1 //===- BranchProbabilityInfo.cpp - Branch Probability Analysis ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Loops should be simplified before this analysis. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Analysis/BranchProbabilityInfo.h" 14 #include "llvm/ADT/PostOrderIterator.h" 15 #include "llvm/ADT/SCCIterator.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/Analysis/LoopInfo.h" 19 #include "llvm/Analysis/TargetLibraryInfo.h" 20 #include "llvm/IR/Attributes.h" 21 #include "llvm/IR/BasicBlock.h" 22 #include "llvm/IR/CFG.h" 23 #include "llvm/IR/Constants.h" 24 #include "llvm/IR/Dominators.h" 25 #include "llvm/IR/Function.h" 26 #include "llvm/IR/InstrTypes.h" 27 #include "llvm/IR/Instruction.h" 28 #include "llvm/IR/Instructions.h" 29 #include "llvm/IR/LLVMContext.h" 30 #include "llvm/IR/Metadata.h" 31 #include "llvm/IR/PassManager.h" 32 #include "llvm/IR/Type.h" 33 #include "llvm/IR/Value.h" 34 #include "llvm/Pass.h" 35 #include "llvm/Support/BranchProbability.h" 36 #include "llvm/Support/Casting.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/raw_ostream.h" 39 #include <cassert> 40 #include <cstdint> 41 #include <iterator> 42 #include <utility> 43 44 using namespace llvm; 45 46 #define DEBUG_TYPE "branch-prob" 47 48 static cl::opt<bool> PrintBranchProb( 49 "print-bpi", cl::init(false), cl::Hidden, 50 cl::desc("Print the branch probability info.")); 51 52 cl::opt<std::string> PrintBranchProbFuncName( 53 "print-bpi-func-name", cl::Hidden, 54 cl::desc("The option to specify the name of the function " 55 "whose branch probability info is printed.")); 56 57 INITIALIZE_PASS_BEGIN(BranchProbabilityInfoWrapperPass, "branch-prob", 58 "Branch Probability Analysis", false, true) 59 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 60 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 61 INITIALIZE_PASS_END(BranchProbabilityInfoWrapperPass, "branch-prob", 62 "Branch Probability Analysis", false, true) 63 64 char BranchProbabilityInfoWrapperPass::ID = 0; 65 66 // Weights are for internal use only. They are used by heuristics to help to 67 // estimate edges' probability. Example: 68 // 69 // Using "Loop Branch Heuristics" we predict weights of edges for the 70 // block BB2. 71 // ... 72 // | 73 // V 74 // BB1<-+ 75 // | | 76 // | | (Weight = 124) 77 // V | 78 // BB2--+ 79 // | 80 // | (Weight = 4) 81 // V 82 // BB3 83 // 84 // Probability of the edge BB2->BB1 = 124 / (124 + 4) = 0.96875 85 // Probability of the edge BB2->BB3 = 4 / (124 + 4) = 0.03125 86 static const uint32_t LBH_TAKEN_WEIGHT = 124; 87 static const uint32_t LBH_NONTAKEN_WEIGHT = 4; 88 // Unlikely edges within a loop are half as likely as other edges 89 static const uint32_t LBH_UNLIKELY_WEIGHT = 62; 90 91 /// Unreachable-terminating branch taken probability. 92 /// 93 /// This is the probability for a branch being taken to a block that terminates 94 /// (eventually) in unreachable. These are predicted as unlikely as possible. 95 /// All reachable probability will equally share the remaining part. 96 static const BranchProbability UR_TAKEN_PROB = BranchProbability::getRaw(1); 97 98 /// Weight for a branch taken going into a cold block. 99 /// 100 /// This is the weight for a branch taken toward a block marked 101 /// cold. A block is marked cold if it's postdominated by a 102 /// block containing a call to a cold function. Cold functions 103 /// are those marked with attribute 'cold'. 104 static const uint32_t CC_TAKEN_WEIGHT = 4; 105 106 /// Weight for a branch not-taken into a cold block. 107 /// 108 /// This is the weight for a branch not taken toward a block marked 109 /// cold. 110 static const uint32_t CC_NONTAKEN_WEIGHT = 64; 111 112 static const uint32_t PH_TAKEN_WEIGHT = 20; 113 static const uint32_t PH_NONTAKEN_WEIGHT = 12; 114 115 static const uint32_t ZH_TAKEN_WEIGHT = 20; 116 static const uint32_t ZH_NONTAKEN_WEIGHT = 12; 117 118 static const uint32_t FPH_TAKEN_WEIGHT = 20; 119 static const uint32_t FPH_NONTAKEN_WEIGHT = 12; 120 121 /// This is the probability for an ordered floating point comparison. 122 static const uint32_t FPH_ORD_WEIGHT = 1024 * 1024 - 1; 123 /// This is the probability for an unordered floating point comparison, it means 124 /// one or two of the operands are NaN. Usually it is used to test for an 125 /// exceptional case, so the result is unlikely. 126 static const uint32_t FPH_UNO_WEIGHT = 1; 127 128 /// Invoke-terminating normal branch taken weight 129 /// 130 /// This is the weight for branching to the normal destination of an invoke 131 /// instruction. We expect this to happen most of the time. Set the weight to an 132 /// absurdly high value so that nested loops subsume it. 133 static const uint32_t IH_TAKEN_WEIGHT = 1024 * 1024 - 1; 134 135 /// Invoke-terminating normal branch not-taken weight. 136 /// 137 /// This is the weight for branching to the unwind destination of an invoke 138 /// instruction. This is essentially never taken. 139 static const uint32_t IH_NONTAKEN_WEIGHT = 1; 140 141 /// Add \p BB to PostDominatedByUnreachable set if applicable. 142 void 143 BranchProbabilityInfo::updatePostDominatedByUnreachable(const BasicBlock *BB) { 144 const Instruction *TI = BB->getTerminator(); 145 if (TI->getNumSuccessors() == 0) { 146 if (isa<UnreachableInst>(TI) || 147 // If this block is terminated by a call to 148 // @llvm.experimental.deoptimize then treat it like an unreachable since 149 // the @llvm.experimental.deoptimize call is expected to practically 150 // never execute. 151 BB->getTerminatingDeoptimizeCall()) 152 PostDominatedByUnreachable.insert(BB); 153 return; 154 } 155 156 // If the terminator is an InvokeInst, check only the normal destination block 157 // as the unwind edge of InvokeInst is also very unlikely taken. 158 if (auto *II = dyn_cast<InvokeInst>(TI)) { 159 if (PostDominatedByUnreachable.count(II->getNormalDest())) 160 PostDominatedByUnreachable.insert(BB); 161 return; 162 } 163 164 for (auto *I : successors(BB)) 165 // If any of successor is not post dominated then BB is also not. 166 if (!PostDominatedByUnreachable.count(I)) 167 return; 168 169 PostDominatedByUnreachable.insert(BB); 170 } 171 172 /// Add \p BB to PostDominatedByColdCall set if applicable. 173 void 174 BranchProbabilityInfo::updatePostDominatedByColdCall(const BasicBlock *BB) { 175 assert(!PostDominatedByColdCall.count(BB)); 176 const Instruction *TI = BB->getTerminator(); 177 if (TI->getNumSuccessors() == 0) 178 return; 179 180 // If all of successor are post dominated then BB is also done. 181 if (llvm::all_of(successors(BB), [&](const BasicBlock *SuccBB) { 182 return PostDominatedByColdCall.count(SuccBB); 183 })) { 184 PostDominatedByColdCall.insert(BB); 185 return; 186 } 187 188 // If the terminator is an InvokeInst, check only the normal destination 189 // block as the unwind edge of InvokeInst is also very unlikely taken. 190 if (auto *II = dyn_cast<InvokeInst>(TI)) 191 if (PostDominatedByColdCall.count(II->getNormalDest())) { 192 PostDominatedByColdCall.insert(BB); 193 return; 194 } 195 196 // Otherwise, if the block itself contains a cold function, add it to the 197 // set of blocks post-dominated by a cold call. 198 for (auto &I : *BB) 199 if (const CallInst *CI = dyn_cast<CallInst>(&I)) 200 if (CI->hasFnAttr(Attribute::Cold)) { 201 PostDominatedByColdCall.insert(BB); 202 return; 203 } 204 } 205 206 /// Calculate edge weights for successors lead to unreachable. 207 /// 208 /// Predict that a successor which leads necessarily to an 209 /// unreachable-terminated block as extremely unlikely. 210 bool BranchProbabilityInfo::calcUnreachableHeuristics(const BasicBlock *BB) { 211 const Instruction *TI = BB->getTerminator(); 212 (void) TI; 213 assert(TI->getNumSuccessors() > 1 && "expected more than one successor!"); 214 assert(!isa<InvokeInst>(TI) && 215 "Invokes should have already been handled by calcInvokeHeuristics"); 216 217 SmallVector<unsigned, 4> UnreachableEdges; 218 SmallVector<unsigned, 4> ReachableEdges; 219 220 for (succ_const_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) 221 if (PostDominatedByUnreachable.count(*I)) 222 UnreachableEdges.push_back(I.getSuccessorIndex()); 223 else 224 ReachableEdges.push_back(I.getSuccessorIndex()); 225 226 // Skip probabilities if all were reachable. 227 if (UnreachableEdges.empty()) 228 return false; 229 230 if (ReachableEdges.empty()) { 231 BranchProbability Prob(1, UnreachableEdges.size()); 232 for (unsigned SuccIdx : UnreachableEdges) 233 setEdgeProbability(BB, SuccIdx, Prob); 234 return true; 235 } 236 237 auto UnreachableProb = UR_TAKEN_PROB; 238 auto ReachableProb = 239 (BranchProbability::getOne() - UR_TAKEN_PROB * UnreachableEdges.size()) / 240 ReachableEdges.size(); 241 242 for (unsigned SuccIdx : UnreachableEdges) 243 setEdgeProbability(BB, SuccIdx, UnreachableProb); 244 for (unsigned SuccIdx : ReachableEdges) 245 setEdgeProbability(BB, SuccIdx, ReachableProb); 246 247 return true; 248 } 249 250 // Propagate existing explicit probabilities from either profile data or 251 // 'expect' intrinsic processing. Examine metadata against unreachable 252 // heuristic. The probability of the edge coming to unreachable block is 253 // set to min of metadata and unreachable heuristic. 254 bool BranchProbabilityInfo::calcMetadataWeights(const BasicBlock *BB) { 255 const Instruction *TI = BB->getTerminator(); 256 assert(TI->getNumSuccessors() > 1 && "expected more than one successor!"); 257 if (!(isa<BranchInst>(TI) || isa<SwitchInst>(TI) || isa<IndirectBrInst>(TI))) 258 return false; 259 260 MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof); 261 if (!WeightsNode) 262 return false; 263 264 // Check that the number of successors is manageable. 265 assert(TI->getNumSuccessors() < UINT32_MAX && "Too many successors"); 266 267 // Ensure there are weights for all of the successors. Note that the first 268 // operand to the metadata node is a name, not a weight. 269 if (WeightsNode->getNumOperands() != TI->getNumSuccessors() + 1) 270 return false; 271 272 // Build up the final weights that will be used in a temporary buffer. 273 // Compute the sum of all weights to later decide whether they need to 274 // be scaled to fit in 32 bits. 275 uint64_t WeightSum = 0; 276 SmallVector<uint32_t, 2> Weights; 277 SmallVector<unsigned, 2> UnreachableIdxs; 278 SmallVector<unsigned, 2> ReachableIdxs; 279 Weights.reserve(TI->getNumSuccessors()); 280 for (unsigned i = 1, e = WeightsNode->getNumOperands(); i != e; ++i) { 281 ConstantInt *Weight = 282 mdconst::dyn_extract<ConstantInt>(WeightsNode->getOperand(i)); 283 if (!Weight) 284 return false; 285 assert(Weight->getValue().getActiveBits() <= 32 && 286 "Too many bits for uint32_t"); 287 Weights.push_back(Weight->getZExtValue()); 288 WeightSum += Weights.back(); 289 if (PostDominatedByUnreachable.count(TI->getSuccessor(i - 1))) 290 UnreachableIdxs.push_back(i - 1); 291 else 292 ReachableIdxs.push_back(i - 1); 293 } 294 assert(Weights.size() == TI->getNumSuccessors() && "Checked above"); 295 296 // If the sum of weights does not fit in 32 bits, scale every weight down 297 // accordingly. 298 uint64_t ScalingFactor = 299 (WeightSum > UINT32_MAX) ? WeightSum / UINT32_MAX + 1 : 1; 300 301 if (ScalingFactor > 1) { 302 WeightSum = 0; 303 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) { 304 Weights[i] /= ScalingFactor; 305 WeightSum += Weights[i]; 306 } 307 } 308 assert(WeightSum <= UINT32_MAX && 309 "Expected weights to scale down to 32 bits"); 310 311 if (WeightSum == 0 || ReachableIdxs.size() == 0) { 312 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 313 Weights[i] = 1; 314 WeightSum = TI->getNumSuccessors(); 315 } 316 317 // Set the probability. 318 SmallVector<BranchProbability, 2> BP; 319 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 320 BP.push_back({ Weights[i], static_cast<uint32_t>(WeightSum) }); 321 322 // Examine the metadata against unreachable heuristic. 323 // If the unreachable heuristic is more strong then we use it for this edge. 324 if (UnreachableIdxs.size() > 0 && ReachableIdxs.size() > 0) { 325 auto ToDistribute = BranchProbability::getZero(); 326 auto UnreachableProb = UR_TAKEN_PROB; 327 for (auto i : UnreachableIdxs) 328 if (UnreachableProb < BP[i]) { 329 ToDistribute += BP[i] - UnreachableProb; 330 BP[i] = UnreachableProb; 331 } 332 333 // If we modified the probability of some edges then we must distribute 334 // the difference between reachable blocks. 335 if (ToDistribute > BranchProbability::getZero()) { 336 BranchProbability PerEdge = ToDistribute / ReachableIdxs.size(); 337 for (auto i : ReachableIdxs) 338 BP[i] += PerEdge; 339 } 340 } 341 342 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 343 setEdgeProbability(BB, i, BP[i]); 344 345 return true; 346 } 347 348 /// Calculate edge weights for edges leading to cold blocks. 349 /// 350 /// A cold block is one post-dominated by a block with a call to a 351 /// cold function. Those edges are unlikely to be taken, so we give 352 /// them relatively low weight. 353 /// 354 /// Return true if we could compute the weights for cold edges. 355 /// Return false, otherwise. 356 bool BranchProbabilityInfo::calcColdCallHeuristics(const BasicBlock *BB) { 357 const Instruction *TI = BB->getTerminator(); 358 (void) TI; 359 assert(TI->getNumSuccessors() > 1 && "expected more than one successor!"); 360 assert(!isa<InvokeInst>(TI) && 361 "Invokes should have already been handled by calcInvokeHeuristics"); 362 363 // Determine which successors are post-dominated by a cold block. 364 SmallVector<unsigned, 4> ColdEdges; 365 SmallVector<unsigned, 4> NormalEdges; 366 for (succ_const_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) 367 if (PostDominatedByColdCall.count(*I)) 368 ColdEdges.push_back(I.getSuccessorIndex()); 369 else 370 NormalEdges.push_back(I.getSuccessorIndex()); 371 372 // Skip probabilities if no cold edges. 373 if (ColdEdges.empty()) 374 return false; 375 376 if (NormalEdges.empty()) { 377 BranchProbability Prob(1, ColdEdges.size()); 378 for (unsigned SuccIdx : ColdEdges) 379 setEdgeProbability(BB, SuccIdx, Prob); 380 return true; 381 } 382 383 auto ColdProb = BranchProbability::getBranchProbability( 384 CC_TAKEN_WEIGHT, 385 (CC_TAKEN_WEIGHT + CC_NONTAKEN_WEIGHT) * uint64_t(ColdEdges.size())); 386 auto NormalProb = BranchProbability::getBranchProbability( 387 CC_NONTAKEN_WEIGHT, 388 (CC_TAKEN_WEIGHT + CC_NONTAKEN_WEIGHT) * uint64_t(NormalEdges.size())); 389 390 for (unsigned SuccIdx : ColdEdges) 391 setEdgeProbability(BB, SuccIdx, ColdProb); 392 for (unsigned SuccIdx : NormalEdges) 393 setEdgeProbability(BB, SuccIdx, NormalProb); 394 395 return true; 396 } 397 398 // Calculate Edge Weights using "Pointer Heuristics". Predict a comparison 399 // between two pointer or pointer and NULL will fail. 400 bool BranchProbabilityInfo::calcPointerHeuristics(const BasicBlock *BB) { 401 const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 402 if (!BI || !BI->isConditional()) 403 return false; 404 405 Value *Cond = BI->getCondition(); 406 ICmpInst *CI = dyn_cast<ICmpInst>(Cond); 407 if (!CI || !CI->isEquality()) 408 return false; 409 410 Value *LHS = CI->getOperand(0); 411 412 if (!LHS->getType()->isPointerTy()) 413 return false; 414 415 assert(CI->getOperand(1)->getType()->isPointerTy()); 416 417 // p != 0 -> isProb = true 418 // p == 0 -> isProb = false 419 // p != q -> isProb = true 420 // p == q -> isProb = false; 421 unsigned TakenIdx = 0, NonTakenIdx = 1; 422 bool isProb = CI->getPredicate() == ICmpInst::ICMP_NE; 423 if (!isProb) 424 std::swap(TakenIdx, NonTakenIdx); 425 426 BranchProbability TakenProb(PH_TAKEN_WEIGHT, 427 PH_TAKEN_WEIGHT + PH_NONTAKEN_WEIGHT); 428 setEdgeProbability(BB, TakenIdx, TakenProb); 429 setEdgeProbability(BB, NonTakenIdx, TakenProb.getCompl()); 430 return true; 431 } 432 433 static int getSCCNum(const BasicBlock *BB, 434 const BranchProbabilityInfo::SccInfo &SccI) { 435 auto SccIt = SccI.SccNums.find(BB); 436 if (SccIt == SccI.SccNums.end()) 437 return -1; 438 return SccIt->second; 439 } 440 441 // Consider any block that is an entry point to the SCC as a header. 442 static bool isSCCHeader(const BasicBlock *BB, int SccNum, 443 BranchProbabilityInfo::SccInfo &SccI) { 444 assert(getSCCNum(BB, SccI) == SccNum); 445 446 // Lazily compute the set of headers for a given SCC and cache the results 447 // in the SccHeaderMap. 448 if (SccI.SccHeaders.size() <= static_cast<unsigned>(SccNum)) 449 SccI.SccHeaders.resize(SccNum + 1); 450 auto &HeaderMap = SccI.SccHeaders[SccNum]; 451 bool Inserted; 452 BranchProbabilityInfo::SccHeaderMap::iterator HeaderMapIt; 453 std::tie(HeaderMapIt, Inserted) = HeaderMap.insert(std::make_pair(BB, false)); 454 if (Inserted) { 455 bool IsHeader = llvm::any_of(make_range(pred_begin(BB), pred_end(BB)), 456 [&](const BasicBlock *Pred) { 457 return getSCCNum(Pred, SccI) != SccNum; 458 }); 459 HeaderMapIt->second = IsHeader; 460 return IsHeader; 461 } else 462 return HeaderMapIt->second; 463 } 464 465 // Compute the unlikely successors to the block BB in the loop L, specifically 466 // those that are unlikely because this is a loop, and add them to the 467 // UnlikelyBlocks set. 468 static void 469 computeUnlikelySuccessors(const BasicBlock *BB, Loop *L, 470 SmallPtrSetImpl<const BasicBlock*> &UnlikelyBlocks) { 471 // Sometimes in a loop we have a branch whose condition is made false by 472 // taking it. This is typically something like 473 // int n = 0; 474 // while (...) { 475 // if (++n >= MAX) { 476 // n = 0; 477 // } 478 // } 479 // In this sort of situation taking the branch means that at the very least it 480 // won't be taken again in the next iteration of the loop, so we should 481 // consider it less likely than a typical branch. 482 // 483 // We detect this by looking back through the graph of PHI nodes that sets the 484 // value that the condition depends on, and seeing if we can reach a successor 485 // block which can be determined to make the condition false. 486 // 487 // FIXME: We currently consider unlikely blocks to be half as likely as other 488 // blocks, but if we consider the example above the likelyhood is actually 489 // 1/MAX. We could therefore be more precise in how unlikely we consider 490 // blocks to be, but it would require more careful examination of the form 491 // of the comparison expression. 492 const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 493 if (!BI || !BI->isConditional()) 494 return; 495 496 // Check if the branch is based on an instruction compared with a constant 497 CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition()); 498 if (!CI || !isa<Instruction>(CI->getOperand(0)) || 499 !isa<Constant>(CI->getOperand(1))) 500 return; 501 502 // Either the instruction must be a PHI, or a chain of operations involving 503 // constants that ends in a PHI which we can then collapse into a single value 504 // if the PHI value is known. 505 Instruction *CmpLHS = dyn_cast<Instruction>(CI->getOperand(0)); 506 PHINode *CmpPHI = dyn_cast<PHINode>(CmpLHS); 507 Constant *CmpConst = dyn_cast<Constant>(CI->getOperand(1)); 508 // Collect the instructions until we hit a PHI 509 SmallVector<BinaryOperator *, 1> InstChain; 510 while (!CmpPHI && CmpLHS && isa<BinaryOperator>(CmpLHS) && 511 isa<Constant>(CmpLHS->getOperand(1))) { 512 // Stop if the chain extends outside of the loop 513 if (!L->contains(CmpLHS)) 514 return; 515 InstChain.push_back(cast<BinaryOperator>(CmpLHS)); 516 CmpLHS = dyn_cast<Instruction>(CmpLHS->getOperand(0)); 517 if (CmpLHS) 518 CmpPHI = dyn_cast<PHINode>(CmpLHS); 519 } 520 if (!CmpPHI || !L->contains(CmpPHI)) 521 return; 522 523 // Trace the phi node to find all values that come from successors of BB 524 SmallPtrSet<PHINode*, 8> VisitedInsts; 525 SmallVector<PHINode*, 8> WorkList; 526 WorkList.push_back(CmpPHI); 527 VisitedInsts.insert(CmpPHI); 528 while (!WorkList.empty()) { 529 PHINode *P = WorkList.back(); 530 WorkList.pop_back(); 531 for (BasicBlock *B : P->blocks()) { 532 // Skip blocks that aren't part of the loop 533 if (!L->contains(B)) 534 continue; 535 Value *V = P->getIncomingValueForBlock(B); 536 // If the source is a PHI add it to the work list if we haven't 537 // already visited it. 538 if (PHINode *PN = dyn_cast<PHINode>(V)) { 539 if (VisitedInsts.insert(PN).second) 540 WorkList.push_back(PN); 541 continue; 542 } 543 // If this incoming value is a constant and B is a successor of BB, then 544 // we can constant-evaluate the compare to see if it makes the branch be 545 // taken or not. 546 Constant *CmpLHSConst = dyn_cast<Constant>(V); 547 if (!CmpLHSConst || 548 std::find(succ_begin(BB), succ_end(BB), B) == succ_end(BB)) 549 continue; 550 // First collapse InstChain 551 for (Instruction *I : llvm::reverse(InstChain)) { 552 CmpLHSConst = ConstantExpr::get(I->getOpcode(), CmpLHSConst, 553 cast<Constant>(I->getOperand(1)), true); 554 if (!CmpLHSConst) 555 break; 556 } 557 if (!CmpLHSConst) 558 continue; 559 // Now constant-evaluate the compare 560 Constant *Result = ConstantExpr::getCompare(CI->getPredicate(), 561 CmpLHSConst, CmpConst, true); 562 // If the result means we don't branch to the block then that block is 563 // unlikely. 564 if (Result && 565 ((Result->isZeroValue() && B == BI->getSuccessor(0)) || 566 (Result->isOneValue() && B == BI->getSuccessor(1)))) 567 UnlikelyBlocks.insert(B); 568 } 569 } 570 } 571 572 // Calculate Edge Weights using "Loop Branch Heuristics". Predict backedges 573 // as taken, exiting edges as not-taken. 574 bool BranchProbabilityInfo::calcLoopBranchHeuristics(const BasicBlock *BB, 575 const LoopInfo &LI, 576 SccInfo &SccI) { 577 int SccNum; 578 Loop *L = LI.getLoopFor(BB); 579 if (!L) { 580 SccNum = getSCCNum(BB, SccI); 581 if (SccNum < 0) 582 return false; 583 } 584 585 SmallPtrSet<const BasicBlock*, 8> UnlikelyBlocks; 586 if (L) 587 computeUnlikelySuccessors(BB, L, UnlikelyBlocks); 588 589 SmallVector<unsigned, 8> BackEdges; 590 SmallVector<unsigned, 8> ExitingEdges; 591 SmallVector<unsigned, 8> InEdges; // Edges from header to the loop. 592 SmallVector<unsigned, 8> UnlikelyEdges; 593 594 for (succ_const_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) { 595 // Use LoopInfo if we have it, otherwise fall-back to SCC info to catch 596 // irreducible loops. 597 if (L) { 598 if (UnlikelyBlocks.count(*I) != 0) 599 UnlikelyEdges.push_back(I.getSuccessorIndex()); 600 else if (!L->contains(*I)) 601 ExitingEdges.push_back(I.getSuccessorIndex()); 602 else if (L->getHeader() == *I) 603 BackEdges.push_back(I.getSuccessorIndex()); 604 else 605 InEdges.push_back(I.getSuccessorIndex()); 606 } else { 607 if (getSCCNum(*I, SccI) != SccNum) 608 ExitingEdges.push_back(I.getSuccessorIndex()); 609 else if (isSCCHeader(*I, SccNum, SccI)) 610 BackEdges.push_back(I.getSuccessorIndex()); 611 else 612 InEdges.push_back(I.getSuccessorIndex()); 613 } 614 } 615 616 if (BackEdges.empty() && ExitingEdges.empty() && UnlikelyEdges.empty()) 617 return false; 618 619 // Collect the sum of probabilities of back-edges/in-edges/exiting-edges, and 620 // normalize them so that they sum up to one. 621 unsigned Denom = (BackEdges.empty() ? 0 : LBH_TAKEN_WEIGHT) + 622 (InEdges.empty() ? 0 : LBH_TAKEN_WEIGHT) + 623 (UnlikelyEdges.empty() ? 0 : LBH_UNLIKELY_WEIGHT) + 624 (ExitingEdges.empty() ? 0 : LBH_NONTAKEN_WEIGHT); 625 626 if (uint32_t numBackEdges = BackEdges.size()) { 627 BranchProbability TakenProb = BranchProbability(LBH_TAKEN_WEIGHT, Denom); 628 auto Prob = TakenProb / numBackEdges; 629 for (unsigned SuccIdx : BackEdges) 630 setEdgeProbability(BB, SuccIdx, Prob); 631 } 632 633 if (uint32_t numInEdges = InEdges.size()) { 634 BranchProbability TakenProb = BranchProbability(LBH_TAKEN_WEIGHT, Denom); 635 auto Prob = TakenProb / numInEdges; 636 for (unsigned SuccIdx : InEdges) 637 setEdgeProbability(BB, SuccIdx, Prob); 638 } 639 640 if (uint32_t numExitingEdges = ExitingEdges.size()) { 641 BranchProbability NotTakenProb = BranchProbability(LBH_NONTAKEN_WEIGHT, 642 Denom); 643 auto Prob = NotTakenProb / numExitingEdges; 644 for (unsigned SuccIdx : ExitingEdges) 645 setEdgeProbability(BB, SuccIdx, Prob); 646 } 647 648 if (uint32_t numUnlikelyEdges = UnlikelyEdges.size()) { 649 BranchProbability UnlikelyProb = BranchProbability(LBH_UNLIKELY_WEIGHT, 650 Denom); 651 auto Prob = UnlikelyProb / numUnlikelyEdges; 652 for (unsigned SuccIdx : UnlikelyEdges) 653 setEdgeProbability(BB, SuccIdx, Prob); 654 } 655 656 return true; 657 } 658 659 bool BranchProbabilityInfo::calcZeroHeuristics(const BasicBlock *BB, 660 const TargetLibraryInfo *TLI) { 661 const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 662 if (!BI || !BI->isConditional()) 663 return false; 664 665 Value *Cond = BI->getCondition(); 666 ICmpInst *CI = dyn_cast<ICmpInst>(Cond); 667 if (!CI) 668 return false; 669 670 auto GetConstantInt = [](Value *V) { 671 if (auto *I = dyn_cast<BitCastInst>(V)) 672 return dyn_cast<ConstantInt>(I->getOperand(0)); 673 return dyn_cast<ConstantInt>(V); 674 }; 675 676 Value *RHS = CI->getOperand(1); 677 ConstantInt *CV = GetConstantInt(RHS); 678 if (!CV) 679 return false; 680 681 // If the LHS is the result of AND'ing a value with a single bit bitmask, 682 // we don't have information about probabilities. 683 if (Instruction *LHS = dyn_cast<Instruction>(CI->getOperand(0))) 684 if (LHS->getOpcode() == Instruction::And) 685 if (ConstantInt *AndRHS = dyn_cast<ConstantInt>(LHS->getOperand(1))) 686 if (AndRHS->getValue().isPowerOf2()) 687 return false; 688 689 // Check if the LHS is the return value of a library function 690 LibFunc Func = NumLibFuncs; 691 if (TLI) 692 if (CallInst *Call = dyn_cast<CallInst>(CI->getOperand(0))) 693 if (Function *CalledFn = Call->getCalledFunction()) 694 TLI->getLibFunc(*CalledFn, Func); 695 696 bool isProb; 697 if (Func == LibFunc_strcasecmp || 698 Func == LibFunc_strcmp || 699 Func == LibFunc_strncasecmp || 700 Func == LibFunc_strncmp || 701 Func == LibFunc_memcmp) { 702 // strcmp and similar functions return zero, negative, or positive, if the 703 // first string is equal, less, or greater than the second. We consider it 704 // likely that the strings are not equal, so a comparison with zero is 705 // probably false, but also a comparison with any other number is also 706 // probably false given that what exactly is returned for nonzero values is 707 // not specified. Any kind of comparison other than equality we know 708 // nothing about. 709 switch (CI->getPredicate()) { 710 case CmpInst::ICMP_EQ: 711 isProb = false; 712 break; 713 case CmpInst::ICMP_NE: 714 isProb = true; 715 break; 716 default: 717 return false; 718 } 719 } else if (CV->isZero()) { 720 switch (CI->getPredicate()) { 721 case CmpInst::ICMP_EQ: 722 // X == 0 -> Unlikely 723 isProb = false; 724 break; 725 case CmpInst::ICMP_NE: 726 // X != 0 -> Likely 727 isProb = true; 728 break; 729 case CmpInst::ICMP_SLT: 730 // X < 0 -> Unlikely 731 isProb = false; 732 break; 733 case CmpInst::ICMP_SGT: 734 // X > 0 -> Likely 735 isProb = true; 736 break; 737 default: 738 return false; 739 } 740 } else if (CV->isOne() && CI->getPredicate() == CmpInst::ICMP_SLT) { 741 // InstCombine canonicalizes X <= 0 into X < 1. 742 // X <= 0 -> Unlikely 743 isProb = false; 744 } else if (CV->isMinusOne()) { 745 switch (CI->getPredicate()) { 746 case CmpInst::ICMP_EQ: 747 // X == -1 -> Unlikely 748 isProb = false; 749 break; 750 case CmpInst::ICMP_NE: 751 // X != -1 -> Likely 752 isProb = true; 753 break; 754 case CmpInst::ICMP_SGT: 755 // InstCombine canonicalizes X >= 0 into X > -1. 756 // X >= 0 -> Likely 757 isProb = true; 758 break; 759 default: 760 return false; 761 } 762 } else { 763 return false; 764 } 765 766 unsigned TakenIdx = 0, NonTakenIdx = 1; 767 768 if (!isProb) 769 std::swap(TakenIdx, NonTakenIdx); 770 771 BranchProbability TakenProb(ZH_TAKEN_WEIGHT, 772 ZH_TAKEN_WEIGHT + ZH_NONTAKEN_WEIGHT); 773 setEdgeProbability(BB, TakenIdx, TakenProb); 774 setEdgeProbability(BB, NonTakenIdx, TakenProb.getCompl()); 775 return true; 776 } 777 778 bool BranchProbabilityInfo::calcFloatingPointHeuristics(const BasicBlock *BB) { 779 const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 780 if (!BI || !BI->isConditional()) 781 return false; 782 783 Value *Cond = BI->getCondition(); 784 FCmpInst *FCmp = dyn_cast<FCmpInst>(Cond); 785 if (!FCmp) 786 return false; 787 788 uint32_t TakenWeight = FPH_TAKEN_WEIGHT; 789 uint32_t NontakenWeight = FPH_NONTAKEN_WEIGHT; 790 bool isProb; 791 if (FCmp->isEquality()) { 792 // f1 == f2 -> Unlikely 793 // f1 != f2 -> Likely 794 isProb = !FCmp->isTrueWhenEqual(); 795 } else if (FCmp->getPredicate() == FCmpInst::FCMP_ORD) { 796 // !isnan -> Likely 797 isProb = true; 798 TakenWeight = FPH_ORD_WEIGHT; 799 NontakenWeight = FPH_UNO_WEIGHT; 800 } else if (FCmp->getPredicate() == FCmpInst::FCMP_UNO) { 801 // isnan -> Unlikely 802 isProb = false; 803 TakenWeight = FPH_ORD_WEIGHT; 804 NontakenWeight = FPH_UNO_WEIGHT; 805 } else { 806 return false; 807 } 808 809 unsigned TakenIdx = 0, NonTakenIdx = 1; 810 811 if (!isProb) 812 std::swap(TakenIdx, NonTakenIdx); 813 814 BranchProbability TakenProb(TakenWeight, TakenWeight + NontakenWeight); 815 setEdgeProbability(BB, TakenIdx, TakenProb); 816 setEdgeProbability(BB, NonTakenIdx, TakenProb.getCompl()); 817 return true; 818 } 819 820 bool BranchProbabilityInfo::calcInvokeHeuristics(const BasicBlock *BB) { 821 const InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator()); 822 if (!II) 823 return false; 824 825 BranchProbability TakenProb(IH_TAKEN_WEIGHT, 826 IH_TAKEN_WEIGHT + IH_NONTAKEN_WEIGHT); 827 setEdgeProbability(BB, 0 /*Index for Normal*/, TakenProb); 828 setEdgeProbability(BB, 1 /*Index for Unwind*/, TakenProb.getCompl()); 829 return true; 830 } 831 832 void BranchProbabilityInfo::releaseMemory() { 833 Probs.clear(); 834 } 835 836 void BranchProbabilityInfo::print(raw_ostream &OS) const { 837 OS << "---- Branch Probabilities ----\n"; 838 // We print the probabilities from the last function the analysis ran over, 839 // or the function it is currently running over. 840 assert(LastF && "Cannot print prior to running over a function"); 841 for (const auto &BI : *LastF) { 842 for (succ_const_iterator SI = succ_begin(&BI), SE = succ_end(&BI); SI != SE; 843 ++SI) { 844 printEdgeProbability(OS << " ", &BI, *SI); 845 } 846 } 847 } 848 849 bool BranchProbabilityInfo:: 850 isEdgeHot(const BasicBlock *Src, const BasicBlock *Dst) const { 851 // Hot probability is at least 4/5 = 80% 852 // FIXME: Compare against a static "hot" BranchProbability. 853 return getEdgeProbability(Src, Dst) > BranchProbability(4, 5); 854 } 855 856 const BasicBlock * 857 BranchProbabilityInfo::getHotSucc(const BasicBlock *BB) const { 858 auto MaxProb = BranchProbability::getZero(); 859 const BasicBlock *MaxSucc = nullptr; 860 861 for (succ_const_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) { 862 const BasicBlock *Succ = *I; 863 auto Prob = getEdgeProbability(BB, Succ); 864 if (Prob > MaxProb) { 865 MaxProb = Prob; 866 MaxSucc = Succ; 867 } 868 } 869 870 // Hot probability is at least 4/5 = 80% 871 if (MaxProb > BranchProbability(4, 5)) 872 return MaxSucc; 873 874 return nullptr; 875 } 876 877 /// Get the raw edge probability for the edge. If can't find it, return a 878 /// default probability 1/N where N is the number of successors. Here an edge is 879 /// specified using PredBlock and an 880 /// index to the successors. 881 BranchProbability 882 BranchProbabilityInfo::getEdgeProbability(const BasicBlock *Src, 883 unsigned IndexInSuccessors) const { 884 auto I = Probs.find(std::make_pair(Src, IndexInSuccessors)); 885 886 if (I != Probs.end()) 887 return I->second; 888 889 return {1, static_cast<uint32_t>(succ_size(Src))}; 890 } 891 892 BranchProbability 893 BranchProbabilityInfo::getEdgeProbability(const BasicBlock *Src, 894 succ_const_iterator Dst) const { 895 return getEdgeProbability(Src, Dst.getSuccessorIndex()); 896 } 897 898 /// Get the raw edge probability calculated for the block pair. This returns the 899 /// sum of all raw edge probabilities from Src to Dst. 900 BranchProbability 901 BranchProbabilityInfo::getEdgeProbability(const BasicBlock *Src, 902 const BasicBlock *Dst) const { 903 auto Prob = BranchProbability::getZero(); 904 bool FoundProb = false; 905 for (succ_const_iterator I = succ_begin(Src), E = succ_end(Src); I != E; ++I) 906 if (*I == Dst) { 907 auto MapI = Probs.find(std::make_pair(Src, I.getSuccessorIndex())); 908 if (MapI != Probs.end()) { 909 FoundProb = true; 910 Prob += MapI->second; 911 } 912 } 913 uint32_t succ_num = std::distance(succ_begin(Src), succ_end(Src)); 914 return FoundProb ? Prob : BranchProbability(1, succ_num); 915 } 916 917 /// Set the edge probability for a given edge specified by PredBlock and an 918 /// index to the successors. 919 void BranchProbabilityInfo::setEdgeProbability(const BasicBlock *Src, 920 unsigned IndexInSuccessors, 921 BranchProbability Prob) { 922 Probs[std::make_pair(Src, IndexInSuccessors)] = Prob; 923 Handles.insert(BasicBlockCallbackVH(Src, this)); 924 LLVM_DEBUG(dbgs() << "set edge " << Src->getName() << " -> " 925 << IndexInSuccessors << " successor probability to " << Prob 926 << "\n"); 927 } 928 929 raw_ostream & 930 BranchProbabilityInfo::printEdgeProbability(raw_ostream &OS, 931 const BasicBlock *Src, 932 const BasicBlock *Dst) const { 933 const BranchProbability Prob = getEdgeProbability(Src, Dst); 934 OS << "edge " << Src->getName() << " -> " << Dst->getName() 935 << " probability is " << Prob 936 << (isEdgeHot(Src, Dst) ? " [HOT edge]\n" : "\n"); 937 938 return OS; 939 } 940 941 void BranchProbabilityInfo::eraseBlock(const BasicBlock *BB) { 942 for (auto I = Probs.begin(), E = Probs.end(); I != E; ++I) { 943 auto Key = I->first; 944 if (Key.first == BB) 945 Probs.erase(Key); 946 } 947 } 948 949 void BranchProbabilityInfo::calculate(const Function &F, const LoopInfo &LI, 950 const TargetLibraryInfo *TLI) { 951 LLVM_DEBUG(dbgs() << "---- Branch Probability Info : " << F.getName() 952 << " ----\n\n"); 953 LastF = &F; // Store the last function we ran on for printing. 954 assert(PostDominatedByUnreachable.empty()); 955 assert(PostDominatedByColdCall.empty()); 956 957 // Record SCC numbers of blocks in the CFG to identify irreducible loops. 958 // FIXME: We could only calculate this if the CFG is known to be irreducible 959 // (perhaps cache this info in LoopInfo if we can easily calculate it there?). 960 int SccNum = 0; 961 SccInfo SccI; 962 for (scc_iterator<const Function *> It = scc_begin(&F); !It.isAtEnd(); 963 ++It, ++SccNum) { 964 // Ignore single-block SCCs since they either aren't loops or LoopInfo will 965 // catch them. 966 const std::vector<const BasicBlock *> &Scc = *It; 967 if (Scc.size() == 1) 968 continue; 969 970 LLVM_DEBUG(dbgs() << "BPI: SCC " << SccNum << ":"); 971 for (auto *BB : Scc) { 972 LLVM_DEBUG(dbgs() << " " << BB->getName()); 973 SccI.SccNums[BB] = SccNum; 974 } 975 LLVM_DEBUG(dbgs() << "\n"); 976 } 977 978 // Walk the basic blocks in post-order so that we can build up state about 979 // the successors of a block iteratively. 980 for (auto BB : post_order(&F.getEntryBlock())) { 981 LLVM_DEBUG(dbgs() << "Computing probabilities for " << BB->getName() 982 << "\n"); 983 updatePostDominatedByUnreachable(BB); 984 updatePostDominatedByColdCall(BB); 985 // If there is no at least two successors, no sense to set probability. 986 if (BB->getTerminator()->getNumSuccessors() < 2) 987 continue; 988 if (calcMetadataWeights(BB)) 989 continue; 990 if (calcInvokeHeuristics(BB)) 991 continue; 992 if (calcUnreachableHeuristics(BB)) 993 continue; 994 if (calcColdCallHeuristics(BB)) 995 continue; 996 if (calcLoopBranchHeuristics(BB, LI, SccI)) 997 continue; 998 if (calcPointerHeuristics(BB)) 999 continue; 1000 if (calcZeroHeuristics(BB, TLI)) 1001 continue; 1002 if (calcFloatingPointHeuristics(BB)) 1003 continue; 1004 } 1005 1006 PostDominatedByUnreachable.clear(); 1007 PostDominatedByColdCall.clear(); 1008 1009 if (PrintBranchProb && 1010 (PrintBranchProbFuncName.empty() || 1011 F.getName().equals(PrintBranchProbFuncName))) { 1012 print(dbgs()); 1013 } 1014 } 1015 1016 void BranchProbabilityInfoWrapperPass::getAnalysisUsage( 1017 AnalysisUsage &AU) const { 1018 // We require DT so it's available when LI is available. The LI updating code 1019 // asserts that DT is also present so if we don't make sure that we have DT 1020 // here, that assert will trigger. 1021 AU.addRequired<DominatorTreeWrapperPass>(); 1022 AU.addRequired<LoopInfoWrapperPass>(); 1023 AU.addRequired<TargetLibraryInfoWrapperPass>(); 1024 AU.setPreservesAll(); 1025 } 1026 1027 bool BranchProbabilityInfoWrapperPass::runOnFunction(Function &F) { 1028 const LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1029 const TargetLibraryInfo &TLI = 1030 getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 1031 BPI.calculate(F, LI, &TLI); 1032 return false; 1033 } 1034 1035 void BranchProbabilityInfoWrapperPass::releaseMemory() { BPI.releaseMemory(); } 1036 1037 void BranchProbabilityInfoWrapperPass::print(raw_ostream &OS, 1038 const Module *) const { 1039 BPI.print(OS); 1040 } 1041 1042 AnalysisKey BranchProbabilityAnalysis::Key; 1043 BranchProbabilityInfo 1044 BranchProbabilityAnalysis::run(Function &F, FunctionAnalysisManager &AM) { 1045 BranchProbabilityInfo BPI; 1046 BPI.calculate(F, AM.getResult<LoopAnalysis>(F), &AM.getResult<TargetLibraryAnalysis>(F)); 1047 return BPI; 1048 } 1049 1050 PreservedAnalyses 1051 BranchProbabilityPrinterPass::run(Function &F, FunctionAnalysisManager &AM) { 1052 OS << "Printing analysis results of BPI for function " 1053 << "'" << F.getName() << "':" 1054 << "\n"; 1055 AM.getResult<BranchProbabilityAnalysis>(F).print(OS); 1056 return PreservedAnalyses::all(); 1057 } 1058