1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements routines for folding instructions into simpler forms 10 // that do not require creating new instructions. This does constant folding 11 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either 12 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value 13 // ("and i32 %x, %x" -> "%x"). All operands are assumed to have already been 14 // simplified: This is usually true and assuming it simplifies the logic (if 15 // they have not been simplified then results are correct but maybe suboptimal). 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/AliasAnalysis.h" 23 #include "llvm/Analysis/AssumptionCache.h" 24 #include "llvm/Analysis/CaptureTracking.h" 25 #include "llvm/Analysis/CmpInstAnalysis.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/LoopAnalysisManager.h" 28 #include "llvm/Analysis/MemoryBuiltins.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/Analysis/VectorUtils.h" 31 #include "llvm/IR/ConstantRange.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/Dominators.h" 34 #include "llvm/IR/GetElementPtrTypeIterator.h" 35 #include "llvm/IR/GlobalAlias.h" 36 #include "llvm/IR/InstrTypes.h" 37 #include "llvm/IR/Instructions.h" 38 #include "llvm/IR/Operator.h" 39 #include "llvm/IR/PatternMatch.h" 40 #include "llvm/IR/ValueHandle.h" 41 #include "llvm/Support/KnownBits.h" 42 #include <algorithm> 43 using namespace llvm; 44 using namespace llvm::PatternMatch; 45 46 #define DEBUG_TYPE "instsimplify" 47 48 enum { RecursionLimit = 3 }; 49 50 STATISTIC(NumExpand, "Number of expansions"); 51 STATISTIC(NumReassoc, "Number of reassociations"); 52 53 static Value *SimplifyAndInst(Value *, Value *, const SimplifyQuery &, unsigned); 54 static Value *simplifyUnOp(unsigned, Value *, const SimplifyQuery &, unsigned); 55 static Value *simplifyFPUnOp(unsigned, Value *, const FastMathFlags &, 56 const SimplifyQuery &, unsigned); 57 static Value *SimplifyBinOp(unsigned, Value *, Value *, const SimplifyQuery &, 58 unsigned); 59 static Value *SimplifyBinOp(unsigned, Value *, Value *, const FastMathFlags &, 60 const SimplifyQuery &, unsigned); 61 static Value *SimplifyCmpInst(unsigned, Value *, Value *, const SimplifyQuery &, 62 unsigned); 63 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 64 const SimplifyQuery &Q, unsigned MaxRecurse); 65 static Value *SimplifyOrInst(Value *, Value *, const SimplifyQuery &, unsigned); 66 static Value *SimplifyXorInst(Value *, Value *, const SimplifyQuery &, unsigned); 67 static Value *SimplifyCastInst(unsigned, Value *, Type *, 68 const SimplifyQuery &, unsigned); 69 static Value *SimplifyGEPInst(Type *, ArrayRef<Value *>, const SimplifyQuery &, 70 unsigned); 71 72 static Value *foldSelectWithBinaryOp(Value *Cond, Value *TrueVal, 73 Value *FalseVal) { 74 BinaryOperator::BinaryOps BinOpCode; 75 if (auto *BO = dyn_cast<BinaryOperator>(Cond)) 76 BinOpCode = BO->getOpcode(); 77 else 78 return nullptr; 79 80 CmpInst::Predicate ExpectedPred, Pred1, Pred2; 81 if (BinOpCode == BinaryOperator::Or) { 82 ExpectedPred = ICmpInst::ICMP_NE; 83 } else if (BinOpCode == BinaryOperator::And) { 84 ExpectedPred = ICmpInst::ICMP_EQ; 85 } else 86 return nullptr; 87 88 // %A = icmp eq %TV, %FV 89 // %B = icmp eq %X, %Y (and one of these is a select operand) 90 // %C = and %A, %B 91 // %D = select %C, %TV, %FV 92 // --> 93 // %FV 94 95 // %A = icmp ne %TV, %FV 96 // %B = icmp ne %X, %Y (and one of these is a select operand) 97 // %C = or %A, %B 98 // %D = select %C, %TV, %FV 99 // --> 100 // %TV 101 Value *X, *Y; 102 if (!match(Cond, m_c_BinOp(m_c_ICmp(Pred1, m_Specific(TrueVal), 103 m_Specific(FalseVal)), 104 m_ICmp(Pred2, m_Value(X), m_Value(Y)))) || 105 Pred1 != Pred2 || Pred1 != ExpectedPred) 106 return nullptr; 107 108 if (X == TrueVal || X == FalseVal || Y == TrueVal || Y == FalseVal) 109 return BinOpCode == BinaryOperator::Or ? TrueVal : FalseVal; 110 111 return nullptr; 112 } 113 114 /// For a boolean type or a vector of boolean type, return false or a vector 115 /// with every element false. 116 static Constant *getFalse(Type *Ty) { 117 return ConstantInt::getFalse(Ty); 118 } 119 120 /// For a boolean type or a vector of boolean type, return true or a vector 121 /// with every element true. 122 static Constant *getTrue(Type *Ty) { 123 return ConstantInt::getTrue(Ty); 124 } 125 126 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"? 127 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS, 128 Value *RHS) { 129 CmpInst *Cmp = dyn_cast<CmpInst>(V); 130 if (!Cmp) 131 return false; 132 CmpInst::Predicate CPred = Cmp->getPredicate(); 133 Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1); 134 if (CPred == Pred && CLHS == LHS && CRHS == RHS) 135 return true; 136 return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS && 137 CRHS == LHS; 138 } 139 140 /// Does the given value dominate the specified phi node? 141 static bool valueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) { 142 Instruction *I = dyn_cast<Instruction>(V); 143 if (!I) 144 // Arguments and constants dominate all instructions. 145 return true; 146 147 // If we are processing instructions (and/or basic blocks) that have not been 148 // fully added to a function, the parent nodes may still be null. Simply 149 // return the conservative answer in these cases. 150 if (!I->getParent() || !P->getParent() || !I->getFunction()) 151 return false; 152 153 // If we have a DominatorTree then do a precise test. 154 if (DT) 155 return DT->dominates(I, P); 156 157 // Otherwise, if the instruction is in the entry block and is not an invoke, 158 // then it obviously dominates all phi nodes. 159 if (I->getParent() == &I->getFunction()->getEntryBlock() && 160 !isa<InvokeInst>(I)) 161 return true; 162 163 return false; 164 } 165 166 /// Simplify "A op (B op' C)" by distributing op over op', turning it into 167 /// "(A op B) op' (A op C)". Here "op" is given by Opcode and "op'" is 168 /// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS. 169 /// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)". 170 /// Returns the simplified value, or null if no simplification was performed. 171 static Value *ExpandBinOp(Instruction::BinaryOps Opcode, Value *LHS, Value *RHS, 172 Instruction::BinaryOps OpcodeToExpand, 173 const SimplifyQuery &Q, unsigned MaxRecurse) { 174 // Recursion is always used, so bail out at once if we already hit the limit. 175 if (!MaxRecurse--) 176 return nullptr; 177 178 // Check whether the expression has the form "(A op' B) op C". 179 if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS)) 180 if (Op0->getOpcode() == OpcodeToExpand) { 181 // It does! Try turning it into "(A op C) op' (B op C)". 182 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS; 183 // Do "A op C" and "B op C" both simplify? 184 if (Value *L = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) 185 if (Value *R = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { 186 // They do! Return "L op' R" if it simplifies or is already available. 187 // If "L op' R" equals "A op' B" then "L op' R" is just the LHS. 188 if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand) 189 && L == B && R == A)) { 190 ++NumExpand; 191 return LHS; 192 } 193 // Otherwise return "L op' R" if it simplifies. 194 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) { 195 ++NumExpand; 196 return V; 197 } 198 } 199 } 200 201 // Check whether the expression has the form "A op (B op' C)". 202 if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS)) 203 if (Op1->getOpcode() == OpcodeToExpand) { 204 // It does! Try turning it into "(A op B) op' (A op C)". 205 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1); 206 // Do "A op B" and "A op C" both simplify? 207 if (Value *L = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) 208 if (Value *R = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) { 209 // They do! Return "L op' R" if it simplifies or is already available. 210 // If "L op' R" equals "B op' C" then "L op' R" is just the RHS. 211 if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand) 212 && L == C && R == B)) { 213 ++NumExpand; 214 return RHS; 215 } 216 // Otherwise return "L op' R" if it simplifies. 217 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) { 218 ++NumExpand; 219 return V; 220 } 221 } 222 } 223 224 return nullptr; 225 } 226 227 /// Generic simplifications for associative binary operations. 228 /// Returns the simpler value, or null if none was found. 229 static Value *SimplifyAssociativeBinOp(Instruction::BinaryOps Opcode, 230 Value *LHS, Value *RHS, 231 const SimplifyQuery &Q, 232 unsigned MaxRecurse) { 233 assert(Instruction::isAssociative(Opcode) && "Not an associative operation!"); 234 235 // Recursion is always used, so bail out at once if we already hit the limit. 236 if (!MaxRecurse--) 237 return nullptr; 238 239 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 240 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 241 242 // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely. 243 if (Op0 && Op0->getOpcode() == Opcode) { 244 Value *A = Op0->getOperand(0); 245 Value *B = Op0->getOperand(1); 246 Value *C = RHS; 247 248 // Does "B op C" simplify? 249 if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { 250 // It does! Return "A op V" if it simplifies or is already available. 251 // If V equals B then "A op V" is just the LHS. 252 if (V == B) return LHS; 253 // Otherwise return "A op V" if it simplifies. 254 if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) { 255 ++NumReassoc; 256 return W; 257 } 258 } 259 } 260 261 // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely. 262 if (Op1 && Op1->getOpcode() == Opcode) { 263 Value *A = LHS; 264 Value *B = Op1->getOperand(0); 265 Value *C = Op1->getOperand(1); 266 267 // Does "A op B" simplify? 268 if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) { 269 // It does! Return "V op C" if it simplifies or is already available. 270 // If V equals B then "V op C" is just the RHS. 271 if (V == B) return RHS; 272 // Otherwise return "V op C" if it simplifies. 273 if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) { 274 ++NumReassoc; 275 return W; 276 } 277 } 278 } 279 280 // The remaining transforms require commutativity as well as associativity. 281 if (!Instruction::isCommutative(Opcode)) 282 return nullptr; 283 284 // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely. 285 if (Op0 && Op0->getOpcode() == Opcode) { 286 Value *A = Op0->getOperand(0); 287 Value *B = Op0->getOperand(1); 288 Value *C = RHS; 289 290 // Does "C op A" simplify? 291 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 292 // It does! Return "V op B" if it simplifies or is already available. 293 // If V equals A then "V op B" is just the LHS. 294 if (V == A) return LHS; 295 // Otherwise return "V op B" if it simplifies. 296 if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) { 297 ++NumReassoc; 298 return W; 299 } 300 } 301 } 302 303 // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely. 304 if (Op1 && Op1->getOpcode() == Opcode) { 305 Value *A = LHS; 306 Value *B = Op1->getOperand(0); 307 Value *C = Op1->getOperand(1); 308 309 // Does "C op A" simplify? 310 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 311 // It does! Return "B op V" if it simplifies or is already available. 312 // If V equals C then "B op V" is just the RHS. 313 if (V == C) return RHS; 314 // Otherwise return "B op V" if it simplifies. 315 if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) { 316 ++NumReassoc; 317 return W; 318 } 319 } 320 } 321 322 return nullptr; 323 } 324 325 /// In the case of a binary operation with a select instruction as an operand, 326 /// try to simplify the binop by seeing whether evaluating it on both branches 327 /// of the select results in the same value. Returns the common value if so, 328 /// otherwise returns null. 329 static Value *ThreadBinOpOverSelect(Instruction::BinaryOps Opcode, Value *LHS, 330 Value *RHS, const SimplifyQuery &Q, 331 unsigned MaxRecurse) { 332 // Recursion is always used, so bail out at once if we already hit the limit. 333 if (!MaxRecurse--) 334 return nullptr; 335 336 SelectInst *SI; 337 if (isa<SelectInst>(LHS)) { 338 SI = cast<SelectInst>(LHS); 339 } else { 340 assert(isa<SelectInst>(RHS) && "No select instruction operand!"); 341 SI = cast<SelectInst>(RHS); 342 } 343 344 // Evaluate the BinOp on the true and false branches of the select. 345 Value *TV; 346 Value *FV; 347 if (SI == LHS) { 348 TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse); 349 FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse); 350 } else { 351 TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse); 352 FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse); 353 } 354 355 // If they simplified to the same value, then return the common value. 356 // If they both failed to simplify then return null. 357 if (TV == FV) 358 return TV; 359 360 // If one branch simplified to undef, return the other one. 361 if (TV && isa<UndefValue>(TV)) 362 return FV; 363 if (FV && isa<UndefValue>(FV)) 364 return TV; 365 366 // If applying the operation did not change the true and false select values, 367 // then the result of the binop is the select itself. 368 if (TV == SI->getTrueValue() && FV == SI->getFalseValue()) 369 return SI; 370 371 // If one branch simplified and the other did not, and the simplified 372 // value is equal to the unsimplified one, return the simplified value. 373 // For example, select (cond, X, X & Z) & Z -> X & Z. 374 if ((FV && !TV) || (TV && !FV)) { 375 // Check that the simplified value has the form "X op Y" where "op" is the 376 // same as the original operation. 377 Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV); 378 if (Simplified && Simplified->getOpcode() == unsigned(Opcode)) { 379 // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS". 380 // We already know that "op" is the same as for the simplified value. See 381 // if the operands match too. If so, return the simplified value. 382 Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue(); 383 Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS; 384 Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch; 385 if (Simplified->getOperand(0) == UnsimplifiedLHS && 386 Simplified->getOperand(1) == UnsimplifiedRHS) 387 return Simplified; 388 if (Simplified->isCommutative() && 389 Simplified->getOperand(1) == UnsimplifiedLHS && 390 Simplified->getOperand(0) == UnsimplifiedRHS) 391 return Simplified; 392 } 393 } 394 395 return nullptr; 396 } 397 398 /// In the case of a comparison with a select instruction, try to simplify the 399 /// comparison by seeing whether both branches of the select result in the same 400 /// value. Returns the common value if so, otherwise returns null. 401 static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS, 402 Value *RHS, const SimplifyQuery &Q, 403 unsigned MaxRecurse) { 404 // Recursion is always used, so bail out at once if we already hit the limit. 405 if (!MaxRecurse--) 406 return nullptr; 407 408 // Make sure the select is on the LHS. 409 if (!isa<SelectInst>(LHS)) { 410 std::swap(LHS, RHS); 411 Pred = CmpInst::getSwappedPredicate(Pred); 412 } 413 assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!"); 414 SelectInst *SI = cast<SelectInst>(LHS); 415 Value *Cond = SI->getCondition(); 416 Value *TV = SI->getTrueValue(); 417 Value *FV = SI->getFalseValue(); 418 419 // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it. 420 // Does "cmp TV, RHS" simplify? 421 Value *TCmp = SimplifyCmpInst(Pred, TV, RHS, Q, MaxRecurse); 422 if (TCmp == Cond) { 423 // It not only simplified, it simplified to the select condition. Replace 424 // it with 'true'. 425 TCmp = getTrue(Cond->getType()); 426 } else if (!TCmp) { 427 // It didn't simplify. However if "cmp TV, RHS" is equal to the select 428 // condition then we can replace it with 'true'. Otherwise give up. 429 if (!isSameCompare(Cond, Pred, TV, RHS)) 430 return nullptr; 431 TCmp = getTrue(Cond->getType()); 432 } 433 434 // Does "cmp FV, RHS" simplify? 435 Value *FCmp = SimplifyCmpInst(Pred, FV, RHS, Q, MaxRecurse); 436 if (FCmp == Cond) { 437 // It not only simplified, it simplified to the select condition. Replace 438 // it with 'false'. 439 FCmp = getFalse(Cond->getType()); 440 } else if (!FCmp) { 441 // It didn't simplify. However if "cmp FV, RHS" is equal to the select 442 // condition then we can replace it with 'false'. Otherwise give up. 443 if (!isSameCompare(Cond, Pred, FV, RHS)) 444 return nullptr; 445 FCmp = getFalse(Cond->getType()); 446 } 447 448 // If both sides simplified to the same value, then use it as the result of 449 // the original comparison. 450 if (TCmp == FCmp) 451 return TCmp; 452 453 // The remaining cases only make sense if the select condition has the same 454 // type as the result of the comparison, so bail out if this is not so. 455 if (Cond->getType()->isVectorTy() != RHS->getType()->isVectorTy()) 456 return nullptr; 457 // If the false value simplified to false, then the result of the compare 458 // is equal to "Cond && TCmp". This also catches the case when the false 459 // value simplified to false and the true value to true, returning "Cond". 460 if (match(FCmp, m_Zero())) 461 if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse)) 462 return V; 463 // If the true value simplified to true, then the result of the compare 464 // is equal to "Cond || FCmp". 465 if (match(TCmp, m_One())) 466 if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse)) 467 return V; 468 // Finally, if the false value simplified to true and the true value to 469 // false, then the result of the compare is equal to "!Cond". 470 if (match(FCmp, m_One()) && match(TCmp, m_Zero())) 471 if (Value *V = 472 SimplifyXorInst(Cond, Constant::getAllOnesValue(Cond->getType()), 473 Q, MaxRecurse)) 474 return V; 475 476 return nullptr; 477 } 478 479 /// In the case of a binary operation with an operand that is a PHI instruction, 480 /// try to simplify the binop by seeing whether evaluating it on the incoming 481 /// phi values yields the same result for every value. If so returns the common 482 /// value, otherwise returns null. 483 static Value *ThreadBinOpOverPHI(Instruction::BinaryOps Opcode, Value *LHS, 484 Value *RHS, const SimplifyQuery &Q, 485 unsigned MaxRecurse) { 486 // Recursion is always used, so bail out at once if we already hit the limit. 487 if (!MaxRecurse--) 488 return nullptr; 489 490 PHINode *PI; 491 if (isa<PHINode>(LHS)) { 492 PI = cast<PHINode>(LHS); 493 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 494 if (!valueDominatesPHI(RHS, PI, Q.DT)) 495 return nullptr; 496 } else { 497 assert(isa<PHINode>(RHS) && "No PHI instruction operand!"); 498 PI = cast<PHINode>(RHS); 499 // Bail out if LHS and the phi may be mutually interdependent due to a loop. 500 if (!valueDominatesPHI(LHS, PI, Q.DT)) 501 return nullptr; 502 } 503 504 // Evaluate the BinOp on the incoming phi values. 505 Value *CommonValue = nullptr; 506 for (Value *Incoming : PI->incoming_values()) { 507 // If the incoming value is the phi node itself, it can safely be skipped. 508 if (Incoming == PI) continue; 509 Value *V = PI == LHS ? 510 SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) : 511 SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse); 512 // If the operation failed to simplify, or simplified to a different value 513 // to previously, then give up. 514 if (!V || (CommonValue && V != CommonValue)) 515 return nullptr; 516 CommonValue = V; 517 } 518 519 return CommonValue; 520 } 521 522 /// In the case of a comparison with a PHI instruction, try to simplify the 523 /// comparison by seeing whether comparing with all of the incoming phi values 524 /// yields the same result every time. If so returns the common result, 525 /// otherwise returns null. 526 static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS, 527 const SimplifyQuery &Q, unsigned MaxRecurse) { 528 // Recursion is always used, so bail out at once if we already hit the limit. 529 if (!MaxRecurse--) 530 return nullptr; 531 532 // Make sure the phi is on the LHS. 533 if (!isa<PHINode>(LHS)) { 534 std::swap(LHS, RHS); 535 Pred = CmpInst::getSwappedPredicate(Pred); 536 } 537 assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!"); 538 PHINode *PI = cast<PHINode>(LHS); 539 540 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 541 if (!valueDominatesPHI(RHS, PI, Q.DT)) 542 return nullptr; 543 544 // Evaluate the BinOp on the incoming phi values. 545 Value *CommonValue = nullptr; 546 for (Value *Incoming : PI->incoming_values()) { 547 // If the incoming value is the phi node itself, it can safely be skipped. 548 if (Incoming == PI) continue; 549 Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q, MaxRecurse); 550 // If the operation failed to simplify, or simplified to a different value 551 // to previously, then give up. 552 if (!V || (CommonValue && V != CommonValue)) 553 return nullptr; 554 CommonValue = V; 555 } 556 557 return CommonValue; 558 } 559 560 static Constant *foldOrCommuteConstant(Instruction::BinaryOps Opcode, 561 Value *&Op0, Value *&Op1, 562 const SimplifyQuery &Q) { 563 if (auto *CLHS = dyn_cast<Constant>(Op0)) { 564 if (auto *CRHS = dyn_cast<Constant>(Op1)) 565 return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL); 566 567 // Canonicalize the constant to the RHS if this is a commutative operation. 568 if (Instruction::isCommutative(Opcode)) 569 std::swap(Op0, Op1); 570 } 571 return nullptr; 572 } 573 574 /// Given operands for an Add, see if we can fold the result. 575 /// If not, this returns null. 576 static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 577 const SimplifyQuery &Q, unsigned MaxRecurse) { 578 if (Constant *C = foldOrCommuteConstant(Instruction::Add, Op0, Op1, Q)) 579 return C; 580 581 // X + undef -> undef 582 if (match(Op1, m_Undef())) 583 return Op1; 584 585 // X + 0 -> X 586 if (match(Op1, m_Zero())) 587 return Op0; 588 589 // If two operands are negative, return 0. 590 if (isKnownNegation(Op0, Op1)) 591 return Constant::getNullValue(Op0->getType()); 592 593 // X + (Y - X) -> Y 594 // (Y - X) + X -> Y 595 // Eg: X + -X -> 0 596 Value *Y = nullptr; 597 if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) || 598 match(Op0, m_Sub(m_Value(Y), m_Specific(Op1)))) 599 return Y; 600 601 // X + ~X -> -1 since ~X = -X-1 602 Type *Ty = Op0->getType(); 603 if (match(Op0, m_Not(m_Specific(Op1))) || 604 match(Op1, m_Not(m_Specific(Op0)))) 605 return Constant::getAllOnesValue(Ty); 606 607 // add nsw/nuw (xor Y, signmask), signmask --> Y 608 // The no-wrapping add guarantees that the top bit will be set by the add. 609 // Therefore, the xor must be clearing the already set sign bit of Y. 610 if ((IsNSW || IsNUW) && match(Op1, m_SignMask()) && 611 match(Op0, m_Xor(m_Value(Y), m_SignMask()))) 612 return Y; 613 614 // add nuw %x, -1 -> -1, because %x can only be 0. 615 if (IsNUW && match(Op1, m_AllOnes())) 616 return Op1; // Which is -1. 617 618 /// i1 add -> xor. 619 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 620 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 621 return V; 622 623 // Try some generic simplifications for associative operations. 624 if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q, 625 MaxRecurse)) 626 return V; 627 628 // Threading Add over selects and phi nodes is pointless, so don't bother. 629 // Threading over the select in "A + select(cond, B, C)" means evaluating 630 // "A+B" and "A+C" and seeing if they are equal; but they are equal if and 631 // only if B and C are equal. If B and C are equal then (since we assume 632 // that operands have already been simplified) "select(cond, B, C)" should 633 // have been simplified to the common value of B and C already. Analysing 634 // "A+B" and "A+C" thus gains nothing, but costs compile time. Similarly 635 // for threading over phi nodes. 636 637 return nullptr; 638 } 639 640 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 641 const SimplifyQuery &Query) { 642 return ::SimplifyAddInst(Op0, Op1, IsNSW, IsNUW, Query, RecursionLimit); 643 } 644 645 /// Compute the base pointer and cumulative constant offsets for V. 646 /// 647 /// This strips all constant offsets off of V, leaving it the base pointer, and 648 /// accumulates the total constant offset applied in the returned constant. It 649 /// returns 0 if V is not a pointer, and returns the constant '0' if there are 650 /// no constant offsets applied. 651 /// 652 /// This is very similar to GetPointerBaseWithConstantOffset except it doesn't 653 /// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc. 654 /// folding. 655 static Constant *stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V, 656 bool AllowNonInbounds = false) { 657 assert(V->getType()->isPtrOrPtrVectorTy()); 658 659 Type *IntPtrTy = DL.getIntPtrType(V->getType())->getScalarType(); 660 APInt Offset = APInt::getNullValue(IntPtrTy->getIntegerBitWidth()); 661 662 V = V->stripAndAccumulateConstantOffsets(DL, Offset, AllowNonInbounds); 663 // As that strip may trace through `addrspacecast`, need to sext or trunc 664 // the offset calculated. 665 IntPtrTy = DL.getIntPtrType(V->getType())->getScalarType(); 666 Offset = Offset.sextOrTrunc(IntPtrTy->getIntegerBitWidth()); 667 668 Constant *OffsetIntPtr = ConstantInt::get(IntPtrTy, Offset); 669 if (V->getType()->isVectorTy()) 670 return ConstantVector::getSplat(V->getType()->getVectorNumElements(), 671 OffsetIntPtr); 672 return OffsetIntPtr; 673 } 674 675 /// Compute the constant difference between two pointer values. 676 /// If the difference is not a constant, returns zero. 677 static Constant *computePointerDifference(const DataLayout &DL, Value *LHS, 678 Value *RHS) { 679 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 680 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 681 682 // If LHS and RHS are not related via constant offsets to the same base 683 // value, there is nothing we can do here. 684 if (LHS != RHS) 685 return nullptr; 686 687 // Otherwise, the difference of LHS - RHS can be computed as: 688 // LHS - RHS 689 // = (LHSOffset + Base) - (RHSOffset + Base) 690 // = LHSOffset - RHSOffset 691 return ConstantExpr::getSub(LHSOffset, RHSOffset); 692 } 693 694 /// Given operands for a Sub, see if we can fold the result. 695 /// If not, this returns null. 696 static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 697 const SimplifyQuery &Q, unsigned MaxRecurse) { 698 if (Constant *C = foldOrCommuteConstant(Instruction::Sub, Op0, Op1, Q)) 699 return C; 700 701 // X - undef -> undef 702 // undef - X -> undef 703 if (match(Op0, m_Undef()) || match(Op1, m_Undef())) 704 return UndefValue::get(Op0->getType()); 705 706 // X - 0 -> X 707 if (match(Op1, m_Zero())) 708 return Op0; 709 710 // X - X -> 0 711 if (Op0 == Op1) 712 return Constant::getNullValue(Op0->getType()); 713 714 // Is this a negation? 715 if (match(Op0, m_Zero())) { 716 // 0 - X -> 0 if the sub is NUW. 717 if (isNUW) 718 return Constant::getNullValue(Op0->getType()); 719 720 KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 721 if (Known.Zero.isMaxSignedValue()) { 722 // Op1 is either 0 or the minimum signed value. If the sub is NSW, then 723 // Op1 must be 0 because negating the minimum signed value is undefined. 724 if (isNSW) 725 return Constant::getNullValue(Op0->getType()); 726 727 // 0 - X -> X if X is 0 or the minimum signed value. 728 return Op1; 729 } 730 } 731 732 // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies. 733 // For example, (X + Y) - Y -> X; (Y + X) - Y -> X 734 Value *X = nullptr, *Y = nullptr, *Z = Op1; 735 if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z 736 // See if "V === Y - Z" simplifies. 737 if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1)) 738 // It does! Now see if "X + V" simplifies. 739 if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) { 740 // It does, we successfully reassociated! 741 ++NumReassoc; 742 return W; 743 } 744 // See if "V === X - Z" simplifies. 745 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 746 // It does! Now see if "Y + V" simplifies. 747 if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) { 748 // It does, we successfully reassociated! 749 ++NumReassoc; 750 return W; 751 } 752 } 753 754 // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies. 755 // For example, X - (X + 1) -> -1 756 X = Op0; 757 if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z) 758 // See if "V === X - Y" simplifies. 759 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 760 // It does! Now see if "V - Z" simplifies. 761 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) { 762 // It does, we successfully reassociated! 763 ++NumReassoc; 764 return W; 765 } 766 // See if "V === X - Z" simplifies. 767 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 768 // It does! Now see if "V - Y" simplifies. 769 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) { 770 // It does, we successfully reassociated! 771 ++NumReassoc; 772 return W; 773 } 774 } 775 776 // Z - (X - Y) -> (Z - X) + Y if everything simplifies. 777 // For example, X - (X - Y) -> Y. 778 Z = Op0; 779 if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y) 780 // See if "V === Z - X" simplifies. 781 if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1)) 782 // It does! Now see if "V + Y" simplifies. 783 if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) { 784 // It does, we successfully reassociated! 785 ++NumReassoc; 786 return W; 787 } 788 789 // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies. 790 if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) && 791 match(Op1, m_Trunc(m_Value(Y)))) 792 if (X->getType() == Y->getType()) 793 // See if "V === X - Y" simplifies. 794 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 795 // It does! Now see if "trunc V" simplifies. 796 if (Value *W = SimplifyCastInst(Instruction::Trunc, V, Op0->getType(), 797 Q, MaxRecurse - 1)) 798 // It does, return the simplified "trunc V". 799 return W; 800 801 // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...). 802 if (match(Op0, m_PtrToInt(m_Value(X))) && 803 match(Op1, m_PtrToInt(m_Value(Y)))) 804 if (Constant *Result = computePointerDifference(Q.DL, X, Y)) 805 return ConstantExpr::getIntegerCast(Result, Op0->getType(), true); 806 807 // i1 sub -> xor. 808 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 809 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 810 return V; 811 812 // Threading Sub over selects and phi nodes is pointless, so don't bother. 813 // Threading over the select in "A - select(cond, B, C)" means evaluating 814 // "A-B" and "A-C" and seeing if they are equal; but they are equal if and 815 // only if B and C are equal. If B and C are equal then (since we assume 816 // that operands have already been simplified) "select(cond, B, C)" should 817 // have been simplified to the common value of B and C already. Analysing 818 // "A-B" and "A-C" thus gains nothing, but costs compile time. Similarly 819 // for threading over phi nodes. 820 821 return nullptr; 822 } 823 824 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 825 const SimplifyQuery &Q) { 826 return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit); 827 } 828 829 /// Given operands for a Mul, see if we can fold the result. 830 /// If not, this returns null. 831 static Value *SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 832 unsigned MaxRecurse) { 833 if (Constant *C = foldOrCommuteConstant(Instruction::Mul, Op0, Op1, Q)) 834 return C; 835 836 // X * undef -> 0 837 // X * 0 -> 0 838 if (match(Op1, m_CombineOr(m_Undef(), m_Zero()))) 839 return Constant::getNullValue(Op0->getType()); 840 841 // X * 1 -> X 842 if (match(Op1, m_One())) 843 return Op0; 844 845 // (X / Y) * Y -> X if the division is exact. 846 Value *X = nullptr; 847 if (Q.IIQ.UseInstrInfo && 848 (match(Op0, 849 m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y 850 match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0)))))) // Y * (X / Y) 851 return X; 852 853 // i1 mul -> and. 854 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 855 if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1)) 856 return V; 857 858 // Try some generic simplifications for associative operations. 859 if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q, 860 MaxRecurse)) 861 return V; 862 863 // Mul distributes over Add. Try some generic simplifications based on this. 864 if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add, 865 Q, MaxRecurse)) 866 return V; 867 868 // If the operation is with the result of a select instruction, check whether 869 // operating on either branch of the select always yields the same value. 870 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 871 if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q, 872 MaxRecurse)) 873 return V; 874 875 // If the operation is with the result of a phi instruction, check whether 876 // operating on all incoming values of the phi always yields the same value. 877 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 878 if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q, 879 MaxRecurse)) 880 return V; 881 882 return nullptr; 883 } 884 885 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 886 return ::SimplifyMulInst(Op0, Op1, Q, RecursionLimit); 887 } 888 889 /// Check for common or similar folds of integer division or integer remainder. 890 /// This applies to all 4 opcodes (sdiv/udiv/srem/urem). 891 static Value *simplifyDivRem(Value *Op0, Value *Op1, bool IsDiv) { 892 Type *Ty = Op0->getType(); 893 894 // X / undef -> undef 895 // X % undef -> undef 896 if (match(Op1, m_Undef())) 897 return Op1; 898 899 // X / 0 -> undef 900 // X % 0 -> undef 901 // We don't need to preserve faults! 902 if (match(Op1, m_Zero())) 903 return UndefValue::get(Ty); 904 905 // If any element of a constant divisor vector is zero or undef, the whole op 906 // is undef. 907 auto *Op1C = dyn_cast<Constant>(Op1); 908 if (Op1C && Ty->isVectorTy()) { 909 unsigned NumElts = Ty->getVectorNumElements(); 910 for (unsigned i = 0; i != NumElts; ++i) { 911 Constant *Elt = Op1C->getAggregateElement(i); 912 if (Elt && (Elt->isNullValue() || isa<UndefValue>(Elt))) 913 return UndefValue::get(Ty); 914 } 915 } 916 917 // undef / X -> 0 918 // undef % X -> 0 919 if (match(Op0, m_Undef())) 920 return Constant::getNullValue(Ty); 921 922 // 0 / X -> 0 923 // 0 % X -> 0 924 if (match(Op0, m_Zero())) 925 return Constant::getNullValue(Op0->getType()); 926 927 // X / X -> 1 928 // X % X -> 0 929 if (Op0 == Op1) 930 return IsDiv ? ConstantInt::get(Ty, 1) : Constant::getNullValue(Ty); 931 932 // X / 1 -> X 933 // X % 1 -> 0 934 // If this is a boolean op (single-bit element type), we can't have 935 // division-by-zero or remainder-by-zero, so assume the divisor is 1. 936 // Similarly, if we're zero-extending a boolean divisor, then assume it's a 1. 937 Value *X; 938 if (match(Op1, m_One()) || Ty->isIntOrIntVectorTy(1) || 939 (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))) 940 return IsDiv ? Op0 : Constant::getNullValue(Ty); 941 942 return nullptr; 943 } 944 945 /// Given a predicate and two operands, return true if the comparison is true. 946 /// This is a helper for div/rem simplification where we return some other value 947 /// when we can prove a relationship between the operands. 948 static bool isICmpTrue(ICmpInst::Predicate Pred, Value *LHS, Value *RHS, 949 const SimplifyQuery &Q, unsigned MaxRecurse) { 950 Value *V = SimplifyICmpInst(Pred, LHS, RHS, Q, MaxRecurse); 951 Constant *C = dyn_cast_or_null<Constant>(V); 952 return (C && C->isAllOnesValue()); 953 } 954 955 /// Return true if we can simplify X / Y to 0. Remainder can adapt that answer 956 /// to simplify X % Y to X. 957 static bool isDivZero(Value *X, Value *Y, const SimplifyQuery &Q, 958 unsigned MaxRecurse, bool IsSigned) { 959 // Recursion is always used, so bail out at once if we already hit the limit. 960 if (!MaxRecurse--) 961 return false; 962 963 if (IsSigned) { 964 // |X| / |Y| --> 0 965 // 966 // We require that 1 operand is a simple constant. That could be extended to 967 // 2 variables if we computed the sign bit for each. 968 // 969 // Make sure that a constant is not the minimum signed value because taking 970 // the abs() of that is undefined. 971 Type *Ty = X->getType(); 972 const APInt *C; 973 if (match(X, m_APInt(C)) && !C->isMinSignedValue()) { 974 // Is the variable divisor magnitude always greater than the constant 975 // dividend magnitude? 976 // |Y| > |C| --> Y < -abs(C) or Y > abs(C) 977 Constant *PosDividendC = ConstantInt::get(Ty, C->abs()); 978 Constant *NegDividendC = ConstantInt::get(Ty, -C->abs()); 979 if (isICmpTrue(CmpInst::ICMP_SLT, Y, NegDividendC, Q, MaxRecurse) || 980 isICmpTrue(CmpInst::ICMP_SGT, Y, PosDividendC, Q, MaxRecurse)) 981 return true; 982 } 983 if (match(Y, m_APInt(C))) { 984 // Special-case: we can't take the abs() of a minimum signed value. If 985 // that's the divisor, then all we have to do is prove that the dividend 986 // is also not the minimum signed value. 987 if (C->isMinSignedValue()) 988 return isICmpTrue(CmpInst::ICMP_NE, X, Y, Q, MaxRecurse); 989 990 // Is the variable dividend magnitude always less than the constant 991 // divisor magnitude? 992 // |X| < |C| --> X > -abs(C) and X < abs(C) 993 Constant *PosDivisorC = ConstantInt::get(Ty, C->abs()); 994 Constant *NegDivisorC = ConstantInt::get(Ty, -C->abs()); 995 if (isICmpTrue(CmpInst::ICMP_SGT, X, NegDivisorC, Q, MaxRecurse) && 996 isICmpTrue(CmpInst::ICMP_SLT, X, PosDivisorC, Q, MaxRecurse)) 997 return true; 998 } 999 return false; 1000 } 1001 1002 // IsSigned == false. 1003 // Is the dividend unsigned less than the divisor? 1004 return isICmpTrue(ICmpInst::ICMP_ULT, X, Y, Q, MaxRecurse); 1005 } 1006 1007 /// These are simplifications common to SDiv and UDiv. 1008 static Value *simplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1009 const SimplifyQuery &Q, unsigned MaxRecurse) { 1010 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1011 return C; 1012 1013 if (Value *V = simplifyDivRem(Op0, Op1, true)) 1014 return V; 1015 1016 bool IsSigned = Opcode == Instruction::SDiv; 1017 1018 // (X * Y) / Y -> X if the multiplication does not overflow. 1019 Value *X; 1020 if (match(Op0, m_c_Mul(m_Value(X), m_Specific(Op1)))) { 1021 auto *Mul = cast<OverflowingBinaryOperator>(Op0); 1022 // If the Mul does not overflow, then we are good to go. 1023 if ((IsSigned && Q.IIQ.hasNoSignedWrap(Mul)) || 1024 (!IsSigned && Q.IIQ.hasNoUnsignedWrap(Mul))) 1025 return X; 1026 // If X has the form X = A / Y, then X * Y cannot overflow. 1027 if ((IsSigned && match(X, m_SDiv(m_Value(), m_Specific(Op1)))) || 1028 (!IsSigned && match(X, m_UDiv(m_Value(), m_Specific(Op1))))) 1029 return X; 1030 } 1031 1032 // (X rem Y) / Y -> 0 1033 if ((IsSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1034 (!IsSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1035 return Constant::getNullValue(Op0->getType()); 1036 1037 // (X /u C1) /u C2 -> 0 if C1 * C2 overflow 1038 ConstantInt *C1, *C2; 1039 if (!IsSigned && match(Op0, m_UDiv(m_Value(X), m_ConstantInt(C1))) && 1040 match(Op1, m_ConstantInt(C2))) { 1041 bool Overflow; 1042 (void)C1->getValue().umul_ov(C2->getValue(), Overflow); 1043 if (Overflow) 1044 return Constant::getNullValue(Op0->getType()); 1045 } 1046 1047 // If the operation is with the result of a select instruction, check whether 1048 // operating on either branch of the select always yields the same value. 1049 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1050 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1051 return V; 1052 1053 // If the operation is with the result of a phi instruction, check whether 1054 // operating on all incoming values of the phi always yields the same value. 1055 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1056 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1057 return V; 1058 1059 if (isDivZero(Op0, Op1, Q, MaxRecurse, IsSigned)) 1060 return Constant::getNullValue(Op0->getType()); 1061 1062 return nullptr; 1063 } 1064 1065 /// These are simplifications common to SRem and URem. 1066 static Value *simplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1067 const SimplifyQuery &Q, unsigned MaxRecurse) { 1068 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1069 return C; 1070 1071 if (Value *V = simplifyDivRem(Op0, Op1, false)) 1072 return V; 1073 1074 // (X % Y) % Y -> X % Y 1075 if ((Opcode == Instruction::SRem && 1076 match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1077 (Opcode == Instruction::URem && 1078 match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1079 return Op0; 1080 1081 // (X << Y) % X -> 0 1082 if (Q.IIQ.UseInstrInfo && 1083 ((Opcode == Instruction::SRem && 1084 match(Op0, m_NSWShl(m_Specific(Op1), m_Value()))) || 1085 (Opcode == Instruction::URem && 1086 match(Op0, m_NUWShl(m_Specific(Op1), m_Value()))))) 1087 return Constant::getNullValue(Op0->getType()); 1088 1089 // If the operation is with the result of a select instruction, check whether 1090 // operating on either branch of the select always yields the same value. 1091 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1092 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1093 return V; 1094 1095 // If the operation is with the result of a phi instruction, check whether 1096 // operating on all incoming values of the phi always yields the same value. 1097 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1098 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1099 return V; 1100 1101 // If X / Y == 0, then X % Y == X. 1102 if (isDivZero(Op0, Op1, Q, MaxRecurse, Opcode == Instruction::SRem)) 1103 return Op0; 1104 1105 return nullptr; 1106 } 1107 1108 /// Given operands for an SDiv, see if we can fold the result. 1109 /// If not, this returns null. 1110 static Value *SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1111 unsigned MaxRecurse) { 1112 // If two operands are negated and no signed overflow, return -1. 1113 if (isKnownNegation(Op0, Op1, /*NeedNSW=*/true)) 1114 return Constant::getAllOnesValue(Op0->getType()); 1115 1116 return simplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse); 1117 } 1118 1119 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1120 return ::SimplifySDivInst(Op0, Op1, Q, RecursionLimit); 1121 } 1122 1123 /// Given operands for a UDiv, see if we can fold the result. 1124 /// If not, this returns null. 1125 static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1126 unsigned MaxRecurse) { 1127 return simplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse); 1128 } 1129 1130 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1131 return ::SimplifyUDivInst(Op0, Op1, Q, RecursionLimit); 1132 } 1133 1134 /// Given operands for an SRem, see if we can fold the result. 1135 /// If not, this returns null. 1136 static Value *SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1137 unsigned MaxRecurse) { 1138 // If the divisor is 0, the result is undefined, so assume the divisor is -1. 1139 // srem Op0, (sext i1 X) --> srem Op0, -1 --> 0 1140 Value *X; 1141 if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) 1142 return ConstantInt::getNullValue(Op0->getType()); 1143 1144 // If the two operands are negated, return 0. 1145 if (isKnownNegation(Op0, Op1)) 1146 return ConstantInt::getNullValue(Op0->getType()); 1147 1148 return simplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse); 1149 } 1150 1151 Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1152 return ::SimplifySRemInst(Op0, Op1, Q, RecursionLimit); 1153 } 1154 1155 /// Given operands for a URem, see if we can fold the result. 1156 /// If not, this returns null. 1157 static Value *SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1158 unsigned MaxRecurse) { 1159 return simplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse); 1160 } 1161 1162 Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1163 return ::SimplifyURemInst(Op0, Op1, Q, RecursionLimit); 1164 } 1165 1166 /// Returns true if a shift by \c Amount always yields undef. 1167 static bool isUndefShift(Value *Amount) { 1168 Constant *C = dyn_cast<Constant>(Amount); 1169 if (!C) 1170 return false; 1171 1172 // X shift by undef -> undef because it may shift by the bitwidth. 1173 if (isa<UndefValue>(C)) 1174 return true; 1175 1176 // Shifting by the bitwidth or more is undefined. 1177 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1178 if (CI->getValue().getLimitedValue() >= 1179 CI->getType()->getScalarSizeInBits()) 1180 return true; 1181 1182 // If all lanes of a vector shift are undefined the whole shift is. 1183 if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) { 1184 for (unsigned I = 0, E = C->getType()->getVectorNumElements(); I != E; ++I) 1185 if (!isUndefShift(C->getAggregateElement(I))) 1186 return false; 1187 return true; 1188 } 1189 1190 return false; 1191 } 1192 1193 /// Given operands for an Shl, LShr or AShr, see if we can fold the result. 1194 /// If not, this returns null. 1195 static Value *SimplifyShift(Instruction::BinaryOps Opcode, Value *Op0, 1196 Value *Op1, const SimplifyQuery &Q, unsigned MaxRecurse) { 1197 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1198 return C; 1199 1200 // 0 shift by X -> 0 1201 if (match(Op0, m_Zero())) 1202 return Constant::getNullValue(Op0->getType()); 1203 1204 // X shift by 0 -> X 1205 // Shift-by-sign-extended bool must be shift-by-0 because shift-by-all-ones 1206 // would be poison. 1207 Value *X; 1208 if (match(Op1, m_Zero()) || 1209 (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))) 1210 return Op0; 1211 1212 // Fold undefined shifts. 1213 if (isUndefShift(Op1)) 1214 return UndefValue::get(Op0->getType()); 1215 1216 // If the operation is with the result of a select instruction, check whether 1217 // operating on either branch of the select always yields the same value. 1218 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1219 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1220 return V; 1221 1222 // If the operation is with the result of a phi instruction, check whether 1223 // operating on all incoming values of the phi always yields the same value. 1224 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1225 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1226 return V; 1227 1228 // If any bits in the shift amount make that value greater than or equal to 1229 // the number of bits in the type, the shift is undefined. 1230 KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1231 if (Known.One.getLimitedValue() >= Known.getBitWidth()) 1232 return UndefValue::get(Op0->getType()); 1233 1234 // If all valid bits in the shift amount are known zero, the first operand is 1235 // unchanged. 1236 unsigned NumValidShiftBits = Log2_32_Ceil(Known.getBitWidth()); 1237 if (Known.countMinTrailingZeros() >= NumValidShiftBits) 1238 return Op0; 1239 1240 return nullptr; 1241 } 1242 1243 /// Given operands for an Shl, LShr or AShr, see if we can 1244 /// fold the result. If not, this returns null. 1245 static Value *SimplifyRightShift(Instruction::BinaryOps Opcode, Value *Op0, 1246 Value *Op1, bool isExact, const SimplifyQuery &Q, 1247 unsigned MaxRecurse) { 1248 if (Value *V = SimplifyShift(Opcode, Op0, Op1, Q, MaxRecurse)) 1249 return V; 1250 1251 // X >> X -> 0 1252 if (Op0 == Op1) 1253 return Constant::getNullValue(Op0->getType()); 1254 1255 // undef >> X -> 0 1256 // undef >> X -> undef (if it's exact) 1257 if (match(Op0, m_Undef())) 1258 return isExact ? Op0 : Constant::getNullValue(Op0->getType()); 1259 1260 // The low bit cannot be shifted out of an exact shift if it is set. 1261 if (isExact) { 1262 KnownBits Op0Known = computeKnownBits(Op0, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT); 1263 if (Op0Known.One[0]) 1264 return Op0; 1265 } 1266 1267 return nullptr; 1268 } 1269 1270 /// Given operands for an Shl, see if we can fold the result. 1271 /// If not, this returns null. 1272 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1273 const SimplifyQuery &Q, unsigned MaxRecurse) { 1274 if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, Q, MaxRecurse)) 1275 return V; 1276 1277 // undef << X -> 0 1278 // undef << X -> undef if (if it's NSW/NUW) 1279 if (match(Op0, m_Undef())) 1280 return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType()); 1281 1282 // (X >> A) << A -> X 1283 Value *X; 1284 if (Q.IIQ.UseInstrInfo && 1285 match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1))))) 1286 return X; 1287 1288 // shl nuw i8 C, %x -> C iff C has sign bit set. 1289 if (isNUW && match(Op0, m_Negative())) 1290 return Op0; 1291 // NOTE: could use computeKnownBits() / LazyValueInfo, 1292 // but the cost-benefit analysis suggests it isn't worth it. 1293 1294 return nullptr; 1295 } 1296 1297 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1298 const SimplifyQuery &Q) { 1299 return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit); 1300 } 1301 1302 /// Given operands for an LShr, see if we can fold the result. 1303 /// If not, this returns null. 1304 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1305 const SimplifyQuery &Q, unsigned MaxRecurse) { 1306 if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q, 1307 MaxRecurse)) 1308 return V; 1309 1310 // (X << A) >> A -> X 1311 Value *X; 1312 if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1)))) 1313 return X; 1314 1315 // ((X << A) | Y) >> A -> X if effective width of Y is not larger than A. 1316 // We can return X as we do in the above case since OR alters no bits in X. 1317 // SimplifyDemandedBits in InstCombine can do more general optimization for 1318 // bit manipulation. This pattern aims to provide opportunities for other 1319 // optimizers by supporting a simple but common case in InstSimplify. 1320 Value *Y; 1321 const APInt *ShRAmt, *ShLAmt; 1322 if (match(Op1, m_APInt(ShRAmt)) && 1323 match(Op0, m_c_Or(m_NUWShl(m_Value(X), m_APInt(ShLAmt)), m_Value(Y))) && 1324 *ShRAmt == *ShLAmt) { 1325 const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1326 const unsigned Width = Op0->getType()->getScalarSizeInBits(); 1327 const unsigned EffWidthY = Width - YKnown.countMinLeadingZeros(); 1328 if (ShRAmt->uge(EffWidthY)) 1329 return X; 1330 } 1331 1332 return nullptr; 1333 } 1334 1335 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1336 const SimplifyQuery &Q) { 1337 return ::SimplifyLShrInst(Op0, Op1, isExact, Q, RecursionLimit); 1338 } 1339 1340 /// Given operands for an AShr, see if we can fold the result. 1341 /// If not, this returns null. 1342 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1343 const SimplifyQuery &Q, unsigned MaxRecurse) { 1344 if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q, 1345 MaxRecurse)) 1346 return V; 1347 1348 // all ones >>a X -> -1 1349 // Do not return Op0 because it may contain undef elements if it's a vector. 1350 if (match(Op0, m_AllOnes())) 1351 return Constant::getAllOnesValue(Op0->getType()); 1352 1353 // (X << A) >> A -> X 1354 Value *X; 1355 if (Q.IIQ.UseInstrInfo && match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1)))) 1356 return X; 1357 1358 // Arithmetic shifting an all-sign-bit value is a no-op. 1359 unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1360 if (NumSignBits == Op0->getType()->getScalarSizeInBits()) 1361 return Op0; 1362 1363 return nullptr; 1364 } 1365 1366 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1367 const SimplifyQuery &Q) { 1368 return ::SimplifyAShrInst(Op0, Op1, isExact, Q, RecursionLimit); 1369 } 1370 1371 /// Commuted variants are assumed to be handled by calling this function again 1372 /// with the parameters swapped. 1373 static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp, 1374 ICmpInst *UnsignedICmp, bool IsAnd, 1375 const SimplifyQuery &Q) { 1376 Value *X, *Y; 1377 1378 ICmpInst::Predicate EqPred; 1379 if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) || 1380 !ICmpInst::isEquality(EqPred)) 1381 return nullptr; 1382 1383 ICmpInst::Predicate UnsignedPred; 1384 1385 Value *A, *B; 1386 // Y = (A - B); 1387 if (match(Y, m_Sub(m_Value(A), m_Value(B)))) { 1388 if (match(UnsignedICmp, 1389 m_c_ICmp(UnsignedPred, m_Specific(A), m_Specific(B))) && 1390 ICmpInst::isUnsigned(UnsignedPred)) { 1391 if (UnsignedICmp->getOperand(0) != A) 1392 UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred); 1393 1394 // A >=/<= B || (A - B) != 0 <--> true 1395 if ((UnsignedPred == ICmpInst::ICMP_UGE || 1396 UnsignedPred == ICmpInst::ICMP_ULE) && 1397 EqPred == ICmpInst::ICMP_NE && !IsAnd) 1398 return ConstantInt::getTrue(UnsignedICmp->getType()); 1399 // A </> B && (A - B) == 0 <--> false 1400 if ((UnsignedPred == ICmpInst::ICMP_ULT || 1401 UnsignedPred == ICmpInst::ICMP_UGT) && 1402 EqPred == ICmpInst::ICMP_EQ && IsAnd) 1403 return ConstantInt::getFalse(UnsignedICmp->getType()); 1404 1405 // A </> B && (A - B) != 0 <--> A </> B 1406 // A </> B || (A - B) != 0 <--> (A - B) != 0 1407 if (EqPred == ICmpInst::ICMP_NE && (UnsignedPred == ICmpInst::ICMP_ULT || 1408 UnsignedPred == ICmpInst::ICMP_UGT)) 1409 return IsAnd ? UnsignedICmp : ZeroICmp; 1410 1411 // A <=/>= B && (A - B) == 0 <--> (A - B) == 0 1412 // A <=/>= B || (A - B) == 0 <--> A <=/>= B 1413 if (EqPred == ICmpInst::ICMP_EQ && (UnsignedPred == ICmpInst::ICMP_ULE || 1414 UnsignedPred == ICmpInst::ICMP_UGE)) 1415 return IsAnd ? ZeroICmp : UnsignedICmp; 1416 } 1417 1418 // Given Y = (A - B) 1419 // Y >= A && Y != 0 --> Y >= A iff B != 0 1420 // Y < A || Y == 0 --> Y < A iff B != 0 1421 if (match(UnsignedICmp, 1422 m_c_ICmp(UnsignedPred, m_Specific(Y), m_Specific(A)))) { 1423 if (UnsignedICmp->getOperand(0) != Y) 1424 UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred); 1425 1426 if (UnsignedPred == ICmpInst::ICMP_UGE && IsAnd && 1427 EqPred == ICmpInst::ICMP_NE && 1428 isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1429 return UnsignedICmp; 1430 if (UnsignedPred == ICmpInst::ICMP_ULT && !IsAnd && 1431 EqPred == ICmpInst::ICMP_EQ && 1432 isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1433 return UnsignedICmp; 1434 } 1435 } 1436 1437 if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) && 1438 ICmpInst::isUnsigned(UnsignedPred)) 1439 ; 1440 else if (match(UnsignedICmp, 1441 m_ICmp(UnsignedPred, m_Specific(Y), m_Value(X))) && 1442 ICmpInst::isUnsigned(UnsignedPred)) 1443 UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred); 1444 else 1445 return nullptr; 1446 1447 // X < Y && Y != 0 --> X < Y 1448 // X < Y || Y != 0 --> Y != 0 1449 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE) 1450 return IsAnd ? UnsignedICmp : ZeroICmp; 1451 1452 // X <= Y && Y != 0 --> X <= Y iff X != 0 1453 // X <= Y || Y != 0 --> Y != 0 iff X != 0 1454 if (UnsignedPred == ICmpInst::ICMP_ULE && EqPred == ICmpInst::ICMP_NE && 1455 isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1456 return IsAnd ? UnsignedICmp : ZeroICmp; 1457 1458 // X >= Y && Y == 0 --> Y == 0 1459 // X >= Y || Y == 0 --> X >= Y 1460 if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_EQ) 1461 return IsAnd ? ZeroICmp : UnsignedICmp; 1462 1463 // X > Y && Y == 0 --> Y == 0 iff X != 0 1464 // X > Y || Y == 0 --> X > Y iff X != 0 1465 if (UnsignedPred == ICmpInst::ICMP_UGT && EqPred == ICmpInst::ICMP_EQ && 1466 isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1467 return IsAnd ? ZeroICmp : UnsignedICmp; 1468 1469 // X < Y && Y == 0 --> false 1470 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ && 1471 IsAnd) 1472 return getFalse(UnsignedICmp->getType()); 1473 1474 // X >= Y || Y != 0 --> true 1475 if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_NE && 1476 !IsAnd) 1477 return getTrue(UnsignedICmp->getType()); 1478 1479 return nullptr; 1480 } 1481 1482 /// Commuted variants are assumed to be handled by calling this function again 1483 /// with the parameters swapped. 1484 static Value *simplifyAndOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) { 1485 ICmpInst::Predicate Pred0, Pred1; 1486 Value *A ,*B; 1487 if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) || 1488 !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B)))) 1489 return nullptr; 1490 1491 // We have (icmp Pred0, A, B) & (icmp Pred1, A, B). 1492 // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we 1493 // can eliminate Op1 from this 'and'. 1494 if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1)) 1495 return Op0; 1496 1497 // Check for any combination of predicates that are guaranteed to be disjoint. 1498 if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) || 1499 (Pred0 == ICmpInst::ICMP_EQ && ICmpInst::isFalseWhenEqual(Pred1)) || 1500 (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT) || 1501 (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)) 1502 return getFalse(Op0->getType()); 1503 1504 return nullptr; 1505 } 1506 1507 /// Commuted variants are assumed to be handled by calling this function again 1508 /// with the parameters swapped. 1509 static Value *simplifyOrOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) { 1510 ICmpInst::Predicate Pred0, Pred1; 1511 Value *A ,*B; 1512 if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) || 1513 !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B)))) 1514 return nullptr; 1515 1516 // We have (icmp Pred0, A, B) | (icmp Pred1, A, B). 1517 // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we 1518 // can eliminate Op0 from this 'or'. 1519 if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1)) 1520 return Op1; 1521 1522 // Check for any combination of predicates that cover the entire range of 1523 // possibilities. 1524 if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) || 1525 (Pred0 == ICmpInst::ICMP_NE && ICmpInst::isTrueWhenEqual(Pred1)) || 1526 (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGE) || 1527 (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGE)) 1528 return getTrue(Op0->getType()); 1529 1530 return nullptr; 1531 } 1532 1533 /// Test if a pair of compares with a shared operand and 2 constants has an 1534 /// empty set intersection, full set union, or if one compare is a superset of 1535 /// the other. 1536 static Value *simplifyAndOrOfICmpsWithConstants(ICmpInst *Cmp0, ICmpInst *Cmp1, 1537 bool IsAnd) { 1538 // Look for this pattern: {and/or} (icmp X, C0), (icmp X, C1)). 1539 if (Cmp0->getOperand(0) != Cmp1->getOperand(0)) 1540 return nullptr; 1541 1542 const APInt *C0, *C1; 1543 if (!match(Cmp0->getOperand(1), m_APInt(C0)) || 1544 !match(Cmp1->getOperand(1), m_APInt(C1))) 1545 return nullptr; 1546 1547 auto Range0 = ConstantRange::makeExactICmpRegion(Cmp0->getPredicate(), *C0); 1548 auto Range1 = ConstantRange::makeExactICmpRegion(Cmp1->getPredicate(), *C1); 1549 1550 // For and-of-compares, check if the intersection is empty: 1551 // (icmp X, C0) && (icmp X, C1) --> empty set --> false 1552 if (IsAnd && Range0.intersectWith(Range1).isEmptySet()) 1553 return getFalse(Cmp0->getType()); 1554 1555 // For or-of-compares, check if the union is full: 1556 // (icmp X, C0) || (icmp X, C1) --> full set --> true 1557 if (!IsAnd && Range0.unionWith(Range1).isFullSet()) 1558 return getTrue(Cmp0->getType()); 1559 1560 // Is one range a superset of the other? 1561 // If this is and-of-compares, take the smaller set: 1562 // (icmp sgt X, 4) && (icmp sgt X, 42) --> icmp sgt X, 42 1563 // If this is or-of-compares, take the larger set: 1564 // (icmp sgt X, 4) || (icmp sgt X, 42) --> icmp sgt X, 4 1565 if (Range0.contains(Range1)) 1566 return IsAnd ? Cmp1 : Cmp0; 1567 if (Range1.contains(Range0)) 1568 return IsAnd ? Cmp0 : Cmp1; 1569 1570 return nullptr; 1571 } 1572 1573 static Value *simplifyAndOrOfICmpsWithZero(ICmpInst *Cmp0, ICmpInst *Cmp1, 1574 bool IsAnd) { 1575 ICmpInst::Predicate P0 = Cmp0->getPredicate(), P1 = Cmp1->getPredicate(); 1576 if (!match(Cmp0->getOperand(1), m_Zero()) || 1577 !match(Cmp1->getOperand(1), m_Zero()) || P0 != P1) 1578 return nullptr; 1579 1580 if ((IsAnd && P0 != ICmpInst::ICMP_NE) || (!IsAnd && P1 != ICmpInst::ICMP_EQ)) 1581 return nullptr; 1582 1583 // We have either "(X == 0 || Y == 0)" or "(X != 0 && Y != 0)". 1584 Value *X = Cmp0->getOperand(0); 1585 Value *Y = Cmp1->getOperand(0); 1586 1587 // If one of the compares is a masked version of a (not) null check, then 1588 // that compare implies the other, so we eliminate the other. Optionally, look 1589 // through a pointer-to-int cast to match a null check of a pointer type. 1590 1591 // (X == 0) || (([ptrtoint] X & ?) == 0) --> ([ptrtoint] X & ?) == 0 1592 // (X == 0) || ((? & [ptrtoint] X) == 0) --> (? & [ptrtoint] X) == 0 1593 // (X != 0) && (([ptrtoint] X & ?) != 0) --> ([ptrtoint] X & ?) != 0 1594 // (X != 0) && ((? & [ptrtoint] X) != 0) --> (? & [ptrtoint] X) != 0 1595 if (match(Y, m_c_And(m_Specific(X), m_Value())) || 1596 match(Y, m_c_And(m_PtrToInt(m_Specific(X)), m_Value()))) 1597 return Cmp1; 1598 1599 // (([ptrtoint] Y & ?) == 0) || (Y == 0) --> ([ptrtoint] Y & ?) == 0 1600 // ((? & [ptrtoint] Y) == 0) || (Y == 0) --> (? & [ptrtoint] Y) == 0 1601 // (([ptrtoint] Y & ?) != 0) && (Y != 0) --> ([ptrtoint] Y & ?) != 0 1602 // ((? & [ptrtoint] Y) != 0) && (Y != 0) --> (? & [ptrtoint] Y) != 0 1603 if (match(X, m_c_And(m_Specific(Y), m_Value())) || 1604 match(X, m_c_And(m_PtrToInt(m_Specific(Y)), m_Value()))) 1605 return Cmp0; 1606 1607 return nullptr; 1608 } 1609 1610 static Value *simplifyAndOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1, 1611 const InstrInfoQuery &IIQ) { 1612 // (icmp (add V, C0), C1) & (icmp V, C0) 1613 ICmpInst::Predicate Pred0, Pred1; 1614 const APInt *C0, *C1; 1615 Value *V; 1616 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1617 return nullptr; 1618 1619 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1620 return nullptr; 1621 1622 auto *AddInst = cast<OverflowingBinaryOperator>(Op0->getOperand(0)); 1623 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1624 return nullptr; 1625 1626 Type *ITy = Op0->getType(); 1627 bool isNSW = IIQ.hasNoSignedWrap(AddInst); 1628 bool isNUW = IIQ.hasNoUnsignedWrap(AddInst); 1629 1630 const APInt Delta = *C1 - *C0; 1631 if (C0->isStrictlyPositive()) { 1632 if (Delta == 2) { 1633 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT) 1634 return getFalse(ITy); 1635 if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1636 return getFalse(ITy); 1637 } 1638 if (Delta == 1) { 1639 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT) 1640 return getFalse(ITy); 1641 if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1642 return getFalse(ITy); 1643 } 1644 } 1645 if (C0->getBoolValue() && isNUW) { 1646 if (Delta == 2) 1647 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT) 1648 return getFalse(ITy); 1649 if (Delta == 1) 1650 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT) 1651 return getFalse(ITy); 1652 } 1653 1654 return nullptr; 1655 } 1656 1657 static Value *simplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1, 1658 const SimplifyQuery &Q) { 1659 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true, Q)) 1660 return X; 1661 if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/true, Q)) 1662 return X; 1663 1664 if (Value *X = simplifyAndOfICmpsWithSameOperands(Op0, Op1)) 1665 return X; 1666 if (Value *X = simplifyAndOfICmpsWithSameOperands(Op1, Op0)) 1667 return X; 1668 1669 if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, true)) 1670 return X; 1671 1672 if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, true)) 1673 return X; 1674 1675 if (Value *X = simplifyAndOfICmpsWithAdd(Op0, Op1, Q.IIQ)) 1676 return X; 1677 if (Value *X = simplifyAndOfICmpsWithAdd(Op1, Op0, Q.IIQ)) 1678 return X; 1679 1680 return nullptr; 1681 } 1682 1683 static Value *simplifyOrOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1, 1684 const InstrInfoQuery &IIQ) { 1685 // (icmp (add V, C0), C1) | (icmp V, C0) 1686 ICmpInst::Predicate Pred0, Pred1; 1687 const APInt *C0, *C1; 1688 Value *V; 1689 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1690 return nullptr; 1691 1692 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1693 return nullptr; 1694 1695 auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0)); 1696 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1697 return nullptr; 1698 1699 Type *ITy = Op0->getType(); 1700 bool isNSW = IIQ.hasNoSignedWrap(AddInst); 1701 bool isNUW = IIQ.hasNoUnsignedWrap(AddInst); 1702 1703 const APInt Delta = *C1 - *C0; 1704 if (C0->isStrictlyPositive()) { 1705 if (Delta == 2) { 1706 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE) 1707 return getTrue(ITy); 1708 if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1709 return getTrue(ITy); 1710 } 1711 if (Delta == 1) { 1712 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE) 1713 return getTrue(ITy); 1714 if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1715 return getTrue(ITy); 1716 } 1717 } 1718 if (C0->getBoolValue() && isNUW) { 1719 if (Delta == 2) 1720 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE) 1721 return getTrue(ITy); 1722 if (Delta == 1) 1723 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE) 1724 return getTrue(ITy); 1725 } 1726 1727 return nullptr; 1728 } 1729 1730 static Value *simplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1, 1731 const SimplifyQuery &Q) { 1732 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false, Q)) 1733 return X; 1734 if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/false, Q)) 1735 return X; 1736 1737 if (Value *X = simplifyOrOfICmpsWithSameOperands(Op0, Op1)) 1738 return X; 1739 if (Value *X = simplifyOrOfICmpsWithSameOperands(Op1, Op0)) 1740 return X; 1741 1742 if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, false)) 1743 return X; 1744 1745 if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, false)) 1746 return X; 1747 1748 if (Value *X = simplifyOrOfICmpsWithAdd(Op0, Op1, Q.IIQ)) 1749 return X; 1750 if (Value *X = simplifyOrOfICmpsWithAdd(Op1, Op0, Q.IIQ)) 1751 return X; 1752 1753 return nullptr; 1754 } 1755 1756 static Value *simplifyAndOrOfFCmps(const TargetLibraryInfo *TLI, 1757 FCmpInst *LHS, FCmpInst *RHS, bool IsAnd) { 1758 Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1); 1759 Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1); 1760 if (LHS0->getType() != RHS0->getType()) 1761 return nullptr; 1762 1763 FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate(); 1764 if ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) || 1765 (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO && !IsAnd)) { 1766 // (fcmp ord NNAN, X) & (fcmp ord X, Y) --> fcmp ord X, Y 1767 // (fcmp ord NNAN, X) & (fcmp ord Y, X) --> fcmp ord Y, X 1768 // (fcmp ord X, NNAN) & (fcmp ord X, Y) --> fcmp ord X, Y 1769 // (fcmp ord X, NNAN) & (fcmp ord Y, X) --> fcmp ord Y, X 1770 // (fcmp uno NNAN, X) | (fcmp uno X, Y) --> fcmp uno X, Y 1771 // (fcmp uno NNAN, X) | (fcmp uno Y, X) --> fcmp uno Y, X 1772 // (fcmp uno X, NNAN) | (fcmp uno X, Y) --> fcmp uno X, Y 1773 // (fcmp uno X, NNAN) | (fcmp uno Y, X) --> fcmp uno Y, X 1774 if ((isKnownNeverNaN(LHS0, TLI) && (LHS1 == RHS0 || LHS1 == RHS1)) || 1775 (isKnownNeverNaN(LHS1, TLI) && (LHS0 == RHS0 || LHS0 == RHS1))) 1776 return RHS; 1777 1778 // (fcmp ord X, Y) & (fcmp ord NNAN, X) --> fcmp ord X, Y 1779 // (fcmp ord Y, X) & (fcmp ord NNAN, X) --> fcmp ord Y, X 1780 // (fcmp ord X, Y) & (fcmp ord X, NNAN) --> fcmp ord X, Y 1781 // (fcmp ord Y, X) & (fcmp ord X, NNAN) --> fcmp ord Y, X 1782 // (fcmp uno X, Y) | (fcmp uno NNAN, X) --> fcmp uno X, Y 1783 // (fcmp uno Y, X) | (fcmp uno NNAN, X) --> fcmp uno Y, X 1784 // (fcmp uno X, Y) | (fcmp uno X, NNAN) --> fcmp uno X, Y 1785 // (fcmp uno Y, X) | (fcmp uno X, NNAN) --> fcmp uno Y, X 1786 if ((isKnownNeverNaN(RHS0, TLI) && (RHS1 == LHS0 || RHS1 == LHS1)) || 1787 (isKnownNeverNaN(RHS1, TLI) && (RHS0 == LHS0 || RHS0 == LHS1))) 1788 return LHS; 1789 } 1790 1791 return nullptr; 1792 } 1793 1794 static Value *simplifyAndOrOfCmps(const SimplifyQuery &Q, 1795 Value *Op0, Value *Op1, bool IsAnd) { 1796 // Look through casts of the 'and' operands to find compares. 1797 auto *Cast0 = dyn_cast<CastInst>(Op0); 1798 auto *Cast1 = dyn_cast<CastInst>(Op1); 1799 if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() && 1800 Cast0->getSrcTy() == Cast1->getSrcTy()) { 1801 Op0 = Cast0->getOperand(0); 1802 Op1 = Cast1->getOperand(0); 1803 } 1804 1805 Value *V = nullptr; 1806 auto *ICmp0 = dyn_cast<ICmpInst>(Op0); 1807 auto *ICmp1 = dyn_cast<ICmpInst>(Op1); 1808 if (ICmp0 && ICmp1) 1809 V = IsAnd ? simplifyAndOfICmps(ICmp0, ICmp1, Q) 1810 : simplifyOrOfICmps(ICmp0, ICmp1, Q); 1811 1812 auto *FCmp0 = dyn_cast<FCmpInst>(Op0); 1813 auto *FCmp1 = dyn_cast<FCmpInst>(Op1); 1814 if (FCmp0 && FCmp1) 1815 V = simplifyAndOrOfFCmps(Q.TLI, FCmp0, FCmp1, IsAnd); 1816 1817 if (!V) 1818 return nullptr; 1819 if (!Cast0) 1820 return V; 1821 1822 // If we looked through casts, we can only handle a constant simplification 1823 // because we are not allowed to create a cast instruction here. 1824 if (auto *C = dyn_cast<Constant>(V)) 1825 return ConstantExpr::getCast(Cast0->getOpcode(), C, Cast0->getType()); 1826 1827 return nullptr; 1828 } 1829 1830 /// Check that the Op1 is in expected form, i.e.: 1831 /// %Agg = tail call { i4, i1 } @llvm.[us]mul.with.overflow.i4(i4 %X, i4 %???) 1832 /// %Op1 = extractvalue { i4, i1 } %Agg, 1 1833 static bool omitCheckForZeroBeforeMulWithOverflowInternal(Value *Op1, 1834 Value *X) { 1835 auto *Extract = dyn_cast<ExtractValueInst>(Op1); 1836 // We should only be extracting the overflow bit. 1837 if (!Extract || !Extract->getIndices().equals(1)) 1838 return false; 1839 Value *Agg = Extract->getAggregateOperand(); 1840 // This should be a multiplication-with-overflow intrinsic. 1841 if (!match(Agg, m_CombineOr(m_Intrinsic<Intrinsic::umul_with_overflow>(), 1842 m_Intrinsic<Intrinsic::smul_with_overflow>()))) 1843 return false; 1844 // One of its multipliers should be the value we checked for zero before. 1845 if (!match(Agg, m_CombineOr(m_Argument<0>(m_Specific(X)), 1846 m_Argument<1>(m_Specific(X))))) 1847 return false; 1848 return true; 1849 } 1850 1851 /// The @llvm.[us]mul.with.overflow intrinsic could have been folded from some 1852 /// other form of check, e.g. one that was using division; it may have been 1853 /// guarded against division-by-zero. We can drop that check now. 1854 /// Look for: 1855 /// %Op0 = icmp ne i4 %X, 0 1856 /// %Agg = tail call { i4, i1 } @llvm.[us]mul.with.overflow.i4(i4 %X, i4 %???) 1857 /// %Op1 = extractvalue { i4, i1 } %Agg, 1 1858 /// %??? = and i1 %Op0, %Op1 1859 /// We can just return %Op1 1860 static Value *omitCheckForZeroBeforeMulWithOverflow(Value *Op0, Value *Op1) { 1861 ICmpInst::Predicate Pred; 1862 Value *X; 1863 if (!match(Op0, m_ICmp(Pred, m_Value(X), m_Zero())) || 1864 Pred != ICmpInst::Predicate::ICMP_NE) 1865 return nullptr; 1866 // Is Op1 in expected form? 1867 if (!omitCheckForZeroBeforeMulWithOverflowInternal(Op1, X)) 1868 return nullptr; 1869 // Can omit 'and', and just return the overflow bit. 1870 return Op1; 1871 } 1872 1873 /// The @llvm.[us]mul.with.overflow intrinsic could have been folded from some 1874 /// other form of check, e.g. one that was using division; it may have been 1875 /// guarded against division-by-zero. We can drop that check now. 1876 /// Look for: 1877 /// %Op0 = icmp eq i4 %X, 0 1878 /// %Agg = tail call { i4, i1 } @llvm.[us]mul.with.overflow.i4(i4 %X, i4 %???) 1879 /// %Op1 = extractvalue { i4, i1 } %Agg, 1 1880 /// %NotOp1 = xor i1 %Op1, true 1881 /// %or = or i1 %Op0, %NotOp1 1882 /// We can just return %NotOp1 1883 static Value *omitCheckForZeroBeforeInvertedMulWithOverflow(Value *Op0, 1884 Value *NotOp1) { 1885 ICmpInst::Predicate Pred; 1886 Value *X; 1887 if (!match(Op0, m_ICmp(Pred, m_Value(X), m_Zero())) || 1888 Pred != ICmpInst::Predicate::ICMP_EQ) 1889 return nullptr; 1890 // We expect the other hand of an 'or' to be a 'not'. 1891 Value *Op1; 1892 if (!match(NotOp1, m_Not(m_Value(Op1)))) 1893 return nullptr; 1894 // Is Op1 in expected form? 1895 if (!omitCheckForZeroBeforeMulWithOverflowInternal(Op1, X)) 1896 return nullptr; 1897 // Can omit 'and', and just return the inverted overflow bit. 1898 return NotOp1; 1899 } 1900 1901 /// Given operands for an And, see if we can fold the result. 1902 /// If not, this returns null. 1903 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1904 unsigned MaxRecurse) { 1905 if (Constant *C = foldOrCommuteConstant(Instruction::And, Op0, Op1, Q)) 1906 return C; 1907 1908 // X & undef -> 0 1909 if (match(Op1, m_Undef())) 1910 return Constant::getNullValue(Op0->getType()); 1911 1912 // X & X = X 1913 if (Op0 == Op1) 1914 return Op0; 1915 1916 // X & 0 = 0 1917 if (match(Op1, m_Zero())) 1918 return Constant::getNullValue(Op0->getType()); 1919 1920 // X & -1 = X 1921 if (match(Op1, m_AllOnes())) 1922 return Op0; 1923 1924 // A & ~A = ~A & A = 0 1925 if (match(Op0, m_Not(m_Specific(Op1))) || 1926 match(Op1, m_Not(m_Specific(Op0)))) 1927 return Constant::getNullValue(Op0->getType()); 1928 1929 // (A | ?) & A = A 1930 if (match(Op0, m_c_Or(m_Specific(Op1), m_Value()))) 1931 return Op1; 1932 1933 // A & (A | ?) = A 1934 if (match(Op1, m_c_Or(m_Specific(Op0), m_Value()))) 1935 return Op0; 1936 1937 // A mask that only clears known zeros of a shifted value is a no-op. 1938 Value *X; 1939 const APInt *Mask; 1940 const APInt *ShAmt; 1941 if (match(Op1, m_APInt(Mask))) { 1942 // If all bits in the inverted and shifted mask are clear: 1943 // and (shl X, ShAmt), Mask --> shl X, ShAmt 1944 if (match(Op0, m_Shl(m_Value(X), m_APInt(ShAmt))) && 1945 (~(*Mask)).lshr(*ShAmt).isNullValue()) 1946 return Op0; 1947 1948 // If all bits in the inverted and shifted mask are clear: 1949 // and (lshr X, ShAmt), Mask --> lshr X, ShAmt 1950 if (match(Op0, m_LShr(m_Value(X), m_APInt(ShAmt))) && 1951 (~(*Mask)).shl(*ShAmt).isNullValue()) 1952 return Op0; 1953 } 1954 1955 // If we have a multiplication overflow check that is being 'and'ed with a 1956 // check that one of the multipliers is not zero, we can omit the 'and', and 1957 // only keep the overflow check. 1958 if (Value *V = omitCheckForZeroBeforeMulWithOverflow(Op0, Op1)) 1959 return V; 1960 if (Value *V = omitCheckForZeroBeforeMulWithOverflow(Op1, Op0)) 1961 return V; 1962 1963 // A & (-A) = A if A is a power of two or zero. 1964 if (match(Op0, m_Neg(m_Specific(Op1))) || 1965 match(Op1, m_Neg(m_Specific(Op0)))) { 1966 if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 1967 Q.DT)) 1968 return Op0; 1969 if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 1970 Q.DT)) 1971 return Op1; 1972 } 1973 1974 // This is a similar pattern used for checking if a value is a power-of-2: 1975 // (A - 1) & A --> 0 (if A is a power-of-2 or 0) 1976 // A & (A - 1) --> 0 (if A is a power-of-2 or 0) 1977 if (match(Op0, m_Add(m_Specific(Op1), m_AllOnes())) && 1978 isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT)) 1979 return Constant::getNullValue(Op1->getType()); 1980 if (match(Op1, m_Add(m_Specific(Op0), m_AllOnes())) && 1981 isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT)) 1982 return Constant::getNullValue(Op0->getType()); 1983 1984 if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, true)) 1985 return V; 1986 1987 // Try some generic simplifications for associative operations. 1988 if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q, 1989 MaxRecurse)) 1990 return V; 1991 1992 // And distributes over Or. Try some generic simplifications based on this. 1993 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or, 1994 Q, MaxRecurse)) 1995 return V; 1996 1997 // And distributes over Xor. Try some generic simplifications based on this. 1998 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor, 1999 Q, MaxRecurse)) 2000 return V; 2001 2002 // If the operation is with the result of a select instruction, check whether 2003 // operating on either branch of the select always yields the same value. 2004 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 2005 if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q, 2006 MaxRecurse)) 2007 return V; 2008 2009 // If the operation is with the result of a phi instruction, check whether 2010 // operating on all incoming values of the phi always yields the same value. 2011 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 2012 if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q, 2013 MaxRecurse)) 2014 return V; 2015 2016 // Assuming the effective width of Y is not larger than A, i.e. all bits 2017 // from X and Y are disjoint in (X << A) | Y, 2018 // if the mask of this AND op covers all bits of X or Y, while it covers 2019 // no bits from the other, we can bypass this AND op. E.g., 2020 // ((X << A) | Y) & Mask -> Y, 2021 // if Mask = ((1 << effective_width_of(Y)) - 1) 2022 // ((X << A) | Y) & Mask -> X << A, 2023 // if Mask = ((1 << effective_width_of(X)) - 1) << A 2024 // SimplifyDemandedBits in InstCombine can optimize the general case. 2025 // This pattern aims to help other passes for a common case. 2026 Value *Y, *XShifted; 2027 if (match(Op1, m_APInt(Mask)) && 2028 match(Op0, m_c_Or(m_CombineAnd(m_NUWShl(m_Value(X), m_APInt(ShAmt)), 2029 m_Value(XShifted)), 2030 m_Value(Y)))) { 2031 const unsigned Width = Op0->getType()->getScalarSizeInBits(); 2032 const unsigned ShftCnt = ShAmt->getLimitedValue(Width); 2033 const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2034 const unsigned EffWidthY = Width - YKnown.countMinLeadingZeros(); 2035 if (EffWidthY <= ShftCnt) { 2036 const KnownBits XKnown = computeKnownBits(X, Q.DL, 0, Q.AC, Q.CxtI, 2037 Q.DT); 2038 const unsigned EffWidthX = Width - XKnown.countMinLeadingZeros(); 2039 const APInt EffBitsY = APInt::getLowBitsSet(Width, EffWidthY); 2040 const APInt EffBitsX = APInt::getLowBitsSet(Width, EffWidthX) << ShftCnt; 2041 // If the mask is extracting all bits from X or Y as is, we can skip 2042 // this AND op. 2043 if (EffBitsY.isSubsetOf(*Mask) && !EffBitsX.intersects(*Mask)) 2044 return Y; 2045 if (EffBitsX.isSubsetOf(*Mask) && !EffBitsY.intersects(*Mask)) 2046 return XShifted; 2047 } 2048 } 2049 2050 return nullptr; 2051 } 2052 2053 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 2054 return ::SimplifyAndInst(Op0, Op1, Q, RecursionLimit); 2055 } 2056 2057 /// Given operands for an Or, see if we can fold the result. 2058 /// If not, this returns null. 2059 static Value *SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 2060 unsigned MaxRecurse) { 2061 if (Constant *C = foldOrCommuteConstant(Instruction::Or, Op0, Op1, Q)) 2062 return C; 2063 2064 // X | undef -> -1 2065 // X | -1 = -1 2066 // Do not return Op1 because it may contain undef elements if it's a vector. 2067 if (match(Op1, m_Undef()) || match(Op1, m_AllOnes())) 2068 return Constant::getAllOnesValue(Op0->getType()); 2069 2070 // X | X = X 2071 // X | 0 = X 2072 if (Op0 == Op1 || match(Op1, m_Zero())) 2073 return Op0; 2074 2075 // A | ~A = ~A | A = -1 2076 if (match(Op0, m_Not(m_Specific(Op1))) || 2077 match(Op1, m_Not(m_Specific(Op0)))) 2078 return Constant::getAllOnesValue(Op0->getType()); 2079 2080 // (A & ?) | A = A 2081 if (match(Op0, m_c_And(m_Specific(Op1), m_Value()))) 2082 return Op1; 2083 2084 // A | (A & ?) = A 2085 if (match(Op1, m_c_And(m_Specific(Op0), m_Value()))) 2086 return Op0; 2087 2088 // ~(A & ?) | A = -1 2089 if (match(Op0, m_Not(m_c_And(m_Specific(Op1), m_Value())))) 2090 return Constant::getAllOnesValue(Op1->getType()); 2091 2092 // A | ~(A & ?) = -1 2093 if (match(Op1, m_Not(m_c_And(m_Specific(Op1), m_Value())))) 2094 return Constant::getAllOnesValue(Op0->getType()); 2095 2096 Value *A, *B; 2097 // (A & ~B) | (A ^ B) -> (A ^ B) 2098 // (~B & A) | (A ^ B) -> (A ^ B) 2099 // (A & ~B) | (B ^ A) -> (B ^ A) 2100 // (~B & A) | (B ^ A) -> (B ^ A) 2101 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && 2102 (match(Op0, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) || 2103 match(Op0, m_c_And(m_Not(m_Specific(A)), m_Specific(B))))) 2104 return Op1; 2105 2106 // Commute the 'or' operands. 2107 // (A ^ B) | (A & ~B) -> (A ^ B) 2108 // (A ^ B) | (~B & A) -> (A ^ B) 2109 // (B ^ A) | (A & ~B) -> (B ^ A) 2110 // (B ^ A) | (~B & A) -> (B ^ A) 2111 if (match(Op0, m_Xor(m_Value(A), m_Value(B))) && 2112 (match(Op1, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) || 2113 match(Op1, m_c_And(m_Not(m_Specific(A)), m_Specific(B))))) 2114 return Op0; 2115 2116 // (A & B) | (~A ^ B) -> (~A ^ B) 2117 // (B & A) | (~A ^ B) -> (~A ^ B) 2118 // (A & B) | (B ^ ~A) -> (B ^ ~A) 2119 // (B & A) | (B ^ ~A) -> (B ^ ~A) 2120 if (match(Op0, m_And(m_Value(A), m_Value(B))) && 2121 (match(Op1, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) || 2122 match(Op1, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B))))) 2123 return Op1; 2124 2125 // (~A ^ B) | (A & B) -> (~A ^ B) 2126 // (~A ^ B) | (B & A) -> (~A ^ B) 2127 // (B ^ ~A) | (A & B) -> (B ^ ~A) 2128 // (B ^ ~A) | (B & A) -> (B ^ ~A) 2129 if (match(Op1, m_And(m_Value(A), m_Value(B))) && 2130 (match(Op0, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) || 2131 match(Op0, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B))))) 2132 return Op0; 2133 2134 if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, false)) 2135 return V; 2136 2137 // If we have a multiplication overflow check that is being 'and'ed with a 2138 // check that one of the multipliers is not zero, we can omit the 'and', and 2139 // only keep the overflow check. 2140 if (Value *V = omitCheckForZeroBeforeInvertedMulWithOverflow(Op0, Op1)) 2141 return V; 2142 if (Value *V = omitCheckForZeroBeforeInvertedMulWithOverflow(Op1, Op0)) 2143 return V; 2144 2145 // Try some generic simplifications for associative operations. 2146 if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q, 2147 MaxRecurse)) 2148 return V; 2149 2150 // Or distributes over And. Try some generic simplifications based on this. 2151 if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And, Q, 2152 MaxRecurse)) 2153 return V; 2154 2155 // If the operation is with the result of a select instruction, check whether 2156 // operating on either branch of the select always yields the same value. 2157 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 2158 if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q, 2159 MaxRecurse)) 2160 return V; 2161 2162 // (A & C1)|(B & C2) 2163 const APInt *C1, *C2; 2164 if (match(Op0, m_And(m_Value(A), m_APInt(C1))) && 2165 match(Op1, m_And(m_Value(B), m_APInt(C2)))) { 2166 if (*C1 == ~*C2) { 2167 // (A & C1)|(B & C2) 2168 // If we have: ((V + N) & C1) | (V & C2) 2169 // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0 2170 // replace with V+N. 2171 Value *N; 2172 if (C2->isMask() && // C2 == 0+1+ 2173 match(A, m_c_Add(m_Specific(B), m_Value(N)))) { 2174 // Add commutes, try both ways. 2175 if (MaskedValueIsZero(N, *C2, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2176 return A; 2177 } 2178 // Or commutes, try both ways. 2179 if (C1->isMask() && 2180 match(B, m_c_Add(m_Specific(A), m_Value(N)))) { 2181 // Add commutes, try both ways. 2182 if (MaskedValueIsZero(N, *C1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2183 return B; 2184 } 2185 } 2186 } 2187 2188 // If the operation is with the result of a phi instruction, check whether 2189 // operating on all incoming values of the phi always yields the same value. 2190 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 2191 if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse)) 2192 return V; 2193 2194 return nullptr; 2195 } 2196 2197 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 2198 return ::SimplifyOrInst(Op0, Op1, Q, RecursionLimit); 2199 } 2200 2201 /// Given operands for a Xor, see if we can fold the result. 2202 /// If not, this returns null. 2203 static Value *SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 2204 unsigned MaxRecurse) { 2205 if (Constant *C = foldOrCommuteConstant(Instruction::Xor, Op0, Op1, Q)) 2206 return C; 2207 2208 // A ^ undef -> undef 2209 if (match(Op1, m_Undef())) 2210 return Op1; 2211 2212 // A ^ 0 = A 2213 if (match(Op1, m_Zero())) 2214 return Op0; 2215 2216 // A ^ A = 0 2217 if (Op0 == Op1) 2218 return Constant::getNullValue(Op0->getType()); 2219 2220 // A ^ ~A = ~A ^ A = -1 2221 if (match(Op0, m_Not(m_Specific(Op1))) || 2222 match(Op1, m_Not(m_Specific(Op0)))) 2223 return Constant::getAllOnesValue(Op0->getType()); 2224 2225 // Try some generic simplifications for associative operations. 2226 if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q, 2227 MaxRecurse)) 2228 return V; 2229 2230 // Threading Xor over selects and phi nodes is pointless, so don't bother. 2231 // Threading over the select in "A ^ select(cond, B, C)" means evaluating 2232 // "A^B" and "A^C" and seeing if they are equal; but they are equal if and 2233 // only if B and C are equal. If B and C are equal then (since we assume 2234 // that operands have already been simplified) "select(cond, B, C)" should 2235 // have been simplified to the common value of B and C already. Analysing 2236 // "A^B" and "A^C" thus gains nothing, but costs compile time. Similarly 2237 // for threading over phi nodes. 2238 2239 return nullptr; 2240 } 2241 2242 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 2243 return ::SimplifyXorInst(Op0, Op1, Q, RecursionLimit); 2244 } 2245 2246 2247 static Type *GetCompareTy(Value *Op) { 2248 return CmpInst::makeCmpResultType(Op->getType()); 2249 } 2250 2251 /// Rummage around inside V looking for something equivalent to the comparison 2252 /// "LHS Pred RHS". Return such a value if found, otherwise return null. 2253 /// Helper function for analyzing max/min idioms. 2254 static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred, 2255 Value *LHS, Value *RHS) { 2256 SelectInst *SI = dyn_cast<SelectInst>(V); 2257 if (!SI) 2258 return nullptr; 2259 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 2260 if (!Cmp) 2261 return nullptr; 2262 Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1); 2263 if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS) 2264 return Cmp; 2265 if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) && 2266 LHS == CmpRHS && RHS == CmpLHS) 2267 return Cmp; 2268 return nullptr; 2269 } 2270 2271 // A significant optimization not implemented here is assuming that alloca 2272 // addresses are not equal to incoming argument values. They don't *alias*, 2273 // as we say, but that doesn't mean they aren't equal, so we take a 2274 // conservative approach. 2275 // 2276 // This is inspired in part by C++11 5.10p1: 2277 // "Two pointers of the same type compare equal if and only if they are both 2278 // null, both point to the same function, or both represent the same 2279 // address." 2280 // 2281 // This is pretty permissive. 2282 // 2283 // It's also partly due to C11 6.5.9p6: 2284 // "Two pointers compare equal if and only if both are null pointers, both are 2285 // pointers to the same object (including a pointer to an object and a 2286 // subobject at its beginning) or function, both are pointers to one past the 2287 // last element of the same array object, or one is a pointer to one past the 2288 // end of one array object and the other is a pointer to the start of a 2289 // different array object that happens to immediately follow the first array 2290 // object in the address space.) 2291 // 2292 // C11's version is more restrictive, however there's no reason why an argument 2293 // couldn't be a one-past-the-end value for a stack object in the caller and be 2294 // equal to the beginning of a stack object in the callee. 2295 // 2296 // If the C and C++ standards are ever made sufficiently restrictive in this 2297 // area, it may be possible to update LLVM's semantics accordingly and reinstate 2298 // this optimization. 2299 static Constant * 2300 computePointerICmp(const DataLayout &DL, const TargetLibraryInfo *TLI, 2301 const DominatorTree *DT, CmpInst::Predicate Pred, 2302 AssumptionCache *AC, const Instruction *CxtI, 2303 const InstrInfoQuery &IIQ, Value *LHS, Value *RHS) { 2304 // First, skip past any trivial no-ops. 2305 LHS = LHS->stripPointerCasts(); 2306 RHS = RHS->stripPointerCasts(); 2307 2308 // A non-null pointer is not equal to a null pointer. 2309 if (llvm::isKnownNonZero(LHS, DL, 0, nullptr, nullptr, nullptr, 2310 IIQ.UseInstrInfo) && 2311 isa<ConstantPointerNull>(RHS) && 2312 (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE)) 2313 return ConstantInt::get(GetCompareTy(LHS), 2314 !CmpInst::isTrueWhenEqual(Pred)); 2315 2316 // We can only fold certain predicates on pointer comparisons. 2317 switch (Pred) { 2318 default: 2319 return nullptr; 2320 2321 // Equality comaprisons are easy to fold. 2322 case CmpInst::ICMP_EQ: 2323 case CmpInst::ICMP_NE: 2324 break; 2325 2326 // We can only handle unsigned relational comparisons because 'inbounds' on 2327 // a GEP only protects against unsigned wrapping. 2328 case CmpInst::ICMP_UGT: 2329 case CmpInst::ICMP_UGE: 2330 case CmpInst::ICMP_ULT: 2331 case CmpInst::ICMP_ULE: 2332 // However, we have to switch them to their signed variants to handle 2333 // negative indices from the base pointer. 2334 Pred = ICmpInst::getSignedPredicate(Pred); 2335 break; 2336 } 2337 2338 // Strip off any constant offsets so that we can reason about them. 2339 // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets 2340 // here and compare base addresses like AliasAnalysis does, however there are 2341 // numerous hazards. AliasAnalysis and its utilities rely on special rules 2342 // governing loads and stores which don't apply to icmps. Also, AliasAnalysis 2343 // doesn't need to guarantee pointer inequality when it says NoAlias. 2344 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 2345 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 2346 2347 // If LHS and RHS are related via constant offsets to the same base 2348 // value, we can replace it with an icmp which just compares the offsets. 2349 if (LHS == RHS) 2350 return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset); 2351 2352 // Various optimizations for (in)equality comparisons. 2353 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 2354 // Different non-empty allocations that exist at the same time have 2355 // different addresses (if the program can tell). Global variables always 2356 // exist, so they always exist during the lifetime of each other and all 2357 // allocas. Two different allocas usually have different addresses... 2358 // 2359 // However, if there's an @llvm.stackrestore dynamically in between two 2360 // allocas, they may have the same address. It's tempting to reduce the 2361 // scope of the problem by only looking at *static* allocas here. That would 2362 // cover the majority of allocas while significantly reducing the likelihood 2363 // of having an @llvm.stackrestore pop up in the middle. However, it's not 2364 // actually impossible for an @llvm.stackrestore to pop up in the middle of 2365 // an entry block. Also, if we have a block that's not attached to a 2366 // function, we can't tell if it's "static" under the current definition. 2367 // Theoretically, this problem could be fixed by creating a new kind of 2368 // instruction kind specifically for static allocas. Such a new instruction 2369 // could be required to be at the top of the entry block, thus preventing it 2370 // from being subject to a @llvm.stackrestore. Instcombine could even 2371 // convert regular allocas into these special allocas. It'd be nifty. 2372 // However, until then, this problem remains open. 2373 // 2374 // So, we'll assume that two non-empty allocas have different addresses 2375 // for now. 2376 // 2377 // With all that, if the offsets are within the bounds of their allocations 2378 // (and not one-past-the-end! so we can't use inbounds!), and their 2379 // allocations aren't the same, the pointers are not equal. 2380 // 2381 // Note that it's not necessary to check for LHS being a global variable 2382 // address, due to canonicalization and constant folding. 2383 if (isa<AllocaInst>(LHS) && 2384 (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) { 2385 ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset); 2386 ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset); 2387 uint64_t LHSSize, RHSSize; 2388 ObjectSizeOpts Opts; 2389 Opts.NullIsUnknownSize = 2390 NullPointerIsDefined(cast<AllocaInst>(LHS)->getFunction()); 2391 if (LHSOffsetCI && RHSOffsetCI && 2392 getObjectSize(LHS, LHSSize, DL, TLI, Opts) && 2393 getObjectSize(RHS, RHSSize, DL, TLI, Opts)) { 2394 const APInt &LHSOffsetValue = LHSOffsetCI->getValue(); 2395 const APInt &RHSOffsetValue = RHSOffsetCI->getValue(); 2396 if (!LHSOffsetValue.isNegative() && 2397 !RHSOffsetValue.isNegative() && 2398 LHSOffsetValue.ult(LHSSize) && 2399 RHSOffsetValue.ult(RHSSize)) { 2400 return ConstantInt::get(GetCompareTy(LHS), 2401 !CmpInst::isTrueWhenEqual(Pred)); 2402 } 2403 } 2404 2405 // Repeat the above check but this time without depending on DataLayout 2406 // or being able to compute a precise size. 2407 if (!cast<PointerType>(LHS->getType())->isEmptyTy() && 2408 !cast<PointerType>(RHS->getType())->isEmptyTy() && 2409 LHSOffset->isNullValue() && 2410 RHSOffset->isNullValue()) 2411 return ConstantInt::get(GetCompareTy(LHS), 2412 !CmpInst::isTrueWhenEqual(Pred)); 2413 } 2414 2415 // Even if an non-inbounds GEP occurs along the path we can still optimize 2416 // equality comparisons concerning the result. We avoid walking the whole 2417 // chain again by starting where the last calls to 2418 // stripAndComputeConstantOffsets left off and accumulate the offsets. 2419 Constant *LHSNoBound = stripAndComputeConstantOffsets(DL, LHS, true); 2420 Constant *RHSNoBound = stripAndComputeConstantOffsets(DL, RHS, true); 2421 if (LHS == RHS) 2422 return ConstantExpr::getICmp(Pred, 2423 ConstantExpr::getAdd(LHSOffset, LHSNoBound), 2424 ConstantExpr::getAdd(RHSOffset, RHSNoBound)); 2425 2426 // If one side of the equality comparison must come from a noalias call 2427 // (meaning a system memory allocation function), and the other side must 2428 // come from a pointer that cannot overlap with dynamically-allocated 2429 // memory within the lifetime of the current function (allocas, byval 2430 // arguments, globals), then determine the comparison result here. 2431 SmallVector<const Value *, 8> LHSUObjs, RHSUObjs; 2432 GetUnderlyingObjects(LHS, LHSUObjs, DL); 2433 GetUnderlyingObjects(RHS, RHSUObjs, DL); 2434 2435 // Is the set of underlying objects all noalias calls? 2436 auto IsNAC = [](ArrayRef<const Value *> Objects) { 2437 return all_of(Objects, isNoAliasCall); 2438 }; 2439 2440 // Is the set of underlying objects all things which must be disjoint from 2441 // noalias calls. For allocas, we consider only static ones (dynamic 2442 // allocas might be transformed into calls to malloc not simultaneously 2443 // live with the compared-to allocation). For globals, we exclude symbols 2444 // that might be resolve lazily to symbols in another dynamically-loaded 2445 // library (and, thus, could be malloc'ed by the implementation). 2446 auto IsAllocDisjoint = [](ArrayRef<const Value *> Objects) { 2447 return all_of(Objects, [](const Value *V) { 2448 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) 2449 return AI->getParent() && AI->getFunction() && AI->isStaticAlloca(); 2450 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 2451 return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() || 2452 GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) && 2453 !GV->isThreadLocal(); 2454 if (const Argument *A = dyn_cast<Argument>(V)) 2455 return A->hasByValAttr(); 2456 return false; 2457 }); 2458 }; 2459 2460 if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) || 2461 (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs))) 2462 return ConstantInt::get(GetCompareTy(LHS), 2463 !CmpInst::isTrueWhenEqual(Pred)); 2464 2465 // Fold comparisons for non-escaping pointer even if the allocation call 2466 // cannot be elided. We cannot fold malloc comparison to null. Also, the 2467 // dynamic allocation call could be either of the operands. 2468 Value *MI = nullptr; 2469 if (isAllocLikeFn(LHS, TLI) && 2470 llvm::isKnownNonZero(RHS, DL, 0, nullptr, CxtI, DT)) 2471 MI = LHS; 2472 else if (isAllocLikeFn(RHS, TLI) && 2473 llvm::isKnownNonZero(LHS, DL, 0, nullptr, CxtI, DT)) 2474 MI = RHS; 2475 // FIXME: We should also fold the compare when the pointer escapes, but the 2476 // compare dominates the pointer escape 2477 if (MI && !PointerMayBeCaptured(MI, true, true)) 2478 return ConstantInt::get(GetCompareTy(LHS), 2479 CmpInst::isFalseWhenEqual(Pred)); 2480 } 2481 2482 // Otherwise, fail. 2483 return nullptr; 2484 } 2485 2486 /// Fold an icmp when its operands have i1 scalar type. 2487 static Value *simplifyICmpOfBools(CmpInst::Predicate Pred, Value *LHS, 2488 Value *RHS, const SimplifyQuery &Q) { 2489 Type *ITy = GetCompareTy(LHS); // The return type. 2490 Type *OpTy = LHS->getType(); // The operand type. 2491 if (!OpTy->isIntOrIntVectorTy(1)) 2492 return nullptr; 2493 2494 // A boolean compared to true/false can be simplified in 14 out of the 20 2495 // (10 predicates * 2 constants) possible combinations. Cases not handled here 2496 // require a 'not' of the LHS, so those must be transformed in InstCombine. 2497 if (match(RHS, m_Zero())) { 2498 switch (Pred) { 2499 case CmpInst::ICMP_NE: // X != 0 -> X 2500 case CmpInst::ICMP_UGT: // X >u 0 -> X 2501 case CmpInst::ICMP_SLT: // X <s 0 -> X 2502 return LHS; 2503 2504 case CmpInst::ICMP_ULT: // X <u 0 -> false 2505 case CmpInst::ICMP_SGT: // X >s 0 -> false 2506 return getFalse(ITy); 2507 2508 case CmpInst::ICMP_UGE: // X >=u 0 -> true 2509 case CmpInst::ICMP_SLE: // X <=s 0 -> true 2510 return getTrue(ITy); 2511 2512 default: break; 2513 } 2514 } else if (match(RHS, m_One())) { 2515 switch (Pred) { 2516 case CmpInst::ICMP_EQ: // X == 1 -> X 2517 case CmpInst::ICMP_UGE: // X >=u 1 -> X 2518 case CmpInst::ICMP_SLE: // X <=s -1 -> X 2519 return LHS; 2520 2521 case CmpInst::ICMP_UGT: // X >u 1 -> false 2522 case CmpInst::ICMP_SLT: // X <s -1 -> false 2523 return getFalse(ITy); 2524 2525 case CmpInst::ICMP_ULE: // X <=u 1 -> true 2526 case CmpInst::ICMP_SGE: // X >=s -1 -> true 2527 return getTrue(ITy); 2528 2529 default: break; 2530 } 2531 } 2532 2533 switch (Pred) { 2534 default: 2535 break; 2536 case ICmpInst::ICMP_UGE: 2537 if (isImpliedCondition(RHS, LHS, Q.DL).getValueOr(false)) 2538 return getTrue(ITy); 2539 break; 2540 case ICmpInst::ICMP_SGE: 2541 /// For signed comparison, the values for an i1 are 0 and -1 2542 /// respectively. This maps into a truth table of: 2543 /// LHS | RHS | LHS >=s RHS | LHS implies RHS 2544 /// 0 | 0 | 1 (0 >= 0) | 1 2545 /// 0 | 1 | 1 (0 >= -1) | 1 2546 /// 1 | 0 | 0 (-1 >= 0) | 0 2547 /// 1 | 1 | 1 (-1 >= -1) | 1 2548 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) 2549 return getTrue(ITy); 2550 break; 2551 case ICmpInst::ICMP_ULE: 2552 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) 2553 return getTrue(ITy); 2554 break; 2555 } 2556 2557 return nullptr; 2558 } 2559 2560 /// Try hard to fold icmp with zero RHS because this is a common case. 2561 static Value *simplifyICmpWithZero(CmpInst::Predicate Pred, Value *LHS, 2562 Value *RHS, const SimplifyQuery &Q) { 2563 if (!match(RHS, m_Zero())) 2564 return nullptr; 2565 2566 Type *ITy = GetCompareTy(LHS); // The return type. 2567 switch (Pred) { 2568 default: 2569 llvm_unreachable("Unknown ICmp predicate!"); 2570 case ICmpInst::ICMP_ULT: 2571 return getFalse(ITy); 2572 case ICmpInst::ICMP_UGE: 2573 return getTrue(ITy); 2574 case ICmpInst::ICMP_EQ: 2575 case ICmpInst::ICMP_ULE: 2576 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) 2577 return getFalse(ITy); 2578 break; 2579 case ICmpInst::ICMP_NE: 2580 case ICmpInst::ICMP_UGT: 2581 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) 2582 return getTrue(ITy); 2583 break; 2584 case ICmpInst::ICMP_SLT: { 2585 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2586 if (LHSKnown.isNegative()) 2587 return getTrue(ITy); 2588 if (LHSKnown.isNonNegative()) 2589 return getFalse(ITy); 2590 break; 2591 } 2592 case ICmpInst::ICMP_SLE: { 2593 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2594 if (LHSKnown.isNegative()) 2595 return getTrue(ITy); 2596 if (LHSKnown.isNonNegative() && 2597 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2598 return getFalse(ITy); 2599 break; 2600 } 2601 case ICmpInst::ICMP_SGE: { 2602 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2603 if (LHSKnown.isNegative()) 2604 return getFalse(ITy); 2605 if (LHSKnown.isNonNegative()) 2606 return getTrue(ITy); 2607 break; 2608 } 2609 case ICmpInst::ICMP_SGT: { 2610 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2611 if (LHSKnown.isNegative()) 2612 return getFalse(ITy); 2613 if (LHSKnown.isNonNegative() && 2614 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2615 return getTrue(ITy); 2616 break; 2617 } 2618 } 2619 2620 return nullptr; 2621 } 2622 2623 static Value *simplifyICmpWithConstant(CmpInst::Predicate Pred, Value *LHS, 2624 Value *RHS, const InstrInfoQuery &IIQ) { 2625 Type *ITy = GetCompareTy(RHS); // The return type. 2626 2627 Value *X; 2628 // Sign-bit checks can be optimized to true/false after unsigned 2629 // floating-point casts: 2630 // icmp slt (bitcast (uitofp X)), 0 --> false 2631 // icmp sgt (bitcast (uitofp X)), -1 --> true 2632 if (match(LHS, m_BitCast(m_UIToFP(m_Value(X))))) { 2633 if (Pred == ICmpInst::ICMP_SLT && match(RHS, m_Zero())) 2634 return ConstantInt::getFalse(ITy); 2635 if (Pred == ICmpInst::ICMP_SGT && match(RHS, m_AllOnes())) 2636 return ConstantInt::getTrue(ITy); 2637 } 2638 2639 const APInt *C; 2640 if (!match(RHS, m_APInt(C))) 2641 return nullptr; 2642 2643 // Rule out tautological comparisons (eg., ult 0 or uge 0). 2644 ConstantRange RHS_CR = ConstantRange::makeExactICmpRegion(Pred, *C); 2645 if (RHS_CR.isEmptySet()) 2646 return ConstantInt::getFalse(ITy); 2647 if (RHS_CR.isFullSet()) 2648 return ConstantInt::getTrue(ITy); 2649 2650 ConstantRange LHS_CR = computeConstantRange(LHS, IIQ.UseInstrInfo); 2651 if (!LHS_CR.isFullSet()) { 2652 if (RHS_CR.contains(LHS_CR)) 2653 return ConstantInt::getTrue(ITy); 2654 if (RHS_CR.inverse().contains(LHS_CR)) 2655 return ConstantInt::getFalse(ITy); 2656 } 2657 2658 return nullptr; 2659 } 2660 2661 /// TODO: A large part of this logic is duplicated in InstCombine's 2662 /// foldICmpBinOp(). We should be able to share that and avoid the code 2663 /// duplication. 2664 static Value *simplifyICmpWithBinOp(CmpInst::Predicate Pred, Value *LHS, 2665 Value *RHS, const SimplifyQuery &Q, 2666 unsigned MaxRecurse) { 2667 Type *ITy = GetCompareTy(LHS); // The return type. 2668 2669 BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS); 2670 BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS); 2671 if (MaxRecurse && (LBO || RBO)) { 2672 // Analyze the case when either LHS or RHS is an add instruction. 2673 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 2674 // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null). 2675 bool NoLHSWrapProblem = false, NoRHSWrapProblem = false; 2676 if (LBO && LBO->getOpcode() == Instruction::Add) { 2677 A = LBO->getOperand(0); 2678 B = LBO->getOperand(1); 2679 NoLHSWrapProblem = 2680 ICmpInst::isEquality(Pred) || 2681 (CmpInst::isUnsigned(Pred) && 2682 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO))) || 2683 (CmpInst::isSigned(Pred) && 2684 Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO))); 2685 } 2686 if (RBO && RBO->getOpcode() == Instruction::Add) { 2687 C = RBO->getOperand(0); 2688 D = RBO->getOperand(1); 2689 NoRHSWrapProblem = 2690 ICmpInst::isEquality(Pred) || 2691 (CmpInst::isUnsigned(Pred) && 2692 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(RBO))) || 2693 (CmpInst::isSigned(Pred) && 2694 Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(RBO))); 2695 } 2696 2697 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow. 2698 if ((A == RHS || B == RHS) && NoLHSWrapProblem) 2699 if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A, 2700 Constant::getNullValue(RHS->getType()), Q, 2701 MaxRecurse - 1)) 2702 return V; 2703 2704 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow. 2705 if ((C == LHS || D == LHS) && NoRHSWrapProblem) 2706 if (Value *V = 2707 SimplifyICmpInst(Pred, Constant::getNullValue(LHS->getType()), 2708 C == LHS ? D : C, Q, MaxRecurse - 1)) 2709 return V; 2710 2711 // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow. 2712 if (A && C && (A == C || A == D || B == C || B == D) && NoLHSWrapProblem && 2713 NoRHSWrapProblem) { 2714 // Determine Y and Z in the form icmp (X+Y), (X+Z). 2715 Value *Y, *Z; 2716 if (A == C) { 2717 // C + B == C + D -> B == D 2718 Y = B; 2719 Z = D; 2720 } else if (A == D) { 2721 // D + B == C + D -> B == C 2722 Y = B; 2723 Z = C; 2724 } else if (B == C) { 2725 // A + C == C + D -> A == D 2726 Y = A; 2727 Z = D; 2728 } else { 2729 assert(B == D); 2730 // A + D == C + D -> A == C 2731 Y = A; 2732 Z = C; 2733 } 2734 if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse - 1)) 2735 return V; 2736 } 2737 } 2738 2739 { 2740 Value *Y = nullptr; 2741 // icmp pred (or X, Y), X 2742 if (LBO && match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) { 2743 if (Pred == ICmpInst::ICMP_ULT) 2744 return getFalse(ITy); 2745 if (Pred == ICmpInst::ICMP_UGE) 2746 return getTrue(ITy); 2747 2748 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) { 2749 KnownBits RHSKnown = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2750 KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2751 if (RHSKnown.isNonNegative() && YKnown.isNegative()) 2752 return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy); 2753 if (RHSKnown.isNegative() || YKnown.isNonNegative()) 2754 return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy); 2755 } 2756 } 2757 // icmp pred X, (or X, Y) 2758 if (RBO && match(RBO, m_c_Or(m_Value(Y), m_Specific(LHS)))) { 2759 if (Pred == ICmpInst::ICMP_ULE) 2760 return getTrue(ITy); 2761 if (Pred == ICmpInst::ICMP_UGT) 2762 return getFalse(ITy); 2763 2764 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLE) { 2765 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2766 KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2767 if (LHSKnown.isNonNegative() && YKnown.isNegative()) 2768 return Pred == ICmpInst::ICMP_SGT ? getTrue(ITy) : getFalse(ITy); 2769 if (LHSKnown.isNegative() || YKnown.isNonNegative()) 2770 return Pred == ICmpInst::ICMP_SGT ? getFalse(ITy) : getTrue(ITy); 2771 } 2772 } 2773 } 2774 2775 // icmp pred (and X, Y), X 2776 if (LBO && match(LBO, m_c_And(m_Value(), m_Specific(RHS)))) { 2777 if (Pred == ICmpInst::ICMP_UGT) 2778 return getFalse(ITy); 2779 if (Pred == ICmpInst::ICMP_ULE) 2780 return getTrue(ITy); 2781 } 2782 // icmp pred X, (and X, Y) 2783 if (RBO && match(RBO, m_c_And(m_Value(), m_Specific(LHS)))) { 2784 if (Pred == ICmpInst::ICMP_UGE) 2785 return getTrue(ITy); 2786 if (Pred == ICmpInst::ICMP_ULT) 2787 return getFalse(ITy); 2788 } 2789 2790 // 0 - (zext X) pred C 2791 if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) { 2792 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) { 2793 if (RHSC->getValue().isStrictlyPositive()) { 2794 if (Pred == ICmpInst::ICMP_SLT) 2795 return ConstantInt::getTrue(RHSC->getContext()); 2796 if (Pred == ICmpInst::ICMP_SGE) 2797 return ConstantInt::getFalse(RHSC->getContext()); 2798 if (Pred == ICmpInst::ICMP_EQ) 2799 return ConstantInt::getFalse(RHSC->getContext()); 2800 if (Pred == ICmpInst::ICMP_NE) 2801 return ConstantInt::getTrue(RHSC->getContext()); 2802 } 2803 if (RHSC->getValue().isNonNegative()) { 2804 if (Pred == ICmpInst::ICMP_SLE) 2805 return ConstantInt::getTrue(RHSC->getContext()); 2806 if (Pred == ICmpInst::ICMP_SGT) 2807 return ConstantInt::getFalse(RHSC->getContext()); 2808 } 2809 } 2810 } 2811 2812 // icmp pred (urem X, Y), Y 2813 if (LBO && match(LBO, m_URem(m_Value(), m_Specific(RHS)))) { 2814 switch (Pred) { 2815 default: 2816 break; 2817 case ICmpInst::ICMP_SGT: 2818 case ICmpInst::ICMP_SGE: { 2819 KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2820 if (!Known.isNonNegative()) 2821 break; 2822 LLVM_FALLTHROUGH; 2823 } 2824 case ICmpInst::ICMP_EQ: 2825 case ICmpInst::ICMP_UGT: 2826 case ICmpInst::ICMP_UGE: 2827 return getFalse(ITy); 2828 case ICmpInst::ICMP_SLT: 2829 case ICmpInst::ICMP_SLE: { 2830 KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2831 if (!Known.isNonNegative()) 2832 break; 2833 LLVM_FALLTHROUGH; 2834 } 2835 case ICmpInst::ICMP_NE: 2836 case ICmpInst::ICMP_ULT: 2837 case ICmpInst::ICMP_ULE: 2838 return getTrue(ITy); 2839 } 2840 } 2841 2842 // icmp pred X, (urem Y, X) 2843 if (RBO && match(RBO, m_URem(m_Value(), m_Specific(LHS)))) { 2844 switch (Pred) { 2845 default: 2846 break; 2847 case ICmpInst::ICMP_SGT: 2848 case ICmpInst::ICMP_SGE: { 2849 KnownBits Known = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2850 if (!Known.isNonNegative()) 2851 break; 2852 LLVM_FALLTHROUGH; 2853 } 2854 case ICmpInst::ICMP_NE: 2855 case ICmpInst::ICMP_UGT: 2856 case ICmpInst::ICMP_UGE: 2857 return getTrue(ITy); 2858 case ICmpInst::ICMP_SLT: 2859 case ICmpInst::ICMP_SLE: { 2860 KnownBits Known = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2861 if (!Known.isNonNegative()) 2862 break; 2863 LLVM_FALLTHROUGH; 2864 } 2865 case ICmpInst::ICMP_EQ: 2866 case ICmpInst::ICMP_ULT: 2867 case ICmpInst::ICMP_ULE: 2868 return getFalse(ITy); 2869 } 2870 } 2871 2872 // x >> y <=u x 2873 // x udiv y <=u x. 2874 if (LBO && (match(LBO, m_LShr(m_Specific(RHS), m_Value())) || 2875 match(LBO, m_UDiv(m_Specific(RHS), m_Value())))) { 2876 // icmp pred (X op Y), X 2877 if (Pred == ICmpInst::ICMP_UGT) 2878 return getFalse(ITy); 2879 if (Pred == ICmpInst::ICMP_ULE) 2880 return getTrue(ITy); 2881 } 2882 2883 // x >=u x >> y 2884 // x >=u x udiv y. 2885 if (RBO && (match(RBO, m_LShr(m_Specific(LHS), m_Value())) || 2886 match(RBO, m_UDiv(m_Specific(LHS), m_Value())))) { 2887 // icmp pred X, (X op Y) 2888 if (Pred == ICmpInst::ICMP_ULT) 2889 return getFalse(ITy); 2890 if (Pred == ICmpInst::ICMP_UGE) 2891 return getTrue(ITy); 2892 } 2893 2894 // handle: 2895 // CI2 << X == CI 2896 // CI2 << X != CI 2897 // 2898 // where CI2 is a power of 2 and CI isn't 2899 if (auto *CI = dyn_cast<ConstantInt>(RHS)) { 2900 const APInt *CI2Val, *CIVal = &CI->getValue(); 2901 if (LBO && match(LBO, m_Shl(m_APInt(CI2Val), m_Value())) && 2902 CI2Val->isPowerOf2()) { 2903 if (!CIVal->isPowerOf2()) { 2904 // CI2 << X can equal zero in some circumstances, 2905 // this simplification is unsafe if CI is zero. 2906 // 2907 // We know it is safe if: 2908 // - The shift is nsw, we can't shift out the one bit. 2909 // - The shift is nuw, we can't shift out the one bit. 2910 // - CI2 is one 2911 // - CI isn't zero 2912 if (Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO)) || 2913 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO)) || 2914 CI2Val->isOneValue() || !CI->isZero()) { 2915 if (Pred == ICmpInst::ICMP_EQ) 2916 return ConstantInt::getFalse(RHS->getContext()); 2917 if (Pred == ICmpInst::ICMP_NE) 2918 return ConstantInt::getTrue(RHS->getContext()); 2919 } 2920 } 2921 if (CIVal->isSignMask() && CI2Val->isOneValue()) { 2922 if (Pred == ICmpInst::ICMP_UGT) 2923 return ConstantInt::getFalse(RHS->getContext()); 2924 if (Pred == ICmpInst::ICMP_ULE) 2925 return ConstantInt::getTrue(RHS->getContext()); 2926 } 2927 } 2928 } 2929 2930 if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() && 2931 LBO->getOperand(1) == RBO->getOperand(1)) { 2932 switch (LBO->getOpcode()) { 2933 default: 2934 break; 2935 case Instruction::UDiv: 2936 case Instruction::LShr: 2937 if (ICmpInst::isSigned(Pred) || !Q.IIQ.isExact(LBO) || 2938 !Q.IIQ.isExact(RBO)) 2939 break; 2940 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 2941 RBO->getOperand(0), Q, MaxRecurse - 1)) 2942 return V; 2943 break; 2944 case Instruction::SDiv: 2945 if (!ICmpInst::isEquality(Pred) || !Q.IIQ.isExact(LBO) || 2946 !Q.IIQ.isExact(RBO)) 2947 break; 2948 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 2949 RBO->getOperand(0), Q, MaxRecurse - 1)) 2950 return V; 2951 break; 2952 case Instruction::AShr: 2953 if (!Q.IIQ.isExact(LBO) || !Q.IIQ.isExact(RBO)) 2954 break; 2955 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 2956 RBO->getOperand(0), Q, MaxRecurse - 1)) 2957 return V; 2958 break; 2959 case Instruction::Shl: { 2960 bool NUW = Q.IIQ.hasNoUnsignedWrap(LBO) && Q.IIQ.hasNoUnsignedWrap(RBO); 2961 bool NSW = Q.IIQ.hasNoSignedWrap(LBO) && Q.IIQ.hasNoSignedWrap(RBO); 2962 if (!NUW && !NSW) 2963 break; 2964 if (!NSW && ICmpInst::isSigned(Pred)) 2965 break; 2966 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 2967 RBO->getOperand(0), Q, MaxRecurse - 1)) 2968 return V; 2969 break; 2970 } 2971 } 2972 } 2973 return nullptr; 2974 } 2975 2976 /// Simplify integer comparisons where at least one operand of the compare 2977 /// matches an integer min/max idiom. 2978 static Value *simplifyICmpWithMinMax(CmpInst::Predicate Pred, Value *LHS, 2979 Value *RHS, const SimplifyQuery &Q, 2980 unsigned MaxRecurse) { 2981 Type *ITy = GetCompareTy(LHS); // The return type. 2982 Value *A, *B; 2983 CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE; 2984 CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B". 2985 2986 // Signed variants on "max(a,b)>=a -> true". 2987 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 2988 if (A != RHS) 2989 std::swap(A, B); // smax(A, B) pred A. 2990 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 2991 // We analyze this as smax(A, B) pred A. 2992 P = Pred; 2993 } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) && 2994 (A == LHS || B == LHS)) { 2995 if (A != LHS) 2996 std::swap(A, B); // A pred smax(A, B). 2997 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 2998 // We analyze this as smax(A, B) swapped-pred A. 2999 P = CmpInst::getSwappedPredicate(Pred); 3000 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && 3001 (A == RHS || B == RHS)) { 3002 if (A != RHS) 3003 std::swap(A, B); // smin(A, B) pred A. 3004 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 3005 // We analyze this as smax(-A, -B) swapped-pred -A. 3006 // Note that we do not need to actually form -A or -B thanks to EqP. 3007 P = CmpInst::getSwappedPredicate(Pred); 3008 } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) && 3009 (A == LHS || B == LHS)) { 3010 if (A != LHS) 3011 std::swap(A, B); // A pred smin(A, B). 3012 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 3013 // We analyze this as smax(-A, -B) pred -A. 3014 // Note that we do not need to actually form -A or -B thanks to EqP. 3015 P = Pred; 3016 } 3017 if (P != CmpInst::BAD_ICMP_PREDICATE) { 3018 // Cases correspond to "max(A, B) p A". 3019 switch (P) { 3020 default: 3021 break; 3022 case CmpInst::ICMP_EQ: 3023 case CmpInst::ICMP_SLE: 3024 // Equivalent to "A EqP B". This may be the same as the condition tested 3025 // in the max/min; if so, we can just return that. 3026 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 3027 return V; 3028 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 3029 return V; 3030 // Otherwise, see if "A EqP B" simplifies. 3031 if (MaxRecurse) 3032 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) 3033 return V; 3034 break; 3035 case CmpInst::ICMP_NE: 3036 case CmpInst::ICMP_SGT: { 3037 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 3038 // Equivalent to "A InvEqP B". This may be the same as the condition 3039 // tested in the max/min; if so, we can just return that. 3040 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 3041 return V; 3042 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 3043 return V; 3044 // Otherwise, see if "A InvEqP B" simplifies. 3045 if (MaxRecurse) 3046 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) 3047 return V; 3048 break; 3049 } 3050 case CmpInst::ICMP_SGE: 3051 // Always true. 3052 return getTrue(ITy); 3053 case CmpInst::ICMP_SLT: 3054 // Always false. 3055 return getFalse(ITy); 3056 } 3057 } 3058 3059 // Unsigned variants on "max(a,b)>=a -> true". 3060 P = CmpInst::BAD_ICMP_PREDICATE; 3061 if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 3062 if (A != RHS) 3063 std::swap(A, B); // umax(A, B) pred A. 3064 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 3065 // We analyze this as umax(A, B) pred A. 3066 P = Pred; 3067 } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) && 3068 (A == LHS || B == LHS)) { 3069 if (A != LHS) 3070 std::swap(A, B); // A pred umax(A, B). 3071 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 3072 // We analyze this as umax(A, B) swapped-pred A. 3073 P = CmpInst::getSwappedPredicate(Pred); 3074 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && 3075 (A == RHS || B == RHS)) { 3076 if (A != RHS) 3077 std::swap(A, B); // umin(A, B) pred A. 3078 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 3079 // We analyze this as umax(-A, -B) swapped-pred -A. 3080 // Note that we do not need to actually form -A or -B thanks to EqP. 3081 P = CmpInst::getSwappedPredicate(Pred); 3082 } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) && 3083 (A == LHS || B == LHS)) { 3084 if (A != LHS) 3085 std::swap(A, B); // A pred umin(A, B). 3086 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 3087 // We analyze this as umax(-A, -B) pred -A. 3088 // Note that we do not need to actually form -A or -B thanks to EqP. 3089 P = Pred; 3090 } 3091 if (P != CmpInst::BAD_ICMP_PREDICATE) { 3092 // Cases correspond to "max(A, B) p A". 3093 switch (P) { 3094 default: 3095 break; 3096 case CmpInst::ICMP_EQ: 3097 case CmpInst::ICMP_ULE: 3098 // Equivalent to "A EqP B". This may be the same as the condition tested 3099 // in the max/min; if so, we can just return that. 3100 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 3101 return V; 3102 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 3103 return V; 3104 // Otherwise, see if "A EqP B" simplifies. 3105 if (MaxRecurse) 3106 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) 3107 return V; 3108 break; 3109 case CmpInst::ICMP_NE: 3110 case CmpInst::ICMP_UGT: { 3111 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 3112 // Equivalent to "A InvEqP B". This may be the same as the condition 3113 // tested in the max/min; if so, we can just return that. 3114 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 3115 return V; 3116 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 3117 return V; 3118 // Otherwise, see if "A InvEqP B" simplifies. 3119 if (MaxRecurse) 3120 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) 3121 return V; 3122 break; 3123 } 3124 case CmpInst::ICMP_UGE: 3125 // Always true. 3126 return getTrue(ITy); 3127 case CmpInst::ICMP_ULT: 3128 // Always false. 3129 return getFalse(ITy); 3130 } 3131 } 3132 3133 // Variants on "max(x,y) >= min(x,z)". 3134 Value *C, *D; 3135 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && 3136 match(RHS, m_SMin(m_Value(C), m_Value(D))) && 3137 (A == C || A == D || B == C || B == D)) { 3138 // max(x, ?) pred min(x, ?). 3139 if (Pred == CmpInst::ICMP_SGE) 3140 // Always true. 3141 return getTrue(ITy); 3142 if (Pred == CmpInst::ICMP_SLT) 3143 // Always false. 3144 return getFalse(ITy); 3145 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && 3146 match(RHS, m_SMax(m_Value(C), m_Value(D))) && 3147 (A == C || A == D || B == C || B == D)) { 3148 // min(x, ?) pred max(x, ?). 3149 if (Pred == CmpInst::ICMP_SLE) 3150 // Always true. 3151 return getTrue(ITy); 3152 if (Pred == CmpInst::ICMP_SGT) 3153 // Always false. 3154 return getFalse(ITy); 3155 } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && 3156 match(RHS, m_UMin(m_Value(C), m_Value(D))) && 3157 (A == C || A == D || B == C || B == D)) { 3158 // max(x, ?) pred min(x, ?). 3159 if (Pred == CmpInst::ICMP_UGE) 3160 // Always true. 3161 return getTrue(ITy); 3162 if (Pred == CmpInst::ICMP_ULT) 3163 // Always false. 3164 return getFalse(ITy); 3165 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && 3166 match(RHS, m_UMax(m_Value(C), m_Value(D))) && 3167 (A == C || A == D || B == C || B == D)) { 3168 // min(x, ?) pred max(x, ?). 3169 if (Pred == CmpInst::ICMP_ULE) 3170 // Always true. 3171 return getTrue(ITy); 3172 if (Pred == CmpInst::ICMP_UGT) 3173 // Always false. 3174 return getFalse(ITy); 3175 } 3176 3177 return nullptr; 3178 } 3179 3180 /// Given operands for an ICmpInst, see if we can fold the result. 3181 /// If not, this returns null. 3182 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3183 const SimplifyQuery &Q, unsigned MaxRecurse) { 3184 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 3185 assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!"); 3186 3187 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3188 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3189 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 3190 3191 // If we have a constant, make sure it is on the RHS. 3192 std::swap(LHS, RHS); 3193 Pred = CmpInst::getSwappedPredicate(Pred); 3194 } 3195 assert(!isa<UndefValue>(LHS) && "Unexpected icmp undef,%X"); 3196 3197 Type *ITy = GetCompareTy(LHS); // The return type. 3198 3199 // For EQ and NE, we can always pick a value for the undef to make the 3200 // predicate pass or fail, so we can return undef. 3201 // Matches behavior in llvm::ConstantFoldCompareInstruction. 3202 if (isa<UndefValue>(RHS) && ICmpInst::isEquality(Pred)) 3203 return UndefValue::get(ITy); 3204 3205 // icmp X, X -> true/false 3206 // icmp X, undef -> true/false because undef could be X. 3207 if (LHS == RHS || isa<UndefValue>(RHS)) 3208 return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred)); 3209 3210 if (Value *V = simplifyICmpOfBools(Pred, LHS, RHS, Q)) 3211 return V; 3212 3213 if (Value *V = simplifyICmpWithZero(Pred, LHS, RHS, Q)) 3214 return V; 3215 3216 if (Value *V = simplifyICmpWithConstant(Pred, LHS, RHS, Q.IIQ)) 3217 return V; 3218 3219 // If both operands have range metadata, use the metadata 3220 // to simplify the comparison. 3221 if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) { 3222 auto RHS_Instr = cast<Instruction>(RHS); 3223 auto LHS_Instr = cast<Instruction>(LHS); 3224 3225 if (Q.IIQ.getMetadata(RHS_Instr, LLVMContext::MD_range) && 3226 Q.IIQ.getMetadata(LHS_Instr, LLVMContext::MD_range)) { 3227 auto RHS_CR = getConstantRangeFromMetadata( 3228 *RHS_Instr->getMetadata(LLVMContext::MD_range)); 3229 auto LHS_CR = getConstantRangeFromMetadata( 3230 *LHS_Instr->getMetadata(LLVMContext::MD_range)); 3231 3232 auto Satisfied_CR = ConstantRange::makeSatisfyingICmpRegion(Pred, RHS_CR); 3233 if (Satisfied_CR.contains(LHS_CR)) 3234 return ConstantInt::getTrue(RHS->getContext()); 3235 3236 auto InversedSatisfied_CR = ConstantRange::makeSatisfyingICmpRegion( 3237 CmpInst::getInversePredicate(Pred), RHS_CR); 3238 if (InversedSatisfied_CR.contains(LHS_CR)) 3239 return ConstantInt::getFalse(RHS->getContext()); 3240 } 3241 } 3242 3243 // Compare of cast, for example (zext X) != 0 -> X != 0 3244 if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) { 3245 Instruction *LI = cast<CastInst>(LHS); 3246 Value *SrcOp = LI->getOperand(0); 3247 Type *SrcTy = SrcOp->getType(); 3248 Type *DstTy = LI->getType(); 3249 3250 // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input 3251 // if the integer type is the same size as the pointer type. 3252 if (MaxRecurse && isa<PtrToIntInst>(LI) && 3253 Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) { 3254 if (Constant *RHSC = dyn_cast<Constant>(RHS)) { 3255 // Transfer the cast to the constant. 3256 if (Value *V = SimplifyICmpInst(Pred, SrcOp, 3257 ConstantExpr::getIntToPtr(RHSC, SrcTy), 3258 Q, MaxRecurse-1)) 3259 return V; 3260 } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) { 3261 if (RI->getOperand(0)->getType() == SrcTy) 3262 // Compare without the cast. 3263 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 3264 Q, MaxRecurse-1)) 3265 return V; 3266 } 3267 } 3268 3269 if (isa<ZExtInst>(LHS)) { 3270 // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the 3271 // same type. 3272 if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) { 3273 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 3274 // Compare X and Y. Note that signed predicates become unsigned. 3275 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 3276 SrcOp, RI->getOperand(0), Q, 3277 MaxRecurse-1)) 3278 return V; 3279 } 3280 // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended 3281 // too. If not, then try to deduce the result of the comparison. 3282 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 3283 // Compute the constant that would happen if we truncated to SrcTy then 3284 // reextended to DstTy. 3285 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 3286 Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy); 3287 3288 // If the re-extended constant didn't change then this is effectively 3289 // also a case of comparing two zero-extended values. 3290 if (RExt == CI && MaxRecurse) 3291 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 3292 SrcOp, Trunc, Q, MaxRecurse-1)) 3293 return V; 3294 3295 // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit 3296 // there. Use this to work out the result of the comparison. 3297 if (RExt != CI) { 3298 switch (Pred) { 3299 default: llvm_unreachable("Unknown ICmp predicate!"); 3300 // LHS <u RHS. 3301 case ICmpInst::ICMP_EQ: 3302 case ICmpInst::ICMP_UGT: 3303 case ICmpInst::ICMP_UGE: 3304 return ConstantInt::getFalse(CI->getContext()); 3305 3306 case ICmpInst::ICMP_NE: 3307 case ICmpInst::ICMP_ULT: 3308 case ICmpInst::ICMP_ULE: 3309 return ConstantInt::getTrue(CI->getContext()); 3310 3311 // LHS is non-negative. If RHS is negative then LHS >s LHS. If RHS 3312 // is non-negative then LHS <s RHS. 3313 case ICmpInst::ICMP_SGT: 3314 case ICmpInst::ICMP_SGE: 3315 return CI->getValue().isNegative() ? 3316 ConstantInt::getTrue(CI->getContext()) : 3317 ConstantInt::getFalse(CI->getContext()); 3318 3319 case ICmpInst::ICMP_SLT: 3320 case ICmpInst::ICMP_SLE: 3321 return CI->getValue().isNegative() ? 3322 ConstantInt::getFalse(CI->getContext()) : 3323 ConstantInt::getTrue(CI->getContext()); 3324 } 3325 } 3326 } 3327 } 3328 3329 if (isa<SExtInst>(LHS)) { 3330 // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the 3331 // same type. 3332 if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) { 3333 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 3334 // Compare X and Y. Note that the predicate does not change. 3335 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 3336 Q, MaxRecurse-1)) 3337 return V; 3338 } 3339 // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended 3340 // too. If not, then try to deduce the result of the comparison. 3341 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 3342 // Compute the constant that would happen if we truncated to SrcTy then 3343 // reextended to DstTy. 3344 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 3345 Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy); 3346 3347 // If the re-extended constant didn't change then this is effectively 3348 // also a case of comparing two sign-extended values. 3349 if (RExt == CI && MaxRecurse) 3350 if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1)) 3351 return V; 3352 3353 // Otherwise the upper bits of LHS are all equal, while RHS has varying 3354 // bits there. Use this to work out the result of the comparison. 3355 if (RExt != CI) { 3356 switch (Pred) { 3357 default: llvm_unreachable("Unknown ICmp predicate!"); 3358 case ICmpInst::ICMP_EQ: 3359 return ConstantInt::getFalse(CI->getContext()); 3360 case ICmpInst::ICMP_NE: 3361 return ConstantInt::getTrue(CI->getContext()); 3362 3363 // If RHS is non-negative then LHS <s RHS. If RHS is negative then 3364 // LHS >s RHS. 3365 case ICmpInst::ICMP_SGT: 3366 case ICmpInst::ICMP_SGE: 3367 return CI->getValue().isNegative() ? 3368 ConstantInt::getTrue(CI->getContext()) : 3369 ConstantInt::getFalse(CI->getContext()); 3370 case ICmpInst::ICMP_SLT: 3371 case ICmpInst::ICMP_SLE: 3372 return CI->getValue().isNegative() ? 3373 ConstantInt::getFalse(CI->getContext()) : 3374 ConstantInt::getTrue(CI->getContext()); 3375 3376 // If LHS is non-negative then LHS <u RHS. If LHS is negative then 3377 // LHS >u RHS. 3378 case ICmpInst::ICMP_UGT: 3379 case ICmpInst::ICMP_UGE: 3380 // Comparison is true iff the LHS <s 0. 3381 if (MaxRecurse) 3382 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp, 3383 Constant::getNullValue(SrcTy), 3384 Q, MaxRecurse-1)) 3385 return V; 3386 break; 3387 case ICmpInst::ICMP_ULT: 3388 case ICmpInst::ICMP_ULE: 3389 // Comparison is true iff the LHS >=s 0. 3390 if (MaxRecurse) 3391 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp, 3392 Constant::getNullValue(SrcTy), 3393 Q, MaxRecurse-1)) 3394 return V; 3395 break; 3396 } 3397 } 3398 } 3399 } 3400 } 3401 3402 // icmp eq|ne X, Y -> false|true if X != Y 3403 if (ICmpInst::isEquality(Pred) && 3404 isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) { 3405 return Pred == ICmpInst::ICMP_NE ? getTrue(ITy) : getFalse(ITy); 3406 } 3407 3408 if (Value *V = simplifyICmpWithBinOp(Pred, LHS, RHS, Q, MaxRecurse)) 3409 return V; 3410 3411 if (Value *V = simplifyICmpWithMinMax(Pred, LHS, RHS, Q, MaxRecurse)) 3412 return V; 3413 3414 // Simplify comparisons of related pointers using a powerful, recursive 3415 // GEP-walk when we have target data available.. 3416 if (LHS->getType()->isPointerTy()) 3417 if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.AC, Q.CxtI, 3418 Q.IIQ, LHS, RHS)) 3419 return C; 3420 if (auto *CLHS = dyn_cast<PtrToIntOperator>(LHS)) 3421 if (auto *CRHS = dyn_cast<PtrToIntOperator>(RHS)) 3422 if (Q.DL.getTypeSizeInBits(CLHS->getPointerOperandType()) == 3423 Q.DL.getTypeSizeInBits(CLHS->getType()) && 3424 Q.DL.getTypeSizeInBits(CRHS->getPointerOperandType()) == 3425 Q.DL.getTypeSizeInBits(CRHS->getType())) 3426 if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.AC, Q.CxtI, 3427 Q.IIQ, CLHS->getPointerOperand(), 3428 CRHS->getPointerOperand())) 3429 return C; 3430 3431 if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) { 3432 if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) { 3433 if (GLHS->getPointerOperand() == GRHS->getPointerOperand() && 3434 GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() && 3435 (ICmpInst::isEquality(Pred) || 3436 (GLHS->isInBounds() && GRHS->isInBounds() && 3437 Pred == ICmpInst::getSignedPredicate(Pred)))) { 3438 // The bases are equal and the indices are constant. Build a constant 3439 // expression GEP with the same indices and a null base pointer to see 3440 // what constant folding can make out of it. 3441 Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType()); 3442 SmallVector<Value *, 4> IndicesLHS(GLHS->idx_begin(), GLHS->idx_end()); 3443 Constant *NewLHS = ConstantExpr::getGetElementPtr( 3444 GLHS->getSourceElementType(), Null, IndicesLHS); 3445 3446 SmallVector<Value *, 4> IndicesRHS(GRHS->idx_begin(), GRHS->idx_end()); 3447 Constant *NewRHS = ConstantExpr::getGetElementPtr( 3448 GLHS->getSourceElementType(), Null, IndicesRHS); 3449 return ConstantExpr::getICmp(Pred, NewLHS, NewRHS); 3450 } 3451 } 3452 } 3453 3454 // If the comparison is with the result of a select instruction, check whether 3455 // comparing with either branch of the select always yields the same value. 3456 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3457 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 3458 return V; 3459 3460 // If the comparison is with the result of a phi instruction, check whether 3461 // doing the compare with each incoming phi value yields a common result. 3462 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3463 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 3464 return V; 3465 3466 return nullptr; 3467 } 3468 3469 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3470 const SimplifyQuery &Q) { 3471 return ::SimplifyICmpInst(Predicate, LHS, RHS, Q, RecursionLimit); 3472 } 3473 3474 /// Given operands for an FCmpInst, see if we can fold the result. 3475 /// If not, this returns null. 3476 static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3477 FastMathFlags FMF, const SimplifyQuery &Q, 3478 unsigned MaxRecurse) { 3479 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 3480 assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!"); 3481 3482 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3483 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3484 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 3485 3486 // If we have a constant, make sure it is on the RHS. 3487 std::swap(LHS, RHS); 3488 Pred = CmpInst::getSwappedPredicate(Pred); 3489 } 3490 3491 // Fold trivial predicates. 3492 Type *RetTy = GetCompareTy(LHS); 3493 if (Pred == FCmpInst::FCMP_FALSE) 3494 return getFalse(RetTy); 3495 if (Pred == FCmpInst::FCMP_TRUE) 3496 return getTrue(RetTy); 3497 3498 // Fold (un)ordered comparison if we can determine there are no NaNs. 3499 if (Pred == FCmpInst::FCMP_UNO || Pred == FCmpInst::FCMP_ORD) 3500 if (FMF.noNaNs() || 3501 (isKnownNeverNaN(LHS, Q.TLI) && isKnownNeverNaN(RHS, Q.TLI))) 3502 return ConstantInt::get(RetTy, Pred == FCmpInst::FCMP_ORD); 3503 3504 // NaN is unordered; NaN is not ordered. 3505 assert((FCmpInst::isOrdered(Pred) || FCmpInst::isUnordered(Pred)) && 3506 "Comparison must be either ordered or unordered"); 3507 if (match(RHS, m_NaN())) 3508 return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred)); 3509 3510 // fcmp pred x, undef and fcmp pred undef, x 3511 // fold to true if unordered, false if ordered 3512 if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) { 3513 // Choosing NaN for the undef will always make unordered comparison succeed 3514 // and ordered comparison fail. 3515 return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred)); 3516 } 3517 3518 // fcmp x,x -> true/false. Not all compares are foldable. 3519 if (LHS == RHS) { 3520 if (CmpInst::isTrueWhenEqual(Pred)) 3521 return getTrue(RetTy); 3522 if (CmpInst::isFalseWhenEqual(Pred)) 3523 return getFalse(RetTy); 3524 } 3525 3526 // Handle fcmp with constant RHS. 3527 // TODO: Use match with a specific FP value, so these work with vectors with 3528 // undef lanes. 3529 const APFloat *C; 3530 if (match(RHS, m_APFloat(C))) { 3531 // Check whether the constant is an infinity. 3532 if (C->isInfinity()) { 3533 if (C->isNegative()) { 3534 switch (Pred) { 3535 case FCmpInst::FCMP_OLT: 3536 // No value is ordered and less than negative infinity. 3537 return getFalse(RetTy); 3538 case FCmpInst::FCMP_UGE: 3539 // All values are unordered with or at least negative infinity. 3540 return getTrue(RetTy); 3541 default: 3542 break; 3543 } 3544 } else { 3545 switch (Pred) { 3546 case FCmpInst::FCMP_OGT: 3547 // No value is ordered and greater than infinity. 3548 return getFalse(RetTy); 3549 case FCmpInst::FCMP_ULE: 3550 // All values are unordered with and at most infinity. 3551 return getTrue(RetTy); 3552 default: 3553 break; 3554 } 3555 } 3556 } 3557 if (C->isNegative() && !C->isNegZero()) { 3558 assert(!C->isNaN() && "Unexpected NaN constant!"); 3559 // TODO: We can catch more cases by using a range check rather than 3560 // relying on CannotBeOrderedLessThanZero. 3561 switch (Pred) { 3562 case FCmpInst::FCMP_UGE: 3563 case FCmpInst::FCMP_UGT: 3564 case FCmpInst::FCMP_UNE: 3565 // (X >= 0) implies (X > C) when (C < 0) 3566 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3567 return getTrue(RetTy); 3568 break; 3569 case FCmpInst::FCMP_OEQ: 3570 case FCmpInst::FCMP_OLE: 3571 case FCmpInst::FCMP_OLT: 3572 // (X >= 0) implies !(X < C) when (C < 0) 3573 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3574 return getFalse(RetTy); 3575 break; 3576 default: 3577 break; 3578 } 3579 } 3580 3581 // Check comparison of [minnum/maxnum with constant] with other constant. 3582 const APFloat *C2; 3583 if ((match(LHS, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_APFloat(C2))) && 3584 C2->compare(*C) == APFloat::cmpLessThan) || 3585 (match(LHS, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_APFloat(C2))) && 3586 C2->compare(*C) == APFloat::cmpGreaterThan)) { 3587 bool IsMaxNum = 3588 cast<IntrinsicInst>(LHS)->getIntrinsicID() == Intrinsic::maxnum; 3589 // The ordered relationship and minnum/maxnum guarantee that we do not 3590 // have NaN constants, so ordered/unordered preds are handled the same. 3591 switch (Pred) { 3592 case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_UEQ: 3593 // minnum(X, LesserC) == C --> false 3594 // maxnum(X, GreaterC) == C --> false 3595 return getFalse(RetTy); 3596 case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_UNE: 3597 // minnum(X, LesserC) != C --> true 3598 // maxnum(X, GreaterC) != C --> true 3599 return getTrue(RetTy); 3600 case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_UGE: 3601 case FCmpInst::FCMP_OGT: case FCmpInst::FCMP_UGT: 3602 // minnum(X, LesserC) >= C --> false 3603 // minnum(X, LesserC) > C --> false 3604 // maxnum(X, GreaterC) >= C --> true 3605 // maxnum(X, GreaterC) > C --> true 3606 return ConstantInt::get(RetTy, IsMaxNum); 3607 case FCmpInst::FCMP_OLE: case FCmpInst::FCMP_ULE: 3608 case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_ULT: 3609 // minnum(X, LesserC) <= C --> true 3610 // minnum(X, LesserC) < C --> true 3611 // maxnum(X, GreaterC) <= C --> false 3612 // maxnum(X, GreaterC) < C --> false 3613 return ConstantInt::get(RetTy, !IsMaxNum); 3614 default: 3615 // TRUE/FALSE/ORD/UNO should be handled before this. 3616 llvm_unreachable("Unexpected fcmp predicate"); 3617 } 3618 } 3619 } 3620 3621 if (match(RHS, m_AnyZeroFP())) { 3622 switch (Pred) { 3623 case FCmpInst::FCMP_OGE: 3624 case FCmpInst::FCMP_ULT: 3625 // Positive or zero X >= 0.0 --> true 3626 // Positive or zero X < 0.0 --> false 3627 if ((FMF.noNaNs() || isKnownNeverNaN(LHS, Q.TLI)) && 3628 CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3629 return Pred == FCmpInst::FCMP_OGE ? getTrue(RetTy) : getFalse(RetTy); 3630 break; 3631 case FCmpInst::FCMP_UGE: 3632 case FCmpInst::FCMP_OLT: 3633 // Positive or zero or nan X >= 0.0 --> true 3634 // Positive or zero or nan X < 0.0 --> false 3635 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3636 return Pred == FCmpInst::FCMP_UGE ? getTrue(RetTy) : getFalse(RetTy); 3637 break; 3638 default: 3639 break; 3640 } 3641 } 3642 3643 // If the comparison is with the result of a select instruction, check whether 3644 // comparing with either branch of the select always yields the same value. 3645 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3646 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 3647 return V; 3648 3649 // If the comparison is with the result of a phi instruction, check whether 3650 // doing the compare with each incoming phi value yields a common result. 3651 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3652 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 3653 return V; 3654 3655 return nullptr; 3656 } 3657 3658 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3659 FastMathFlags FMF, const SimplifyQuery &Q) { 3660 return ::SimplifyFCmpInst(Predicate, LHS, RHS, FMF, Q, RecursionLimit); 3661 } 3662 3663 /// See if V simplifies when its operand Op is replaced with RepOp. 3664 static const Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, 3665 const SimplifyQuery &Q, 3666 unsigned MaxRecurse) { 3667 // Trivial replacement. 3668 if (V == Op) 3669 return RepOp; 3670 3671 // We cannot replace a constant, and shouldn't even try. 3672 if (isa<Constant>(Op)) 3673 return nullptr; 3674 3675 auto *I = dyn_cast<Instruction>(V); 3676 if (!I) 3677 return nullptr; 3678 3679 // If this is a binary operator, try to simplify it with the replaced op. 3680 if (auto *B = dyn_cast<BinaryOperator>(I)) { 3681 // Consider: 3682 // %cmp = icmp eq i32 %x, 2147483647 3683 // %add = add nsw i32 %x, 1 3684 // %sel = select i1 %cmp, i32 -2147483648, i32 %add 3685 // 3686 // We can't replace %sel with %add unless we strip away the flags. 3687 // TODO: This is an unusual limitation because better analysis results in 3688 // worse simplification. InstCombine can do this fold more generally 3689 // by dropping the flags. Remove this fold to save compile-time? 3690 if (isa<OverflowingBinaryOperator>(B)) 3691 if (Q.IIQ.hasNoSignedWrap(B) || Q.IIQ.hasNoUnsignedWrap(B)) 3692 return nullptr; 3693 if (isa<PossiblyExactOperator>(B) && Q.IIQ.isExact(B)) 3694 return nullptr; 3695 3696 if (MaxRecurse) { 3697 if (B->getOperand(0) == Op) 3698 return SimplifyBinOp(B->getOpcode(), RepOp, B->getOperand(1), Q, 3699 MaxRecurse - 1); 3700 if (B->getOperand(1) == Op) 3701 return SimplifyBinOp(B->getOpcode(), B->getOperand(0), RepOp, Q, 3702 MaxRecurse - 1); 3703 } 3704 } 3705 3706 // Same for CmpInsts. 3707 if (CmpInst *C = dyn_cast<CmpInst>(I)) { 3708 if (MaxRecurse) { 3709 if (C->getOperand(0) == Op) 3710 return SimplifyCmpInst(C->getPredicate(), RepOp, C->getOperand(1), Q, 3711 MaxRecurse - 1); 3712 if (C->getOperand(1) == Op) 3713 return SimplifyCmpInst(C->getPredicate(), C->getOperand(0), RepOp, Q, 3714 MaxRecurse - 1); 3715 } 3716 } 3717 3718 // Same for GEPs. 3719 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 3720 if (MaxRecurse) { 3721 SmallVector<Value *, 8> NewOps(GEP->getNumOperands()); 3722 transform(GEP->operands(), NewOps.begin(), 3723 [&](Value *V) { return V == Op ? RepOp : V; }); 3724 return SimplifyGEPInst(GEP->getSourceElementType(), NewOps, Q, 3725 MaxRecurse - 1); 3726 } 3727 } 3728 3729 // TODO: We could hand off more cases to instsimplify here. 3730 3731 // If all operands are constant after substituting Op for RepOp then we can 3732 // constant fold the instruction. 3733 if (Constant *CRepOp = dyn_cast<Constant>(RepOp)) { 3734 // Build a list of all constant operands. 3735 SmallVector<Constant *, 8> ConstOps; 3736 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 3737 if (I->getOperand(i) == Op) 3738 ConstOps.push_back(CRepOp); 3739 else if (Constant *COp = dyn_cast<Constant>(I->getOperand(i))) 3740 ConstOps.push_back(COp); 3741 else 3742 break; 3743 } 3744 3745 // All operands were constants, fold it. 3746 if (ConstOps.size() == I->getNumOperands()) { 3747 if (CmpInst *C = dyn_cast<CmpInst>(I)) 3748 return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0], 3749 ConstOps[1], Q.DL, Q.TLI); 3750 3751 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 3752 if (!LI->isVolatile()) 3753 return ConstantFoldLoadFromConstPtr(ConstOps[0], LI->getType(), Q.DL); 3754 3755 return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI); 3756 } 3757 } 3758 3759 return nullptr; 3760 } 3761 3762 /// Try to simplify a select instruction when its condition operand is an 3763 /// integer comparison where one operand of the compare is a constant. 3764 static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X, 3765 const APInt *Y, bool TrueWhenUnset) { 3766 const APInt *C; 3767 3768 // (X & Y) == 0 ? X & ~Y : X --> X 3769 // (X & Y) != 0 ? X & ~Y : X --> X & ~Y 3770 if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) && 3771 *Y == ~*C) 3772 return TrueWhenUnset ? FalseVal : TrueVal; 3773 3774 // (X & Y) == 0 ? X : X & ~Y --> X & ~Y 3775 // (X & Y) != 0 ? X : X & ~Y --> X 3776 if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) && 3777 *Y == ~*C) 3778 return TrueWhenUnset ? FalseVal : TrueVal; 3779 3780 if (Y->isPowerOf2()) { 3781 // (X & Y) == 0 ? X | Y : X --> X | Y 3782 // (X & Y) != 0 ? X | Y : X --> X 3783 if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) && 3784 *Y == *C) 3785 return TrueWhenUnset ? TrueVal : FalseVal; 3786 3787 // (X & Y) == 0 ? X : X | Y --> X 3788 // (X & Y) != 0 ? X : X | Y --> X | Y 3789 if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) && 3790 *Y == *C) 3791 return TrueWhenUnset ? TrueVal : FalseVal; 3792 } 3793 3794 return nullptr; 3795 } 3796 3797 /// An alternative way to test if a bit is set or not uses sgt/slt instead of 3798 /// eq/ne. 3799 static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *CmpRHS, 3800 ICmpInst::Predicate Pred, 3801 Value *TrueVal, Value *FalseVal) { 3802 Value *X; 3803 APInt Mask; 3804 if (!decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, X, Mask)) 3805 return nullptr; 3806 3807 return simplifySelectBitTest(TrueVal, FalseVal, X, &Mask, 3808 Pred == ICmpInst::ICMP_EQ); 3809 } 3810 3811 /// Try to simplify a select instruction when its condition operand is an 3812 /// integer comparison. 3813 static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal, 3814 Value *FalseVal, const SimplifyQuery &Q, 3815 unsigned MaxRecurse) { 3816 ICmpInst::Predicate Pred; 3817 Value *CmpLHS, *CmpRHS; 3818 if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS)))) 3819 return nullptr; 3820 3821 if (ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero())) { 3822 Value *X; 3823 const APInt *Y; 3824 if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y)))) 3825 if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y, 3826 Pred == ICmpInst::ICMP_EQ)) 3827 return V; 3828 3829 // Test for a bogus zero-shift-guard-op around funnel-shift or rotate. 3830 Value *ShAmt; 3831 auto isFsh = m_CombineOr(m_Intrinsic<Intrinsic::fshl>(m_Value(X), m_Value(), 3832 m_Value(ShAmt)), 3833 m_Intrinsic<Intrinsic::fshr>(m_Value(), m_Value(X), 3834 m_Value(ShAmt))); 3835 // (ShAmt == 0) ? fshl(X, *, ShAmt) : X --> X 3836 // (ShAmt == 0) ? fshr(*, X, ShAmt) : X --> X 3837 if (match(TrueVal, isFsh) && FalseVal == X && CmpLHS == ShAmt && 3838 Pred == ICmpInst::ICMP_EQ) 3839 return X; 3840 // (ShAmt != 0) ? X : fshl(X, *, ShAmt) --> X 3841 // (ShAmt != 0) ? X : fshr(*, X, ShAmt) --> X 3842 if (match(FalseVal, isFsh) && TrueVal == X && CmpLHS == ShAmt && 3843 Pred == ICmpInst::ICMP_NE) 3844 return X; 3845 3846 // Test for a zero-shift-guard-op around rotates. These are used to 3847 // avoid UB from oversized shifts in raw IR rotate patterns, but the 3848 // intrinsics do not have that problem. 3849 // We do not allow this transform for the general funnel shift case because 3850 // that would not preserve the poison safety of the original code. 3851 auto isRotate = m_CombineOr(m_Intrinsic<Intrinsic::fshl>(m_Value(X), 3852 m_Deferred(X), 3853 m_Value(ShAmt)), 3854 m_Intrinsic<Intrinsic::fshr>(m_Value(X), 3855 m_Deferred(X), 3856 m_Value(ShAmt))); 3857 // (ShAmt != 0) ? fshl(X, X, ShAmt) : X --> fshl(X, X, ShAmt) 3858 // (ShAmt != 0) ? fshr(X, X, ShAmt) : X --> fshr(X, X, ShAmt) 3859 if (match(TrueVal, isRotate) && FalseVal == X && CmpLHS == ShAmt && 3860 Pred == ICmpInst::ICMP_NE) 3861 return TrueVal; 3862 // (ShAmt == 0) ? X : fshl(X, X, ShAmt) --> fshl(X, X, ShAmt) 3863 // (ShAmt == 0) ? X : fshr(X, X, ShAmt) --> fshr(X, X, ShAmt) 3864 if (match(FalseVal, isRotate) && TrueVal == X && CmpLHS == ShAmt && 3865 Pred == ICmpInst::ICMP_EQ) 3866 return FalseVal; 3867 } 3868 3869 // Check for other compares that behave like bit test. 3870 if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, CmpRHS, Pred, 3871 TrueVal, FalseVal)) 3872 return V; 3873 3874 // If we have an equality comparison, then we know the value in one of the 3875 // arms of the select. See if substituting this value into the arm and 3876 // simplifying the result yields the same value as the other arm. 3877 if (Pred == ICmpInst::ICMP_EQ) { 3878 if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3879 TrueVal || 3880 SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3881 TrueVal) 3882 return FalseVal; 3883 if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3884 FalseVal || 3885 SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3886 FalseVal) 3887 return FalseVal; 3888 } else if (Pred == ICmpInst::ICMP_NE) { 3889 if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3890 FalseVal || 3891 SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3892 FalseVal) 3893 return TrueVal; 3894 if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3895 TrueVal || 3896 SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3897 TrueVal) 3898 return TrueVal; 3899 } 3900 3901 return nullptr; 3902 } 3903 3904 /// Try to simplify a select instruction when its condition operand is a 3905 /// floating-point comparison. 3906 static Value *simplifySelectWithFCmp(Value *Cond, Value *T, Value *F) { 3907 FCmpInst::Predicate Pred; 3908 if (!match(Cond, m_FCmp(Pred, m_Specific(T), m_Specific(F))) && 3909 !match(Cond, m_FCmp(Pred, m_Specific(F), m_Specific(T)))) 3910 return nullptr; 3911 3912 // TODO: The transform may not be valid with -0.0. An incomplete way of 3913 // testing for that possibility is to check if at least one operand is a 3914 // non-zero constant. 3915 const APFloat *C; 3916 if ((match(T, m_APFloat(C)) && C->isNonZero()) || 3917 (match(F, m_APFloat(C)) && C->isNonZero())) { 3918 // (T == F) ? T : F --> F 3919 // (F == T) ? T : F --> F 3920 if (Pred == FCmpInst::FCMP_OEQ) 3921 return F; 3922 3923 // (T != F) ? T : F --> T 3924 // (F != T) ? T : F --> T 3925 if (Pred == FCmpInst::FCMP_UNE) 3926 return T; 3927 } 3928 3929 return nullptr; 3930 } 3931 3932 /// Given operands for a SelectInst, see if we can fold the result. 3933 /// If not, this returns null. 3934 static Value *SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, 3935 const SimplifyQuery &Q, unsigned MaxRecurse) { 3936 if (auto *CondC = dyn_cast<Constant>(Cond)) { 3937 if (auto *TrueC = dyn_cast<Constant>(TrueVal)) 3938 if (auto *FalseC = dyn_cast<Constant>(FalseVal)) 3939 return ConstantFoldSelectInstruction(CondC, TrueC, FalseC); 3940 3941 // select undef, X, Y -> X or Y 3942 if (isa<UndefValue>(CondC)) 3943 return isa<Constant>(FalseVal) ? FalseVal : TrueVal; 3944 3945 // TODO: Vector constants with undef elements don't simplify. 3946 3947 // select true, X, Y -> X 3948 if (CondC->isAllOnesValue()) 3949 return TrueVal; 3950 // select false, X, Y -> Y 3951 if (CondC->isNullValue()) 3952 return FalseVal; 3953 } 3954 3955 // select ?, X, X -> X 3956 if (TrueVal == FalseVal) 3957 return TrueVal; 3958 3959 if (isa<UndefValue>(TrueVal)) // select ?, undef, X -> X 3960 return FalseVal; 3961 if (isa<UndefValue>(FalseVal)) // select ?, X, undef -> X 3962 return TrueVal; 3963 3964 if (Value *V = 3965 simplifySelectWithICmpCond(Cond, TrueVal, FalseVal, Q, MaxRecurse)) 3966 return V; 3967 3968 if (Value *V = simplifySelectWithFCmp(Cond, TrueVal, FalseVal)) 3969 return V; 3970 3971 if (Value *V = foldSelectWithBinaryOp(Cond, TrueVal, FalseVal)) 3972 return V; 3973 3974 Optional<bool> Imp = isImpliedByDomCondition(Cond, Q.CxtI, Q.DL); 3975 if (Imp) 3976 return *Imp ? TrueVal : FalseVal; 3977 3978 return nullptr; 3979 } 3980 3981 Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, 3982 const SimplifyQuery &Q) { 3983 return ::SimplifySelectInst(Cond, TrueVal, FalseVal, Q, RecursionLimit); 3984 } 3985 3986 /// Given operands for an GetElementPtrInst, see if we can fold the result. 3987 /// If not, this returns null. 3988 static Value *SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, 3989 const SimplifyQuery &Q, unsigned) { 3990 // The type of the GEP pointer operand. 3991 unsigned AS = 3992 cast<PointerType>(Ops[0]->getType()->getScalarType())->getAddressSpace(); 3993 3994 // getelementptr P -> P. 3995 if (Ops.size() == 1) 3996 return Ops[0]; 3997 3998 // Compute the (pointer) type returned by the GEP instruction. 3999 Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Ops.slice(1)); 4000 Type *GEPTy = PointerType::get(LastType, AS); 4001 if (VectorType *VT = dyn_cast<VectorType>(Ops[0]->getType())) 4002 GEPTy = VectorType::get(GEPTy, VT->getNumElements()); 4003 else if (VectorType *VT = dyn_cast<VectorType>(Ops[1]->getType())) 4004 GEPTy = VectorType::get(GEPTy, VT->getNumElements()); 4005 4006 if (isa<UndefValue>(Ops[0])) 4007 return UndefValue::get(GEPTy); 4008 4009 if (Ops.size() == 2) { 4010 // getelementptr P, 0 -> P. 4011 if (match(Ops[1], m_Zero()) && Ops[0]->getType() == GEPTy) 4012 return Ops[0]; 4013 4014 Type *Ty = SrcTy; 4015 if (Ty->isSized()) { 4016 Value *P; 4017 uint64_t C; 4018 uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty); 4019 // getelementptr P, N -> P if P points to a type of zero size. 4020 if (TyAllocSize == 0 && Ops[0]->getType() == GEPTy) 4021 return Ops[0]; 4022 4023 // The following transforms are only safe if the ptrtoint cast 4024 // doesn't truncate the pointers. 4025 if (Ops[1]->getType()->getScalarSizeInBits() == 4026 Q.DL.getIndexSizeInBits(AS)) { 4027 auto PtrToIntOrZero = [GEPTy](Value *P) -> Value * { 4028 if (match(P, m_Zero())) 4029 return Constant::getNullValue(GEPTy); 4030 Value *Temp; 4031 if (match(P, m_PtrToInt(m_Value(Temp)))) 4032 if (Temp->getType() == GEPTy) 4033 return Temp; 4034 return nullptr; 4035 }; 4036 4037 // getelementptr V, (sub P, V) -> P if P points to a type of size 1. 4038 if (TyAllocSize == 1 && 4039 match(Ops[1], m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))))) 4040 if (Value *R = PtrToIntOrZero(P)) 4041 return R; 4042 4043 // getelementptr V, (ashr (sub P, V), C) -> Q 4044 // if P points to a type of size 1 << C. 4045 if (match(Ops[1], 4046 m_AShr(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))), 4047 m_ConstantInt(C))) && 4048 TyAllocSize == 1ULL << C) 4049 if (Value *R = PtrToIntOrZero(P)) 4050 return R; 4051 4052 // getelementptr V, (sdiv (sub P, V), C) -> Q 4053 // if P points to a type of size C. 4054 if (match(Ops[1], 4055 m_SDiv(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))), 4056 m_SpecificInt(TyAllocSize)))) 4057 if (Value *R = PtrToIntOrZero(P)) 4058 return R; 4059 } 4060 } 4061 } 4062 4063 if (Q.DL.getTypeAllocSize(LastType) == 1 && 4064 all_of(Ops.slice(1).drop_back(1), 4065 [](Value *Idx) { return match(Idx, m_Zero()); })) { 4066 unsigned IdxWidth = 4067 Q.DL.getIndexSizeInBits(Ops[0]->getType()->getPointerAddressSpace()); 4068 if (Q.DL.getTypeSizeInBits(Ops.back()->getType()) == IdxWidth) { 4069 APInt BasePtrOffset(IdxWidth, 0); 4070 Value *StrippedBasePtr = 4071 Ops[0]->stripAndAccumulateInBoundsConstantOffsets(Q.DL, 4072 BasePtrOffset); 4073 4074 // gep (gep V, C), (sub 0, V) -> C 4075 if (match(Ops.back(), 4076 m_Sub(m_Zero(), m_PtrToInt(m_Specific(StrippedBasePtr))))) { 4077 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset); 4078 return ConstantExpr::getIntToPtr(CI, GEPTy); 4079 } 4080 // gep (gep V, C), (xor V, -1) -> C-1 4081 if (match(Ops.back(), 4082 m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr)), m_AllOnes()))) { 4083 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset - 1); 4084 return ConstantExpr::getIntToPtr(CI, GEPTy); 4085 } 4086 } 4087 } 4088 4089 // Check to see if this is constant foldable. 4090 if (!all_of(Ops, [](Value *V) { return isa<Constant>(V); })) 4091 return nullptr; 4092 4093 auto *CE = ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ops[0]), 4094 Ops.slice(1)); 4095 if (auto *CEFolded = ConstantFoldConstant(CE, Q.DL)) 4096 return CEFolded; 4097 return CE; 4098 } 4099 4100 Value *llvm::SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, 4101 const SimplifyQuery &Q) { 4102 return ::SimplifyGEPInst(SrcTy, Ops, Q, RecursionLimit); 4103 } 4104 4105 /// Given operands for an InsertValueInst, see if we can fold the result. 4106 /// If not, this returns null. 4107 static Value *SimplifyInsertValueInst(Value *Agg, Value *Val, 4108 ArrayRef<unsigned> Idxs, const SimplifyQuery &Q, 4109 unsigned) { 4110 if (Constant *CAgg = dyn_cast<Constant>(Agg)) 4111 if (Constant *CVal = dyn_cast<Constant>(Val)) 4112 return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs); 4113 4114 // insertvalue x, undef, n -> x 4115 if (match(Val, m_Undef())) 4116 return Agg; 4117 4118 // insertvalue x, (extractvalue y, n), n 4119 if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val)) 4120 if (EV->getAggregateOperand()->getType() == Agg->getType() && 4121 EV->getIndices() == Idxs) { 4122 // insertvalue undef, (extractvalue y, n), n -> y 4123 if (match(Agg, m_Undef())) 4124 return EV->getAggregateOperand(); 4125 4126 // insertvalue y, (extractvalue y, n), n -> y 4127 if (Agg == EV->getAggregateOperand()) 4128 return Agg; 4129 } 4130 4131 return nullptr; 4132 } 4133 4134 Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val, 4135 ArrayRef<unsigned> Idxs, 4136 const SimplifyQuery &Q) { 4137 return ::SimplifyInsertValueInst(Agg, Val, Idxs, Q, RecursionLimit); 4138 } 4139 4140 Value *llvm::SimplifyInsertElementInst(Value *Vec, Value *Val, Value *Idx, 4141 const SimplifyQuery &Q) { 4142 // Try to constant fold. 4143 auto *VecC = dyn_cast<Constant>(Vec); 4144 auto *ValC = dyn_cast<Constant>(Val); 4145 auto *IdxC = dyn_cast<Constant>(Idx); 4146 if (VecC && ValC && IdxC) 4147 return ConstantFoldInsertElementInstruction(VecC, ValC, IdxC); 4148 4149 // Fold into undef if index is out of bounds. 4150 if (auto *CI = dyn_cast<ConstantInt>(Idx)) { 4151 uint64_t NumElements = cast<VectorType>(Vec->getType())->getNumElements(); 4152 if (CI->uge(NumElements)) 4153 return UndefValue::get(Vec->getType()); 4154 } 4155 4156 // If index is undef, it might be out of bounds (see above case) 4157 if (isa<UndefValue>(Idx)) 4158 return UndefValue::get(Vec->getType()); 4159 4160 // Inserting an undef scalar? Assume it is the same value as the existing 4161 // vector element. 4162 if (isa<UndefValue>(Val)) 4163 return Vec; 4164 4165 // If we are extracting a value from a vector, then inserting it into the same 4166 // place, that's the input vector: 4167 // insertelt Vec, (extractelt Vec, Idx), Idx --> Vec 4168 if (match(Val, m_ExtractElement(m_Specific(Vec), m_Specific(Idx)))) 4169 return Vec; 4170 4171 return nullptr; 4172 } 4173 4174 /// Given operands for an ExtractValueInst, see if we can fold the result. 4175 /// If not, this returns null. 4176 static Value *SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 4177 const SimplifyQuery &, unsigned) { 4178 if (auto *CAgg = dyn_cast<Constant>(Agg)) 4179 return ConstantFoldExtractValueInstruction(CAgg, Idxs); 4180 4181 // extractvalue x, (insertvalue y, elt, n), n -> elt 4182 unsigned NumIdxs = Idxs.size(); 4183 for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr; 4184 IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) { 4185 ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices(); 4186 unsigned NumInsertValueIdxs = InsertValueIdxs.size(); 4187 unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs); 4188 if (InsertValueIdxs.slice(0, NumCommonIdxs) == 4189 Idxs.slice(0, NumCommonIdxs)) { 4190 if (NumIdxs == NumInsertValueIdxs) 4191 return IVI->getInsertedValueOperand(); 4192 break; 4193 } 4194 } 4195 4196 return nullptr; 4197 } 4198 4199 Value *llvm::SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 4200 const SimplifyQuery &Q) { 4201 return ::SimplifyExtractValueInst(Agg, Idxs, Q, RecursionLimit); 4202 } 4203 4204 /// Given operands for an ExtractElementInst, see if we can fold the result. 4205 /// If not, this returns null. 4206 static Value *SimplifyExtractElementInst(Value *Vec, Value *Idx, const SimplifyQuery &, 4207 unsigned) { 4208 if (auto *CVec = dyn_cast<Constant>(Vec)) { 4209 if (auto *CIdx = dyn_cast<Constant>(Idx)) 4210 return ConstantFoldExtractElementInstruction(CVec, CIdx); 4211 4212 // The index is not relevant if our vector is a splat. 4213 if (auto *Splat = CVec->getSplatValue()) 4214 return Splat; 4215 4216 if (isa<UndefValue>(Vec)) 4217 return UndefValue::get(Vec->getType()->getVectorElementType()); 4218 } 4219 4220 // If extracting a specified index from the vector, see if we can recursively 4221 // find a previously computed scalar that was inserted into the vector. 4222 if (auto *IdxC = dyn_cast<ConstantInt>(Idx)) { 4223 if (IdxC->getValue().uge(Vec->getType()->getVectorNumElements())) 4224 // definitely out of bounds, thus undefined result 4225 return UndefValue::get(Vec->getType()->getVectorElementType()); 4226 if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue())) 4227 return Elt; 4228 } 4229 4230 // An undef extract index can be arbitrarily chosen to be an out-of-range 4231 // index value, which would result in the instruction being undef. 4232 if (isa<UndefValue>(Idx)) 4233 return UndefValue::get(Vec->getType()->getVectorElementType()); 4234 4235 return nullptr; 4236 } 4237 4238 Value *llvm::SimplifyExtractElementInst(Value *Vec, Value *Idx, 4239 const SimplifyQuery &Q) { 4240 return ::SimplifyExtractElementInst(Vec, Idx, Q, RecursionLimit); 4241 } 4242 4243 /// See if we can fold the given phi. If not, returns null. 4244 static Value *SimplifyPHINode(PHINode *PN, const SimplifyQuery &Q) { 4245 // If all of the PHI's incoming values are the same then replace the PHI node 4246 // with the common value. 4247 Value *CommonValue = nullptr; 4248 bool HasUndefInput = false; 4249 for (Value *Incoming : PN->incoming_values()) { 4250 // If the incoming value is the phi node itself, it can safely be skipped. 4251 if (Incoming == PN) continue; 4252 if (isa<UndefValue>(Incoming)) { 4253 // Remember that we saw an undef value, but otherwise ignore them. 4254 HasUndefInput = true; 4255 continue; 4256 } 4257 if (CommonValue && Incoming != CommonValue) 4258 return nullptr; // Not the same, bail out. 4259 CommonValue = Incoming; 4260 } 4261 4262 // If CommonValue is null then all of the incoming values were either undef or 4263 // equal to the phi node itself. 4264 if (!CommonValue) 4265 return UndefValue::get(PN->getType()); 4266 4267 // If we have a PHI node like phi(X, undef, X), where X is defined by some 4268 // instruction, we cannot return X as the result of the PHI node unless it 4269 // dominates the PHI block. 4270 if (HasUndefInput) 4271 return valueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr; 4272 4273 return CommonValue; 4274 } 4275 4276 static Value *SimplifyCastInst(unsigned CastOpc, Value *Op, 4277 Type *Ty, const SimplifyQuery &Q, unsigned MaxRecurse) { 4278 if (auto *C = dyn_cast<Constant>(Op)) 4279 return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL); 4280 4281 if (auto *CI = dyn_cast<CastInst>(Op)) { 4282 auto *Src = CI->getOperand(0); 4283 Type *SrcTy = Src->getType(); 4284 Type *MidTy = CI->getType(); 4285 Type *DstTy = Ty; 4286 if (Src->getType() == Ty) { 4287 auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode()); 4288 auto SecondOp = static_cast<Instruction::CastOps>(CastOpc); 4289 Type *SrcIntPtrTy = 4290 SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr; 4291 Type *MidIntPtrTy = 4292 MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr; 4293 Type *DstIntPtrTy = 4294 DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr; 4295 if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy, 4296 SrcIntPtrTy, MidIntPtrTy, 4297 DstIntPtrTy) == Instruction::BitCast) 4298 return Src; 4299 } 4300 } 4301 4302 // bitcast x -> x 4303 if (CastOpc == Instruction::BitCast) 4304 if (Op->getType() == Ty) 4305 return Op; 4306 4307 return nullptr; 4308 } 4309 4310 Value *llvm::SimplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty, 4311 const SimplifyQuery &Q) { 4312 return ::SimplifyCastInst(CastOpc, Op, Ty, Q, RecursionLimit); 4313 } 4314 4315 /// For the given destination element of a shuffle, peek through shuffles to 4316 /// match a root vector source operand that contains that element in the same 4317 /// vector lane (ie, the same mask index), so we can eliminate the shuffle(s). 4318 static Value *foldIdentityShuffles(int DestElt, Value *Op0, Value *Op1, 4319 int MaskVal, Value *RootVec, 4320 unsigned MaxRecurse) { 4321 if (!MaxRecurse--) 4322 return nullptr; 4323 4324 // Bail out if any mask value is undefined. That kind of shuffle may be 4325 // simplified further based on demanded bits or other folds. 4326 if (MaskVal == -1) 4327 return nullptr; 4328 4329 // The mask value chooses which source operand we need to look at next. 4330 int InVecNumElts = Op0->getType()->getVectorNumElements(); 4331 int RootElt = MaskVal; 4332 Value *SourceOp = Op0; 4333 if (MaskVal >= InVecNumElts) { 4334 RootElt = MaskVal - InVecNumElts; 4335 SourceOp = Op1; 4336 } 4337 4338 // If the source operand is a shuffle itself, look through it to find the 4339 // matching root vector. 4340 if (auto *SourceShuf = dyn_cast<ShuffleVectorInst>(SourceOp)) { 4341 return foldIdentityShuffles( 4342 DestElt, SourceShuf->getOperand(0), SourceShuf->getOperand(1), 4343 SourceShuf->getMaskValue(RootElt), RootVec, MaxRecurse); 4344 } 4345 4346 // TODO: Look through bitcasts? What if the bitcast changes the vector element 4347 // size? 4348 4349 // The source operand is not a shuffle. Initialize the root vector value for 4350 // this shuffle if that has not been done yet. 4351 if (!RootVec) 4352 RootVec = SourceOp; 4353 4354 // Give up as soon as a source operand does not match the existing root value. 4355 if (RootVec != SourceOp) 4356 return nullptr; 4357 4358 // The element must be coming from the same lane in the source vector 4359 // (although it may have crossed lanes in intermediate shuffles). 4360 if (RootElt != DestElt) 4361 return nullptr; 4362 4363 return RootVec; 4364 } 4365 4366 static Value *SimplifyShuffleVectorInst(Value *Op0, Value *Op1, Constant *Mask, 4367 Type *RetTy, const SimplifyQuery &Q, 4368 unsigned MaxRecurse) { 4369 if (isa<UndefValue>(Mask)) 4370 return UndefValue::get(RetTy); 4371 4372 Type *InVecTy = Op0->getType(); 4373 unsigned MaskNumElts = Mask->getType()->getVectorNumElements(); 4374 unsigned InVecNumElts = InVecTy->getVectorNumElements(); 4375 4376 SmallVector<int, 32> Indices; 4377 ShuffleVectorInst::getShuffleMask(Mask, Indices); 4378 assert(MaskNumElts == Indices.size() && 4379 "Size of Indices not same as number of mask elements?"); 4380 4381 // Canonicalization: If mask does not select elements from an input vector, 4382 // replace that input vector with undef. 4383 bool MaskSelects0 = false, MaskSelects1 = false; 4384 for (unsigned i = 0; i != MaskNumElts; ++i) { 4385 if (Indices[i] == -1) 4386 continue; 4387 if ((unsigned)Indices[i] < InVecNumElts) 4388 MaskSelects0 = true; 4389 else 4390 MaskSelects1 = true; 4391 } 4392 if (!MaskSelects0) 4393 Op0 = UndefValue::get(InVecTy); 4394 if (!MaskSelects1) 4395 Op1 = UndefValue::get(InVecTy); 4396 4397 auto *Op0Const = dyn_cast<Constant>(Op0); 4398 auto *Op1Const = dyn_cast<Constant>(Op1); 4399 4400 // If all operands are constant, constant fold the shuffle. 4401 if (Op0Const && Op1Const) 4402 return ConstantFoldShuffleVectorInstruction(Op0Const, Op1Const, Mask); 4403 4404 // Canonicalization: if only one input vector is constant, it shall be the 4405 // second one. 4406 if (Op0Const && !Op1Const) { 4407 std::swap(Op0, Op1); 4408 ShuffleVectorInst::commuteShuffleMask(Indices, InVecNumElts); 4409 } 4410 4411 // A shuffle of a splat is always the splat itself. Legal if the shuffle's 4412 // value type is same as the input vectors' type. 4413 if (auto *OpShuf = dyn_cast<ShuffleVectorInst>(Op0)) 4414 if (isa<UndefValue>(Op1) && RetTy == InVecTy && 4415 OpShuf->getMask()->getSplatValue()) 4416 return Op0; 4417 4418 // Don't fold a shuffle with undef mask elements. This may get folded in a 4419 // better way using demanded bits or other analysis. 4420 // TODO: Should we allow this? 4421 if (find(Indices, -1) != Indices.end()) 4422 return nullptr; 4423 4424 // Check if every element of this shuffle can be mapped back to the 4425 // corresponding element of a single root vector. If so, we don't need this 4426 // shuffle. This handles simple identity shuffles as well as chains of 4427 // shuffles that may widen/narrow and/or move elements across lanes and back. 4428 Value *RootVec = nullptr; 4429 for (unsigned i = 0; i != MaskNumElts; ++i) { 4430 // Note that recursion is limited for each vector element, so if any element 4431 // exceeds the limit, this will fail to simplify. 4432 RootVec = 4433 foldIdentityShuffles(i, Op0, Op1, Indices[i], RootVec, MaxRecurse); 4434 4435 // We can't replace a widening/narrowing shuffle with one of its operands. 4436 if (!RootVec || RootVec->getType() != RetTy) 4437 return nullptr; 4438 } 4439 return RootVec; 4440 } 4441 4442 /// Given operands for a ShuffleVectorInst, fold the result or return null. 4443 Value *llvm::SimplifyShuffleVectorInst(Value *Op0, Value *Op1, Constant *Mask, 4444 Type *RetTy, const SimplifyQuery &Q) { 4445 return ::SimplifyShuffleVectorInst(Op0, Op1, Mask, RetTy, Q, RecursionLimit); 4446 } 4447 4448 static Constant *foldConstant(Instruction::UnaryOps Opcode, 4449 Value *&Op, const SimplifyQuery &Q) { 4450 if (auto *C = dyn_cast<Constant>(Op)) 4451 return ConstantFoldUnaryOpOperand(Opcode, C, Q.DL); 4452 return nullptr; 4453 } 4454 4455 /// Given the operand for an FNeg, see if we can fold the result. If not, this 4456 /// returns null. 4457 static Value *simplifyFNegInst(Value *Op, FastMathFlags FMF, 4458 const SimplifyQuery &Q, unsigned MaxRecurse) { 4459 if (Constant *C = foldConstant(Instruction::FNeg, Op, Q)) 4460 return C; 4461 4462 Value *X; 4463 // fneg (fneg X) ==> X 4464 if (match(Op, m_FNeg(m_Value(X)))) 4465 return X; 4466 4467 return nullptr; 4468 } 4469 4470 Value *llvm::SimplifyFNegInst(Value *Op, FastMathFlags FMF, 4471 const SimplifyQuery &Q) { 4472 return ::simplifyFNegInst(Op, FMF, Q, RecursionLimit); 4473 } 4474 4475 static Constant *propagateNaN(Constant *In) { 4476 // If the input is a vector with undef elements, just return a default NaN. 4477 if (!In->isNaN()) 4478 return ConstantFP::getNaN(In->getType()); 4479 4480 // Propagate the existing NaN constant when possible. 4481 // TODO: Should we quiet a signaling NaN? 4482 return In; 4483 } 4484 4485 /// Perform folds that are common to any floating-point operation. This implies 4486 /// transforms based on undef/NaN because the operation itself makes no 4487 /// difference to the result. 4488 static Constant *simplifyFPOp(ArrayRef<Value *> Ops) { 4489 if (any_of(Ops, [](Value *V) { return isa<UndefValue>(V); })) 4490 return ConstantFP::getNaN(Ops[0]->getType()); 4491 4492 for (Value *V : Ops) 4493 if (match(V, m_NaN())) 4494 return propagateNaN(cast<Constant>(V)); 4495 4496 return nullptr; 4497 } 4498 4499 /// Given operands for an FAdd, see if we can fold the result. If not, this 4500 /// returns null. 4501 static Value *SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4502 const SimplifyQuery &Q, unsigned MaxRecurse) { 4503 if (Constant *C = foldOrCommuteConstant(Instruction::FAdd, Op0, Op1, Q)) 4504 return C; 4505 4506 if (Constant *C = simplifyFPOp({Op0, Op1})) 4507 return C; 4508 4509 // fadd X, -0 ==> X 4510 if (match(Op1, m_NegZeroFP())) 4511 return Op0; 4512 4513 // fadd X, 0 ==> X, when we know X is not -0 4514 if (match(Op1, m_PosZeroFP()) && 4515 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 4516 return Op0; 4517 4518 // With nnan: -X + X --> 0.0 (and commuted variant) 4519 // We don't have to explicitly exclude infinities (ninf): INF + -INF == NaN. 4520 // Negative zeros are allowed because we always end up with positive zero: 4521 // X = -0.0: (-0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0 4522 // X = -0.0: ( 0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0 4523 // X = 0.0: (-0.0 - ( 0.0)) + ( 0.0) == (-0.0) + ( 0.0) == 0.0 4524 // X = 0.0: ( 0.0 - ( 0.0)) + ( 0.0) == ( 0.0) + ( 0.0) == 0.0 4525 if (FMF.noNaNs()) { 4526 if (match(Op0, m_FSub(m_AnyZeroFP(), m_Specific(Op1))) || 4527 match(Op1, m_FSub(m_AnyZeroFP(), m_Specific(Op0)))) 4528 return ConstantFP::getNullValue(Op0->getType()); 4529 4530 if (match(Op0, m_FNeg(m_Specific(Op1))) || 4531 match(Op1, m_FNeg(m_Specific(Op0)))) 4532 return ConstantFP::getNullValue(Op0->getType()); 4533 } 4534 4535 // (X - Y) + Y --> X 4536 // Y + (X - Y) --> X 4537 Value *X; 4538 if (FMF.noSignedZeros() && FMF.allowReassoc() && 4539 (match(Op0, m_FSub(m_Value(X), m_Specific(Op1))) || 4540 match(Op1, m_FSub(m_Value(X), m_Specific(Op0))))) 4541 return X; 4542 4543 return nullptr; 4544 } 4545 4546 /// Given operands for an FSub, see if we can fold the result. If not, this 4547 /// returns null. 4548 static Value *SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4549 const SimplifyQuery &Q, unsigned MaxRecurse) { 4550 if (Constant *C = foldOrCommuteConstant(Instruction::FSub, Op0, Op1, Q)) 4551 return C; 4552 4553 if (Constant *C = simplifyFPOp({Op0, Op1})) 4554 return C; 4555 4556 // fsub X, +0 ==> X 4557 if (match(Op1, m_PosZeroFP())) 4558 return Op0; 4559 4560 // fsub X, -0 ==> X, when we know X is not -0 4561 if (match(Op1, m_NegZeroFP()) && 4562 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 4563 return Op0; 4564 4565 // fsub -0.0, (fsub -0.0, X) ==> X 4566 // fsub -0.0, (fneg X) ==> X 4567 Value *X; 4568 if (match(Op0, m_NegZeroFP()) && 4569 match(Op1, m_FNeg(m_Value(X)))) 4570 return X; 4571 4572 // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored. 4573 // fsub 0.0, (fneg X) ==> X if signed zeros are ignored. 4574 if (FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()) && 4575 (match(Op1, m_FSub(m_AnyZeroFP(), m_Value(X))) || 4576 match(Op1, m_FNeg(m_Value(X))))) 4577 return X; 4578 4579 // fsub nnan x, x ==> 0.0 4580 if (FMF.noNaNs() && Op0 == Op1) 4581 return Constant::getNullValue(Op0->getType()); 4582 4583 // Y - (Y - X) --> X 4584 // (X + Y) - Y --> X 4585 if (FMF.noSignedZeros() && FMF.allowReassoc() && 4586 (match(Op1, m_FSub(m_Specific(Op0), m_Value(X))) || 4587 match(Op0, m_c_FAdd(m_Specific(Op1), m_Value(X))))) 4588 return X; 4589 4590 return nullptr; 4591 } 4592 4593 static Value *SimplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF, 4594 const SimplifyQuery &Q, unsigned MaxRecurse) { 4595 if (Constant *C = simplifyFPOp({Op0, Op1})) 4596 return C; 4597 4598 // fmul X, 1.0 ==> X 4599 if (match(Op1, m_FPOne())) 4600 return Op0; 4601 4602 // fmul 1.0, X ==> X 4603 if (match(Op0, m_FPOne())) 4604 return Op1; 4605 4606 // fmul nnan nsz X, 0 ==> 0 4607 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZeroFP())) 4608 return ConstantFP::getNullValue(Op0->getType()); 4609 4610 // fmul nnan nsz 0, X ==> 0 4611 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP())) 4612 return ConstantFP::getNullValue(Op1->getType()); 4613 4614 // sqrt(X) * sqrt(X) --> X, if we can: 4615 // 1. Remove the intermediate rounding (reassociate). 4616 // 2. Ignore non-zero negative numbers because sqrt would produce NAN. 4617 // 3. Ignore -0.0 because sqrt(-0.0) == -0.0, but -0.0 * -0.0 == 0.0. 4618 Value *X; 4619 if (Op0 == Op1 && match(Op0, m_Intrinsic<Intrinsic::sqrt>(m_Value(X))) && 4620 FMF.allowReassoc() && FMF.noNaNs() && FMF.noSignedZeros()) 4621 return X; 4622 4623 return nullptr; 4624 } 4625 4626 /// Given the operands for an FMul, see if we can fold the result 4627 static Value *SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4628 const SimplifyQuery &Q, unsigned MaxRecurse) { 4629 if (Constant *C = foldOrCommuteConstant(Instruction::FMul, Op0, Op1, Q)) 4630 return C; 4631 4632 // Now apply simplifications that do not require rounding. 4633 return SimplifyFMAFMul(Op0, Op1, FMF, Q, MaxRecurse); 4634 } 4635 4636 Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4637 const SimplifyQuery &Q) { 4638 return ::SimplifyFAddInst(Op0, Op1, FMF, Q, RecursionLimit); 4639 } 4640 4641 4642 Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4643 const SimplifyQuery &Q) { 4644 return ::SimplifyFSubInst(Op0, Op1, FMF, Q, RecursionLimit); 4645 } 4646 4647 Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4648 const SimplifyQuery &Q) { 4649 return ::SimplifyFMulInst(Op0, Op1, FMF, Q, RecursionLimit); 4650 } 4651 4652 Value *llvm::SimplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF, 4653 const SimplifyQuery &Q) { 4654 return ::SimplifyFMAFMul(Op0, Op1, FMF, Q, RecursionLimit); 4655 } 4656 4657 static Value *SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4658 const SimplifyQuery &Q, unsigned) { 4659 if (Constant *C = foldOrCommuteConstant(Instruction::FDiv, Op0, Op1, Q)) 4660 return C; 4661 4662 if (Constant *C = simplifyFPOp({Op0, Op1})) 4663 return C; 4664 4665 // X / 1.0 -> X 4666 if (match(Op1, m_FPOne())) 4667 return Op0; 4668 4669 // 0 / X -> 0 4670 // Requires that NaNs are off (X could be zero) and signed zeroes are 4671 // ignored (X could be positive or negative, so the output sign is unknown). 4672 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP())) 4673 return ConstantFP::getNullValue(Op0->getType()); 4674 4675 if (FMF.noNaNs()) { 4676 // X / X -> 1.0 is legal when NaNs are ignored. 4677 // We can ignore infinities because INF/INF is NaN. 4678 if (Op0 == Op1) 4679 return ConstantFP::get(Op0->getType(), 1.0); 4680 4681 // (X * Y) / Y --> X if we can reassociate to the above form. 4682 Value *X; 4683 if (FMF.allowReassoc() && match(Op0, m_c_FMul(m_Value(X), m_Specific(Op1)))) 4684 return X; 4685 4686 // -X / X -> -1.0 and 4687 // X / -X -> -1.0 are legal when NaNs are ignored. 4688 // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored. 4689 if (match(Op0, m_FNegNSZ(m_Specific(Op1))) || 4690 match(Op1, m_FNegNSZ(m_Specific(Op0)))) 4691 return ConstantFP::get(Op0->getType(), -1.0); 4692 } 4693 4694 return nullptr; 4695 } 4696 4697 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4698 const SimplifyQuery &Q) { 4699 return ::SimplifyFDivInst(Op0, Op1, FMF, Q, RecursionLimit); 4700 } 4701 4702 static Value *SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4703 const SimplifyQuery &Q, unsigned) { 4704 if (Constant *C = foldOrCommuteConstant(Instruction::FRem, Op0, Op1, Q)) 4705 return C; 4706 4707 if (Constant *C = simplifyFPOp({Op0, Op1})) 4708 return C; 4709 4710 // Unlike fdiv, the result of frem always matches the sign of the dividend. 4711 // The constant match may include undef elements in a vector, so return a full 4712 // zero constant as the result. 4713 if (FMF.noNaNs()) { 4714 // +0 % X -> 0 4715 if (match(Op0, m_PosZeroFP())) 4716 return ConstantFP::getNullValue(Op0->getType()); 4717 // -0 % X -> -0 4718 if (match(Op0, m_NegZeroFP())) 4719 return ConstantFP::getNegativeZero(Op0->getType()); 4720 } 4721 4722 return nullptr; 4723 } 4724 4725 Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4726 const SimplifyQuery &Q) { 4727 return ::SimplifyFRemInst(Op0, Op1, FMF, Q, RecursionLimit); 4728 } 4729 4730 //=== Helper functions for higher up the class hierarchy. 4731 4732 /// Given the operand for a UnaryOperator, see if we can fold the result. 4733 /// If not, this returns null. 4734 static Value *simplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q, 4735 unsigned MaxRecurse) { 4736 switch (Opcode) { 4737 case Instruction::FNeg: 4738 return simplifyFNegInst(Op, FastMathFlags(), Q, MaxRecurse); 4739 default: 4740 llvm_unreachable("Unexpected opcode"); 4741 } 4742 } 4743 4744 /// Given the operand for a UnaryOperator, see if we can fold the result. 4745 /// If not, this returns null. 4746 /// Try to use FastMathFlags when folding the result. 4747 static Value *simplifyFPUnOp(unsigned Opcode, Value *Op, 4748 const FastMathFlags &FMF, 4749 const SimplifyQuery &Q, unsigned MaxRecurse) { 4750 switch (Opcode) { 4751 case Instruction::FNeg: 4752 return simplifyFNegInst(Op, FMF, Q, MaxRecurse); 4753 default: 4754 return simplifyUnOp(Opcode, Op, Q, MaxRecurse); 4755 } 4756 } 4757 4758 Value *llvm::SimplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q) { 4759 return ::simplifyUnOp(Opcode, Op, Q, RecursionLimit); 4760 } 4761 4762 Value *llvm::SimplifyUnOp(unsigned Opcode, Value *Op, FastMathFlags FMF, 4763 const SimplifyQuery &Q) { 4764 return ::simplifyFPUnOp(Opcode, Op, FMF, Q, RecursionLimit); 4765 } 4766 4767 /// Given operands for a BinaryOperator, see if we can fold the result. 4768 /// If not, this returns null. 4769 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 4770 const SimplifyQuery &Q, unsigned MaxRecurse) { 4771 switch (Opcode) { 4772 case Instruction::Add: 4773 return SimplifyAddInst(LHS, RHS, false, false, Q, MaxRecurse); 4774 case Instruction::Sub: 4775 return SimplifySubInst(LHS, RHS, false, false, Q, MaxRecurse); 4776 case Instruction::Mul: 4777 return SimplifyMulInst(LHS, RHS, Q, MaxRecurse); 4778 case Instruction::SDiv: 4779 return SimplifySDivInst(LHS, RHS, Q, MaxRecurse); 4780 case Instruction::UDiv: 4781 return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse); 4782 case Instruction::SRem: 4783 return SimplifySRemInst(LHS, RHS, Q, MaxRecurse); 4784 case Instruction::URem: 4785 return SimplifyURemInst(LHS, RHS, Q, MaxRecurse); 4786 case Instruction::Shl: 4787 return SimplifyShlInst(LHS, RHS, false, false, Q, MaxRecurse); 4788 case Instruction::LShr: 4789 return SimplifyLShrInst(LHS, RHS, false, Q, MaxRecurse); 4790 case Instruction::AShr: 4791 return SimplifyAShrInst(LHS, RHS, false, Q, MaxRecurse); 4792 case Instruction::And: 4793 return SimplifyAndInst(LHS, RHS, Q, MaxRecurse); 4794 case Instruction::Or: 4795 return SimplifyOrInst(LHS, RHS, Q, MaxRecurse); 4796 case Instruction::Xor: 4797 return SimplifyXorInst(LHS, RHS, Q, MaxRecurse); 4798 case Instruction::FAdd: 4799 return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4800 case Instruction::FSub: 4801 return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4802 case Instruction::FMul: 4803 return SimplifyFMulInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4804 case Instruction::FDiv: 4805 return SimplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4806 case Instruction::FRem: 4807 return SimplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4808 default: 4809 llvm_unreachable("Unexpected opcode"); 4810 } 4811 } 4812 4813 /// Given operands for a BinaryOperator, see if we can fold the result. 4814 /// If not, this returns null. 4815 /// Try to use FastMathFlags when folding the result. 4816 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 4817 const FastMathFlags &FMF, const SimplifyQuery &Q, 4818 unsigned MaxRecurse) { 4819 switch (Opcode) { 4820 case Instruction::FAdd: 4821 return SimplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse); 4822 case Instruction::FSub: 4823 return SimplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse); 4824 case Instruction::FMul: 4825 return SimplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse); 4826 case Instruction::FDiv: 4827 return SimplifyFDivInst(LHS, RHS, FMF, Q, MaxRecurse); 4828 default: 4829 return SimplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse); 4830 } 4831 } 4832 4833 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 4834 const SimplifyQuery &Q) { 4835 return ::SimplifyBinOp(Opcode, LHS, RHS, Q, RecursionLimit); 4836 } 4837 4838 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 4839 FastMathFlags FMF, const SimplifyQuery &Q) { 4840 return ::SimplifyBinOp(Opcode, LHS, RHS, FMF, Q, RecursionLimit); 4841 } 4842 4843 /// Given operands for a CmpInst, see if we can fold the result. 4844 static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 4845 const SimplifyQuery &Q, unsigned MaxRecurse) { 4846 if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate)) 4847 return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse); 4848 return SimplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4849 } 4850 4851 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 4852 const SimplifyQuery &Q) { 4853 return ::SimplifyCmpInst(Predicate, LHS, RHS, Q, RecursionLimit); 4854 } 4855 4856 static bool IsIdempotent(Intrinsic::ID ID) { 4857 switch (ID) { 4858 default: return false; 4859 4860 // Unary idempotent: f(f(x)) = f(x) 4861 case Intrinsic::fabs: 4862 case Intrinsic::floor: 4863 case Intrinsic::ceil: 4864 case Intrinsic::trunc: 4865 case Intrinsic::rint: 4866 case Intrinsic::nearbyint: 4867 case Intrinsic::round: 4868 case Intrinsic::canonicalize: 4869 return true; 4870 } 4871 } 4872 4873 static Value *SimplifyRelativeLoad(Constant *Ptr, Constant *Offset, 4874 const DataLayout &DL) { 4875 GlobalValue *PtrSym; 4876 APInt PtrOffset; 4877 if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL)) 4878 return nullptr; 4879 4880 Type *Int8PtrTy = Type::getInt8PtrTy(Ptr->getContext()); 4881 Type *Int32Ty = Type::getInt32Ty(Ptr->getContext()); 4882 Type *Int32PtrTy = Int32Ty->getPointerTo(); 4883 Type *Int64Ty = Type::getInt64Ty(Ptr->getContext()); 4884 4885 auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset); 4886 if (!OffsetConstInt || OffsetConstInt->getType()->getBitWidth() > 64) 4887 return nullptr; 4888 4889 uint64_t OffsetInt = OffsetConstInt->getSExtValue(); 4890 if (OffsetInt % 4 != 0) 4891 return nullptr; 4892 4893 Constant *C = ConstantExpr::getGetElementPtr( 4894 Int32Ty, ConstantExpr::getBitCast(Ptr, Int32PtrTy), 4895 ConstantInt::get(Int64Ty, OffsetInt / 4)); 4896 Constant *Loaded = ConstantFoldLoadFromConstPtr(C, Int32Ty, DL); 4897 if (!Loaded) 4898 return nullptr; 4899 4900 auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded); 4901 if (!LoadedCE) 4902 return nullptr; 4903 4904 if (LoadedCE->getOpcode() == Instruction::Trunc) { 4905 LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 4906 if (!LoadedCE) 4907 return nullptr; 4908 } 4909 4910 if (LoadedCE->getOpcode() != Instruction::Sub) 4911 return nullptr; 4912 4913 auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 4914 if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt) 4915 return nullptr; 4916 auto *LoadedLHSPtr = LoadedLHS->getOperand(0); 4917 4918 Constant *LoadedRHS = LoadedCE->getOperand(1); 4919 GlobalValue *LoadedRHSSym; 4920 APInt LoadedRHSOffset; 4921 if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset, 4922 DL) || 4923 PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset) 4924 return nullptr; 4925 4926 return ConstantExpr::getBitCast(LoadedLHSPtr, Int8PtrTy); 4927 } 4928 4929 static Value *simplifyUnaryIntrinsic(Function *F, Value *Op0, 4930 const SimplifyQuery &Q) { 4931 // Idempotent functions return the same result when called repeatedly. 4932 Intrinsic::ID IID = F->getIntrinsicID(); 4933 if (IsIdempotent(IID)) 4934 if (auto *II = dyn_cast<IntrinsicInst>(Op0)) 4935 if (II->getIntrinsicID() == IID) 4936 return II; 4937 4938 Value *X; 4939 switch (IID) { 4940 case Intrinsic::fabs: 4941 if (SignBitMustBeZero(Op0, Q.TLI)) return Op0; 4942 break; 4943 case Intrinsic::bswap: 4944 // bswap(bswap(x)) -> x 4945 if (match(Op0, m_BSwap(m_Value(X)))) return X; 4946 break; 4947 case Intrinsic::bitreverse: 4948 // bitreverse(bitreverse(x)) -> x 4949 if (match(Op0, m_BitReverse(m_Value(X)))) return X; 4950 break; 4951 case Intrinsic::exp: 4952 // exp(log(x)) -> x 4953 if (Q.CxtI->hasAllowReassoc() && 4954 match(Op0, m_Intrinsic<Intrinsic::log>(m_Value(X)))) return X; 4955 break; 4956 case Intrinsic::exp2: 4957 // exp2(log2(x)) -> x 4958 if (Q.CxtI->hasAllowReassoc() && 4959 match(Op0, m_Intrinsic<Intrinsic::log2>(m_Value(X)))) return X; 4960 break; 4961 case Intrinsic::log: 4962 // log(exp(x)) -> x 4963 if (Q.CxtI->hasAllowReassoc() && 4964 match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X)))) return X; 4965 break; 4966 case Intrinsic::log2: 4967 // log2(exp2(x)) -> x 4968 if (Q.CxtI->hasAllowReassoc() && 4969 (match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X))) || 4970 match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(2.0), 4971 m_Value(X))))) return X; 4972 break; 4973 case Intrinsic::log10: 4974 // log10(pow(10.0, x)) -> x 4975 if (Q.CxtI->hasAllowReassoc() && 4976 match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(10.0), 4977 m_Value(X)))) return X; 4978 break; 4979 case Intrinsic::floor: 4980 case Intrinsic::trunc: 4981 case Intrinsic::ceil: 4982 case Intrinsic::round: 4983 case Intrinsic::nearbyint: 4984 case Intrinsic::rint: { 4985 // floor (sitofp x) -> sitofp x 4986 // floor (uitofp x) -> uitofp x 4987 // 4988 // Converting from int always results in a finite integral number or 4989 // infinity. For either of those inputs, these rounding functions always 4990 // return the same value, so the rounding can be eliminated. 4991 if (match(Op0, m_SIToFP(m_Value())) || match(Op0, m_UIToFP(m_Value()))) 4992 return Op0; 4993 break; 4994 } 4995 default: 4996 break; 4997 } 4998 4999 return nullptr; 5000 } 5001 5002 static Value *simplifyBinaryIntrinsic(Function *F, Value *Op0, Value *Op1, 5003 const SimplifyQuery &Q) { 5004 Intrinsic::ID IID = F->getIntrinsicID(); 5005 Type *ReturnType = F->getReturnType(); 5006 switch (IID) { 5007 case Intrinsic::usub_with_overflow: 5008 case Intrinsic::ssub_with_overflow: 5009 // X - X -> { 0, false } 5010 if (Op0 == Op1) 5011 return Constant::getNullValue(ReturnType); 5012 LLVM_FALLTHROUGH; 5013 case Intrinsic::uadd_with_overflow: 5014 case Intrinsic::sadd_with_overflow: 5015 // X - undef -> { undef, false } 5016 // undef - X -> { undef, false } 5017 // X + undef -> { undef, false } 5018 // undef + x -> { undef, false } 5019 if (isa<UndefValue>(Op0) || isa<UndefValue>(Op1)) { 5020 return ConstantStruct::get( 5021 cast<StructType>(ReturnType), 5022 {UndefValue::get(ReturnType->getStructElementType(0)), 5023 Constant::getNullValue(ReturnType->getStructElementType(1))}); 5024 } 5025 break; 5026 case Intrinsic::umul_with_overflow: 5027 case Intrinsic::smul_with_overflow: 5028 // 0 * X -> { 0, false } 5029 // X * 0 -> { 0, false } 5030 if (match(Op0, m_Zero()) || match(Op1, m_Zero())) 5031 return Constant::getNullValue(ReturnType); 5032 // undef * X -> { 0, false } 5033 // X * undef -> { 0, false } 5034 if (match(Op0, m_Undef()) || match(Op1, m_Undef())) 5035 return Constant::getNullValue(ReturnType); 5036 break; 5037 case Intrinsic::uadd_sat: 5038 // sat(MAX + X) -> MAX 5039 // sat(X + MAX) -> MAX 5040 if (match(Op0, m_AllOnes()) || match(Op1, m_AllOnes())) 5041 return Constant::getAllOnesValue(ReturnType); 5042 LLVM_FALLTHROUGH; 5043 case Intrinsic::sadd_sat: 5044 // sat(X + undef) -> -1 5045 // sat(undef + X) -> -1 5046 // For unsigned: Assume undef is MAX, thus we saturate to MAX (-1). 5047 // For signed: Assume undef is ~X, in which case X + ~X = -1. 5048 if (match(Op0, m_Undef()) || match(Op1, m_Undef())) 5049 return Constant::getAllOnesValue(ReturnType); 5050 5051 // X + 0 -> X 5052 if (match(Op1, m_Zero())) 5053 return Op0; 5054 // 0 + X -> X 5055 if (match(Op0, m_Zero())) 5056 return Op1; 5057 break; 5058 case Intrinsic::usub_sat: 5059 // sat(0 - X) -> 0, sat(X - MAX) -> 0 5060 if (match(Op0, m_Zero()) || match(Op1, m_AllOnes())) 5061 return Constant::getNullValue(ReturnType); 5062 LLVM_FALLTHROUGH; 5063 case Intrinsic::ssub_sat: 5064 // X - X -> 0, X - undef -> 0, undef - X -> 0 5065 if (Op0 == Op1 || match(Op0, m_Undef()) || match(Op1, m_Undef())) 5066 return Constant::getNullValue(ReturnType); 5067 // X - 0 -> X 5068 if (match(Op1, m_Zero())) 5069 return Op0; 5070 break; 5071 case Intrinsic::load_relative: 5072 if (auto *C0 = dyn_cast<Constant>(Op0)) 5073 if (auto *C1 = dyn_cast<Constant>(Op1)) 5074 return SimplifyRelativeLoad(C0, C1, Q.DL); 5075 break; 5076 case Intrinsic::powi: 5077 if (auto *Power = dyn_cast<ConstantInt>(Op1)) { 5078 // powi(x, 0) -> 1.0 5079 if (Power->isZero()) 5080 return ConstantFP::get(Op0->getType(), 1.0); 5081 // powi(x, 1) -> x 5082 if (Power->isOne()) 5083 return Op0; 5084 } 5085 break; 5086 case Intrinsic::maxnum: 5087 case Intrinsic::minnum: 5088 case Intrinsic::maximum: 5089 case Intrinsic::minimum: { 5090 // If the arguments are the same, this is a no-op. 5091 if (Op0 == Op1) return Op0; 5092 5093 // If one argument is undef, return the other argument. 5094 if (match(Op0, m_Undef())) 5095 return Op1; 5096 if (match(Op1, m_Undef())) 5097 return Op0; 5098 5099 // If one argument is NaN, return other or NaN appropriately. 5100 bool PropagateNaN = IID == Intrinsic::minimum || IID == Intrinsic::maximum; 5101 if (match(Op0, m_NaN())) 5102 return PropagateNaN ? Op0 : Op1; 5103 if (match(Op1, m_NaN())) 5104 return PropagateNaN ? Op1 : Op0; 5105 5106 // Min/max of the same operation with common operand: 5107 // m(m(X, Y)), X --> m(X, Y) (4 commuted variants) 5108 if (auto *M0 = dyn_cast<IntrinsicInst>(Op0)) 5109 if (M0->getIntrinsicID() == IID && 5110 (M0->getOperand(0) == Op1 || M0->getOperand(1) == Op1)) 5111 return Op0; 5112 if (auto *M1 = dyn_cast<IntrinsicInst>(Op1)) 5113 if (M1->getIntrinsicID() == IID && 5114 (M1->getOperand(0) == Op0 || M1->getOperand(1) == Op0)) 5115 return Op1; 5116 5117 // min(X, -Inf) --> -Inf (and commuted variant) 5118 // max(X, +Inf) --> +Inf (and commuted variant) 5119 bool UseNegInf = IID == Intrinsic::minnum || IID == Intrinsic::minimum; 5120 const APFloat *C; 5121 if ((match(Op0, m_APFloat(C)) && C->isInfinity() && 5122 C->isNegative() == UseNegInf) || 5123 (match(Op1, m_APFloat(C)) && C->isInfinity() && 5124 C->isNegative() == UseNegInf)) 5125 return ConstantFP::getInfinity(ReturnType, UseNegInf); 5126 5127 // TODO: minnum(nnan x, inf) -> x 5128 // TODO: minnum(nnan ninf x, flt_max) -> x 5129 // TODO: maxnum(nnan x, -inf) -> x 5130 // TODO: maxnum(nnan ninf x, -flt_max) -> x 5131 break; 5132 } 5133 default: 5134 break; 5135 } 5136 5137 return nullptr; 5138 } 5139 5140 static Value *simplifyIntrinsic(CallBase *Call, const SimplifyQuery &Q) { 5141 5142 // Intrinsics with no operands have some kind of side effect. Don't simplify. 5143 unsigned NumOperands = Call->getNumArgOperands(); 5144 if (!NumOperands) 5145 return nullptr; 5146 5147 Function *F = cast<Function>(Call->getCalledFunction()); 5148 Intrinsic::ID IID = F->getIntrinsicID(); 5149 if (NumOperands == 1) 5150 return simplifyUnaryIntrinsic(F, Call->getArgOperand(0), Q); 5151 5152 if (NumOperands == 2) 5153 return simplifyBinaryIntrinsic(F, Call->getArgOperand(0), 5154 Call->getArgOperand(1), Q); 5155 5156 // Handle intrinsics with 3 or more arguments. 5157 switch (IID) { 5158 case Intrinsic::masked_load: 5159 case Intrinsic::masked_gather: { 5160 Value *MaskArg = Call->getArgOperand(2); 5161 Value *PassthruArg = Call->getArgOperand(3); 5162 // If the mask is all zeros or undef, the "passthru" argument is the result. 5163 if (maskIsAllZeroOrUndef(MaskArg)) 5164 return PassthruArg; 5165 return nullptr; 5166 } 5167 case Intrinsic::fshl: 5168 case Intrinsic::fshr: { 5169 Value *Op0 = Call->getArgOperand(0), *Op1 = Call->getArgOperand(1), 5170 *ShAmtArg = Call->getArgOperand(2); 5171 5172 // If both operands are undef, the result is undef. 5173 if (match(Op0, m_Undef()) && match(Op1, m_Undef())) 5174 return UndefValue::get(F->getReturnType()); 5175 5176 // If shift amount is undef, assume it is zero. 5177 if (match(ShAmtArg, m_Undef())) 5178 return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1); 5179 5180 const APInt *ShAmtC; 5181 if (match(ShAmtArg, m_APInt(ShAmtC))) { 5182 // If there's effectively no shift, return the 1st arg or 2nd arg. 5183 APInt BitWidth = APInt(ShAmtC->getBitWidth(), ShAmtC->getBitWidth()); 5184 if (ShAmtC->urem(BitWidth).isNullValue()) 5185 return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1); 5186 } 5187 return nullptr; 5188 } 5189 case Intrinsic::fma: 5190 case Intrinsic::fmuladd: { 5191 Value *Op0 = Call->getArgOperand(0); 5192 Value *Op1 = Call->getArgOperand(1); 5193 Value *Op2 = Call->getArgOperand(2); 5194 if (Value *V = simplifyFPOp({ Op0, Op1, Op2 })) 5195 return V; 5196 return nullptr; 5197 } 5198 default: 5199 return nullptr; 5200 } 5201 } 5202 5203 Value *llvm::SimplifyCall(CallBase *Call, const SimplifyQuery &Q) { 5204 Value *Callee = Call->getCalledValue(); 5205 5206 // call undef -> undef 5207 // call null -> undef 5208 if (isa<UndefValue>(Callee) || isa<ConstantPointerNull>(Callee)) 5209 return UndefValue::get(Call->getType()); 5210 5211 Function *F = dyn_cast<Function>(Callee); 5212 if (!F) 5213 return nullptr; 5214 5215 if (F->isIntrinsic()) 5216 if (Value *Ret = simplifyIntrinsic(Call, Q)) 5217 return Ret; 5218 5219 if (!canConstantFoldCallTo(Call, F)) 5220 return nullptr; 5221 5222 SmallVector<Constant *, 4> ConstantArgs; 5223 unsigned NumArgs = Call->getNumArgOperands(); 5224 ConstantArgs.reserve(NumArgs); 5225 for (auto &Arg : Call->args()) { 5226 Constant *C = dyn_cast<Constant>(&Arg); 5227 if (!C) 5228 return nullptr; 5229 ConstantArgs.push_back(C); 5230 } 5231 5232 return ConstantFoldCall(Call, F, ConstantArgs, Q.TLI); 5233 } 5234 5235 /// See if we can compute a simplified version of this instruction. 5236 /// If not, this returns null. 5237 5238 Value *llvm::SimplifyInstruction(Instruction *I, const SimplifyQuery &SQ, 5239 OptimizationRemarkEmitter *ORE) { 5240 const SimplifyQuery Q = SQ.CxtI ? SQ : SQ.getWithInstruction(I); 5241 Value *Result; 5242 5243 switch (I->getOpcode()) { 5244 default: 5245 Result = ConstantFoldInstruction(I, Q.DL, Q.TLI); 5246 break; 5247 case Instruction::FNeg: 5248 Result = SimplifyFNegInst(I->getOperand(0), I->getFastMathFlags(), Q); 5249 break; 5250 case Instruction::FAdd: 5251 Result = SimplifyFAddInst(I->getOperand(0), I->getOperand(1), 5252 I->getFastMathFlags(), Q); 5253 break; 5254 case Instruction::Add: 5255 Result = 5256 SimplifyAddInst(I->getOperand(0), I->getOperand(1), 5257 Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 5258 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q); 5259 break; 5260 case Instruction::FSub: 5261 Result = SimplifyFSubInst(I->getOperand(0), I->getOperand(1), 5262 I->getFastMathFlags(), Q); 5263 break; 5264 case Instruction::Sub: 5265 Result = 5266 SimplifySubInst(I->getOperand(0), I->getOperand(1), 5267 Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 5268 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q); 5269 break; 5270 case Instruction::FMul: 5271 Result = SimplifyFMulInst(I->getOperand(0), I->getOperand(1), 5272 I->getFastMathFlags(), Q); 5273 break; 5274 case Instruction::Mul: 5275 Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), Q); 5276 break; 5277 case Instruction::SDiv: 5278 Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), Q); 5279 break; 5280 case Instruction::UDiv: 5281 Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), Q); 5282 break; 5283 case Instruction::FDiv: 5284 Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1), 5285 I->getFastMathFlags(), Q); 5286 break; 5287 case Instruction::SRem: 5288 Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), Q); 5289 break; 5290 case Instruction::URem: 5291 Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), Q); 5292 break; 5293 case Instruction::FRem: 5294 Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1), 5295 I->getFastMathFlags(), Q); 5296 break; 5297 case Instruction::Shl: 5298 Result = 5299 SimplifyShlInst(I->getOperand(0), I->getOperand(1), 5300 Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 5301 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q); 5302 break; 5303 case Instruction::LShr: 5304 Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1), 5305 Q.IIQ.isExact(cast<BinaryOperator>(I)), Q); 5306 break; 5307 case Instruction::AShr: 5308 Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1), 5309 Q.IIQ.isExact(cast<BinaryOperator>(I)), Q); 5310 break; 5311 case Instruction::And: 5312 Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), Q); 5313 break; 5314 case Instruction::Or: 5315 Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), Q); 5316 break; 5317 case Instruction::Xor: 5318 Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), Q); 5319 break; 5320 case Instruction::ICmp: 5321 Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(), 5322 I->getOperand(0), I->getOperand(1), Q); 5323 break; 5324 case Instruction::FCmp: 5325 Result = 5326 SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), I->getOperand(0), 5327 I->getOperand(1), I->getFastMathFlags(), Q); 5328 break; 5329 case Instruction::Select: 5330 Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1), 5331 I->getOperand(2), Q); 5332 break; 5333 case Instruction::GetElementPtr: { 5334 SmallVector<Value *, 8> Ops(I->op_begin(), I->op_end()); 5335 Result = SimplifyGEPInst(cast<GetElementPtrInst>(I)->getSourceElementType(), 5336 Ops, Q); 5337 break; 5338 } 5339 case Instruction::InsertValue: { 5340 InsertValueInst *IV = cast<InsertValueInst>(I); 5341 Result = SimplifyInsertValueInst(IV->getAggregateOperand(), 5342 IV->getInsertedValueOperand(), 5343 IV->getIndices(), Q); 5344 break; 5345 } 5346 case Instruction::InsertElement: { 5347 auto *IE = cast<InsertElementInst>(I); 5348 Result = SimplifyInsertElementInst(IE->getOperand(0), IE->getOperand(1), 5349 IE->getOperand(2), Q); 5350 break; 5351 } 5352 case Instruction::ExtractValue: { 5353 auto *EVI = cast<ExtractValueInst>(I); 5354 Result = SimplifyExtractValueInst(EVI->getAggregateOperand(), 5355 EVI->getIndices(), Q); 5356 break; 5357 } 5358 case Instruction::ExtractElement: { 5359 auto *EEI = cast<ExtractElementInst>(I); 5360 Result = SimplifyExtractElementInst(EEI->getVectorOperand(), 5361 EEI->getIndexOperand(), Q); 5362 break; 5363 } 5364 case Instruction::ShuffleVector: { 5365 auto *SVI = cast<ShuffleVectorInst>(I); 5366 Result = SimplifyShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), 5367 SVI->getMask(), SVI->getType(), Q); 5368 break; 5369 } 5370 case Instruction::PHI: 5371 Result = SimplifyPHINode(cast<PHINode>(I), Q); 5372 break; 5373 case Instruction::Call: { 5374 Result = SimplifyCall(cast<CallInst>(I), Q); 5375 break; 5376 } 5377 #define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc: 5378 #include "llvm/IR/Instruction.def" 5379 #undef HANDLE_CAST_INST 5380 Result = 5381 SimplifyCastInst(I->getOpcode(), I->getOperand(0), I->getType(), Q); 5382 break; 5383 case Instruction::Alloca: 5384 // No simplifications for Alloca and it can't be constant folded. 5385 Result = nullptr; 5386 break; 5387 } 5388 5389 // In general, it is possible for computeKnownBits to determine all bits in a 5390 // value even when the operands are not all constants. 5391 if (!Result && I->getType()->isIntOrIntVectorTy()) { 5392 KnownBits Known = computeKnownBits(I, Q.DL, /*Depth*/ 0, Q.AC, I, Q.DT, ORE); 5393 if (Known.isConstant()) 5394 Result = ConstantInt::get(I->getType(), Known.getConstant()); 5395 } 5396 5397 /// If called on unreachable code, the above logic may report that the 5398 /// instruction simplified to itself. Make life easier for users by 5399 /// detecting that case here, returning a safe value instead. 5400 return Result == I ? UndefValue::get(I->getType()) : Result; 5401 } 5402 5403 /// Implementation of recursive simplification through an instruction's 5404 /// uses. 5405 /// 5406 /// This is the common implementation of the recursive simplification routines. 5407 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to 5408 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of 5409 /// instructions to process and attempt to simplify it using 5410 /// InstructionSimplify. Recursively visited users which could not be 5411 /// simplified themselves are to the optional UnsimplifiedUsers set for 5412 /// further processing by the caller. 5413 /// 5414 /// This routine returns 'true' only when *it* simplifies something. The passed 5415 /// in simplified value does not count toward this. 5416 static bool replaceAndRecursivelySimplifyImpl( 5417 Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI, 5418 const DominatorTree *DT, AssumptionCache *AC, 5419 SmallSetVector<Instruction *, 8> *UnsimplifiedUsers = nullptr) { 5420 bool Simplified = false; 5421 SmallSetVector<Instruction *, 8> Worklist; 5422 const DataLayout &DL = I->getModule()->getDataLayout(); 5423 5424 // If we have an explicit value to collapse to, do that round of the 5425 // simplification loop by hand initially. 5426 if (SimpleV) { 5427 for (User *U : I->users()) 5428 if (U != I) 5429 Worklist.insert(cast<Instruction>(U)); 5430 5431 // Replace the instruction with its simplified value. 5432 I->replaceAllUsesWith(SimpleV); 5433 5434 // Gracefully handle edge cases where the instruction is not wired into any 5435 // parent block. 5436 if (I->getParent() && !I->isEHPad() && !I->isTerminator() && 5437 !I->mayHaveSideEffects()) 5438 I->eraseFromParent(); 5439 } else { 5440 Worklist.insert(I); 5441 } 5442 5443 // Note that we must test the size on each iteration, the worklist can grow. 5444 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { 5445 I = Worklist[Idx]; 5446 5447 // See if this instruction simplifies. 5448 SimpleV = SimplifyInstruction(I, {DL, TLI, DT, AC}); 5449 if (!SimpleV) { 5450 if (UnsimplifiedUsers) 5451 UnsimplifiedUsers->insert(I); 5452 continue; 5453 } 5454 5455 Simplified = true; 5456 5457 // Stash away all the uses of the old instruction so we can check them for 5458 // recursive simplifications after a RAUW. This is cheaper than checking all 5459 // uses of To on the recursive step in most cases. 5460 for (User *U : I->users()) 5461 Worklist.insert(cast<Instruction>(U)); 5462 5463 // Replace the instruction with its simplified value. 5464 I->replaceAllUsesWith(SimpleV); 5465 5466 // Gracefully handle edge cases where the instruction is not wired into any 5467 // parent block. 5468 if (I->getParent() && !I->isEHPad() && !I->isTerminator() && 5469 !I->mayHaveSideEffects()) 5470 I->eraseFromParent(); 5471 } 5472 return Simplified; 5473 } 5474 5475 bool llvm::recursivelySimplifyInstruction(Instruction *I, 5476 const TargetLibraryInfo *TLI, 5477 const DominatorTree *DT, 5478 AssumptionCache *AC) { 5479 return replaceAndRecursivelySimplifyImpl(I, nullptr, TLI, DT, AC, nullptr); 5480 } 5481 5482 bool llvm::replaceAndRecursivelySimplify( 5483 Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI, 5484 const DominatorTree *DT, AssumptionCache *AC, 5485 SmallSetVector<Instruction *, 8> *UnsimplifiedUsers) { 5486 assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!"); 5487 assert(SimpleV && "Must provide a simplified value."); 5488 return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC, 5489 UnsimplifiedUsers); 5490 } 5491 5492 namespace llvm { 5493 const SimplifyQuery getBestSimplifyQuery(Pass &P, Function &F) { 5494 auto *DTWP = P.getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 5495 auto *DT = DTWP ? &DTWP->getDomTree() : nullptr; 5496 auto *TLIWP = P.getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 5497 auto *TLI = TLIWP ? &TLIWP->getTLI(F) : nullptr; 5498 auto *ACWP = P.getAnalysisIfAvailable<AssumptionCacheTracker>(); 5499 auto *AC = ACWP ? &ACWP->getAssumptionCache(F) : nullptr; 5500 return {F.getParent()->getDataLayout(), TLI, DT, AC}; 5501 } 5502 5503 const SimplifyQuery getBestSimplifyQuery(LoopStandardAnalysisResults &AR, 5504 const DataLayout &DL) { 5505 return {DL, &AR.TLI, &AR.DT, &AR.AC}; 5506 } 5507 5508 template <class T, class... TArgs> 5509 const SimplifyQuery getBestSimplifyQuery(AnalysisManager<T, TArgs...> &AM, 5510 Function &F) { 5511 auto *DT = AM.template getCachedResult<DominatorTreeAnalysis>(F); 5512 auto *TLI = AM.template getCachedResult<TargetLibraryAnalysis>(F); 5513 auto *AC = AM.template getCachedResult<AssumptionAnalysis>(F); 5514 return {F.getParent()->getDataLayout(), TLI, DT, AC}; 5515 } 5516 template const SimplifyQuery getBestSimplifyQuery(AnalysisManager<Function> &, 5517 Function &); 5518 } 5519