xref: /freebsd-src/contrib/llvm-project/llvm/lib/Analysis/BranchProbabilityInfo.cpp (revision a7dea1671b87c07d2d266f836bfa8b58efc7c134)
1 //===- BranchProbabilityInfo.cpp - Branch Probability Analysis ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Loops should be simplified before this analysis.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Analysis/BranchProbabilityInfo.h"
14 #include "llvm/ADT/PostOrderIterator.h"
15 #include "llvm/ADT/SCCIterator.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/LoopInfo.h"
19 #include "llvm/Analysis/TargetLibraryInfo.h"
20 #include "llvm/IR/Attributes.h"
21 #include "llvm/IR/BasicBlock.h"
22 #include "llvm/IR/CFG.h"
23 #include "llvm/IR/Constants.h"
24 #include "llvm/IR/Dominators.h"
25 #include "llvm/IR/Function.h"
26 #include "llvm/IR/InstrTypes.h"
27 #include "llvm/IR/Instruction.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/LLVMContext.h"
30 #include "llvm/IR/Metadata.h"
31 #include "llvm/IR/PassManager.h"
32 #include "llvm/IR/Type.h"
33 #include "llvm/IR/Value.h"
34 #include "llvm/Pass.h"
35 #include "llvm/Support/BranchProbability.h"
36 #include "llvm/Support/Casting.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include <cassert>
40 #include <cstdint>
41 #include <iterator>
42 #include <utility>
43 
44 using namespace llvm;
45 
46 #define DEBUG_TYPE "branch-prob"
47 
48 static cl::opt<bool> PrintBranchProb(
49     "print-bpi", cl::init(false), cl::Hidden,
50     cl::desc("Print the branch probability info."));
51 
52 cl::opt<std::string> PrintBranchProbFuncName(
53     "print-bpi-func-name", cl::Hidden,
54     cl::desc("The option to specify the name of the function "
55              "whose branch probability info is printed."));
56 
57 INITIALIZE_PASS_BEGIN(BranchProbabilityInfoWrapperPass, "branch-prob",
58                       "Branch Probability Analysis", false, true)
59 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
60 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
61 INITIALIZE_PASS_END(BranchProbabilityInfoWrapperPass, "branch-prob",
62                     "Branch Probability Analysis", false, true)
63 
64 char BranchProbabilityInfoWrapperPass::ID = 0;
65 
66 // Weights are for internal use only. They are used by heuristics to help to
67 // estimate edges' probability. Example:
68 //
69 // Using "Loop Branch Heuristics" we predict weights of edges for the
70 // block BB2.
71 //         ...
72 //          |
73 //          V
74 //         BB1<-+
75 //          |   |
76 //          |   | (Weight = 124)
77 //          V   |
78 //         BB2--+
79 //          |
80 //          | (Weight = 4)
81 //          V
82 //         BB3
83 //
84 // Probability of the edge BB2->BB1 = 124 / (124 + 4) = 0.96875
85 // Probability of the edge BB2->BB3 = 4 / (124 + 4) = 0.03125
86 static const uint32_t LBH_TAKEN_WEIGHT = 124;
87 static const uint32_t LBH_NONTAKEN_WEIGHT = 4;
88 // Unlikely edges within a loop are half as likely as other edges
89 static const uint32_t LBH_UNLIKELY_WEIGHT = 62;
90 
91 /// Unreachable-terminating branch taken probability.
92 ///
93 /// This is the probability for a branch being taken to a block that terminates
94 /// (eventually) in unreachable. These are predicted as unlikely as possible.
95 /// All reachable probability will equally share the remaining part.
96 static const BranchProbability UR_TAKEN_PROB = BranchProbability::getRaw(1);
97 
98 /// Weight for a branch taken going into a cold block.
99 ///
100 /// This is the weight for a branch taken toward a block marked
101 /// cold.  A block is marked cold if it's postdominated by a
102 /// block containing a call to a cold function.  Cold functions
103 /// are those marked with attribute 'cold'.
104 static const uint32_t CC_TAKEN_WEIGHT = 4;
105 
106 /// Weight for a branch not-taken into a cold block.
107 ///
108 /// This is the weight for a branch not taken toward a block marked
109 /// cold.
110 static const uint32_t CC_NONTAKEN_WEIGHT = 64;
111 
112 static const uint32_t PH_TAKEN_WEIGHT = 20;
113 static const uint32_t PH_NONTAKEN_WEIGHT = 12;
114 
115 static const uint32_t ZH_TAKEN_WEIGHT = 20;
116 static const uint32_t ZH_NONTAKEN_WEIGHT = 12;
117 
118 static const uint32_t FPH_TAKEN_WEIGHT = 20;
119 static const uint32_t FPH_NONTAKEN_WEIGHT = 12;
120 
121 /// This is the probability for an ordered floating point comparison.
122 static const uint32_t FPH_ORD_WEIGHT = 1024 * 1024 - 1;
123 /// This is the probability for an unordered floating point comparison, it means
124 /// one or two of the operands are NaN. Usually it is used to test for an
125 /// exceptional case, so the result is unlikely.
126 static const uint32_t FPH_UNO_WEIGHT = 1;
127 
128 /// Invoke-terminating normal branch taken weight
129 ///
130 /// This is the weight for branching to the normal destination of an invoke
131 /// instruction. We expect this to happen most of the time. Set the weight to an
132 /// absurdly high value so that nested loops subsume it.
133 static const uint32_t IH_TAKEN_WEIGHT = 1024 * 1024 - 1;
134 
135 /// Invoke-terminating normal branch not-taken weight.
136 ///
137 /// This is the weight for branching to the unwind destination of an invoke
138 /// instruction. This is essentially never taken.
139 static const uint32_t IH_NONTAKEN_WEIGHT = 1;
140 
141 /// Add \p BB to PostDominatedByUnreachable set if applicable.
142 void
143 BranchProbabilityInfo::updatePostDominatedByUnreachable(const BasicBlock *BB) {
144   const Instruction *TI = BB->getTerminator();
145   if (TI->getNumSuccessors() == 0) {
146     if (isa<UnreachableInst>(TI) ||
147         // If this block is terminated by a call to
148         // @llvm.experimental.deoptimize then treat it like an unreachable since
149         // the @llvm.experimental.deoptimize call is expected to practically
150         // never execute.
151         BB->getTerminatingDeoptimizeCall())
152       PostDominatedByUnreachable.insert(BB);
153     return;
154   }
155 
156   // If the terminator is an InvokeInst, check only the normal destination block
157   // as the unwind edge of InvokeInst is also very unlikely taken.
158   if (auto *II = dyn_cast<InvokeInst>(TI)) {
159     if (PostDominatedByUnreachable.count(II->getNormalDest()))
160       PostDominatedByUnreachable.insert(BB);
161     return;
162   }
163 
164   for (auto *I : successors(BB))
165     // If any of successor is not post dominated then BB is also not.
166     if (!PostDominatedByUnreachable.count(I))
167       return;
168 
169   PostDominatedByUnreachable.insert(BB);
170 }
171 
172 /// Add \p BB to PostDominatedByColdCall set if applicable.
173 void
174 BranchProbabilityInfo::updatePostDominatedByColdCall(const BasicBlock *BB) {
175   assert(!PostDominatedByColdCall.count(BB));
176   const Instruction *TI = BB->getTerminator();
177   if (TI->getNumSuccessors() == 0)
178     return;
179 
180   // If all of successor are post dominated then BB is also done.
181   if (llvm::all_of(successors(BB), [&](const BasicBlock *SuccBB) {
182         return PostDominatedByColdCall.count(SuccBB);
183       })) {
184     PostDominatedByColdCall.insert(BB);
185     return;
186   }
187 
188   // If the terminator is an InvokeInst, check only the normal destination
189   // block as the unwind edge of InvokeInst is also very unlikely taken.
190   if (auto *II = dyn_cast<InvokeInst>(TI))
191     if (PostDominatedByColdCall.count(II->getNormalDest())) {
192       PostDominatedByColdCall.insert(BB);
193       return;
194     }
195 
196   // Otherwise, if the block itself contains a cold function, add it to the
197   // set of blocks post-dominated by a cold call.
198   for (auto &I : *BB)
199     if (const CallInst *CI = dyn_cast<CallInst>(&I))
200       if (CI->hasFnAttr(Attribute::Cold)) {
201         PostDominatedByColdCall.insert(BB);
202         return;
203       }
204 }
205 
206 /// Calculate edge weights for successors lead to unreachable.
207 ///
208 /// Predict that a successor which leads necessarily to an
209 /// unreachable-terminated block as extremely unlikely.
210 bool BranchProbabilityInfo::calcUnreachableHeuristics(const BasicBlock *BB) {
211   const Instruction *TI = BB->getTerminator();
212   (void) TI;
213   assert(TI->getNumSuccessors() > 1 && "expected more than one successor!");
214   assert(!isa<InvokeInst>(TI) &&
215          "Invokes should have already been handled by calcInvokeHeuristics");
216 
217   SmallVector<unsigned, 4> UnreachableEdges;
218   SmallVector<unsigned, 4> ReachableEdges;
219 
220   for (succ_const_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I)
221     if (PostDominatedByUnreachable.count(*I))
222       UnreachableEdges.push_back(I.getSuccessorIndex());
223     else
224       ReachableEdges.push_back(I.getSuccessorIndex());
225 
226   // Skip probabilities if all were reachable.
227   if (UnreachableEdges.empty())
228     return false;
229 
230   if (ReachableEdges.empty()) {
231     BranchProbability Prob(1, UnreachableEdges.size());
232     for (unsigned SuccIdx : UnreachableEdges)
233       setEdgeProbability(BB, SuccIdx, Prob);
234     return true;
235   }
236 
237   auto UnreachableProb = UR_TAKEN_PROB;
238   auto ReachableProb =
239       (BranchProbability::getOne() - UR_TAKEN_PROB * UnreachableEdges.size()) /
240       ReachableEdges.size();
241 
242   for (unsigned SuccIdx : UnreachableEdges)
243     setEdgeProbability(BB, SuccIdx, UnreachableProb);
244   for (unsigned SuccIdx : ReachableEdges)
245     setEdgeProbability(BB, SuccIdx, ReachableProb);
246 
247   return true;
248 }
249 
250 // Propagate existing explicit probabilities from either profile data or
251 // 'expect' intrinsic processing. Examine metadata against unreachable
252 // heuristic. The probability of the edge coming to unreachable block is
253 // set to min of metadata and unreachable heuristic.
254 bool BranchProbabilityInfo::calcMetadataWeights(const BasicBlock *BB) {
255   const Instruction *TI = BB->getTerminator();
256   assert(TI->getNumSuccessors() > 1 && "expected more than one successor!");
257   if (!(isa<BranchInst>(TI) || isa<SwitchInst>(TI) || isa<IndirectBrInst>(TI)))
258     return false;
259 
260   MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof);
261   if (!WeightsNode)
262     return false;
263 
264   // Check that the number of successors is manageable.
265   assert(TI->getNumSuccessors() < UINT32_MAX && "Too many successors");
266 
267   // Ensure there are weights for all of the successors. Note that the first
268   // operand to the metadata node is a name, not a weight.
269   if (WeightsNode->getNumOperands() != TI->getNumSuccessors() + 1)
270     return false;
271 
272   // Build up the final weights that will be used in a temporary buffer.
273   // Compute the sum of all weights to later decide whether they need to
274   // be scaled to fit in 32 bits.
275   uint64_t WeightSum = 0;
276   SmallVector<uint32_t, 2> Weights;
277   SmallVector<unsigned, 2> UnreachableIdxs;
278   SmallVector<unsigned, 2> ReachableIdxs;
279   Weights.reserve(TI->getNumSuccessors());
280   for (unsigned i = 1, e = WeightsNode->getNumOperands(); i != e; ++i) {
281     ConstantInt *Weight =
282         mdconst::dyn_extract<ConstantInt>(WeightsNode->getOperand(i));
283     if (!Weight)
284       return false;
285     assert(Weight->getValue().getActiveBits() <= 32 &&
286            "Too many bits for uint32_t");
287     Weights.push_back(Weight->getZExtValue());
288     WeightSum += Weights.back();
289     if (PostDominatedByUnreachable.count(TI->getSuccessor(i - 1)))
290       UnreachableIdxs.push_back(i - 1);
291     else
292       ReachableIdxs.push_back(i - 1);
293   }
294   assert(Weights.size() == TI->getNumSuccessors() && "Checked above");
295 
296   // If the sum of weights does not fit in 32 bits, scale every weight down
297   // accordingly.
298   uint64_t ScalingFactor =
299       (WeightSum > UINT32_MAX) ? WeightSum / UINT32_MAX + 1 : 1;
300 
301   if (ScalingFactor > 1) {
302     WeightSum = 0;
303     for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
304       Weights[i] /= ScalingFactor;
305       WeightSum += Weights[i];
306     }
307   }
308   assert(WeightSum <= UINT32_MAX &&
309          "Expected weights to scale down to 32 bits");
310 
311   if (WeightSum == 0 || ReachableIdxs.size() == 0) {
312     for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
313       Weights[i] = 1;
314     WeightSum = TI->getNumSuccessors();
315   }
316 
317   // Set the probability.
318   SmallVector<BranchProbability, 2> BP;
319   for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
320     BP.push_back({ Weights[i], static_cast<uint32_t>(WeightSum) });
321 
322   // Examine the metadata against unreachable heuristic.
323   // If the unreachable heuristic is more strong then we use it for this edge.
324   if (UnreachableIdxs.size() > 0 && ReachableIdxs.size() > 0) {
325     auto ToDistribute = BranchProbability::getZero();
326     auto UnreachableProb = UR_TAKEN_PROB;
327     for (auto i : UnreachableIdxs)
328       if (UnreachableProb < BP[i]) {
329         ToDistribute += BP[i] - UnreachableProb;
330         BP[i] = UnreachableProb;
331       }
332 
333     // If we modified the probability of some edges then we must distribute
334     // the difference between reachable blocks.
335     if (ToDistribute > BranchProbability::getZero()) {
336       BranchProbability PerEdge = ToDistribute / ReachableIdxs.size();
337       for (auto i : ReachableIdxs)
338         BP[i] += PerEdge;
339     }
340   }
341 
342   for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
343     setEdgeProbability(BB, i, BP[i]);
344 
345   return true;
346 }
347 
348 /// Calculate edge weights for edges leading to cold blocks.
349 ///
350 /// A cold block is one post-dominated by  a block with a call to a
351 /// cold function.  Those edges are unlikely to be taken, so we give
352 /// them relatively low weight.
353 ///
354 /// Return true if we could compute the weights for cold edges.
355 /// Return false, otherwise.
356 bool BranchProbabilityInfo::calcColdCallHeuristics(const BasicBlock *BB) {
357   const Instruction *TI = BB->getTerminator();
358   (void) TI;
359   assert(TI->getNumSuccessors() > 1 && "expected more than one successor!");
360   assert(!isa<InvokeInst>(TI) &&
361          "Invokes should have already been handled by calcInvokeHeuristics");
362 
363   // Determine which successors are post-dominated by a cold block.
364   SmallVector<unsigned, 4> ColdEdges;
365   SmallVector<unsigned, 4> NormalEdges;
366   for (succ_const_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I)
367     if (PostDominatedByColdCall.count(*I))
368       ColdEdges.push_back(I.getSuccessorIndex());
369     else
370       NormalEdges.push_back(I.getSuccessorIndex());
371 
372   // Skip probabilities if no cold edges.
373   if (ColdEdges.empty())
374     return false;
375 
376   if (NormalEdges.empty()) {
377     BranchProbability Prob(1, ColdEdges.size());
378     for (unsigned SuccIdx : ColdEdges)
379       setEdgeProbability(BB, SuccIdx, Prob);
380     return true;
381   }
382 
383   auto ColdProb = BranchProbability::getBranchProbability(
384       CC_TAKEN_WEIGHT,
385       (CC_TAKEN_WEIGHT + CC_NONTAKEN_WEIGHT) * uint64_t(ColdEdges.size()));
386   auto NormalProb = BranchProbability::getBranchProbability(
387       CC_NONTAKEN_WEIGHT,
388       (CC_TAKEN_WEIGHT + CC_NONTAKEN_WEIGHT) * uint64_t(NormalEdges.size()));
389 
390   for (unsigned SuccIdx : ColdEdges)
391     setEdgeProbability(BB, SuccIdx, ColdProb);
392   for (unsigned SuccIdx : NormalEdges)
393     setEdgeProbability(BB, SuccIdx, NormalProb);
394 
395   return true;
396 }
397 
398 // Calculate Edge Weights using "Pointer Heuristics". Predict a comparison
399 // between two pointer or pointer and NULL will fail.
400 bool BranchProbabilityInfo::calcPointerHeuristics(const BasicBlock *BB) {
401   const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
402   if (!BI || !BI->isConditional())
403     return false;
404 
405   Value *Cond = BI->getCondition();
406   ICmpInst *CI = dyn_cast<ICmpInst>(Cond);
407   if (!CI || !CI->isEquality())
408     return false;
409 
410   Value *LHS = CI->getOperand(0);
411 
412   if (!LHS->getType()->isPointerTy())
413     return false;
414 
415   assert(CI->getOperand(1)->getType()->isPointerTy());
416 
417   // p != 0   ->   isProb = true
418   // p == 0   ->   isProb = false
419   // p != q   ->   isProb = true
420   // p == q   ->   isProb = false;
421   unsigned TakenIdx = 0, NonTakenIdx = 1;
422   bool isProb = CI->getPredicate() == ICmpInst::ICMP_NE;
423   if (!isProb)
424     std::swap(TakenIdx, NonTakenIdx);
425 
426   BranchProbability TakenProb(PH_TAKEN_WEIGHT,
427                               PH_TAKEN_WEIGHT + PH_NONTAKEN_WEIGHT);
428   setEdgeProbability(BB, TakenIdx, TakenProb);
429   setEdgeProbability(BB, NonTakenIdx, TakenProb.getCompl());
430   return true;
431 }
432 
433 static int getSCCNum(const BasicBlock *BB,
434                      const BranchProbabilityInfo::SccInfo &SccI) {
435   auto SccIt = SccI.SccNums.find(BB);
436   if (SccIt == SccI.SccNums.end())
437     return -1;
438   return SccIt->second;
439 }
440 
441 // Consider any block that is an entry point to the SCC as a header.
442 static bool isSCCHeader(const BasicBlock *BB, int SccNum,
443                         BranchProbabilityInfo::SccInfo &SccI) {
444   assert(getSCCNum(BB, SccI) == SccNum);
445 
446   // Lazily compute the set of headers for a given SCC and cache the results
447   // in the SccHeaderMap.
448   if (SccI.SccHeaders.size() <= static_cast<unsigned>(SccNum))
449     SccI.SccHeaders.resize(SccNum + 1);
450   auto &HeaderMap = SccI.SccHeaders[SccNum];
451   bool Inserted;
452   BranchProbabilityInfo::SccHeaderMap::iterator HeaderMapIt;
453   std::tie(HeaderMapIt, Inserted) = HeaderMap.insert(std::make_pair(BB, false));
454   if (Inserted) {
455     bool IsHeader = llvm::any_of(make_range(pred_begin(BB), pred_end(BB)),
456                                  [&](const BasicBlock *Pred) {
457                                    return getSCCNum(Pred, SccI) != SccNum;
458                                  });
459     HeaderMapIt->second = IsHeader;
460     return IsHeader;
461   } else
462     return HeaderMapIt->second;
463 }
464 
465 // Compute the unlikely successors to the block BB in the loop L, specifically
466 // those that are unlikely because this is a loop, and add them to the
467 // UnlikelyBlocks set.
468 static void
469 computeUnlikelySuccessors(const BasicBlock *BB, Loop *L,
470                           SmallPtrSetImpl<const BasicBlock*> &UnlikelyBlocks) {
471   // Sometimes in a loop we have a branch whose condition is made false by
472   // taking it. This is typically something like
473   //  int n = 0;
474   //  while (...) {
475   //    if (++n >= MAX) {
476   //      n = 0;
477   //    }
478   //  }
479   // In this sort of situation taking the branch means that at the very least it
480   // won't be taken again in the next iteration of the loop, so we should
481   // consider it less likely than a typical branch.
482   //
483   // We detect this by looking back through the graph of PHI nodes that sets the
484   // value that the condition depends on, and seeing if we can reach a successor
485   // block which can be determined to make the condition false.
486   //
487   // FIXME: We currently consider unlikely blocks to be half as likely as other
488   // blocks, but if we consider the example above the likelyhood is actually
489   // 1/MAX. We could therefore be more precise in how unlikely we consider
490   // blocks to be, but it would require more careful examination of the form
491   // of the comparison expression.
492   const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
493   if (!BI || !BI->isConditional())
494     return;
495 
496   // Check if the branch is based on an instruction compared with a constant
497   CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition());
498   if (!CI || !isa<Instruction>(CI->getOperand(0)) ||
499       !isa<Constant>(CI->getOperand(1)))
500     return;
501 
502   // Either the instruction must be a PHI, or a chain of operations involving
503   // constants that ends in a PHI which we can then collapse into a single value
504   // if the PHI value is known.
505   Instruction *CmpLHS = dyn_cast<Instruction>(CI->getOperand(0));
506   PHINode *CmpPHI = dyn_cast<PHINode>(CmpLHS);
507   Constant *CmpConst = dyn_cast<Constant>(CI->getOperand(1));
508   // Collect the instructions until we hit a PHI
509   SmallVector<BinaryOperator *, 1> InstChain;
510   while (!CmpPHI && CmpLHS && isa<BinaryOperator>(CmpLHS) &&
511          isa<Constant>(CmpLHS->getOperand(1))) {
512     // Stop if the chain extends outside of the loop
513     if (!L->contains(CmpLHS))
514       return;
515     InstChain.push_back(cast<BinaryOperator>(CmpLHS));
516     CmpLHS = dyn_cast<Instruction>(CmpLHS->getOperand(0));
517     if (CmpLHS)
518       CmpPHI = dyn_cast<PHINode>(CmpLHS);
519   }
520   if (!CmpPHI || !L->contains(CmpPHI))
521     return;
522 
523   // Trace the phi node to find all values that come from successors of BB
524   SmallPtrSet<PHINode*, 8> VisitedInsts;
525   SmallVector<PHINode*, 8> WorkList;
526   WorkList.push_back(CmpPHI);
527   VisitedInsts.insert(CmpPHI);
528   while (!WorkList.empty()) {
529     PHINode *P = WorkList.back();
530     WorkList.pop_back();
531     for (BasicBlock *B : P->blocks()) {
532       // Skip blocks that aren't part of the loop
533       if (!L->contains(B))
534         continue;
535       Value *V = P->getIncomingValueForBlock(B);
536       // If the source is a PHI add it to the work list if we haven't
537       // already visited it.
538       if (PHINode *PN = dyn_cast<PHINode>(V)) {
539         if (VisitedInsts.insert(PN).second)
540           WorkList.push_back(PN);
541         continue;
542       }
543       // If this incoming value is a constant and B is a successor of BB, then
544       // we can constant-evaluate the compare to see if it makes the branch be
545       // taken or not.
546       Constant *CmpLHSConst = dyn_cast<Constant>(V);
547       if (!CmpLHSConst ||
548           std::find(succ_begin(BB), succ_end(BB), B) == succ_end(BB))
549         continue;
550       // First collapse InstChain
551       for (Instruction *I : llvm::reverse(InstChain)) {
552         CmpLHSConst = ConstantExpr::get(I->getOpcode(), CmpLHSConst,
553                                         cast<Constant>(I->getOperand(1)), true);
554         if (!CmpLHSConst)
555           break;
556       }
557       if (!CmpLHSConst)
558         continue;
559       // Now constant-evaluate the compare
560       Constant *Result = ConstantExpr::getCompare(CI->getPredicate(),
561                                                   CmpLHSConst, CmpConst, true);
562       // If the result means we don't branch to the block then that block is
563       // unlikely.
564       if (Result &&
565           ((Result->isZeroValue() && B == BI->getSuccessor(0)) ||
566            (Result->isOneValue() && B == BI->getSuccessor(1))))
567         UnlikelyBlocks.insert(B);
568     }
569   }
570 }
571 
572 // Calculate Edge Weights using "Loop Branch Heuristics". Predict backedges
573 // as taken, exiting edges as not-taken.
574 bool BranchProbabilityInfo::calcLoopBranchHeuristics(const BasicBlock *BB,
575                                                      const LoopInfo &LI,
576                                                      SccInfo &SccI) {
577   int SccNum;
578   Loop *L = LI.getLoopFor(BB);
579   if (!L) {
580     SccNum = getSCCNum(BB, SccI);
581     if (SccNum < 0)
582       return false;
583   }
584 
585   SmallPtrSet<const BasicBlock*, 8> UnlikelyBlocks;
586   if (L)
587     computeUnlikelySuccessors(BB, L, UnlikelyBlocks);
588 
589   SmallVector<unsigned, 8> BackEdges;
590   SmallVector<unsigned, 8> ExitingEdges;
591   SmallVector<unsigned, 8> InEdges; // Edges from header to the loop.
592   SmallVector<unsigned, 8> UnlikelyEdges;
593 
594   for (succ_const_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) {
595     // Use LoopInfo if we have it, otherwise fall-back to SCC info to catch
596     // irreducible loops.
597     if (L) {
598       if (UnlikelyBlocks.count(*I) != 0)
599         UnlikelyEdges.push_back(I.getSuccessorIndex());
600       else if (!L->contains(*I))
601         ExitingEdges.push_back(I.getSuccessorIndex());
602       else if (L->getHeader() == *I)
603         BackEdges.push_back(I.getSuccessorIndex());
604       else
605         InEdges.push_back(I.getSuccessorIndex());
606     } else {
607       if (getSCCNum(*I, SccI) != SccNum)
608         ExitingEdges.push_back(I.getSuccessorIndex());
609       else if (isSCCHeader(*I, SccNum, SccI))
610         BackEdges.push_back(I.getSuccessorIndex());
611       else
612         InEdges.push_back(I.getSuccessorIndex());
613     }
614   }
615 
616   if (BackEdges.empty() && ExitingEdges.empty() && UnlikelyEdges.empty())
617     return false;
618 
619   // Collect the sum of probabilities of back-edges/in-edges/exiting-edges, and
620   // normalize them so that they sum up to one.
621   unsigned Denom = (BackEdges.empty() ? 0 : LBH_TAKEN_WEIGHT) +
622                    (InEdges.empty() ? 0 : LBH_TAKEN_WEIGHT) +
623                    (UnlikelyEdges.empty() ? 0 : LBH_UNLIKELY_WEIGHT) +
624                    (ExitingEdges.empty() ? 0 : LBH_NONTAKEN_WEIGHT);
625 
626   if (uint32_t numBackEdges = BackEdges.size()) {
627     BranchProbability TakenProb = BranchProbability(LBH_TAKEN_WEIGHT, Denom);
628     auto Prob = TakenProb / numBackEdges;
629     for (unsigned SuccIdx : BackEdges)
630       setEdgeProbability(BB, SuccIdx, Prob);
631   }
632 
633   if (uint32_t numInEdges = InEdges.size()) {
634     BranchProbability TakenProb = BranchProbability(LBH_TAKEN_WEIGHT, Denom);
635     auto Prob = TakenProb / numInEdges;
636     for (unsigned SuccIdx : InEdges)
637       setEdgeProbability(BB, SuccIdx, Prob);
638   }
639 
640   if (uint32_t numExitingEdges = ExitingEdges.size()) {
641     BranchProbability NotTakenProb = BranchProbability(LBH_NONTAKEN_WEIGHT,
642                                                        Denom);
643     auto Prob = NotTakenProb / numExitingEdges;
644     for (unsigned SuccIdx : ExitingEdges)
645       setEdgeProbability(BB, SuccIdx, Prob);
646   }
647 
648   if (uint32_t numUnlikelyEdges = UnlikelyEdges.size()) {
649     BranchProbability UnlikelyProb = BranchProbability(LBH_UNLIKELY_WEIGHT,
650                                                        Denom);
651     auto Prob = UnlikelyProb / numUnlikelyEdges;
652     for (unsigned SuccIdx : UnlikelyEdges)
653       setEdgeProbability(BB, SuccIdx, Prob);
654   }
655 
656   return true;
657 }
658 
659 bool BranchProbabilityInfo::calcZeroHeuristics(const BasicBlock *BB,
660                                                const TargetLibraryInfo *TLI) {
661   const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
662   if (!BI || !BI->isConditional())
663     return false;
664 
665   Value *Cond = BI->getCondition();
666   ICmpInst *CI = dyn_cast<ICmpInst>(Cond);
667   if (!CI)
668     return false;
669 
670   auto GetConstantInt = [](Value *V) {
671     if (auto *I = dyn_cast<BitCastInst>(V))
672       return dyn_cast<ConstantInt>(I->getOperand(0));
673     return dyn_cast<ConstantInt>(V);
674   };
675 
676   Value *RHS = CI->getOperand(1);
677   ConstantInt *CV = GetConstantInt(RHS);
678   if (!CV)
679     return false;
680 
681   // If the LHS is the result of AND'ing a value with a single bit bitmask,
682   // we don't have information about probabilities.
683   if (Instruction *LHS = dyn_cast<Instruction>(CI->getOperand(0)))
684     if (LHS->getOpcode() == Instruction::And)
685       if (ConstantInt *AndRHS = dyn_cast<ConstantInt>(LHS->getOperand(1)))
686         if (AndRHS->getValue().isPowerOf2())
687           return false;
688 
689   // Check if the LHS is the return value of a library function
690   LibFunc Func = NumLibFuncs;
691   if (TLI)
692     if (CallInst *Call = dyn_cast<CallInst>(CI->getOperand(0)))
693       if (Function *CalledFn = Call->getCalledFunction())
694         TLI->getLibFunc(*CalledFn, Func);
695 
696   bool isProb;
697   if (Func == LibFunc_strcasecmp ||
698       Func == LibFunc_strcmp ||
699       Func == LibFunc_strncasecmp ||
700       Func == LibFunc_strncmp ||
701       Func == LibFunc_memcmp) {
702     // strcmp and similar functions return zero, negative, or positive, if the
703     // first string is equal, less, or greater than the second. We consider it
704     // likely that the strings are not equal, so a comparison with zero is
705     // probably false, but also a comparison with any other number is also
706     // probably false given that what exactly is returned for nonzero values is
707     // not specified. Any kind of comparison other than equality we know
708     // nothing about.
709     switch (CI->getPredicate()) {
710     case CmpInst::ICMP_EQ:
711       isProb = false;
712       break;
713     case CmpInst::ICMP_NE:
714       isProb = true;
715       break;
716     default:
717       return false;
718     }
719   } else if (CV->isZero()) {
720     switch (CI->getPredicate()) {
721     case CmpInst::ICMP_EQ:
722       // X == 0   ->  Unlikely
723       isProb = false;
724       break;
725     case CmpInst::ICMP_NE:
726       // X != 0   ->  Likely
727       isProb = true;
728       break;
729     case CmpInst::ICMP_SLT:
730       // X < 0   ->  Unlikely
731       isProb = false;
732       break;
733     case CmpInst::ICMP_SGT:
734       // X > 0   ->  Likely
735       isProb = true;
736       break;
737     default:
738       return false;
739     }
740   } else if (CV->isOne() && CI->getPredicate() == CmpInst::ICMP_SLT) {
741     // InstCombine canonicalizes X <= 0 into X < 1.
742     // X <= 0   ->  Unlikely
743     isProb = false;
744   } else if (CV->isMinusOne()) {
745     switch (CI->getPredicate()) {
746     case CmpInst::ICMP_EQ:
747       // X == -1  ->  Unlikely
748       isProb = false;
749       break;
750     case CmpInst::ICMP_NE:
751       // X != -1  ->  Likely
752       isProb = true;
753       break;
754     case CmpInst::ICMP_SGT:
755       // InstCombine canonicalizes X >= 0 into X > -1.
756       // X >= 0   ->  Likely
757       isProb = true;
758       break;
759     default:
760       return false;
761     }
762   } else {
763     return false;
764   }
765 
766   unsigned TakenIdx = 0, NonTakenIdx = 1;
767 
768   if (!isProb)
769     std::swap(TakenIdx, NonTakenIdx);
770 
771   BranchProbability TakenProb(ZH_TAKEN_WEIGHT,
772                               ZH_TAKEN_WEIGHT + ZH_NONTAKEN_WEIGHT);
773   setEdgeProbability(BB, TakenIdx, TakenProb);
774   setEdgeProbability(BB, NonTakenIdx, TakenProb.getCompl());
775   return true;
776 }
777 
778 bool BranchProbabilityInfo::calcFloatingPointHeuristics(const BasicBlock *BB) {
779   const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
780   if (!BI || !BI->isConditional())
781     return false;
782 
783   Value *Cond = BI->getCondition();
784   FCmpInst *FCmp = dyn_cast<FCmpInst>(Cond);
785   if (!FCmp)
786     return false;
787 
788   uint32_t TakenWeight = FPH_TAKEN_WEIGHT;
789   uint32_t NontakenWeight = FPH_NONTAKEN_WEIGHT;
790   bool isProb;
791   if (FCmp->isEquality()) {
792     // f1 == f2 -> Unlikely
793     // f1 != f2 -> Likely
794     isProb = !FCmp->isTrueWhenEqual();
795   } else if (FCmp->getPredicate() == FCmpInst::FCMP_ORD) {
796     // !isnan -> Likely
797     isProb = true;
798     TakenWeight = FPH_ORD_WEIGHT;
799     NontakenWeight = FPH_UNO_WEIGHT;
800   } else if (FCmp->getPredicate() == FCmpInst::FCMP_UNO) {
801     // isnan -> Unlikely
802     isProb = false;
803     TakenWeight = FPH_ORD_WEIGHT;
804     NontakenWeight = FPH_UNO_WEIGHT;
805   } else {
806     return false;
807   }
808 
809   unsigned TakenIdx = 0, NonTakenIdx = 1;
810 
811   if (!isProb)
812     std::swap(TakenIdx, NonTakenIdx);
813 
814   BranchProbability TakenProb(TakenWeight, TakenWeight + NontakenWeight);
815   setEdgeProbability(BB, TakenIdx, TakenProb);
816   setEdgeProbability(BB, NonTakenIdx, TakenProb.getCompl());
817   return true;
818 }
819 
820 bool BranchProbabilityInfo::calcInvokeHeuristics(const BasicBlock *BB) {
821   const InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator());
822   if (!II)
823     return false;
824 
825   BranchProbability TakenProb(IH_TAKEN_WEIGHT,
826                               IH_TAKEN_WEIGHT + IH_NONTAKEN_WEIGHT);
827   setEdgeProbability(BB, 0 /*Index for Normal*/, TakenProb);
828   setEdgeProbability(BB, 1 /*Index for Unwind*/, TakenProb.getCompl());
829   return true;
830 }
831 
832 void BranchProbabilityInfo::releaseMemory() {
833   Probs.clear();
834 }
835 
836 void BranchProbabilityInfo::print(raw_ostream &OS) const {
837   OS << "---- Branch Probabilities ----\n";
838   // We print the probabilities from the last function the analysis ran over,
839   // or the function it is currently running over.
840   assert(LastF && "Cannot print prior to running over a function");
841   for (const auto &BI : *LastF) {
842     for (succ_const_iterator SI = succ_begin(&BI), SE = succ_end(&BI); SI != SE;
843          ++SI) {
844       printEdgeProbability(OS << "  ", &BI, *SI);
845     }
846   }
847 }
848 
849 bool BranchProbabilityInfo::
850 isEdgeHot(const BasicBlock *Src, const BasicBlock *Dst) const {
851   // Hot probability is at least 4/5 = 80%
852   // FIXME: Compare against a static "hot" BranchProbability.
853   return getEdgeProbability(Src, Dst) > BranchProbability(4, 5);
854 }
855 
856 const BasicBlock *
857 BranchProbabilityInfo::getHotSucc(const BasicBlock *BB) const {
858   auto MaxProb = BranchProbability::getZero();
859   const BasicBlock *MaxSucc = nullptr;
860 
861   for (succ_const_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) {
862     const BasicBlock *Succ = *I;
863     auto Prob = getEdgeProbability(BB, Succ);
864     if (Prob > MaxProb) {
865       MaxProb = Prob;
866       MaxSucc = Succ;
867     }
868   }
869 
870   // Hot probability is at least 4/5 = 80%
871   if (MaxProb > BranchProbability(4, 5))
872     return MaxSucc;
873 
874   return nullptr;
875 }
876 
877 /// Get the raw edge probability for the edge. If can't find it, return a
878 /// default probability 1/N where N is the number of successors. Here an edge is
879 /// specified using PredBlock and an
880 /// index to the successors.
881 BranchProbability
882 BranchProbabilityInfo::getEdgeProbability(const BasicBlock *Src,
883                                           unsigned IndexInSuccessors) const {
884   auto I = Probs.find(std::make_pair(Src, IndexInSuccessors));
885 
886   if (I != Probs.end())
887     return I->second;
888 
889   return {1, static_cast<uint32_t>(succ_size(Src))};
890 }
891 
892 BranchProbability
893 BranchProbabilityInfo::getEdgeProbability(const BasicBlock *Src,
894                                           succ_const_iterator Dst) const {
895   return getEdgeProbability(Src, Dst.getSuccessorIndex());
896 }
897 
898 /// Get the raw edge probability calculated for the block pair. This returns the
899 /// sum of all raw edge probabilities from Src to Dst.
900 BranchProbability
901 BranchProbabilityInfo::getEdgeProbability(const BasicBlock *Src,
902                                           const BasicBlock *Dst) const {
903   auto Prob = BranchProbability::getZero();
904   bool FoundProb = false;
905   for (succ_const_iterator I = succ_begin(Src), E = succ_end(Src); I != E; ++I)
906     if (*I == Dst) {
907       auto MapI = Probs.find(std::make_pair(Src, I.getSuccessorIndex()));
908       if (MapI != Probs.end()) {
909         FoundProb = true;
910         Prob += MapI->second;
911       }
912     }
913   uint32_t succ_num = std::distance(succ_begin(Src), succ_end(Src));
914   return FoundProb ? Prob : BranchProbability(1, succ_num);
915 }
916 
917 /// Set the edge probability for a given edge specified by PredBlock and an
918 /// index to the successors.
919 void BranchProbabilityInfo::setEdgeProbability(const BasicBlock *Src,
920                                                unsigned IndexInSuccessors,
921                                                BranchProbability Prob) {
922   Probs[std::make_pair(Src, IndexInSuccessors)] = Prob;
923   Handles.insert(BasicBlockCallbackVH(Src, this));
924   LLVM_DEBUG(dbgs() << "set edge " << Src->getName() << " -> "
925                     << IndexInSuccessors << " successor probability to " << Prob
926                     << "\n");
927 }
928 
929 raw_ostream &
930 BranchProbabilityInfo::printEdgeProbability(raw_ostream &OS,
931                                             const BasicBlock *Src,
932                                             const BasicBlock *Dst) const {
933   const BranchProbability Prob = getEdgeProbability(Src, Dst);
934   OS << "edge " << Src->getName() << " -> " << Dst->getName()
935      << " probability is " << Prob
936      << (isEdgeHot(Src, Dst) ? " [HOT edge]\n" : "\n");
937 
938   return OS;
939 }
940 
941 void BranchProbabilityInfo::eraseBlock(const BasicBlock *BB) {
942   for (auto I = Probs.begin(), E = Probs.end(); I != E; ++I) {
943     auto Key = I->first;
944     if (Key.first == BB)
945       Probs.erase(Key);
946   }
947 }
948 
949 void BranchProbabilityInfo::calculate(const Function &F, const LoopInfo &LI,
950                                       const TargetLibraryInfo *TLI) {
951   LLVM_DEBUG(dbgs() << "---- Branch Probability Info : " << F.getName()
952                     << " ----\n\n");
953   LastF = &F; // Store the last function we ran on for printing.
954   assert(PostDominatedByUnreachable.empty());
955   assert(PostDominatedByColdCall.empty());
956 
957   // Record SCC numbers of blocks in the CFG to identify irreducible loops.
958   // FIXME: We could only calculate this if the CFG is known to be irreducible
959   // (perhaps cache this info in LoopInfo if we can easily calculate it there?).
960   int SccNum = 0;
961   SccInfo SccI;
962   for (scc_iterator<const Function *> It = scc_begin(&F); !It.isAtEnd();
963        ++It, ++SccNum) {
964     // Ignore single-block SCCs since they either aren't loops or LoopInfo will
965     // catch them.
966     const std::vector<const BasicBlock *> &Scc = *It;
967     if (Scc.size() == 1)
968       continue;
969 
970     LLVM_DEBUG(dbgs() << "BPI: SCC " << SccNum << ":");
971     for (auto *BB : Scc) {
972       LLVM_DEBUG(dbgs() << " " << BB->getName());
973       SccI.SccNums[BB] = SccNum;
974     }
975     LLVM_DEBUG(dbgs() << "\n");
976   }
977 
978   // Walk the basic blocks in post-order so that we can build up state about
979   // the successors of a block iteratively.
980   for (auto BB : post_order(&F.getEntryBlock())) {
981     LLVM_DEBUG(dbgs() << "Computing probabilities for " << BB->getName()
982                       << "\n");
983     updatePostDominatedByUnreachable(BB);
984     updatePostDominatedByColdCall(BB);
985     // If there is no at least two successors, no sense to set probability.
986     if (BB->getTerminator()->getNumSuccessors() < 2)
987       continue;
988     if (calcMetadataWeights(BB))
989       continue;
990     if (calcInvokeHeuristics(BB))
991       continue;
992     if (calcUnreachableHeuristics(BB))
993       continue;
994     if (calcColdCallHeuristics(BB))
995       continue;
996     if (calcLoopBranchHeuristics(BB, LI, SccI))
997       continue;
998     if (calcPointerHeuristics(BB))
999       continue;
1000     if (calcZeroHeuristics(BB, TLI))
1001       continue;
1002     if (calcFloatingPointHeuristics(BB))
1003       continue;
1004   }
1005 
1006   PostDominatedByUnreachable.clear();
1007   PostDominatedByColdCall.clear();
1008 
1009   if (PrintBranchProb &&
1010       (PrintBranchProbFuncName.empty() ||
1011        F.getName().equals(PrintBranchProbFuncName))) {
1012     print(dbgs());
1013   }
1014 }
1015 
1016 void BranchProbabilityInfoWrapperPass::getAnalysisUsage(
1017     AnalysisUsage &AU) const {
1018   // We require DT so it's available when LI is available. The LI updating code
1019   // asserts that DT is also present so if we don't make sure that we have DT
1020   // here, that assert will trigger.
1021   AU.addRequired<DominatorTreeWrapperPass>();
1022   AU.addRequired<LoopInfoWrapperPass>();
1023   AU.addRequired<TargetLibraryInfoWrapperPass>();
1024   AU.setPreservesAll();
1025 }
1026 
1027 bool BranchProbabilityInfoWrapperPass::runOnFunction(Function &F) {
1028   const LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1029   const TargetLibraryInfo &TLI =
1030       getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
1031   BPI.calculate(F, LI, &TLI);
1032   return false;
1033 }
1034 
1035 void BranchProbabilityInfoWrapperPass::releaseMemory() { BPI.releaseMemory(); }
1036 
1037 void BranchProbabilityInfoWrapperPass::print(raw_ostream &OS,
1038                                              const Module *) const {
1039   BPI.print(OS);
1040 }
1041 
1042 AnalysisKey BranchProbabilityAnalysis::Key;
1043 BranchProbabilityInfo
1044 BranchProbabilityAnalysis::run(Function &F, FunctionAnalysisManager &AM) {
1045   BranchProbabilityInfo BPI;
1046   BPI.calculate(F, AM.getResult<LoopAnalysis>(F), &AM.getResult<TargetLibraryAnalysis>(F));
1047   return BPI;
1048 }
1049 
1050 PreservedAnalyses
1051 BranchProbabilityPrinterPass::run(Function &F, FunctionAnalysisManager &AM) {
1052   OS << "Printing analysis results of BPI for function "
1053      << "'" << F.getName() << "':"
1054      << "\n";
1055   AM.getResult<BranchProbabilityAnalysis>(F).print(OS);
1056   return PreservedAnalyses::all();
1057 }
1058