3fb27SDimitry Andric   const auto *CT = SE->getOne(StrideSCEV->getType());
17506c3fb27SDimitry Andric   PSE.addPredicate(*SE->getEqualPredicate(StrideSCEV, CT));
1760b57cec5SDimitry Andric   auto *Expr = PSE.getSCEV(Ptr);
1770b57cec5SDimitry Andric 
1780b57cec5SDimitry Andric   LLVM_DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV
1790b57cec5SDimitry Andric 	     << " by: " << *Expr << "\n");
1800b57cec5SDimitry Andric   return Expr;
1810b57cec5SDimitry Andric }
1820b57cec5SDimitry Andric 
1835ffd83dbSDimitry Andric RuntimeCheckingPtrGroup::RuntimeCheckingPtrGroup(
1845ffd83dbSDimitry Andric     unsigned Index, RuntimePointerChecking &RtCheck)
185fe6060f1SDimitry Andric     : High(RtCheck.Pointers[Index].End), Low(RtCheck.Pointers[Index].Start),
186fe6060f1SDimitry Andric       AddressSpace(RtCheck.Pointers[Index]
187fe6060f1SDimitry Andric                        .PointerValue->getType()
18881ad6265SDimitry Andric                        ->getPointerAddressSpace()),
18981ad6265SDimitry Andric       NeedsFreeze(RtCheck.Pointers[Index].NeedsFreeze) {
1905ffd83dbSDimitry Andric   Members.push_back(Index);
1915ffd83dbSDimitry Andric }
1925ffd83dbSDimitry Andric 
1930b57cec5SDimitry Andric /// Calculate Start and End points of memory access.
1940b57cec5SDimitry Andric /// Let's assume A is the first access and B is a memory access on N-th loop
1950b57cec5SDimitry Andric /// iteration. Then B is calculated as:
1960b57cec5SDimitry Andric ///   B = A + Step*N .
1970b57cec5SDimitry Andric /// Step value may be positive or negative.
1980b57cec5SDimitry Andric /// N is a calculated back-edge taken count:
1990b57cec5SDimitry Andric ///     N = (TripCount > 0) ? RoundDown(TripCount -1 , VF) : 0
2000b57cec5SDimitry Andric /// Start and End points are calculated in the following way:
2010b57cec5SDimitry Andric /// Start = UMIN(A, B) ; End = UMAX(A, B) + SizeOfElt,
2020b57cec5SDimitry Andric /// where SizeOfElt is the size of single memory access in bytes.
2030b57cec5SDimitry Andric ///
2040b57cec5SDimitry Andric /// There is no conflict when the intervals are disjoint:
2050b57cec5SDimitry Andric /// NoConflict = (P2.Start >= P1.End) || (P1.Start >= P2.End)
2060fca6ea1SDimitry Andric static std::pair<const SCEV *, const SCEV *> getStartAndEndForAccess(
2070fca6ea1SDimitry Andric     const Loop *Lp, const SCEV *PtrExpr, Type *AccessTy,
20881ad6265SDimitry Andric     PredicatedScalarEvolution &PSE,
2090fca6ea1SDimitry Andric     DenseMap<std::pair<const SCEV *, Type *>,
2100fca6ea1SDimitry Andric              std::pair<const SCEV *, const SCEV *>> &PointerBounds) {
2110b57cec5SDimitry Andric   ScalarEvolution *SE = PSE.getSE();
2120b57cec5SDimitry Andric 
2130fca6ea1SDimitry Andric   auto [Iter, Ins] = PointerBounds.insert(
2140fca6ea1SDimitry Andric       {{PtrExpr, AccessTy},
2150fca6ea1SDimitry Andric        {SE->getCouldNotCompute(), SE->getCouldNotCompute()}});
2160fca6ea1SDimitry Andric   if (!Ins)
2170fca6ea1SDimitry Andric     return Iter->second;
2180fca6ea1SDimitry Andric 
2190b57cec5SDimitry Andric   const SCEV *ScStart;
2200b57cec5SDimitry Andric   const SCEV *ScEnd;
2210b57cec5SDimitry Andric 
22281ad6265SDimitry Andric   if (SE->isLoopInvariant(PtrExpr, Lp)) {
22381ad6265SDimitry Andric     ScStart = ScEnd = PtrExpr;
2240fca6ea1SDimitry Andric   } else if (auto *AR = dyn_cast<SCEVAddRecExpr>(PtrExpr)) {
2250fca6ea1SDimitry Andric     const SCEV *Ex = PSE.getSymbolicMaxBackedgeTakenCount();
2260b57cec5SDimitry Andric 
2270b57cec5SDimitry Andric     ScStart = AR->getStart();
2280b57cec5SDimitry Andric     ScEnd = AR->evaluateAtIteration(Ex, *SE);
2290b57cec5SDimitry Andric     const SCEV *Step = AR->getStepRecurrence(*SE);
2300b57cec5SDimitry Andric 
2310b57cec5SDimitry Andric     // For expressions with negative step, the upper bound is ScStart and the
2320b57cec5SDimitry Andric     // lower bound is ScEnd.
2330b57cec5SDimitry Andric     if (const auto *CStep = dyn_cast<SCEVConstant>(Step)) {
2340b57cec5SDimitry Andric       if (CStep->getValue()->isNegative())
2350b57cec5SDimitry Andric         std::swap(ScStart, ScEnd);
2360b57cec5SDimitry Andric     } else {
2370b57cec5SDimitry Andric       // Fallback case: the step is not constant, but we can still
2380b57cec5SDimitry Andric       // get the upper and lower bounds of the interval by using min/max
2390b57cec5SDimitry Andric       // expressions.
2400b57cec5SDimitry Andric       ScStart = SE->getUMinExpr(ScStart, ScEnd);
2410b57cec5SDimitry Andric       ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd);
2420b57cec5SDimitry Andric     }
2430fca6ea1SDimitry Andric   } else
2440fca6ea1SDimitry Andric     return {SE->getCouldNotCompute(), SE->getCouldNotCompute()};
2450fca6ea1SDimitry Andric 
24606c3fb27SDimitry Andric   assert(SE->isLoopInvariant(ScStart, Lp) && "ScStart needs to be invariant");
24706c3fb27SDimitry Andric   assert(SE->isLoopInvariant(ScEnd, Lp)&& "ScEnd needs to be invariant");
24806c3fb27SDimitry Andric 
2490b57cec5SDimitry Andric   // Add the size of the pointed element to ScEnd.
2500fca6ea1SDimitry Andric   auto &DL = Lp->getHeader()->getDataLayout();
2510fca6ea1SDimitry Andric   Type *IdxTy = DL.getIndexType(PtrExpr->getType());
25281ad6265SDimitry Andric   const SCEV *EltSizeSCEV = SE->getStoreSizeOfExpr(IdxTy, AccessTy);
2530b57cec5SDimitry Andric   ScEnd = SE->getAddExpr(ScEnd, EltSizeSCEV);
2540b57cec5SDimitry Andric 
2550fca6ea1SDimitry Andric   Iter->second = {ScStart, ScEnd};
2560fca6ea1SDimitry Andric   return Iter->second;
2570fca6ea1SDimitry Andric }
2580fca6ea1SDimitry Andric 
2590fca6ea1SDimitry Andric /// Calculate Start and End points of memory access using
2600fca6ea1SDimitry Andric /// getStartAndEndForAccess.
2610fca6ea1SDimitry Andric void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, const SCEV *PtrExpr,
2620fca6ea1SDimitry Andric                                     Type *AccessTy, bool WritePtr,
2630fca6ea1SDimitry Andric                                     unsigned DepSetId, unsigned ASId,
2640fca6ea1SDimitry Andric                                     PredicatedScalarEvolution &PSE,
2650fca6ea1SDimitry Andric                                     bool NeedsFreeze) {
2660fca6ea1SDimitry Andric   const auto &[ScStart, ScEnd] = getStartAndEndForAccess(
2670fca6ea1SDimitry Andric       Lp, PtrExpr, AccessTy, PSE, DC.getPointerBounds());
2680fca6ea1SDimitry Andric   assert(!isa<SCEVCouldNotCompute>(ScStart) &&
2690fca6ea1SDimitry Andric          !isa<SCEVCouldNotCompute>(ScEnd) &&
2700fca6ea1SDimitry Andric          "must be able to compute both start and end expressions");
27181ad6265SDimitry Andric   Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, PtrExpr,
27281ad6265SDimitry Andric                         NeedsFreeze);
2730b57cec5SDimitry Andric }
2740b57cec5SDimitry Andric 
2750fca6ea1SDimitry Andric bool RuntimePointerChecking::tryToCreateDiffCheck(
27681ad6265SDimitry Andric     const RuntimeCheckingPtrGroup &CGI, const RuntimeCheckingPtrGroup &CGJ) {
27781ad6265SDimitry Andric   // If either group contains multiple different pointers, bail out.
27881ad6265SDimitry Andric   // TODO: Support multiple pointers by using the minimum or maximum pointer,
27981ad6265SDimitry Andric   // depending on src & sink.
2800fca6ea1SDimitry Andric   if (CGI.Members.size() != 1 || CGJ.Members.size() != 1)
2810fca6ea1SDimitry Andric     return false;
28281ad6265SDimitry Andric 
28381ad6265SDimitry Andric   PointerInfo *Src = &Pointers[CGI.Members[0]];
28481ad6265SDimitry Andric   PointerInfo *Sink = &Pointers[CGJ.Members[0]];
28581ad6265SDimitry Andric 
28681ad6265SDimitry Andric   // If either pointer is read and written, multiple checks may be needed. Bail
28781ad6265SDimitry Andric   // out.
28881ad6265SDimitry Andric   if (!DC.getOrderForAccess(Src->PointerValue, !Src->IsWritePtr).empty() ||
2890fca6ea1SDimitry Andric       !DC.getOrderForAccess(Sink->PointerValue, !Sink->IsWritePtr).empty())
2900fca6ea1SDimitry Andric     return false;
29181ad6265SDimitry Andric 
29281ad6265SDimitry Andric   ArrayRef<unsigned> AccSrc =
29381ad6265SDimitry Andric       DC.getOrderForAccess(Src->PointerValue, Src->IsWritePtr);
29481ad6265SDimitry Andric   ArrayRef<unsigned> AccSink =
29581ad6265SDimitry Andric       DC.getOrderForAccess(Sink->PointerValue, Sink->IsWritePtr);
29681ad6265SDimitry Andric   // If either pointer is accessed multiple times, there may not be a clear
29781ad6265SDimitry Andric   // src/sink relation. Bail out for now.
2980fca6ea1SDimitry Andric   if (AccSrc.size() != 1 || AccSink.size() != 1)
2990fca6ea1SDimitry Andric     return false;
3000fca6ea1SDimitry Andric 
30181ad6265SDimitry Andric   // If the sink is accessed before src, swap src/sink.
30281ad6265SDimitry Andric   if (AccSink[0] < AccSrc[0])
30381ad6265SDimitry Andric     std::swap(Src, Sink);
30481ad6265SDimitry Andric 
30581ad6265SDimitry Andric   auto *SrcAR = dyn_cast<SCEVAddRecExpr>(Src->Expr);
30681ad6265SDimitry Andric   auto *SinkAR = dyn_cast<SCEVAddRecExpr>(Sink->Expr);
307a4a491e2SDimitry Andric   if (!SrcAR || !SinkAR || SrcAR->getLoop() != DC.getInnermostLoop() ||
3080fca6ea1SDimitry Andric       SinkAR->getLoop() != DC.getInnermostLoop())
3090fca6ea1SDimitry Andric     return false;
31081ad6265SDimitry Andric 
31181ad6265SDimitry Andric   SmallVector<Instruction *, 4> SrcInsts =
31281ad6265SDimitry Andric       DC.getInstructionsForAccess(Src->PointerValue, Src->IsWritePtr);
31381ad6265SDimitry Andric   SmallVector<Instruction *, 4> SinkInsts =
31481ad6265SDimitry Andric       DC.getInstructionsForAccess(Sink->PointerValue, Sink->IsWritePtr);
31581ad6265SDimitry Andric   Type *SrcTy = getLoadStoreType(SrcInsts[0]);
31681ad6265SDimitry Andric   Type *DstTy = getLoadStoreType(SinkInsts[0]);
3170fca6ea1SDimitry Andric   if (isa<ScalableVectorType>(SrcTy) || isa<ScalableVectorType>(DstTy))
3180fca6ea1SDimitry Andric     return false;
3190fca6ea1SDimitry Andric 
320bdd1243dSDimitry Andric   const DataLayout &DL =
3210fca6ea1SDimitry Andric       SinkAR->getLoop()->getHeader()->getDataLayout();
32281ad6265SDimitry Andric   unsigned AllocSize =
32381ad6265SDimitry Andric       std::max(DL.getTypeAllocSize(SrcTy), DL.getTypeAllocSize(DstTy));
32481ad6265SDimitry Andric 
32581ad6265SDimitry Andric   // Only matching constant steps matching the AllocSize are supported at the
32681ad6265SDimitry Andric   // moment. This simplifies the difference computation. Can be extended in the
32781ad6265SDimitry Andric   // future.
32881ad6265SDimitry Andric   auto *Step = dyn_cast<SCEVConstant>(SinkAR->getStepRecurrence(*SE));
32981ad6265SDimitry Andric   if (!Step || Step != SrcAR->getStepRecurrence(*SE) ||
3300fca6ea1SDimitry Andric       Step->getAPInt().abs() != AllocSize)
3310fca6ea1SDimitry Andric     return false;
33281ad6265SDimitry Andric 
333bdd1243dSDimitry Andric   IntegerType *IntTy =
334bdd1243dSDimitry Andric       IntegerType::get(Src->PointerValue->getContext(),
335bdd1243dSDimitry Andric                        DL.getPointerSizeInBits(CGI.AddressSpace));
336bdd1243dSDimitry Andric 
33781ad6265SDimitry Andric   // When counting down, the dependence distance needs to be swapped.
33881ad6265SDimitry Andric   if (Step->getValue()->isNegative())
33981ad6265SDimitry Andric     std::swap(SinkAR, SrcAR);
34081ad6265SDimitry Andric 
34181ad6265SDimitry Andric   const SCEV *SinkStartInt = SE->getPtrToIntExpr(SinkAR->getStart(), IntTy);
34281ad6265SDimitry Andric   const SCEV *SrcStartInt = SE->getPtrToIntExpr(SrcAR->getStart(), IntTy);
34381ad6265SDimitry Andric   if (isa<SCEVCouldNotCompute>(SinkStartInt) ||
3440fca6ea1SDimitry Andric       isa<SCEVCouldNotCompute>(SrcStartInt))
3450fca6ea1SDimitry Andric     return false;
3465f757f3fSDimitry Andric 
3475f757f3fSDimitry Andric   const Loop *InnerLoop = SrcAR->getLoop();
3485f757f3fSDimitry Andric   // If the start values for both Src and Sink also vary according to an outer
3495f757f3fSDimitry Andric   // loop, then it's probably better to avoid creating diff checks because
3505f757f3fSDimitry Andric   // they may not be hoisted. We should instead let llvm::addRuntimeChecks
3515f757f3fSDimitry Andric   // do the expanded full range overlap checks, which can be hoisted.
3525f757f3fSDimitry Andric   if (HoistRuntimeChecks && InnerLoop->getParentLoop() &&
3535f757f3fSDimitry Andric       isa<SCEVAddRecExpr>(SinkStartInt) && isa<SCEVAddRecExpr>(SrcStartInt)) {
3545f757f3fSDimitry Andric     auto *SrcStartAR = cast<SCEVAddRecExpr>(SrcStartInt);
3555f757f3fSDimitry Andric     auto *SinkStartAR = cast<SCEVAddRecExpr>(SinkStartInt);
3565f757f3fSDimitry Andric     const Loop *StartARLoop = SrcStartAR->getLoop();
3575f757f3fSDimitry Andric     if (StartARLoop == SinkStartAR->getLoop() &&
3585f757f3fSDimitry Andric         StartARLoop == InnerLoop->getParentLoop() &&
3595f757f3fSDimitry Andric         // If the diff check would already be loop invariant (due to the
3605f757f3fSDimitry Andric         // recurrences being the same), then we prefer to keep the diff checks
3615f757f3fSDimitry Andric         // because they are cheaper.
3625f757f3fSDimitry Andric         SrcStartAR->getStepRecurrence(*SE) !=
3635f757f3fSDimitry Andric             SinkStartAR->getStepRecurrence(*SE)) {
3645f757f3fSDimitry Andric       LLVM_DEBUG(dbgs() << "LAA: Not creating diff runtime check, since these "
3655f757f3fSDimitry Andric                            "cannot be hoisted out of the outer loop\n");
3660fca6ea1SDimitry Andric       return false;
3675f757f3fSDimitry Andric     }
3685f757f3fSDimitry Andric   }
3695f757f3fSDimitry Andric 
3705f757f3fSDimitry Andric   LLVM_DEBUG(dbgs() << "LAA: Creating diff runtime check for:\n"
3715f757f3fSDimitry Andric                     << "SrcStart: " << *SrcStartInt << '\n'
3725f757f3fSDimitry Andric                     << "SinkStartInt: " << *SinkStartInt << '\n');
37381ad6265SDimitry Andric   DiffChecks.emplace_back(SrcStartInt, SinkStartInt, AllocSize,
37481ad6265SDimitry Andric                           Src->NeedsFreeze || Sink->NeedsFreeze);
3750fca6ea1SDimitry Andric   return true;
37681ad6265SDimitry Andric }
37781ad6265SDimitry Andric 
37881ad6265SDimitry Andric SmallVector<RuntimePointerCheck, 4> RuntimePointerChecking::generateChecks() {
3795ffd83dbSDimitry Andric   SmallVector<RuntimePointerCheck, 4> Checks;
3800b57cec5SDimitry Andric 
3810b57cec5SDimitry Andric   for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
3820b57cec5SDimitry Andric     for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) {
3835ffd83dbSDimitry Andric       const RuntimeCheckingPtrGroup &CGI = CheckingGroups[I];
3845ffd83dbSDimitry Andric       const RuntimeCheckingPtrGroup &CGJ = CheckingGroups[J];
3850b57cec5SDimitry Andric 
38681ad6265SDimitry Andric       if (needsChecking(CGI, CGJ)) {
3870fca6ea1SDimitry Andric         CanUseDiffCheck = CanUseDiffCheck && tryToCreateDiffCheck(CGI, CGJ);
3880b57cec5SDimitry Andric         Checks.push_back(std::make_pair(&CGI, &CGJ));
3890b57cec5SDimitry Andric       }
3900b57cec5SDimitry Andric     }
39181ad6265SDimitry Andric   }
3920b57cec5SDimitry Andric   return Checks;
3930b57cec5SDimitry Andric }
3940b57cec5SDimitry Andric 
3950b57cec5SDimitry Andric void RuntimePointerChecking::generateChecks(
3960b57cec5SDimitry Andric     MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
3970b57cec5SDimitry Andric   assert(Checks.empty() && "Checks is not empty");
3980b57cec5SDimitry Andric   groupChecks(DepCands, UseDependencies);
3990b57cec5SDimitry Andric   Checks = generateChecks();
4000b57cec5SDimitry Andric }
4010b57cec5SDimitry Andric 
4025ffd83dbSDimitry Andric bool RuntimePointerChecking::needsChecking(
4035ffd83dbSDimitry Andric     const RuntimeCheckingPtrGroup &M, const RuntimeCheckingPtrGroup &N) const {
4040fca6ea1SDimitry Andric   for (const auto &I : M.Members)
4050fca6ea1SDimitry Andric     for (const auto &J : N.Members)
4060fca6ea1SDimitry Andric       if (needsChecking(I, J))
4070b57cec5SDimitry Andric         return true;
4080b57cec5SDimitry Andric   return false;
4090b57cec5SDimitry Andric }
4100b57cec5SDimitry Andric 
4110b57cec5SDimitry Andric /// Compare \p I and \p J and return the minimum.
4120b57cec5SDimitry Andric /// Return nullptr in case we couldn't find an answer.
4130b57cec5SDimitry Andric static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J,
4140b57cec5SDimitry Andric                                    ScalarEvolution *SE) {
4150b57cec5SDimitry Andric   const SCEV *Diff = SE->getMinusSCEV(J, I);
4160b57cec5SDimitry Andric   const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff);
4170b57cec5SDimitry Andric 
4180b57cec5SDimitry Andric   if (!C)
4190b57cec5SDimitry Andric     return nullptr;
4200fca6ea1SDimitry Andric   return C->getValue()->isNegative() ? J : I;
4210b57cec5SDimitry Andric }
4220b57cec5SDimitry Andric 
423fe6060f1SDimitry Andric bool RuntimeCheckingPtrGroup::addPointer(unsigned Index,
424fe6060f1SDimitry Andric                                          RuntimePointerChecking &RtCheck) {
425fe6060f1SDimitry Andric   return addPointer(
426fe6060f1SDimitry Andric       Index, RtCheck.Pointers[Index].Start, RtCheck.Pointers[Index].End,
427fe6060f1SDimitry Andric       RtCheck.Pointers[Index].PointerValue->getType()->getPointerAddressSpace(),
42881ad6265SDimitry Andric       RtCheck.Pointers[Index].NeedsFreeze, *RtCheck.SE);
429fe6060f1SDimitry Andric }
430fe6060f1SDimitry Andric 
431fe6060f1SDimitry Andric bool RuntimeCheckingPtrGroup::addPointer(unsigned Index, const SCEV *Start,
432fe6060f1SDimitry Andric                                          const SCEV *End, unsigned AS,
43381ad6265SDimitry Andric                                          bool NeedsFreeze,
434fe6060f1SDimitry Andric                                          ScalarEvolution &SE) {
435fe6060f1SDimitry Andric   assert(AddressSpace == AS &&
436fe6060f1SDimitry Andric          "all pointers in a checking group must be in the same address space");
4370b57cec5SDimitry Andric 
4380b57cec5SDimitry Andric   // Compare the starts and ends with the known minimum and maximum
4390b57cec5SDimitry Andric   // of this set. We need to know how we compare against the min/max
4400b57cec5SDimitry Andric   // of the set in order to be able to emit memchecks.
441fe6060f1SDimitry Andric   const SCEV *Min0 = getMinFromExprs(Start, Low, &SE);
4420b57cec5SDimitry Andric   if (!Min0)
4430b57cec5SDimitry Andric     return false;
4440b57cec5SDimitry Andric 
445fe6060f1SDimitry Andric   const SCEV *Min1 = getMinFromExprs(End, High, &SE);
4460b57cec5SDimitry Andric   if (!Min1)
4470b57cec5SDimitry Andric     return false;
4480b57cec5SDimitry Andric 
4490b57cec5SDimitry Andric   // Update the low bound  expression if we've found a new min value.
4500b57cec5SDimitry Andric   if (Min0 == Start)
4510b57cec5SDimitry Andric     Low = Start;
4520b57cec5SDimitry Andric 
4530b57cec5SDimitry Andric   // Update the high bound expression if we've found a new max value.
4540b57cec5SDimitry Andric   if (Min1 != End)
4550b57cec5SDimitry Andric     High = End;
4560b57cec5SDimitry Andric 
4570b57cec5SDimitry Andric   Members.push_back(Index);
45881ad6265SDimitry Andric   this->NeedsFreeze |= NeedsFreeze;
4590b57cec5SDimitry Andric   return true;
4600b57cec5SDimitry Andric }
4610b57cec5SDimitry Andric 
4620b57cec5SDimitry Andric void RuntimePointerChecking::groupChecks(
4630b57cec5SDimitry Andric     MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
4640b57cec5SDimitry Andric   // We build the groups from dependency candidates equivalence classes
4650b57cec5SDimitry Andric   // because:
4660b57cec5SDimitry Andric   //    - We know that pointers in the same equivalence class share
4670b57cec5SDimitry Andric   //      the same underlying object and therefore there is a chance
4680b57cec5SDimitry Andric   //      that we can compare pointers
4690b57cec5SDimitry Andric   //    - We wouldn't be able to merge two pointers for which we need
4700b57cec5SDimitry Andric   //      to emit a memcheck. The classes in DepCands are already
4710b57cec5SDimitry Andric   //      conveniently built such that no two pointers in the same
4720b57cec5SDimitry Andric   //      class need checking against each other.
4730b57cec5SDimitry Andric 
4740b57cec5SDimitry Andric   // We use the following (greedy) algorithm to construct the groups
4750b57cec5SDimitry Andric   // For every pointer in the equivalence class:
4760b57cec5SDimitry Andric   //   For each existing group:
4770b57cec5SDimitry Andric   //   - if the difference between this pointer and the min/max bounds
4780b57cec5SDimitry Andric   //     of the group is a constant, then make the pointer part of the
4790b57cec5SDimitry Andric   //     group and update the min/max bounds of that group as required.
4800b57cec5SDimitry Andric 
4810b57cec5SDimitry Andric   CheckingGroups.clear();
4820b57cec5SDimitry Andric 
4830b57cec5SDimitry Andric   // If we need to check two pointers to the same underlying object
4840b57cec5SDimitry Andric   // with a non-constant difference, we shouldn't perform any pointer
4850b57cec5SDimitry Andric   // grouping with those pointers. This is because we can easily get
4860b57cec5SDimitry Andric   // into cases where the resulting check would return false, even when
4870b57cec5SDimitry Andric   // the accesses are safe.
4880b57cec5SDimitry Andric   //
4890b57cec5SDimitry Andric   // The following example shows this:
4900b57cec5SDimitry Andric   // for (i = 0; i < 1000; ++i)
4910b57cec5SDimitry Andric   //   a[5000 + i * m] = a[i] + a[i + 9000]
4920b57cec5SDimitry Andric   //
4930b57cec5SDimitry Andric   // Here grouping gives a check of (5000, 5000 + 1000 * m) against
4940b57cec5SDimitry Andric   // (0, 10000) which is always false. However, if m is 1, there is no
4950b57cec5SDimitry Andric   // dependence. Not grouping the checks for a[i] and a[i + 9000] allows
4960b57cec5SDimitry Andric   // us to perform an accurate check in this case.
4970b57cec5SDimitry Andric   //
4980b57cec5SDimitry Andric   // The above case requires that we have an UnknownDependence between
4990b57cec5SDimitry Andric   // accesses to the same underlying object. This cannot happen unless
5000b57cec5SDimitry Andric   // FoundNonConstantDistanceDependence is set, and therefore UseDependencies
5010b57cec5SDimitry Andric   // is also false. In this case we will use the fallback path and create
5020b57cec5SDimitry Andric   // separate checking groups for all pointers.
5030b57cec5SDimitry Andric 
5040b57cec5SDimitry Andric   // If we don't have the dependency partitions, construct a new
5050b57cec5SDimitry Andric   // checking pointer group for each pointer. This is also required
5060b57cec5SDimitry Andric   // for correctness, because in this case we can have checking between
5070b57cec5SDimitry Andric   // pointers to the same underlying object.
5080b57cec5SDimitry Andric   if (!UseDependencies) {
5090b57cec5SDimitry Andric     for (unsigned I = 0; I < Pointers.size(); ++I)
5105ffd83dbSDimitry Andric       CheckingGroups.push_back(RuntimeCheckingPtrGroup(I, *this));
5110b57cec5SDimitry Andric     return;
5120b57cec5SDimitry Andric   }
5130b57cec5SDimitry Andric 
5140b57cec5SDimitry Andric   unsigned TotalComparisons = 0;
5150b57cec5SDimitry Andric 
51681ad6265SDimitry Andric   DenseMap<Value *, SmallVector<unsigned>> PositionMap;
51781ad6265SDimitry Andric   for (unsigned Index = 0; Index < Pointers.size(); ++Index) {
5180fca6ea1SDimitry Andric     auto [It, _] = PositionMap.insert({Pointers[Index].PointerValue, {}});
5190fca6ea1SDimitry Andric     It->second.push_back(Index);
52081ad6265SDimitry Andric   }
5210b57cec5SDimitry Andric 
5220b57cec5SDimitry Andric   // We need to keep track of what pointers we've already seen so we
5230b57cec5SDimitry Andric   // don't process them twice.
5240b57cec5SDimitry Andric   SmallSet<unsigned, 2> Seen;
5250b57cec5SDimitry Andric 
5260b57cec5SDimitry Andric   // Go through all equivalence classes, get the "pointer check groups"
5270b57cec5SDimitry Andric   // and add them to the overall solution. We use the order in which accesses
5280b57cec5SDimitry Andric   // appear in 'Pointers' to enforce determinism.
5290b57cec5SDimitry Andric   for (unsigned I = 0; I < Pointers.size(); ++I) {
5300b57cec5SDimitry Andric     // We've seen this pointer before, and therefore already processed
5310b57cec5SDimitry Andric     // its equivalence class.
5320b57cec5SDimitry Andric     if (Seen.count(I))
5330b57cec5SDimitry Andric       continue;
5340b57cec5SDimitry Andric 
5350b57cec5SDimitry Andric     MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue,
5360b57cec5SDimitry Andric                                            Pointers[I].IsWritePtr);
5370b57cec5SDimitry Andric 
5385ffd83dbSDimitry Andric     SmallVector<RuntimeCheckingPtrGroup, 2> Groups;
5390b57cec5SDimitry Andric     auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access));
5400b57cec5SDimitry Andric 
5410b57cec5SDimitry Andric     // Because DepCands is constructed by visiting accesses in the order in
5420b57cec5SDimitry Andric     // which they appear in alias sets (which is deterministic) and the
5430b57cec5SDimitry Andric     // iteration order within an equivalence class member is only dependent on
5440b57cec5SDimitry Andric     // the order in which unions and insertions are performed on the
5450b57cec5SDimitry Andric     // equivalence class, the iteration order is deterministic.
5460b57cec5SDimitry Andric     for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end();
5470b57cec5SDimitry Andric          MI != ME; ++MI) {
5481106035dSDimitry Andric       auto PointerI = PositionMap.find(MI->getPointer());
5491106035dSDimitry Andric       assert(PointerI != PositionMap.end() &&
5501106035dSDimitry Andric              "pointer in equivalence class not found in PositionMap");
55181ad6265SDimitry Andric       for (unsigned Pointer : PointerI->second) {
5520b57cec5SDimitry Andric         bool Merged = false;
5530b57cec5SDimitry Andric         // Mark this pointer as seen.
5540b57cec5SDimitry Andric         Seen.insert(Pointer);
5550b57cec5SDimitry Andric 
5560b57cec5SDimitry Andric         // Go through all the existing sets and see if we can find one
5570b57cec5SDimitry Andric         // which can include this pointer.
5585ffd83dbSDimitry Andric         for (RuntimeCheckingPtrGroup &Group : Groups) {
5590b57cec5SDimitry Andric           // Don't perform more than a certain amount of comparisons.
5600b57cec5SDimitry Andric           // This should limit the cost of grouping the pointers to something
5610b57cec5SDimitry Andric           // reasonable.  If we do end up hitting this threshold, the algorithm
5620b57cec5SDimitry Andric           // will create separate groups for all remaining pointers.
5630b57cec5SDimitry Andric           if (TotalComparisons > MemoryCheckMergeThreshold)
5640b57cec5SDimitry Andric             break;
5650b57cec5SDimitry Andric 
5660b57cec5SDimitry Andric           TotalComparisons++;
5670b57cec5SDimitry Andric 
568fe6060f1SDimitry Andric           if (Group.addPointer(Pointer, *this)) {
5690b57cec5SDimitry Andric             Merged = true;
5700b57cec5SDimitry Andric             break;
5710b57cec5SDimitry Andric           }
5720b57cec5SDimitry Andric         }
5730b57cec5SDimitry Andric 
5740b57cec5SDimitry Andric         if (!Merged)
5750b57cec5SDimitry Andric           // We couldn't add this pointer to any existing set or the threshold
5760b57cec5SDimitry Andric           // for the number of comparisons has been reached. Create a new group
5770b57cec5SDimitry Andric           // to hold the current pointer.
5785ffd83dbSDimitry Andric           Groups.push_back(RuntimeCheckingPtrGroup(Pointer, *this));
5790b57cec5SDimitry Andric       }
58081ad6265SDimitry Andric     }
5810b57cec5SDimitry Andric 
5820b57cec5SDimitry Andric     // We've computed the grouped checks for this partition.
5830b57cec5SDimitry Andric     // Save the results and continue with the next one.
5840b57cec5SDimitry Andric     llvm::copy(Groups, std::back_inserter(CheckingGroups));
5850b57cec5SDimitry Andric   }
5860b57cec5SDimitry Andric }
5870b57cec5SDimitry Andric 
5880b57cec5SDimitry Andric bool RuntimePointerChecking::arePointersInSamePartition(
5890b57cec5SDimitry Andric     const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1,
5900b57cec5SDimitry Andric     unsigned PtrIdx2) {
5910b57cec5SDimitry Andric   return (PtrToPartition[PtrIdx1] != -1 &&
5920b57cec5SDimitry Andric           PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]);
5930b57cec5SDimitry Andric }
5940b57cec5SDimitry Andric 
5950b57cec5SDimitry Andric bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const {
5960b57cec5SDimitry Andric   const PointerInfo &PointerI = Pointers[I];
5970b57cec5SDimitry Andric   const PointerInfo &PointerJ = Pointers[J];
5980b57cec5SDimitry Andric 
5990b57cec5SDimitry Andric   // No need to check if two readonly pointers intersect.
6000b57cec5SDimitry Andric   if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr)
6010b57cec5SDimitry Andric     return false;
6020b57cec5SDimitry Andric 
6030b57cec5SDimitry Andric   // Only need to check pointers between two different dependency sets.
6040b57cec5SDimitry Andric   if (PointerI.DependencySetId == PointerJ.DependencySetId)
6050b57cec5SDimitry Andric     return false;
6060b57cec5SDimitry Andric 
6070b57cec5SDimitry Andric   // Only need to check pointers in the same alias set.
6080b57cec5SDimitry Andric   if (PointerI.AliasSetId != PointerJ.AliasSetId)
6090b57cec5SDimitry Andric     return false;
6100b57cec5SDimitry Andric 
6110b57cec5SDimitry Andric   return true;
6120b57cec5SDimitry Andric }
6130b57cec5SDimitry Andric 
6140b57cec5SDimitry Andric void RuntimePointerChecking::printChecks(
6155ffd83dbSDimitry Andric     raw_ostream &OS, const SmallVectorImpl<RuntimePointerCheck> &Checks,
6160b57cec5SDimitry Andric     unsigned Depth) const {
6170b57cec5SDimitry Andric   unsigned N = 0;
6180fca6ea1SDimitry Andric   for (const auto &[Check1, Check2] : Checks) {
6190fca6ea1SDimitry Andric     const auto &First = Check1->Members, &Second = Check2->Members;
6200b57cec5SDimitry Andric 
6210b57cec5SDimitry Andric     OS.indent(Depth) << "Check " << N++ << ":\n";
6220b57cec5SDimitry Andric 
6230fca6ea1SDimitry Andric     OS.indent(Depth + 2) << "Comparing group (" << Check1 << "):\n";
6240fca6ea1SDimitry Andric     for (unsigned K : First)
6250fca6ea1SDimitry Andric       OS.indent(Depth + 2) << *Pointers[K].PointerValue << "\n";
6260b57cec5SDimitry Andric 
6270fca6ea1SDimitry Andric     OS.indent(Depth + 2) << "Against group (" << Check2 << "):\n";
6280fca6ea1SDimitry Andric     for (unsigned K : Second)
6290fca6ea1SDimitry Andric       OS.indent(Depth + 2) << *Pointers[K].PointerValue << "\n";
6300b57cec5SDimitry Andric   }
6310b57cec5SDimitry Andric }
6320b57cec5SDimitry Andric 
6330b57cec5SDimitry Andric void RuntimePointerChecking::print(raw_ostream &OS, unsigned Depth) const {
6340b57cec5SDimitry Andric 
6350b57cec5SDimitry Andric   OS.indent(Depth) << "Run-time memory checks:\n";
6360b57cec5SDimitry Andric   printChecks(OS, Checks, Depth);
6370b57cec5SDimitry Andric 
6380b57cec5SDimitry Andric   OS.indent(Depth) << "Grouped accesses:\n";
6390fca6ea1SDimitry Andric   for (const auto &CG : CheckingGroups) {
6400b57cec5SDimitry Andric     OS.indent(Depth + 2) << "Group " << &CG << ":\n";
6410b57cec5SDimitry Andric     OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High
6420b57cec5SDimitry Andric                          << ")\n";
6430fca6ea1SDimitry Andric     for (unsigned Member : CG.Members) {
6440fca6ea1SDimitry Andric       OS.indent(Depth + 6) << "Member: " << *Pointers[Member].Expr << "\n";
6450b57cec5SDimitry Andric     }
6460b57cec5SDimitry Andric   }
6470b57cec5SDimitry Andric }
6480b57cec5SDimitry Andric 
6490b57cec5SDimitry Andric namespace {
6500b57cec5SDimitry Andric 
6510b57cec5SDimitry Andric /// Analyses memory accesses in a loop.
6520b57cec5SDimitry Andric ///
6530b57cec5SDimitry Andric /// Checks whether run time pointer checks are needed and builds sets for data
6540b57cec5SDimitry Andric /// dependence checking.
6550b57cec5SDimitry Andric class AccessAnalysis {
6560b57cec5SDimitry Andric public:
6570b57cec5SDimitry Andric   /// Read or write access location.
6580b57cec5SDimitry Andric   typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
6590b57cec5SDimitry Andric   typedef SmallVector<MemAccessInfo, 8> MemAccessInfoList;
6600b57cec5SDimitry Andric 
661e8d8bef9SDimitry Andric   AccessAnalysis(Loop *TheLoop, AAResults *AA, LoopInfo *LI,
662e8d8bef9SDimitry Andric                  MemoryDepChecker::DepCandidates &DA,
663b3edf446SDimitry Andric                  PredicatedScalarEvolution &PSE,
664b3edf446SDimitry Andric                  SmallPtrSetImpl<MDNode *> &LoopAliasScopes)
665b3edf446SDimitry Andric       : TheLoop(TheLoop), BAA(*AA), AST(BAA), LI(LI), DepCands(DA), PSE(PSE),
666b3edf446SDimitry Andric         LoopAliasScopes(LoopAliasScopes) {
667bdd1243dSDimitry Andric     // We're analyzing dependences across loop iterations.
668bdd1243dSDimitry Andric     BAA.enableCrossIterationMode();
669bdd1243dSDimitry Andric   }
6700b57cec5SDimitry Andric 
6710b57cec5SDimitry Andric   /// Register a load  and whether it is only read from.
67281ad6265SDimitry Andric   void addLoad(MemoryLocation &Loc, Type *AccessTy, bool IsReadOnly) {
6730b57cec5SDimitry Andric     Value *Ptr = const_cast<Value *>(Loc.Ptr);
674b3edf446SDimitry Andric     AST.add(adjustLoc(Loc));
67581ad6265SDimitry Andric     Accesses[MemAccessInfo(Ptr, false)].insert(AccessTy);
6760b57cec5SDimitry Andric     if (IsReadOnly)
6770b57cec5SDimitry Andric       ReadOnlyPtr.insert(Ptr);
6780b57cec5SDimitry Andric   }
6790b57cec5SDimitry Andric 
6800b57cec5SDimitry Andric   /// Register a store.
68181ad6265SDimitry Andric   void addStore(MemoryLocation &Loc, Type *AccessTy) {
6820b57cec5SDimitry Andric     Value *Ptr = const_cast<Value *>(Loc.Ptr);
683b3edf446SDimitry Andric     AST.add(adjustLoc(Loc));
68481ad6265SDimitry Andric     Accesses[MemAccessInfo(Ptr, true)].insert(AccessTy);
6850b57cec5SDimitry Andric   }
6860b57cec5SDimitry Andric 
6870b57cec5SDimitry Andric   /// Check if we can emit a run-time no-alias check for \p Access.
6880b57cec5SDimitry Andric   ///
6890b57cec5SDimitry Andric   /// Returns true if we can emit a run-time no alias check for \p Access.
6900b57cec5SDimitry Andric   /// If we can check this access, this also adds it to a dependence set and
6910b57cec5SDimitry Andric   /// adds a run-time to check for it to \p RtCheck. If \p Assume is true,
6920b57cec5SDimitry Andric   /// we will attempt to use additional run-time checks in order to get
6930b57cec5SDimitry Andric   /// the bounds of the pointer.
6940b57cec5SDimitry Andric   bool createCheckForAccess(RuntimePointerChecking &RtCheck,
69581ad6265SDimitry Andric                             MemAccessInfo Access, Type *AccessTy,
69606c3fb27SDimitry Andric                             const DenseMap<Value *, const SCEV *> &Strides,
6970b57cec5SDimitry Andric                             DenseMap<Value *, unsigned> &DepSetId,
6980b57cec5SDimitry Andric                             Loop *TheLoop, unsigned &RunningDepId,
69981ad6265SDimitry Andric                             unsigned ASId, bool ShouldCheckStride, bool Assume);
7000b57cec5SDimitry Andric 
7010b57cec5SDimitry Andric   /// Check whether we can check the pointers at runtime for
7020b57cec5SDimitry Andric   /// non-intersection.
7030b57cec5SDimitry Andric   ///
7040b57cec5SDimitry Andric   /// Returns true if we need no check or if we do and we can generate them
7050b57cec5SDimitry Andric   /// (i.e. the pointers have computable bounds).
7060b57cec5SDimitry Andric   bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE,
70706c3fb27SDimitry Andric                        Loop *TheLoop, const DenseMap<Value *, const SCEV *> &Strides,
70881ad6265SDimitry Andric                        Value *&UncomputablePtr, bool ShouldCheckWrap = false);
7090b57cec5SDimitry Andric 
7100b57cec5SDimitry Andric   /// Goes over all memory accesses, checks whether a RT check is needed
7110b57cec5SDimitry Andric   /// and builds sets of dependent accesses.
7120b57cec5SDimitry Andric   void buildDependenceSets() {
7130b57cec5SDimitry Andric     processMemAccesses();
7140b57cec5SDimitry Andric   }
7150b57cec5SDimitry Andric 
7160b57cec5SDimitry Andric   /// Initial processing of memory accesses determined that we need to
7170b57cec5SDimitry Andric   /// perform dependency checking.
7180b57cec5SDimitry Andric   ///
7190b57cec5SDimitry Andric   /// Note that this can later be cleared if we retry memcheck analysis without
7200b57cec5SDimitry Andric   /// dependency checking (i.e. FoundNonConstantDistanceDependence).
7210b57cec5SDimitry Andric   bool isDependencyCheckNeeded() { return !CheckDeps.empty(); }
7220b57cec5SDimitry Andric 
7230b57cec5SDimitry Andric   /// We decided that no dependence analysis would be used.  Reset the state.
7240b57cec5SDimitry Andric   void resetDepChecks(MemoryDepChecker &DepChecker) {
7250b57cec5SDimitry Andric     CheckDeps.clear();
7260b57cec5SDimitry Andric     DepChecker.clearDependences();
7270b57cec5SDimitry Andric   }
7280b57cec5SDimitry Andric 
7290b57cec5SDimitry Andric   MemAccessInfoList &getDependenciesToCheck() { return CheckDeps; }
7300b57cec5SDimitry Andric 
7310b57cec5SDimitry Andric private:
73281ad6265SDimitry Andric   typedef MapVector<MemAccessInfo, SmallSetVector<Type *, 1>> PtrAccessMap;
7330b57cec5SDimitry Andric 
734b3edf446SDimitry Andric   /// Adjust the MemoryLocation so that it represents accesses to this
735b3edf446SDimitry Andric   /// location across all iterations, rather than a single one.
736b3edf446SDimitry Andric   MemoryLocation adjustLoc(MemoryLocation Loc) const {
737b3edf446SDimitry Andric     // The accessed location varies within the loop, but remains within the
738b3edf446SDimitry Andric     // underlying object.
739b3edf446SDimitry Andric     Loc.Size = LocationSize::beforeOrAfterPointer();
740b3edf446SDimitry Andric     Loc.AATags.Scope = adjustAliasScopeList(Loc.AATags.Scope);
741b3edf446SDimitry Andric     Loc.AATags.NoAlias = adjustAliasScopeList(Loc.AATags.NoAlias);
742b3edf446SDimitry Andric     return Loc;
743b3edf446SDimitry Andric   }
744b3edf446SDimitry Andric 
745b3edf446SDimitry Andric   /// Drop alias scopes that are only valid within a single loop iteration.
746b3edf446SDimitry Andric   MDNode *adjustAliasScopeList(MDNode *ScopeList) const {
747b3edf446SDimitry Andric     if (!ScopeList)
748b3edf446SDimitry Andric       return nullptr;
749b3edf446SDimitry Andric 
750b3edf446SDimitry Andric     // For the sake of simplicity, drop the whole scope list if any scope is
751b3edf446SDimitry Andric     // iteration-local.
752b3edf446SDimitry Andric     if (any_of(ScopeList->operands(), [&](Metadata *Scope) {
753b3edf446SDimitry Andric           return LoopAliasScopes.contains(cast<MDNode>(Scope));
754b3edf446SDimitry Andric         }))
755b3edf446SDimitry Andric       return nullptr;
756b3edf446SDimitry Andric 
757b3edf446SDimitry Andric     return ScopeList;
758b3edf446SDimitry Andric   }
759b3edf446SDimitry Andric 
7600b57cec5SDimitry Andric   /// Go over all memory access and check whether runtime pointer checks
7610b57cec5SDimitry Andric   /// are needed and build sets of dependency check candidates.
7620b57cec5SDimitry Andric   void processMemAccesses();
7630b57cec5SDimitry Andric 
76481ad6265SDimitry Andric   /// Map of all accesses. Values are the types used to access memory pointed to
76581ad6265SDimitry Andric   /// by the pointer.
76681ad6265SDimitry Andric   PtrAccessMap Accesses;
7670b57cec5SDimitry Andric 
7680b57cec5SDimitry Andric   /// The loop being checked.
7690b57cec5SDimitry Andric   const Loop *TheLoop;
7700b57cec5SDimitry Andric 
7710b57cec5SDimitry Andric   /// List of accesses that need a further dependence check.
7720b57cec5SDimitry Andric   MemAccessInfoList CheckDeps;
7730b57cec5SDimitry Andric 
7740b57cec5SDimitry Andric   /// Set of pointers that are read only.
7750b57cec5SDimitry Andric   SmallPtrSet<Value*, 16> ReadOnlyPtr;
7760b57cec5SDimitry Andric 
777bdd1243dSDimitry Andric   /// Batched alias analysis results.
778bdd1243dSDimitry Andric   BatchAAResults BAA;
779bdd1243dSDimitry Andric 
7800b57cec5SDimitry Andric   /// An alias set tracker to partition the access set by underlying object and
7810b57cec5SDimitry Andric   //intrinsic property (such as TBAA metadata).
7820b57cec5SDimitry Andric   AliasSetTracker AST;
7830b57cec5SDimitry Andric 
7840b57cec5SDimitry Andric   LoopInfo *LI;
7850b57cec5SDimitry Andric 
7860b57cec5SDimitry Andric   /// Sets of potentially dependent accesses - members of one set share an
7870b57cec5SDimitry Andric   /// underlying pointer. The set "CheckDeps" identfies which sets really need a
7880b57cec5SDimitry Andric   /// dependence check.
7890b57cec5SDimitry Andric   MemoryDepChecker::DepCandidates &DepCands;
7900b57cec5SDimitry Andric 
7910b57cec5SDimitry Andric   /// Initial processing of memory accesses determined that we may need
7920b57cec5SDimitry Andric   /// to add memchecks.  Perform the analysis to determine the necessary checks.
7930b57cec5SDimitry Andric   ///
7940b57cec5SDimitry Andric   /// Note that, this is different from isDependencyCheckNeeded.  When we retry
7950b57cec5SDimitry Andric   /// memcheck analysis without dependency checking
7960b57cec5SDimitry Andric   /// (i.e. FoundNonConstantDistanceDependence), isDependencyCheckNeeded is
7970b57cec5SDimitry Andric   /// cleared while this remains set if we have potentially dependent accesses.
79804eeddc0SDimitry Andric   bool IsRTCheckAnalysisNeeded = false;
7990b57cec5SDimitry Andric 
8000b57cec5SDimitry Andric   /// The SCEV predicate containing all the SCEV-related assumptions.
8010b57cec5SDimitry Andric   PredicatedScalarEvolution &PSE;
8025f757f3fSDimitry Andric 
8035f757f3fSDimitry Andric   DenseMap<Value *, SmallVector<const Value *, 16>> UnderlyingObjects;
804b3edf446SDimitry Andric 
805b3edf446SDimitry Andric   /// Alias scopes that are declared inside the loop, and as such not valid
806b3edf446SDimitry Andric   /// across iterations.
807b3edf446SDimitry Andric   SmallPtrSetImpl<MDNode *> &LoopAliasScopes;
8080b57cec5SDimitry Andric };
8090b57cec5SDimitry Andric 
8100b57cec5SDimitry Andric } // end anonymous namespace
8110b57cec5SDimitry Andric 
8120b57cec5SDimitry Andric /// Check whether a pointer can participate in a runtime bounds check.
8130b57cec5SDimitry Andric /// If \p Assume, try harder to prove that we can compute the bounds of \p Ptr
8140b57cec5SDimitry Andric /// by adding run-time checks (overflow checks) if necessary.
81581ad6265SDimitry Andric static bool hasComputableBounds(PredicatedScalarEvolution &PSE, Value *Ptr,
81681ad6265SDimitry Andric                                 const SCEV *PtrScev, Loop *L, bool Assume) {
8170b57cec5SDimitry Andric   // The bounds for loop-invariant pointer is trivial.
8180b57cec5SDimitry Andric   if (PSE.getSE()->isLoopInvariant(PtrScev, L))
8190b57cec5SDimitry Andric     return true;
8200b57cec5SDimitry Andric 
8210b57cec5SDimitry Andric   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
8220b57cec5SDimitry Andric 
8230b57cec5SDimitry Andric   if (!AR && Assume)
8240b57cec5SDimitry Andric     AR = PSE.getAsAddRec(Ptr);
8250b57cec5SDimitry Andric 
8260b57cec5SDimitry Andric   if (!AR)
8270b57cec5SDimitry Andric     return false;
8280b57cec5SDimitry Andric 
8290b57cec5SDimitry Andric   return AR->isAffine();
8300b57cec5SDimitry Andric }
8310b57cec5SDimitry Andric 
8320b57cec5SDimitry Andric /// Check whether a pointer address cannot wrap.
8330b57cec5SDimitry Andric static bool isNoWrap(PredicatedScalarEvolution &PSE,
83406c3fb27SDimitry Andric                      const DenseMap<Value *, const SCEV *> &Strides, Value *Ptr, Type *AccessTy,
83581ad6265SDimitry Andric                      Loop *L) {
8360b57cec5SDimitry Andric   const SCEV *PtrScev = PSE.getSCEV(Ptr);
8370b57cec5SDimitry Andric   if (PSE.getSE()->isLoopInvariant(PtrScev, L))
8380b57cec5SDimitry Andric     return true;
8390b57cec5SDimitry Andric 
840bdd1243dSDimitry Andric   int64_t Stride = getPtrStride(PSE, AccessTy, Ptr, L, Strides).value_or(0);
8410b57cec5SDimitry Andric   if (Stride == 1 || PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW))
8420b57cec5SDimitry Andric     return true;
8430b57cec5SDimitry Andric 
8440b57cec5SDimitry Andric   return false;
8450b57cec5SDimitry Andric }
8460b57cec5SDimitry Andric 
8474824e7fdSDimitry Andric static void visitPointers(Value *StartPtr, const Loop &InnermostLoop,
8484824e7fdSDimitry Andric                           function_ref<void(Value *)> AddPointer) {
8494824e7fdSDimitry Andric   SmallPtrSet<Value *, 8> Visited;
8504824e7fdSDimitry Andric   SmallVector<Value *> WorkList;
8514824e7fdSDimitry Andric   WorkList.push_back(StartPtr);
8524824e7fdSDimitry Andric 
8534824e7fdSDimitry Andric   while (!WorkList.empty()) {
8544824e7fdSDimitry Andric     Value *Ptr = WorkList.pop_back_val();
8554824e7fdSDimitry Andric     if (!Visited.insert(Ptr).second)
8564824e7fdSDimitry Andric       continue;
8574824e7fdSDimitry Andric     auto *PN = dyn_cast<PHINode>(Ptr);
8584824e7fdSDimitry Andric     // SCEV does not look through non-header PHIs inside the loop. Such phis
8594824e7fdSDimitry Andric     // can be analyzed by adding separate accesses for each incoming pointer
8604824e7fdSDimitry Andric     // value.
8614824e7fdSDimitry Andric     if (PN && InnermostLoop.contains(PN->getParent()) &&
8624824e7fdSDimitry Andric         PN->getParent() != InnermostLoop.getHeader()) {
8634824e7fdSDimitry Andric       for (const Use &Inc : PN->incoming_values())
8644824e7fdSDimitry Andric         WorkList.push_back(Inc);
8654824e7fdSDimitry Andric     } else
8664824e7fdSDimitry Andric       AddPointer(Ptr);
8674824e7fdSDimitry Andric   }
8684824e7fdSDimitry Andric }
8694824e7fdSDimitry Andric 
870fcaf7f86SDimitry Andric // Walk back through the IR for a pointer, looking for a select like the
871fcaf7f86SDimitry Andric // following:
872fcaf7f86SDimitry Andric //
873fcaf7f86SDimitry Andric //  %offset = select i1 %cmp, i64 %a, i64 %b
874fcaf7f86SDimitry Andric //  %addr = getelementptr double, double* %base, i64 %offset
875fcaf7f86SDimitry Andric //  %ld = load double, double* %addr, align 8
876fcaf7f86SDimitry Andric //
877fcaf7f86SDimitry Andric // We won't be able to form a single SCEVAddRecExpr from this since the
878fcaf7f86SDimitry Andric // address for each loop iteration depends on %cmp. We could potentially
879fcaf7f86SDimitry Andric // produce multiple valid SCEVAddRecExprs, though, and check all of them for
880fcaf7f86SDimitry Andric // memory safety/aliasing if needed.
881fcaf7f86SDimitry Andric //
882fcaf7f86SDimitry Andric // If we encounter some IR we don't yet handle, or something obviously fine
883fcaf7f86SDimitry Andric // like a constant, then we just add the SCEV for that term to the list passed
884fcaf7f86SDimitry Andric // in by the caller. If we have a node that may potentially yield a valid
885fcaf7f86SDimitry Andric // SCEVAddRecExpr then we decompose it into parts and build the SCEV terms
886fcaf7f86SDimitry Andric // ourselves before adding to the list.
887bdd1243dSDimitry Andric static void findForkedSCEVs(
888bdd1243dSDimitry Andric     ScalarEvolution *SE, const Loop *L, Value *Ptr,
889bdd1243dSDimitry Andric     SmallVectorImpl<PointerIntPair<const SCEV *, 1, bool>> &ScevList,
890fcaf7f86SDimitry Andric     unsigned Depth) {
891fcaf7f86SDimitry Andric   // If our Value is a SCEVAddRecExpr, loop invariant, not an instruction, or
892fcaf7f86SDimitry Andric   // we've exceeded our limit on recursion, just return whatever we have
893fcaf7f86SDimitry Andric   // regardless of whether it can be used for a forked pointer or not, along
894fcaf7f86SDimitry Andric   // with an indication of whether it might be a poison or undef value.
895fcaf7f86SDimitry Andric   const SCEV *Scev = SE->getSCEV(Ptr);
896fcaf7f86SDimitry Andric   if (isa<SCEVAddRecExpr>(Scev) || L->isLoopInvariant(Ptr) ||
897fcaf7f86SDimitry Andric       !isa<Instruction>(Ptr) || Depth == 0) {
898bdd1243dSDimitry Andric     ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(Ptr));
899fcaf7f86SDimitry Andric     return;
900fcaf7f86SDimitry Andric   }
901fcaf7f86SDimitry Andric 
902fcaf7f86SDimitry Andric   Depth--;
903fcaf7f86SDimitry Andric 
904bdd1243dSDimitry Andric   auto UndefPoisonCheck = [](PointerIntPair<const SCEV *, 1, bool> S) {
905bdd1243dSDimitry Andric     return get<1>(S);
906bdd1243dSDimitry Andric   };
907bdd1243dSDimitry Andric 
908bdd1243dSDimitry Andric   auto GetBinOpExpr = [&SE](unsigned Opcode, const SCEV *L, const SCEV *R) {
909bdd1243dSDimitry Andric     switch (Opcode) {
910bdd1243dSDimitry Andric     case Instruction::Add:
911bdd1243dSDimitry Andric       return SE->getAddExpr(L, R);
912bdd1243dSDimitry Andric     case Instruction::Sub:
913bdd1243dSDimitry Andric       return SE->getMinusSCEV(L, R);
914bdd1243dSDimitry Andric     default:
915bdd1243dSDimitry Andric       llvm_unreachable("Unexpected binary operator when walking ForkedPtrs");
916bdd1243dSDimitry Andric     }
917fcaf7f86SDimitry Andric   };
918fcaf7f86SDimitry Andric 
919fcaf7f86SDimitry Andric   Instruction *I = cast<Instruction>(Ptr);
920fcaf7f86SDimitry Andric   unsigned Opcode = I->getOpcode();
921fcaf7f86SDimitry Andric   switch (Opcode) {
922fcaf7f86SDimitry Andric   case Instruction::GetElementPtr: {
923fcaf7f86SDimitry Andric     GetElementPtrInst *GEP = cast<GetElementPtrInst>(I);
924fcaf7f86SDimitry Andric     Type *SourceTy = GEP->getSourceElementType();
925fcaf7f86SDimitry Andric     // We only handle base + single offset GEPs here for now.
926fcaf7f86SDimitry Andric     // Not dealing with preexisting gathers yet, so no vectors.
927fcaf7f86SDimitry Andric     if (I->getNumOperands() != 2 || SourceTy->isVectorTy()) {
928bdd1243dSDimitry Andric       ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(GEP));
929fcaf7f86SDimitry Andric       break;
930fcaf7f86SDimitry Andric     }
931bdd1243dSDimitry Andric     SmallVector<PointerIntPair<const SCEV *, 1, bool>, 2> BaseScevs;
932bdd1243dSDimitry Andric     SmallVector<PointerIntPair<const SCEV *, 1, bool>, 2> OffsetScevs;
933fcaf7f86SDimitry Andric     findForkedSCEVs(SE, L, I->getOperand(0), BaseScevs, Depth);
934fcaf7f86SDimitry Andric     findForkedSCEVs(SE, L, I->getOperand(1), OffsetScevs, Depth);
935fcaf7f86SDimitry Andric 
936fcaf7f86SDimitry Andric     // See if we need to freeze our fork...
937fcaf7f86SDimitry Andric     bool NeedsFreeze = any_of(BaseScevs, UndefPoisonCheck) ||
938fcaf7f86SDimitry Andric                        any_of(OffsetScevs, UndefPoisonCheck);
939fcaf7f86SDimitry Andric 
940fcaf7f86SDimitry Andric     // Check that we only have a single fork, on either the base or the offset.
941fcaf7f86SDimitry Andric     // Copy the SCEV across for the one without a fork in order to generate
942fcaf7f86SDimitry Andric     // the full SCEV for both sides of the GEP.
943fcaf7f86SDimitry Andric     if (OffsetScevs.size() == 2 && BaseScevs.size() == 1)
944fcaf7f86SDimitry Andric       BaseScevs.push_back(BaseScevs[0]);
945fcaf7f86SDimitry Andric     else if (BaseScevs.size() == 2 && OffsetScevs.size() == 1)
946fcaf7f86SDimitry Andric       OffsetScevs.push_back(OffsetScevs[0]);
947fcaf7f86SDimitry Andric     else {
948bdd1243dSDimitry Andric       ScevList.emplace_back(Scev, NeedsFreeze);
949fcaf7f86SDimitry Andric       break;
950fcaf7f86SDimitry Andric     }
951fcaf7f86SDimitry Andric 
952fcaf7f86SDimitry Andric     // Find the pointer type we need to extend to.
953fcaf7f86SDimitry Andric     Type *IntPtrTy = SE->getEffectiveSCEVType(
954fcaf7f86SDimitry Andric         SE->getSCEV(GEP->getPointerOperand())->getType());
955fcaf7f86SDimitry Andric 
956fcaf7f86SDimitry Andric     // Find the size of the type being pointed to. We only have a single
957fcaf7f86SDimitry Andric     // index term (guarded above) so we don't need to index into arrays or
958fcaf7f86SDimitry Andric     // structures, just get the size of the scalar value.
959fcaf7f86SDimitry Andric     const SCEV *Size = SE->getSizeOfExpr(IntPtrTy, SourceTy);
960fcaf7f86SDimitry Andric 
961fcaf7f86SDimitry Andric     // Scale up the offsets by the size of the type, then add to the bases.
962fcaf7f86SDimitry Andric     const SCEV *Scaled1 = SE->getMulExpr(
963bdd1243dSDimitry Andric         Size, SE->getTruncateOrSignExtend(get<0>(OffsetScevs[0]), IntPtrTy));
964fcaf7f86SDimitry Andric     const SCEV *Scaled2 = SE->getMulExpr(
965bdd1243dSDimitry Andric         Size, SE->getTruncateOrSignExtend(get<0>(OffsetScevs[1]), IntPtrTy));
966bdd1243dSDimitry Andric     ScevList.emplace_back(SE->getAddExpr(get<0>(BaseScevs[0]), Scaled1),
967bdd1243dSDimitry Andric                           NeedsFreeze);
968bdd1243dSDimitry Andric     ScevList.emplace_back(SE->getAddExpr(get<0>(BaseScevs[1]), Scaled2),
969bdd1243dSDimitry Andric                           NeedsFreeze);
970fcaf7f86SDimitry Andric     break;
971fcaf7f86SDimitry Andric   }
972fcaf7f86SDimitry Andric   case Instruction::Select: {
973bdd1243dSDimitry Andric     SmallVector<PointerIntPair<const SCEV *, 1, bool>, 2> ChildScevs;
974fcaf7f86SDimitry Andric     // A select means we've found a forked pointer, but we currently only
975fcaf7f86SDimitry Andric     // support a single select per pointer so if there's another behind this
976fcaf7f86SDimitry Andric     // then we just bail out and return the generic SCEV.
977fcaf7f86SDimitry Andric     findForkedSCEVs(SE, L, I->getOperand(1), ChildScevs, Depth);
978fcaf7f86SDimitry Andric     findForkedSCEVs(SE, L, I->getOperand(2), ChildScevs, Depth);
979fcaf7f86SDimitry Andric     if (ChildScevs.size() == 2) {
980fcaf7f86SDimitry Andric       ScevList.push_back(ChildScevs[0]);
981fcaf7f86SDimitry Andric       ScevList.push_back(ChildScevs[1]);
982fcaf7f86SDimitry Andric     } else
983bdd1243dSDimitry Andric       ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(Ptr));
984bdd1243dSDimitry Andric     break;
985bdd1243dSDimitry Andric   }
9865f757f3fSDimitry Andric   case Instruction::PHI: {
9875f757f3fSDimitry Andric     SmallVector<PointerIntPair<const SCEV *, 1, bool>, 2> ChildScevs;
9885f757f3fSDimitry Andric     // A phi means we've found a forked pointer, but we currently only
9895f757f3fSDimitry Andric     // support a single phi per pointer so if there's another behind this
9905f757f3fSDimitry Andric     // then we just bail out and return the generic SCEV.
9915f757f3fSDimitry Andric     if (I->getNumOperands() == 2) {
9925f757f3fSDimitry Andric       findForkedSCEVs(SE, L, I->getOperand(0), ChildScevs, Depth);
9935f757f3fSDimitry Andric       findForkedSCEVs(SE, L, I->getOperand(1), ChildScevs, Depth);
9945f757f3fSDimitry Andric     }
9955f757f3fSDimitry Andric     if (ChildScevs.size() == 2) {
9965f757f3fSDimitry Andric       ScevList.push_back(ChildScevs[0]);
9975f757f3fSDimitry Andric       ScevList.push_back(ChildScevs[1]);
9985f757f3fSDimitry Andric     } else
9995f757f3fSDimitry Andric       ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(Ptr));
10005f757f3fSDimitry Andric     break;
10015f757f3fSDimitry Andric   }
1002bdd1243dSDimitry Andric   case Instruction::Add:
1003bdd1243dSDimitry Andric   case Instruction::Sub: {
1004bdd1243dSDimitry Andric     SmallVector<PointerIntPair<const SCEV *, 1, bool>> LScevs;
1005bdd1243dSDimitry Andric     SmallVector<PointerIntPair<const SCEV *, 1, bool>> RScevs;
1006bdd1243dSDimitry Andric     findForkedSCEVs(SE, L, I->getOperand(0), LScevs, Depth);
1007bdd1243dSDimitry Andric     findForkedSCEVs(SE, L, I->getOperand(1), RScevs, Depth);
1008bdd1243dSDimitry Andric 
1009bdd1243dSDimitry Andric     // See if we need to freeze our fork...
1010bdd1243dSDimitry Andric     bool NeedsFreeze =
1011bdd1243dSDimitry Andric         any_of(LScevs, UndefPoisonCheck) || any_of(RScevs, UndefPoisonCheck);
1012bdd1243dSDimitry Andric 
1013bdd1243dSDimitry Andric     // Check that we only have a single fork, on either the left or right side.
1014bdd1243dSDimitry Andric     // Copy the SCEV across for the one without a fork in order to generate
1015bdd1243dSDimitry Andric     // the full SCEV for both sides of the BinOp.
1016bdd1243dSDimitry Andric     if (LScevs.size() == 2 && RScevs.size() == 1)
1017bdd1243dSDimitry Andric       RScevs.push_back(RScevs[0]);
1018bdd1243dSDimitry Andric     else if (RScevs.size() == 2 && LScevs.size() == 1)
1019bdd1243dSDimitry Andric       LScevs.push_back(LScevs[0]);
1020bdd1243dSDimitry Andric     else {
1021bdd1243dSDimitry Andric       ScevList.emplace_back(Scev, NeedsFreeze);
1022bdd1243dSDimitry Andric       break;
1023bdd1243dSDimitry Andric     }
1024bdd1243dSDimitry Andric 
1025bdd1243dSDimitry Andric     ScevList.emplace_back(
1026bdd1243dSDimitry Andric         GetBinOpExpr(Opcode, get<0>(LScevs[0]), get<0>(RScevs[0])),
1027bdd1243dSDimitry Andric         NeedsFreeze);
1028bdd1243dSDimitry Andric     ScevList.emplace_back(
1029bdd1243dSDimitry Andric         GetBinOpExpr(Opcode, get<0>(LScevs[1]), get<0>(RScevs[1])),
1030bdd1243dSDimitry Andric         NeedsFreeze);
1031fcaf7f86SDimitry Andric     break;
1032fcaf7f86SDimitry Andric   }
1033fcaf7f86SDimitry Andric   default:
1034fcaf7f86SDimitry Andric     // Just return the current SCEV if we haven't handled the instruction yet.
1035fcaf7f86SDimitry Andric     LLVM_DEBUG(dbgs() << "ForkedPtr unhandled instruction: " << *I << "\n");
1036bdd1243dSDimitry Andric     ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(Ptr));
1037fcaf7f86SDimitry Andric     break;
1038fcaf7f86SDimitry Andric   }
1039fcaf7f86SDimitry Andric }
1040fcaf7f86SDimitry Andric 
1041bdd1243dSDimitry Andric static SmallVector<PointerIntPair<const SCEV *, 1, bool>>
1042fcaf7f86SDimitry Andric findForkedPointer(PredicatedScalarEvolution &PSE,
104306c3fb27SDimitry Andric                   const DenseMap<Value *, const SCEV *> &StridesMap, Value *Ptr,
1044fcaf7f86SDimitry Andric                   const Loop *L) {
1045fcaf7f86SDimitry Andric   ScalarEvolution *SE = PSE.getSE();
1046fcaf7f86SDimitry Andric   assert(SE->isSCEVable(Ptr->getType()) && "Value is not SCEVable!");
1047bdd1243dSDimitry Andric   SmallVector<PointerIntPair<const SCEV *, 1, bool>> Scevs;
1048fcaf7f86SDimitry Andric   findForkedSCEVs(SE, L, Ptr, Scevs, MaxForkedSCEVDepth);
1049fcaf7f86SDimitry Andric 
1050bdd1243dSDimitry Andric   // For now, we will only accept a forked pointer with two possible SCEVs
1051bdd1243dSDimitry Andric   // that are either SCEVAddRecExprs or loop invariant.
1052bdd1243dSDimitry Andric   if (Scevs.size() == 2 &&
1053bdd1243dSDimitry Andric       (isa<SCEVAddRecExpr>(get<0>(Scevs[0])) ||
1054bdd1243dSDimitry Andric        SE->isLoopInvariant(get<0>(Scevs[0]), L)) &&
1055bdd1243dSDimitry Andric       (isa<SCEVAddRecExpr>(get<0>(Scevs[1])) ||
1056bdd1243dSDimitry Andric        SE->isLoopInvariant(get<0>(Scevs[1]), L))) {
1057bdd1243dSDimitry Andric     LLVM_DEBUG(dbgs() << "LAA: Found forked pointer: " << *Ptr << "\n");
1058bdd1243dSDimitry Andric     LLVM_DEBUG(dbgs() << "\t(1) " << *get<0>(Scevs[0]) << "\n");
1059bdd1243dSDimitry Andric     LLVM_DEBUG(dbgs() << "\t(2) " << *get<0>(Scevs[1]) << "\n");
1060fcaf7f86SDimitry Andric     return Scevs;
1061bdd1243dSDimitry Andric   }
1062fcaf7f86SDimitry Andric 
1063bdd1243dSDimitry Andric   return {{replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr), false}};
1064fcaf7f86SDimitry Andric }
1065fcaf7f86SDimitry Andric 
10660b57cec5SDimitry Andric bool AccessAnalysis::createCheckForAccess(RuntimePointerChecking &RtCheck,
106781ad6265SDimitry Andric                                           MemAccessInfo Access, Type *AccessTy,
106806c3fb27SDimitry Andric                                           const DenseMap<Value *, const SCEV *> &StridesMap,
10690b57cec5SDimitry Andric                                           DenseMap<Value *, unsigned> &DepSetId,
10700b57cec5SDimitry Andric                                           Loop *TheLoop, unsigned &RunningDepId,
10710b57cec5SDimitry Andric                                           unsigned ASId, bool ShouldCheckWrap,
10720b57cec5SDimitry Andric                                           bool Assume) {
10730b57cec5SDimitry Andric   Value *Ptr = Access.getPointer();
10740b57cec5SDimitry Andric 
1075bdd1243dSDimitry Andric   SmallVector<PointerIntPair<const SCEV *, 1, bool>> TranslatedPtrs =
1076fcaf7f86SDimitry Andric       findForkedPointer(PSE, StridesMap, Ptr, TheLoop);
107781ad6265SDimitry Andric 
107881ad6265SDimitry Andric   for (auto &P : TranslatedPtrs) {
1079bdd1243dSDimitry Andric     const SCEV *PtrExpr = get<0>(P);
108081ad6265SDimitry Andric     if (!hasComputableBounds(PSE, Ptr, PtrExpr, TheLoop, Assume))
10810b57cec5SDimitry Andric       return false;
10820b57cec5SDimitry Andric 
10830b57cec5SDimitry Andric     // When we run after a failing dependency check we have to make sure
10840b57cec5SDimitry Andric     // we don't have wrapping pointers.
108581ad6265SDimitry Andric     if (ShouldCheckWrap) {
108681ad6265SDimitry Andric       // Skip wrap checking when translating pointers.
108781ad6265SDimitry Andric       if (TranslatedPtrs.size() > 1)
108881ad6265SDimitry Andric         return false;
108981ad6265SDimitry Andric 
109081ad6265SDimitry Andric       if (!isNoWrap(PSE, StridesMap, Ptr, AccessTy, TheLoop)) {
10910b57cec5SDimitry Andric         auto *Expr = PSE.getSCEV(Ptr);
10920b57cec5SDimitry Andric         if (!Assume || !isa<SCEVAddRecExpr>(Expr))
10930b57cec5SDimitry Andric           return false;
10940b57cec5SDimitry Andric         PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
10950b57cec5SDimitry Andric       }
109681ad6265SDimitry Andric     }
109781ad6265SDimitry Andric     // If there's only one option for Ptr, look it up after bounds and wrap
109881ad6265SDimitry Andric     // checking, because assumptions might have been added to PSE.
109981ad6265SDimitry Andric     if (TranslatedPtrs.size() == 1)
1100bdd1243dSDimitry Andric       TranslatedPtrs[0] = {replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr),
1101bdd1243dSDimitry Andric                            false};
110281ad6265SDimitry Andric   }
110381ad6265SDimitry Andric 
1104bdd1243dSDimitry Andric   for (auto [PtrExpr, NeedsFreeze] : TranslatedPtrs) {
11050b57cec5SDimitry Andric     // The id of the dependence set.
11060b57cec5SDimitry Andric     unsigned DepId;
11070b57cec5SDimitry Andric 
11080b57cec5SDimitry Andric     if (isDependencyCheckNeeded()) {
11090b57cec5SDimitry Andric       Value *Leader = DepCands.getLeaderValue(Access).getPointer();
11100b57cec5SDimitry Andric       unsigned &LeaderId = DepSetId[Leader];
11110b57cec5SDimitry Andric       if (!LeaderId)
11120b57cec5SDimitry Andric         LeaderId = RunningDepId++;
11130b57cec5SDimitry Andric       DepId = LeaderId;
11140b57cec5SDimitry Andric     } else
11150b57cec5SDimitry Andric       // Each access has its own dependence set.
11160b57cec5SDimitry Andric       DepId = RunningDepId++;
11170b57cec5SDimitry Andric 
11180b57cec5SDimitry Andric     bool IsWrite = Access.getInt();
111981ad6265SDimitry Andric     RtCheck.insert(TheLoop, Ptr, PtrExpr, AccessTy, IsWrite, DepId, ASId, PSE,
1120bdd1243dSDimitry Andric                    NeedsFreeze);
11210b57cec5SDimitry Andric     LLVM_DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n');
112281ad6265SDimitry Andric   }
11230b57cec5SDimitry Andric 
11240b57cec5SDimitry Andric   return true;
11250b57cec5SDimitry Andric }
11260b57cec5SDimitry Andric 
11270b57cec5SDimitry Andric bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck,
11280b57cec5SDimitry Andric                                      ScalarEvolution *SE, Loop *TheLoop,
112906c3fb27SDimitry Andric                                      const DenseMap<Value *, const SCEV *> &StridesMap,
113081ad6265SDimitry Andric                                      Value *&UncomputablePtr, bool ShouldCheckWrap) {
11310b57cec5SDimitry Andric   // Find pointers with computable bounds. We are going to use this information
11320b57cec5SDimitry Andric   // to place a runtime bound check.
11330b57cec5SDimitry Andric   bool CanDoRT = true;
11340b57cec5SDimitry Andric 
11355ffd83dbSDimitry Andric   bool MayNeedRTCheck = false;
11360b57cec5SDimitry Andric   if (!IsRTCheckAnalysisNeeded) return true;
11370b57cec5SDimitry Andric 
11380b57cec5SDimitry Andric   bool IsDepCheckNeeded = isDependencyCheckNeeded();
11390b57cec5SDimitry Andric 
11400b57cec5SDimitry Andric   // We assign a consecutive id to access from different alias sets.
11410b57cec5SDimitry Andric   // Accesses between different groups doesn't need to be checked.
11425ffd83dbSDimitry Andric   unsigned ASId = 0;
11430b57cec5SDimitry Andric   for (auto &AS : AST) {
11440b57cec5SDimitry Andric     int NumReadPtrChecks = 0;
11450b57cec5SDimitry Andric     int NumWritePtrChecks = 0;
11460b57cec5SDimitry Andric     bool CanDoAliasSetRT = true;
11475ffd83dbSDimitry Andric     ++ASId;
11487a6dacacSDimitry Andric     auto ASPointers = AS.getPointers();
11490b57cec5SDimitry Andric 
11500b57cec5SDimitry Andric     // We assign consecutive id to access from different dependence sets.
11510b57cec5SDimitry Andric     // Accesses within the same set don't need a runtime check.
11520b57cec5SDimitry Andric     unsigned RunningDepId = 1;
11530b57cec5SDimitry Andric     DenseMap<Value *, unsigned> DepSetId;
11540b57cec5SDimitry Andric 
1155fcaf7f86SDimitry Andric     SmallVector<std::pair<MemAccessInfo, Type *>, 4> Retries;
11560b57cec5SDimitry Andric 
11571106035dSDimitry Andric     // First, count how many write and read accesses are in the alias set. Also
11581106035dSDimitry Andric     // collect MemAccessInfos for later.
11591106035dSDimitry Andric     SmallVector<MemAccessInfo, 4> AccessInfos;
11600fca6ea1SDimitry Andric     for (const Value *ConstPtr : ASPointers) {
11610fca6ea1SDimitry Andric       Value *Ptr = const_cast<Value *>(ConstPtr);
11620b57cec5SDimitry Andric       bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true));
11630b57cec5SDimitry Andric       if (IsWrite)
11640b57cec5SDimitry Andric         ++NumWritePtrChecks;
11650b57cec5SDimitry Andric       else
11660b57cec5SDimitry Andric         ++NumReadPtrChecks;
11671106035dSDimitry Andric       AccessInfos.emplace_back(Ptr, IsWrite);
11680b57cec5SDimitry Andric     }
11690b57cec5SDimitry Andric 
11701106035dSDimitry Andric     // We do not need runtime checks for this alias set, if there are no writes
11711106035dSDimitry Andric     // or a single write and no reads.
11721106035dSDimitry Andric     if (NumWritePtrChecks == 0 ||
11731106035dSDimitry Andric         (NumWritePtrChecks == 1 && NumReadPtrChecks == 0)) {
11747a6dacacSDimitry Andric       assert((ASPointers.size() <= 1 ||
11757a6dacacSDimitry Andric               all_of(ASPointers,
11767a6dacacSDimitry Andric                      [this](const Value *Ptr) {
11777a6dacacSDimitry Andric                        MemAccessInfo AccessWrite(const_cast<Value *>(Ptr),
11787a6dacacSDimitry Andric                                                  true);
11791106035dSDimitry Andric                        return DepCands.findValue(AccessWrite) == DepCands.end();
11805ffd83dbSDimitry Andric                      })) &&
11815ffd83dbSDimitry Andric              "Can only skip updating CanDoRT below, if all entries in AS "
11825ffd83dbSDimitry Andric              "are reads or there is at most 1 entry");
11835ffd83dbSDimitry Andric       continue;
11845ffd83dbSDimitry Andric     }
11851106035dSDimitry Andric 
11861106035dSDimitry Andric     for (auto &Access : AccessInfos) {
1187fcaf7f86SDimitry Andric       for (const auto &AccessTy : Accesses[Access]) {
118881ad6265SDimitry Andric         if (!createCheckForAccess(RtCheck, Access, AccessTy, StridesMap,
118981ad6265SDimitry Andric                                   DepSetId, TheLoop, RunningDepId, ASId,
119081ad6265SDimitry Andric                                   ShouldCheckWrap, false)) {
11911106035dSDimitry Andric           LLVM_DEBUG(dbgs() << "LAA: Can't find bounds for ptr:"
11921106035dSDimitry Andric                             << *Access.getPointer() << '\n');
1193fcaf7f86SDimitry Andric           Retries.push_back({Access, AccessTy});
11941106035dSDimitry Andric           CanDoAliasSetRT = false;
11955ffd83dbSDimitry Andric         }
11961106035dSDimitry Andric       }
119781ad6265SDimitry Andric     }
11981106035dSDimitry Andric 
11991106035dSDimitry Andric     // Note that this function computes CanDoRT and MayNeedRTCheck
12001106035dSDimitry Andric     // independently. For example CanDoRT=false, MayNeedRTCheck=false means that
12011106035dSDimitry Andric     // we have a pointer for which we couldn't find the bounds but we don't
12021106035dSDimitry Andric     // actually need to emit any checks so it does not matter.
12031106035dSDimitry Andric     //
12041106035dSDimitry Andric     // We need runtime checks for this alias set, if there are at least 2
12051106035dSDimitry Andric     // dependence sets (in which case RunningDepId > 2) or if we need to re-try
12061106035dSDimitry Andric     // any bound checks (because in that case the number of dependence sets is
12071106035dSDimitry Andric     // incomplete).
12081106035dSDimitry Andric     bool NeedsAliasSetRTCheck = RunningDepId > 2 || !Retries.empty();
12090b57cec5SDimitry Andric 
12100b57cec5SDimitry Andric     // We need to perform run-time alias checks, but some pointers had bounds
12110b57cec5SDimitry Andric     // that couldn't be checked.
12120b57cec5SDimitry Andric     if (NeedsAliasSetRTCheck && !CanDoAliasSetRT) {
12130b57cec5SDimitry Andric       // Reset the CanDoSetRt flag and retry all accesses that have failed.
12140b57cec5SDimitry Andric       // We know that we need these checks, so we can now be more aggressive
12150b57cec5SDimitry Andric       // and add further checks if required (overflow checks).
12160b57cec5SDimitry Andric       CanDoAliasSetRT = true;
12170fca6ea1SDimitry Andric       for (const auto &[Access, AccessTy] : Retries) {
121881ad6265SDimitry Andric         if (!createCheckForAccess(RtCheck, Access, AccessTy, StridesMap,
121981ad6265SDimitry Andric                                   DepSetId, TheLoop, RunningDepId, ASId,
12200b57cec5SDimitry Andric                                   ShouldCheckWrap, /*Assume=*/true)) {
12210b57cec5SDimitry Andric           CanDoAliasSetRT = false;
122281ad6265SDimitry Andric           UncomputablePtr = Access.getPointer();
12230b57cec5SDimitry Andric           break;
12240b57cec5SDimitry Andric         }
12250b57cec5SDimitry Andric       }
122681ad6265SDimitry Andric     }
12270b57cec5SDimitry Andric 
12280b57cec5SDimitry Andric     CanDoRT &= CanDoAliasSetRT;
12295ffd83dbSDimitry Andric     MayNeedRTCheck |= NeedsAliasSetRTCheck;
12300b57cec5SDimitry Andric     ++ASId;
12310b57cec5SDimitry Andric   }
12320b57cec5SDimitry Andric 
12330b57cec5SDimitry Andric   // If the pointers that we would use for the bounds comparison have different
12340b57cec5SDimitry Andric   // address spaces, assume the values aren't directly comparable, so we can't
12350b57cec5SDimitry Andric   // use them for the runtime check. We also have to assume they could
12360b57cec5SDimitry Andric   // overlap. In the future there should be metadata for whether address spaces
12370b57cec5SDimitry Andric   // are disjoint.
12380b57cec5SDimitry Andric   unsigned NumPointers = RtCheck.Pointers.size();
12390b57cec5SDimitry Andric   for (unsigned i = 0; i < NumPointers; ++i) {
12400b57cec5SDimitry Andric     for (unsigned j = i + 1; j < NumPointers; ++j) {
12410b57cec5SDimitry Andric       // Only need to check pointers between two different dependency sets.
12420b57cec5SDimitry Andric       if (RtCheck.Pointers[i].DependencySetId ==
12430b57cec5SDimitry Andric           RtCheck.Pointers[j].DependencySetId)
12440b57cec5SDimitry Andric        continue;
12450b57cec5SDimitry Andric       // Only need to check pointers in the same alias set.
12460b57cec5SDimitry Andric       if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId)
12470b57cec5SDimitry Andric         continue;
12480b57cec5SDimitry Andric 
12490b57cec5SDimitry Andric       Value *PtrI = RtCheck.Pointers[i].PointerValue;
12500b57cec5SDimitry Andric       Value *PtrJ = RtCheck.Pointers[j].PointerValue;
12510b57cec5SDimitry Andric 
12520b57cec5SDimitry Andric       unsigned ASi = PtrI->getType()->getPointerAddressSpace();
12530b57cec5SDimitry Andric       unsigned ASj = PtrJ->getType()->getPointerAddressSpace();
12540b57cec5SDimitry Andric       if (ASi != ASj) {
12550b57cec5SDimitry Andric         LLVM_DEBUG(
12560b57cec5SDimitry Andric             dbgs() << "LAA: Runtime check would require comparison between"
12570b57cec5SDimitry Andric                       " different address spaces\n");
12580b57cec5SDimitry Andric         return false;
12590b57cec5SDimitry Andric       }
12600b57cec5SDimitry Andric     }
12610b57cec5SDimitry Andric   }
12620b57cec5SDimitry Andric 
12635ffd83dbSDimitry Andric   if (MayNeedRTCheck && CanDoRT)
12640b57cec5SDimitry Andric     RtCheck.generateChecks(DepCands, IsDepCheckNeeded);
12650b57cec5SDimitry Andric 
12660b57cec5SDimitry Andric   LLVM_DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks()
12670b57cec5SDimitry Andric                     << " pointer comparisons.\n");
12680b57cec5SDimitry Andric 
12695ffd83dbSDimitry Andric   // If we can do run-time checks, but there are no checks, no runtime checks
12705ffd83dbSDimitry Andric   // are needed. This can happen when all pointers point to the same underlying
12715ffd83dbSDimitry Andric   // object for example.
12725ffd83dbSDimitry Andric   RtCheck.Need = CanDoRT ? RtCheck.getNumberOfChecks() != 0 : MayNeedRTCheck;
12730b57cec5SDimitry Andric 
12745ffd83dbSDimitry Andric   bool CanDoRTIfNeeded = !RtCheck.Need || CanDoRT;
12750b57cec5SDimitry Andric   if (!CanDoRTIfNeeded)
12760b57cec5SDimitry Andric     RtCheck.reset();
12770b57cec5SDimitry Andric   return CanDoRTIfNeeded;
12780b57cec5SDimitry Andric }
12790b57cec5SDimitry Andric 
12800b57cec5SDimitry Andric void AccessAnalysis::processMemAccesses() {
12810b57cec5SDimitry Andric   // We process the set twice: first we process read-write pointers, last we
12820b57cec5SDimitry Andric   // process read-only pointers. This allows us to skip dependence tests for
12830b57cec5SDimitry Andric   // read-only pointers.
12840b57cec5SDimitry Andric 
12850b57cec5SDimitry Andric   LLVM_DEBUG(dbgs() << "LAA: Processing memory accesses...\n");
12860b57cec5SDimitry Andric   LLVM_DEBUG(dbgs() << "  AST: "; AST.dump());
12870b57cec5SDimitry Andric   LLVM_DEBUG(dbgs() << "LAA:   Accesses(" << Accesses.size() << "):\n");
12880b57cec5SDimitry Andric   LLVM_DEBUG({
12890fca6ea1SDimitry Andric     for (const auto &[A, _] : Accesses)
12900fca6ea1SDimitry Andric       dbgs() << "\t" << *A.getPointer() << " ("
12910fca6ea1SDimitry Andric              << (A.getInt() ? "write"
12920fca6ea1SDimitry Andric                             : (ReadOnlyPtr.count(A.getPointer()) ? "read-only"
129381ad6265SDimitry Andric                                                                  : "read"))
129481ad6265SDimitry Andric              << ")\n";
12950b57cec5SDimitry Andric   });
12960b57cec5SDimitry Andric 
12970b57cec5SDimitry Andric   // The AliasSetTracker has nicely partitioned our pointers by metadata
12980b57cec5SDimitry Andric   // compatibility and potential for underlying-object overlap. As a result, we
12990b57cec5SDimitry Andric   // only need to check for potential pointer dependencies within each alias
13000b57cec5SDimitry Andric   // set.
1301e8d8bef9SDimitry Andric   for (const auto &AS : AST) {
13020b57cec5SDimitry Andric     // Note that both the alias-set tracker and the alias sets themselves used
13037a6dacacSDimitry Andric     // ordered collections internally and so the iteration order here is
13047a6dacacSDimitry Andric     // deterministic.
13057a6dacacSDimitry Andric     auto ASPointers = AS.getPointers();
13060b57cec5SDimitry Andric 
13070b57cec5SDimitry Andric     bool SetHasWrite = false;
13080b57cec5SDimitry Andric 
13090b57cec5SDimitry Andric     // Map of pointers to last access encountered.
13100b57cec5SDimitry Andric     typedef DenseMap<const Value*, MemAccessInfo> UnderlyingObjToAccessMap;
13110b57cec5SDimitry Andric     UnderlyingObjToAccessMap ObjToLastAccess;
13120b57cec5SDimitry Andric 
13130b57cec5SDimitry Andric     // Set of access to check after all writes have been processed.
131481ad6265SDimitry Andric     PtrAccessMap DeferredAccesses;
13150b57cec5SDimitry Andric 
13160b57cec5SDimitry Andric     // Iterate over each alias set twice, once to process read/write pointers,
13170b57cec5SDimitry Andric     // and then to process read-only pointers.
13180b57cec5SDimitry Andric     for (int SetIteration = 0; SetIteration < 2; ++SetIteration) {
13190b57cec5SDimitry Andric       bool UseDeferred = SetIteration > 0;
132081ad6265SDimitry Andric       PtrAccessMap &S = UseDeferred ? DeferredAccesses : Accesses;
13210b57cec5SDimitry Andric 
13220fca6ea1SDimitry Andric       for (const Value *ConstPtr : ASPointers) {
13230fca6ea1SDimitry Andric         Value *Ptr = const_cast<Value *>(ConstPtr);
13240b57cec5SDimitry Andric 
13250b57cec5SDimitry Andric         // For a single memory access in AliasSetTracker, Accesses may contain
13260b57cec5SDimitry Andric         // both read and write, and they both need to be handled for CheckDeps.
13270fca6ea1SDimitry Andric         for (const auto &[AC, _] : S) {
13280fca6ea1SDimitry Andric           if (AC.getPointer() != Ptr)
13290b57cec5SDimitry Andric             continue;
13300b57cec5SDimitry Andric 
13310fca6ea1SDimitry Andric           bool IsWrite = AC.getInt();
13320b57cec5SDimitry Andric 
13330b57cec5SDimitry Andric           // If we're using the deferred access set, then it contains only
13340b57cec5SDimitry Andric           // reads.
13350b57cec5SDimitry Andric           bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite;
13360b57cec5SDimitry Andric           if (UseDeferred && !IsReadOnlyPtr)
13370b57cec5SDimitry Andric             continue;
13380b57cec5SDimitry Andric           // Otherwise, the pointer must be in the PtrAccessSet, either as a
13390b57cec5SDimitry Andric           // read or a write.
13400b57cec5SDimitry Andric           assert(((IsReadOnlyPtr && UseDeferred) || IsWrite ||
13410b57cec5SDimitry Andric                   S.count(MemAccessInfo(Ptr, false))) &&
13420b57cec5SDimitry Andric                  "Alias-set pointer not in the access set?");
13430b57cec5SDimitry Andric 
13440b57cec5SDimitry Andric           MemAccessInfo Access(Ptr, IsWrite);
13450b57cec5SDimitry Andric           DepCands.insert(Access);
13460b57cec5SDimitry Andric 
13470b57cec5SDimitry Andric           // Memorize read-only pointers for later processing and skip them in
13480b57cec5SDimitry Andric           // the first round (they need to be checked after we have seen all
13490b57cec5SDimitry Andric           // write pointers). Note: we also mark pointer that are not
13500b57cec5SDimitry Andric           // consecutive as "read-only" pointers (so that we check
13510b57cec5SDimitry Andric           // "a[b[i]] +="). Hence, we need the second check for "!IsWrite".
13520b57cec5SDimitry Andric           if (!UseDeferred && IsReadOnlyPtr) {
135381ad6265SDimitry Andric             // We only use the pointer keys, the types vector values don't
135481ad6265SDimitry Andric             // matter.
135581ad6265SDimitry Andric             DeferredAccesses.insert({Access, {}});
13560b57cec5SDimitry Andric             continue;
13570b57cec5SDimitry Andric           }
13580b57cec5SDimitry Andric 
13590b57cec5SDimitry Andric           // If this is a write - check other reads and writes for conflicts. If
13600b57cec5SDimitry Andric           // this is a read only check other writes for conflicts (but only if
13610b57cec5SDimitry Andric           // there is no other write to the ptr - this is an optimization to
13620b57cec5SDimitry Andric           // catch "a[i] = a[i] + " without having to do a dependence check).
13630b57cec5SDimitry Andric           if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) {
13640b57cec5SDimitry Andric             CheckDeps.push_back(Access);
13650b57cec5SDimitry Andric             IsRTCheckAnalysisNeeded = true;
13660b57cec5SDimitry Andric           }
13670b57cec5SDimitry Andric 
13680b57cec5SDimitry Andric           if (IsWrite)
13690b57cec5SDimitry Andric             SetHasWrite = true;
13700b57cec5SDimitry Andric 
13710b57cec5SDimitry Andric           // Create sets of pointers connected by a shared alias set and
13720b57cec5SDimitry Andric           // underlying object.
13730b57cec5SDimitry Andric           typedef SmallVector<const Value *, 16> ValueVector;
13740b57cec5SDimitry Andric           ValueVector TempObjects;
13750b57cec5SDimitry Andric 
13765f757f3fSDimitry Andric           UnderlyingObjects[Ptr] = {};
13775f757f3fSDimitry Andric           SmallVector<const Value *, 16> &UOs = UnderlyingObjects[Ptr];
13785f757f3fSDimitry Andric           ::getUnderlyingObjects(Ptr, UOs, LI);
13790b57cec5SDimitry Andric           LLVM_DEBUG(dbgs()
13800b57cec5SDimitry Andric                      << "Underlying objects for pointer " << *Ptr << "\n");
13815f757f3fSDimitry Andric           for (const Value *UnderlyingObj : UOs) {
13820b57cec5SDimitry Andric             // nullptr never alias, don't join sets for pointer that have "null"
13830b57cec5SDimitry Andric             // in their UnderlyingObjects list.
13840b57cec5SDimitry Andric             if (isa<ConstantPointerNull>(UnderlyingObj) &&
13850b57cec5SDimitry Andric                 !NullPointerIsDefined(
13860b57cec5SDimitry Andric                     TheLoop->getHeader()->getParent(),
13870b57cec5SDimitry Andric                     UnderlyingObj->getType()->getPointerAddressSpace()))
13880b57cec5SDimitry Andric               continue;
13890b57cec5SDimitry Andric 
13900b57cec5SDimitry Andric             UnderlyingObjToAccessMap::iterator Prev =
13910b57cec5SDimitry Andric                 ObjToLastAccess.find(UnderlyingObj);
13920b57cec5SDimitry Andric             if (Prev != ObjToLastAccess.end())
13930b57cec5SDimitry Andric               DepCands.unionSets(Access, Prev->second);
13940b57cec5SDimitry Andric 
13950b57cec5SDimitry Andric             ObjToLastAccess[UnderlyingObj] = Access;
13960b57cec5SDimitry Andric             LLVM_DEBUG(dbgs() << "  " << *UnderlyingObj << "\n");
13970b57cec5SDimitry Andric           }
13980b57cec5SDimitry Andric         }
13990b57cec5SDimitry Andric       }
14000b57cec5SDimitry Andric     }
14010b57cec5SDimitry Andric   }
14020b57cec5SDimitry Andric }
14030b57cec5SDimitry Andric 
14040b57cec5SDimitry Andric /// Return true if an AddRec pointer \p Ptr is unsigned non-wrapping,
14050b57cec5SDimitry Andric /// i.e. monotonically increasing/decreasing.
14060b57cec5SDimitry Andric static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR,
14070b57cec5SDimitry Andric                            PredicatedScalarEvolution &PSE, const Loop *L) {
140806c3fb27SDimitry Andric 
14090b57cec5SDimitry Andric   // FIXME: This should probably only return true for NUW.
14100b57cec5SDimitry Andric   if (AR->getNoWrapFlags(SCEV::NoWrapMask))
14110b57cec5SDimitry Andric     return true;
14120b57cec5SDimitry Andric 
141306c3fb27SDimitry Andric   if (PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW))
141406c3fb27SDimitry Andric     return true;
141506c3fb27SDimitry Andric 
14160b57cec5SDimitry Andric   // Scalar evolution does not propagate the non-wrapping flags to values that
14170b57cec5SDimitry Andric   // are derived from a non-wrapping induction variable because non-wrapping
14180b57cec5SDimitry Andric   // could be flow-sensitive.
14190b57cec5SDimitry Andric   //
14200b57cec5SDimitry Andric   // Look through the potentially overflowing instruction to try to prove
14210b57cec5SDimitry Andric   // non-wrapping for the *specific* value of Ptr.
14220b57cec5SDimitry Andric 
14230b57cec5SDimitry Andric   // The arithmetic implied by an inbounds GEP can't overflow.
14240b57cec5SDimitry Andric   auto *GEP = dyn_cast<GetElementPtrInst>(Ptr);
14250b57cec5SDimitry Andric   if (!GEP || !GEP->isInBounds())
14260b57cec5SDimitry Andric     return false;
14270b57cec5SDimitry Andric 
14280b57cec5SDimitry Andric   // Make sure there is only one non-const index and analyze that.
14290b57cec5SDimitry Andric   Value *NonConstIndex = nullptr;
1430e8d8bef9SDimitry Andric   for (Value *Index : GEP->indices())
14310b57cec5SDimitry Andric     if (!isa<ConstantInt>(Index)) {
14320b57cec5SDimitry Andric       if (NonConstIndex)
14330b57cec5SDimitry Andric         return false;
14340b57cec5SDimitry Andric       NonConstIndex = Index;
14350b57cec5SDimitry Andric     }
14360b57cec5SDimitry Andric   if (!NonConstIndex)
14370b57cec5SDimitry Andric     // The recurrence is on the pointer, ignore for now.
14380b57cec5SDimitry Andric     return false;
14390b57cec5SDimitry Andric 
14400b57cec5SDimitry Andric   // The index in GEP is signed.  It is non-wrapping if it's derived from a NSW
14410b57cec5SDimitry Andric   // AddRec using a NSW operation.
14420b57cec5SDimitry Andric   if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex))
14430b57cec5SDimitry Andric     if (OBO->hasNoSignedWrap() &&
14440b57cec5SDimitry Andric         // Assume constant for other the operand so that the AddRec can be
14450b57cec5SDimitry Andric         // easily found.
14460b57cec5SDimitry Andric         isa<ConstantInt>(OBO->getOperand(1))) {
14470b57cec5SDimitry Andric       auto *OpScev = PSE.getSCEV(OBO->getOperand(0));
14480b57cec5SDimitry Andric 
14490b57cec5SDimitry Andric       if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev))
14500b57cec5SDimitry Andric         return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW);
14510b57cec5SDimitry Andric     }
14520b57cec5SDimitry Andric 
14530b57cec5SDimitry Andric   return false;
14540b57cec5SDimitry Andric }
14550b57cec5SDimitry Andric 
14560b57cec5SDimitry Andric /// Check whether the access through \p Ptr has a constant stride.
1457*62987288SDimitry Andric std::optional<int64_t>
1458*62987288SDimitry Andric llvm::getPtrStride(PredicatedScalarEvolution &PSE, Type *AccessTy, Value *Ptr,
1459bdd1243dSDimitry Andric                    const Loop *Lp,
146006c3fb27SDimitry Andric                    const DenseMap<Value *, const SCEV *> &StridesMap,
1461bdd1243dSDimitry Andric                    bool Assume, bool ShouldCheckWrap) {
1462*62987288SDimitry Andric   const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr);
1463*62987288SDimitry Andric   if (PSE.getSE()->isLoopInvariant(PtrScev, Lp))
1464*62987288SDimitry Andric     return {0};
1465*62987288SDimitry Andric 
14660b57cec5SDimitry Andric   Type *Ty = Ptr->getType();
14670b57cec5SDimitry Andric   assert(Ty->isPointerTy() && "Unexpected non-ptr");
14684824e7fdSDimitry Andric   if (isa<ScalableVectorType>(AccessTy)) {
14694824e7fdSDimitry Andric     LLVM_DEBUG(dbgs() << "LAA: Bad stride - Scalable object: " << *AccessTy
14704824e7fdSDimitry Andric                       << "\n");
1471bdd1243dSDimitry Andric     return std::nullopt;
14720b57cec5SDimitry Andric   }
14730b57cec5SDimitry Andric 
14740b57cec5SDimitry Andric   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
14750b57cec5SDimitry Andric   if (Assume && !AR)
14760b57cec5SDimitry Andric     AR = PSE.getAsAddRec(Ptr);
14770b57cec5SDimitry Andric 
14780b57cec5SDimitry Andric   if (!AR) {
14790b57cec5SDimitry Andric     LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " << *Ptr
14800b57cec5SDimitry Andric                       << " SCEV: " << *PtrScev << "\n");
1481bdd1243dSDimitry Andric     return std::nullopt;
14820b57cec5SDimitry Andric   }
14830b57cec5SDimitry Andric 
14840b57cec5SDimitry Andric   // The access function must stride over the innermost loop.
14850b57cec5SDimitry Andric   if (Lp != AR->getLoop()) {
14860b57cec5SDimitry Andric     LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop "
14870b57cec5SDimitry Andric                       << *Ptr << " SCEV: " << *AR << "\n");
1488bdd1243dSDimitry Andric     return std::nullopt;
14890b57cec5SDimitry Andric   }
14900b57cec5SDimitry Andric 
14910b57cec5SDimitry Andric   // Check the step is constant.
14920b57cec5SDimitry Andric   const SCEV *Step = AR->getStepRecurrence(*PSE.getSE());
14930b57cec5SDimitry Andric 
14940b57cec5SDimitry Andric   // Calculate the pointer stride and check if it is constant.
14950b57cec5SDimitry Andric   const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
14960b57cec5SDimitry Andric   if (!C) {
14970b57cec5SDimitry Andric     LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr
14980b57cec5SDimitry Andric                       << " SCEV: " << *AR << "\n");
1499bdd1243dSDimitry Andric     return std::nullopt;
15000b57cec5SDimitry Andric   }
15010b57cec5SDimitry Andric 
15020fca6ea1SDimitry Andric   auto &DL = Lp->getHeader()->getDataLayout();
15034824e7fdSDimitry Andric   TypeSize AllocSize = DL.getTypeAllocSize(AccessTy);
1504bdd1243dSDimitry Andric   int64_t Size = AllocSize.getFixedValue();
15050b57cec5SDimitry Andric   const APInt &APStepVal = C->getAPInt();
15060b57cec5SDimitry Andric 
15070b57cec5SDimitry Andric   // Huge step value - give up.
15080b57cec5SDimitry Andric   if (APStepVal.getBitWidth() > 64)
1509bdd1243dSDimitry Andric     return std::nullopt;
15100b57cec5SDimitry Andric 
15110b57cec5SDimitry Andric   int64_t StepVal = APStepVal.getSExtValue();
15120b57cec5SDimitry Andric 
15130b57cec5SDimitry Andric   // Strided access.
15140b57cec5SDimitry Andric   int64_t Stride = StepVal / Size;
15150b57cec5SDimitry Andric   int64_t Rem = StepVal % Size;
15160b57cec5SDimitry Andric   if (Rem)
1517bdd1243dSDimitry Andric     return std::nullopt;
15180b57cec5SDimitry Andric 
151906c3fb27SDimitry Andric   if (!ShouldCheckWrap)
152006c3fb27SDimitry Andric     return Stride;
152106c3fb27SDimitry Andric 
152206c3fb27SDimitry Andric   // The address calculation must not wrap. Otherwise, a dependence could be
152306c3fb27SDimitry Andric   // inverted.
152406c3fb27SDimitry Andric   if (isNoWrapAddRec(Ptr, AR, PSE, Lp))
152506c3fb27SDimitry Andric     return Stride;
152606c3fb27SDimitry Andric 
152706c3fb27SDimitry Andric   // An inbounds getelementptr that is a AddRec with a unit stride
152806c3fb27SDimitry Andric   // cannot wrap per definition.  If it did, the result would be poison
152906c3fb27SDimitry Andric   // and any memory access dependent on it would be immediate UB
153006c3fb27SDimitry Andric   // when executed.
153106c3fb27SDimitry Andric   if (auto *GEP = dyn_cast<GetElementPtrInst>(Ptr);
153206c3fb27SDimitry Andric       GEP && GEP->isInBounds() && (Stride == 1 || Stride == -1))
153306c3fb27SDimitry Andric     return Stride;
153406c3fb27SDimitry Andric 
153506c3fb27SDimitry Andric   // If the null pointer is undefined, then a access sequence which would
153606c3fb27SDimitry Andric   // otherwise access it can be assumed not to unsigned wrap.  Note that this
153706c3fb27SDimitry Andric   // assumes the object in memory is aligned to the natural alignment.
153806c3fb27SDimitry Andric   unsigned AddrSpace = Ty->getPointerAddressSpace();
153906c3fb27SDimitry Andric   if (!NullPointerIsDefined(Lp->getHeader()->getParent(), AddrSpace) &&
154006c3fb27SDimitry Andric       (Stride == 1 || Stride == -1))
154106c3fb27SDimitry Andric     return Stride;
154206c3fb27SDimitry Andric 
15430b57cec5SDimitry Andric   if (Assume) {
154406c3fb27SDimitry Andric     PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
154506c3fb27SDimitry Andric     LLVM_DEBUG(dbgs() << "LAA: Pointer may wrap:\n"
15460b57cec5SDimitry Andric                       << "LAA:   Pointer: " << *Ptr << "\n"
15470b57cec5SDimitry Andric                       << "LAA:   SCEV: " << *AR << "\n"
15480b57cec5SDimitry Andric                       << "LAA:   Added an overflow assumption\n");
15490b57cec5SDimitry Andric     return Stride;
15500b57cec5SDimitry Andric   }
155106c3fb27SDimitry Andric   LLVM_DEBUG(
155206c3fb27SDimitry Andric       dbgs() << "LAA: Bad stride - Pointer may wrap in the address space "
155306c3fb27SDimitry Andric              << *Ptr << " SCEV: " << *AR << "\n");
155406c3fb27SDimitry Andric   return std::nullopt;
155506c3fb27SDimitry Andric }
15560b57cec5SDimitry Andric 
1557bdd1243dSDimitry Andric std::optional<int> llvm::getPointersDiff(Type *ElemTyA, Value *PtrA,
1558bdd1243dSDimitry Andric                                          Type *ElemTyB, Value *PtrB,
1559bdd1243dSDimitry Andric                                          const DataLayout &DL,
1560fe6060f1SDimitry Andric                                          ScalarEvolution &SE, bool StrictCheck,
1561fe6060f1SDimitry Andric                                          bool CheckType) {
1562fe6060f1SDimitry Andric   assert(PtrA && PtrB && "Expected non-nullptr pointers.");
1563fe6060f1SDimitry Andric 
1564fe6060f1SDimitry Andric   // Make sure that A and B are different pointers.
1565fe6060f1SDimitry Andric   if (PtrA == PtrB)
1566fe6060f1SDimitry Andric     return 0;
1567fe6060f1SDimitry Andric 
1568fe6060f1SDimitry Andric   // Make sure that the element types are the same if required.
1569fe6060f1SDimitry Andric   if (CheckType && ElemTyA != ElemTyB)
1570bdd1243dSDimitry Andric     return std::nullopt;
1571fe6060f1SDimitry Andric 
1572fe6060f1SDimitry Andric   unsigned ASA = PtrA->getType()->getPointerAddressSpace();
1573fe6060f1SDimitry Andric   unsigned ASB = PtrB->getType()->getPointerAddressSpace();
1574fe6060f1SDimitry Andric 
1575fe6060f1SDimitry Andric   // Check that the address spaces match.
1576fe6060f1SDimitry Andric   if (ASA != ASB)
1577bdd1243dSDimitry Andric     return std::nullopt;
1578fe6060f1SDimitry Andric   unsigned IdxWidth = DL.getIndexSizeInBits(ASA);
1579fe6060f1SDimitry Andric 
1580fe6060f1SDimitry Andric   APInt OffsetA(IdxWidth, 0), OffsetB(IdxWidth, 0);
1581fe6060f1SDimitry Andric   Value *PtrA1 = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA);
1582fe6060f1SDimitry Andric   Value *PtrB1 = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB);
1583fe6060f1SDimitry Andric 
1584fe6060f1SDimitry Andric   int Val;
1585fe6060f1SDimitry Andric   if (PtrA1 == PtrB1) {
1586fe6060f1SDimitry Andric     // Retrieve the address space again as pointer stripping now tracks through
1587fe6060f1SDimitry Andric     // `addrspacecast`.
1588fe6060f1SDimitry Andric     ASA = cast<PointerType>(PtrA1->getType())->getAddressSpace();
1589fe6060f1SDimitry Andric     ASB = cast<PointerType>(PtrB1->getType())->getAddressSpace();
1590fe6060f1SDimitry Andric     // Check that the address spaces match and that the pointers are valid.
1591fe6060f1SDimitry Andric     if (ASA != ASB)
1592bdd1243dSDimitry Andric       return std::nullopt;
1593fe6060f1SDimitry Andric 
1594fe6060f1SDimitry Andric     IdxWidth = DL.getIndexSizeInBits(ASA);
1595fe6060f1SDimitry Andric     OffsetA = OffsetA.sextOrTrunc(IdxWidth);
1596fe6060f1SDimitry Andric     OffsetB = OffsetB.sextOrTrunc(IdxWidth);
1597fe6060f1SDimitry Andric 
1598fe6060f1SDimitry Andric     OffsetB -= OffsetA;
1599fe6060f1SDimitry Andric     Val = OffsetB.getSExtValue();
1600fe6060f1SDimitry Andric   } else {
1601fe6060f1SDimitry Andric     // Otherwise compute the distance with SCEV between the base pointers.
1602fe6060f1SDimitry Andric     const SCEV *PtrSCEVA = SE.getSCEV(PtrA);
1603fe6060f1SDimitry Andric     const SCEV *PtrSCEVB = SE.getSCEV(PtrB);
1604fe6060f1SDimitry Andric     const auto *Diff =
1605fe6060f1SDimitry Andric         dyn_cast<SCEVConstant>(SE.getMinusSCEV(PtrSCEVB, PtrSCEVA));
1606fe6060f1SDimitry Andric     if (!Diff)
1607bdd1243dSDimitry Andric       return std::nullopt;
1608fe6060f1SDimitry Andric     Val = Diff->getAPInt().getSExtValue();
1609fe6060f1SDimitry Andric   }
1610fe6060f1SDimitry Andric   int Size = DL.getTypeStoreSize(ElemTyA);
1611fe6060f1SDimitry Andric   int Dist = Val / Size;
1612fe6060f1SDimitry Andric 
1613fe6060f1SDimitry Andric   // Ensure that the calculated distance matches the type-based one after all
1614fe6060f1SDimitry Andric   // the bitcasts removal in the provided pointers.
1615fe6060f1SDimitry Andric   if (!StrictCheck || Dist * Size == Val)
1616fe6060f1SDimitry Andric     return Dist;
1617bdd1243dSDimitry Andric   return std::nullopt;
1618fe6060f1SDimitry Andric }
1619fe6060f1SDimitry Andric 
1620fe6060f1SDimitry Andric bool llvm::sortPtrAccesses(ArrayRef<Value *> VL, Type *ElemTy,
1621fe6060f1SDimitry Andric                            const DataLayout &DL, ScalarEvolution &SE,
16220b57cec5SDimitry Andric                            SmallVectorImpl<unsigned> &SortedIndices) {
16230b57cec5SDimitry Andric   assert(llvm::all_of(
16240b57cec5SDimitry Andric              VL, [](const Value *V) { return V->getType()->isPointerTy(); }) &&
16250b57cec5SDimitry Andric          "Expected list of pointer operands.");
16260b57cec5SDimitry Andric   // Walk over the pointers, and map each of them to an offset relative to
16270b57cec5SDimitry Andric   // first pointer in the array.
16280b57cec5SDimitry Andric   Value *Ptr0 = VL[0];
16290b57cec5SDimitry Andric 
1630fe6060f1SDimitry Andric   using DistOrdPair = std::pair<int64_t, int>;
1631972a253aSDimitry Andric   auto Compare = llvm::less_first();
1632fe6060f1SDimitry Andric   std::set<DistOrdPair, decltype(Compare)> Offsets(Compare);
1633fe6060f1SDimitry Andric   Offsets.emplace(0, 0);
1634fe6060f1SDimitry Andric   bool IsConsecutive = true;
16350fca6ea1SDimitry Andric   for (auto [Idx, Ptr] : drop_begin(enumerate(VL))) {
1636bdd1243dSDimitry Andric     std::optional<int> Diff = getPointersDiff(ElemTy, Ptr0, ElemTy, Ptr, DL, SE,
1637fe6060f1SDimitry Andric                                               /*StrictCheck=*/true);
16380b57cec5SDimitry Andric     if (!Diff)
16390b57cec5SDimitry Andric       return false;
16400b57cec5SDimitry Andric 
16410b57cec5SDimitry Andric     // Check if the pointer with the same offset is found.
1642fe6060f1SDimitry Andric     int64_t Offset = *Diff;
16430fca6ea1SDimitry Andric     auto [It, IsInserted] = Offsets.emplace(Offset, Idx);
16440fca6ea1SDimitry Andric     if (!IsInserted)
16450b57cec5SDimitry Andric       return false;
1646fe6060f1SDimitry Andric     // Consecutive order if the inserted element is the last one.
16470fca6ea1SDimitry Andric     IsConsecutive &= std::next(It) == Offsets.end();
16480b57cec5SDimitry Andric   }
16490b57cec5SDimitry Andric   SortedIndices.clear();
1650fe6060f1SDimitry Andric   if (!IsConsecutive) {
1651fe6060f1SDimitry Andric     // Fill SortedIndices array only if it is non-consecutive.
16520b57cec5SDimitry Andric     SortedIndices.resize(VL.size());
16530fca6ea1SDimitry Andric     for (auto [Idx, Off] : enumerate(Offsets))
16540fca6ea1SDimitry Andric       SortedIndices[Idx] = Off.second;
1655fe6060f1SDimitry Andric   }
1656fe6060f1SDimitry Andric   return true;
16570b57cec5SDimitry Andric }
16580b57cec5SDimitry Andric 
16590b57cec5SDimitry Andric /// Returns true if the memory operations \p A and \p B are consecutive.
16600b57cec5SDimitry Andric bool llvm::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL,
16610b57cec5SDimitry Andric                                ScalarEvolution &SE, bool CheckType) {
16620b57cec5SDimitry Andric   Value *PtrA = getLoadStorePointerOperand(A);
16630b57cec5SDimitry Andric   Value *PtrB = getLoadStorePointerOperand(B);
1664fe6060f1SDimitry Andric   if (!PtrA || !PtrB)
16650b57cec5SDimitry Andric     return false;
1666fe6060f1SDimitry Andric   Type *ElemTyA = getLoadStoreType(A);
1667fe6060f1SDimitry Andric   Type *ElemTyB = getLoadStoreType(B);
1668bdd1243dSDimitry Andric   std::optional<int> Diff =
1669bdd1243dSDimitry Andric       getPointersDiff(ElemTyA, PtrA, ElemTyB, PtrB, DL, SE,
1670fe6060f1SDimitry Andric                       /*StrictCheck=*/true, CheckType);
1671fe6060f1SDimitry Andric   return Diff && *Diff == 1;
16720b57cec5SDimitry Andric }
16730b57cec5SDimitry Andric 
1674349cc55cSDimitry Andric void MemoryDepChecker::addAccess(StoreInst *SI) {
1675349cc55cSDimitry Andric   visitPointers(SI->getPointerOperand(), *InnermostLoop,
1676349cc55cSDimitry Andric                 [this, SI](Value *Ptr) {
1677349cc55cSDimitry Andric                   Accesses[MemAccessInfo(Ptr, true)].push_back(AccessIdx);
1678349cc55cSDimitry Andric                   InstMap.push_back(SI);
1679349cc55cSDimitry Andric                   ++AccessIdx;
1680349cc55cSDimitry Andric                 });
1681349cc55cSDimitry Andric }
1682349cc55cSDimitry Andric 
1683349cc55cSDimitry Andric void MemoryDepChecker::addAccess(LoadInst *LI) {
1684349cc55cSDimitry Andric   visitPointers(LI->getPointerOperand(), *InnermostLoop,
1685349cc55cSDimitry Andric                 [this, LI](Value *Ptr) {
1686349cc55cSDimitry Andric                   Accesses[MemAccessInfo(Ptr, false)].push_back(AccessIdx);
1687349cc55cSDimitry Andric                   InstMap.push_back(LI);
1688349cc55cSDimitry Andric                   ++AccessIdx;
1689349cc55cSDimitry Andric                 });
1690349cc55cSDimitry Andric }
1691349cc55cSDimitry Andric 
16920b57cec5SDimitry Andric MemoryDepChecker::VectorizationSafetyStatus
16930b57cec5SDimitry Andric MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) {
16940b57cec5SDimitry Andric   switch (Type) {
16950b57cec5SDimitry Andric   case NoDep:
16960b57cec5SDimitry Andric   case Forward:
16970b57cec5SDimitry Andric   case BackwardVectorizable:
16980b57cec5SDimitry Andric     return VectorizationSafetyStatus::Safe;
16990b57cec5SDimitry Andric 
17000b57cec5SDimitry Andric   case Unknown:
17010b57cec5SDimitry Andric     return VectorizationSafetyStatus::PossiblySafeWithRtChecks;
17020b57cec5SDimitry Andric   case ForwardButPreventsForwarding:
17030b57cec5SDimitry Andric   case Backward:
17040b57cec5SDimitry Andric   case BackwardVectorizableButPreventsForwarding:
17055f757f3fSDimitry Andric   case IndirectUnsafe:
17060b57cec5SDimitry Andric     return VectorizationSafetyStatus::Unsafe;
17070b57cec5SDimitry Andric   }
17080b57cec5SDimitry Andric   llvm_unreachable("unexpected DepType!");
17090b57cec5SDimitry Andric }
17100b57cec5SDimitry Andric 
17110b57cec5SDimitry Andric bool MemoryDepChecker::Dependence::isBackward() const {
17120b57cec5SDimitry Andric   switch (Type) {
17130b57cec5SDimitry Andric   case NoDep:
17140b57cec5SDimitry Andric   case Forward:
17150b57cec5SDimitry Andric   case ForwardButPreventsForwarding:
17160b57cec5SDimitry Andric   case Unknown:
17175f757f3fSDimitry Andric   case IndirectUnsafe:
17180b57cec5SDimitry Andric     return false;
17190b57cec5SDimitry Andric 
17200b57cec5SDimitry Andric   case BackwardVectorizable:
17210b57cec5SDimitry Andric   case Backward:
17220b57cec5SDimitry Andric   case BackwardVectorizableButPreventsForwarding:
17230b57cec5SDimitry Andric     return true;
17240b57cec5SDimitry Andric   }
17250b57cec5SDimitry Andric   llvm_unreachable("unexpected DepType!");
17260b57cec5SDimitry Andric }
17270b57cec5SDimitry Andric 
17280b57cec5SDimitry Andric bool MemoryDepChecker::Dependence::isPossiblyBackward() const {
17290fca6ea1SDimitry Andric   return isBackward() || Type == Unknown || Type == IndirectUnsafe;
17300b57cec5SDimitry Andric }
17310b57cec5SDimitry Andric 
17320b57cec5SDimitry Andric bool MemoryDepChecker::Dependence::isForward() const {
17330b57cec5SDimitry Andric   switch (Type) {
17340b57cec5SDimitry Andric   case Forward:
17350b57cec5SDimitry Andric   case ForwardButPreventsForwarding:
17360b57cec5SDimitry Andric     return true;
17370b57cec5SDimitry Andric 
17380b57cec5SDimitry Andric   case NoDep:
17390b57cec5SDimitry Andric   case Unknown:
17400b57cec5SDimitry Andric   case BackwardVectorizable:
17410b57cec5SDimitry Andric   case Backward:
17420b57cec5SDimitry Andric   case BackwardVectorizableButPreventsForwarding:
17435f757f3fSDimitry Andric   case IndirectUnsafe:
17440b57cec5SDimitry Andric     return false;
17450b57cec5SDimitry Andric   }
17460b57cec5SDimitry Andric   llvm_unreachable("unexpected DepType!");
17470b57cec5SDimitry Andric }
17480b57cec5SDimitry Andric 
17490b57cec5SDimitry Andric bool MemoryDepChecker::couldPreventStoreLoadForward(uint64_t Distance,
17500b57cec5SDimitry Andric                                                     uint64_t TypeByteSize) {
17510b57cec5SDimitry Andric   // If loads occur at a distance that is not a multiple of a feasible vector
17520b57cec5SDimitry Andric   // factor store-load forwarding does not take place.
17530b57cec5SDimitry Andric   // Positive dependences might cause troubles because vectorizing them might
17540b57cec5SDimitry Andric   // prevent store-load forwarding making vectorized code run a lot slower.
17550b57cec5SDimitry Andric   //   a[i] = a[i-3] ^ a[i-8];
17560b57cec5SDimitry Andric   //   The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and
17570b57cec5SDimitry Andric   //   hence on your typical architecture store-load forwarding does not take
17580b57cec5SDimitry Andric   //   place. Vectorizing in such cases does not make sense.
17590b57cec5SDimitry Andric   // Store-load forwarding distance.
17600b57cec5SDimitry Andric 
17610b57cec5SDimitry Andric   // After this many iterations store-to-load forwarding conflicts should not
17620b57cec5SDimitry Andric   // cause any slowdowns.
17630b57cec5SDimitry Andric   const uint64_t NumItersForStoreLoadThroughMemory = 8 * TypeByteSize;
17640b57cec5SDimitry Andric   // Maximum vector factor.
17650b57cec5SDimitry Andric   uint64_t MaxVFWithoutSLForwardIssues = std::min(
17665f757f3fSDimitry Andric       VectorizerParams::MaxVectorWidth * TypeByteSize, MinDepDistBytes);
17670b57cec5SDimitry Andric 
17680b57cec5SDimitry Andric   // Compute the smallest VF at which the store and load would be misaligned.
17690b57cec5SDimitry Andric   for (uint64_t VF = 2 * TypeByteSize; VF <= MaxVFWithoutSLForwardIssues;
17700b57cec5SDimitry Andric        VF *= 2) {
17710b57cec5SDimitry Andric     // If the number of vector iteration between the store and the load are
17720b57cec5SDimitry Andric     // small we could incur conflicts.
17730b57cec5SDimitry Andric     if (Distance % VF && Distance / VF < NumItersForStoreLoadThroughMemory) {
1774e8d8bef9SDimitry Andric       MaxVFWithoutSLForwardIssues = (VF >> 1);
17750b57cec5SDimitry Andric       break;
17760b57cec5SDimitry Andric     }
17770b57cec5SDimitry Andric   }
17780b57cec5SDimitry Andric 
17790b57cec5SDimitry Andric   if (MaxVFWithoutSLForwardIssues < 2 * TypeByteSize) {
17800b57cec5SDimitry Andric     LLVM_DEBUG(
17810b57cec5SDimitry Andric         dbgs() << "LAA: Distance " << Distance
17820b57cec5SDimitry Andric                << " that could cause a store-load forwarding conflict\n");
17830b57cec5SDimitry Andric     return true;
17840b57cec5SDimitry Andric   }
17850b57cec5SDimitry Andric 
17865f757f3fSDimitry Andric   if (MaxVFWithoutSLForwardIssues < MinDepDistBytes &&
17870b57cec5SDimitry Andric       MaxVFWithoutSLForwardIssues !=
17880b57cec5SDimitry Andric           VectorizerParams::MaxVectorWidth * TypeByteSize)
17895f757f3fSDimitry Andric     MinDepDistBytes = MaxVFWithoutSLForwardIssues;
17900b57cec5SDimitry Andric   return false;
17910b57cec5SDimitry Andric }
17920b57cec5SDimitry Andric 
17930b57cec5SDimitry Andric void MemoryDepChecker::mergeInStatus(VectorizationSafetyStatus S) {
17940b57cec5SDimitry Andric   if (Status < S)
17950b57cec5SDimitry Andric     Status = S;
17960b57cec5SDimitry Andric }
17970b57cec5SDimitry Andric 
1798bdd1243dSDimitry Andric /// Given a dependence-distance \p Dist between two
17990fca6ea1SDimitry Andric /// memory accesses, that have strides in the same direction whose absolute
18000fca6ea1SDimitry Andric /// value of the maximum stride is given in \p MaxStride, and that have the same
18010fca6ea1SDimitry Andric /// type size \p TypeByteSize, in a loop whose maximum backedge taken count is
18020fca6ea1SDimitry Andric /// \p MaxBTC, check if it is possible to prove statically that the dependence
18030fca6ea1SDimitry Andric /// distance is larger than the range that the accesses will travel through the
18040fca6ea1SDimitry Andric /// execution of the loop. If so, return true; false otherwise. This is useful
18050fca6ea1SDimitry Andric /// for example in loops such as the following (PR31098):
18060b57cec5SDimitry Andric ///     for (i = 0; i < D; ++i) {
18070b57cec5SDimitry Andric ///                = out[i];
18080b57cec5SDimitry Andric ///       out[i+D] =
18090b57cec5SDimitry Andric ///     }
18100b57cec5SDimitry Andric static bool isSafeDependenceDistance(const DataLayout &DL, ScalarEvolution &SE,
18110fca6ea1SDimitry Andric                                      const SCEV &MaxBTC, const SCEV &Dist,
18120fca6ea1SDimitry Andric                                      uint64_t MaxStride,
18130b57cec5SDimitry Andric                                      uint64_t TypeByteSize) {
18140b57cec5SDimitry Andric 
18150b57cec5SDimitry Andric   // If we can prove that
18160fca6ea1SDimitry Andric   //      (**) |Dist| > MaxBTC * Step
18170b57cec5SDimitry Andric   // where Step is the absolute stride of the memory accesses in bytes,
18180b57cec5SDimitry Andric   // then there is no dependence.
18190b57cec5SDimitry Andric   //
18200b57cec5SDimitry Andric   // Rationale:
18210b57cec5SDimitry Andric   // We basically want to check if the absolute distance (|Dist/Step|)
18220fca6ea1SDimitry Andric   // is >= the loop iteration count (or > MaxBTC).
18230b57cec5SDimitry Andric   // This is equivalent to the Strong SIV Test (Practical Dependence Testing,
18240b57cec5SDimitry Andric   // Section 4.2.1); Note, that for vectorization it is sufficient to prove
18250b57cec5SDimitry Andric   // that the dependence distance is >= VF; This is checked elsewhere.
1826bdd1243dSDimitry Andric   // But in some cases we can prune dependence distances early, and
18270b57cec5SDimitry Andric   // even before selecting the VF, and without a runtime test, by comparing
18280b57cec5SDimitry Andric   // the distance against the loop iteration count. Since the vectorized code
18290b57cec5SDimitry Andric   // will be executed only if LoopCount >= VF, proving distance >= LoopCount
18300b57cec5SDimitry Andric   // also guarantees that distance >= VF.
18310b57cec5SDimitry Andric   //
18320fca6ea1SDimitry Andric   const uint64_t ByteStride = MaxStride * TypeByteSize;
18330fca6ea1SDimitry Andric   const SCEV *Step = SE.getConstant(MaxBTC.getType(), ByteStride);
18340fca6ea1SDimitry Andric   const SCEV *Product = SE.getMulExpr(&MaxBTC, Step);
18350b57cec5SDimitry Andric 
18360b57cec5SDimitry Andric   const SCEV *CastedDist = &Dist;
18370b57cec5SDimitry Andric   const SCEV *CastedProduct = Product;
183881ad6265SDimitry Andric   uint64_t DistTypeSizeBits = DL.getTypeSizeInBits(Dist.getType());
183981ad6265SDimitry Andric   uint64_t ProductTypeSizeBits = DL.getTypeSizeInBits(Product->getType());
18400b57cec5SDimitry Andric 
18410b57cec5SDimitry Andric   // The dependence distance can be positive/negative, so we sign extend Dist;
18420b57cec5SDimitry Andric   // The multiplication of the absolute stride in bytes and the
18430b57cec5SDimitry Andric   // backedgeTakenCount is non-negative, so we zero extend Product.
184481ad6265SDimitry Andric   if (DistTypeSizeBits > ProductTypeSizeBits)
18450b57cec5SDimitry Andric     CastedProduct = SE.getZeroExtendExpr(Product, Dist.getType());
18460b57cec5SDimitry Andric   else
18470b57cec5SDimitry Andric     CastedDist = SE.getNoopOrSignExtend(&Dist, Product->getType());
18480b57cec5SDimitry Andric 
18490fca6ea1SDimitry Andric   // Is  Dist - (MaxBTC * Step) > 0 ?
18500b57cec5SDimitry Andric   // (If so, then we have proven (**) because |Dist| >= Dist)
18510b57cec5SDimitry Andric   const SCEV *Minus = SE.getMinusSCEV(CastedDist, CastedProduct);
18520b57cec5SDimitry Andric   if (SE.isKnownPositive(Minus))
18530b57cec5SDimitry Andric     return true;
18540b57cec5SDimitry Andric 
18550fca6ea1SDimitry Andric   // Second try: Is  -Dist - (MaxBTC * Step) > 0 ?
18560b57cec5SDimitry Andric   // (If so, then we have proven (**) because |Dist| >= -1*Dist)
18570b57cec5SDimitry Andric   const SCEV *NegDist = SE.getNegativeSCEV(CastedDist);
18580b57cec5SDimitry Andric   Minus = SE.getMinusSCEV(NegDist, CastedProduct);
18590fca6ea1SDimitry Andric   return SE.isKnownPositive(Minus);
18600b57cec5SDimitry Andric }
18610b57cec5SDimitry Andric 
18620b57cec5SDimitry Andric /// Check the dependence for two accesses with the same stride \p Stride.
18630b57cec5SDimitry Andric /// \p Distance is the positive distance and \p TypeByteSize is type size in
18640b57cec5SDimitry Andric /// bytes.
18650b57cec5SDimitry Andric ///
18660b57cec5SDimitry Andric /// \returns true if they are independent.
18670b57cec5SDimitry Andric static bool areStridedAccessesIndependent(uint64_t Distance, uint64_t Stride,
18680b57cec5SDimitry Andric                                           uint64_t TypeByteSize) {
18690b57cec5SDimitry Andric   assert(Stride > 1 && "The stride must be greater than 1");
18700b57cec5SDimitry Andric   assert(TypeByteSize > 0 && "The type size in byte must be non-zero");
18710b57cec5SDimitry Andric   assert(Distance > 0 && "The distance must be non-zero");
18720b57cec5SDimitry Andric 
18730b57cec5SDimitry Andric   // Skip if the distance is not multiple of type byte size.
18740b57cec5SDimitry Andric   if (Distance % TypeByteSize)
18750b57cec5SDimitry Andric     return false;
18760b57cec5SDimitry Andric 
18770b57cec5SDimitry Andric   uint64_t ScaledDist = Distance / TypeByteSize;
18780b57cec5SDimitry Andric 
18790b57cec5SDimitry Andric   // No dependence if the scaled distance is not multiple of the stride.
18800b57cec5SDimitry Andric   // E.g.
18810b57cec5SDimitry Andric   //      for (i = 0; i < 1024 ; i += 4)
18820b57cec5SDimitry Andric   //        A[i+2] = A[i] + 1;
18830b57cec5SDimitry Andric   //
18840b57cec5SDimitry Andric   // Two accesses in memory (scaled distance is 2, stride is 4):
18850b57cec5SDimitry Andric   //     | A[0] |      |      |      | A[4] |      |      |      |
18860b57cec5SDimitry Andric   //     |      |      | A[2] |      |      |      | A[6] |      |
18870b57cec5SDimitry Andric   //
18880b57cec5SDimitry Andric   // E.g.
18890b57cec5SDimitry Andric   //      for (i = 0; i < 1024 ; i += 3)
18900b57cec5SDimitry Andric   //        A[i+4] = A[i] + 1;
18910b57cec5SDimitry Andric   //
18920b57cec5SDimitry Andric   // Two accesses in memory (scaled distance is 4, stride is 3):
18930b57cec5SDimitry Andric   //     | A[0] |      |      | A[3] |      |      | A[6] |      |      |
18940b57cec5SDimitry Andric   //     |      |      |      |      | A[4] |      |      | A[7] |      |
18950b57cec5SDimitry Andric   return ScaledDist % Stride;
18960b57cec5SDimitry Andric }
18970b57cec5SDimitry Andric 
18980fca6ea1SDimitry Andric std::variant<MemoryDepChecker::Dependence::DepType,
18990fca6ea1SDimitry Andric              MemoryDepChecker::DepDistanceStrideAndSizeInfo>
19000fca6ea1SDimitry Andric MemoryDepChecker::getDependenceDistanceStrideAndSize(
19015f757f3fSDimitry Andric     const AccessAnalysis::MemAccessInfo &A, Instruction *AInst,
1902*62987288SDimitry Andric     const AccessAnalysis::MemAccessInfo &B, Instruction *BInst) {
1903*62987288SDimitry Andric   const auto &DL = InnermostLoop->getHeader()->getDataLayout();
19045f757f3fSDimitry Andric   auto &SE = *PSE.getSE();
1905bdd1243dSDimitry Andric   auto [APtr, AIsWrite] = A;
1906bdd1243dSDimitry Andric   auto [BPtr, BIsWrite] = B;
19070b57cec5SDimitry Andric 
19080b57cec5SDimitry Andric   // Two reads are independent.
19090b57cec5SDimitry Andric   if (!AIsWrite && !BIsWrite)
19105f757f3fSDimitry Andric     return MemoryDepChecker::Dependence::NoDep;
19115f757f3fSDimitry Andric 
19125f757f3fSDimitry Andric   Type *ATy = getLoadStoreType(AInst);
19135f757f3fSDimitry Andric   Type *BTy = getLoadStoreType(BInst);
19140b57cec5SDimitry Andric 
19150b57cec5SDimitry Andric   // We cannot check pointers in different address spaces.
19160b57cec5SDimitry Andric   if (APtr->getType()->getPointerAddressSpace() !=
19170b57cec5SDimitry Andric       BPtr->getType()->getPointerAddressSpace())
19185f757f3fSDimitry Andric     return MemoryDepChecker::Dependence::Unknown;
19190b57cec5SDimitry Andric 
1920*62987288SDimitry Andric   std::optional<int64_t> StrideAPtr =
1921*62987288SDimitry Andric       getPtrStride(PSE, ATy, APtr, InnermostLoop, SymbolicStrides, true, true);
1922*62987288SDimitry Andric   std::optional<int64_t> StrideBPtr =
1923*62987288SDimitry Andric       getPtrStride(PSE, BTy, BPtr, InnermostLoop, SymbolicStrides, true, true);
19240b57cec5SDimitry Andric 
19250b57cec5SDimitry Andric   const SCEV *Src = PSE.getSCEV(APtr);
19260b57cec5SDimitry Andric   const SCEV *Sink = PSE.getSCEV(BPtr);
19270b57cec5SDimitry Andric 
19280b57cec5SDimitry Andric   // If the induction step is negative we have to invert source and sink of the
19295f757f3fSDimitry Andric   // dependence when measuring the distance between them. We should not swap
19305f757f3fSDimitry Andric   // AIsWrite with BIsWrite, as their uses expect them in program order.
1931*62987288SDimitry Andric   if (StrideAPtr && *StrideAPtr < 0) {
19320b57cec5SDimitry Andric     std::swap(Src, Sink);
19335f757f3fSDimitry Andric     std::swap(AInst, BInst);
1934*62987288SDimitry Andric     std::swap(StrideAPtr, StrideBPtr);
19350b57cec5SDimitry Andric   }
19360b57cec5SDimitry Andric 
1937bdd1243dSDimitry Andric   const SCEV *Dist = SE.getMinusSCEV(Sink, Src);
19380b57cec5SDimitry Andric 
19390b57cec5SDimitry Andric   LLVM_DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink
1940*62987288SDimitry Andric                     << "\n");
19415f757f3fSDimitry Andric   LLVM_DEBUG(dbgs() << "LAA: Distance for " << *AInst << " to " << *BInst
19425f757f3fSDimitry Andric                     << ": " << *Dist << "\n");
19435f757f3fSDimitry Andric 
19440fca6ea1SDimitry Andric   // Check if we can prove that Sink only accesses memory after Src's end or
19450fca6ea1SDimitry Andric   // vice versa. At the moment this is limited to cases where either source or
19460fca6ea1SDimitry Andric   // sink are loop invariant to avoid compile-time increases. This is not
19470fca6ea1SDimitry Andric   // required for correctness.
19480fca6ea1SDimitry Andric   if (SE.isLoopInvariant(Src, InnermostLoop) ||
19490fca6ea1SDimitry Andric       SE.isLoopInvariant(Sink, InnermostLoop)) {
19500fca6ea1SDimitry Andric     const auto &[SrcStart, SrcEnd] =
19510fca6ea1SDimitry Andric         getStartAndEndForAccess(InnermostLoop, Src, ATy, PSE, PointerBounds);
19520fca6ea1SDimitry Andric     const auto &[SinkStart, SinkEnd] =
19530fca6ea1SDimitry Andric         getStartAndEndForAccess(InnermostLoop, Sink, BTy, PSE, PointerBounds);
19540fca6ea1SDimitry Andric     if (!isa<SCEVCouldNotCompute>(SrcStart) &&
19550fca6ea1SDimitry Andric         !isa<SCEVCouldNotCompute>(SrcEnd) &&
19560fca6ea1SDimitry Andric         !isa<SCEVCouldNotCompute>(SinkStart) &&
19570fca6ea1SDimitry Andric         !isa<SCEVCouldNotCompute>(SinkEnd)) {
19580fca6ea1SDimitry Andric       if (SE.isKnownPredicate(CmpInst::ICMP_ULE, SrcEnd, SinkStart))
19590fca6ea1SDimitry Andric         return MemoryDepChecker::Dependence::NoDep;
19600fca6ea1SDimitry Andric       if (SE.isKnownPredicate(CmpInst::ICMP_ULE, SinkEnd, SrcStart))
19610fca6ea1SDimitry Andric         return MemoryDepChecker::Dependence::NoDep;
19620fca6ea1SDimitry Andric     }
19630fca6ea1SDimitry Andric   }
19640fca6ea1SDimitry Andric 
1965*62987288SDimitry Andric   // Need accesses with constant strides and the same direction for further
1966*62987288SDimitry Andric   // dependence analysis. We don't want to vectorize "A[B[i]] += ..." and
1967*62987288SDimitry Andric   // similar code or pointer arithmetic that could wrap in the address space.
1968*62987288SDimitry Andric 
1969*62987288SDimitry Andric   // If either Src or Sink are not strided (i.e. not a non-wrapping AddRec) and
1970*62987288SDimitry Andric   // not loop-invariant (stride will be 0 in that case), we cannot analyze the
1971*62987288SDimitry Andric   // dependence further and also cannot generate runtime checks.
1972*62987288SDimitry Andric   if (!StrideAPtr || !StrideBPtr) {
19730b57cec5SDimitry Andric     LLVM_DEBUG(dbgs() << "Pointer access with non-constant stride\n");
1974*62987288SDimitry Andric     return MemoryDepChecker::Dependence::IndirectUnsafe;
1975*62987288SDimitry Andric   }
1976*62987288SDimitry Andric 
1977*62987288SDimitry Andric   int64_t StrideAPtrInt = *StrideAPtr;
1978*62987288SDimitry Andric   int64_t StrideBPtrInt = *StrideBPtr;
1979*62987288SDimitry Andric   LLVM_DEBUG(dbgs() << "LAA:  Src induction step: " << StrideAPtrInt
1980*62987288SDimitry Andric                     << " Sink induction step: " << StrideBPtrInt << "\n");
1981*62987288SDimitry Andric   // At least Src or Sink are loop invariant and the other is strided or
1982*62987288SDimitry Andric   // invariant. We can generate a runtime check to disambiguate the accesses.
1983*62987288SDimitry Andric   if (StrideAPtrInt == 0 || StrideBPtrInt == 0)
1984*62987288SDimitry Andric     return MemoryDepChecker::Dependence::Unknown;
1985*62987288SDimitry Andric 
1986*62987288SDimitry Andric   // Both Src and Sink have a constant stride, check if they are in the same
1987*62987288SDimitry Andric   // direction.
1988*62987288SDimitry Andric   if ((StrideAPtrInt > 0 && StrideBPtrInt < 0) ||
1989*62987288SDimitry Andric       (StrideAPtrInt < 0 && StrideBPtrInt > 0)) {
1990*62987288SDimitry Andric     LLVM_DEBUG(
1991*62987288SDimitry Andric         dbgs() << "Pointer access with strides in different directions\n");
19925f757f3fSDimitry Andric     return MemoryDepChecker::Dependence::Unknown;
19930b57cec5SDimitry Andric   }
19940b57cec5SDimitry Andric 
19950b57cec5SDimitry Andric   uint64_t TypeByteSize = DL.getTypeAllocSize(ATy);
19960eae32dcSDimitry Andric   bool HasSameSize =
19970eae32dcSDimitry Andric       DL.getTypeStoreSizeInBits(ATy) == DL.getTypeStoreSizeInBits(BTy);
19985f757f3fSDimitry Andric   if (!HasSameSize)
19995f757f3fSDimitry Andric     TypeByteSize = 0;
2000*62987288SDimitry Andric   return DepDistanceStrideAndSizeInfo(Dist, std::abs(StrideAPtrInt),
2001*62987288SDimitry Andric                                       std::abs(StrideBPtrInt), TypeByteSize,
20020fca6ea1SDimitry Andric                                       AIsWrite, BIsWrite);
20035f757f3fSDimitry Andric }
2004bdd1243dSDimitry Andric 
2005*62987288SDimitry Andric MemoryDepChecker::Dependence::DepType
2006*62987288SDimitry Andric MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx,
2007*62987288SDimitry Andric                               const MemAccessInfo &B, unsigned BIdx) {
20085f757f3fSDimitry Andric   assert(AIdx < BIdx && "Must pass arguments in program order");
20095f757f3fSDimitry Andric 
20105f757f3fSDimitry Andric   // Get the dependence distance, stride, type size and what access writes for
20115f757f3fSDimitry Andric   // the dependence between A and B.
2012*62987288SDimitry Andric   auto Res =
2013*62987288SDimitry Andric       getDependenceDistanceStrideAndSize(A, InstMap[AIdx], B, InstMap[BIdx]);
20145f757f3fSDimitry Andric   if (std::holds_alternative<Dependence::DepType>(Res))
20155f757f3fSDimitry Andric     return std::get<Dependence::DepType>(Res);
20165f757f3fSDimitry Andric 
20170fca6ea1SDimitry Andric   auto &[Dist, StrideA, StrideB, TypeByteSize, AIsWrite, BIsWrite] =
20180fca6ea1SDimitry Andric       std::get<DepDistanceStrideAndSizeInfo>(Res);
20195f757f3fSDimitry Andric   bool HasSameSize = TypeByteSize > 0;
20205f757f3fSDimitry Andric 
20210fca6ea1SDimitry Andric   std::optional<uint64_t> CommonStride =
20220fca6ea1SDimitry Andric       StrideA == StrideB ? std::make_optional(StrideA) : std::nullopt;
20230fca6ea1SDimitry Andric   if (isa<SCEVCouldNotCompute>(Dist)) {
20240fca6ea1SDimitry Andric     // TODO: Relax requirement that there is a common stride to retry with
20250fca6ea1SDimitry Andric     // non-constant distance dependencies.
20260fca6ea1SDimitry Andric     FoundNonConstantDistanceDependence |= CommonStride.has_value();
20270fca6ea1SDimitry Andric     LLVM_DEBUG(dbgs() << "LAA: Dependence because of uncomputable distance.\n");
20280b57cec5SDimitry Andric     return Dependence::Unknown;
20290b57cec5SDimitry Andric   }
20300b57cec5SDimitry Andric 
20310fca6ea1SDimitry Andric   ScalarEvolution &SE = *PSE.getSE();
20320fca6ea1SDimitry Andric   auto &DL = InnermostLoop->getHeader()->getDataLayout();
20330fca6ea1SDimitry Andric   uint64_t MaxStride = std::max(StrideA, StrideB);
20340fca6ea1SDimitry Andric 
20350fca6ea1SDimitry Andric   // If the distance between the acecsses is larger than their maximum absolute
20360fca6ea1SDimitry Andric   // stride multiplied by the symbolic maximum backedge taken count (which is an
20370fca6ea1SDimitry Andric   // upper bound of the number of iterations), the accesses are independet, i.e.
20380fca6ea1SDimitry Andric   // they are far enough appart that accesses won't access the same location
20390fca6ea1SDimitry Andric   // across all loop ierations.
20400fca6ea1SDimitry Andric   if (HasSameSize && isSafeDependenceDistance(
20410fca6ea1SDimitry Andric                          DL, SE, *(PSE.getSymbolicMaxBackedgeTakenCount()),
20420fca6ea1SDimitry Andric                          *Dist, MaxStride, TypeByteSize))
20430fca6ea1SDimitry Andric     return Dependence::NoDep;
20440fca6ea1SDimitry Andric 
20450fca6ea1SDimitry Andric   const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist);
20460fca6ea1SDimitry Andric 
20470fca6ea1SDimitry Andric   // Attempt to prove strided accesses independent.
20480fca6ea1SDimitry Andric   if (C) {
20490b57cec5SDimitry Andric     const APInt &Val = C->getAPInt();
20500b57cec5SDimitry Andric     int64_t Distance = Val.getSExtValue();
20510b57cec5SDimitry Andric 
20520fca6ea1SDimitry Andric     // If the distance between accesses and their strides are known constants,
20530fca6ea1SDimitry Andric     // check whether the accesses interlace each other.
20540fca6ea1SDimitry Andric     if (std::abs(Distance) > 0 && CommonStride && *CommonStride > 1 &&
20550fca6ea1SDimitry Andric         HasSameSize &&
20560fca6ea1SDimitry Andric         areStridedAccessesIndependent(std::abs(Distance), *CommonStride,
20570fca6ea1SDimitry Andric                                       TypeByteSize)) {
20580b57cec5SDimitry Andric       LLVM_DEBUG(dbgs() << "LAA: Strided accesses are independent\n");
20590b57cec5SDimitry Andric       return Dependence::NoDep;
20600b57cec5SDimitry Andric     }
20610fca6ea1SDimitry Andric   } else
20620fca6ea1SDimitry Andric     Dist = SE.applyLoopGuards(Dist, InnermostLoop);
20630b57cec5SDimitry Andric 
20640b57cec5SDimitry Andric   // Negative distances are not plausible dependencies.
20650fca6ea1SDimitry Andric   if (SE.isKnownNonPositive(Dist)) {
20660fca6ea1SDimitry Andric     if (SE.isKnownNonNegative(Dist)) {
20670fca6ea1SDimitry Andric       if (HasSameSize) {
20680fca6ea1SDimitry Andric         // Write to the same location with the same size.
20690fca6ea1SDimitry Andric         return Dependence::Forward;
20700fca6ea1SDimitry Andric       }
20710fca6ea1SDimitry Andric       LLVM_DEBUG(dbgs() << "LAA: possibly zero dependence difference but "
20720fca6ea1SDimitry Andric                            "different type sizes\n");
20730fca6ea1SDimitry Andric       return Dependence::Unknown;
20740fca6ea1SDimitry Andric     }
20750fca6ea1SDimitry Andric 
20760b57cec5SDimitry Andric     bool IsTrueDataDependence = (AIsWrite && !BIsWrite);
20770fca6ea1SDimitry Andric     // Check if the first access writes to a location that is read in a later
20780fca6ea1SDimitry Andric     // iteration, where the distance between them is not a multiple of a vector
20790fca6ea1SDimitry Andric     // factor and relatively small.
20800fca6ea1SDimitry Andric     //
20810fca6ea1SDimitry Andric     // NOTE: There is no need to update MaxSafeVectorWidthInBits after call to
20820fca6ea1SDimitry Andric     // couldPreventStoreLoadForward, even if it changed MinDepDistBytes, since a
20830fca6ea1SDimitry Andric     // forward dependency will allow vectorization using any width.
20840fca6ea1SDimitry Andric 
20850fca6ea1SDimitry Andric     if (IsTrueDataDependence && EnableForwardingConflictDetection) {
20860fca6ea1SDimitry Andric       if (!C) {
20870fca6ea1SDimitry Andric         // TODO: FoundNonConstantDistanceDependence is used as a necessary
20880fca6ea1SDimitry Andric         // condition to consider retrying with runtime checks. Historically, we
20890fca6ea1SDimitry Andric         // did not set it when strides were different but there is no inherent
20900fca6ea1SDimitry Andric         // reason to.
20910fca6ea1SDimitry Andric         FoundNonConstantDistanceDependence |= CommonStride.has_value();
20920fca6ea1SDimitry Andric         return Dependence::Unknown;
20930fca6ea1SDimitry Andric       }
20940fca6ea1SDimitry Andric       if (!HasSameSize ||
20950fca6ea1SDimitry Andric           couldPreventStoreLoadForward(C->getAPInt().abs().getZExtValue(),
20960fca6ea1SDimitry Andric                                        TypeByteSize)) {
20970fca6ea1SDimitry Andric         LLVM_DEBUG(
20980fca6ea1SDimitry Andric             dbgs() << "LAA: Forward but may prevent st->ld forwarding\n");
20990b57cec5SDimitry Andric         return Dependence::ForwardButPreventsForwarding;
21000b57cec5SDimitry Andric       }
21010fca6ea1SDimitry Andric     }
21020b57cec5SDimitry Andric 
21030b57cec5SDimitry Andric     LLVM_DEBUG(dbgs() << "LAA: Dependence is negative\n");
21040b57cec5SDimitry Andric     return Dependence::Forward;
21050b57cec5SDimitry Andric   }
21060b57cec5SDimitry Andric 
21070fca6ea1SDimitry Andric   int64_t MinDistance = SE.getSignedRangeMin(Dist).getSExtValue();
21080fca6ea1SDimitry Andric   // Below we only handle strictly positive distances.
21090fca6ea1SDimitry Andric   if (MinDistance <= 0) {
21100fca6ea1SDimitry Andric     FoundNonConstantDistanceDependence |= CommonStride.has_value();
21110b57cec5SDimitry Andric     return Dependence::Unknown;
21120b57cec5SDimitry Andric   }
21130b57cec5SDimitry Andric 
21140fca6ea1SDimitry Andric   if (!isa<SCEVConstant>(Dist)) {
21150fca6ea1SDimitry Andric     // Previously this case would be treated as Unknown, possibly setting
21160fca6ea1SDimitry Andric     // FoundNonConstantDistanceDependence to force re-trying with runtime
21170fca6ea1SDimitry Andric     // checks. Until the TODO below is addressed, set it here to preserve
21180fca6ea1SDimitry Andric     // original behavior w.r.t. re-trying with runtime checks.
21190fca6ea1SDimitry Andric     // TODO: FoundNonConstantDistanceDependence is used as a necessary
21200fca6ea1SDimitry Andric     // condition to consider retrying with runtime checks. Historically, we
21210fca6ea1SDimitry Andric     // did not set it when strides were different but there is no inherent
21220fca6ea1SDimitry Andric     // reason to.
21230fca6ea1SDimitry Andric     FoundNonConstantDistanceDependence |= CommonStride.has_value();
21240fca6ea1SDimitry Andric   }
21250b57cec5SDimitry Andric 
21260eae32dcSDimitry Andric   if (!HasSameSize) {
21270eae32dcSDimitry Andric     LLVM_DEBUG(dbgs() << "LAA: ReadWrite-Write positive dependency with "
21280eae32dcSDimitry Andric                          "different type sizes\n");
21290b57cec5SDimitry Andric     return Dependence::Unknown;
21300b57cec5SDimitry Andric   }
21310b57cec5SDimitry Andric 
21320fca6ea1SDimitry Andric   if (!CommonStride)
21330fca6ea1SDimitry Andric     return Dependence::Unknown;
21340fca6ea1SDimitry Andric 
21350b57cec5SDimitry Andric   // Bail out early if passed-in parameters make vectorization not feasible.
21360b57cec5SDimitry Andric   unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ?
21370b57cec5SDimitry Andric                            VectorizerParams::VectorizationFactor : 1);
21380b57cec5SDimitry Andric   unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ?
21390b57cec5SDimitry Andric                            VectorizerParams::VectorizationInterleave : 1);
21400b57cec5SDimitry Andric   // The minimum number of iterations for a vectorized/unrolled version.
21410b57cec5SDimitry Andric   unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U);
21420b57cec5SDimitry Andric 
21430b57cec5SDimitry Andric   // It's not vectorizable if the distance is smaller than the minimum distance
21440b57cec5SDimitry Andric   // needed for a vectroized/unrolled version. Vectorizing one iteration in
21450b57cec5SDimitry Andric   // front needs TypeByteSize * Stride. Vectorizing the last iteration needs
21460b57cec5SDimitry Andric   // TypeByteSize (No need to plus the last gap distance).
21470b57cec5SDimitry Andric   //
21480b57cec5SDimitry Andric   // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
21490b57cec5SDimitry Andric   //      foo(int *A) {
21500b57cec5SDimitry Andric   //        int *B = (int *)((char *)A + 14);
21510b57cec5SDimitry Andric   //        for (i = 0 ; i < 1024 ; i += 2)
21520b57cec5SDimitry Andric   //          B[i] = A[i] + 1;
21530b57cec5SDimitry Andric   //      }
21540b57cec5SDimitry Andric   //
21550b57cec5SDimitry Andric   // Two accesses in memory (stride is 2):
21560b57cec5SDimitry Andric   //     | A[0] |      | A[2] |      | A[4] |      | A[6] |      |
21570b57cec5SDimitry Andric   //                              | B[0] |      | B[2] |      | B[4] |
21580b57cec5SDimitry Andric   //
21590fca6ea1SDimitry Andric   // MinDistance needs for vectorizing iterations except the last iteration:
21600fca6ea1SDimitry Andric   // 4 * 2 * (MinNumIter - 1). MinDistance needs for the last iteration: 4.
21610b57cec5SDimitry Andric   // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4.
21620b57cec5SDimitry Andric   //
21630b57cec5SDimitry Andric   // If MinNumIter is 2, it is vectorizable as the minimum distance needed is
21640b57cec5SDimitry Andric   // 12, which is less than distance.
21650b57cec5SDimitry Andric   //
21660b57cec5SDimitry Andric   // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4),
21670b57cec5SDimitry Andric   // the minimum distance needed is 28, which is greater than distance. It is
21680b57cec5SDimitry Andric   // not safe to do vectorization.
21690fca6ea1SDimitry Andric 
21700fca6ea1SDimitry Andric   // We know that Dist is positive, but it may not be constant. Use the signed
21710fca6ea1SDimitry Andric   // minimum for computations below, as this ensures we compute the closest
21720fca6ea1SDimitry Andric   // possible dependence distance.
21730b57cec5SDimitry Andric   uint64_t MinDistanceNeeded =
21740fca6ea1SDimitry Andric       TypeByteSize * *CommonStride * (MinNumIter - 1) + TypeByteSize;
21750fca6ea1SDimitry Andric   if (MinDistanceNeeded > static_cast<uint64_t>(MinDistance)) {
21760fca6ea1SDimitry Andric     if (!isa<SCEVConstant>(Dist)) {
21770fca6ea1SDimitry Andric       // For non-constant distances, we checked the lower bound of the
21780fca6ea1SDimitry Andric       // dependence distance and the distance may be larger at runtime (and safe
21790fca6ea1SDimitry Andric       // for vectorization). Classify it as Unknown, so we re-try with runtime
21800fca6ea1SDimitry Andric       // checks.
21810fca6ea1SDimitry Andric       return Dependence::Unknown;
21820fca6ea1SDimitry Andric     }
21830fca6ea1SDimitry Andric     LLVM_DEBUG(dbgs() << "LAA: Failure because of positive minimum distance "
21840fca6ea1SDimitry Andric                       << MinDistance << '\n');
21850b57cec5SDimitry Andric     return Dependence::Backward;
21860b57cec5SDimitry Andric   }
21870b57cec5SDimitry Andric 
21885f757f3fSDimitry Andric   // Unsafe if the minimum distance needed is greater than smallest dependence
21895f757f3fSDimitry Andric   // distance distance.
21905f757f3fSDimitry Andric   if (MinDistanceNeeded > MinDepDistBytes) {
21910b57cec5SDimitry Andric     LLVM_DEBUG(dbgs() << "LAA: Failure because it needs at least "
2192bdd1243dSDimitry Andric                       << MinDistanceNeeded << " size in bytes\n");
21930b57cec5SDimitry Andric     return Dependence::Backward;
21940b57cec5SDimitry Andric   }
21950b57cec5SDimitry Andric 
21960b57cec5SDimitry Andric   // Positive distance bigger than max vectorization factor.
21970b57cec5SDimitry Andric   // FIXME: Should use max factor instead of max distance in bytes, which could
21980b57cec5SDimitry Andric   // not handle different types.
21990b57cec5SDimitry Andric   // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
22000b57cec5SDimitry Andric   //      void foo (int *A, char *B) {
22010b57cec5SDimitry Andric   //        for (unsigned i = 0; i < 1024; i++) {
22020b57cec5SDimitry Andric   //          A[i+2] = A[i] + 1;
22030b57cec5SDimitry Andric   //          B[i+2] = B[i] + 1;
22040b57cec5SDimitry Andric   //        }
22050b57cec5SDimitry Andric   //      }
22060b57cec5SDimitry Andric   //
22070b57cec5SDimitry Andric   // This case is currently unsafe according to the max safe distance. If we
22080b57cec5SDimitry Andric   // analyze the two accesses on array B, the max safe dependence distance
22090b57cec5SDimitry Andric   // is 2. Then we analyze the accesses on array A, the minimum distance needed
22100b57cec5SDimitry Andric   // is 8, which is less than 2 and forbidden vectorization, But actually
22110b57cec5SDimitry Andric   // both A and B could be vectorized by 2 iterations.
22125f757f3fSDimitry Andric   MinDepDistBytes =
22130fca6ea1SDimitry Andric       std::min(static_cast<uint64_t>(MinDistance), MinDepDistBytes);
22140b57cec5SDimitry Andric 
22150b57cec5SDimitry Andric   bool IsTrueDataDependence = (!AIsWrite && BIsWrite);
22165f757f3fSDimitry Andric   uint64_t MinDepDistBytesOld = MinDepDistBytes;
22170b57cec5SDimitry Andric   if (IsTrueDataDependence && EnableForwardingConflictDetection &&
22180fca6ea1SDimitry Andric       isa<SCEVConstant>(Dist) &&
22190fca6ea1SDimitry Andric       couldPreventStoreLoadForward(MinDistance, TypeByteSize)) {
22205f757f3fSDimitry Andric     // Sanity check that we didn't update MinDepDistBytes when calling
22215f757f3fSDimitry Andric     // couldPreventStoreLoadForward
22225f757f3fSDimitry Andric     assert(MinDepDistBytes == MinDepDistBytesOld &&
22235f757f3fSDimitry Andric            "An update to MinDepDistBytes requires an update to "
22245f757f3fSDimitry Andric            "MaxSafeVectorWidthInBits");
22255f757f3fSDimitry Andric     (void)MinDepDistBytesOld;
22260b57cec5SDimitry Andric     return Dependence::BackwardVectorizableButPreventsForwarding;
22275f757f3fSDimitry Andric   }
22280b57cec5SDimitry Andric 
22295f757f3fSDimitry Andric   // An update to MinDepDistBytes requires an update to MaxSafeVectorWidthInBits
22305f757f3fSDimitry Andric   // since there is a backwards dependency.
22310fca6ea1SDimitry Andric   uint64_t MaxVF = MinDepDistBytes / (TypeByteSize * *CommonStride);
22320fca6ea1SDimitry Andric   LLVM_DEBUG(dbgs() << "LAA: Positive min distance " << MinDistance
22330b57cec5SDimitry Andric                     << " with max VF = " << MaxVF << '\n');
22340fca6ea1SDimitry Andric 
22350b57cec5SDimitry Andric   uint64_t MaxVFInBits = MaxVF * TypeByteSize * 8;
22360fca6ea1SDimitry Andric   if (!isa<SCEVConstant>(Dist) && MaxVFInBits < MaxTargetVectorWidthInBits) {
22370fca6ea1SDimitry Andric     // For non-constant distances, we checked the lower bound of the dependence
22380fca6ea1SDimitry Andric     // distance and the distance may be larger at runtime (and safe for
22390fca6ea1SDimitry Andric     // vectorization). Classify it as Unknown, so we re-try with runtime checks.
22400fca6ea1SDimitry Andric     return Dependence::Unknown;
22410fca6ea1SDimitry Andric   }
22420fca6ea1SDimitry Andric 
2243e8d8bef9SDimitry Andric   MaxSafeVectorWidthInBits = std::min(MaxSafeVectorWidthInBits, MaxVFInBits);
22440b57cec5SDimitry Andric   return Dependence::BackwardVectorizable;
22450b57cec5SDimitry Andric }
22460b57cec5SDimitry Andric 
2247*62987288SDimitry Andric bool MemoryDepChecker::areDepsSafe(const DepCandidates &AccessSets,
2248*62987288SDimitry Andric                                    const MemAccessInfoList &CheckDeps) {
22490b57cec5SDimitry Andric 
22505f757f3fSDimitry Andric   MinDepDistBytes = -1;
22510b57cec5SDimitry Andric   SmallPtrSet<MemAccessInfo, 8> Visited;
22520b57cec5SDimitry Andric   for (MemAccessInfo CurAccess : CheckDeps) {
22530b57cec5SDimitry Andric     if (Visited.count(CurAccess))
22540b57cec5SDimitry Andric       continue;
22550b57cec5SDimitry Andric 
22560b57cec5SDimitry Andric     // Get the relevant memory access set.
22570b57cec5SDimitry Andric     EquivalenceClasses<MemAccessInfo>::iterator I =
22580b57cec5SDimitry Andric       AccessSets.findValue(AccessSets.getLeaderValue(CurAccess));
22590b57cec5SDimitry Andric 
22600b57cec5SDimitry Andric     // Check accesses within this set.
22610b57cec5SDimitry Andric     EquivalenceClasses<MemAccessInfo>::member_iterator AI =
22620b57cec5SDimitry Andric         AccessSets.member_begin(I);
22630b57cec5SDimitry Andric     EquivalenceClasses<MemAccessInfo>::member_iterator AE =
22640b57cec5SDimitry Andric         AccessSets.member_end();
22650b57cec5SDimitry Andric 
22660b57cec5SDimitry Andric     // Check every access pair.
22670b57cec5SDimitry Andric     while (AI != AE) {
22680b57cec5SDimitry Andric       Visited.insert(*AI);
22698bcb0991SDimitry Andric       bool AIIsWrite = AI->getInt();
22708bcb0991SDimitry Andric       // Check loads only against next equivalent class, but stores also against
22718bcb0991SDimitry Andric       // other stores in the same equivalence class - to the same address.
22728bcb0991SDimitry Andric       EquivalenceClasses<MemAccessInfo>::member_iterator OI =
22738bcb0991SDimitry Andric           (AIIsWrite ? AI : std::next(AI));
22740b57cec5SDimitry Andric       while (OI != AE) {
22750b57cec5SDimitry Andric         // Check every accessing instruction pair in program order.
22760b57cec5SDimitry Andric         for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(),
22770b57cec5SDimitry Andric              I1E = Accesses[*AI].end(); I1 != I1E; ++I1)
22788bcb0991SDimitry Andric           // Scan all accesses of another equivalence class, but only the next
22798bcb0991SDimitry Andric           // accesses of the same equivalent class.
22808bcb0991SDimitry Andric           for (std::vector<unsigned>::iterator
22818bcb0991SDimitry Andric                    I2 = (OI == AI ? std::next(I1) : Accesses[*OI].begin()),
22828bcb0991SDimitry Andric                    I2E = (OI == AI ? I1E : Accesses[*OI].end());
22838bcb0991SDimitry Andric                I2 != I2E; ++I2) {
22840b57cec5SDimitry Andric             auto A = std::make_pair(&*AI, *I1);
22850b57cec5SDimitry Andric             auto B = std::make_pair(&*OI, *I2);
22860b57cec5SDimitry Andric 
22870b57cec5SDimitry Andric             assert(*I1 != *I2);
22880b57cec5SDimitry Andric             if (*I1 > *I2)
22890b57cec5SDimitry Andric               std::swap(A, B);
22900b57cec5SDimitry Andric 
2291*62987288SDimitry Andric             Dependence::DepType Type =
2292*62987288SDimitry Andric                 isDependent(*A.first, A.second, *B.first, B.second);
22930b57cec5SDimitry Andric             mergeInStatus(Dependence::isSafeForVectorization(Type));
22940b57cec5SDimitry Andric 
22950b57cec5SDimitry Andric             // Gather dependences unless we accumulated MaxDependences
22960b57cec5SDimitry Andric             // dependences.  In that case return as soon as we find the first
22970b57cec5SDimitry Andric             // unsafe dependence.  This puts a limit on this quadratic
22980b57cec5SDimitry Andric             // algorithm.
22990b57cec5SDimitry Andric             if (RecordDependences) {
23000b57cec5SDimitry Andric               if (Type != Dependence::NoDep)
23010b57cec5SDimitry Andric                 Dependences.push_back(Dependence(A.second, B.second, Type));
23020b57cec5SDimitry Andric 
23030b57cec5SDimitry Andric               if (Dependences.size() >= MaxDependences) {
23040b57cec5SDimitry Andric                 RecordDependences = false;
23050b57cec5SDimitry Andric                 Dependences.clear();
23060b57cec5SDimitry Andric                 LLVM_DEBUG(dbgs()
23070b57cec5SDimitry Andric                            << "Too many dependences, stopped recording\n");
23080b57cec5SDimitry Andric               }
23090b57cec5SDimitry Andric             }
23100b57cec5SDimitry Andric             if (!RecordDependences && !isSafeForVectorization())
23110b57cec5SDimitry Andric               return false;
23120b57cec5SDimitry Andric           }
23130b57cec5SDimitry Andric         ++OI;
23140b57cec5SDimitry Andric       }
23150fca6ea1SDimitry Andric       ++AI;
23160b57cec5SDimitry Andric     }
23170b57cec5SDimitry Andric   }
23180b57cec5SDimitry Andric 
23190b57cec5SDimitry Andric   LLVM_DEBUG(dbgs() << "Total Dependences: " << Dependences.size() << "\n");
23200b57cec5SDimitry Andric   return isSafeForVectorization();
23210b57cec5SDimitry Andric }
23220b57cec5SDimitry Andric 
23230b57cec5SDimitry Andric SmallVector<Instruction *, 4>
23240fca6ea1SDimitry Andric MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool IsWrite) const {
23250fca6ea1SDimitry Andric   MemAccessInfo Access(Ptr, IsWrite);
23260b57cec5SDimitry Andric   auto &IndexVector = Accesses.find(Access)->second;
23270b57cec5SDimitry Andric 
23280b57cec5SDimitry Andric   SmallVector<Instruction *, 4> Insts;
23290b57cec5SDimitry Andric   transform(IndexVector,
23300b57cec5SDimitry Andric                  std::back_inserter(Insts),
23310b57cec5SDimitry Andric                  [&](unsigned Idx) { return this->InstMap[Idx]; });
23320b57cec5SDimitry Andric   return Insts;
23330b57cec5SDimitry Andric }
23340b57cec5SDimitry Andric 
23350b57cec5SDimitry Andric const char *MemoryDepChecker::Dependence::DepName[] = {
23365f757f3fSDimitry Andric     "NoDep",
23375f757f3fSDimitry Andric     "Unknown",
23380fca6ea1SDimitry Andric     "IndirectUnsafe",
23395f757f3fSDimitry Andric     "Forward",
23405f757f3fSDimitry Andric     "ForwardButPreventsForwarding",
23415f757f3fSDimitry Andric     "Backward",
23425f757f3fSDimitry Andric     "BackwardVectorizable",
23435f757f3fSDimitry Andric     "BackwardVectorizableButPreventsForwarding"};
23440b57cec5SDimitry Andric 
23450b57cec5SDimitry Andric void MemoryDepChecker::Dependence::print(
23460b57cec5SDimitry Andric     raw_ostream &OS, unsigned Depth,
23470b57cec5SDimitry Andric     const SmallVectorImpl<Instruction *> &Instrs) const {
23480b57cec5SDimitry Andric   OS.indent(Depth) << DepName[Type] << ":\n";
23490b57cec5SDimitry Andric   OS.indent(Depth + 2) << *Instrs[Source] << " -> \n";
23500b57cec5SDimitry Andric   OS.indent(Depth + 2) << *Instrs[Destination] << "\n";
23510b57cec5SDimitry Andric }
23520b57cec5SDimitry Andric 
23530b57cec5SDimitry Andric bool LoopAccessInfo::canAnalyzeLoop() {
23540b57cec5SDimitry Andric   // We need to have a loop header.
23550fca6ea1SDimitry Andric   LLVM_DEBUG(dbgs() << "\nLAA: Checking a loop in '"
23560fca6ea1SDimitry Andric                     << TheLoop->getHeader()->getParent()->getName() << "' from "
23570fca6ea1SDimitry Andric                     << TheLoop->getLocStr() << "\n");
23580b57cec5SDimitry Andric 
23590b57cec5SDimitry Andric   // We can only analyze innermost loops.
2360e8d8bef9SDimitry Andric   if (!TheLoop->isInnermost()) {
23610b57cec5SDimitry Andric     LLVM_DEBUG(dbgs() << "LAA: loop is not the innermost loop\n");
23620b57cec5SDimitry Andric     recordAnalysis("NotInnerMostLoop") << "loop is not the innermost loop";
23630b57cec5SDimitry Andric     return false;
23640b57cec5SDimitry Andric   }
23650b57cec5SDimitry Andric 
23660b57cec5SDimitry Andric   // We must have a single backedge.
23670b57cec5SDimitry Andric   if (TheLoop->getNumBackEdges() != 1) {
23680b57cec5SDimitry Andric     LLVM_DEBUG(
23690b57cec5SDimitry Andric         dbgs() << "LAA: loop control flow is not understood by analyzer\n");
23700b57cec5SDimitry Andric     recordAnalysis("CFGNotUnderstood")
23710b57cec5SDimitry Andric         << "loop control flow is not understood by analyzer";
23720b57cec5SDimitry Andric     return false;
23730b57cec5SDimitry Andric   }
23740b57cec5SDimitry Andric 
23750fca6ea1SDimitry Andric   // ScalarEvolution needs to be able to find the symbolic max backedge taken
23760fca6ea1SDimitry Andric   // count, which is an upper bound on the number of loop iterations. The loop
23770fca6ea1SDimitry Andric   // may execute fewer iterations, if it exits via an uncountable exit.
23780fca6ea1SDimitry Andric   const SCEV *ExitCount = PSE->getSymbolicMaxBackedgeTakenCount();
2379e8d8bef9SDimitry Andric   if (isa<SCEVCouldNotCompute>(ExitCount)) {
23800b57cec5SDimitry Andric     recordAnalysis("CantComputeNumberOfIterations")
23810b57cec5SDimitry Andric         << "could not determine number of loop iterations";
23820b57cec5SDimitry Andric     LLVM_DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n");
23830b57cec5SDimitry Andric     return false;
23840b57cec5SDimitry Andric   }
23850b57cec5SDimitry Andric 
23860fca6ea1SDimitry Andric   LLVM_DEBUG(dbgs() << "LAA: Found an analyzable loop: "
23870fca6ea1SDimitry Andric                     << TheLoop->getHeader()->getName() << "\n");
23880b57cec5SDimitry Andric   return true;
23890b57cec5SDimitry Andric }
23900b57cec5SDimitry Andric 
23910fca6ea1SDimitry Andric bool LoopAccessInfo::analyzeLoop(AAResults *AA, LoopInfo *LI,
23920b57cec5SDimitry Andric                                  const TargetLibraryInfo *TLI,
23930b57cec5SDimitry Andric                                  DominatorTree *DT) {
23940b57cec5SDimitry Andric   // Holds the Load and Store instructions.
23950b57cec5SDimitry Andric   SmallVector<LoadInst *, 16> Loads;
23960b57cec5SDimitry Andric   SmallVector<StoreInst *, 16> Stores;
2397b3edf446SDimitry Andric   SmallPtrSet<MDNode *, 8> LoopAliasScopes;
23980b57cec5SDimitry Andric 
23990b57cec5SDimitry Andric   // Holds all the different accesses in the loop.
24000b57cec5SDimitry Andric   unsigned NumReads = 0;
24010b57cec5SDimitry Andric   unsigned NumReadWrites = 0;
24020b57cec5SDimitry Andric 
24030b57cec5SDimitry Andric   bool HasComplexMemInst = false;
24040b57cec5SDimitry Andric 
24050b57cec5SDimitry Andric   // A runtime check is only legal to insert if there are no convergent calls.
24060b57cec5SDimitry Andric   HasConvergentOp = false;
24070b57cec5SDimitry Andric 
24080b57cec5SDimitry Andric   PtrRtChecking->Pointers.clear();
24090b57cec5SDimitry Andric   PtrRtChecking->Need = false;
24100b57cec5SDimitry Andric 
24110b57cec5SDimitry Andric   const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
24120b57cec5SDimitry Andric 
24135ffd83dbSDimitry Andric   const bool EnableMemAccessVersioningOfLoop =
24145ffd83dbSDimitry Andric       EnableMemAccessVersioning &&
24155ffd83dbSDimitry Andric       !TheLoop->getHeader()->getParent()->hasOptSize();
24165ffd83dbSDimitry Andric 
2417bdd1243dSDimitry Andric   // Traverse blocks in fixed RPOT order, regardless of their storage in the
2418bdd1243dSDimitry Andric   // loop info, as it may be arbitrary.
2419bdd1243dSDimitry Andric   LoopBlocksRPO RPOT(TheLoop);
2420bdd1243dSDimitry Andric   RPOT.perform(LI);
2421bdd1243dSDimitry Andric   for (BasicBlock *BB : RPOT) {
24220b57cec5SDimitry Andric     // Scan the BB and collect legal loads and stores. Also detect any
24230b57cec5SDimitry Andric     // convergent instructions.
24240b57cec5SDimitry Andric     for (Instruction &I : *BB) {
24250b57cec5SDimitry Andric       if (auto *Call = dyn_cast<CallBase>(&I)) {
24260b57cec5SDimitry Andric         if (Call->isConvergent())
24270b57cec5SDimitry Andric           HasConvergentOp = true;
24280b57cec5SDimitry Andric       }
24290b57cec5SDimitry Andric 
24300b57cec5SDimitry Andric       // With both a non-vectorizable memory instruction and a convergent
24310b57cec5SDimitry Andric       // operation, found in this loop, no reason to continue the search.
24320fca6ea1SDimitry Andric       if (HasComplexMemInst && HasConvergentOp)
24330fca6ea1SDimitry Andric         return false;
24340b57cec5SDimitry Andric 
24350b57cec5SDimitry Andric       // Avoid hitting recordAnalysis multiple times.
24360b57cec5SDimitry Andric       if (HasComplexMemInst)
24370b57cec5SDimitry Andric         continue;
24380b57cec5SDimitry Andric 
2439b3edf446SDimitry Andric       // Record alias scopes defined inside the loop.
2440b3edf446SDimitry Andric       if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I))
2441b3edf446SDimitry Andric         for (Metadata *Op : Decl->getScopeList()->operands())
2442b3edf446SDimitry Andric           LoopAliasScopes.insert(cast<MDNode>(Op));
2443b3edf446SDimitry Andric 
24440b57cec5SDimitry Andric       // Many math library functions read the rounding mode. We will only
24450b57cec5SDimitry Andric       // vectorize a loop if it contains known function calls that don't set
24460b57cec5SDimitry Andric       // the flag. Therefore, it is safe to ignore this read from memory.
24470b57cec5SDimitry Andric       auto *Call = dyn_cast<CallInst>(&I);
24480b57cec5SDimitry Andric       if (Call && getVectorIntrinsicIDForCall(Call, TLI))
24490b57cec5SDimitry Andric         continue;
24500b57cec5SDimitry Andric 
24515f757f3fSDimitry Andric       // If this is a load, save it. If this instruction can read from memory
24525f757f3fSDimitry Andric       // but is not a load, then we quit. Notice that we don't handle function
24535f757f3fSDimitry Andric       // calls that read or write.
24545f757f3fSDimitry Andric       if (I.mayReadFromMemory()) {
24550b57cec5SDimitry Andric         // If the function has an explicit vectorized counterpart, we can safely
24560b57cec5SDimitry Andric         // assume that it can be vectorized.
24570b57cec5SDimitry Andric         if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() &&
24585ffd83dbSDimitry Andric             !VFDatabase::getMappings(*Call).empty())
24590b57cec5SDimitry Andric           continue;
24600b57cec5SDimitry Andric 
24610b57cec5SDimitry Andric         auto *Ld = dyn_cast<LoadInst>(&I);
24620b57cec5SDimitry Andric         if (!Ld) {
24630b57cec5SDimitry Andric           recordAnalysis("CantVectorizeInstruction", Ld)
24640b57cec5SDimitry Andric             << "instruction cannot be vectorized";
24650b57cec5SDimitry Andric           HasComplexMemInst = true;
24660b57cec5SDimitry Andric           continue;
24670b57cec5SDimitry Andric         }
24680b57cec5SDimitry Andric         if (!Ld->isSimple() && !IsAnnotatedParallel) {
24690b57cec5SDimitry Andric           recordAnalysis("NonSimpleLoad", Ld)
24700b57cec5SDimitry Andric               << "read with atomic ordering or volatile read";
24710b57cec5SDimitry Andric           LLVM_DEBUG(dbgs() << "LAA: Found a non-simple load.\n");
24720b57cec5SDimitry Andric           HasComplexMemInst = true;
24730b57cec5SDimitry Andric           continue;
24740b57cec5SDimitry Andric         }
24750b57cec5SDimitry Andric         NumLoads++;
24760b57cec5SDimitry Andric         Loads.push_back(Ld);
24770b57cec5SDimitry Andric         DepChecker->addAccess(Ld);
24785ffd83dbSDimitry Andric         if (EnableMemAccessVersioningOfLoop)
24790b57cec5SDimitry Andric           collectStridedAccess(Ld);
24800b57cec5SDimitry Andric         continue;
24810b57cec5SDimitry Andric       }
24820b57cec5SDimitry Andric 
24830b57cec5SDimitry Andric       // Save 'store' instructions. Abort if other instructions write to memory.
24840b57cec5SDimitry Andric       if (I.mayWriteToMemory()) {
24850b57cec5SDimitry Andric         auto *St = dyn_cast<StoreInst>(&I);
24860b57cec5SDimitry Andric         if (!St) {
24870b57cec5SDimitry Andric           recordAnalysis("CantVectorizeInstruction", St)
24880b57cec5SDimitry Andric               << "instruction cannot be vectorized";
24890b57cec5SDimitry Andric           HasComplexMemInst = true;
24900b57cec5SDimitry Andric           continue;
24910b57cec5SDimitry Andric         }
24920b57cec5SDimitry Andric         if (!St->isSimple() && !IsAnnotatedParallel) {
24930b57cec5SDimitry Andric           recordAnalysis("NonSimpleStore", St)
24940b57cec5SDimitry Andric               << "write with atomic ordering or volatile write";
24950b57cec5SDimitry Andric           LLVM_DEBUG(dbgs() << "LAA: Found a non-simple store.\n");
24960b57cec5SDimitry Andric           HasComplexMemInst = true;
24970b57cec5SDimitry Andric           continue;
24980b57cec5SDimitry Andric         }
24990b57cec5SDimitry Andric         NumStores++;
25000b57cec5SDimitry Andric         Stores.push_back(St);
25010b57cec5SDimitry Andric         DepChecker->addAccess(St);
25025ffd83dbSDimitry Andric         if (EnableMemAccessVersioningOfLoop)
25030b57cec5SDimitry Andric           collectStridedAccess(St);
25040b57cec5SDimitry Andric       }
25050b57cec5SDimitry Andric     } // Next instr.
25060b57cec5SDimitry Andric   } // Next block.
25070b57cec5SDimitry Andric 
25080fca6ea1SDimitry Andric   if (HasComplexMemInst)
25090fca6ea1SDimitry Andric     return false;
25100b57cec5SDimitry Andric 
25110b57cec5SDimitry Andric   // Now we have two lists that hold the loads and the stores.
25120b57cec5SDimitry Andric   // Next, we find the pointers that they use.
25130b57cec5SDimitry Andric 
25140b57cec5SDimitry Andric   // Check if we see any stores. If there are no stores, then we don't
25150b57cec5SDimitry Andric   // care if the pointers are *restrict*.
25160b57cec5SDimitry Andric   if (!Stores.size()) {
25170b57cec5SDimitry Andric     LLVM_DEBUG(dbgs() << "LAA: Found a read-only loop!\n");
25180fca6ea1SDimitry Andric     return true;
25190b57cec5SDimitry Andric   }
25200b57cec5SDimitry Andric 
25210b57cec5SDimitry Andric   MemoryDepChecker::DepCandidates DependentAccesses;
2522b3edf446SDimitry Andric   AccessAnalysis Accesses(TheLoop, AA, LI, DependentAccesses, *PSE,
2523b3edf446SDimitry Andric                           LoopAliasScopes);
25240b57cec5SDimitry Andric 
2525e8d8bef9SDimitry Andric   // Holds the analyzed pointers. We don't want to call getUnderlyingObjects
25260b57cec5SDimitry Andric   // multiple times on the same object. If the ptr is accessed twice, once
25270b57cec5SDimitry Andric   // for read and once for write, it will only appear once (on the write
25280b57cec5SDimitry Andric   // list). This is okay, since we are going to check for conflicts between
25290b57cec5SDimitry Andric   // writes and between reads and writes, but not between reads and reads.
253081ad6265SDimitry Andric   SmallSet<std::pair<Value *, Type *>, 16> Seen;
25310b57cec5SDimitry Andric 
25320b57cec5SDimitry Andric   // Record uniform store addresses to identify if we have multiple stores
25330b57cec5SDimitry Andric   // to the same address.
253481ad6265SDimitry Andric   SmallPtrSet<Value *, 16> UniformStores;
25350b57cec5SDimitry Andric 
25360b57cec5SDimitry Andric   for (StoreInst *ST : Stores) {
25370b57cec5SDimitry Andric     Value *Ptr = ST->getPointerOperand();
25380b57cec5SDimitry Andric 
253906c3fb27SDimitry Andric     if (isInvariant(Ptr)) {
254081ad6265SDimitry Andric       // Record store instructions to loop invariant addresses
254181ad6265SDimitry Andric       StoresToInvariantAddresses.push_back(ST);
25420fca6ea1SDimitry Andric       HasStoreStoreDependenceInvolvingLoopInvariantAddress |=
25430b57cec5SDimitry Andric           !UniformStores.insert(Ptr).second;
254481ad6265SDimitry Andric     }
25450b57cec5SDimitry Andric 
25460b57cec5SDimitry Andric     // If we did *not* see this pointer before, insert it to  the read-write
25470b57cec5SDimitry Andric     // list. At this phase it is only a 'write' list.
254881ad6265SDimitry Andric     Type *AccessTy = getLoadStoreType(ST);
254981ad6265SDimitry Andric     if (Seen.insert({Ptr, AccessTy}).second) {
25500b57cec5SDimitry Andric       ++NumReadWrites;
25510b57cec5SDimitry Andric 
25520b57cec5SDimitry Andric       MemoryLocation Loc = MemoryLocation::get(ST);
25530b57cec5SDimitry Andric       // The TBAA metadata could have a control dependency on the predication
25540b57cec5SDimitry Andric       // condition, so we cannot rely on it when determining whether or not we
25550b57cec5SDimitry Andric       // need runtime pointer checks.
25560b57cec5SDimitry Andric       if (blockNeedsPredication(ST->getParent(), TheLoop, DT))
25570b57cec5SDimitry Andric         Loc.AATags.TBAA = nullptr;
25580b57cec5SDimitry Andric 
2559349cc55cSDimitry Andric       visitPointers(const_cast<Value *>(Loc.Ptr), *TheLoop,
256081ad6265SDimitry Andric                     [&Accesses, AccessTy, Loc](Value *Ptr) {
2561349cc55cSDimitry Andric                       MemoryLocation NewLoc = Loc.getWithNewPtr(Ptr);
256281ad6265SDimitry Andric                       Accesses.addStore(NewLoc, AccessTy);
2563349cc55cSDimitry Andric                     });
25640b57cec5SDimitry Andric     }
25650b57cec5SDimitry Andric   }
25660b57cec5SDimitry Andric 
25670b57cec5SDimitry Andric   if (IsAnnotatedParallel) {
25680b57cec5SDimitry Andric     LLVM_DEBUG(
25690b57cec5SDimitry Andric         dbgs() << "LAA: A loop annotated parallel, ignore memory dependency "
25700b57cec5SDimitry Andric                << "checks.\n");
25710fca6ea1SDimitry Andric     return true;
25720b57cec5SDimitry Andric   }
25730b57cec5SDimitry Andric 
25740b57cec5SDimitry Andric   for (LoadInst *LD : Loads) {
25750b57cec5SDimitry Andric     Value *Ptr = LD->getPointerOperand();
25760b57cec5SDimitry Andric     // If we did *not* see this pointer before, insert it to the
25770b57cec5SDimitry Andric     // read list. If we *did* see it before, then it is already in
25780b57cec5SDimitry Andric     // the read-write list. This allows us to vectorize expressions
25790b57cec5SDimitry Andric     // such as A[i] += x;  Because the address of A[i] is a read-write
25800b57cec5SDimitry Andric     // pointer. This only works if the index of A[i] is consecutive.
25810b57cec5SDimitry Andric     // If the address of i is unknown (for example A[B[i]]) then we may
25820b57cec5SDimitry Andric     // read a few words, modify, and write a few words, and some of the
25830b57cec5SDimitry Andric     // words may be written to the same address.
25840b57cec5SDimitry Andric     bool IsReadOnlyPtr = false;
258581ad6265SDimitry Andric     Type *AccessTy = getLoadStoreType(LD);
258681ad6265SDimitry Andric     if (Seen.insert({Ptr, AccessTy}).second ||
2587bdd1243dSDimitry Andric         !getPtrStride(*PSE, LD->getType(), Ptr, TheLoop, SymbolicStrides).value_or(0)) {
25880b57cec5SDimitry Andric       ++NumReads;
25890b57cec5SDimitry Andric       IsReadOnlyPtr = true;
25900b57cec5SDimitry Andric     }
25910b57cec5SDimitry Andric 
25920b57cec5SDimitry Andric     // See if there is an unsafe dependency between a load to a uniform address and
25930b57cec5SDimitry Andric     // store to the same uniform address.
25940b57cec5SDimitry Andric     if (UniformStores.count(Ptr)) {
25950b57cec5SDimitry Andric       LLVM_DEBUG(dbgs() << "LAA: Found an unsafe dependency between a uniform "
25960b57cec5SDimitry Andric                            "load and uniform store to the same address!\n");
25970fca6ea1SDimitry Andric       HasLoadStoreDependenceInvolvingLoopInvariantAddress = true;
25980b57cec5SDimitry Andric     }
25990b57cec5SDimitry Andric 
26000b57cec5SDimitry Andric     MemoryLocation Loc = MemoryLocation::get(LD);
26010b57cec5SDimitry Andric     // The TBAA metadata could have a control dependency on the predication
26020b57cec5SDimitry Andric     // condition, so we cannot rely on it when determining whether or not we
26030b57cec5SDimitry Andric     // need runtime pointer checks.
26040b57cec5SDimitry Andric     if (blockNeedsPredication(LD->getParent(), TheLoop, DT))
26050b57cec5SDimitry Andric       Loc.AATags.TBAA = nullptr;
26060b57cec5SDimitry Andric 
2607349cc55cSDimitry Andric     visitPointers(const_cast<Value *>(Loc.Ptr), *TheLoop,
260881ad6265SDimitry Andric                   [&Accesses, AccessTy, Loc, IsReadOnlyPtr](Value *Ptr) {
2609349cc55cSDimitry Andric                     MemoryLocation NewLoc = Loc.getWithNewPtr(Ptr);
261081ad6265SDimitry Andric                     Accesses.addLoad(NewLoc, AccessTy, IsReadOnlyPtr);
2611349cc55cSDimitry Andric                   });
26120b57cec5SDimitry Andric   }
26130b57cec5SDimitry Andric 
26140b57cec5SDimitry Andric   // If we write (or read-write) to a single destination and there are no
26150b57cec5SDimitry Andric   // other reads in this loop then is it safe to vectorize.
26160b57cec5SDimitry Andric   if (NumReadWrites == 1 && NumReads == 0) {
26170b57cec5SDimitry Andric     LLVM_DEBUG(dbgs() << "LAA: Found a write-only loop!\n");
26180fca6ea1SDimitry Andric     return true;
26190b57cec5SDimitry Andric   }
26200b57cec5SDimitry Andric 
26210b57cec5SDimitry Andric   // Build dependence sets and check whether we need a runtime pointer bounds
26220b57cec5SDimitry Andric   // check.
26230b57cec5SDimitry Andric   Accesses.buildDependenceSets();
26240b57cec5SDimitry Andric 
26250b57cec5SDimitry Andric   // Find pointers with computable bounds. We are going to use this information
26260b57cec5SDimitry Andric   // to place a runtime bound check.
262781ad6265SDimitry Andric   Value *UncomputablePtr = nullptr;
262881ad6265SDimitry Andric   bool CanDoRTIfNeeded =
262981ad6265SDimitry Andric       Accesses.canCheckPtrAtRT(*PtrRtChecking, PSE->getSE(), TheLoop,
263081ad6265SDimitry Andric                                SymbolicStrides, UncomputablePtr, false);
26310b57cec5SDimitry Andric   if (!CanDoRTIfNeeded) {
263281ad6265SDimitry Andric     auto *I = dyn_cast_or_null<Instruction>(UncomputablePtr);
263381ad6265SDimitry Andric     recordAnalysis("CantIdentifyArrayBounds", I)
263481ad6265SDimitry Andric         << "cannot identify array bounds";
26350b57cec5SDimitry Andric     LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because we can't find "
26360b57cec5SDimitry Andric                       << "the array bounds.\n");
26370fca6ea1SDimitry Andric     return false;
26380b57cec5SDimitry Andric   }
26390b57cec5SDimitry Andric 
26400b57cec5SDimitry Andric   LLVM_DEBUG(
26410b57cec5SDimitry Andric     dbgs() << "LAA: May be able to perform a memory runtime check if needed.\n");
26420b57cec5SDimitry Andric 
26430fca6ea1SDimitry Andric   bool DepsAreSafe = true;
26440b57cec5SDimitry Andric   if (Accesses.isDependencyCheckNeeded()) {
26450b57cec5SDimitry Andric     LLVM_DEBUG(dbgs() << "LAA: Checking memory dependencies\n");
26460fca6ea1SDimitry Andric     DepsAreSafe = DepChecker->areDepsSafe(DependentAccesses,
2647*62987288SDimitry Andric                                           Accesses.getDependenciesToCheck());
26480b57cec5SDimitry Andric 
26490fca6ea1SDimitry Andric     if (!DepsAreSafe && DepChecker->shouldRetryWithRuntimeCheck()) {
26500b57cec5SDimitry Andric       LLVM_DEBUG(dbgs() << "LAA: Retrying with memory checks\n");
26510b57cec5SDimitry Andric 
26520b57cec5SDimitry Andric       // Clear the dependency checks. We assume they are not needed.
26530b57cec5SDimitry Andric       Accesses.resetDepChecks(*DepChecker);
26540b57cec5SDimitry Andric 
26550b57cec5SDimitry Andric       PtrRtChecking->reset();
26560b57cec5SDimitry Andric       PtrRtChecking->Need = true;
26570b57cec5SDimitry Andric 
26580b57cec5SDimitry Andric       auto *SE = PSE->getSE();
265981ad6265SDimitry Andric       UncomputablePtr = nullptr;
266081ad6265SDimitry Andric       CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(
266181ad6265SDimitry Andric           *PtrRtChecking, SE, TheLoop, SymbolicStrides, UncomputablePtr, true);
26620b57cec5SDimitry Andric 
26630b57cec5SDimitry Andric       // Check that we found the bounds for the pointer.
26640b57cec5SDimitry Andric       if (!CanDoRTIfNeeded) {
266581ad6265SDimitry Andric         auto *I = dyn_cast_or_null<Instruction>(UncomputablePtr);
266681ad6265SDimitry Andric         recordAnalysis("CantCheckMemDepsAtRunTime", I)
26670b57cec5SDimitry Andric             << "cannot check memory dependencies at runtime";
26680b57cec5SDimitry Andric         LLVM_DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n");
26690fca6ea1SDimitry Andric         return false;
26700b57cec5SDimitry Andric       }
26710fca6ea1SDimitry Andric       DepsAreSafe = true;
26720b57cec5SDimitry Andric     }
26730b57cec5SDimitry Andric   }
26740b57cec5SDimitry Andric 
26750b57cec5SDimitry Andric   if (HasConvergentOp) {
26760b57cec5SDimitry Andric     recordAnalysis("CantInsertRuntimeCheckWithConvergent")
26770b57cec5SDimitry Andric         << "cannot add control dependency to convergent operation";
26780b57cec5SDimitry Andric     LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because a runtime check "
26790b57cec5SDimitry Andric                          "would be needed with a convergent operation\n");
26800fca6ea1SDimitry Andric     return false;
26810b57cec5SDimitry Andric   }
26820b57cec5SDimitry Andric 
26830fca6ea1SDimitry Andric   if (DepsAreSafe) {
26840b57cec5SDimitry Andric     LLVM_DEBUG(
26850b57cec5SDimitry Andric         dbgs() << "LAA: No unsafe dependent memory operations in loop.  We"
26860b57cec5SDimitry Andric                << (PtrRtChecking->Need ? "" : " don't")
26870b57cec5SDimitry Andric                << " need runtime memory checks.\n");
26880fca6ea1SDimitry Andric     return true;
26890fca6ea1SDimitry Andric   }
26900fca6ea1SDimitry Andric 
269181ad6265SDimitry Andric   emitUnsafeDependenceRemark();
26920fca6ea1SDimitry Andric   return false;
269381ad6265SDimitry Andric }
269481ad6265SDimitry Andric 
269581ad6265SDimitry Andric void LoopAccessInfo::emitUnsafeDependenceRemark() {
26960fca6ea1SDimitry Andric   const auto *Deps = getDepChecker().getDependences();
269781ad6265SDimitry Andric   if (!Deps)
269881ad6265SDimitry Andric     return;
26990fca6ea1SDimitry Andric   const auto *Found =
27000fca6ea1SDimitry Andric       llvm::find_if(*Deps, [](const MemoryDepChecker::Dependence &D) {
270181ad6265SDimitry Andric         return MemoryDepChecker::Dependence::isSafeForVectorization(D.Type) !=
270281ad6265SDimitry Andric                MemoryDepChecker::VectorizationSafetyStatus::Safe;
270381ad6265SDimitry Andric       });
270481ad6265SDimitry Andric   if (Found == Deps->end())
270581ad6265SDimitry Andric     return;
270681ad6265SDimitry Andric   MemoryDepChecker::Dependence Dep = *Found;
270781ad6265SDimitry Andric 
270881ad6265SDimitry Andric   LLVM_DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n");
270981ad6265SDimitry Andric 
271081ad6265SDimitry Andric   // Emit remark for first unsafe dependence
27115f757f3fSDimitry Andric   bool HasForcedDistribution = false;
27125f757f3fSDimitry Andric   std::optional<const MDOperand *> Value =
27135f757f3fSDimitry Andric       findStringMetadataForLoop(TheLoop, "llvm.loop.distribute.enable");
27145f757f3fSDimitry Andric   if (Value) {
27155f757f3fSDimitry Andric     const MDOperand *Op = *Value;
27165f757f3fSDimitry Andric     assert(Op && mdconst::hasa<ConstantInt>(*Op) && "invalid metadata");
27175f757f3fSDimitry Andric     HasForcedDistribution = mdconst::extract<ConstantInt>(*Op)->getZExtValue();
27185f757f3fSDimitry Andric   }
27195f757f3fSDimitry Andric 
27205f757f3fSDimitry Andric   const std::string Info =
27215f757f3fSDimitry Andric       HasForcedDistribution
27225f757f3fSDimitry Andric           ? "unsafe dependent memory operations in loop."
27235f757f3fSDimitry Andric           : "unsafe dependent memory operations in loop. Use "
27245f757f3fSDimitry Andric             "#pragma clang loop distribute(enable) to allow loop distribution "
27250b57cec5SDimitry Andric             "to attempt to isolate the offending operations into a separate "
27260b57cec5SDimitry Andric             "loop";
27275f757f3fSDimitry Andric   OptimizationRemarkAnalysis &R =
27280fca6ea1SDimitry Andric       recordAnalysis("UnsafeDep", Dep.getDestination(getDepChecker())) << Info;
272981ad6265SDimitry Andric 
273081ad6265SDimitry Andric   switch (Dep.Type) {
273181ad6265SDimitry Andric   case MemoryDepChecker::Dependence::NoDep:
273281ad6265SDimitry Andric   case MemoryDepChecker::Dependence::Forward:
273381ad6265SDimitry Andric   case MemoryDepChecker::Dependence::BackwardVectorizable:
273481ad6265SDimitry Andric     llvm_unreachable("Unexpected dependence");
273581ad6265SDimitry Andric   case MemoryDepChecker::Dependence::Backward:
273681ad6265SDimitry Andric     R << "\nBackward loop carried data dependence.";
273781ad6265SDimitry Andric     break;
273881ad6265SDimitry Andric   case MemoryDepChecker::Dependence::ForwardButPreventsForwarding:
273981ad6265SDimitry Andric     R << "\nForward loop carried data dependence that prevents "
274081ad6265SDimitry Andric          "store-to-load forwarding.";
274181ad6265SDimitry Andric     break;
274281ad6265SDimitry Andric   case MemoryDepChecker::Dependence::BackwardVectorizableButPreventsForwarding:
274381ad6265SDimitry Andric     R << "\nBackward loop carried data dependence that prevents "
274481ad6265SDimitry Andric          "store-to-load forwarding.";
274581ad6265SDimitry Andric     break;
27465f757f3fSDimitry Andric   case MemoryDepChecker::Dependence::IndirectUnsafe:
27475f757f3fSDimitry Andric     R << "\nUnsafe indirect dependence.";
27485f757f3fSDimitry Andric     break;
274981ad6265SDimitry Andric   case MemoryDepChecker::Dependence::Unknown:
275081ad6265SDimitry Andric     R << "\nUnknown data dependence.";
275181ad6265SDimitry Andric     break;
275281ad6265SDimitry Andric   }
275381ad6265SDimitry Andric 
27540fca6ea1SDimitry Andric   if (Instruction *I = Dep.getSource(getDepChecker())) {
275581ad6265SDimitry Andric     DebugLoc SourceLoc = I->getDebugLoc();
275681ad6265SDimitry Andric     if (auto *DD = dyn_cast_or_null<Instruction>(getPointerOperand(I)))
275781ad6265SDimitry Andric       SourceLoc = DD->getDebugLoc();
275881ad6265SDimitry Andric     if (SourceLoc)
275981ad6265SDimitry Andric       R << " Memory location is the same as accessed at "
276081ad6265SDimitry Andric         << ore::NV("Location", SourceLoc);
27610b57cec5SDimitry Andric   }
27620b57cec5SDimitry Andric }
27630b57cec5SDimitry Andric 
27640b57cec5SDimitry Andric bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop,
27650b57cec5SDimitry Andric                                            DominatorTree *DT)  {
27660b57cec5SDimitry Andric   assert(TheLoop->contains(BB) && "Unknown block used");
27670b57cec5SDimitry Andric 
27680b57cec5SDimitry Andric   // Blocks that do not dominate the latch need predication.
27690b57cec5SDimitry Andric   BasicBlock* Latch = TheLoop->getLoopLatch();
27700b57cec5SDimitry Andric   return !DT->dominates(BB, Latch);
27710b57cec5SDimitry Andric }
27720b57cec5SDimitry Andric 
27730b57cec5SDimitry Andric OptimizationRemarkAnalysis &LoopAccessInfo::recordAnalysis(StringRef RemarkName,
27740b57cec5SDimitry Andric                                                            Instruction *I) {
27750b57cec5SDimitry Andric   assert(!Report && "Multiple reports generated");
27760b57cec5SDimitry Andric 
27770b57cec5SDimitry Andric   Value *CodeRegion = TheLoop->getHeader();
27780b57cec5SDimitry Andric   DebugLoc DL = TheLoop->getStartLoc();
27790b57cec5SDimitry Andric 
27800b57cec5SDimitry Andric   if (I) {
27810b57cec5SDimitry Andric     CodeRegion = I->getParent();
27820b57cec5SDimitry Andric     // If there is no debug location attached to the instruction, revert back to
27830b57cec5SDimitry Andric     // using the loop's.
27840b57cec5SDimitry Andric     if (I->getDebugLoc())
27850b57cec5SDimitry Andric       DL = I->getDebugLoc();
27860b57cec5SDimitry Andric   }
27870b57cec5SDimitry Andric 
27888bcb0991SDimitry Andric   Report = std::make_unique<OptimizationRemarkAnalysis>(DEBUG_TYPE, RemarkName, DL,
27890b57cec5SDimitry Andric                                                    CodeRegion);
27900b57cec5SDimitry Andric   return *Report;
27910b57cec5SDimitry Andric }
27920b57cec5SDimitry Andric 
279306c3fb27SDimitry Andric bool LoopAccessInfo::isInvariant(Value *V) const {
27940b57cec5SDimitry Andric   auto *SE = PSE->getSE();
27950b57cec5SDimitry Andric   // TODO: Is this really what we want? Even without FP SCEV, we may want some
279606c3fb27SDimitry Andric   // trivially loop-invariant FP values to be considered invariant.
27970b57cec5SDimitry Andric   if (!SE->isSCEVable(V->getType()))
27980b57cec5SDimitry Andric     return false;
279906c3fb27SDimitry Andric   const SCEV *S = SE->getSCEV(V);
280006c3fb27SDimitry Andric   return SE->isLoopInvariant(S, TheLoop);
280106c3fb27SDimitry Andric }
280206c3fb27SDimitry Andric 
280306c3fb27SDimitry Andric /// Find the operand of the GEP that should be checked for consecutive
280406c3fb27SDimitry Andric /// stores. This ignores trailing indices that have no effect on the final
280506c3fb27SDimitry Andric /// pointer.
280606c3fb27SDimitry Andric static unsigned getGEPInductionOperand(const GetElementPtrInst *Gep) {
28070fca6ea1SDimitry Andric   const DataLayout &DL = Gep->getDataLayout();
280806c3fb27SDimitry Andric   unsigned LastOperand = Gep->getNumOperands() - 1;
280906c3fb27SDimitry Andric   TypeSize GEPAllocSize = DL.getTypeAllocSize(Gep->getResultElementType());
281006c3fb27SDimitry Andric 
281106c3fb27SDimitry Andric   // Walk backwards and try to peel off zeros.
281206c3fb27SDimitry Andric   while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) {
281306c3fb27SDimitry Andric     // Find the type we're currently indexing into.
281406c3fb27SDimitry Andric     gep_type_iterator GEPTI = gep_type_begin(Gep);
281506c3fb27SDimitry Andric     std::advance(GEPTI, LastOperand - 2);
281606c3fb27SDimitry Andric 
281706c3fb27SDimitry Andric     // If it's a type with the same allocation size as the result of the GEP we
281806c3fb27SDimitry Andric     // can peel off the zero index.
28191db9f3b2SDimitry Andric     TypeSize ElemSize = GEPTI.isStruct()
28201db9f3b2SDimitry Andric                             ? DL.getTypeAllocSize(GEPTI.getIndexedType())
28211db9f3b2SDimitry Andric                             : GEPTI.getSequentialElementStride(DL);
28221db9f3b2SDimitry Andric     if (ElemSize != GEPAllocSize)
282306c3fb27SDimitry Andric       break;
282406c3fb27SDimitry Andric     --LastOperand;
282506c3fb27SDimitry Andric   }
282606c3fb27SDimitry Andric 
282706c3fb27SDimitry Andric   return LastOperand;
282806c3fb27SDimitry Andric }
282906c3fb27SDimitry Andric 
283006c3fb27SDimitry Andric /// If the argument is a GEP, then returns the operand identified by
283106c3fb27SDimitry Andric /// getGEPInductionOperand. However, if there is some other non-loop-invariant
283206c3fb27SDimitry Andric /// operand, it returns that instead.
283306c3fb27SDimitry Andric static Value *stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
283406c3fb27SDimitry Andric   GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
283506c3fb27SDimitry Andric   if (!GEP)
283606c3fb27SDimitry Andric     return Ptr;
283706c3fb27SDimitry Andric 
283806c3fb27SDimitry Andric   unsigned InductionOperand = getGEPInductionOperand(GEP);
283906c3fb27SDimitry Andric 
284006c3fb27SDimitry Andric   // Check that all of the gep indices are uniform except for our induction
284106c3fb27SDimitry Andric   // operand.
28420fca6ea1SDimitry Andric   for (unsigned I = 0, E = GEP->getNumOperands(); I != E; ++I)
28430fca6ea1SDimitry Andric     if (I != InductionOperand &&
28440fca6ea1SDimitry Andric         !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(I)), Lp))
284506c3fb27SDimitry Andric       return Ptr;
284606c3fb27SDimitry Andric   return GEP->getOperand(InductionOperand);
284706c3fb27SDimitry Andric }
284806c3fb27SDimitry Andric 
284906c3fb27SDimitry Andric /// Get the stride of a pointer access in a loop. Looks for symbolic
285006c3fb27SDimitry Andric /// strides "a[i*stride]". Returns the symbolic stride, or null otherwise.
285106c3fb27SDimitry Andric static const SCEV *getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
285206c3fb27SDimitry Andric   auto *PtrTy = dyn_cast<PointerType>(Ptr->getType());
285306c3fb27SDimitry Andric   if (!PtrTy || PtrTy->isAggregateType())
285406c3fb27SDimitry Andric     return nullptr;
285506c3fb27SDimitry Andric 
285606c3fb27SDimitry Andric   // Try to remove a gep instruction to make the pointer (actually index at this
285706c3fb27SDimitry Andric   // point) easier analyzable. If OrigPtr is equal to Ptr we are analyzing the
285806c3fb27SDimitry Andric   // pointer, otherwise, we are analyzing the index.
285906c3fb27SDimitry Andric   Value *OrigPtr = Ptr;
286006c3fb27SDimitry Andric 
286106c3fb27SDimitry Andric   // The size of the pointer access.
286206c3fb27SDimitry Andric   int64_t PtrAccessSize = 1;
286306c3fb27SDimitry Andric 
286406c3fb27SDimitry Andric   Ptr = stripGetElementPtr(Ptr, SE, Lp);
286506c3fb27SDimitry Andric   const SCEV *V = SE->getSCEV(Ptr);
286606c3fb27SDimitry Andric 
286706c3fb27SDimitry Andric   if (Ptr != OrigPtr)
286806c3fb27SDimitry Andric     // Strip off casts.
286906c3fb27SDimitry Andric     while (const SCEVIntegralCastExpr *C = dyn_cast<SCEVIntegralCastExpr>(V))
287006c3fb27SDimitry Andric       V = C->getOperand();
287106c3fb27SDimitry Andric 
287206c3fb27SDimitry Andric   const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V);
287306c3fb27SDimitry Andric   if (!S)
287406c3fb27SDimitry Andric     return nullptr;
287506c3fb27SDimitry Andric 
287606c3fb27SDimitry Andric   // If the pointer is invariant then there is no stride and it makes no
287706c3fb27SDimitry Andric   // sense to add it here.
287806c3fb27SDimitry Andric   if (Lp != S->getLoop())
287906c3fb27SDimitry Andric     return nullptr;
288006c3fb27SDimitry Andric 
288106c3fb27SDimitry Andric   V = S->getStepRecurrence(*SE);
288206c3fb27SDimitry Andric   if (!V)
288306c3fb27SDimitry Andric     return nullptr;
288406c3fb27SDimitry Andric 
288506c3fb27SDimitry Andric   // Strip off the size of access multiplication if we are still analyzing the
288606c3fb27SDimitry Andric   // pointer.
288706c3fb27SDimitry Andric   if (OrigPtr == Ptr) {
288806c3fb27SDimitry Andric     if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) {
288906c3fb27SDimitry Andric       if (M->getOperand(0)->getSCEVType() != scConstant)
289006c3fb27SDimitry Andric         return nullptr;
289106c3fb27SDimitry Andric 
289206c3fb27SDimitry Andric       const APInt &APStepVal = cast<SCEVConstant>(M->getOperand(0))->getAPInt();
289306c3fb27SDimitry Andric 
289406c3fb27SDimitry Andric       // Huge step value - give up.
289506c3fb27SDimitry Andric       if (APStepVal.getBitWidth() > 64)
289606c3fb27SDimitry Andric         return nullptr;
289706c3fb27SDimitry Andric 
289806c3fb27SDimitry Andric       int64_t StepVal = APStepVal.getSExtValue();
289906c3fb27SDimitry Andric       if (PtrAccessSize != StepVal)
290006c3fb27SDimitry Andric         return nullptr;
290106c3fb27SDimitry Andric       V = M->getOperand(1);
290206c3fb27SDimitry Andric     }
290306c3fb27SDimitry Andric   }
290406c3fb27SDimitry Andric 
290506c3fb27SDimitry Andric   // Note that the restriction after this loop invariant check are only
290606c3fb27SDimitry Andric   // profitability restrictions.
290706c3fb27SDimitry Andric   if (!SE->isLoopInvariant(V, Lp))
290806c3fb27SDimitry Andric     return nullptr;
290906c3fb27SDimitry Andric 
291006c3fb27SDimitry Andric   // Look for the loop invariant symbolic value.
29110fca6ea1SDimitry Andric   if (isa<SCEVUnknown>(V))
291206c3fb27SDimitry Andric     return V;
29130fca6ea1SDimitry Andric 
29140fca6ea1SDimitry Andric   if (const auto *C = dyn_cast<SCEVIntegralCastExpr>(V))
29150fca6ea1SDimitry Andric     if (isa<SCEVUnknown>(C->getOperand()))
29160fca6ea1SDimitry Andric       return V;
29170fca6ea1SDimitry Andric 
29180fca6ea1SDimitry Andric   return nullptr;
29190b57cec5SDimitry Andric }
29200b57cec5SDimitry Andric 
29210b57cec5SDimitry Andric void LoopAccessInfo::collectStridedAccess(Value *MemAccess) {
2922e8d8bef9SDimitry Andric   Value *Ptr = getLoadStorePointerOperand(MemAccess);
2923e8d8bef9SDimitry Andric   if (!Ptr)
29240b57cec5SDimitry Andric     return;
29250b57cec5SDimitry Andric 
292606c3fb27SDimitry Andric   // Note: getStrideFromPointer is a *profitability* heuristic.  We
292706c3fb27SDimitry Andric   // could broaden the scope of values returned here - to anything
292806c3fb27SDimitry Andric   // which happens to be loop invariant and contributes to the
292906c3fb27SDimitry Andric   // computation of an interesting IV - but we chose not to as we
293006c3fb27SDimitry Andric   // don't have a cost model here, and broadening the scope exposes
293106c3fb27SDimitry Andric   // far too many unprofitable cases.
293206c3fb27SDimitry Andric   const SCEV *StrideExpr = getStrideFromPointer(Ptr, PSE->getSE(), TheLoop);
293306c3fb27SDimitry Andric   if (!StrideExpr)
29340b57cec5SDimitry Andric     return;
29350b57cec5SDimitry Andric 
29360b57cec5SDimitry Andric   LLVM_DEBUG(dbgs() << "LAA: Found a strided access that is a candidate for "
29370b57cec5SDimitry Andric                        "versioning:");
293806c3fb27SDimitry Andric   LLVM_DEBUG(dbgs() << "  Ptr: " << *Ptr << " Stride: " << *StrideExpr << "\n");
293906c3fb27SDimitry Andric 
294006c3fb27SDimitry Andric   if (!SpeculateUnitStride) {
294106c3fb27SDimitry Andric     LLVM_DEBUG(dbgs() << "  Chose not to due to -laa-speculate-unit-stride\n");
294206c3fb27SDimitry Andric     return;
294306c3fb27SDimitry Andric   }
29440b57cec5SDimitry Andric 
29450b57cec5SDimitry Andric   // Avoid adding the "Stride == 1" predicate when we know that
29460b57cec5SDimitry Andric   // Stride >= Trip-Count. Such a predicate will effectively optimize a single
29470b57cec5SDimitry Andric   // or zero iteration loop, as Trip-Count <= Stride == 1.
29480b57cec5SDimitry Andric   //
29490b57cec5SDimitry Andric   // TODO: We are currently not making a very informed decision on when it is
29500b57cec5SDimitry Andric   // beneficial to apply stride versioning. It might make more sense that the
29510b57cec5SDimitry Andric   // users of this analysis (such as the vectorizer) will trigger it, based on
29520b57cec5SDimitry Andric   // their specific cost considerations; For example, in cases where stride
29530b57cec5SDimitry Andric   // versioning does  not help resolving memory accesses/dependences, the
29540b57cec5SDimitry Andric   // vectorizer should evaluate the cost of the runtime test, and the benefit
29550b57cec5SDimitry Andric   // of various possible stride specializations, considering the alternatives
29560b57cec5SDimitry Andric   // of using gather/scatters (if available).
29570b57cec5SDimitry Andric 
29580fca6ea1SDimitry Andric   const SCEV *MaxBTC = PSE->getSymbolicMaxBackedgeTakenCount();
29590b57cec5SDimitry Andric 
29600fca6ea1SDimitry Andric   // Match the types so we can compare the stride and the MaxBTC.
29610b57cec5SDimitry Andric   // The Stride can be positive/negative, so we sign extend Stride;
29620fca6ea1SDimitry Andric   // The backedgeTakenCount is non-negative, so we zero extend MaxBTC.
29630fca6ea1SDimitry Andric   const DataLayout &DL = TheLoop->getHeader()->getDataLayout();
296481ad6265SDimitry Andric   uint64_t StrideTypeSizeBits = DL.getTypeSizeInBits(StrideExpr->getType());
29650fca6ea1SDimitry Andric   uint64_t BETypeSizeBits = DL.getTypeSizeInBits(MaxBTC->getType());
29660b57cec5SDimitry Andric   const SCEV *CastedStride = StrideExpr;
29670fca6ea1SDimitry Andric   const SCEV *CastedBECount = MaxBTC;
29680b57cec5SDimitry Andric   ScalarEvolution *SE = PSE->getSE();
296981ad6265SDimitry Andric   if (BETypeSizeBits >= StrideTypeSizeBits)
29700fca6ea1SDimitry Andric     CastedStride = SE->getNoopOrSignExtend(StrideExpr, MaxBTC->getType());
29710b57cec5SDimitry Andric   else
29720fca6ea1SDimitry Andric     CastedBECount = SE->getZeroExtendExpr(MaxBTC, StrideExpr->getType());
29730b57cec5SDimitry Andric   const SCEV *StrideMinusBETaken = SE->getMinusSCEV(CastedStride, CastedBECount);
29740b57cec5SDimitry Andric   // Since TripCount == BackEdgeTakenCount + 1, checking:
29750b57cec5SDimitry Andric   // "Stride >= TripCount" is equivalent to checking:
29760fca6ea1SDimitry Andric   // Stride - MaxBTC> 0
29770b57cec5SDimitry Andric   if (SE->isKnownPositive(StrideMinusBETaken)) {
29780b57cec5SDimitry Andric     LLVM_DEBUG(
29790b57cec5SDimitry Andric         dbgs() << "LAA: Stride>=TripCount; No point in versioning as the "
29800b57cec5SDimitry Andric                   "Stride==1 predicate will imply that the loop executes "
29810b57cec5SDimitry Andric                   "at most once.\n");
29820b57cec5SDimitry Andric     return;
29830b57cec5SDimitry Andric   }
298481ad6265SDimitry Andric   LLVM_DEBUG(dbgs() << "LAA: Found a strided access that we can version.\n");
29850b57cec5SDimitry Andric 
298606c3fb27SDimitry Andric   // Strip back off the integer cast, and check that our result is a
298706c3fb27SDimitry Andric   // SCEVUnknown as we expect.
298806c3fb27SDimitry Andric   const SCEV *StrideBase = StrideExpr;
298906c3fb27SDimitry Andric   if (const auto *C = dyn_cast<SCEVIntegralCastExpr>(StrideBase))
299006c3fb27SDimitry Andric     StrideBase = C->getOperand();
299106c3fb27SDimitry Andric   SymbolicStrides[Ptr] = cast<SCEVUnknown>(StrideBase);
29920b57cec5SDimitry Andric }
29930b57cec5SDimitry Andric 
29940b57cec5SDimitry Andric LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE,
29950fca6ea1SDimitry Andric                                const TargetTransformInfo *TTI,
29965ffd83dbSDimitry Andric                                const TargetLibraryInfo *TLI, AAResults *AA,
29970b57cec5SDimitry Andric                                DominatorTree *DT, LoopInfo *LI)
29988bcb0991SDimitry Andric     : PSE(std::make_unique<PredicatedScalarEvolution>(*SE, *L)),
29990fca6ea1SDimitry Andric       PtrRtChecking(nullptr), TheLoop(L) {
30000fca6ea1SDimitry Andric   unsigned MaxTargetVectorWidthInBits = std::numeric_limits<unsigned>::max();
30010fca6ea1SDimitry Andric   if (TTI) {
30020fca6ea1SDimitry Andric     TypeSize FixedWidth =
30030fca6ea1SDimitry Andric         TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector);
30040fca6ea1SDimitry Andric     if (FixedWidth.isNonZero()) {
30050fca6ea1SDimitry Andric       // Scale the vector width by 2 as rough estimate to also consider
30060fca6ea1SDimitry Andric       // interleaving.
30070fca6ea1SDimitry Andric       MaxTargetVectorWidthInBits = FixedWidth.getFixedValue() * 2;
30080b57cec5SDimitry Andric     }
30090fca6ea1SDimitry Andric 
30100fca6ea1SDimitry Andric     TypeSize ScalableWidth =
30110fca6ea1SDimitry Andric         TTI->getRegisterBitWidth(TargetTransformInfo::RGK_ScalableVector);
30120fca6ea1SDimitry Andric     if (ScalableWidth.isNonZero())
30130fca6ea1SDimitry Andric       MaxTargetVectorWidthInBits = std::numeric_limits<unsigned>::max();
30140fca6ea1SDimitry Andric   }
30150fca6ea1SDimitry Andric   DepChecker = std::make_unique<MemoryDepChecker>(*PSE, L, SymbolicStrides,
30160fca6ea1SDimitry Andric                                                   MaxTargetVectorWidthInBits);
30170fca6ea1SDimitry Andric   PtrRtChecking = std::make_unique<RuntimePointerChecking>(*DepChecker, SE);
30180fca6ea1SDimitry Andric   if (canAnalyzeLoop())
30190fca6ea1SDimitry Andric     CanVecMem = analyzeLoop(AA, LI, TLI, DT);
302081ad6265SDimitry Andric }
30210b57cec5SDimitry Andric 
30220b57cec5SDimitry Andric void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const {
30230b57cec5SDimitry Andric   if (CanVecMem) {
30240b57cec5SDimitry Andric     OS.indent(Depth) << "Memory dependences are safe";
30255f757f3fSDimitry Andric     const MemoryDepChecker &DC = getDepChecker();
30265f757f3fSDimitry Andric     if (!DC.isSafeForAnyVectorWidth())
30275f757f3fSDimitry Andric       OS << " with a maximum safe vector width of "
30285f757f3fSDimitry Andric          << DC.getMaxSafeVectorWidthInBits() << " bits";
30290b57cec5SDimitry Andric     if (PtrRtChecking->Need)
30300b57cec5SDimitry Andric       OS << " with run-time checks";
30310b57cec5SDimitry Andric     OS << "\n";
30320b57cec5SDimitry Andric   }
30330b57cec5SDimitry Andric 
30340b57cec5SDimitry Andric   if (HasConvergentOp)
30350b57cec5SDimitry Andric     OS.indent(Depth) << "Has convergent operation in loop\n";
30360b57cec5SDimitry Andric 
30370b57cec5SDimitry Andric   if (Report)
30380b57cec5SDimitry Andric     OS.indent(Depth) << "Report: " << Report->getMsg() << "\n";
30390b57cec5SDimitry Andric 
30400b57cec5SDimitry Andric   if (auto *Dependences = DepChecker->getDependences()) {
30410b57cec5SDimitry Andric     OS.indent(Depth) << "Dependences:\n";
3042fcaf7f86SDimitry Andric     for (const auto &Dep : *Dependences) {
30430b57cec5SDimitry Andric       Dep.print(OS, Depth + 2, DepChecker->getMemoryInstructions());
30440b57cec5SDimitry Andric       OS << "\n";
30450b57cec5SDimitry Andric     }
30460b57cec5SDimitry Andric   } else
30470b57cec5SDimitry Andric     OS.indent(Depth) << "Too many dependences, not recorded\n";
30480b57cec5SDimitry Andric 
30490b57cec5SDimitry Andric   // List the pair of accesses need run-time checks to prove independence.
30500b57cec5SDimitry Andric   PtrRtChecking->print(OS, Depth);
30510b57cec5SDimitry Andric   OS << "\n";
30520b57cec5SDimitry Andric 
30530fca6ea1SDimitry Andric   OS.indent(Depth)
30540fca6ea1SDimitry Andric       << "Non vectorizable stores to invariant address were "
30550fca6ea1SDimitry Andric       << (HasStoreStoreDependenceInvolvingLoopInvariantAddress ||
30560fca6ea1SDimitry Andric                   HasLoadStoreDependenceInvolvingLoopInvariantAddress
30570fca6ea1SDimitry Andric               ? ""
30580fca6ea1SDimitry Andric               : "not ")
30590b57cec5SDimitry Andric       << "found in loop.\n";
30600b57cec5SDimitry Andric 
30610b57cec5SDimitry Andric   OS.indent(Depth) << "SCEV assumptions:\n";
306281ad6265SDimitry Andric   PSE->getPredicate().print(OS, Depth);
30630b57cec5SDimitry Andric 
30640b57cec5SDimitry Andric   OS << "\n";
30650b57cec5SDimitry Andric 
30660b57cec5SDimitry Andric   OS.indent(Depth) << "Expressions re-written:\n";
30670b57cec5SDimitry Andric   PSE->print(OS, Depth);
30680b57cec5SDimitry Andric }
30690b57cec5SDimitry Andric 
3070bdd1243dSDimitry Andric const LoopAccessInfo &LoopAccessInfoManager::getInfo(Loop &L) {
30710fca6ea1SDimitry Andric   auto [It, Inserted] = LoopAccessInfoMap.insert({&L, nullptr});
3072bdd1243dSDimitry Andric 
30730fca6ea1SDimitry Andric   if (Inserted)
30740fca6ea1SDimitry Andric     It->second =
30750fca6ea1SDimitry Andric         std::make_unique<LoopAccessInfo>(&L, &SE, TTI, TLI, &AA, &DT, &LI);
3076bdd1243dSDimitry Andric 
30770fca6ea1SDimitry Andric   return *It->second;
30780fca6ea1SDimitry Andric }
30790fca6ea1SDimitry Andric void LoopAccessInfoManager::clear() {
30800fca6ea1SDimitry Andric   SmallVector<Loop *> ToRemove;
30810fca6ea1SDimitry Andric   // Collect LoopAccessInfo entries that may keep references to IR outside the
30820fca6ea1SDimitry Andric   // analyzed loop or SCEVs that may have been modified or invalidated. At the
30830fca6ea1SDimitry Andric   // moment, that is loops requiring memory or SCEV runtime checks, as those cache
30840fca6ea1SDimitry Andric   // SCEVs, e.g. for pointer expressions.
30850fca6ea1SDimitry Andric   for (const auto &[L, LAI] : LoopAccessInfoMap) {
30860fca6ea1SDimitry Andric     if (LAI->getRuntimePointerChecking()->getChecks().empty() &&
30870fca6ea1SDimitry Andric         LAI->getPSE().getPredicate().isAlwaysTrue())
30880fca6ea1SDimitry Andric       continue;
30890fca6ea1SDimitry Andric     ToRemove.push_back(L);
30900fca6ea1SDimitry Andric   }
30910fca6ea1SDimitry Andric 
30920fca6ea1SDimitry Andric   for (Loop *L : ToRemove)
30930fca6ea1SDimitry Andric     LoopAccessInfoMap.erase(L);
3094bdd1243dSDimitry Andric }
3095bdd1243dSDimitry Andric 
309606c3fb27SDimitry Andric bool LoopAccessInfoManager::invalidate(
309706c3fb27SDimitry Andric     Function &F, const PreservedAnalyses &PA,
309806c3fb27SDimitry Andric     FunctionAnalysisManager::Invalidator &Inv) {
309906c3fb27SDimitry Andric   // Check whether our analysis is preserved.
310006c3fb27SDimitry Andric   auto PAC = PA.getChecker<LoopAccessAnalysis>();
310106c3fb27SDimitry Andric   if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Function>>())
310206c3fb27SDimitry Andric     // If not, give up now.
310306c3fb27SDimitry Andric     return true;
3104480093f4SDimitry Andric 
310506c3fb27SDimitry Andric   // Check whether the analyses we depend on became invalid for any reason.
310606c3fb27SDimitry Andric   // Skip checking TargetLibraryAnalysis as it is immutable and can't become
310706c3fb27SDimitry Andric   // invalid.
310806c3fb27SDimitry Andric   return Inv.invalidate<AAManager>(F, PA) ||
310906c3fb27SDimitry Andric          Inv.invalidate<ScalarEvolutionAnalysis>(F, PA) ||
311006c3fb27SDimitry Andric          Inv.invalidate<LoopAnalysis>(F, PA) ||
311106c3fb27SDimitry Andric          Inv.invalidate<DominatorTreeAnalysis>(F, PA);
31120b57cec5SDimitry Andric }
31130b57cec5SDimitry Andric 
3114bdd1243dSDimitry Andric LoopAccessInfoManager LoopAccessAnalysis::run(Function &F,
311506c3fb27SDimitry Andric                                               FunctionAnalysisManager &FAM) {
311606c3fb27SDimitry Andric   auto &SE = FAM.getResult<ScalarEvolutionAnalysis>(F);
311706c3fb27SDimitry Andric   auto &AA = FAM.getResult<AAManager>(F);
311806c3fb27SDimitry Andric   auto &DT = FAM.getResult<DominatorTreeAnalysis>(F);
311906c3fb27SDimitry Andric   auto &LI = FAM.getResult<LoopAnalysis>(F);
31200fca6ea1SDimitry Andric   auto &TTI = FAM.getResult<TargetIRAnalysis>(F);
312106c3fb27SDimitry Andric   auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F);
31220fca6ea1SDimitry Andric   return LoopAccessInfoManager(SE, AA, DT, LI, &TTI, &TLI);
3123bdd1243dSDimitry Andric }
3124bdd1243dSDimitry Andric 
31250b57cec5SDimitry Andric AnalysisKey LoopAccessAnalysis::Key;
3126