10b57cec5SDimitry Andric //===- LazyCallGraph.cpp - Analysis of a Module's call graph --------------===// 20b57cec5SDimitry Andric // 30b57cec5SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 40b57cec5SDimitry Andric // See https://llvm.org/LICENSE.txt for license information. 50b57cec5SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 60b57cec5SDimitry Andric // 70b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 80b57cec5SDimitry Andric 90b57cec5SDimitry Andric #include "llvm/Analysis/LazyCallGraph.h" 10bdd1243dSDimitry Andric 110b57cec5SDimitry Andric #include "llvm/ADT/ArrayRef.h" 120b57cec5SDimitry Andric #include "llvm/ADT/STLExtras.h" 130b57cec5SDimitry Andric #include "llvm/ADT/Sequence.h" 140b57cec5SDimitry Andric #include "llvm/ADT/SmallPtrSet.h" 150b57cec5SDimitry Andric #include "llvm/ADT/SmallVector.h" 160b57cec5SDimitry Andric #include "llvm/ADT/iterator_range.h" 170b57cec5SDimitry Andric #include "llvm/Analysis/TargetLibraryInfo.h" 1881ad6265SDimitry Andric #include "llvm/IR/Constants.h" 190b57cec5SDimitry Andric #include "llvm/IR/Function.h" 200b57cec5SDimitry Andric #include "llvm/IR/GlobalVariable.h" 21e8d8bef9SDimitry Andric #include "llvm/IR/InstIterator.h" 220b57cec5SDimitry Andric #include "llvm/IR/Instruction.h" 230b57cec5SDimitry Andric #include "llvm/IR/Module.h" 240b57cec5SDimitry Andric #include "llvm/IR/PassManager.h" 250b57cec5SDimitry Andric #include "llvm/Support/Casting.h" 260b57cec5SDimitry Andric #include "llvm/Support/Compiler.h" 270b57cec5SDimitry Andric #include "llvm/Support/Debug.h" 280b57cec5SDimitry Andric #include "llvm/Support/GraphWriter.h" 290b57cec5SDimitry Andric #include "llvm/Support/raw_ostream.h" 300b57cec5SDimitry Andric #include <algorithm> 310b57cec5SDimitry Andric 3281ad6265SDimitry Andric #ifdef EXPENSIVE_CHECKS 3381ad6265SDimitry Andric #include "llvm/ADT/ScopeExit.h" 3481ad6265SDimitry Andric #endif 3581ad6265SDimitry Andric 360b57cec5SDimitry Andric using namespace llvm; 370b57cec5SDimitry Andric 380b57cec5SDimitry Andric #define DEBUG_TYPE "lcg" 390b57cec5SDimitry Andric 400b57cec5SDimitry Andric void LazyCallGraph::EdgeSequence::insertEdgeInternal(Node &TargetN, 410b57cec5SDimitry Andric Edge::Kind EK) { 42bdd1243dSDimitry Andric EdgeIndexMap.try_emplace(&TargetN, Edges.size()); 430b57cec5SDimitry Andric Edges.emplace_back(TargetN, EK); 440b57cec5SDimitry Andric } 450b57cec5SDimitry Andric 460b57cec5SDimitry Andric void LazyCallGraph::EdgeSequence::setEdgeKind(Node &TargetN, Edge::Kind EK) { 470b57cec5SDimitry Andric Edges[EdgeIndexMap.find(&TargetN)->second].setKind(EK); 480b57cec5SDimitry Andric } 490b57cec5SDimitry Andric 500b57cec5SDimitry Andric bool LazyCallGraph::EdgeSequence::removeEdgeInternal(Node &TargetN) { 510b57cec5SDimitry Andric auto IndexMapI = EdgeIndexMap.find(&TargetN); 520b57cec5SDimitry Andric if (IndexMapI == EdgeIndexMap.end()) 530b57cec5SDimitry Andric return false; 540b57cec5SDimitry Andric 550b57cec5SDimitry Andric Edges[IndexMapI->second] = Edge(); 560b57cec5SDimitry Andric EdgeIndexMap.erase(IndexMapI); 570b57cec5SDimitry Andric return true; 580b57cec5SDimitry Andric } 590b57cec5SDimitry Andric 600b57cec5SDimitry Andric static void addEdge(SmallVectorImpl<LazyCallGraph::Edge> &Edges, 610b57cec5SDimitry Andric DenseMap<LazyCallGraph::Node *, int> &EdgeIndexMap, 620b57cec5SDimitry Andric LazyCallGraph::Node &N, LazyCallGraph::Edge::Kind EK) { 63bdd1243dSDimitry Andric if (!EdgeIndexMap.try_emplace(&N, Edges.size()).second) 640b57cec5SDimitry Andric return; 650b57cec5SDimitry Andric 660b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << " Added callable function: " << N.getName() << "\n"); 670b57cec5SDimitry Andric Edges.emplace_back(LazyCallGraph::Edge(N, EK)); 680b57cec5SDimitry Andric } 690b57cec5SDimitry Andric 700b57cec5SDimitry Andric LazyCallGraph::EdgeSequence &LazyCallGraph::Node::populateSlow() { 710b57cec5SDimitry Andric assert(!Edges && "Must not have already populated the edges for this node!"); 720b57cec5SDimitry Andric 730b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << " Adding functions called by '" << getName() 740b57cec5SDimitry Andric << "' to the graph.\n"); 750b57cec5SDimitry Andric 760b57cec5SDimitry Andric Edges = EdgeSequence(); 770b57cec5SDimitry Andric 780b57cec5SDimitry Andric SmallVector<Constant *, 16> Worklist; 790b57cec5SDimitry Andric SmallPtrSet<Function *, 4> Callees; 800b57cec5SDimitry Andric SmallPtrSet<Constant *, 16> Visited; 810b57cec5SDimitry Andric 820b57cec5SDimitry Andric // Find all the potential call graph edges in this function. We track both 830b57cec5SDimitry Andric // actual call edges and indirect references to functions. The direct calls 840b57cec5SDimitry Andric // are trivially added, but to accumulate the latter we walk the instructions 850b57cec5SDimitry Andric // and add every operand which is a constant to the worklist to process 860b57cec5SDimitry Andric // afterward. 870b57cec5SDimitry Andric // 880b57cec5SDimitry Andric // Note that we consider *any* function with a definition to be a viable 890b57cec5SDimitry Andric // edge. Even if the function's definition is subject to replacement by 900b57cec5SDimitry Andric // some other module (say, a weak definition) there may still be 910b57cec5SDimitry Andric // optimizations which essentially speculate based on the definition and 920b57cec5SDimitry Andric // a way to check that the specific definition is in fact the one being 930b57cec5SDimitry Andric // used. For example, this could be done by moving the weak definition to 940b57cec5SDimitry Andric // a strong (internal) definition and making the weak definition be an 950b57cec5SDimitry Andric // alias. Then a test of the address of the weak function against the new 960b57cec5SDimitry Andric // strong definition's address would be an effective way to determine the 970b57cec5SDimitry Andric // safety of optimizing a direct call edge. 980b57cec5SDimitry Andric for (BasicBlock &BB : *F) 990b57cec5SDimitry Andric for (Instruction &I : BB) { 1005ffd83dbSDimitry Andric if (auto *CB = dyn_cast<CallBase>(&I)) 1015ffd83dbSDimitry Andric if (Function *Callee = CB->getCalledFunction()) 1020b57cec5SDimitry Andric if (!Callee->isDeclaration()) 1030b57cec5SDimitry Andric if (Callees.insert(Callee).second) { 1040b57cec5SDimitry Andric Visited.insert(Callee); 1050b57cec5SDimitry Andric addEdge(Edges->Edges, Edges->EdgeIndexMap, G->get(*Callee), 1060b57cec5SDimitry Andric LazyCallGraph::Edge::Call); 1070b57cec5SDimitry Andric } 1080b57cec5SDimitry Andric 1090b57cec5SDimitry Andric for (Value *Op : I.operand_values()) 1100b57cec5SDimitry Andric if (Constant *C = dyn_cast<Constant>(Op)) 1110b57cec5SDimitry Andric if (Visited.insert(C).second) 1120b57cec5SDimitry Andric Worklist.push_back(C); 1130b57cec5SDimitry Andric } 1140b57cec5SDimitry Andric 1150b57cec5SDimitry Andric // We've collected all the constant (and thus potentially function or 116bdd1243dSDimitry Andric // function containing) operands to all the instructions in the function. 1170b57cec5SDimitry Andric // Process them (recursively) collecting every function found. 1180b57cec5SDimitry Andric visitReferences(Worklist, Visited, [&](Function &F) { 1190b57cec5SDimitry Andric addEdge(Edges->Edges, Edges->EdgeIndexMap, G->get(F), 1200b57cec5SDimitry Andric LazyCallGraph::Edge::Ref); 1210b57cec5SDimitry Andric }); 1220b57cec5SDimitry Andric 1230b57cec5SDimitry Andric // Add implicit reference edges to any defined libcall functions (if we 1240b57cec5SDimitry Andric // haven't found an explicit edge). 1250b57cec5SDimitry Andric for (auto *F : G->LibFunctions) 1260b57cec5SDimitry Andric if (!Visited.count(F)) 1270b57cec5SDimitry Andric addEdge(Edges->Edges, Edges->EdgeIndexMap, G->get(*F), 1280b57cec5SDimitry Andric LazyCallGraph::Edge::Ref); 1290b57cec5SDimitry Andric 1300b57cec5SDimitry Andric return *Edges; 1310b57cec5SDimitry Andric } 1320b57cec5SDimitry Andric 1330b57cec5SDimitry Andric void LazyCallGraph::Node::replaceFunction(Function &NewF) { 1340b57cec5SDimitry Andric assert(F != &NewF && "Must not replace a function with itself!"); 1350b57cec5SDimitry Andric F = &NewF; 1360b57cec5SDimitry Andric } 1370b57cec5SDimitry Andric 1380b57cec5SDimitry Andric #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1390b57cec5SDimitry Andric LLVM_DUMP_METHOD void LazyCallGraph::Node::dump() const { 1400b57cec5SDimitry Andric dbgs() << *this << '\n'; 1410b57cec5SDimitry Andric } 1420b57cec5SDimitry Andric #endif 1430b57cec5SDimitry Andric 1440b57cec5SDimitry Andric static bool isKnownLibFunction(Function &F, TargetLibraryInfo &TLI) { 1450b57cec5SDimitry Andric LibFunc LF; 1460b57cec5SDimitry Andric 1475ffd83dbSDimitry Andric // Either this is a normal library function or a "vectorizable" 1485ffd83dbSDimitry Andric // function. Not using the VFDatabase here because this query 1495ffd83dbSDimitry Andric // is related only to libraries handled via the TLI. 1505ffd83dbSDimitry Andric return TLI.getLibFunc(F, LF) || 1515ffd83dbSDimitry Andric TLI.isKnownVectorFunctionInLibrary(F.getName()); 1520b57cec5SDimitry Andric } 1530b57cec5SDimitry Andric 1548bcb0991SDimitry Andric LazyCallGraph::LazyCallGraph( 1558bcb0991SDimitry Andric Module &M, function_ref<TargetLibraryInfo &(Function &)> GetTLI) { 1560b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "Building CG for module: " << M.getModuleIdentifier() 1570b57cec5SDimitry Andric << "\n"); 1580b57cec5SDimitry Andric for (Function &F : M) { 1590b57cec5SDimitry Andric if (F.isDeclaration()) 1600b57cec5SDimitry Andric continue; 1610b57cec5SDimitry Andric // If this function is a known lib function to LLVM then we want to 1620b57cec5SDimitry Andric // synthesize reference edges to it to model the fact that LLVM can turn 1630b57cec5SDimitry Andric // arbitrary code into a library function call. 1648bcb0991SDimitry Andric if (isKnownLibFunction(F, GetTLI(F))) 1650b57cec5SDimitry Andric LibFunctions.insert(&F); 1660b57cec5SDimitry Andric 1670b57cec5SDimitry Andric if (F.hasLocalLinkage()) 1680b57cec5SDimitry Andric continue; 1690b57cec5SDimitry Andric 1700b57cec5SDimitry Andric // External linkage defined functions have edges to them from other 1710b57cec5SDimitry Andric // modules. 1720b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << " Adding '" << F.getName() 1730b57cec5SDimitry Andric << "' to entry set of the graph.\n"); 1740b57cec5SDimitry Andric addEdge(EntryEdges.Edges, EntryEdges.EdgeIndexMap, get(F), Edge::Ref); 1750b57cec5SDimitry Andric } 1760b57cec5SDimitry Andric 1770b57cec5SDimitry Andric // Externally visible aliases of internal functions are also viable entry 1780b57cec5SDimitry Andric // edges to the module. 1790b57cec5SDimitry Andric for (auto &A : M.aliases()) { 1800b57cec5SDimitry Andric if (A.hasLocalLinkage()) 1810b57cec5SDimitry Andric continue; 1820b57cec5SDimitry Andric if (Function* F = dyn_cast<Function>(A.getAliasee())) { 1830b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << " Adding '" << F->getName() 1840b57cec5SDimitry Andric << "' with alias '" << A.getName() 1850b57cec5SDimitry Andric << "' to entry set of the graph.\n"); 1860b57cec5SDimitry Andric addEdge(EntryEdges.Edges, EntryEdges.EdgeIndexMap, get(*F), Edge::Ref); 1870b57cec5SDimitry Andric } 1880b57cec5SDimitry Andric } 1890b57cec5SDimitry Andric 1900b57cec5SDimitry Andric // Now add entry nodes for functions reachable via initializers to globals. 1910b57cec5SDimitry Andric SmallVector<Constant *, 16> Worklist; 1920b57cec5SDimitry Andric SmallPtrSet<Constant *, 16> Visited; 1930b57cec5SDimitry Andric for (GlobalVariable &GV : M.globals()) 1940b57cec5SDimitry Andric if (GV.hasInitializer()) 1950b57cec5SDimitry Andric if (Visited.insert(GV.getInitializer()).second) 1960b57cec5SDimitry Andric Worklist.push_back(GV.getInitializer()); 1970b57cec5SDimitry Andric 1980b57cec5SDimitry Andric LLVM_DEBUG( 1990b57cec5SDimitry Andric dbgs() << " Adding functions referenced by global initializers to the " 2000b57cec5SDimitry Andric "entry set.\n"); 2010b57cec5SDimitry Andric visitReferences(Worklist, Visited, [&](Function &F) { 2020b57cec5SDimitry Andric addEdge(EntryEdges.Edges, EntryEdges.EdgeIndexMap, get(F), 2030b57cec5SDimitry Andric LazyCallGraph::Edge::Ref); 2040b57cec5SDimitry Andric }); 2050b57cec5SDimitry Andric } 2060b57cec5SDimitry Andric 2070b57cec5SDimitry Andric LazyCallGraph::LazyCallGraph(LazyCallGraph &&G) 2080b57cec5SDimitry Andric : BPA(std::move(G.BPA)), NodeMap(std::move(G.NodeMap)), 2090b57cec5SDimitry Andric EntryEdges(std::move(G.EntryEdges)), SCCBPA(std::move(G.SCCBPA)), 210bdd1243dSDimitry Andric SCCMap(std::move(G.SCCMap)), LibFunctions(std::move(G.LibFunctions)) { 2110b57cec5SDimitry Andric updateGraphPtrs(); 2120b57cec5SDimitry Andric } 2130b57cec5SDimitry Andric 214*0fca6ea1SDimitry Andric #if !defined(NDEBUG) || defined(EXPENSIVE_CHECKS) 215*0fca6ea1SDimitry Andric void LazyCallGraph::verify() { 216*0fca6ea1SDimitry Andric for (RefSCC &RC : postorder_ref_sccs()) { 217*0fca6ea1SDimitry Andric RC.verify(); 218*0fca6ea1SDimitry Andric } 219*0fca6ea1SDimitry Andric } 220*0fca6ea1SDimitry Andric #endif 221*0fca6ea1SDimitry Andric 2225ffd83dbSDimitry Andric bool LazyCallGraph::invalidate(Module &, const PreservedAnalyses &PA, 2235ffd83dbSDimitry Andric ModuleAnalysisManager::Invalidator &) { 2245ffd83dbSDimitry Andric // Check whether the analysis, all analyses on functions, or the function's 2255ffd83dbSDimitry Andric // CFG have been preserved. 2265ffd83dbSDimitry Andric auto PAC = PA.getChecker<llvm::LazyCallGraphAnalysis>(); 227349cc55cSDimitry Andric return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Module>>()); 2285ffd83dbSDimitry Andric } 2295ffd83dbSDimitry Andric 2300b57cec5SDimitry Andric LazyCallGraph &LazyCallGraph::operator=(LazyCallGraph &&G) { 2310b57cec5SDimitry Andric BPA = std::move(G.BPA); 2320b57cec5SDimitry Andric NodeMap = std::move(G.NodeMap); 2330b57cec5SDimitry Andric EntryEdges = std::move(G.EntryEdges); 2340b57cec5SDimitry Andric SCCBPA = std::move(G.SCCBPA); 2350b57cec5SDimitry Andric SCCMap = std::move(G.SCCMap); 2360b57cec5SDimitry Andric LibFunctions = std::move(G.LibFunctions); 2370b57cec5SDimitry Andric updateGraphPtrs(); 2380b57cec5SDimitry Andric return *this; 2390b57cec5SDimitry Andric } 2400b57cec5SDimitry Andric 2410b57cec5SDimitry Andric #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2420b57cec5SDimitry Andric LLVM_DUMP_METHOD void LazyCallGraph::SCC::dump() const { 2430b57cec5SDimitry Andric dbgs() << *this << '\n'; 2440b57cec5SDimitry Andric } 2450b57cec5SDimitry Andric #endif 2460b57cec5SDimitry Andric 247fe6060f1SDimitry Andric #if !defined(NDEBUG) || defined(EXPENSIVE_CHECKS) 2480b57cec5SDimitry Andric void LazyCallGraph::SCC::verify() { 2490b57cec5SDimitry Andric assert(OuterRefSCC && "Can't have a null RefSCC!"); 2500b57cec5SDimitry Andric assert(!Nodes.empty() && "Can't have an empty SCC!"); 2510b57cec5SDimitry Andric 2520b57cec5SDimitry Andric for (Node *N : Nodes) { 2530b57cec5SDimitry Andric assert(N && "Can't have a null node!"); 2540b57cec5SDimitry Andric assert(OuterRefSCC->G->lookupSCC(*N) == this && 2550b57cec5SDimitry Andric "Node does not map to this SCC!"); 2560b57cec5SDimitry Andric assert(N->DFSNumber == -1 && 2570b57cec5SDimitry Andric "Must set DFS numbers to -1 when adding a node to an SCC!"); 2580b57cec5SDimitry Andric assert(N->LowLink == -1 && 2590b57cec5SDimitry Andric "Must set low link to -1 when adding a node to an SCC!"); 2600b57cec5SDimitry Andric for (Edge &E : **N) 2610b57cec5SDimitry Andric assert(E.getNode().isPopulated() && "Can't have an unpopulated node!"); 262e8d8bef9SDimitry Andric 263e8d8bef9SDimitry Andric #ifdef EXPENSIVE_CHECKS 264e8d8bef9SDimitry Andric // Verify that all nodes in this SCC can reach all other nodes. 265e8d8bef9SDimitry Andric SmallVector<Node *, 4> Worklist; 266e8d8bef9SDimitry Andric SmallPtrSet<Node *, 4> Visited; 267e8d8bef9SDimitry Andric Worklist.push_back(N); 268e8d8bef9SDimitry Andric while (!Worklist.empty()) { 269e8d8bef9SDimitry Andric Node *VisitingNode = Worklist.pop_back_val(); 270e8d8bef9SDimitry Andric if (!Visited.insert(VisitingNode).second) 271e8d8bef9SDimitry Andric continue; 272e8d8bef9SDimitry Andric for (Edge &E : (*VisitingNode)->calls()) 273e8d8bef9SDimitry Andric Worklist.push_back(&E.getNode()); 274e8d8bef9SDimitry Andric } 275e8d8bef9SDimitry Andric for (Node *NodeToVisit : Nodes) { 276e8d8bef9SDimitry Andric assert(Visited.contains(NodeToVisit) && 277e8d8bef9SDimitry Andric "Cannot reach all nodes within SCC"); 278e8d8bef9SDimitry Andric } 279e8d8bef9SDimitry Andric #endif 2800b57cec5SDimitry Andric } 2810b57cec5SDimitry Andric } 2820b57cec5SDimitry Andric #endif 2830b57cec5SDimitry Andric 2840b57cec5SDimitry Andric bool LazyCallGraph::SCC::isParentOf(const SCC &C) const { 2850b57cec5SDimitry Andric if (this == &C) 2860b57cec5SDimitry Andric return false; 2870b57cec5SDimitry Andric 2880b57cec5SDimitry Andric for (Node &N : *this) 2890b57cec5SDimitry Andric for (Edge &E : N->calls()) 2900b57cec5SDimitry Andric if (OuterRefSCC->G->lookupSCC(E.getNode()) == &C) 2910b57cec5SDimitry Andric return true; 2920b57cec5SDimitry Andric 2930b57cec5SDimitry Andric // No edges found. 2940b57cec5SDimitry Andric return false; 2950b57cec5SDimitry Andric } 2960b57cec5SDimitry Andric 2970b57cec5SDimitry Andric bool LazyCallGraph::SCC::isAncestorOf(const SCC &TargetC) const { 2980b57cec5SDimitry Andric if (this == &TargetC) 2990b57cec5SDimitry Andric return false; 3000b57cec5SDimitry Andric 3010b57cec5SDimitry Andric LazyCallGraph &G = *OuterRefSCC->G; 3020b57cec5SDimitry Andric 3030b57cec5SDimitry Andric // Start with this SCC. 3040b57cec5SDimitry Andric SmallPtrSet<const SCC *, 16> Visited = {this}; 3050b57cec5SDimitry Andric SmallVector<const SCC *, 16> Worklist = {this}; 3060b57cec5SDimitry Andric 3070b57cec5SDimitry Andric // Walk down the graph until we run out of edges or find a path to TargetC. 3080b57cec5SDimitry Andric do { 3090b57cec5SDimitry Andric const SCC &C = *Worklist.pop_back_val(); 3100b57cec5SDimitry Andric for (Node &N : C) 3110b57cec5SDimitry Andric for (Edge &E : N->calls()) { 3120b57cec5SDimitry Andric SCC *CalleeC = G.lookupSCC(E.getNode()); 3130b57cec5SDimitry Andric if (!CalleeC) 3140b57cec5SDimitry Andric continue; 3150b57cec5SDimitry Andric 3160b57cec5SDimitry Andric // If the callee's SCC is the TargetC, we're done. 3170b57cec5SDimitry Andric if (CalleeC == &TargetC) 3180b57cec5SDimitry Andric return true; 3190b57cec5SDimitry Andric 3200b57cec5SDimitry Andric // If this is the first time we've reached this SCC, put it on the 3210b57cec5SDimitry Andric // worklist to recurse through. 3220b57cec5SDimitry Andric if (Visited.insert(CalleeC).second) 3230b57cec5SDimitry Andric Worklist.push_back(CalleeC); 3240b57cec5SDimitry Andric } 3250b57cec5SDimitry Andric } while (!Worklist.empty()); 3260b57cec5SDimitry Andric 3270b57cec5SDimitry Andric // No paths found. 3280b57cec5SDimitry Andric return false; 3290b57cec5SDimitry Andric } 3300b57cec5SDimitry Andric 3310b57cec5SDimitry Andric LazyCallGraph::RefSCC::RefSCC(LazyCallGraph &G) : G(&G) {} 3320b57cec5SDimitry Andric 3330b57cec5SDimitry Andric #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 3340b57cec5SDimitry Andric LLVM_DUMP_METHOD void LazyCallGraph::RefSCC::dump() const { 3350b57cec5SDimitry Andric dbgs() << *this << '\n'; 3360b57cec5SDimitry Andric } 3370b57cec5SDimitry Andric #endif 3380b57cec5SDimitry Andric 339fe6060f1SDimitry Andric #if !defined(NDEBUG) || defined(EXPENSIVE_CHECKS) 3400b57cec5SDimitry Andric void LazyCallGraph::RefSCC::verify() { 3410b57cec5SDimitry Andric assert(G && "Can't have a null graph!"); 3420b57cec5SDimitry Andric assert(!SCCs.empty() && "Can't have an empty SCC!"); 3430b57cec5SDimitry Andric 3440b57cec5SDimitry Andric // Verify basic properties of the SCCs. 3450b57cec5SDimitry Andric SmallPtrSet<SCC *, 4> SCCSet; 3460b57cec5SDimitry Andric for (SCC *C : SCCs) { 3470b57cec5SDimitry Andric assert(C && "Can't have a null SCC!"); 3480b57cec5SDimitry Andric C->verify(); 3490b57cec5SDimitry Andric assert(&C->getOuterRefSCC() == this && 3500b57cec5SDimitry Andric "SCC doesn't think it is inside this RefSCC!"); 3510b57cec5SDimitry Andric bool Inserted = SCCSet.insert(C).second; 3520b57cec5SDimitry Andric assert(Inserted && "Found a duplicate SCC!"); 3530b57cec5SDimitry Andric auto IndexIt = SCCIndices.find(C); 3540b57cec5SDimitry Andric assert(IndexIt != SCCIndices.end() && 3550b57cec5SDimitry Andric "Found an SCC that doesn't have an index!"); 3560b57cec5SDimitry Andric } 3570b57cec5SDimitry Andric 3580b57cec5SDimitry Andric // Check that our indices map correctly. 359bdd1243dSDimitry Andric for (auto [C, I] : SCCIndices) { 3600b57cec5SDimitry Andric assert(C && "Can't have a null SCC in the indices!"); 3610b57cec5SDimitry Andric assert(SCCSet.count(C) && "Found an index for an SCC not in the RefSCC!"); 362bdd1243dSDimitry Andric assert(SCCs[I] == C && "Index doesn't point to SCC!"); 3630b57cec5SDimitry Andric } 3640b57cec5SDimitry Andric 3650b57cec5SDimitry Andric // Check that the SCCs are in fact in post-order. 366bdd1243dSDimitry Andric for (int I = 0, Size = SCCs.size(); I < Size; ++I) { 367bdd1243dSDimitry Andric SCC &SourceSCC = *SCCs[I]; 3680b57cec5SDimitry Andric for (Node &N : SourceSCC) 3690b57cec5SDimitry Andric for (Edge &E : *N) { 3700b57cec5SDimitry Andric if (!E.isCall()) 3710b57cec5SDimitry Andric continue; 3720b57cec5SDimitry Andric SCC &TargetSCC = *G->lookupSCC(E.getNode()); 3730b57cec5SDimitry Andric if (&TargetSCC.getOuterRefSCC() == this) { 374bdd1243dSDimitry Andric assert(SCCIndices.find(&TargetSCC)->second <= I && 3750b57cec5SDimitry Andric "Edge between SCCs violates post-order relationship."); 3760b57cec5SDimitry Andric continue; 3770b57cec5SDimitry Andric } 3780b57cec5SDimitry Andric } 3790b57cec5SDimitry Andric } 380e8d8bef9SDimitry Andric 381e8d8bef9SDimitry Andric #ifdef EXPENSIVE_CHECKS 382e8d8bef9SDimitry Andric // Verify that all nodes in this RefSCC can reach all other nodes. 383e8d8bef9SDimitry Andric SmallVector<Node *> Nodes; 384e8d8bef9SDimitry Andric for (SCC *C : SCCs) { 385e8d8bef9SDimitry Andric for (Node &N : *C) 386e8d8bef9SDimitry Andric Nodes.push_back(&N); 387e8d8bef9SDimitry Andric } 388e8d8bef9SDimitry Andric for (Node *N : Nodes) { 389e8d8bef9SDimitry Andric SmallVector<Node *, 4> Worklist; 390e8d8bef9SDimitry Andric SmallPtrSet<Node *, 4> Visited; 391e8d8bef9SDimitry Andric Worklist.push_back(N); 392e8d8bef9SDimitry Andric while (!Worklist.empty()) { 393e8d8bef9SDimitry Andric Node *VisitingNode = Worklist.pop_back_val(); 394e8d8bef9SDimitry Andric if (!Visited.insert(VisitingNode).second) 395e8d8bef9SDimitry Andric continue; 396e8d8bef9SDimitry Andric for (Edge &E : **VisitingNode) 397e8d8bef9SDimitry Andric Worklist.push_back(&E.getNode()); 398e8d8bef9SDimitry Andric } 399e8d8bef9SDimitry Andric for (Node *NodeToVisit : Nodes) { 400e8d8bef9SDimitry Andric assert(Visited.contains(NodeToVisit) && 401e8d8bef9SDimitry Andric "Cannot reach all nodes within RefSCC"); 402e8d8bef9SDimitry Andric } 403e8d8bef9SDimitry Andric } 404e8d8bef9SDimitry Andric #endif 4050b57cec5SDimitry Andric } 4060b57cec5SDimitry Andric #endif 4070b57cec5SDimitry Andric 4080b57cec5SDimitry Andric bool LazyCallGraph::RefSCC::isParentOf(const RefSCC &RC) const { 4090b57cec5SDimitry Andric if (&RC == this) 4100b57cec5SDimitry Andric return false; 4110b57cec5SDimitry Andric 4120b57cec5SDimitry Andric // Search all edges to see if this is a parent. 4130b57cec5SDimitry Andric for (SCC &C : *this) 4140b57cec5SDimitry Andric for (Node &N : C) 4150b57cec5SDimitry Andric for (Edge &E : *N) 4160b57cec5SDimitry Andric if (G->lookupRefSCC(E.getNode()) == &RC) 4170b57cec5SDimitry Andric return true; 4180b57cec5SDimitry Andric 4190b57cec5SDimitry Andric return false; 4200b57cec5SDimitry Andric } 4210b57cec5SDimitry Andric 4220b57cec5SDimitry Andric bool LazyCallGraph::RefSCC::isAncestorOf(const RefSCC &RC) const { 4230b57cec5SDimitry Andric if (&RC == this) 4240b57cec5SDimitry Andric return false; 4250b57cec5SDimitry Andric 4260b57cec5SDimitry Andric // For each descendant of this RefSCC, see if one of its children is the 4270b57cec5SDimitry Andric // argument. If not, add that descendant to the worklist and continue 4280b57cec5SDimitry Andric // searching. 4290b57cec5SDimitry Andric SmallVector<const RefSCC *, 4> Worklist; 4300b57cec5SDimitry Andric SmallPtrSet<const RefSCC *, 4> Visited; 4310b57cec5SDimitry Andric Worklist.push_back(this); 4320b57cec5SDimitry Andric Visited.insert(this); 4330b57cec5SDimitry Andric do { 4340b57cec5SDimitry Andric const RefSCC &DescendantRC = *Worklist.pop_back_val(); 4350b57cec5SDimitry Andric for (SCC &C : DescendantRC) 4360b57cec5SDimitry Andric for (Node &N : C) 4370b57cec5SDimitry Andric for (Edge &E : *N) { 4380b57cec5SDimitry Andric auto *ChildRC = G->lookupRefSCC(E.getNode()); 4390b57cec5SDimitry Andric if (ChildRC == &RC) 4400b57cec5SDimitry Andric return true; 4410b57cec5SDimitry Andric if (!ChildRC || !Visited.insert(ChildRC).second) 4420b57cec5SDimitry Andric continue; 4430b57cec5SDimitry Andric Worklist.push_back(ChildRC); 4440b57cec5SDimitry Andric } 4450b57cec5SDimitry Andric } while (!Worklist.empty()); 4460b57cec5SDimitry Andric 4470b57cec5SDimitry Andric return false; 4480b57cec5SDimitry Andric } 4490b57cec5SDimitry Andric 4500b57cec5SDimitry Andric /// Generic helper that updates a postorder sequence of SCCs for a potentially 4510b57cec5SDimitry Andric /// cycle-introducing edge insertion. 4520b57cec5SDimitry Andric /// 4530b57cec5SDimitry Andric /// A postorder sequence of SCCs of a directed graph has one fundamental 4540b57cec5SDimitry Andric /// property: all deges in the DAG of SCCs point "up" the sequence. That is, 4550b57cec5SDimitry Andric /// all edges in the SCC DAG point to prior SCCs in the sequence. 4560b57cec5SDimitry Andric /// 4570b57cec5SDimitry Andric /// This routine both updates a postorder sequence and uses that sequence to 4580b57cec5SDimitry Andric /// compute the set of SCCs connected into a cycle. It should only be called to 4590b57cec5SDimitry Andric /// insert a "downward" edge which will require changing the sequence to 4600b57cec5SDimitry Andric /// restore it to a postorder. 4610b57cec5SDimitry Andric /// 4620b57cec5SDimitry Andric /// When inserting an edge from an earlier SCC to a later SCC in some postorder 4630b57cec5SDimitry Andric /// sequence, all of the SCCs which may be impacted are in the closed range of 4640b57cec5SDimitry Andric /// those two within the postorder sequence. The algorithm used here to restore 4650b57cec5SDimitry Andric /// the state is as follows: 4660b57cec5SDimitry Andric /// 4670b57cec5SDimitry Andric /// 1) Starting from the source SCC, construct a set of SCCs which reach the 4680b57cec5SDimitry Andric /// source SCC consisting of just the source SCC. Then scan toward the 4690b57cec5SDimitry Andric /// target SCC in postorder and for each SCC, if it has an edge to an SCC 4700b57cec5SDimitry Andric /// in the set, add it to the set. Otherwise, the source SCC is not 4710b57cec5SDimitry Andric /// a successor, move it in the postorder sequence to immediately before 4720b57cec5SDimitry Andric /// the source SCC, shifting the source SCC and all SCCs in the set one 4730b57cec5SDimitry Andric /// position toward the target SCC. Stop scanning after processing the 4740b57cec5SDimitry Andric /// target SCC. 4750b57cec5SDimitry Andric /// 2) If the source SCC is now past the target SCC in the postorder sequence, 4760b57cec5SDimitry Andric /// and thus the new edge will flow toward the start, we are done. 4770b57cec5SDimitry Andric /// 3) Otherwise, starting from the target SCC, walk all edges which reach an 4780b57cec5SDimitry Andric /// SCC between the source and the target, and add them to the set of 4790b57cec5SDimitry Andric /// connected SCCs, then recurse through them. Once a complete set of the 4800b57cec5SDimitry Andric /// SCCs the target connects to is known, hoist the remaining SCCs between 4810b57cec5SDimitry Andric /// the source and the target to be above the target. Note that there is no 4820b57cec5SDimitry Andric /// need to process the source SCC, it is already known to connect. 4830b57cec5SDimitry Andric /// 4) At this point, all of the SCCs in the closed range between the source 4840b57cec5SDimitry Andric /// SCC and the target SCC in the postorder sequence are connected, 4850b57cec5SDimitry Andric /// including the target SCC and the source SCC. Inserting the edge from 4860b57cec5SDimitry Andric /// the source SCC to the target SCC will form a cycle out of precisely 4870b57cec5SDimitry Andric /// these SCCs. Thus we can merge all of the SCCs in this closed range into 4880b57cec5SDimitry Andric /// a single SCC. 4890b57cec5SDimitry Andric /// 4900b57cec5SDimitry Andric /// This process has various important properties: 4910b57cec5SDimitry Andric /// - Only mutates the SCCs when adding the edge actually changes the SCC 4920b57cec5SDimitry Andric /// structure. 4930b57cec5SDimitry Andric /// - Never mutates SCCs which are unaffected by the change. 4940b57cec5SDimitry Andric /// - Updates the postorder sequence to correctly satisfy the postorder 4950b57cec5SDimitry Andric /// constraint after the edge is inserted. 4960b57cec5SDimitry Andric /// - Only reorders SCCs in the closed postorder sequence from the source to 4970b57cec5SDimitry Andric /// the target, so easy to bound how much has changed even in the ordering. 4980b57cec5SDimitry Andric /// - Big-O is the number of edges in the closed postorder range of SCCs from 4990b57cec5SDimitry Andric /// source to target. 5000b57cec5SDimitry Andric /// 5010b57cec5SDimitry Andric /// This helper routine, in addition to updating the postorder sequence itself 5020b57cec5SDimitry Andric /// will also update a map from SCCs to indices within that sequence. 5030b57cec5SDimitry Andric /// 5040b57cec5SDimitry Andric /// The sequence and the map must operate on pointers to the SCC type. 5050b57cec5SDimitry Andric /// 5060b57cec5SDimitry Andric /// Two callbacks must be provided. The first computes the subset of SCCs in 5070b57cec5SDimitry Andric /// the postorder closed range from the source to the target which connect to 5080b57cec5SDimitry Andric /// the source SCC via some (transitive) set of edges. The second computes the 5090b57cec5SDimitry Andric /// subset of the same range which the target SCC connects to via some 5100b57cec5SDimitry Andric /// (transitive) set of edges. Both callbacks should populate the set argument 5110b57cec5SDimitry Andric /// provided. 5120b57cec5SDimitry Andric template <typename SCCT, typename PostorderSequenceT, typename SCCIndexMapT, 5130b57cec5SDimitry Andric typename ComputeSourceConnectedSetCallableT, 5140b57cec5SDimitry Andric typename ComputeTargetConnectedSetCallableT> 5150b57cec5SDimitry Andric static iterator_range<typename PostorderSequenceT::iterator> 5160b57cec5SDimitry Andric updatePostorderSequenceForEdgeInsertion( 5170b57cec5SDimitry Andric SCCT &SourceSCC, SCCT &TargetSCC, PostorderSequenceT &SCCs, 5180b57cec5SDimitry Andric SCCIndexMapT &SCCIndices, 5190b57cec5SDimitry Andric ComputeSourceConnectedSetCallableT ComputeSourceConnectedSet, 5200b57cec5SDimitry Andric ComputeTargetConnectedSetCallableT ComputeTargetConnectedSet) { 5210b57cec5SDimitry Andric int SourceIdx = SCCIndices[&SourceSCC]; 5220b57cec5SDimitry Andric int TargetIdx = SCCIndices[&TargetSCC]; 5230b57cec5SDimitry Andric assert(SourceIdx < TargetIdx && "Cannot have equal indices here!"); 5240b57cec5SDimitry Andric 5250b57cec5SDimitry Andric SmallPtrSet<SCCT *, 4> ConnectedSet; 5260b57cec5SDimitry Andric 5270b57cec5SDimitry Andric // Compute the SCCs which (transitively) reach the source. 5280b57cec5SDimitry Andric ComputeSourceConnectedSet(ConnectedSet); 5290b57cec5SDimitry Andric 5300b57cec5SDimitry Andric // Partition the SCCs in this part of the port-order sequence so only SCCs 5310b57cec5SDimitry Andric // connecting to the source remain between it and the target. This is 5320b57cec5SDimitry Andric // a benign partition as it preserves postorder. 5330b57cec5SDimitry Andric auto SourceI = std::stable_partition( 5340b57cec5SDimitry Andric SCCs.begin() + SourceIdx, SCCs.begin() + TargetIdx + 1, 5350b57cec5SDimitry Andric [&ConnectedSet](SCCT *C) { return !ConnectedSet.count(C); }); 536bdd1243dSDimitry Andric for (int I = SourceIdx, E = TargetIdx + 1; I < E; ++I) 537bdd1243dSDimitry Andric SCCIndices.find(SCCs[I])->second = I; 5380b57cec5SDimitry Andric 5390b57cec5SDimitry Andric // If the target doesn't connect to the source, then we've corrected the 5400b57cec5SDimitry Andric // post-order and there are no cycles formed. 5410b57cec5SDimitry Andric if (!ConnectedSet.count(&TargetSCC)) { 5420b57cec5SDimitry Andric assert(SourceI > (SCCs.begin() + SourceIdx) && 5430b57cec5SDimitry Andric "Must have moved the source to fix the post-order."); 5440b57cec5SDimitry Andric assert(*std::prev(SourceI) == &TargetSCC && 5450b57cec5SDimitry Andric "Last SCC to move should have bene the target."); 5460b57cec5SDimitry Andric 5470b57cec5SDimitry Andric // Return an empty range at the target SCC indicating there is nothing to 5480b57cec5SDimitry Andric // merge. 5490b57cec5SDimitry Andric return make_range(std::prev(SourceI), std::prev(SourceI)); 5500b57cec5SDimitry Andric } 5510b57cec5SDimitry Andric 5520b57cec5SDimitry Andric assert(SCCs[TargetIdx] == &TargetSCC && 5530b57cec5SDimitry Andric "Should not have moved target if connected!"); 5540b57cec5SDimitry Andric SourceIdx = SourceI - SCCs.begin(); 5550b57cec5SDimitry Andric assert(SCCs[SourceIdx] == &SourceSCC && 5560b57cec5SDimitry Andric "Bad updated index computation for the source SCC!"); 5570b57cec5SDimitry Andric 5580b57cec5SDimitry Andric // See whether there are any remaining intervening SCCs between the source 5590b57cec5SDimitry Andric // and target. If so we need to make sure they all are reachable form the 5600b57cec5SDimitry Andric // target. 5610b57cec5SDimitry Andric if (SourceIdx + 1 < TargetIdx) { 5620b57cec5SDimitry Andric ConnectedSet.clear(); 5630b57cec5SDimitry Andric ComputeTargetConnectedSet(ConnectedSet); 5640b57cec5SDimitry Andric 5650b57cec5SDimitry Andric // Partition SCCs so that only SCCs reached from the target remain between 5660b57cec5SDimitry Andric // the source and the target. This preserves postorder. 5670b57cec5SDimitry Andric auto TargetI = std::stable_partition( 5680b57cec5SDimitry Andric SCCs.begin() + SourceIdx + 1, SCCs.begin() + TargetIdx + 1, 5690b57cec5SDimitry Andric [&ConnectedSet](SCCT *C) { return ConnectedSet.count(C); }); 570bdd1243dSDimitry Andric for (int I = SourceIdx + 1, E = TargetIdx + 1; I < E; ++I) 571bdd1243dSDimitry Andric SCCIndices.find(SCCs[I])->second = I; 5720b57cec5SDimitry Andric TargetIdx = std::prev(TargetI) - SCCs.begin(); 5730b57cec5SDimitry Andric assert(SCCs[TargetIdx] == &TargetSCC && 5740b57cec5SDimitry Andric "Should always end with the target!"); 5750b57cec5SDimitry Andric } 5760b57cec5SDimitry Andric 5770b57cec5SDimitry Andric // At this point, we know that connecting source to target forms a cycle 578bdd1243dSDimitry Andric // because target connects back to source, and we know that all the SCCs 5790b57cec5SDimitry Andric // between the source and target in the postorder sequence participate in that 5800b57cec5SDimitry Andric // cycle. 5810b57cec5SDimitry Andric return make_range(SCCs.begin() + SourceIdx, SCCs.begin() + TargetIdx); 5820b57cec5SDimitry Andric } 5830b57cec5SDimitry Andric 584bdd1243dSDimitry Andric bool LazyCallGraph::RefSCC::switchInternalEdgeToCall( 5850b57cec5SDimitry Andric Node &SourceN, Node &TargetN, 5860b57cec5SDimitry Andric function_ref<void(ArrayRef<SCC *> MergeSCCs)> MergeCB) { 5870b57cec5SDimitry Andric assert(!(*SourceN)[TargetN].isCall() && "Must start with a ref edge!"); 5880b57cec5SDimitry Andric SmallVector<SCC *, 1> DeletedSCCs; 5890b57cec5SDimitry Andric 590fe6060f1SDimitry Andric #ifdef EXPENSIVE_CHECKS 5910b57cec5SDimitry Andric verify(); 5920b57cec5SDimitry Andric auto VerifyOnExit = make_scope_exit([&]() { verify(); }); 5930b57cec5SDimitry Andric #endif 5940b57cec5SDimitry Andric 5950b57cec5SDimitry Andric SCC &SourceSCC = *G->lookupSCC(SourceN); 5960b57cec5SDimitry Andric SCC &TargetSCC = *G->lookupSCC(TargetN); 5970b57cec5SDimitry Andric 5980b57cec5SDimitry Andric // If the two nodes are already part of the same SCC, we're also done as 5990b57cec5SDimitry Andric // we've just added more connectivity. 6000b57cec5SDimitry Andric if (&SourceSCC == &TargetSCC) { 6010b57cec5SDimitry Andric SourceN->setEdgeKind(TargetN, Edge::Call); 6020b57cec5SDimitry Andric return false; // No new cycle. 6030b57cec5SDimitry Andric } 6040b57cec5SDimitry Andric 6050b57cec5SDimitry Andric // At this point we leverage the postorder list of SCCs to detect when the 6060b57cec5SDimitry Andric // insertion of an edge changes the SCC structure in any way. 6070b57cec5SDimitry Andric // 6080b57cec5SDimitry Andric // First and foremost, we can eliminate the need for any changes when the 6090b57cec5SDimitry Andric // edge is toward the beginning of the postorder sequence because all edges 6100b57cec5SDimitry Andric // flow in that direction already. Thus adding a new one cannot form a cycle. 6110b57cec5SDimitry Andric int SourceIdx = SCCIndices[&SourceSCC]; 6120b57cec5SDimitry Andric int TargetIdx = SCCIndices[&TargetSCC]; 6130b57cec5SDimitry Andric if (TargetIdx < SourceIdx) { 6140b57cec5SDimitry Andric SourceN->setEdgeKind(TargetN, Edge::Call); 6150b57cec5SDimitry Andric return false; // No new cycle. 6160b57cec5SDimitry Andric } 6170b57cec5SDimitry Andric 6180b57cec5SDimitry Andric // Compute the SCCs which (transitively) reach the source. 6190b57cec5SDimitry Andric auto ComputeSourceConnectedSet = [&](SmallPtrSetImpl<SCC *> &ConnectedSet) { 620fe6060f1SDimitry Andric #ifdef EXPENSIVE_CHECKS 6210b57cec5SDimitry Andric // Check that the RefSCC is still valid before computing this as the 6220b57cec5SDimitry Andric // results will be nonsensical of we've broken its invariants. 6230b57cec5SDimitry Andric verify(); 6240b57cec5SDimitry Andric #endif 6250b57cec5SDimitry Andric ConnectedSet.insert(&SourceSCC); 6260b57cec5SDimitry Andric auto IsConnected = [&](SCC &C) { 6270b57cec5SDimitry Andric for (Node &N : C) 6280b57cec5SDimitry Andric for (Edge &E : N->calls()) 6290b57cec5SDimitry Andric if (ConnectedSet.count(G->lookupSCC(E.getNode()))) 6300b57cec5SDimitry Andric return true; 6310b57cec5SDimitry Andric 6320b57cec5SDimitry Andric return false; 6330b57cec5SDimitry Andric }; 6340b57cec5SDimitry Andric 6350b57cec5SDimitry Andric for (SCC *C : 6360b57cec5SDimitry Andric make_range(SCCs.begin() + SourceIdx + 1, SCCs.begin() + TargetIdx + 1)) 6370b57cec5SDimitry Andric if (IsConnected(*C)) 6380b57cec5SDimitry Andric ConnectedSet.insert(C); 6390b57cec5SDimitry Andric }; 6400b57cec5SDimitry Andric 6410b57cec5SDimitry Andric // Use a normal worklist to find which SCCs the target connects to. We still 6420b57cec5SDimitry Andric // bound the search based on the range in the postorder list we care about, 6430b57cec5SDimitry Andric // but because this is forward connectivity we just "recurse" through the 6440b57cec5SDimitry Andric // edges. 6450b57cec5SDimitry Andric auto ComputeTargetConnectedSet = [&](SmallPtrSetImpl<SCC *> &ConnectedSet) { 646fe6060f1SDimitry Andric #ifdef EXPENSIVE_CHECKS 6470b57cec5SDimitry Andric // Check that the RefSCC is still valid before computing this as the 6480b57cec5SDimitry Andric // results will be nonsensical of we've broken its invariants. 6490b57cec5SDimitry Andric verify(); 6500b57cec5SDimitry Andric #endif 6510b57cec5SDimitry Andric ConnectedSet.insert(&TargetSCC); 6520b57cec5SDimitry Andric SmallVector<SCC *, 4> Worklist; 6530b57cec5SDimitry Andric Worklist.push_back(&TargetSCC); 6540b57cec5SDimitry Andric do { 6550b57cec5SDimitry Andric SCC &C = *Worklist.pop_back_val(); 6560b57cec5SDimitry Andric for (Node &N : C) 6570b57cec5SDimitry Andric for (Edge &E : *N) { 6580b57cec5SDimitry Andric if (!E.isCall()) 6590b57cec5SDimitry Andric continue; 6600b57cec5SDimitry Andric SCC &EdgeC = *G->lookupSCC(E.getNode()); 6610b57cec5SDimitry Andric if (&EdgeC.getOuterRefSCC() != this) 6620b57cec5SDimitry Andric // Not in this RefSCC... 6630b57cec5SDimitry Andric continue; 6640b57cec5SDimitry Andric if (SCCIndices.find(&EdgeC)->second <= SourceIdx) 6650b57cec5SDimitry Andric // Not in the postorder sequence between source and target. 6660b57cec5SDimitry Andric continue; 6670b57cec5SDimitry Andric 6680b57cec5SDimitry Andric if (ConnectedSet.insert(&EdgeC).second) 6690b57cec5SDimitry Andric Worklist.push_back(&EdgeC); 6700b57cec5SDimitry Andric } 6710b57cec5SDimitry Andric } while (!Worklist.empty()); 6720b57cec5SDimitry Andric }; 6730b57cec5SDimitry Andric 6740b57cec5SDimitry Andric // Use a generic helper to update the postorder sequence of SCCs and return 6750b57cec5SDimitry Andric // a range of any SCCs connected into a cycle by inserting this edge. This 6760b57cec5SDimitry Andric // routine will also take care of updating the indices into the postorder 6770b57cec5SDimitry Andric // sequence. 6780b57cec5SDimitry Andric auto MergeRange = updatePostorderSequenceForEdgeInsertion( 6790b57cec5SDimitry Andric SourceSCC, TargetSCC, SCCs, SCCIndices, ComputeSourceConnectedSet, 6800b57cec5SDimitry Andric ComputeTargetConnectedSet); 6810b57cec5SDimitry Andric 6820b57cec5SDimitry Andric // Run the user's callback on the merged SCCs before we actually merge them. 6830b57cec5SDimitry Andric if (MergeCB) 684bdd1243dSDimitry Andric MergeCB(ArrayRef(MergeRange.begin(), MergeRange.end())); 6850b57cec5SDimitry Andric 6860b57cec5SDimitry Andric // If the merge range is empty, then adding the edge didn't actually form any 6870b57cec5SDimitry Andric // new cycles. We're done. 6888bcb0991SDimitry Andric if (MergeRange.empty()) { 6890b57cec5SDimitry Andric // Now that the SCC structure is finalized, flip the kind to call. 6900b57cec5SDimitry Andric SourceN->setEdgeKind(TargetN, Edge::Call); 6910b57cec5SDimitry Andric return false; // No new cycle. 6920b57cec5SDimitry Andric } 6930b57cec5SDimitry Andric 694fe6060f1SDimitry Andric #ifdef EXPENSIVE_CHECKS 6950b57cec5SDimitry Andric // Before merging, check that the RefSCC remains valid after all the 6960b57cec5SDimitry Andric // postorder updates. 6970b57cec5SDimitry Andric verify(); 6980b57cec5SDimitry Andric #endif 6990b57cec5SDimitry Andric 700bdd1243dSDimitry Andric // Otherwise we need to merge all the SCCs in the cycle into a single result 701bdd1243dSDimitry Andric // SCC. 7020b57cec5SDimitry Andric // 7030b57cec5SDimitry Andric // NB: We merge into the target because all of these functions were already 7040b57cec5SDimitry Andric // reachable from the target, meaning any SCC-wide properties deduced about it 7050b57cec5SDimitry Andric // other than the set of functions within it will not have changed. 7060b57cec5SDimitry Andric for (SCC *C : MergeRange) { 7070b57cec5SDimitry Andric assert(C != &TargetSCC && 7080b57cec5SDimitry Andric "We merge *into* the target and shouldn't process it here!"); 7090b57cec5SDimitry Andric SCCIndices.erase(C); 7100b57cec5SDimitry Andric TargetSCC.Nodes.append(C->Nodes.begin(), C->Nodes.end()); 7110b57cec5SDimitry Andric for (Node *N : C->Nodes) 7120b57cec5SDimitry Andric G->SCCMap[N] = &TargetSCC; 7130b57cec5SDimitry Andric C->clear(); 7140b57cec5SDimitry Andric DeletedSCCs.push_back(C); 7150b57cec5SDimitry Andric } 7160b57cec5SDimitry Andric 7170b57cec5SDimitry Andric // Erase the merged SCCs from the list and update the indices of the 7180b57cec5SDimitry Andric // remaining SCCs. 7190b57cec5SDimitry Andric int IndexOffset = MergeRange.end() - MergeRange.begin(); 7200b57cec5SDimitry Andric auto EraseEnd = SCCs.erase(MergeRange.begin(), MergeRange.end()); 7210b57cec5SDimitry Andric for (SCC *C : make_range(EraseEnd, SCCs.end())) 7220b57cec5SDimitry Andric SCCIndices[C] -= IndexOffset; 7230b57cec5SDimitry Andric 7240b57cec5SDimitry Andric // Now that the SCC structure is finalized, flip the kind to call. 7250b57cec5SDimitry Andric SourceN->setEdgeKind(TargetN, Edge::Call); 7260b57cec5SDimitry Andric 7270b57cec5SDimitry Andric // And we're done, but we did form a new cycle. 7280b57cec5SDimitry Andric return true; 7290b57cec5SDimitry Andric } 7300b57cec5SDimitry Andric 7310b57cec5SDimitry Andric void LazyCallGraph::RefSCC::switchTrivialInternalEdgeToRef(Node &SourceN, 7320b57cec5SDimitry Andric Node &TargetN) { 7330b57cec5SDimitry Andric assert((*SourceN)[TargetN].isCall() && "Must start with a call edge!"); 7340b57cec5SDimitry Andric 735fe6060f1SDimitry Andric #ifdef EXPENSIVE_CHECKS 7360b57cec5SDimitry Andric verify(); 7370b57cec5SDimitry Andric auto VerifyOnExit = make_scope_exit([&]() { verify(); }); 7380b57cec5SDimitry Andric #endif 7390b57cec5SDimitry Andric 740bdd1243dSDimitry Andric assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC."); 741bdd1243dSDimitry Andric assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC."); 7420b57cec5SDimitry Andric assert(G->lookupSCC(SourceN) != G->lookupSCC(TargetN) && 7430b57cec5SDimitry Andric "Source and Target must be in separate SCCs for this to be trivial!"); 7440b57cec5SDimitry Andric 7450b57cec5SDimitry Andric // Set the edge kind. 7460b57cec5SDimitry Andric SourceN->setEdgeKind(TargetN, Edge::Ref); 7470b57cec5SDimitry Andric } 7480b57cec5SDimitry Andric 7490b57cec5SDimitry Andric iterator_range<LazyCallGraph::RefSCC::iterator> 7500b57cec5SDimitry Andric LazyCallGraph::RefSCC::switchInternalEdgeToRef(Node &SourceN, Node &TargetN) { 7510b57cec5SDimitry Andric assert((*SourceN)[TargetN].isCall() && "Must start with a call edge!"); 7520b57cec5SDimitry Andric 753fe6060f1SDimitry Andric #ifdef EXPENSIVE_CHECKS 7540b57cec5SDimitry Andric verify(); 7550b57cec5SDimitry Andric auto VerifyOnExit = make_scope_exit([&]() { verify(); }); 7560b57cec5SDimitry Andric #endif 7570b57cec5SDimitry Andric 758bdd1243dSDimitry Andric assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC."); 759bdd1243dSDimitry Andric assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC."); 7600b57cec5SDimitry Andric 7610b57cec5SDimitry Andric SCC &TargetSCC = *G->lookupSCC(TargetN); 7620b57cec5SDimitry Andric assert(G->lookupSCC(SourceN) == &TargetSCC && "Source and Target must be in " 7630b57cec5SDimitry Andric "the same SCC to require the " 7640b57cec5SDimitry Andric "full CG update."); 7650b57cec5SDimitry Andric 7660b57cec5SDimitry Andric // Set the edge kind. 7670b57cec5SDimitry Andric SourceN->setEdgeKind(TargetN, Edge::Ref); 7680b57cec5SDimitry Andric 7690b57cec5SDimitry Andric // Otherwise we are removing a call edge from a single SCC. This may break 7700b57cec5SDimitry Andric // the cycle. In order to compute the new set of SCCs, we need to do a small 7710b57cec5SDimitry Andric // DFS over the nodes within the SCC to form any sub-cycles that remain as 7720b57cec5SDimitry Andric // distinct SCCs and compute a postorder over the resulting SCCs. 7730b57cec5SDimitry Andric // 7740b57cec5SDimitry Andric // However, we specially handle the target node. The target node is known to 7750b57cec5SDimitry Andric // reach all other nodes in the original SCC by definition. This means that 7760b57cec5SDimitry Andric // we want the old SCC to be replaced with an SCC containing that node as it 7770b57cec5SDimitry Andric // will be the root of whatever SCC DAG results from the DFS. Assumptions 7780b57cec5SDimitry Andric // about an SCC such as the set of functions called will continue to hold, 7790b57cec5SDimitry Andric // etc. 7800b57cec5SDimitry Andric 7810b57cec5SDimitry Andric SCC &OldSCC = TargetSCC; 7820b57cec5SDimitry Andric SmallVector<std::pair<Node *, EdgeSequence::call_iterator>, 16> DFSStack; 7830b57cec5SDimitry Andric SmallVector<Node *, 16> PendingSCCStack; 7840b57cec5SDimitry Andric SmallVector<SCC *, 4> NewSCCs; 7850b57cec5SDimitry Andric 7860b57cec5SDimitry Andric // Prepare the nodes for a fresh DFS. 7870b57cec5SDimitry Andric SmallVector<Node *, 16> Worklist; 7880b57cec5SDimitry Andric Worklist.swap(OldSCC.Nodes); 7890b57cec5SDimitry Andric for (Node *N : Worklist) { 7900b57cec5SDimitry Andric N->DFSNumber = N->LowLink = 0; 7910b57cec5SDimitry Andric G->SCCMap.erase(N); 7920b57cec5SDimitry Andric } 7930b57cec5SDimitry Andric 7940b57cec5SDimitry Andric // Force the target node to be in the old SCC. This also enables us to take 7950b57cec5SDimitry Andric // a very significant short-cut in the standard Tarjan walk to re-form SCCs 7960b57cec5SDimitry Andric // below: whenever we build an edge that reaches the target node, we know 7970b57cec5SDimitry Andric // that the target node eventually connects back to all other nodes in our 7980b57cec5SDimitry Andric // walk. As a consequence, we can detect and handle participants in that 7990b57cec5SDimitry Andric // cycle without walking all the edges that form this connection, and instead 8000b57cec5SDimitry Andric // by relying on the fundamental guarantee coming into this operation (all 8010b57cec5SDimitry Andric // nodes are reachable from the target due to previously forming an SCC). 8020b57cec5SDimitry Andric TargetN.DFSNumber = TargetN.LowLink = -1; 8030b57cec5SDimitry Andric OldSCC.Nodes.push_back(&TargetN); 8040b57cec5SDimitry Andric G->SCCMap[&TargetN] = &OldSCC; 8050b57cec5SDimitry Andric 8060b57cec5SDimitry Andric // Scan down the stack and DFS across the call edges. 8070b57cec5SDimitry Andric for (Node *RootN : Worklist) { 8080b57cec5SDimitry Andric assert(DFSStack.empty() && 8090b57cec5SDimitry Andric "Cannot begin a new root with a non-empty DFS stack!"); 8100b57cec5SDimitry Andric assert(PendingSCCStack.empty() && 8110b57cec5SDimitry Andric "Cannot begin a new root with pending nodes for an SCC!"); 8120b57cec5SDimitry Andric 8130b57cec5SDimitry Andric // Skip any nodes we've already reached in the DFS. 8140b57cec5SDimitry Andric if (RootN->DFSNumber != 0) { 8150b57cec5SDimitry Andric assert(RootN->DFSNumber == -1 && 8160b57cec5SDimitry Andric "Shouldn't have any mid-DFS root nodes!"); 8170b57cec5SDimitry Andric continue; 8180b57cec5SDimitry Andric } 8190b57cec5SDimitry Andric 8200b57cec5SDimitry Andric RootN->DFSNumber = RootN->LowLink = 1; 8210b57cec5SDimitry Andric int NextDFSNumber = 2; 8220b57cec5SDimitry Andric 823bdd1243dSDimitry Andric DFSStack.emplace_back(RootN, (*RootN)->call_begin()); 8240b57cec5SDimitry Andric do { 825bdd1243dSDimitry Andric auto [N, I] = DFSStack.pop_back_val(); 8260b57cec5SDimitry Andric auto E = (*N)->call_end(); 8270b57cec5SDimitry Andric while (I != E) { 8280b57cec5SDimitry Andric Node &ChildN = I->getNode(); 8290b57cec5SDimitry Andric if (ChildN.DFSNumber == 0) { 8300b57cec5SDimitry Andric // We haven't yet visited this child, so descend, pushing the current 8310b57cec5SDimitry Andric // node onto the stack. 832bdd1243dSDimitry Andric DFSStack.emplace_back(N, I); 8330b57cec5SDimitry Andric 8340b57cec5SDimitry Andric assert(!G->SCCMap.count(&ChildN) && 8350b57cec5SDimitry Andric "Found a node with 0 DFS number but already in an SCC!"); 8360b57cec5SDimitry Andric ChildN.DFSNumber = ChildN.LowLink = NextDFSNumber++; 8370b57cec5SDimitry Andric N = &ChildN; 8380b57cec5SDimitry Andric I = (*N)->call_begin(); 8390b57cec5SDimitry Andric E = (*N)->call_end(); 8400b57cec5SDimitry Andric continue; 8410b57cec5SDimitry Andric } 8420b57cec5SDimitry Andric 8430b57cec5SDimitry Andric // Check for the child already being part of some component. 8440b57cec5SDimitry Andric if (ChildN.DFSNumber == -1) { 8450b57cec5SDimitry Andric if (G->lookupSCC(ChildN) == &OldSCC) { 8460b57cec5SDimitry Andric // If the child is part of the old SCC, we know that it can reach 8470b57cec5SDimitry Andric // every other node, so we have formed a cycle. Pull the entire DFS 8480b57cec5SDimitry Andric // and pending stacks into it. See the comment above about setting 8490b57cec5SDimitry Andric // up the old SCC for why we do this. 8500b57cec5SDimitry Andric int OldSize = OldSCC.size(); 8510b57cec5SDimitry Andric OldSCC.Nodes.push_back(N); 8520b57cec5SDimitry Andric OldSCC.Nodes.append(PendingSCCStack.begin(), PendingSCCStack.end()); 8530b57cec5SDimitry Andric PendingSCCStack.clear(); 8540b57cec5SDimitry Andric while (!DFSStack.empty()) 8550b57cec5SDimitry Andric OldSCC.Nodes.push_back(DFSStack.pop_back_val().first); 856e8d8bef9SDimitry Andric for (Node &N : drop_begin(OldSCC, OldSize)) { 8570b57cec5SDimitry Andric N.DFSNumber = N.LowLink = -1; 8580b57cec5SDimitry Andric G->SCCMap[&N] = &OldSCC; 8590b57cec5SDimitry Andric } 8600b57cec5SDimitry Andric N = nullptr; 8610b57cec5SDimitry Andric break; 8620b57cec5SDimitry Andric } 8630b57cec5SDimitry Andric 8640b57cec5SDimitry Andric // If the child has already been added to some child component, it 8650b57cec5SDimitry Andric // couldn't impact the low-link of this parent because it isn't 8660b57cec5SDimitry Andric // connected, and thus its low-link isn't relevant so skip it. 8670b57cec5SDimitry Andric ++I; 8680b57cec5SDimitry Andric continue; 8690b57cec5SDimitry Andric } 8700b57cec5SDimitry Andric 8710b57cec5SDimitry Andric // Track the lowest linked child as the lowest link for this node. 8720b57cec5SDimitry Andric assert(ChildN.LowLink > 0 && "Must have a positive low-link number!"); 8730b57cec5SDimitry Andric if (ChildN.LowLink < N->LowLink) 8740b57cec5SDimitry Andric N->LowLink = ChildN.LowLink; 8750b57cec5SDimitry Andric 8760b57cec5SDimitry Andric // Move to the next edge. 8770b57cec5SDimitry Andric ++I; 8780b57cec5SDimitry Andric } 8790b57cec5SDimitry Andric if (!N) 8800b57cec5SDimitry Andric // Cleared the DFS early, start another round. 8810b57cec5SDimitry Andric break; 8820b57cec5SDimitry Andric 8830b57cec5SDimitry Andric // We've finished processing N and its descendants, put it on our pending 8840b57cec5SDimitry Andric // SCC stack to eventually get merged into an SCC of nodes. 8850b57cec5SDimitry Andric PendingSCCStack.push_back(N); 8860b57cec5SDimitry Andric 8870b57cec5SDimitry Andric // If this node is linked to some lower entry, continue walking up the 8880b57cec5SDimitry Andric // stack. 8890b57cec5SDimitry Andric if (N->LowLink != N->DFSNumber) 8900b57cec5SDimitry Andric continue; 8910b57cec5SDimitry Andric 8920b57cec5SDimitry Andric // Otherwise, we've completed an SCC. Append it to our post order list of 8930b57cec5SDimitry Andric // SCCs. 8940b57cec5SDimitry Andric int RootDFSNumber = N->DFSNumber; 8950b57cec5SDimitry Andric // Find the range of the node stack by walking down until we pass the 8960b57cec5SDimitry Andric // root DFS number. 8970b57cec5SDimitry Andric auto SCCNodes = make_range( 8980b57cec5SDimitry Andric PendingSCCStack.rbegin(), 8990b57cec5SDimitry Andric find_if(reverse(PendingSCCStack), [RootDFSNumber](const Node *N) { 9000b57cec5SDimitry Andric return N->DFSNumber < RootDFSNumber; 9010b57cec5SDimitry Andric })); 9020b57cec5SDimitry Andric 9030b57cec5SDimitry Andric // Form a new SCC out of these nodes and then clear them off our pending 9040b57cec5SDimitry Andric // stack. 9050b57cec5SDimitry Andric NewSCCs.push_back(G->createSCC(*this, SCCNodes)); 9060b57cec5SDimitry Andric for (Node &N : *NewSCCs.back()) { 9070b57cec5SDimitry Andric N.DFSNumber = N.LowLink = -1; 9080b57cec5SDimitry Andric G->SCCMap[&N] = NewSCCs.back(); 9090b57cec5SDimitry Andric } 9100b57cec5SDimitry Andric PendingSCCStack.erase(SCCNodes.end().base(), PendingSCCStack.end()); 9110b57cec5SDimitry Andric } while (!DFSStack.empty()); 9120b57cec5SDimitry Andric } 9130b57cec5SDimitry Andric 9140b57cec5SDimitry Andric // Insert the remaining SCCs before the old one. The old SCC can reach all 9150b57cec5SDimitry Andric // other SCCs we form because it contains the target node of the removed edge 916bdd1243dSDimitry Andric // of the old SCC. This means that we will have edges into all the new SCCs, 917bdd1243dSDimitry Andric // which means the old one must come last for postorder. 9180b57cec5SDimitry Andric int OldIdx = SCCIndices[&OldSCC]; 9190b57cec5SDimitry Andric SCCs.insert(SCCs.begin() + OldIdx, NewSCCs.begin(), NewSCCs.end()); 9200b57cec5SDimitry Andric 9210b57cec5SDimitry Andric // Update the mapping from SCC* to index to use the new SCC*s, and remove the 9220b57cec5SDimitry Andric // old SCC from the mapping. 9230b57cec5SDimitry Andric for (int Idx = OldIdx, Size = SCCs.size(); Idx < Size; ++Idx) 9240b57cec5SDimitry Andric SCCIndices[SCCs[Idx]] = Idx; 9250b57cec5SDimitry Andric 9260b57cec5SDimitry Andric return make_range(SCCs.begin() + OldIdx, 9270b57cec5SDimitry Andric SCCs.begin() + OldIdx + NewSCCs.size()); 9280b57cec5SDimitry Andric } 9290b57cec5SDimitry Andric 9300b57cec5SDimitry Andric void LazyCallGraph::RefSCC::switchOutgoingEdgeToCall(Node &SourceN, 9310b57cec5SDimitry Andric Node &TargetN) { 9320b57cec5SDimitry Andric assert(!(*SourceN)[TargetN].isCall() && "Must start with a ref edge!"); 9330b57cec5SDimitry Andric 9340b57cec5SDimitry Andric assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC."); 9350b57cec5SDimitry Andric assert(G->lookupRefSCC(TargetN) != this && 9360b57cec5SDimitry Andric "Target must not be in this RefSCC."); 9370b57cec5SDimitry Andric #ifdef EXPENSIVE_CHECKS 9380b57cec5SDimitry Andric assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) && 9390b57cec5SDimitry Andric "Target must be a descendant of the Source."); 9400b57cec5SDimitry Andric #endif 9410b57cec5SDimitry Andric 9420b57cec5SDimitry Andric // Edges between RefSCCs are the same regardless of call or ref, so we can 9430b57cec5SDimitry Andric // just flip the edge here. 9440b57cec5SDimitry Andric SourceN->setEdgeKind(TargetN, Edge::Call); 9450b57cec5SDimitry Andric 946fe6060f1SDimitry Andric #ifdef EXPENSIVE_CHECKS 9470b57cec5SDimitry Andric verify(); 9480b57cec5SDimitry Andric #endif 9490b57cec5SDimitry Andric } 9500b57cec5SDimitry Andric 9510b57cec5SDimitry Andric void LazyCallGraph::RefSCC::switchOutgoingEdgeToRef(Node &SourceN, 9520b57cec5SDimitry Andric Node &TargetN) { 9530b57cec5SDimitry Andric assert((*SourceN)[TargetN].isCall() && "Must start with a call edge!"); 9540b57cec5SDimitry Andric 9550b57cec5SDimitry Andric assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC."); 9560b57cec5SDimitry Andric assert(G->lookupRefSCC(TargetN) != this && 9570b57cec5SDimitry Andric "Target must not be in this RefSCC."); 9580b57cec5SDimitry Andric #ifdef EXPENSIVE_CHECKS 9590b57cec5SDimitry Andric assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) && 9600b57cec5SDimitry Andric "Target must be a descendant of the Source."); 9610b57cec5SDimitry Andric #endif 9620b57cec5SDimitry Andric 9630b57cec5SDimitry Andric // Edges between RefSCCs are the same regardless of call or ref, so we can 9640b57cec5SDimitry Andric // just flip the edge here. 9650b57cec5SDimitry Andric SourceN->setEdgeKind(TargetN, Edge::Ref); 9660b57cec5SDimitry Andric 967fe6060f1SDimitry Andric #ifdef EXPENSIVE_CHECKS 9680b57cec5SDimitry Andric verify(); 9690b57cec5SDimitry Andric #endif 9700b57cec5SDimitry Andric } 9710b57cec5SDimitry Andric 9720b57cec5SDimitry Andric void LazyCallGraph::RefSCC::insertInternalRefEdge(Node &SourceN, 9730b57cec5SDimitry Andric Node &TargetN) { 9740b57cec5SDimitry Andric assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC."); 9750b57cec5SDimitry Andric assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC."); 9760b57cec5SDimitry Andric 9770b57cec5SDimitry Andric SourceN->insertEdgeInternal(TargetN, Edge::Ref); 9780b57cec5SDimitry Andric 979fe6060f1SDimitry Andric #ifdef EXPENSIVE_CHECKS 9800b57cec5SDimitry Andric verify(); 9810b57cec5SDimitry Andric #endif 9820b57cec5SDimitry Andric } 9830b57cec5SDimitry Andric 9840b57cec5SDimitry Andric void LazyCallGraph::RefSCC::insertOutgoingEdge(Node &SourceN, Node &TargetN, 9850b57cec5SDimitry Andric Edge::Kind EK) { 9860b57cec5SDimitry Andric // First insert it into the caller. 9870b57cec5SDimitry Andric SourceN->insertEdgeInternal(TargetN, EK); 9880b57cec5SDimitry Andric 9890b57cec5SDimitry Andric assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC."); 9900b57cec5SDimitry Andric 9910b57cec5SDimitry Andric assert(G->lookupRefSCC(TargetN) != this && 9920b57cec5SDimitry Andric "Target must not be in this RefSCC."); 9930b57cec5SDimitry Andric #ifdef EXPENSIVE_CHECKS 9940b57cec5SDimitry Andric assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) && 9950b57cec5SDimitry Andric "Target must be a descendant of the Source."); 9960b57cec5SDimitry Andric #endif 9970b57cec5SDimitry Andric 998fe6060f1SDimitry Andric #ifdef EXPENSIVE_CHECKS 9990b57cec5SDimitry Andric verify(); 10000b57cec5SDimitry Andric #endif 10010b57cec5SDimitry Andric } 10020b57cec5SDimitry Andric 10030b57cec5SDimitry Andric SmallVector<LazyCallGraph::RefSCC *, 1> 10040b57cec5SDimitry Andric LazyCallGraph::RefSCC::insertIncomingRefEdge(Node &SourceN, Node &TargetN) { 10050b57cec5SDimitry Andric assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC."); 10060b57cec5SDimitry Andric RefSCC &SourceC = *G->lookupRefSCC(SourceN); 10070b57cec5SDimitry Andric assert(&SourceC != this && "Source must not be in this RefSCC."); 10080b57cec5SDimitry Andric #ifdef EXPENSIVE_CHECKS 10090b57cec5SDimitry Andric assert(SourceC.isDescendantOf(*this) && 10100b57cec5SDimitry Andric "Source must be a descendant of the Target."); 10110b57cec5SDimitry Andric #endif 10120b57cec5SDimitry Andric 10130b57cec5SDimitry Andric SmallVector<RefSCC *, 1> DeletedRefSCCs; 10140b57cec5SDimitry Andric 1015fe6060f1SDimitry Andric #ifdef EXPENSIVE_CHECKS 10160b57cec5SDimitry Andric verify(); 10170b57cec5SDimitry Andric auto VerifyOnExit = make_scope_exit([&]() { verify(); }); 10180b57cec5SDimitry Andric #endif 10190b57cec5SDimitry Andric 10200b57cec5SDimitry Andric int SourceIdx = G->RefSCCIndices[&SourceC]; 10210b57cec5SDimitry Andric int TargetIdx = G->RefSCCIndices[this]; 10220b57cec5SDimitry Andric assert(SourceIdx < TargetIdx && 10230b57cec5SDimitry Andric "Postorder list doesn't see edge as incoming!"); 10240b57cec5SDimitry Andric 10250b57cec5SDimitry Andric // Compute the RefSCCs which (transitively) reach the source. We do this by 10260b57cec5SDimitry Andric // working backwards from the source using the parent set in each RefSCC, 10270b57cec5SDimitry Andric // skipping any RefSCCs that don't fall in the postorder range. This has the 10280b57cec5SDimitry Andric // advantage of walking the sparser parent edge (in high fan-out graphs) but 10290b57cec5SDimitry Andric // more importantly this removes examining all forward edges in all RefSCCs 10300b57cec5SDimitry Andric // within the postorder range which aren't in fact connected. Only connected 10310b57cec5SDimitry Andric // RefSCCs (and their edges) are visited here. 10320b57cec5SDimitry Andric auto ComputeSourceConnectedSet = [&](SmallPtrSetImpl<RefSCC *> &Set) { 10330b57cec5SDimitry Andric Set.insert(&SourceC); 10340b57cec5SDimitry Andric auto IsConnected = [&](RefSCC &RC) { 10350b57cec5SDimitry Andric for (SCC &C : RC) 10360b57cec5SDimitry Andric for (Node &N : C) 10370b57cec5SDimitry Andric for (Edge &E : *N) 10380b57cec5SDimitry Andric if (Set.count(G->lookupRefSCC(E.getNode()))) 10390b57cec5SDimitry Andric return true; 10400b57cec5SDimitry Andric 10410b57cec5SDimitry Andric return false; 10420b57cec5SDimitry Andric }; 10430b57cec5SDimitry Andric 10440b57cec5SDimitry Andric for (RefSCC *C : make_range(G->PostOrderRefSCCs.begin() + SourceIdx + 1, 10450b57cec5SDimitry Andric G->PostOrderRefSCCs.begin() + TargetIdx + 1)) 10460b57cec5SDimitry Andric if (IsConnected(*C)) 10470b57cec5SDimitry Andric Set.insert(C); 10480b57cec5SDimitry Andric }; 10490b57cec5SDimitry Andric 10500b57cec5SDimitry Andric // Use a normal worklist to find which SCCs the target connects to. We still 10510b57cec5SDimitry Andric // bound the search based on the range in the postorder list we care about, 10520b57cec5SDimitry Andric // but because this is forward connectivity we just "recurse" through the 10530b57cec5SDimitry Andric // edges. 10540b57cec5SDimitry Andric auto ComputeTargetConnectedSet = [&](SmallPtrSetImpl<RefSCC *> &Set) { 10550b57cec5SDimitry Andric Set.insert(this); 10560b57cec5SDimitry Andric SmallVector<RefSCC *, 4> Worklist; 10570b57cec5SDimitry Andric Worklist.push_back(this); 10580b57cec5SDimitry Andric do { 10590b57cec5SDimitry Andric RefSCC &RC = *Worklist.pop_back_val(); 10600b57cec5SDimitry Andric for (SCC &C : RC) 10610b57cec5SDimitry Andric for (Node &N : C) 10620b57cec5SDimitry Andric for (Edge &E : *N) { 10630b57cec5SDimitry Andric RefSCC &EdgeRC = *G->lookupRefSCC(E.getNode()); 10640b57cec5SDimitry Andric if (G->getRefSCCIndex(EdgeRC) <= SourceIdx) 10650b57cec5SDimitry Andric // Not in the postorder sequence between source and target. 10660b57cec5SDimitry Andric continue; 10670b57cec5SDimitry Andric 10680b57cec5SDimitry Andric if (Set.insert(&EdgeRC).second) 10690b57cec5SDimitry Andric Worklist.push_back(&EdgeRC); 10700b57cec5SDimitry Andric } 10710b57cec5SDimitry Andric } while (!Worklist.empty()); 10720b57cec5SDimitry Andric }; 10730b57cec5SDimitry Andric 10740b57cec5SDimitry Andric // Use a generic helper to update the postorder sequence of RefSCCs and return 10750b57cec5SDimitry Andric // a range of any RefSCCs connected into a cycle by inserting this edge. This 10760b57cec5SDimitry Andric // routine will also take care of updating the indices into the postorder 10770b57cec5SDimitry Andric // sequence. 10780b57cec5SDimitry Andric iterator_range<SmallVectorImpl<RefSCC *>::iterator> MergeRange = 10790b57cec5SDimitry Andric updatePostorderSequenceForEdgeInsertion( 10800b57cec5SDimitry Andric SourceC, *this, G->PostOrderRefSCCs, G->RefSCCIndices, 10810b57cec5SDimitry Andric ComputeSourceConnectedSet, ComputeTargetConnectedSet); 10820b57cec5SDimitry Andric 1083bdd1243dSDimitry Andric // Build a set, so we can do fast tests for whether a RefSCC will end up as 10840b57cec5SDimitry Andric // part of the merged RefSCC. 10850b57cec5SDimitry Andric SmallPtrSet<RefSCC *, 16> MergeSet(MergeRange.begin(), MergeRange.end()); 10860b57cec5SDimitry Andric 10870b57cec5SDimitry Andric // This RefSCC will always be part of that set, so just insert it here. 10880b57cec5SDimitry Andric MergeSet.insert(this); 10890b57cec5SDimitry Andric 1090bdd1243dSDimitry Andric // Now that we have identified all the SCCs which need to be merged into 10910b57cec5SDimitry Andric // a connected set with the inserted edge, merge all of them into this SCC. 10920b57cec5SDimitry Andric SmallVector<SCC *, 16> MergedSCCs; 10930b57cec5SDimitry Andric int SCCIndex = 0; 10940b57cec5SDimitry Andric for (RefSCC *RC : MergeRange) { 10950b57cec5SDimitry Andric assert(RC != this && "We're merging into the target RefSCC, so it " 10960b57cec5SDimitry Andric "shouldn't be in the range."); 10970b57cec5SDimitry Andric 10980b57cec5SDimitry Andric // Walk the inner SCCs to update their up-pointer and walk all the edges to 10990b57cec5SDimitry Andric // update any parent sets. 11000b57cec5SDimitry Andric // FIXME: We should try to find a way to avoid this (rather expensive) edge 11010b57cec5SDimitry Andric // walk by updating the parent sets in some other manner. 11020b57cec5SDimitry Andric for (SCC &InnerC : *RC) { 11030b57cec5SDimitry Andric InnerC.OuterRefSCC = this; 11040b57cec5SDimitry Andric SCCIndices[&InnerC] = SCCIndex++; 11050b57cec5SDimitry Andric for (Node &N : InnerC) 11060b57cec5SDimitry Andric G->SCCMap[&N] = &InnerC; 11070b57cec5SDimitry Andric } 11080b57cec5SDimitry Andric 11090b57cec5SDimitry Andric // Now merge in the SCCs. We can actually move here so try to reuse storage 11100b57cec5SDimitry Andric // the first time through. 11110b57cec5SDimitry Andric if (MergedSCCs.empty()) 11120b57cec5SDimitry Andric MergedSCCs = std::move(RC->SCCs); 11130b57cec5SDimitry Andric else 11140b57cec5SDimitry Andric MergedSCCs.append(RC->SCCs.begin(), RC->SCCs.end()); 11150b57cec5SDimitry Andric RC->SCCs.clear(); 11160b57cec5SDimitry Andric DeletedRefSCCs.push_back(RC); 11170b57cec5SDimitry Andric } 11180b57cec5SDimitry Andric 11190b57cec5SDimitry Andric // Append our original SCCs to the merged list and move it into place. 11200b57cec5SDimitry Andric for (SCC &InnerC : *this) 11210b57cec5SDimitry Andric SCCIndices[&InnerC] = SCCIndex++; 11220b57cec5SDimitry Andric MergedSCCs.append(SCCs.begin(), SCCs.end()); 11230b57cec5SDimitry Andric SCCs = std::move(MergedSCCs); 11240b57cec5SDimitry Andric 11250b57cec5SDimitry Andric // Remove the merged away RefSCCs from the post order sequence. 11260b57cec5SDimitry Andric for (RefSCC *RC : MergeRange) 11270b57cec5SDimitry Andric G->RefSCCIndices.erase(RC); 11280b57cec5SDimitry Andric int IndexOffset = MergeRange.end() - MergeRange.begin(); 11290b57cec5SDimitry Andric auto EraseEnd = 11300b57cec5SDimitry Andric G->PostOrderRefSCCs.erase(MergeRange.begin(), MergeRange.end()); 11310b57cec5SDimitry Andric for (RefSCC *RC : make_range(EraseEnd, G->PostOrderRefSCCs.end())) 11320b57cec5SDimitry Andric G->RefSCCIndices[RC] -= IndexOffset; 11330b57cec5SDimitry Andric 11340b57cec5SDimitry Andric // At this point we have a merged RefSCC with a post-order SCCs list, just 11350b57cec5SDimitry Andric // connect the nodes to form the new edge. 11360b57cec5SDimitry Andric SourceN->insertEdgeInternal(TargetN, Edge::Ref); 11370b57cec5SDimitry Andric 11380b57cec5SDimitry Andric // We return the list of SCCs which were merged so that callers can 11390b57cec5SDimitry Andric // invalidate any data they have associated with those SCCs. Note that these 11400b57cec5SDimitry Andric // SCCs are no longer in an interesting state (they are totally empty) but 11410b57cec5SDimitry Andric // the pointers will remain stable for the life of the graph itself. 11420b57cec5SDimitry Andric return DeletedRefSCCs; 11430b57cec5SDimitry Andric } 11440b57cec5SDimitry Andric 11450b57cec5SDimitry Andric void LazyCallGraph::RefSCC::removeOutgoingEdge(Node &SourceN, Node &TargetN) { 11460b57cec5SDimitry Andric assert(G->lookupRefSCC(SourceN) == this && 11470b57cec5SDimitry Andric "The source must be a member of this RefSCC."); 11480b57cec5SDimitry Andric assert(G->lookupRefSCC(TargetN) != this && 11490b57cec5SDimitry Andric "The target must not be a member of this RefSCC"); 11500b57cec5SDimitry Andric 1151fe6060f1SDimitry Andric #ifdef EXPENSIVE_CHECKS 11520b57cec5SDimitry Andric verify(); 11530b57cec5SDimitry Andric auto VerifyOnExit = make_scope_exit([&]() { verify(); }); 11540b57cec5SDimitry Andric #endif 11550b57cec5SDimitry Andric 11560b57cec5SDimitry Andric // First remove it from the node. 11570b57cec5SDimitry Andric bool Removed = SourceN->removeEdgeInternal(TargetN); 11580b57cec5SDimitry Andric (void)Removed; 11590b57cec5SDimitry Andric assert(Removed && "Target not in the edge set for this caller?"); 11600b57cec5SDimitry Andric } 11610b57cec5SDimitry Andric 11620b57cec5SDimitry Andric SmallVector<LazyCallGraph::RefSCC *, 1> 1163*0fca6ea1SDimitry Andric LazyCallGraph::RefSCC::removeInternalRefEdges( 1164*0fca6ea1SDimitry Andric ArrayRef<std::pair<Node *, Node *>> Edges) { 11650b57cec5SDimitry Andric // We return a list of the resulting *new* RefSCCs in post-order. 11660b57cec5SDimitry Andric SmallVector<RefSCC *, 1> Result; 11670b57cec5SDimitry Andric 1168fe6060f1SDimitry Andric #ifdef EXPENSIVE_CHECKS 1169fe6060f1SDimitry Andric // Verify the RefSCC is valid to start with and that either we return an empty 1170fe6060f1SDimitry Andric // list of result RefSCCs and this RefSCC remains valid, or we return new 1171fe6060f1SDimitry Andric // RefSCCs and this RefSCC is dead. 11720b57cec5SDimitry Andric verify(); 11730b57cec5SDimitry Andric auto VerifyOnExit = make_scope_exit([&]() { 11740b57cec5SDimitry Andric // If we didn't replace our RefSCC with new ones, check that this one 11750b57cec5SDimitry Andric // remains valid. 11760b57cec5SDimitry Andric if (G) 11770b57cec5SDimitry Andric verify(); 11780b57cec5SDimitry Andric }); 11790b57cec5SDimitry Andric #endif 11800b57cec5SDimitry Andric 11810b57cec5SDimitry Andric // First remove the actual edges. 1182*0fca6ea1SDimitry Andric for (auto [SourceN, TargetN] : Edges) { 1183*0fca6ea1SDimitry Andric assert(!(**SourceN)[*TargetN].isCall() && 11840b57cec5SDimitry Andric "Cannot remove a call edge, it must first be made a ref edge"); 11850b57cec5SDimitry Andric 1186*0fca6ea1SDimitry Andric bool Removed = (*SourceN)->removeEdgeInternal(*TargetN); 11870b57cec5SDimitry Andric (void)Removed; 11880b57cec5SDimitry Andric assert(Removed && "Target not in the edge set for this caller?"); 11890b57cec5SDimitry Andric } 11900b57cec5SDimitry Andric 11910b57cec5SDimitry Andric // Direct self references don't impact the ref graph at all. 11920b57cec5SDimitry Andric // If all targets are in the same SCC as the source, because no call edges 11930b57cec5SDimitry Andric // were removed there is no RefSCC structure change. 1194*0fca6ea1SDimitry Andric if (llvm::all_of(Edges, [&](std::pair<Node *, Node *> E) { 1195*0fca6ea1SDimitry Andric return E.first == E.second || 1196*0fca6ea1SDimitry Andric G->lookupSCC(*E.first) == G->lookupSCC(*E.second); 11970b57cec5SDimitry Andric })) 11980b57cec5SDimitry Andric return Result; 11990b57cec5SDimitry Andric 12000b57cec5SDimitry Andric // We build somewhat synthetic new RefSCCs by providing a postorder mapping 12010b57cec5SDimitry Andric // for each inner SCC. We store these inside the low-link field of the nodes 12020b57cec5SDimitry Andric // rather than associated with SCCs because this saves a round-trip through 12030b57cec5SDimitry Andric // the node->SCC map and in the common case, SCCs are small. We will verify 12040b57cec5SDimitry Andric // that we always give the same number to every node in the SCC such that 12050b57cec5SDimitry Andric // these are equivalent. 12060b57cec5SDimitry Andric int PostOrderNumber = 0; 12070b57cec5SDimitry Andric 12080b57cec5SDimitry Andric // Reset all the other nodes to prepare for a DFS over them, and add them to 12090b57cec5SDimitry Andric // our worklist. 12100b57cec5SDimitry Andric SmallVector<Node *, 8> Worklist; 12110b57cec5SDimitry Andric for (SCC *C : SCCs) { 12120b57cec5SDimitry Andric for (Node &N : *C) 12130b57cec5SDimitry Andric N.DFSNumber = N.LowLink = 0; 12140b57cec5SDimitry Andric 12150b57cec5SDimitry Andric Worklist.append(C->Nodes.begin(), C->Nodes.end()); 12160b57cec5SDimitry Andric } 12170b57cec5SDimitry Andric 12180b57cec5SDimitry Andric // Track the number of nodes in this RefSCC so that we can quickly recognize 12190b57cec5SDimitry Andric // an important special case of the edge removal not breaking the cycle of 12200b57cec5SDimitry Andric // this RefSCC. 12210b57cec5SDimitry Andric const int NumRefSCCNodes = Worklist.size(); 12220b57cec5SDimitry Andric 12230b57cec5SDimitry Andric SmallVector<std::pair<Node *, EdgeSequence::iterator>, 4> DFSStack; 12240b57cec5SDimitry Andric SmallVector<Node *, 4> PendingRefSCCStack; 12250b57cec5SDimitry Andric do { 12260b57cec5SDimitry Andric assert(DFSStack.empty() && 12270b57cec5SDimitry Andric "Cannot begin a new root with a non-empty DFS stack!"); 12280b57cec5SDimitry Andric assert(PendingRefSCCStack.empty() && 12290b57cec5SDimitry Andric "Cannot begin a new root with pending nodes for an SCC!"); 12300b57cec5SDimitry Andric 12310b57cec5SDimitry Andric Node *RootN = Worklist.pop_back_val(); 12320b57cec5SDimitry Andric // Skip any nodes we've already reached in the DFS. 12330b57cec5SDimitry Andric if (RootN->DFSNumber != 0) { 12340b57cec5SDimitry Andric assert(RootN->DFSNumber == -1 && 12350b57cec5SDimitry Andric "Shouldn't have any mid-DFS root nodes!"); 12360b57cec5SDimitry Andric continue; 12370b57cec5SDimitry Andric } 12380b57cec5SDimitry Andric 12390b57cec5SDimitry Andric RootN->DFSNumber = RootN->LowLink = 1; 12400b57cec5SDimitry Andric int NextDFSNumber = 2; 12410b57cec5SDimitry Andric 1242bdd1243dSDimitry Andric DFSStack.emplace_back(RootN, (*RootN)->begin()); 12430b57cec5SDimitry Andric do { 1244bdd1243dSDimitry Andric auto [N, I] = DFSStack.pop_back_val(); 12450b57cec5SDimitry Andric auto E = (*N)->end(); 12460b57cec5SDimitry Andric 12470b57cec5SDimitry Andric assert(N->DFSNumber != 0 && "We should always assign a DFS number " 12480b57cec5SDimitry Andric "before processing a node."); 12490b57cec5SDimitry Andric 12500b57cec5SDimitry Andric while (I != E) { 12510b57cec5SDimitry Andric Node &ChildN = I->getNode(); 12520b57cec5SDimitry Andric if (ChildN.DFSNumber == 0) { 12530b57cec5SDimitry Andric // Mark that we should start at this child when next this node is the 12540b57cec5SDimitry Andric // top of the stack. We don't start at the next child to ensure this 12550b57cec5SDimitry Andric // child's lowlink is reflected. 1256bdd1243dSDimitry Andric DFSStack.emplace_back(N, I); 12570b57cec5SDimitry Andric 12580b57cec5SDimitry Andric // Continue, resetting to the child node. 12590b57cec5SDimitry Andric ChildN.LowLink = ChildN.DFSNumber = NextDFSNumber++; 12600b57cec5SDimitry Andric N = &ChildN; 12610b57cec5SDimitry Andric I = ChildN->begin(); 12620b57cec5SDimitry Andric E = ChildN->end(); 12630b57cec5SDimitry Andric continue; 12640b57cec5SDimitry Andric } 12650b57cec5SDimitry Andric if (ChildN.DFSNumber == -1) { 12660b57cec5SDimitry Andric // If this child isn't currently in this RefSCC, no need to process 12670b57cec5SDimitry Andric // it. 12680b57cec5SDimitry Andric ++I; 12690b57cec5SDimitry Andric continue; 12700b57cec5SDimitry Andric } 12710b57cec5SDimitry Andric 12720b57cec5SDimitry Andric // Track the lowest link of the children, if any are still in the stack. 12730b57cec5SDimitry Andric // Any child not on the stack will have a LowLink of -1. 12740b57cec5SDimitry Andric assert(ChildN.LowLink != 0 && 12750b57cec5SDimitry Andric "Low-link must not be zero with a non-zero DFS number."); 12760b57cec5SDimitry Andric if (ChildN.LowLink >= 0 && ChildN.LowLink < N->LowLink) 12770b57cec5SDimitry Andric N->LowLink = ChildN.LowLink; 12780b57cec5SDimitry Andric ++I; 12790b57cec5SDimitry Andric } 12800b57cec5SDimitry Andric 12810b57cec5SDimitry Andric // We've finished processing N and its descendants, put it on our pending 12820b57cec5SDimitry Andric // stack to eventually get merged into a RefSCC. 12830b57cec5SDimitry Andric PendingRefSCCStack.push_back(N); 12840b57cec5SDimitry Andric 12850b57cec5SDimitry Andric // If this node is linked to some lower entry, continue walking up the 12860b57cec5SDimitry Andric // stack. 12870b57cec5SDimitry Andric if (N->LowLink != N->DFSNumber) { 12880b57cec5SDimitry Andric assert(!DFSStack.empty() && 12890b57cec5SDimitry Andric "We never found a viable root for a RefSCC to pop off!"); 12900b57cec5SDimitry Andric continue; 12910b57cec5SDimitry Andric } 12920b57cec5SDimitry Andric 12930b57cec5SDimitry Andric // Otherwise, form a new RefSCC from the top of the pending node stack. 12940b57cec5SDimitry Andric int RefSCCNumber = PostOrderNumber++; 12950b57cec5SDimitry Andric int RootDFSNumber = N->DFSNumber; 12960b57cec5SDimitry Andric 12970b57cec5SDimitry Andric // Find the range of the node stack by walking down until we pass the 12980b57cec5SDimitry Andric // root DFS number. Update the DFS numbers and low link numbers in the 12990b57cec5SDimitry Andric // process to avoid re-walking this list where possible. 13000b57cec5SDimitry Andric auto StackRI = find_if(reverse(PendingRefSCCStack), [&](Node *N) { 13010b57cec5SDimitry Andric if (N->DFSNumber < RootDFSNumber) 13020b57cec5SDimitry Andric // We've found the bottom. 13030b57cec5SDimitry Andric return true; 13040b57cec5SDimitry Andric 13050b57cec5SDimitry Andric // Update this node and keep scanning. 13060b57cec5SDimitry Andric N->DFSNumber = -1; 13070b57cec5SDimitry Andric // Save the post-order number in the lowlink field so that we can use 13080b57cec5SDimitry Andric // it to map SCCs into new RefSCCs after we finish the DFS. 13090b57cec5SDimitry Andric N->LowLink = RefSCCNumber; 13100b57cec5SDimitry Andric return false; 13110b57cec5SDimitry Andric }); 13120b57cec5SDimitry Andric auto RefSCCNodes = make_range(StackRI.base(), PendingRefSCCStack.end()); 13130b57cec5SDimitry Andric 13140b57cec5SDimitry Andric // If we find a cycle containing all nodes originally in this RefSCC then 13150b57cec5SDimitry Andric // the removal hasn't changed the structure at all. This is an important 1316bdd1243dSDimitry Andric // special case, and we can directly exit the entire routine more 13170b57cec5SDimitry Andric // efficiently as soon as we discover it. 13180b57cec5SDimitry Andric if (llvm::size(RefSCCNodes) == NumRefSCCNodes) { 13190b57cec5SDimitry Andric // Clear out the low link field as we won't need it. 13200b57cec5SDimitry Andric for (Node *N : RefSCCNodes) 13210b57cec5SDimitry Andric N->LowLink = -1; 13220b57cec5SDimitry Andric // Return the empty result immediately. 13230b57cec5SDimitry Andric return Result; 13240b57cec5SDimitry Andric } 13250b57cec5SDimitry Andric 13260b57cec5SDimitry Andric // We've already marked the nodes internally with the RefSCC number so 13270b57cec5SDimitry Andric // just clear them off the stack and continue. 13280b57cec5SDimitry Andric PendingRefSCCStack.erase(RefSCCNodes.begin(), PendingRefSCCStack.end()); 13290b57cec5SDimitry Andric } while (!DFSStack.empty()); 13300b57cec5SDimitry Andric 13310b57cec5SDimitry Andric assert(DFSStack.empty() && "Didn't flush the entire DFS stack!"); 13320b57cec5SDimitry Andric assert(PendingRefSCCStack.empty() && "Didn't flush all pending nodes!"); 13330b57cec5SDimitry Andric } while (!Worklist.empty()); 13340b57cec5SDimitry Andric 13350b57cec5SDimitry Andric assert(PostOrderNumber > 1 && 13360b57cec5SDimitry Andric "Should never finish the DFS when the existing RefSCC remains valid!"); 13370b57cec5SDimitry Andric 13380b57cec5SDimitry Andric // Otherwise we create a collection of new RefSCC nodes and build 13390b57cec5SDimitry Andric // a radix-sort style map from postorder number to these new RefSCCs. We then 13400b57cec5SDimitry Andric // append SCCs to each of these RefSCCs in the order they occurred in the 13410b57cec5SDimitry Andric // original SCCs container. 1342bdd1243dSDimitry Andric for (int I = 0; I < PostOrderNumber; ++I) 13430b57cec5SDimitry Andric Result.push_back(G->createRefSCC(*G)); 13440b57cec5SDimitry Andric 13450b57cec5SDimitry Andric // Insert the resulting postorder sequence into the global graph postorder 13460b57cec5SDimitry Andric // sequence before the current RefSCC in that sequence, and then remove the 13470b57cec5SDimitry Andric // current one. 13480b57cec5SDimitry Andric // 13490b57cec5SDimitry Andric // FIXME: It'd be nice to change the APIs so that we returned an iterator 13500b57cec5SDimitry Andric // range over the global postorder sequence and generally use that sequence 13510b57cec5SDimitry Andric // rather than building a separate result vector here. 13520b57cec5SDimitry Andric int Idx = G->getRefSCCIndex(*this); 13530b57cec5SDimitry Andric G->PostOrderRefSCCs.erase(G->PostOrderRefSCCs.begin() + Idx); 13540b57cec5SDimitry Andric G->PostOrderRefSCCs.insert(G->PostOrderRefSCCs.begin() + Idx, Result.begin(), 13550b57cec5SDimitry Andric Result.end()); 1356bdd1243dSDimitry Andric for (int I : seq<int>(Idx, G->PostOrderRefSCCs.size())) 1357bdd1243dSDimitry Andric G->RefSCCIndices[G->PostOrderRefSCCs[I]] = I; 13580b57cec5SDimitry Andric 13590b57cec5SDimitry Andric for (SCC *C : SCCs) { 13600b57cec5SDimitry Andric // We store the SCC number in the node's low-link field above. 13610b57cec5SDimitry Andric int SCCNumber = C->begin()->LowLink; 1362bdd1243dSDimitry Andric // Clear out all the SCC's node's low-link fields now that we're done 13630b57cec5SDimitry Andric // using them as side-storage. 13640b57cec5SDimitry Andric for (Node &N : *C) { 13650b57cec5SDimitry Andric assert(N.LowLink == SCCNumber && 13660b57cec5SDimitry Andric "Cannot have different numbers for nodes in the same SCC!"); 13670b57cec5SDimitry Andric N.LowLink = -1; 13680b57cec5SDimitry Andric } 13690b57cec5SDimitry Andric 13700b57cec5SDimitry Andric RefSCC &RC = *Result[SCCNumber]; 13710b57cec5SDimitry Andric int SCCIndex = RC.SCCs.size(); 13720b57cec5SDimitry Andric RC.SCCs.push_back(C); 13730b57cec5SDimitry Andric RC.SCCIndices[C] = SCCIndex; 13740b57cec5SDimitry Andric C->OuterRefSCC = &RC; 13750b57cec5SDimitry Andric } 13760b57cec5SDimitry Andric 13770b57cec5SDimitry Andric // Now that we've moved things into the new RefSCCs, clear out our current 13780b57cec5SDimitry Andric // one. 13790b57cec5SDimitry Andric G = nullptr; 13800b57cec5SDimitry Andric SCCs.clear(); 13810b57cec5SDimitry Andric SCCIndices.clear(); 13820b57cec5SDimitry Andric 1383fe6060f1SDimitry Andric #ifdef EXPENSIVE_CHECKS 13840b57cec5SDimitry Andric // Verify the new RefSCCs we've built. 13850b57cec5SDimitry Andric for (RefSCC *RC : Result) 13860b57cec5SDimitry Andric RC->verify(); 13870b57cec5SDimitry Andric #endif 13880b57cec5SDimitry Andric 13890b57cec5SDimitry Andric // Return the new list of SCCs. 13900b57cec5SDimitry Andric return Result; 13910b57cec5SDimitry Andric } 13920b57cec5SDimitry Andric 13930b57cec5SDimitry Andric void LazyCallGraph::RefSCC::insertTrivialCallEdge(Node &SourceN, 13940b57cec5SDimitry Andric Node &TargetN) { 1395fe6060f1SDimitry Andric #ifdef EXPENSIVE_CHECKS 13960b57cec5SDimitry Andric auto ExitVerifier = make_scope_exit([this] { verify(); }); 13970b57cec5SDimitry Andric 13980b57cec5SDimitry Andric // Check that we aren't breaking some invariants of the SCC graph. Note that 13990b57cec5SDimitry Andric // this is quadratic in the number of edges in the call graph! 14000b57cec5SDimitry Andric SCC &SourceC = *G->lookupSCC(SourceN); 14010b57cec5SDimitry Andric SCC &TargetC = *G->lookupSCC(TargetN); 14020b57cec5SDimitry Andric if (&SourceC != &TargetC) 14030b57cec5SDimitry Andric assert(SourceC.isAncestorOf(TargetC) && 14040b57cec5SDimitry Andric "Call edge is not trivial in the SCC graph!"); 1405fe6060f1SDimitry Andric #endif 14060b57cec5SDimitry Andric 14070b57cec5SDimitry Andric // First insert it into the source or find the existing edge. 1408bdd1243dSDimitry Andric auto [Iterator, Inserted] = 1409bdd1243dSDimitry Andric SourceN->EdgeIndexMap.try_emplace(&TargetN, SourceN->Edges.size()); 1410bdd1243dSDimitry Andric if (!Inserted) { 14110b57cec5SDimitry Andric // Already an edge, just update it. 1412bdd1243dSDimitry Andric Edge &E = SourceN->Edges[Iterator->second]; 14130b57cec5SDimitry Andric if (E.isCall()) 14140b57cec5SDimitry Andric return; // Nothing to do! 14150b57cec5SDimitry Andric E.setKind(Edge::Call); 14160b57cec5SDimitry Andric } else { 14170b57cec5SDimitry Andric // Create the new edge. 14180b57cec5SDimitry Andric SourceN->Edges.emplace_back(TargetN, Edge::Call); 14190b57cec5SDimitry Andric } 14200b57cec5SDimitry Andric } 14210b57cec5SDimitry Andric 14220b57cec5SDimitry Andric void LazyCallGraph::RefSCC::insertTrivialRefEdge(Node &SourceN, Node &TargetN) { 1423fe6060f1SDimitry Andric #ifdef EXPENSIVE_CHECKS 14240b57cec5SDimitry Andric auto ExitVerifier = make_scope_exit([this] { verify(); }); 14250b57cec5SDimitry Andric 14260b57cec5SDimitry Andric // Check that we aren't breaking some invariants of the RefSCC graph. 14270b57cec5SDimitry Andric RefSCC &SourceRC = *G->lookupRefSCC(SourceN); 14280b57cec5SDimitry Andric RefSCC &TargetRC = *G->lookupRefSCC(TargetN); 14290b57cec5SDimitry Andric if (&SourceRC != &TargetRC) 14300b57cec5SDimitry Andric assert(SourceRC.isAncestorOf(TargetRC) && 14310b57cec5SDimitry Andric "Ref edge is not trivial in the RefSCC graph!"); 1432fe6060f1SDimitry Andric #endif 14330b57cec5SDimitry Andric 14340b57cec5SDimitry Andric // First insert it into the source or find the existing edge. 1435bdd1243dSDimitry Andric auto [Iterator, Inserted] = 1436bdd1243dSDimitry Andric SourceN->EdgeIndexMap.try_emplace(&TargetN, SourceN->Edges.size()); 1437bdd1243dSDimitry Andric (void)Iterator; 1438bdd1243dSDimitry Andric if (!Inserted) 14390b57cec5SDimitry Andric // Already an edge, we're done. 14400b57cec5SDimitry Andric return; 14410b57cec5SDimitry Andric 14420b57cec5SDimitry Andric // Create the new edge. 14430b57cec5SDimitry Andric SourceN->Edges.emplace_back(TargetN, Edge::Ref); 14440b57cec5SDimitry Andric } 14450b57cec5SDimitry Andric 14460b57cec5SDimitry Andric void LazyCallGraph::RefSCC::replaceNodeFunction(Node &N, Function &NewF) { 14470b57cec5SDimitry Andric Function &OldF = N.getFunction(); 14480b57cec5SDimitry Andric 1449fe6060f1SDimitry Andric #ifdef EXPENSIVE_CHECKS 14500b57cec5SDimitry Andric auto ExitVerifier = make_scope_exit([this] { verify(); }); 14510b57cec5SDimitry Andric 14520b57cec5SDimitry Andric assert(G->lookupRefSCC(N) == this && 14530b57cec5SDimitry Andric "Cannot replace the function of a node outside this RefSCC."); 14540b57cec5SDimitry Andric 14550b57cec5SDimitry Andric assert(G->NodeMap.find(&NewF) == G->NodeMap.end() && 14560b57cec5SDimitry Andric "Must not have already walked the new function!'"); 14570b57cec5SDimitry Andric 14580b57cec5SDimitry Andric // It is important that this replacement not introduce graph changes so we 14590b57cec5SDimitry Andric // insist that the caller has already removed every use of the original 14600b57cec5SDimitry Andric // function and that all uses of the new function correspond to existing 14610b57cec5SDimitry Andric // edges in the graph. The common and expected way to use this is when 14620b57cec5SDimitry Andric // replacing the function itself in the IR without changing the call graph 14630b57cec5SDimitry Andric // shape and just updating the analysis based on that. 14640b57cec5SDimitry Andric assert(&OldF != &NewF && "Cannot replace a function with itself!"); 14650b57cec5SDimitry Andric assert(OldF.use_empty() && 14660b57cec5SDimitry Andric "Must have moved all uses from the old function to the new!"); 14670b57cec5SDimitry Andric #endif 14680b57cec5SDimitry Andric 14690b57cec5SDimitry Andric N.replaceFunction(NewF); 14700b57cec5SDimitry Andric 14710b57cec5SDimitry Andric // Update various call graph maps. 14720b57cec5SDimitry Andric G->NodeMap.erase(&OldF); 14730b57cec5SDimitry Andric G->NodeMap[&NewF] = &N; 1474bdd1243dSDimitry Andric 1475bdd1243dSDimitry Andric // Update lib functions. 1476bdd1243dSDimitry Andric if (G->isLibFunction(OldF)) { 1477bdd1243dSDimitry Andric G->LibFunctions.remove(&OldF); 1478bdd1243dSDimitry Andric G->LibFunctions.insert(&NewF); 1479bdd1243dSDimitry Andric } 14800b57cec5SDimitry Andric } 14810b57cec5SDimitry Andric 14820b57cec5SDimitry Andric void LazyCallGraph::insertEdge(Node &SourceN, Node &TargetN, Edge::Kind EK) { 14830b57cec5SDimitry Andric assert(SCCMap.empty() && 14840b57cec5SDimitry Andric "This method cannot be called after SCCs have been formed!"); 14850b57cec5SDimitry Andric 14860b57cec5SDimitry Andric return SourceN->insertEdgeInternal(TargetN, EK); 14870b57cec5SDimitry Andric } 14880b57cec5SDimitry Andric 14890b57cec5SDimitry Andric void LazyCallGraph::removeEdge(Node &SourceN, Node &TargetN) { 14900b57cec5SDimitry Andric assert(SCCMap.empty() && 14910b57cec5SDimitry Andric "This method cannot be called after SCCs have been formed!"); 14920b57cec5SDimitry Andric 14930b57cec5SDimitry Andric bool Removed = SourceN->removeEdgeInternal(TargetN); 14940b57cec5SDimitry Andric (void)Removed; 14950b57cec5SDimitry Andric assert(Removed && "Target not in the edge set for this caller?"); 14960b57cec5SDimitry Andric } 14970b57cec5SDimitry Andric 1498*0fca6ea1SDimitry Andric void LazyCallGraph::markDeadFunction(Function &F) { 14990b57cec5SDimitry Andric // FIXME: This is unnecessarily restrictive. We should be able to remove 15000b57cec5SDimitry Andric // functions which recursively call themselves. 150104eeddc0SDimitry Andric assert(F.hasZeroLiveUses() && 15020b57cec5SDimitry Andric "This routine should only be called on trivially dead functions!"); 15030b57cec5SDimitry Andric 15040b57cec5SDimitry Andric // We shouldn't remove library functions as they are never really dead while 15050b57cec5SDimitry Andric // the call graph is in use -- every function definition refers to them. 15060b57cec5SDimitry Andric assert(!isLibFunction(F) && 15070b57cec5SDimitry Andric "Must not remove lib functions from the call graph!"); 15080b57cec5SDimitry Andric 15090b57cec5SDimitry Andric auto NI = NodeMap.find(&F); 1510*0fca6ea1SDimitry Andric assert(NI != NodeMap.end() && "Removed function should be known!"); 15110b57cec5SDimitry Andric 15120b57cec5SDimitry Andric Node &N = *NI->second; 15130b57cec5SDimitry Andric 1514*0fca6ea1SDimitry Andric // Remove all call edges out of dead function. 1515*0fca6ea1SDimitry Andric for (Edge E : *N) { 1516*0fca6ea1SDimitry Andric if (E.isCall()) 1517*0fca6ea1SDimitry Andric N->setEdgeKind(E.getNode(), Edge::Ref); 1518bdd1243dSDimitry Andric } 1519bdd1243dSDimitry Andric } 1520bdd1243dSDimitry Andric 1521*0fca6ea1SDimitry Andric void LazyCallGraph::removeDeadFunctions(ArrayRef<Function *> DeadFs) { 1522*0fca6ea1SDimitry Andric if (DeadFs.empty()) 1523*0fca6ea1SDimitry Andric return; 1524*0fca6ea1SDimitry Andric 1525*0fca6ea1SDimitry Andric // Group dead functions by the RefSCC they're in. 1526*0fca6ea1SDimitry Andric DenseMap<RefSCC *, SmallVector<Node *, 1>> RCs; 1527*0fca6ea1SDimitry Andric for (Function *DeadF : DeadFs) { 1528*0fca6ea1SDimitry Andric Node *N = lookup(*DeadF); 1529*0fca6ea1SDimitry Andric #ifndef NDEBUG 1530*0fca6ea1SDimitry Andric for (Edge &E : **N) { 1531*0fca6ea1SDimitry Andric assert(!E.isCall() && 1532*0fca6ea1SDimitry Andric "dead function shouldn't have any outgoing call edges"); 1533*0fca6ea1SDimitry Andric } 1534*0fca6ea1SDimitry Andric #endif 1535*0fca6ea1SDimitry Andric RefSCC *RC = lookupRefSCC(*N); 1536*0fca6ea1SDimitry Andric RCs[RC].push_back(N); 1537*0fca6ea1SDimitry Andric } 1538*0fca6ea1SDimitry Andric // Remove outgoing edges from all dead functions. Dead functions should 1539*0fca6ea1SDimitry Andric // already have had their call edges removed in markDeadFunction(), so we only 1540*0fca6ea1SDimitry Andric // need to worry about spurious ref edges. 1541*0fca6ea1SDimitry Andric for (auto [RC, DeadNs] : RCs) { 1542*0fca6ea1SDimitry Andric SmallVector<std::pair<Node *, Node *>> InternalEdgesToRemove; 1543*0fca6ea1SDimitry Andric for (Node *DeadN : DeadNs) { 1544*0fca6ea1SDimitry Andric for (Edge &E : **DeadN) { 1545*0fca6ea1SDimitry Andric if (lookupRefSCC(E.getNode()) == RC) 1546*0fca6ea1SDimitry Andric InternalEdgesToRemove.push_back({DeadN, &E.getNode()}); 1547*0fca6ea1SDimitry Andric else 1548*0fca6ea1SDimitry Andric RC->removeOutgoingEdge(*DeadN, E.getNode()); 1549*0fca6ea1SDimitry Andric } 1550*0fca6ea1SDimitry Andric } 1551*0fca6ea1SDimitry Andric // We ignore the returned RefSCCs since at this point we're done with CGSCC 1552*0fca6ea1SDimitry Andric // iteration and don't need to add it to any worklists. 1553*0fca6ea1SDimitry Andric (void)RC->removeInternalRefEdges(InternalEdgesToRemove); 1554*0fca6ea1SDimitry Andric for (Node *DeadN : DeadNs) { 1555*0fca6ea1SDimitry Andric RefSCC *DeadRC = lookupRefSCC(*DeadN); 1556*0fca6ea1SDimitry Andric assert(DeadRC->size() == 1); 1557*0fca6ea1SDimitry Andric assert(DeadRC->begin()->size() == 1); 1558*0fca6ea1SDimitry Andric DeadRC->clear(); 1559*0fca6ea1SDimitry Andric DeadRC->G = nullptr; 1560*0fca6ea1SDimitry Andric } 1561*0fca6ea1SDimitry Andric } 1562*0fca6ea1SDimitry Andric // Clean up data structures. 1563*0fca6ea1SDimitry Andric for (Function *DeadF : DeadFs) { 1564*0fca6ea1SDimitry Andric Node &N = *lookup(*DeadF); 1565*0fca6ea1SDimitry Andric 1566bdd1243dSDimitry Andric EntryEdges.removeEdgeInternal(N); 1567*0fca6ea1SDimitry Andric SCCMap.erase(SCCMap.find(&N)); 1568*0fca6ea1SDimitry Andric NodeMap.erase(NodeMap.find(DeadF)); 15690b57cec5SDimitry Andric 15700b57cec5SDimitry Andric N.clear(); 15710b57cec5SDimitry Andric N.G = nullptr; 15720b57cec5SDimitry Andric N.F = nullptr; 1573*0fca6ea1SDimitry Andric } 15740b57cec5SDimitry Andric } 15750b57cec5SDimitry Andric 1576e8d8bef9SDimitry Andric // Gets the Edge::Kind from one function to another by looking at the function's 1577e8d8bef9SDimitry Andric // instructions. Asserts if there is no edge. 1578e8d8bef9SDimitry Andric // Useful for determining what type of edge should exist between functions when 1579e8d8bef9SDimitry Andric // the edge hasn't been created yet. 1580e8d8bef9SDimitry Andric static LazyCallGraph::Edge::Kind getEdgeKind(Function &OriginalFunction, 1581e8d8bef9SDimitry Andric Function &NewFunction) { 1582e8d8bef9SDimitry Andric // In release builds, assume that if there are no direct calls to the new 1583e8d8bef9SDimitry Andric // function, then there is a ref edge. In debug builds, keep track of 1584e8d8bef9SDimitry Andric // references to assert that there is actually a ref edge if there is no call 1585e8d8bef9SDimitry Andric // edge. 1586e8d8bef9SDimitry Andric #ifndef NDEBUG 1587e8d8bef9SDimitry Andric SmallVector<Constant *, 16> Worklist; 1588e8d8bef9SDimitry Andric SmallPtrSet<Constant *, 16> Visited; 1589e8d8bef9SDimitry Andric #endif 1590e8d8bef9SDimitry Andric 1591e8d8bef9SDimitry Andric for (Instruction &I : instructions(OriginalFunction)) { 1592e8d8bef9SDimitry Andric if (auto *CB = dyn_cast<CallBase>(&I)) { 1593e8d8bef9SDimitry Andric if (Function *Callee = CB->getCalledFunction()) { 1594e8d8bef9SDimitry Andric if (Callee == &NewFunction) 1595e8d8bef9SDimitry Andric return LazyCallGraph::Edge::Kind::Call; 1596e8d8bef9SDimitry Andric } 1597e8d8bef9SDimitry Andric } 1598e8d8bef9SDimitry Andric #ifndef NDEBUG 1599e8d8bef9SDimitry Andric for (Value *Op : I.operand_values()) { 1600e8d8bef9SDimitry Andric if (Constant *C = dyn_cast<Constant>(Op)) { 1601e8d8bef9SDimitry Andric if (Visited.insert(C).second) 1602e8d8bef9SDimitry Andric Worklist.push_back(C); 1603e8d8bef9SDimitry Andric } 1604e8d8bef9SDimitry Andric } 1605e8d8bef9SDimitry Andric #endif 16065ffd83dbSDimitry Andric } 16075ffd83dbSDimitry Andric 1608e8d8bef9SDimitry Andric #ifndef NDEBUG 1609e8d8bef9SDimitry Andric bool FoundNewFunction = false; 1610e8d8bef9SDimitry Andric LazyCallGraph::visitReferences(Worklist, Visited, [&](Function &F) { 1611e8d8bef9SDimitry Andric if (&F == &NewFunction) 1612e8d8bef9SDimitry Andric FoundNewFunction = true; 1613e8d8bef9SDimitry Andric }); 1614e8d8bef9SDimitry Andric assert(FoundNewFunction && "No edge from original function to new function"); 1615e8d8bef9SDimitry Andric #endif 16165ffd83dbSDimitry Andric 1617e8d8bef9SDimitry Andric return LazyCallGraph::Edge::Kind::Ref; 1618e8d8bef9SDimitry Andric } 16195ffd83dbSDimitry Andric 1620e8d8bef9SDimitry Andric void LazyCallGraph::addSplitFunction(Function &OriginalFunction, 1621e8d8bef9SDimitry Andric Function &NewFunction) { 1622e8d8bef9SDimitry Andric assert(lookup(OriginalFunction) && 1623e8d8bef9SDimitry Andric "Original function's node should already exist"); 1624e8d8bef9SDimitry Andric Node &OriginalN = get(OriginalFunction); 1625e8d8bef9SDimitry Andric SCC *OriginalC = lookupSCC(OriginalN); 1626e8d8bef9SDimitry Andric RefSCC *OriginalRC = lookupRefSCC(OriginalN); 1627e8d8bef9SDimitry Andric 1628fe6060f1SDimitry Andric #ifdef EXPENSIVE_CHECKS 1629e8d8bef9SDimitry Andric OriginalRC->verify(); 1630e8d8bef9SDimitry Andric auto VerifyOnExit = make_scope_exit([&]() { OriginalRC->verify(); }); 1631e8d8bef9SDimitry Andric #endif 1632e8d8bef9SDimitry Andric 1633e8d8bef9SDimitry Andric assert(!lookup(NewFunction) && 1634e8d8bef9SDimitry Andric "New function's node should not already exist"); 1635e8d8bef9SDimitry Andric Node &NewN = initNode(NewFunction); 1636e8d8bef9SDimitry Andric 1637e8d8bef9SDimitry Andric Edge::Kind EK = getEdgeKind(OriginalFunction, NewFunction); 1638e8d8bef9SDimitry Andric 1639e8d8bef9SDimitry Andric SCC *NewC = nullptr; 1640e8d8bef9SDimitry Andric for (Edge &E : *NewN) { 1641e8d8bef9SDimitry Andric Node &EN = E.getNode(); 1642e8d8bef9SDimitry Andric if (EK == Edge::Kind::Call && E.isCall() && lookupSCC(EN) == OriginalC) { 1643e8d8bef9SDimitry Andric // If the edge to the new function is a call edge and there is a call edge 1644e8d8bef9SDimitry Andric // from the new function to any function in the original function's SCC, 1645e8d8bef9SDimitry Andric // it is in the same SCC (and RefSCC) as the original function. 1646e8d8bef9SDimitry Andric NewC = OriginalC; 1647e8d8bef9SDimitry Andric NewC->Nodes.push_back(&NewN); 1648e8d8bef9SDimitry Andric break; 1649e8d8bef9SDimitry Andric } 1650e8d8bef9SDimitry Andric } 1651e8d8bef9SDimitry Andric 1652e8d8bef9SDimitry Andric if (!NewC) { 1653e8d8bef9SDimitry Andric for (Edge &E : *NewN) { 1654e8d8bef9SDimitry Andric Node &EN = E.getNode(); 1655e8d8bef9SDimitry Andric if (lookupRefSCC(EN) == OriginalRC) { 1656e8d8bef9SDimitry Andric // If there is any edge from the new function to any function in the 1657e8d8bef9SDimitry Andric // original function's RefSCC, it is in the same RefSCC as the original 1658e8d8bef9SDimitry Andric // function but a new SCC. 1659e8d8bef9SDimitry Andric RefSCC *NewRC = OriginalRC; 1660e8d8bef9SDimitry Andric NewC = createSCC(*NewRC, SmallVector<Node *, 1>({&NewN})); 1661e8d8bef9SDimitry Andric 1662e8d8bef9SDimitry Andric // The new function's SCC is not the same as the original function's 1663e8d8bef9SDimitry Andric // SCC, since that case was handled earlier. If the edge from the 1664e8d8bef9SDimitry Andric // original function to the new function was a call edge, then we need 1665e8d8bef9SDimitry Andric // to insert the newly created function's SCC before the original 1666bdd1243dSDimitry Andric // function's SCC. Otherwise, either the new SCC comes after the 1667bdd1243dSDimitry Andric // original function's SCC, or it doesn't matter, and in both cases we 1668bdd1243dSDimitry Andric // can add it to the very end. 1669e8d8bef9SDimitry Andric int InsertIndex = EK == Edge::Kind::Call ? NewRC->SCCIndices[OriginalC] 1670e8d8bef9SDimitry Andric : NewRC->SCCIndices.size(); 1671e8d8bef9SDimitry Andric NewRC->SCCs.insert(NewRC->SCCs.begin() + InsertIndex, NewC); 1672e8d8bef9SDimitry Andric for (int I = InsertIndex, Size = NewRC->SCCs.size(); I < Size; ++I) 1673e8d8bef9SDimitry Andric NewRC->SCCIndices[NewRC->SCCs[I]] = I; 1674e8d8bef9SDimitry Andric 1675e8d8bef9SDimitry Andric break; 1676e8d8bef9SDimitry Andric } 1677e8d8bef9SDimitry Andric } 1678e8d8bef9SDimitry Andric } 1679e8d8bef9SDimitry Andric 1680e8d8bef9SDimitry Andric if (!NewC) { 1681e8d8bef9SDimitry Andric // We didn't find any edges back to the original function's RefSCC, so the 1682e8d8bef9SDimitry Andric // new function belongs in a new RefSCC. The new RefSCC goes before the 1683e8d8bef9SDimitry Andric // original function's RefSCC. 1684e8d8bef9SDimitry Andric RefSCC *NewRC = createRefSCC(*this); 1685e8d8bef9SDimitry Andric NewC = createSCC(*NewRC, SmallVector<Node *, 1>({&NewN})); 1686e8d8bef9SDimitry Andric NewRC->SCCIndices[NewC] = 0; 1687e8d8bef9SDimitry Andric NewRC->SCCs.push_back(NewC); 1688e8d8bef9SDimitry Andric auto OriginalRCIndex = RefSCCIndices.find(OriginalRC)->second; 1689e8d8bef9SDimitry Andric PostOrderRefSCCs.insert(PostOrderRefSCCs.begin() + OriginalRCIndex, NewRC); 1690e8d8bef9SDimitry Andric for (int I = OriginalRCIndex, Size = PostOrderRefSCCs.size(); I < Size; ++I) 1691e8d8bef9SDimitry Andric RefSCCIndices[PostOrderRefSCCs[I]] = I; 1692e8d8bef9SDimitry Andric } 1693e8d8bef9SDimitry Andric 1694e8d8bef9SDimitry Andric SCCMap[&NewN] = NewC; 1695e8d8bef9SDimitry Andric 1696e8d8bef9SDimitry Andric OriginalN->insertEdgeInternal(NewN, EK); 1697e8d8bef9SDimitry Andric } 1698e8d8bef9SDimitry Andric 1699e8d8bef9SDimitry Andric void LazyCallGraph::addSplitRefRecursiveFunctions( 1700e8d8bef9SDimitry Andric Function &OriginalFunction, ArrayRef<Function *> NewFunctions) { 1701e8d8bef9SDimitry Andric assert(!NewFunctions.empty() && "Can't add zero functions"); 1702e8d8bef9SDimitry Andric assert(lookup(OriginalFunction) && 1703e8d8bef9SDimitry Andric "Original function's node should already exist"); 1704e8d8bef9SDimitry Andric Node &OriginalN = get(OriginalFunction); 1705e8d8bef9SDimitry Andric RefSCC *OriginalRC = lookupRefSCC(OriginalN); 1706e8d8bef9SDimitry Andric 1707fe6060f1SDimitry Andric #ifdef EXPENSIVE_CHECKS 1708e8d8bef9SDimitry Andric OriginalRC->verify(); 1709e8d8bef9SDimitry Andric auto VerifyOnExit = make_scope_exit([&]() { 1710e8d8bef9SDimitry Andric OriginalRC->verify(); 1711e8d8bef9SDimitry Andric for (Function *NewFunction : NewFunctions) 1712e8d8bef9SDimitry Andric lookupRefSCC(get(*NewFunction))->verify(); 1713e8d8bef9SDimitry Andric }); 1714e8d8bef9SDimitry Andric #endif 1715e8d8bef9SDimitry Andric 1716e8d8bef9SDimitry Andric bool ExistsRefToOriginalRefSCC = false; 1717e8d8bef9SDimitry Andric 1718e8d8bef9SDimitry Andric for (Function *NewFunction : NewFunctions) { 1719e8d8bef9SDimitry Andric Node &NewN = initNode(*NewFunction); 1720e8d8bef9SDimitry Andric 1721e8d8bef9SDimitry Andric OriginalN->insertEdgeInternal(NewN, Edge::Kind::Ref); 1722e8d8bef9SDimitry Andric 1723e8d8bef9SDimitry Andric // Check if there is any edge from any new function back to any function in 1724e8d8bef9SDimitry Andric // the original function's RefSCC. 1725e8d8bef9SDimitry Andric for (Edge &E : *NewN) { 1726e8d8bef9SDimitry Andric if (lookupRefSCC(E.getNode()) == OriginalRC) { 1727e8d8bef9SDimitry Andric ExistsRefToOriginalRefSCC = true; 1728e8d8bef9SDimitry Andric break; 1729e8d8bef9SDimitry Andric } 1730e8d8bef9SDimitry Andric } 1731e8d8bef9SDimitry Andric } 1732e8d8bef9SDimitry Andric 1733e8d8bef9SDimitry Andric RefSCC *NewRC; 1734e8d8bef9SDimitry Andric if (ExistsRefToOriginalRefSCC) { 1735e8d8bef9SDimitry Andric // If there is any edge from any new function to any function in the 1736e8d8bef9SDimitry Andric // original function's RefSCC, all new functions will be in the same RefSCC 1737e8d8bef9SDimitry Andric // as the original function. 1738e8d8bef9SDimitry Andric NewRC = OriginalRC; 1739e8d8bef9SDimitry Andric } else { 1740e8d8bef9SDimitry Andric // Otherwise the new functions are in their own RefSCC. 1741e8d8bef9SDimitry Andric NewRC = createRefSCC(*this); 1742e8d8bef9SDimitry Andric // The new RefSCC goes before the original function's RefSCC in postorder 1743e8d8bef9SDimitry Andric // since there are only edges from the original function's RefSCC to the new 1744e8d8bef9SDimitry Andric // RefSCC. 1745e8d8bef9SDimitry Andric auto OriginalRCIndex = RefSCCIndices.find(OriginalRC)->second; 1746e8d8bef9SDimitry Andric PostOrderRefSCCs.insert(PostOrderRefSCCs.begin() + OriginalRCIndex, NewRC); 1747e8d8bef9SDimitry Andric for (int I = OriginalRCIndex, Size = PostOrderRefSCCs.size(); I < Size; ++I) 1748e8d8bef9SDimitry Andric RefSCCIndices[PostOrderRefSCCs[I]] = I; 1749e8d8bef9SDimitry Andric } 1750e8d8bef9SDimitry Andric 1751e8d8bef9SDimitry Andric for (Function *NewFunction : NewFunctions) { 1752e8d8bef9SDimitry Andric Node &NewN = get(*NewFunction); 1753e8d8bef9SDimitry Andric // Each new function is in its own new SCC. The original function can only 1754e8d8bef9SDimitry Andric // have a ref edge to new functions, and no other existing functions can 1755e8d8bef9SDimitry Andric // have references to new functions. Each new function only has a ref edge 1756e8d8bef9SDimitry Andric // to the other new functions. 1757e8d8bef9SDimitry Andric SCC *NewC = createSCC(*NewRC, SmallVector<Node *, 1>({&NewN})); 1758e8d8bef9SDimitry Andric // The new SCCs are either sibling SCCs or parent SCCs to all other existing 1759e8d8bef9SDimitry Andric // SCCs in the RefSCC. Either way, they can go at the back of the postorder 1760e8d8bef9SDimitry Andric // SCC list. 1761e8d8bef9SDimitry Andric auto Index = NewRC->SCCIndices.size(); 1762e8d8bef9SDimitry Andric NewRC->SCCIndices[NewC] = Index; 1763e8d8bef9SDimitry Andric NewRC->SCCs.push_back(NewC); 1764e8d8bef9SDimitry Andric SCCMap[&NewN] = NewC; 1765e8d8bef9SDimitry Andric } 1766e8d8bef9SDimitry Andric 1767e8d8bef9SDimitry Andric #ifndef NDEBUG 1768e8d8bef9SDimitry Andric for (Function *F1 : NewFunctions) { 1769e8d8bef9SDimitry Andric assert(getEdgeKind(OriginalFunction, *F1) == Edge::Kind::Ref && 1770e8d8bef9SDimitry Andric "Expected ref edges from original function to every new function"); 1771e8d8bef9SDimitry Andric Node &N1 = get(*F1); 1772e8d8bef9SDimitry Andric for (Function *F2 : NewFunctions) { 1773e8d8bef9SDimitry Andric if (F1 == F2) 1774e8d8bef9SDimitry Andric continue; 1775e8d8bef9SDimitry Andric Node &N2 = get(*F2); 1776e8d8bef9SDimitry Andric assert(!N1->lookup(N2)->isCall() && 1777e8d8bef9SDimitry Andric "Edges between new functions must be ref edges"); 1778e8d8bef9SDimitry Andric } 1779e8d8bef9SDimitry Andric } 1780e8d8bef9SDimitry Andric #endif 17815ffd83dbSDimitry Andric } 17825ffd83dbSDimitry Andric 17830b57cec5SDimitry Andric LazyCallGraph::Node &LazyCallGraph::insertInto(Function &F, Node *&MappedN) { 17840b57cec5SDimitry Andric return *new (MappedN = BPA.Allocate()) Node(*this, F); 17850b57cec5SDimitry Andric } 17860b57cec5SDimitry Andric 17870b57cec5SDimitry Andric void LazyCallGraph::updateGraphPtrs() { 17880b57cec5SDimitry Andric // Walk the node map to update their graph pointers. While this iterates in 1789bdd1243dSDimitry Andric // an unstable order, the order has no effect, so it remains correct. 17900b57cec5SDimitry Andric for (auto &FunctionNodePair : NodeMap) 17910b57cec5SDimitry Andric FunctionNodePair.second->G = this; 17920b57cec5SDimitry Andric 17930b57cec5SDimitry Andric for (auto *RC : PostOrderRefSCCs) 17940b57cec5SDimitry Andric RC->G = this; 17950b57cec5SDimitry Andric } 17960b57cec5SDimitry Andric 1797e8d8bef9SDimitry Andric LazyCallGraph::Node &LazyCallGraph::initNode(Function &F) { 17985ffd83dbSDimitry Andric Node &N = get(F); 17995ffd83dbSDimitry Andric N.DFSNumber = N.LowLink = -1; 18005ffd83dbSDimitry Andric N.populate(); 1801e8d8bef9SDimitry Andric NodeMap[&F] = &N; 18025ffd83dbSDimitry Andric return N; 18035ffd83dbSDimitry Andric } 18045ffd83dbSDimitry Andric 18050b57cec5SDimitry Andric template <typename RootsT, typename GetBeginT, typename GetEndT, 18060b57cec5SDimitry Andric typename GetNodeT, typename FormSCCCallbackT> 18070b57cec5SDimitry Andric void LazyCallGraph::buildGenericSCCs(RootsT &&Roots, GetBeginT &&GetBegin, 18080b57cec5SDimitry Andric GetEndT &&GetEnd, GetNodeT &&GetNode, 18090b57cec5SDimitry Andric FormSCCCallbackT &&FormSCC) { 18100b57cec5SDimitry Andric using EdgeItT = decltype(GetBegin(std::declval<Node &>())); 18110b57cec5SDimitry Andric 18120b57cec5SDimitry Andric SmallVector<std::pair<Node *, EdgeItT>, 16> DFSStack; 18130b57cec5SDimitry Andric SmallVector<Node *, 16> PendingSCCStack; 18140b57cec5SDimitry Andric 18150b57cec5SDimitry Andric // Scan down the stack and DFS across the call edges. 18160b57cec5SDimitry Andric for (Node *RootN : Roots) { 18170b57cec5SDimitry Andric assert(DFSStack.empty() && 18180b57cec5SDimitry Andric "Cannot begin a new root with a non-empty DFS stack!"); 18190b57cec5SDimitry Andric assert(PendingSCCStack.empty() && 18200b57cec5SDimitry Andric "Cannot begin a new root with pending nodes for an SCC!"); 18210b57cec5SDimitry Andric 18220b57cec5SDimitry Andric // Skip any nodes we've already reached in the DFS. 18230b57cec5SDimitry Andric if (RootN->DFSNumber != 0) { 18240b57cec5SDimitry Andric assert(RootN->DFSNumber == -1 && 18250b57cec5SDimitry Andric "Shouldn't have any mid-DFS root nodes!"); 18260b57cec5SDimitry Andric continue; 18270b57cec5SDimitry Andric } 18280b57cec5SDimitry Andric 18290b57cec5SDimitry Andric RootN->DFSNumber = RootN->LowLink = 1; 18300b57cec5SDimitry Andric int NextDFSNumber = 2; 18310b57cec5SDimitry Andric 1832bdd1243dSDimitry Andric DFSStack.emplace_back(RootN, GetBegin(*RootN)); 18330b57cec5SDimitry Andric do { 1834bdd1243dSDimitry Andric auto [N, I] = DFSStack.pop_back_val(); 18350b57cec5SDimitry Andric auto E = GetEnd(*N); 18360b57cec5SDimitry Andric while (I != E) { 18370b57cec5SDimitry Andric Node &ChildN = GetNode(I); 18380b57cec5SDimitry Andric if (ChildN.DFSNumber == 0) { 18390b57cec5SDimitry Andric // We haven't yet visited this child, so descend, pushing the current 18400b57cec5SDimitry Andric // node onto the stack. 1841bdd1243dSDimitry Andric DFSStack.emplace_back(N, I); 18420b57cec5SDimitry Andric 18430b57cec5SDimitry Andric ChildN.DFSNumber = ChildN.LowLink = NextDFSNumber++; 18440b57cec5SDimitry Andric N = &ChildN; 18450b57cec5SDimitry Andric I = GetBegin(*N); 18460b57cec5SDimitry Andric E = GetEnd(*N); 18470b57cec5SDimitry Andric continue; 18480b57cec5SDimitry Andric } 18490b57cec5SDimitry Andric 18500b57cec5SDimitry Andric // If the child has already been added to some child component, it 18510b57cec5SDimitry Andric // couldn't impact the low-link of this parent because it isn't 18520b57cec5SDimitry Andric // connected, and thus its low-link isn't relevant so skip it. 18530b57cec5SDimitry Andric if (ChildN.DFSNumber == -1) { 18540b57cec5SDimitry Andric ++I; 18550b57cec5SDimitry Andric continue; 18560b57cec5SDimitry Andric } 18570b57cec5SDimitry Andric 18580b57cec5SDimitry Andric // Track the lowest linked child as the lowest link for this node. 18590b57cec5SDimitry Andric assert(ChildN.LowLink > 0 && "Must have a positive low-link number!"); 18600b57cec5SDimitry Andric if (ChildN.LowLink < N->LowLink) 18610b57cec5SDimitry Andric N->LowLink = ChildN.LowLink; 18620b57cec5SDimitry Andric 18630b57cec5SDimitry Andric // Move to the next edge. 18640b57cec5SDimitry Andric ++I; 18650b57cec5SDimitry Andric } 18660b57cec5SDimitry Andric 18670b57cec5SDimitry Andric // We've finished processing N and its descendants, put it on our pending 18680b57cec5SDimitry Andric // SCC stack to eventually get merged into an SCC of nodes. 18690b57cec5SDimitry Andric PendingSCCStack.push_back(N); 18700b57cec5SDimitry Andric 18710b57cec5SDimitry Andric // If this node is linked to some lower entry, continue walking up the 18720b57cec5SDimitry Andric // stack. 18730b57cec5SDimitry Andric if (N->LowLink != N->DFSNumber) 18740b57cec5SDimitry Andric continue; 18750b57cec5SDimitry Andric 18760b57cec5SDimitry Andric // Otherwise, we've completed an SCC. Append it to our post order list of 18770b57cec5SDimitry Andric // SCCs. 18780b57cec5SDimitry Andric int RootDFSNumber = N->DFSNumber; 18790b57cec5SDimitry Andric // Find the range of the node stack by walking down until we pass the 18800b57cec5SDimitry Andric // root DFS number. 18810b57cec5SDimitry Andric auto SCCNodes = make_range( 18820b57cec5SDimitry Andric PendingSCCStack.rbegin(), 18830b57cec5SDimitry Andric find_if(reverse(PendingSCCStack), [RootDFSNumber](const Node *N) { 18840b57cec5SDimitry Andric return N->DFSNumber < RootDFSNumber; 18850b57cec5SDimitry Andric })); 18860b57cec5SDimitry Andric // Form a new SCC out of these nodes and then clear them off our pending 18870b57cec5SDimitry Andric // stack. 18880b57cec5SDimitry Andric FormSCC(SCCNodes); 18890b57cec5SDimitry Andric PendingSCCStack.erase(SCCNodes.end().base(), PendingSCCStack.end()); 18900b57cec5SDimitry Andric } while (!DFSStack.empty()); 18910b57cec5SDimitry Andric } 18920b57cec5SDimitry Andric } 18930b57cec5SDimitry Andric 18940b57cec5SDimitry Andric /// Build the internal SCCs for a RefSCC from a sequence of nodes. 18950b57cec5SDimitry Andric /// 18960b57cec5SDimitry Andric /// Appends the SCCs to the provided vector and updates the map with their 18970b57cec5SDimitry Andric /// indices. Both the vector and map must be empty when passed into this 18980b57cec5SDimitry Andric /// routine. 18990b57cec5SDimitry Andric void LazyCallGraph::buildSCCs(RefSCC &RC, node_stack_range Nodes) { 19000b57cec5SDimitry Andric assert(RC.SCCs.empty() && "Already built SCCs!"); 19010b57cec5SDimitry Andric assert(RC.SCCIndices.empty() && "Already mapped SCC indices!"); 19020b57cec5SDimitry Andric 19030b57cec5SDimitry Andric for (Node *N : Nodes) { 19040b57cec5SDimitry Andric assert(N->LowLink >= (*Nodes.begin())->LowLink && 19050b57cec5SDimitry Andric "We cannot have a low link in an SCC lower than its root on the " 19060b57cec5SDimitry Andric "stack!"); 19070b57cec5SDimitry Andric 19080b57cec5SDimitry Andric // This node will go into the next RefSCC, clear out its DFS and low link 19090b57cec5SDimitry Andric // as we scan. 19100b57cec5SDimitry Andric N->DFSNumber = N->LowLink = 0; 19110b57cec5SDimitry Andric } 19120b57cec5SDimitry Andric 19130b57cec5SDimitry Andric // Each RefSCC contains a DAG of the call SCCs. To build these, we do 19140b57cec5SDimitry Andric // a direct walk of the call edges using Tarjan's algorithm. We reuse the 19150b57cec5SDimitry Andric // internal storage as we won't need it for the outer graph's DFS any longer. 19160b57cec5SDimitry Andric buildGenericSCCs( 19170b57cec5SDimitry Andric Nodes, [](Node &N) { return N->call_begin(); }, 19180b57cec5SDimitry Andric [](Node &N) { return N->call_end(); }, 19190b57cec5SDimitry Andric [](EdgeSequence::call_iterator I) -> Node & { return I->getNode(); }, 19200b57cec5SDimitry Andric [this, &RC](node_stack_range Nodes) { 19210b57cec5SDimitry Andric RC.SCCs.push_back(createSCC(RC, Nodes)); 19220b57cec5SDimitry Andric for (Node &N : *RC.SCCs.back()) { 19230b57cec5SDimitry Andric N.DFSNumber = N.LowLink = -1; 19240b57cec5SDimitry Andric SCCMap[&N] = RC.SCCs.back(); 19250b57cec5SDimitry Andric } 19260b57cec5SDimitry Andric }); 19270b57cec5SDimitry Andric 19280b57cec5SDimitry Andric // Wire up the SCC indices. 1929bdd1243dSDimitry Andric for (int I = 0, Size = RC.SCCs.size(); I < Size; ++I) 1930bdd1243dSDimitry Andric RC.SCCIndices[RC.SCCs[I]] = I; 19310b57cec5SDimitry Andric } 19320b57cec5SDimitry Andric 19330b57cec5SDimitry Andric void LazyCallGraph::buildRefSCCs() { 19340b57cec5SDimitry Andric if (EntryEdges.empty() || !PostOrderRefSCCs.empty()) 19350b57cec5SDimitry Andric // RefSCCs are either non-existent or already built! 19360b57cec5SDimitry Andric return; 19370b57cec5SDimitry Andric 19380b57cec5SDimitry Andric assert(RefSCCIndices.empty() && "Already mapped RefSCC indices!"); 19390b57cec5SDimitry Andric 19400b57cec5SDimitry Andric SmallVector<Node *, 16> Roots; 19410b57cec5SDimitry Andric for (Edge &E : *this) 19420b57cec5SDimitry Andric Roots.push_back(&E.getNode()); 19430b57cec5SDimitry Andric 1944e8d8bef9SDimitry Andric // The roots will be iterated in order. 19450b57cec5SDimitry Andric buildGenericSCCs( 19460b57cec5SDimitry Andric Roots, 19470b57cec5SDimitry Andric [](Node &N) { 19480b57cec5SDimitry Andric // We need to populate each node as we begin to walk its edges. 19490b57cec5SDimitry Andric N.populate(); 19500b57cec5SDimitry Andric return N->begin(); 19510b57cec5SDimitry Andric }, 19520b57cec5SDimitry Andric [](Node &N) { return N->end(); }, 19530b57cec5SDimitry Andric [](EdgeSequence::iterator I) -> Node & { return I->getNode(); }, 19540b57cec5SDimitry Andric [this](node_stack_range Nodes) { 19550b57cec5SDimitry Andric RefSCC *NewRC = createRefSCC(*this); 19560b57cec5SDimitry Andric buildSCCs(*NewRC, Nodes); 19570b57cec5SDimitry Andric 19580b57cec5SDimitry Andric // Push the new node into the postorder list and remember its position 19590b57cec5SDimitry Andric // in the index map. 19600b57cec5SDimitry Andric bool Inserted = 1961bdd1243dSDimitry Andric RefSCCIndices.try_emplace(NewRC, PostOrderRefSCCs.size()).second; 19620b57cec5SDimitry Andric (void)Inserted; 19630b57cec5SDimitry Andric assert(Inserted && "Cannot already have this RefSCC in the index map!"); 19640b57cec5SDimitry Andric PostOrderRefSCCs.push_back(NewRC); 1965fe6060f1SDimitry Andric #ifdef EXPENSIVE_CHECKS 19660b57cec5SDimitry Andric NewRC->verify(); 19670b57cec5SDimitry Andric #endif 19680b57cec5SDimitry Andric }); 19690b57cec5SDimitry Andric } 19700b57cec5SDimitry Andric 1971349cc55cSDimitry Andric void LazyCallGraph::visitReferences(SmallVectorImpl<Constant *> &Worklist, 1972349cc55cSDimitry Andric SmallPtrSetImpl<Constant *> &Visited, 1973349cc55cSDimitry Andric function_ref<void(Function &)> Callback) { 1974349cc55cSDimitry Andric while (!Worklist.empty()) { 1975349cc55cSDimitry Andric Constant *C = Worklist.pop_back_val(); 1976349cc55cSDimitry Andric 1977349cc55cSDimitry Andric if (Function *F = dyn_cast<Function>(C)) { 1978349cc55cSDimitry Andric if (!F->isDeclaration()) 1979349cc55cSDimitry Andric Callback(*F); 1980349cc55cSDimitry Andric continue; 1981349cc55cSDimitry Andric } 1982349cc55cSDimitry Andric 1983349cc55cSDimitry Andric // blockaddresses are weird and don't participate in the call graph anyway, 1984349cc55cSDimitry Andric // skip them. 1985349cc55cSDimitry Andric if (isa<BlockAddress>(C)) 1986349cc55cSDimitry Andric continue; 1987349cc55cSDimitry Andric 1988349cc55cSDimitry Andric for (Value *Op : C->operand_values()) 1989349cc55cSDimitry Andric if (Visited.insert(cast<Constant>(Op)).second) 1990349cc55cSDimitry Andric Worklist.push_back(cast<Constant>(Op)); 1991349cc55cSDimitry Andric } 1992349cc55cSDimitry Andric } 1993349cc55cSDimitry Andric 19940b57cec5SDimitry Andric AnalysisKey LazyCallGraphAnalysis::Key; 19950b57cec5SDimitry Andric 19960b57cec5SDimitry Andric LazyCallGraphPrinterPass::LazyCallGraphPrinterPass(raw_ostream &OS) : OS(OS) {} 19970b57cec5SDimitry Andric 19980b57cec5SDimitry Andric static void printNode(raw_ostream &OS, LazyCallGraph::Node &N) { 19990b57cec5SDimitry Andric OS << " Edges in function: " << N.getFunction().getName() << "\n"; 20000b57cec5SDimitry Andric for (LazyCallGraph::Edge &E : N.populate()) 20010b57cec5SDimitry Andric OS << " " << (E.isCall() ? "call" : "ref ") << " -> " 20020b57cec5SDimitry Andric << E.getFunction().getName() << "\n"; 20030b57cec5SDimitry Andric 20040b57cec5SDimitry Andric OS << "\n"; 20050b57cec5SDimitry Andric } 20060b57cec5SDimitry Andric 20070b57cec5SDimitry Andric static void printSCC(raw_ostream &OS, LazyCallGraph::SCC &C) { 20088bcb0991SDimitry Andric OS << " SCC with " << C.size() << " functions:\n"; 20090b57cec5SDimitry Andric 20100b57cec5SDimitry Andric for (LazyCallGraph::Node &N : C) 20110b57cec5SDimitry Andric OS << " " << N.getFunction().getName() << "\n"; 20120b57cec5SDimitry Andric } 20130b57cec5SDimitry Andric 20140b57cec5SDimitry Andric static void printRefSCC(raw_ostream &OS, LazyCallGraph::RefSCC &C) { 20158bcb0991SDimitry Andric OS << " RefSCC with " << C.size() << " call SCCs:\n"; 20160b57cec5SDimitry Andric 20170b57cec5SDimitry Andric for (LazyCallGraph::SCC &InnerC : C) 20180b57cec5SDimitry Andric printSCC(OS, InnerC); 20190b57cec5SDimitry Andric 20200b57cec5SDimitry Andric OS << "\n"; 20210b57cec5SDimitry Andric } 20220b57cec5SDimitry Andric 20230b57cec5SDimitry Andric PreservedAnalyses LazyCallGraphPrinterPass::run(Module &M, 20240b57cec5SDimitry Andric ModuleAnalysisManager &AM) { 20250b57cec5SDimitry Andric LazyCallGraph &G = AM.getResult<LazyCallGraphAnalysis>(M); 20260b57cec5SDimitry Andric 20270b57cec5SDimitry Andric OS << "Printing the call graph for module: " << M.getModuleIdentifier() 20280b57cec5SDimitry Andric << "\n\n"; 20290b57cec5SDimitry Andric 20300b57cec5SDimitry Andric for (Function &F : M) 20310b57cec5SDimitry Andric printNode(OS, G.get(F)); 20320b57cec5SDimitry Andric 20330b57cec5SDimitry Andric G.buildRefSCCs(); 20340b57cec5SDimitry Andric for (LazyCallGraph::RefSCC &C : G.postorder_ref_sccs()) 20350b57cec5SDimitry Andric printRefSCC(OS, C); 20360b57cec5SDimitry Andric 20370b57cec5SDimitry Andric return PreservedAnalyses::all(); 20380b57cec5SDimitry Andric } 20390b57cec5SDimitry Andric 20400b57cec5SDimitry Andric LazyCallGraphDOTPrinterPass::LazyCallGraphDOTPrinterPass(raw_ostream &OS) 20410b57cec5SDimitry Andric : OS(OS) {} 20420b57cec5SDimitry Andric 20430b57cec5SDimitry Andric static void printNodeDOT(raw_ostream &OS, LazyCallGraph::Node &N) { 20445ffd83dbSDimitry Andric std::string Name = 20455ffd83dbSDimitry Andric "\"" + DOT::EscapeString(std::string(N.getFunction().getName())) + "\""; 20460b57cec5SDimitry Andric 20470b57cec5SDimitry Andric for (LazyCallGraph::Edge &E : N.populate()) { 20480b57cec5SDimitry Andric OS << " " << Name << " -> \"" 20495ffd83dbSDimitry Andric << DOT::EscapeString(std::string(E.getFunction().getName())) << "\""; 20500b57cec5SDimitry Andric if (!E.isCall()) // It is a ref edge. 20510b57cec5SDimitry Andric OS << " [style=dashed,label=\"ref\"]"; 20520b57cec5SDimitry Andric OS << ";\n"; 20530b57cec5SDimitry Andric } 20540b57cec5SDimitry Andric 20550b57cec5SDimitry Andric OS << "\n"; 20560b57cec5SDimitry Andric } 20570b57cec5SDimitry Andric 20580b57cec5SDimitry Andric PreservedAnalyses LazyCallGraphDOTPrinterPass::run(Module &M, 20590b57cec5SDimitry Andric ModuleAnalysisManager &AM) { 20600b57cec5SDimitry Andric LazyCallGraph &G = AM.getResult<LazyCallGraphAnalysis>(M); 20610b57cec5SDimitry Andric 20620b57cec5SDimitry Andric OS << "digraph \"" << DOT::EscapeString(M.getModuleIdentifier()) << "\" {\n"; 20630b57cec5SDimitry Andric 20640b57cec5SDimitry Andric for (Function &F : M) 20650b57cec5SDimitry Andric printNodeDOT(OS, G.get(F)); 20660b57cec5SDimitry Andric 20670b57cec5SDimitry Andric OS << "}\n"; 20680b57cec5SDimitry Andric 20690b57cec5SDimitry Andric return PreservedAnalyses::all(); 20700b57cec5SDimitry Andric } 2071