1 //= CStringChecker.cpp - Checks calls to C string functions --------*- C++ -*-// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This defines CStringChecker, which is an assortment of checks on calls 10 // to functions in <string.h>. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h" 15 #include "InterCheckerAPI.h" 16 #include "clang/Basic/CharInfo.h" 17 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" 18 #include "clang/StaticAnalyzer/Core/Checker.h" 19 #include "clang/StaticAnalyzer/Core/CheckerManager.h" 20 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" 21 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" 22 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallString.h" 25 #include "llvm/Support/raw_ostream.h" 26 27 using namespace clang; 28 using namespace ento; 29 30 namespace { 31 class CStringChecker : public Checker< eval::Call, 32 check::PreStmt<DeclStmt>, 33 check::LiveSymbols, 34 check::DeadSymbols, 35 check::RegionChanges 36 > { 37 mutable std::unique_ptr<BugType> BT_Null, BT_Bounds, BT_Overlap, 38 BT_NotCString, BT_AdditionOverflow; 39 40 mutable const char *CurrentFunctionDescription; 41 42 public: 43 /// The filter is used to filter out the diagnostics which are not enabled by 44 /// the user. 45 struct CStringChecksFilter { 46 DefaultBool CheckCStringNullArg; 47 DefaultBool CheckCStringOutOfBounds; 48 DefaultBool CheckCStringBufferOverlap; 49 DefaultBool CheckCStringNotNullTerm; 50 51 CheckerNameRef CheckNameCStringNullArg; 52 CheckerNameRef CheckNameCStringOutOfBounds; 53 CheckerNameRef CheckNameCStringBufferOverlap; 54 CheckerNameRef CheckNameCStringNotNullTerm; 55 }; 56 57 CStringChecksFilter Filter; 58 59 static void *getTag() { static int tag; return &tag; } 60 61 bool evalCall(const CallEvent &Call, CheckerContext &C) const; 62 void checkPreStmt(const DeclStmt *DS, CheckerContext &C) const; 63 void checkLiveSymbols(ProgramStateRef state, SymbolReaper &SR) const; 64 void checkDeadSymbols(SymbolReaper &SR, CheckerContext &C) const; 65 66 ProgramStateRef 67 checkRegionChanges(ProgramStateRef state, 68 const InvalidatedSymbols *, 69 ArrayRef<const MemRegion *> ExplicitRegions, 70 ArrayRef<const MemRegion *> Regions, 71 const LocationContext *LCtx, 72 const CallEvent *Call) const; 73 74 typedef void (CStringChecker::*FnCheck)(CheckerContext &, 75 const CallExpr *) const; 76 CallDescriptionMap<FnCheck> Callbacks = { 77 {{CDF_MaybeBuiltin, "memcpy", 3}, &CStringChecker::evalMemcpy}, 78 {{CDF_MaybeBuiltin, "mempcpy", 3}, &CStringChecker::evalMempcpy}, 79 {{CDF_MaybeBuiltin, "memcmp", 3}, &CStringChecker::evalMemcmp}, 80 {{CDF_MaybeBuiltin, "memmove", 3}, &CStringChecker::evalMemmove}, 81 {{CDF_MaybeBuiltin, "memset", 3}, &CStringChecker::evalMemset}, 82 {{CDF_MaybeBuiltin, "explicit_memset", 3}, &CStringChecker::evalMemset}, 83 {{CDF_MaybeBuiltin, "strcpy", 2}, &CStringChecker::evalStrcpy}, 84 {{CDF_MaybeBuiltin, "strncpy", 3}, &CStringChecker::evalStrncpy}, 85 {{CDF_MaybeBuiltin, "stpcpy", 2}, &CStringChecker::evalStpcpy}, 86 {{CDF_MaybeBuiltin, "strlcpy", 3}, &CStringChecker::evalStrlcpy}, 87 {{CDF_MaybeBuiltin, "strcat", 2}, &CStringChecker::evalStrcat}, 88 {{CDF_MaybeBuiltin, "strncat", 3}, &CStringChecker::evalStrncat}, 89 {{CDF_MaybeBuiltin, "strlcat", 3}, &CStringChecker::evalStrlcat}, 90 {{CDF_MaybeBuiltin, "strlen", 1}, &CStringChecker::evalstrLength}, 91 {{CDF_MaybeBuiltin, "strnlen", 2}, &CStringChecker::evalstrnLength}, 92 {{CDF_MaybeBuiltin, "strcmp", 2}, &CStringChecker::evalStrcmp}, 93 {{CDF_MaybeBuiltin, "strncmp", 3}, &CStringChecker::evalStrncmp}, 94 {{CDF_MaybeBuiltin, "strcasecmp", 2}, &CStringChecker::evalStrcasecmp}, 95 {{CDF_MaybeBuiltin, "strncasecmp", 3}, &CStringChecker::evalStrncasecmp}, 96 {{CDF_MaybeBuiltin, "strsep", 2}, &CStringChecker::evalStrsep}, 97 {{CDF_MaybeBuiltin, "bcopy", 3}, &CStringChecker::evalBcopy}, 98 {{CDF_MaybeBuiltin, "bcmp", 3}, &CStringChecker::evalMemcmp}, 99 {{CDF_MaybeBuiltin, "bzero", 2}, &CStringChecker::evalBzero}, 100 {{CDF_MaybeBuiltin, "explicit_bzero", 2}, &CStringChecker::evalBzero}, 101 }; 102 103 // These require a bit of special handling. 104 CallDescription StdCopy{{"std", "copy"}, 3}, 105 StdCopyBackward{{"std", "copy_backward"}, 3}; 106 107 FnCheck identifyCall(const CallEvent &Call, CheckerContext &C) const; 108 void evalMemcpy(CheckerContext &C, const CallExpr *CE) const; 109 void evalMempcpy(CheckerContext &C, const CallExpr *CE) const; 110 void evalMemmove(CheckerContext &C, const CallExpr *CE) const; 111 void evalBcopy(CheckerContext &C, const CallExpr *CE) const; 112 void evalCopyCommon(CheckerContext &C, const CallExpr *CE, 113 ProgramStateRef state, 114 const Expr *Size, 115 const Expr *Source, 116 const Expr *Dest, 117 bool Restricted = false, 118 bool IsMempcpy = false) const; 119 120 void evalMemcmp(CheckerContext &C, const CallExpr *CE) const; 121 122 void evalstrLength(CheckerContext &C, const CallExpr *CE) const; 123 void evalstrnLength(CheckerContext &C, const CallExpr *CE) const; 124 void evalstrLengthCommon(CheckerContext &C, 125 const CallExpr *CE, 126 bool IsStrnlen = false) const; 127 128 void evalStrcpy(CheckerContext &C, const CallExpr *CE) const; 129 void evalStrncpy(CheckerContext &C, const CallExpr *CE) const; 130 void evalStpcpy(CheckerContext &C, const CallExpr *CE) const; 131 void evalStrlcpy(CheckerContext &C, const CallExpr *CE) const; 132 void evalStrcpyCommon(CheckerContext &C, 133 const CallExpr *CE, 134 bool returnEnd, 135 bool isBounded, 136 bool isAppending, 137 bool returnPtr = true) const; 138 139 void evalStrcat(CheckerContext &C, const CallExpr *CE) const; 140 void evalStrncat(CheckerContext &C, const CallExpr *CE) const; 141 void evalStrlcat(CheckerContext &C, const CallExpr *CE) const; 142 143 void evalStrcmp(CheckerContext &C, const CallExpr *CE) const; 144 void evalStrncmp(CheckerContext &C, const CallExpr *CE) const; 145 void evalStrcasecmp(CheckerContext &C, const CallExpr *CE) const; 146 void evalStrncasecmp(CheckerContext &C, const CallExpr *CE) const; 147 void evalStrcmpCommon(CheckerContext &C, 148 const CallExpr *CE, 149 bool isBounded = false, 150 bool ignoreCase = false) const; 151 152 void evalStrsep(CheckerContext &C, const CallExpr *CE) const; 153 154 void evalStdCopy(CheckerContext &C, const CallExpr *CE) const; 155 void evalStdCopyBackward(CheckerContext &C, const CallExpr *CE) const; 156 void evalStdCopyCommon(CheckerContext &C, const CallExpr *CE) const; 157 void evalMemset(CheckerContext &C, const CallExpr *CE) const; 158 void evalBzero(CheckerContext &C, const CallExpr *CE) const; 159 160 // Utility methods 161 std::pair<ProgramStateRef , ProgramStateRef > 162 static assumeZero(CheckerContext &C, 163 ProgramStateRef state, SVal V, QualType Ty); 164 165 static ProgramStateRef setCStringLength(ProgramStateRef state, 166 const MemRegion *MR, 167 SVal strLength); 168 static SVal getCStringLengthForRegion(CheckerContext &C, 169 ProgramStateRef &state, 170 const Expr *Ex, 171 const MemRegion *MR, 172 bool hypothetical); 173 SVal getCStringLength(CheckerContext &C, 174 ProgramStateRef &state, 175 const Expr *Ex, 176 SVal Buf, 177 bool hypothetical = false) const; 178 179 const StringLiteral *getCStringLiteral(CheckerContext &C, 180 ProgramStateRef &state, 181 const Expr *expr, 182 SVal val) const; 183 184 static ProgramStateRef InvalidateBuffer(CheckerContext &C, 185 ProgramStateRef state, 186 const Expr *Ex, SVal V, 187 bool IsSourceBuffer, 188 const Expr *Size); 189 190 static bool SummarizeRegion(raw_ostream &os, ASTContext &Ctx, 191 const MemRegion *MR); 192 193 static bool memsetAux(const Expr *DstBuffer, SVal CharE, 194 const Expr *Size, CheckerContext &C, 195 ProgramStateRef &State); 196 197 // Re-usable checks 198 ProgramStateRef checkNonNull(CheckerContext &C, 199 ProgramStateRef state, 200 const Expr *S, 201 SVal l, 202 unsigned IdxOfArg) const; 203 ProgramStateRef CheckLocation(CheckerContext &C, 204 ProgramStateRef state, 205 const Expr *S, 206 SVal l, 207 const char *message = nullptr) const; 208 ProgramStateRef CheckBufferAccess(CheckerContext &C, 209 ProgramStateRef state, 210 const Expr *Size, 211 const Expr *FirstBuf, 212 const Expr *SecondBuf, 213 const char *firstMessage = nullptr, 214 const char *secondMessage = nullptr, 215 bool WarnAboutSize = false) const; 216 217 ProgramStateRef CheckBufferAccess(CheckerContext &C, 218 ProgramStateRef state, 219 const Expr *Size, 220 const Expr *Buf, 221 const char *message = nullptr, 222 bool WarnAboutSize = false) const { 223 // This is a convenience overload. 224 return CheckBufferAccess(C, state, Size, Buf, nullptr, message, nullptr, 225 WarnAboutSize); 226 } 227 ProgramStateRef CheckOverlap(CheckerContext &C, 228 ProgramStateRef state, 229 const Expr *Size, 230 const Expr *First, 231 const Expr *Second) const; 232 void emitOverlapBug(CheckerContext &C, 233 ProgramStateRef state, 234 const Stmt *First, 235 const Stmt *Second) const; 236 237 void emitNullArgBug(CheckerContext &C, ProgramStateRef State, const Stmt *S, 238 StringRef WarningMsg) const; 239 void emitOutOfBoundsBug(CheckerContext &C, ProgramStateRef State, 240 const Stmt *S, StringRef WarningMsg) const; 241 void emitNotCStringBug(CheckerContext &C, ProgramStateRef State, 242 const Stmt *S, StringRef WarningMsg) const; 243 void emitAdditionOverflowBug(CheckerContext &C, ProgramStateRef State) const; 244 245 ProgramStateRef checkAdditionOverflow(CheckerContext &C, 246 ProgramStateRef state, 247 NonLoc left, 248 NonLoc right) const; 249 250 // Return true if the destination buffer of the copy function may be in bound. 251 // Expects SVal of Size to be positive and unsigned. 252 // Expects SVal of FirstBuf to be a FieldRegion. 253 static bool IsFirstBufInBound(CheckerContext &C, 254 ProgramStateRef state, 255 const Expr *FirstBuf, 256 const Expr *Size); 257 }; 258 259 } //end anonymous namespace 260 261 REGISTER_MAP_WITH_PROGRAMSTATE(CStringLength, const MemRegion *, SVal) 262 263 //===----------------------------------------------------------------------===// 264 // Individual checks and utility methods. 265 //===----------------------------------------------------------------------===// 266 267 std::pair<ProgramStateRef , ProgramStateRef > 268 CStringChecker::assumeZero(CheckerContext &C, ProgramStateRef state, SVal V, 269 QualType Ty) { 270 Optional<DefinedSVal> val = V.getAs<DefinedSVal>(); 271 if (!val) 272 return std::pair<ProgramStateRef , ProgramStateRef >(state, state); 273 274 SValBuilder &svalBuilder = C.getSValBuilder(); 275 DefinedOrUnknownSVal zero = svalBuilder.makeZeroVal(Ty); 276 return state->assume(svalBuilder.evalEQ(state, *val, zero)); 277 } 278 279 ProgramStateRef CStringChecker::checkNonNull(CheckerContext &C, 280 ProgramStateRef state, 281 const Expr *S, SVal l, 282 unsigned IdxOfArg) const { 283 // If a previous check has failed, propagate the failure. 284 if (!state) 285 return nullptr; 286 287 ProgramStateRef stateNull, stateNonNull; 288 std::tie(stateNull, stateNonNull) = assumeZero(C, state, l, S->getType()); 289 290 if (stateNull && !stateNonNull) { 291 if (Filter.CheckCStringNullArg) { 292 SmallString<80> buf; 293 llvm::raw_svector_ostream OS(buf); 294 assert(CurrentFunctionDescription); 295 OS << "Null pointer argument in call to " << CurrentFunctionDescription 296 << ' ' << IdxOfArg << llvm::getOrdinalSuffix(IdxOfArg) 297 << " parameter"; 298 299 emitNullArgBug(C, stateNull, S, OS.str()); 300 } 301 return nullptr; 302 } 303 304 // From here on, assume that the value is non-null. 305 assert(stateNonNull); 306 return stateNonNull; 307 } 308 309 // FIXME: This was originally copied from ArrayBoundChecker.cpp. Refactor? 310 ProgramStateRef CStringChecker::CheckLocation(CheckerContext &C, 311 ProgramStateRef state, 312 const Expr *S, SVal l, 313 const char *warningMsg) const { 314 // If a previous check has failed, propagate the failure. 315 if (!state) 316 return nullptr; 317 318 // Check for out of bound array element access. 319 const MemRegion *R = l.getAsRegion(); 320 if (!R) 321 return state; 322 323 const ElementRegion *ER = dyn_cast<ElementRegion>(R); 324 if (!ER) 325 return state; 326 327 if (ER->getValueType() != C.getASTContext().CharTy) 328 return state; 329 330 // Get the size of the array. 331 const SubRegion *superReg = cast<SubRegion>(ER->getSuperRegion()); 332 SValBuilder &svalBuilder = C.getSValBuilder(); 333 SVal Extent = 334 svalBuilder.convertToArrayIndex(superReg->getExtent(svalBuilder)); 335 DefinedOrUnknownSVal Size = Extent.castAs<DefinedOrUnknownSVal>(); 336 337 // Get the index of the accessed element. 338 DefinedOrUnknownSVal Idx = ER->getIndex().castAs<DefinedOrUnknownSVal>(); 339 340 ProgramStateRef StInBound = state->assumeInBound(Idx, Size, true); 341 ProgramStateRef StOutBound = state->assumeInBound(Idx, Size, false); 342 if (StOutBound && !StInBound) { 343 // These checks are either enabled by the CString out-of-bounds checker 344 // explicitly or implicitly by the Malloc checker. 345 // In the latter case we only do modeling but do not emit warning. 346 if (!Filter.CheckCStringOutOfBounds) 347 return nullptr; 348 // Emit a bug report. 349 if (warningMsg) { 350 emitOutOfBoundsBug(C, StOutBound, S, warningMsg); 351 } else { 352 assert(CurrentFunctionDescription); 353 assert(CurrentFunctionDescription[0] != '\0'); 354 355 SmallString<80> buf; 356 llvm::raw_svector_ostream os(buf); 357 os << toUppercase(CurrentFunctionDescription[0]) 358 << &CurrentFunctionDescription[1] 359 << " accesses out-of-bound array element"; 360 emitOutOfBoundsBug(C, StOutBound, S, os.str()); 361 } 362 return nullptr; 363 } 364 365 // Array bound check succeeded. From this point forward the array bound 366 // should always succeed. 367 return StInBound; 368 } 369 370 ProgramStateRef CStringChecker::CheckBufferAccess(CheckerContext &C, 371 ProgramStateRef state, 372 const Expr *Size, 373 const Expr *FirstBuf, 374 const Expr *SecondBuf, 375 const char *firstMessage, 376 const char *secondMessage, 377 bool WarnAboutSize) const { 378 // If a previous check has failed, propagate the failure. 379 if (!state) 380 return nullptr; 381 382 SValBuilder &svalBuilder = C.getSValBuilder(); 383 ASTContext &Ctx = svalBuilder.getContext(); 384 const LocationContext *LCtx = C.getLocationContext(); 385 386 QualType sizeTy = Size->getType(); 387 QualType PtrTy = Ctx.getPointerType(Ctx.CharTy); 388 389 // Check that the first buffer is non-null. 390 SVal BufVal = C.getSVal(FirstBuf); 391 state = checkNonNull(C, state, FirstBuf, BufVal, 1); 392 if (!state) 393 return nullptr; 394 395 // If out-of-bounds checking is turned off, skip the rest. 396 if (!Filter.CheckCStringOutOfBounds) 397 return state; 398 399 // Get the access length and make sure it is known. 400 // FIXME: This assumes the caller has already checked that the access length 401 // is positive. And that it's unsigned. 402 SVal LengthVal = C.getSVal(Size); 403 Optional<NonLoc> Length = LengthVal.getAs<NonLoc>(); 404 if (!Length) 405 return state; 406 407 // Compute the offset of the last element to be accessed: size-1. 408 NonLoc One = svalBuilder.makeIntVal(1, sizeTy).castAs<NonLoc>(); 409 SVal Offset = svalBuilder.evalBinOpNN(state, BO_Sub, *Length, One, sizeTy); 410 if (Offset.isUnknown()) 411 return nullptr; 412 NonLoc LastOffset = Offset.castAs<NonLoc>(); 413 414 // Check that the first buffer is sufficiently long. 415 SVal BufStart = svalBuilder.evalCast(BufVal, PtrTy, FirstBuf->getType()); 416 if (Optional<Loc> BufLoc = BufStart.getAs<Loc>()) { 417 const Expr *warningExpr = (WarnAboutSize ? Size : FirstBuf); 418 419 SVal BufEnd = svalBuilder.evalBinOpLN(state, BO_Add, *BufLoc, 420 LastOffset, PtrTy); 421 state = CheckLocation(C, state, warningExpr, BufEnd, firstMessage); 422 423 // If the buffer isn't large enough, abort. 424 if (!state) 425 return nullptr; 426 } 427 428 // If there's a second buffer, check it as well. 429 if (SecondBuf) { 430 BufVal = state->getSVal(SecondBuf, LCtx); 431 state = checkNonNull(C, state, SecondBuf, BufVal, 2); 432 if (!state) 433 return nullptr; 434 435 BufStart = svalBuilder.evalCast(BufVal, PtrTy, SecondBuf->getType()); 436 if (Optional<Loc> BufLoc = BufStart.getAs<Loc>()) { 437 const Expr *warningExpr = (WarnAboutSize ? Size : SecondBuf); 438 439 SVal BufEnd = svalBuilder.evalBinOpLN(state, BO_Add, *BufLoc, 440 LastOffset, PtrTy); 441 state = CheckLocation(C, state, warningExpr, BufEnd, secondMessage); 442 } 443 } 444 445 // Large enough or not, return this state! 446 return state; 447 } 448 449 ProgramStateRef CStringChecker::CheckOverlap(CheckerContext &C, 450 ProgramStateRef state, 451 const Expr *Size, 452 const Expr *First, 453 const Expr *Second) const { 454 if (!Filter.CheckCStringBufferOverlap) 455 return state; 456 457 // Do a simple check for overlap: if the two arguments are from the same 458 // buffer, see if the end of the first is greater than the start of the second 459 // or vice versa. 460 461 // If a previous check has failed, propagate the failure. 462 if (!state) 463 return nullptr; 464 465 ProgramStateRef stateTrue, stateFalse; 466 467 // Get the buffer values and make sure they're known locations. 468 const LocationContext *LCtx = C.getLocationContext(); 469 SVal firstVal = state->getSVal(First, LCtx); 470 SVal secondVal = state->getSVal(Second, LCtx); 471 472 Optional<Loc> firstLoc = firstVal.getAs<Loc>(); 473 if (!firstLoc) 474 return state; 475 476 Optional<Loc> secondLoc = secondVal.getAs<Loc>(); 477 if (!secondLoc) 478 return state; 479 480 // Are the two values the same? 481 SValBuilder &svalBuilder = C.getSValBuilder(); 482 std::tie(stateTrue, stateFalse) = 483 state->assume(svalBuilder.evalEQ(state, *firstLoc, *secondLoc)); 484 485 if (stateTrue && !stateFalse) { 486 // If the values are known to be equal, that's automatically an overlap. 487 emitOverlapBug(C, stateTrue, First, Second); 488 return nullptr; 489 } 490 491 // assume the two expressions are not equal. 492 assert(stateFalse); 493 state = stateFalse; 494 495 // Which value comes first? 496 QualType cmpTy = svalBuilder.getConditionType(); 497 SVal reverse = svalBuilder.evalBinOpLL(state, BO_GT, 498 *firstLoc, *secondLoc, cmpTy); 499 Optional<DefinedOrUnknownSVal> reverseTest = 500 reverse.getAs<DefinedOrUnknownSVal>(); 501 if (!reverseTest) 502 return state; 503 504 std::tie(stateTrue, stateFalse) = state->assume(*reverseTest); 505 if (stateTrue) { 506 if (stateFalse) { 507 // If we don't know which one comes first, we can't perform this test. 508 return state; 509 } else { 510 // Switch the values so that firstVal is before secondVal. 511 std::swap(firstLoc, secondLoc); 512 513 // Switch the Exprs as well, so that they still correspond. 514 std::swap(First, Second); 515 } 516 } 517 518 // Get the length, and make sure it too is known. 519 SVal LengthVal = state->getSVal(Size, LCtx); 520 Optional<NonLoc> Length = LengthVal.getAs<NonLoc>(); 521 if (!Length) 522 return state; 523 524 // Convert the first buffer's start address to char*. 525 // Bail out if the cast fails. 526 ASTContext &Ctx = svalBuilder.getContext(); 527 QualType CharPtrTy = Ctx.getPointerType(Ctx.CharTy); 528 SVal FirstStart = svalBuilder.evalCast(*firstLoc, CharPtrTy, 529 First->getType()); 530 Optional<Loc> FirstStartLoc = FirstStart.getAs<Loc>(); 531 if (!FirstStartLoc) 532 return state; 533 534 // Compute the end of the first buffer. Bail out if THAT fails. 535 SVal FirstEnd = svalBuilder.evalBinOpLN(state, BO_Add, 536 *FirstStartLoc, *Length, CharPtrTy); 537 Optional<Loc> FirstEndLoc = FirstEnd.getAs<Loc>(); 538 if (!FirstEndLoc) 539 return state; 540 541 // Is the end of the first buffer past the start of the second buffer? 542 SVal Overlap = svalBuilder.evalBinOpLL(state, BO_GT, 543 *FirstEndLoc, *secondLoc, cmpTy); 544 Optional<DefinedOrUnknownSVal> OverlapTest = 545 Overlap.getAs<DefinedOrUnknownSVal>(); 546 if (!OverlapTest) 547 return state; 548 549 std::tie(stateTrue, stateFalse) = state->assume(*OverlapTest); 550 551 if (stateTrue && !stateFalse) { 552 // Overlap! 553 emitOverlapBug(C, stateTrue, First, Second); 554 return nullptr; 555 } 556 557 // assume the two expressions don't overlap. 558 assert(stateFalse); 559 return stateFalse; 560 } 561 562 void CStringChecker::emitOverlapBug(CheckerContext &C, ProgramStateRef state, 563 const Stmt *First, const Stmt *Second) const { 564 ExplodedNode *N = C.generateErrorNode(state); 565 if (!N) 566 return; 567 568 if (!BT_Overlap) 569 BT_Overlap.reset(new BugType(Filter.CheckNameCStringBufferOverlap, 570 categories::UnixAPI, "Improper arguments")); 571 572 // Generate a report for this bug. 573 auto report = std::make_unique<PathSensitiveBugReport>( 574 *BT_Overlap, "Arguments must not be overlapping buffers", N); 575 report->addRange(First->getSourceRange()); 576 report->addRange(Second->getSourceRange()); 577 578 C.emitReport(std::move(report)); 579 } 580 581 void CStringChecker::emitNullArgBug(CheckerContext &C, ProgramStateRef State, 582 const Stmt *S, StringRef WarningMsg) const { 583 if (ExplodedNode *N = C.generateErrorNode(State)) { 584 if (!BT_Null) 585 BT_Null.reset(new BuiltinBug( 586 Filter.CheckNameCStringNullArg, categories::UnixAPI, 587 "Null pointer argument in call to byte string function")); 588 589 BuiltinBug *BT = static_cast<BuiltinBug *>(BT_Null.get()); 590 auto Report = std::make_unique<PathSensitiveBugReport>(*BT, WarningMsg, N); 591 Report->addRange(S->getSourceRange()); 592 if (const auto *Ex = dyn_cast<Expr>(S)) 593 bugreporter::trackExpressionValue(N, Ex, *Report); 594 C.emitReport(std::move(Report)); 595 } 596 } 597 598 void CStringChecker::emitOutOfBoundsBug(CheckerContext &C, 599 ProgramStateRef State, const Stmt *S, 600 StringRef WarningMsg) const { 601 if (ExplodedNode *N = C.generateErrorNode(State)) { 602 if (!BT_Bounds) 603 BT_Bounds.reset(new BuiltinBug( 604 Filter.CheckCStringOutOfBounds ? Filter.CheckNameCStringOutOfBounds 605 : Filter.CheckNameCStringNullArg, 606 "Out-of-bound array access", 607 "Byte string function accesses out-of-bound array element")); 608 609 BuiltinBug *BT = static_cast<BuiltinBug *>(BT_Bounds.get()); 610 611 // FIXME: It would be nice to eventually make this diagnostic more clear, 612 // e.g., by referencing the original declaration or by saying *why* this 613 // reference is outside the range. 614 auto Report = std::make_unique<PathSensitiveBugReport>(*BT, WarningMsg, N); 615 Report->addRange(S->getSourceRange()); 616 C.emitReport(std::move(Report)); 617 } 618 } 619 620 void CStringChecker::emitNotCStringBug(CheckerContext &C, ProgramStateRef State, 621 const Stmt *S, 622 StringRef WarningMsg) const { 623 if (ExplodedNode *N = C.generateNonFatalErrorNode(State)) { 624 if (!BT_NotCString) 625 BT_NotCString.reset(new BuiltinBug( 626 Filter.CheckNameCStringNotNullTerm, categories::UnixAPI, 627 "Argument is not a null-terminated string.")); 628 629 auto Report = 630 std::make_unique<PathSensitiveBugReport>(*BT_NotCString, WarningMsg, N); 631 632 Report->addRange(S->getSourceRange()); 633 C.emitReport(std::move(Report)); 634 } 635 } 636 637 void CStringChecker::emitAdditionOverflowBug(CheckerContext &C, 638 ProgramStateRef State) const { 639 if (ExplodedNode *N = C.generateErrorNode(State)) { 640 if (!BT_NotCString) 641 BT_NotCString.reset( 642 new BuiltinBug(Filter.CheckNameCStringOutOfBounds, "API", 643 "Sum of expressions causes overflow.")); 644 645 // This isn't a great error message, but this should never occur in real 646 // code anyway -- you'd have to create a buffer longer than a size_t can 647 // represent, which is sort of a contradiction. 648 const char *WarningMsg = 649 "This expression will create a string whose length is too big to " 650 "be represented as a size_t"; 651 652 auto Report = 653 std::make_unique<PathSensitiveBugReport>(*BT_NotCString, WarningMsg, N); 654 C.emitReport(std::move(Report)); 655 } 656 } 657 658 ProgramStateRef CStringChecker::checkAdditionOverflow(CheckerContext &C, 659 ProgramStateRef state, 660 NonLoc left, 661 NonLoc right) const { 662 // If out-of-bounds checking is turned off, skip the rest. 663 if (!Filter.CheckCStringOutOfBounds) 664 return state; 665 666 // If a previous check has failed, propagate the failure. 667 if (!state) 668 return nullptr; 669 670 SValBuilder &svalBuilder = C.getSValBuilder(); 671 BasicValueFactory &BVF = svalBuilder.getBasicValueFactory(); 672 673 QualType sizeTy = svalBuilder.getContext().getSizeType(); 674 const llvm::APSInt &maxValInt = BVF.getMaxValue(sizeTy); 675 NonLoc maxVal = svalBuilder.makeIntVal(maxValInt); 676 677 SVal maxMinusRight; 678 if (right.getAs<nonloc::ConcreteInt>()) { 679 maxMinusRight = svalBuilder.evalBinOpNN(state, BO_Sub, maxVal, right, 680 sizeTy); 681 } else { 682 // Try switching the operands. (The order of these two assignments is 683 // important!) 684 maxMinusRight = svalBuilder.evalBinOpNN(state, BO_Sub, maxVal, left, 685 sizeTy); 686 left = right; 687 } 688 689 if (Optional<NonLoc> maxMinusRightNL = maxMinusRight.getAs<NonLoc>()) { 690 QualType cmpTy = svalBuilder.getConditionType(); 691 // If left > max - right, we have an overflow. 692 SVal willOverflow = svalBuilder.evalBinOpNN(state, BO_GT, left, 693 *maxMinusRightNL, cmpTy); 694 695 ProgramStateRef stateOverflow, stateOkay; 696 std::tie(stateOverflow, stateOkay) = 697 state->assume(willOverflow.castAs<DefinedOrUnknownSVal>()); 698 699 if (stateOverflow && !stateOkay) { 700 // We have an overflow. Emit a bug report. 701 emitAdditionOverflowBug(C, stateOverflow); 702 return nullptr; 703 } 704 705 // From now on, assume an overflow didn't occur. 706 assert(stateOkay); 707 state = stateOkay; 708 } 709 710 return state; 711 } 712 713 ProgramStateRef CStringChecker::setCStringLength(ProgramStateRef state, 714 const MemRegion *MR, 715 SVal strLength) { 716 assert(!strLength.isUndef() && "Attempt to set an undefined string length"); 717 718 MR = MR->StripCasts(); 719 720 switch (MR->getKind()) { 721 case MemRegion::StringRegionKind: 722 // FIXME: This can happen if we strcpy() into a string region. This is 723 // undefined [C99 6.4.5p6], but we should still warn about it. 724 return state; 725 726 case MemRegion::SymbolicRegionKind: 727 case MemRegion::AllocaRegionKind: 728 case MemRegion::VarRegionKind: 729 case MemRegion::FieldRegionKind: 730 case MemRegion::ObjCIvarRegionKind: 731 // These are the types we can currently track string lengths for. 732 break; 733 734 case MemRegion::ElementRegionKind: 735 // FIXME: Handle element regions by upper-bounding the parent region's 736 // string length. 737 return state; 738 739 default: 740 // Other regions (mostly non-data) can't have a reliable C string length. 741 // For now, just ignore the change. 742 // FIXME: These are rare but not impossible. We should output some kind of 743 // warning for things like strcpy((char[]){'a', 0}, "b"); 744 return state; 745 } 746 747 if (strLength.isUnknown()) 748 return state->remove<CStringLength>(MR); 749 750 return state->set<CStringLength>(MR, strLength); 751 } 752 753 SVal CStringChecker::getCStringLengthForRegion(CheckerContext &C, 754 ProgramStateRef &state, 755 const Expr *Ex, 756 const MemRegion *MR, 757 bool hypothetical) { 758 if (!hypothetical) { 759 // If there's a recorded length, go ahead and return it. 760 const SVal *Recorded = state->get<CStringLength>(MR); 761 if (Recorded) 762 return *Recorded; 763 } 764 765 // Otherwise, get a new symbol and update the state. 766 SValBuilder &svalBuilder = C.getSValBuilder(); 767 QualType sizeTy = svalBuilder.getContext().getSizeType(); 768 SVal strLength = svalBuilder.getMetadataSymbolVal(CStringChecker::getTag(), 769 MR, Ex, sizeTy, 770 C.getLocationContext(), 771 C.blockCount()); 772 773 if (!hypothetical) { 774 if (Optional<NonLoc> strLn = strLength.getAs<NonLoc>()) { 775 // In case of unbounded calls strlen etc bound the range to SIZE_MAX/4 776 BasicValueFactory &BVF = svalBuilder.getBasicValueFactory(); 777 const llvm::APSInt &maxValInt = BVF.getMaxValue(sizeTy); 778 llvm::APSInt fourInt = APSIntType(maxValInt).getValue(4); 779 const llvm::APSInt *maxLengthInt = BVF.evalAPSInt(BO_Div, maxValInt, 780 fourInt); 781 NonLoc maxLength = svalBuilder.makeIntVal(*maxLengthInt); 782 SVal evalLength = svalBuilder.evalBinOpNN(state, BO_LE, *strLn, 783 maxLength, sizeTy); 784 state = state->assume(evalLength.castAs<DefinedOrUnknownSVal>(), true); 785 } 786 state = state->set<CStringLength>(MR, strLength); 787 } 788 789 return strLength; 790 } 791 792 SVal CStringChecker::getCStringLength(CheckerContext &C, ProgramStateRef &state, 793 const Expr *Ex, SVal Buf, 794 bool hypothetical) const { 795 const MemRegion *MR = Buf.getAsRegion(); 796 if (!MR) { 797 // If we can't get a region, see if it's something we /know/ isn't a 798 // C string. In the context of locations, the only time we can issue such 799 // a warning is for labels. 800 if (Optional<loc::GotoLabel> Label = Buf.getAs<loc::GotoLabel>()) { 801 if (Filter.CheckCStringNotNullTerm) { 802 SmallString<120> buf; 803 llvm::raw_svector_ostream os(buf); 804 assert(CurrentFunctionDescription); 805 os << "Argument to " << CurrentFunctionDescription 806 << " is the address of the label '" << Label->getLabel()->getName() 807 << "', which is not a null-terminated string"; 808 809 emitNotCStringBug(C, state, Ex, os.str()); 810 } 811 return UndefinedVal(); 812 } 813 814 // If it's not a region and not a label, give up. 815 return UnknownVal(); 816 } 817 818 // If we have a region, strip casts from it and see if we can figure out 819 // its length. For anything we can't figure out, just return UnknownVal. 820 MR = MR->StripCasts(); 821 822 switch (MR->getKind()) { 823 case MemRegion::StringRegionKind: { 824 // Modifying the contents of string regions is undefined [C99 6.4.5p6], 825 // so we can assume that the byte length is the correct C string length. 826 SValBuilder &svalBuilder = C.getSValBuilder(); 827 QualType sizeTy = svalBuilder.getContext().getSizeType(); 828 const StringLiteral *strLit = cast<StringRegion>(MR)->getStringLiteral(); 829 return svalBuilder.makeIntVal(strLit->getByteLength(), sizeTy); 830 } 831 case MemRegion::SymbolicRegionKind: 832 case MemRegion::AllocaRegionKind: 833 case MemRegion::VarRegionKind: 834 case MemRegion::FieldRegionKind: 835 case MemRegion::ObjCIvarRegionKind: 836 return getCStringLengthForRegion(C, state, Ex, MR, hypothetical); 837 case MemRegion::CompoundLiteralRegionKind: 838 // FIXME: Can we track this? Is it necessary? 839 return UnknownVal(); 840 case MemRegion::ElementRegionKind: 841 // FIXME: How can we handle this? It's not good enough to subtract the 842 // offset from the base string length; consider "123\x00567" and &a[5]. 843 return UnknownVal(); 844 default: 845 // Other regions (mostly non-data) can't have a reliable C string length. 846 // In this case, an error is emitted and UndefinedVal is returned. 847 // The caller should always be prepared to handle this case. 848 if (Filter.CheckCStringNotNullTerm) { 849 SmallString<120> buf; 850 llvm::raw_svector_ostream os(buf); 851 852 assert(CurrentFunctionDescription); 853 os << "Argument to " << CurrentFunctionDescription << " is "; 854 855 if (SummarizeRegion(os, C.getASTContext(), MR)) 856 os << ", which is not a null-terminated string"; 857 else 858 os << "not a null-terminated string"; 859 860 emitNotCStringBug(C, state, Ex, os.str()); 861 } 862 return UndefinedVal(); 863 } 864 } 865 866 const StringLiteral *CStringChecker::getCStringLiteral(CheckerContext &C, 867 ProgramStateRef &state, const Expr *expr, SVal val) const { 868 869 // Get the memory region pointed to by the val. 870 const MemRegion *bufRegion = val.getAsRegion(); 871 if (!bufRegion) 872 return nullptr; 873 874 // Strip casts off the memory region. 875 bufRegion = bufRegion->StripCasts(); 876 877 // Cast the memory region to a string region. 878 const StringRegion *strRegion= dyn_cast<StringRegion>(bufRegion); 879 if (!strRegion) 880 return nullptr; 881 882 // Return the actual string in the string region. 883 return strRegion->getStringLiteral(); 884 } 885 886 bool CStringChecker::IsFirstBufInBound(CheckerContext &C, 887 ProgramStateRef state, 888 const Expr *FirstBuf, 889 const Expr *Size) { 890 // If we do not know that the buffer is long enough we return 'true'. 891 // Otherwise the parent region of this field region would also get 892 // invalidated, which would lead to warnings based on an unknown state. 893 894 // Originally copied from CheckBufferAccess and CheckLocation. 895 SValBuilder &svalBuilder = C.getSValBuilder(); 896 ASTContext &Ctx = svalBuilder.getContext(); 897 const LocationContext *LCtx = C.getLocationContext(); 898 899 QualType sizeTy = Size->getType(); 900 QualType PtrTy = Ctx.getPointerType(Ctx.CharTy); 901 SVal BufVal = state->getSVal(FirstBuf, LCtx); 902 903 SVal LengthVal = state->getSVal(Size, LCtx); 904 Optional<NonLoc> Length = LengthVal.getAs<NonLoc>(); 905 if (!Length) 906 return true; // cf top comment. 907 908 // Compute the offset of the last element to be accessed: size-1. 909 NonLoc One = svalBuilder.makeIntVal(1, sizeTy).castAs<NonLoc>(); 910 SVal Offset = svalBuilder.evalBinOpNN(state, BO_Sub, *Length, One, sizeTy); 911 if (Offset.isUnknown()) 912 return true; // cf top comment 913 NonLoc LastOffset = Offset.castAs<NonLoc>(); 914 915 // Check that the first buffer is sufficiently long. 916 SVal BufStart = svalBuilder.evalCast(BufVal, PtrTy, FirstBuf->getType()); 917 Optional<Loc> BufLoc = BufStart.getAs<Loc>(); 918 if (!BufLoc) 919 return true; // cf top comment. 920 921 SVal BufEnd = 922 svalBuilder.evalBinOpLN(state, BO_Add, *BufLoc, LastOffset, PtrTy); 923 924 // Check for out of bound array element access. 925 const MemRegion *R = BufEnd.getAsRegion(); 926 if (!R) 927 return true; // cf top comment. 928 929 const ElementRegion *ER = dyn_cast<ElementRegion>(R); 930 if (!ER) 931 return true; // cf top comment. 932 933 // FIXME: Does this crash when a non-standard definition 934 // of a library function is encountered? 935 assert(ER->getValueType() == C.getASTContext().CharTy && 936 "IsFirstBufInBound should only be called with char* ElementRegions"); 937 938 // Get the size of the array. 939 const SubRegion *superReg = cast<SubRegion>(ER->getSuperRegion()); 940 SVal Extent = 941 svalBuilder.convertToArrayIndex(superReg->getExtent(svalBuilder)); 942 DefinedOrUnknownSVal ExtentSize = Extent.castAs<DefinedOrUnknownSVal>(); 943 944 // Get the index of the accessed element. 945 DefinedOrUnknownSVal Idx = ER->getIndex().castAs<DefinedOrUnknownSVal>(); 946 947 ProgramStateRef StInBound = state->assumeInBound(Idx, ExtentSize, true); 948 949 return static_cast<bool>(StInBound); 950 } 951 952 ProgramStateRef CStringChecker::InvalidateBuffer(CheckerContext &C, 953 ProgramStateRef state, 954 const Expr *E, SVal V, 955 bool IsSourceBuffer, 956 const Expr *Size) { 957 Optional<Loc> L = V.getAs<Loc>(); 958 if (!L) 959 return state; 960 961 // FIXME: This is a simplified version of what's in CFRefCount.cpp -- it makes 962 // some assumptions about the value that CFRefCount can't. Even so, it should 963 // probably be refactored. 964 if (Optional<loc::MemRegionVal> MR = L->getAs<loc::MemRegionVal>()) { 965 const MemRegion *R = MR->getRegion()->StripCasts(); 966 967 // Are we dealing with an ElementRegion? If so, we should be invalidating 968 // the super-region. 969 if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) { 970 R = ER->getSuperRegion(); 971 // FIXME: What about layers of ElementRegions? 972 } 973 974 // Invalidate this region. 975 const LocationContext *LCtx = C.getPredecessor()->getLocationContext(); 976 977 bool CausesPointerEscape = false; 978 RegionAndSymbolInvalidationTraits ITraits; 979 // Invalidate and escape only indirect regions accessible through the source 980 // buffer. 981 if (IsSourceBuffer) { 982 ITraits.setTrait(R->getBaseRegion(), 983 RegionAndSymbolInvalidationTraits::TK_PreserveContents); 984 ITraits.setTrait(R, RegionAndSymbolInvalidationTraits::TK_SuppressEscape); 985 CausesPointerEscape = true; 986 } else { 987 const MemRegion::Kind& K = R->getKind(); 988 if (K == MemRegion::FieldRegionKind) 989 if (Size && IsFirstBufInBound(C, state, E, Size)) { 990 // If destination buffer is a field region and access is in bound, 991 // do not invalidate its super region. 992 ITraits.setTrait( 993 R, 994 RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion); 995 } 996 } 997 998 return state->invalidateRegions(R, E, C.blockCount(), LCtx, 999 CausesPointerEscape, nullptr, nullptr, 1000 &ITraits); 1001 } 1002 1003 // If we have a non-region value by chance, just remove the binding. 1004 // FIXME: is this necessary or correct? This handles the non-Region 1005 // cases. Is it ever valid to store to these? 1006 return state->killBinding(*L); 1007 } 1008 1009 bool CStringChecker::SummarizeRegion(raw_ostream &os, ASTContext &Ctx, 1010 const MemRegion *MR) { 1011 const TypedValueRegion *TVR = dyn_cast<TypedValueRegion>(MR); 1012 1013 switch (MR->getKind()) { 1014 case MemRegion::FunctionCodeRegionKind: { 1015 const NamedDecl *FD = cast<FunctionCodeRegion>(MR)->getDecl(); 1016 if (FD) 1017 os << "the address of the function '" << *FD << '\''; 1018 else 1019 os << "the address of a function"; 1020 return true; 1021 } 1022 case MemRegion::BlockCodeRegionKind: 1023 os << "block text"; 1024 return true; 1025 case MemRegion::BlockDataRegionKind: 1026 os << "a block"; 1027 return true; 1028 case MemRegion::CXXThisRegionKind: 1029 case MemRegion::CXXTempObjectRegionKind: 1030 os << "a C++ temp object of type " << TVR->getValueType().getAsString(); 1031 return true; 1032 case MemRegion::VarRegionKind: 1033 os << "a variable of type" << TVR->getValueType().getAsString(); 1034 return true; 1035 case MemRegion::FieldRegionKind: 1036 os << "a field of type " << TVR->getValueType().getAsString(); 1037 return true; 1038 case MemRegion::ObjCIvarRegionKind: 1039 os << "an instance variable of type " << TVR->getValueType().getAsString(); 1040 return true; 1041 default: 1042 return false; 1043 } 1044 } 1045 1046 bool CStringChecker::memsetAux(const Expr *DstBuffer, SVal CharVal, 1047 const Expr *Size, CheckerContext &C, 1048 ProgramStateRef &State) { 1049 SVal MemVal = C.getSVal(DstBuffer); 1050 SVal SizeVal = C.getSVal(Size); 1051 const MemRegion *MR = MemVal.getAsRegion(); 1052 if (!MR) 1053 return false; 1054 1055 // We're about to model memset by producing a "default binding" in the Store. 1056 // Our current implementation - RegionStore - doesn't support default bindings 1057 // that don't cover the whole base region. So we should first get the offset 1058 // and the base region to figure out whether the offset of buffer is 0. 1059 RegionOffset Offset = MR->getAsOffset(); 1060 const MemRegion *BR = Offset.getRegion(); 1061 1062 Optional<NonLoc> SizeNL = SizeVal.getAs<NonLoc>(); 1063 if (!SizeNL) 1064 return false; 1065 1066 SValBuilder &svalBuilder = C.getSValBuilder(); 1067 ASTContext &Ctx = C.getASTContext(); 1068 1069 // void *memset(void *dest, int ch, size_t count); 1070 // For now we can only handle the case of offset is 0 and concrete char value. 1071 if (Offset.isValid() && !Offset.hasSymbolicOffset() && 1072 Offset.getOffset() == 0) { 1073 // Get the base region's extent. 1074 auto *SubReg = cast<SubRegion>(BR); 1075 DefinedOrUnknownSVal Extent = SubReg->getExtent(svalBuilder); 1076 1077 ProgramStateRef StateWholeReg, StateNotWholeReg; 1078 std::tie(StateWholeReg, StateNotWholeReg) = 1079 State->assume(svalBuilder.evalEQ(State, Extent, *SizeNL)); 1080 1081 // With the semantic of 'memset()', we should convert the CharVal to 1082 // unsigned char. 1083 CharVal = svalBuilder.evalCast(CharVal, Ctx.UnsignedCharTy, Ctx.IntTy); 1084 1085 ProgramStateRef StateNullChar, StateNonNullChar; 1086 std::tie(StateNullChar, StateNonNullChar) = 1087 assumeZero(C, State, CharVal, Ctx.UnsignedCharTy); 1088 1089 if (StateWholeReg && !StateNotWholeReg && StateNullChar && 1090 !StateNonNullChar) { 1091 // If the 'memset()' acts on the whole region of destination buffer and 1092 // the value of the second argument of 'memset()' is zero, bind the second 1093 // argument's value to the destination buffer with 'default binding'. 1094 // FIXME: Since there is no perfect way to bind the non-zero character, we 1095 // can only deal with zero value here. In the future, we need to deal with 1096 // the binding of non-zero value in the case of whole region. 1097 State = State->bindDefaultZero(svalBuilder.makeLoc(BR), 1098 C.getLocationContext()); 1099 } else { 1100 // If the destination buffer's extent is not equal to the value of 1101 // third argument, just invalidate buffer. 1102 State = InvalidateBuffer(C, State, DstBuffer, MemVal, 1103 /*IsSourceBuffer*/ false, Size); 1104 } 1105 1106 if (StateNullChar && !StateNonNullChar) { 1107 // If the value of the second argument of 'memset()' is zero, set the 1108 // string length of destination buffer to 0 directly. 1109 State = setCStringLength(State, MR, 1110 svalBuilder.makeZeroVal(Ctx.getSizeType())); 1111 } else if (!StateNullChar && StateNonNullChar) { 1112 SVal NewStrLen = svalBuilder.getMetadataSymbolVal( 1113 CStringChecker::getTag(), MR, DstBuffer, Ctx.getSizeType(), 1114 C.getLocationContext(), C.blockCount()); 1115 1116 // If the value of second argument is not zero, then the string length 1117 // is at least the size argument. 1118 SVal NewStrLenGESize = svalBuilder.evalBinOp( 1119 State, BO_GE, NewStrLen, SizeVal, svalBuilder.getConditionType()); 1120 1121 State = setCStringLength( 1122 State->assume(NewStrLenGESize.castAs<DefinedOrUnknownSVal>(), true), 1123 MR, NewStrLen); 1124 } 1125 } else { 1126 // If the offset is not zero and char value is not concrete, we can do 1127 // nothing but invalidate the buffer. 1128 State = InvalidateBuffer(C, State, DstBuffer, MemVal, 1129 /*IsSourceBuffer*/ false, Size); 1130 } 1131 return true; 1132 } 1133 1134 //===----------------------------------------------------------------------===// 1135 // evaluation of individual function calls. 1136 //===----------------------------------------------------------------------===// 1137 1138 void CStringChecker::evalCopyCommon(CheckerContext &C, 1139 const CallExpr *CE, 1140 ProgramStateRef state, 1141 const Expr *Size, const Expr *Dest, 1142 const Expr *Source, bool Restricted, 1143 bool IsMempcpy) const { 1144 CurrentFunctionDescription = "memory copy function"; 1145 1146 // See if the size argument is zero. 1147 const LocationContext *LCtx = C.getLocationContext(); 1148 SVal sizeVal = state->getSVal(Size, LCtx); 1149 QualType sizeTy = Size->getType(); 1150 1151 ProgramStateRef stateZeroSize, stateNonZeroSize; 1152 std::tie(stateZeroSize, stateNonZeroSize) = 1153 assumeZero(C, state, sizeVal, sizeTy); 1154 1155 // Get the value of the Dest. 1156 SVal destVal = state->getSVal(Dest, LCtx); 1157 1158 // If the size is zero, there won't be any actual memory access, so 1159 // just bind the return value to the destination buffer and return. 1160 if (stateZeroSize && !stateNonZeroSize) { 1161 stateZeroSize = stateZeroSize->BindExpr(CE, LCtx, destVal); 1162 C.addTransition(stateZeroSize); 1163 return; 1164 } 1165 1166 // If the size can be nonzero, we have to check the other arguments. 1167 if (stateNonZeroSize) { 1168 state = stateNonZeroSize; 1169 1170 // Ensure the destination is not null. If it is NULL there will be a 1171 // NULL pointer dereference. 1172 state = checkNonNull(C, state, Dest, destVal, 1); 1173 if (!state) 1174 return; 1175 1176 // Get the value of the Src. 1177 SVal srcVal = state->getSVal(Source, LCtx); 1178 1179 // Ensure the source is not null. If it is NULL there will be a 1180 // NULL pointer dereference. 1181 state = checkNonNull(C, state, Source, srcVal, 2); 1182 if (!state) 1183 return; 1184 1185 // Ensure the accesses are valid and that the buffers do not overlap. 1186 const char * const writeWarning = 1187 "Memory copy function overflows destination buffer"; 1188 state = CheckBufferAccess(C, state, Size, Dest, Source, 1189 writeWarning, /* sourceWarning = */ nullptr); 1190 if (Restricted) 1191 state = CheckOverlap(C, state, Size, Dest, Source); 1192 1193 if (!state) 1194 return; 1195 1196 // If this is mempcpy, get the byte after the last byte copied and 1197 // bind the expr. 1198 if (IsMempcpy) { 1199 // Get the byte after the last byte copied. 1200 SValBuilder &SvalBuilder = C.getSValBuilder(); 1201 ASTContext &Ctx = SvalBuilder.getContext(); 1202 QualType CharPtrTy = Ctx.getPointerType(Ctx.CharTy); 1203 SVal DestRegCharVal = 1204 SvalBuilder.evalCast(destVal, CharPtrTy, Dest->getType()); 1205 SVal lastElement = C.getSValBuilder().evalBinOp( 1206 state, BO_Add, DestRegCharVal, sizeVal, Dest->getType()); 1207 // If we don't know how much we copied, we can at least 1208 // conjure a return value for later. 1209 if (lastElement.isUnknown()) 1210 lastElement = C.getSValBuilder().conjureSymbolVal(nullptr, CE, LCtx, 1211 C.blockCount()); 1212 1213 // The byte after the last byte copied is the return value. 1214 state = state->BindExpr(CE, LCtx, lastElement); 1215 } else { 1216 // All other copies return the destination buffer. 1217 // (Well, bcopy() has a void return type, but this won't hurt.) 1218 state = state->BindExpr(CE, LCtx, destVal); 1219 } 1220 1221 // Invalidate the destination (regular invalidation without pointer-escaping 1222 // the address of the top-level region). 1223 // FIXME: Even if we can't perfectly model the copy, we should see if we 1224 // can use LazyCompoundVals to copy the source values into the destination. 1225 // This would probably remove any existing bindings past the end of the 1226 // copied region, but that's still an improvement over blank invalidation. 1227 state = InvalidateBuffer(C, state, Dest, C.getSVal(Dest), 1228 /*IsSourceBuffer*/false, Size); 1229 1230 // Invalidate the source (const-invalidation without const-pointer-escaping 1231 // the address of the top-level region). 1232 state = InvalidateBuffer(C, state, Source, C.getSVal(Source), 1233 /*IsSourceBuffer*/true, nullptr); 1234 1235 C.addTransition(state); 1236 } 1237 } 1238 1239 1240 void CStringChecker::evalMemcpy(CheckerContext &C, const CallExpr *CE) const { 1241 // void *memcpy(void *restrict dst, const void *restrict src, size_t n); 1242 // The return value is the address of the destination buffer. 1243 const Expr *Dest = CE->getArg(0); 1244 ProgramStateRef state = C.getState(); 1245 1246 evalCopyCommon(C, CE, state, CE->getArg(2), Dest, CE->getArg(1), true); 1247 } 1248 1249 void CStringChecker::evalMempcpy(CheckerContext &C, const CallExpr *CE) const { 1250 // void *mempcpy(void *restrict dst, const void *restrict src, size_t n); 1251 // The return value is a pointer to the byte following the last written byte. 1252 const Expr *Dest = CE->getArg(0); 1253 ProgramStateRef state = C.getState(); 1254 1255 evalCopyCommon(C, CE, state, CE->getArg(2), Dest, CE->getArg(1), true, true); 1256 } 1257 1258 void CStringChecker::evalMemmove(CheckerContext &C, const CallExpr *CE) const { 1259 // void *memmove(void *dst, const void *src, size_t n); 1260 // The return value is the address of the destination buffer. 1261 const Expr *Dest = CE->getArg(0); 1262 ProgramStateRef state = C.getState(); 1263 1264 evalCopyCommon(C, CE, state, CE->getArg(2), Dest, CE->getArg(1)); 1265 } 1266 1267 void CStringChecker::evalBcopy(CheckerContext &C, const CallExpr *CE) const { 1268 // void bcopy(const void *src, void *dst, size_t n); 1269 evalCopyCommon(C, CE, C.getState(), 1270 CE->getArg(2), CE->getArg(1), CE->getArg(0)); 1271 } 1272 1273 void CStringChecker::evalMemcmp(CheckerContext &C, const CallExpr *CE) const { 1274 // int memcmp(const void *s1, const void *s2, size_t n); 1275 CurrentFunctionDescription = "memory comparison function"; 1276 1277 const Expr *Left = CE->getArg(0); 1278 const Expr *Right = CE->getArg(1); 1279 const Expr *Size = CE->getArg(2); 1280 1281 ProgramStateRef state = C.getState(); 1282 SValBuilder &svalBuilder = C.getSValBuilder(); 1283 1284 // See if the size argument is zero. 1285 const LocationContext *LCtx = C.getLocationContext(); 1286 SVal sizeVal = state->getSVal(Size, LCtx); 1287 QualType sizeTy = Size->getType(); 1288 1289 ProgramStateRef stateZeroSize, stateNonZeroSize; 1290 std::tie(stateZeroSize, stateNonZeroSize) = 1291 assumeZero(C, state, sizeVal, sizeTy); 1292 1293 // If the size can be zero, the result will be 0 in that case, and we don't 1294 // have to check either of the buffers. 1295 if (stateZeroSize) { 1296 state = stateZeroSize; 1297 state = state->BindExpr(CE, LCtx, 1298 svalBuilder.makeZeroVal(CE->getType())); 1299 C.addTransition(state); 1300 } 1301 1302 // If the size can be nonzero, we have to check the other arguments. 1303 if (stateNonZeroSize) { 1304 state = stateNonZeroSize; 1305 // If we know the two buffers are the same, we know the result is 0. 1306 // First, get the two buffers' addresses. Another checker will have already 1307 // made sure they're not undefined. 1308 DefinedOrUnknownSVal LV = 1309 state->getSVal(Left, LCtx).castAs<DefinedOrUnknownSVal>(); 1310 DefinedOrUnknownSVal RV = 1311 state->getSVal(Right, LCtx).castAs<DefinedOrUnknownSVal>(); 1312 1313 // See if they are the same. 1314 DefinedOrUnknownSVal SameBuf = svalBuilder.evalEQ(state, LV, RV); 1315 ProgramStateRef StSameBuf, StNotSameBuf; 1316 std::tie(StSameBuf, StNotSameBuf) = state->assume(SameBuf); 1317 1318 // If the two arguments might be the same buffer, we know the result is 0, 1319 // and we only need to check one size. 1320 if (StSameBuf) { 1321 state = StSameBuf; 1322 state = CheckBufferAccess(C, state, Size, Left); 1323 if (state) { 1324 state = StSameBuf->BindExpr(CE, LCtx, 1325 svalBuilder.makeZeroVal(CE->getType())); 1326 C.addTransition(state); 1327 } 1328 } 1329 1330 // If the two arguments might be different buffers, we have to check the 1331 // size of both of them. 1332 if (StNotSameBuf) { 1333 state = StNotSameBuf; 1334 state = CheckBufferAccess(C, state, Size, Left, Right); 1335 if (state) { 1336 // The return value is the comparison result, which we don't know. 1337 SVal CmpV = svalBuilder.conjureSymbolVal(nullptr, CE, LCtx, 1338 C.blockCount()); 1339 state = state->BindExpr(CE, LCtx, CmpV); 1340 C.addTransition(state); 1341 } 1342 } 1343 } 1344 } 1345 1346 void CStringChecker::evalstrLength(CheckerContext &C, 1347 const CallExpr *CE) const { 1348 // size_t strlen(const char *s); 1349 evalstrLengthCommon(C, CE, /* IsStrnlen = */ false); 1350 } 1351 1352 void CStringChecker::evalstrnLength(CheckerContext &C, 1353 const CallExpr *CE) const { 1354 // size_t strnlen(const char *s, size_t maxlen); 1355 evalstrLengthCommon(C, CE, /* IsStrnlen = */ true); 1356 } 1357 1358 void CStringChecker::evalstrLengthCommon(CheckerContext &C, const CallExpr *CE, 1359 bool IsStrnlen) const { 1360 CurrentFunctionDescription = "string length function"; 1361 ProgramStateRef state = C.getState(); 1362 const LocationContext *LCtx = C.getLocationContext(); 1363 1364 if (IsStrnlen) { 1365 const Expr *maxlenExpr = CE->getArg(1); 1366 SVal maxlenVal = state->getSVal(maxlenExpr, LCtx); 1367 1368 ProgramStateRef stateZeroSize, stateNonZeroSize; 1369 std::tie(stateZeroSize, stateNonZeroSize) = 1370 assumeZero(C, state, maxlenVal, maxlenExpr->getType()); 1371 1372 // If the size can be zero, the result will be 0 in that case, and we don't 1373 // have to check the string itself. 1374 if (stateZeroSize) { 1375 SVal zero = C.getSValBuilder().makeZeroVal(CE->getType()); 1376 stateZeroSize = stateZeroSize->BindExpr(CE, LCtx, zero); 1377 C.addTransition(stateZeroSize); 1378 } 1379 1380 // If the size is GUARANTEED to be zero, we're done! 1381 if (!stateNonZeroSize) 1382 return; 1383 1384 // Otherwise, record the assumption that the size is nonzero. 1385 state = stateNonZeroSize; 1386 } 1387 1388 // Check that the string argument is non-null. 1389 const Expr *Arg = CE->getArg(0); 1390 SVal ArgVal = state->getSVal(Arg, LCtx); 1391 1392 state = checkNonNull(C, state, Arg, ArgVal, 1); 1393 1394 if (!state) 1395 return; 1396 1397 SVal strLength = getCStringLength(C, state, Arg, ArgVal); 1398 1399 // If the argument isn't a valid C string, there's no valid state to 1400 // transition to. 1401 if (strLength.isUndef()) 1402 return; 1403 1404 DefinedOrUnknownSVal result = UnknownVal(); 1405 1406 // If the check is for strnlen() then bind the return value to no more than 1407 // the maxlen value. 1408 if (IsStrnlen) { 1409 QualType cmpTy = C.getSValBuilder().getConditionType(); 1410 1411 // It's a little unfortunate to be getting this again, 1412 // but it's not that expensive... 1413 const Expr *maxlenExpr = CE->getArg(1); 1414 SVal maxlenVal = state->getSVal(maxlenExpr, LCtx); 1415 1416 Optional<NonLoc> strLengthNL = strLength.getAs<NonLoc>(); 1417 Optional<NonLoc> maxlenValNL = maxlenVal.getAs<NonLoc>(); 1418 1419 if (strLengthNL && maxlenValNL) { 1420 ProgramStateRef stateStringTooLong, stateStringNotTooLong; 1421 1422 // Check if the strLength is greater than the maxlen. 1423 std::tie(stateStringTooLong, stateStringNotTooLong) = state->assume( 1424 C.getSValBuilder() 1425 .evalBinOpNN(state, BO_GT, *strLengthNL, *maxlenValNL, cmpTy) 1426 .castAs<DefinedOrUnknownSVal>()); 1427 1428 if (stateStringTooLong && !stateStringNotTooLong) { 1429 // If the string is longer than maxlen, return maxlen. 1430 result = *maxlenValNL; 1431 } else if (stateStringNotTooLong && !stateStringTooLong) { 1432 // If the string is shorter than maxlen, return its length. 1433 result = *strLengthNL; 1434 } 1435 } 1436 1437 if (result.isUnknown()) { 1438 // If we don't have enough information for a comparison, there's 1439 // no guarantee the full string length will actually be returned. 1440 // All we know is the return value is the min of the string length 1441 // and the limit. This is better than nothing. 1442 result = C.getSValBuilder().conjureSymbolVal(nullptr, CE, LCtx, 1443 C.blockCount()); 1444 NonLoc resultNL = result.castAs<NonLoc>(); 1445 1446 if (strLengthNL) { 1447 state = state->assume(C.getSValBuilder().evalBinOpNN( 1448 state, BO_LE, resultNL, *strLengthNL, cmpTy) 1449 .castAs<DefinedOrUnknownSVal>(), true); 1450 } 1451 1452 if (maxlenValNL) { 1453 state = state->assume(C.getSValBuilder().evalBinOpNN( 1454 state, BO_LE, resultNL, *maxlenValNL, cmpTy) 1455 .castAs<DefinedOrUnknownSVal>(), true); 1456 } 1457 } 1458 1459 } else { 1460 // This is a plain strlen(), not strnlen(). 1461 result = strLength.castAs<DefinedOrUnknownSVal>(); 1462 1463 // If we don't know the length of the string, conjure a return 1464 // value, so it can be used in constraints, at least. 1465 if (result.isUnknown()) { 1466 result = C.getSValBuilder().conjureSymbolVal(nullptr, CE, LCtx, 1467 C.blockCount()); 1468 } 1469 } 1470 1471 // Bind the return value. 1472 assert(!result.isUnknown() && "Should have conjured a value by now"); 1473 state = state->BindExpr(CE, LCtx, result); 1474 C.addTransition(state); 1475 } 1476 1477 void CStringChecker::evalStrcpy(CheckerContext &C, const CallExpr *CE) const { 1478 // char *strcpy(char *restrict dst, const char *restrict src); 1479 evalStrcpyCommon(C, CE, 1480 /* returnEnd = */ false, 1481 /* isBounded = */ false, 1482 /* isAppending = */ false); 1483 } 1484 1485 void CStringChecker::evalStrncpy(CheckerContext &C, const CallExpr *CE) const { 1486 // char *strncpy(char *restrict dst, const char *restrict src, size_t n); 1487 evalStrcpyCommon(C, CE, 1488 /* returnEnd = */ false, 1489 /* isBounded = */ true, 1490 /* isAppending = */ false); 1491 } 1492 1493 void CStringChecker::evalStpcpy(CheckerContext &C, const CallExpr *CE) const { 1494 // char *stpcpy(char *restrict dst, const char *restrict src); 1495 evalStrcpyCommon(C, CE, 1496 /* returnEnd = */ true, 1497 /* isBounded = */ false, 1498 /* isAppending = */ false); 1499 } 1500 1501 void CStringChecker::evalStrlcpy(CheckerContext &C, const CallExpr *CE) const { 1502 // char *strlcpy(char *dst, const char *src, size_t n); 1503 evalStrcpyCommon(C, CE, 1504 /* returnEnd = */ true, 1505 /* isBounded = */ true, 1506 /* isAppending = */ false, 1507 /* returnPtr = */ false); 1508 } 1509 1510 void CStringChecker::evalStrcat(CheckerContext &C, const CallExpr *CE) const { 1511 //char *strcat(char *restrict s1, const char *restrict s2); 1512 evalStrcpyCommon(C, CE, 1513 /* returnEnd = */ false, 1514 /* isBounded = */ false, 1515 /* isAppending = */ true); 1516 } 1517 1518 void CStringChecker::evalStrncat(CheckerContext &C, const CallExpr *CE) const { 1519 //char *strncat(char *restrict s1, const char *restrict s2, size_t n); 1520 evalStrcpyCommon(C, CE, 1521 /* returnEnd = */ false, 1522 /* isBounded = */ true, 1523 /* isAppending = */ true); 1524 } 1525 1526 void CStringChecker::evalStrlcat(CheckerContext &C, const CallExpr *CE) const { 1527 // FIXME: strlcat() uses a different rule for bound checking, i.e. 'n' means 1528 // a different thing as compared to strncat(). This currently causes 1529 // false positives in the alpha string bound checker. 1530 1531 //char *strlcat(char *s1, const char *s2, size_t n); 1532 evalStrcpyCommon(C, CE, 1533 /* returnEnd = */ false, 1534 /* isBounded = */ true, 1535 /* isAppending = */ true, 1536 /* returnPtr = */ false); 1537 } 1538 1539 void CStringChecker::evalStrcpyCommon(CheckerContext &C, const CallExpr *CE, 1540 bool returnEnd, bool isBounded, 1541 bool isAppending, bool returnPtr) const { 1542 CurrentFunctionDescription = "string copy function"; 1543 ProgramStateRef state = C.getState(); 1544 const LocationContext *LCtx = C.getLocationContext(); 1545 1546 // Check that the destination is non-null. 1547 const Expr *Dst = CE->getArg(0); 1548 SVal DstVal = state->getSVal(Dst, LCtx); 1549 1550 state = checkNonNull(C, state, Dst, DstVal, 1); 1551 if (!state) 1552 return; 1553 1554 // Check that the source is non-null. 1555 const Expr *srcExpr = CE->getArg(1); 1556 SVal srcVal = state->getSVal(srcExpr, LCtx); 1557 state = checkNonNull(C, state, srcExpr, srcVal, 2); 1558 if (!state) 1559 return; 1560 1561 // Get the string length of the source. 1562 SVal strLength = getCStringLength(C, state, srcExpr, srcVal); 1563 1564 // If the source isn't a valid C string, give up. 1565 if (strLength.isUndef()) 1566 return; 1567 1568 SValBuilder &svalBuilder = C.getSValBuilder(); 1569 QualType cmpTy = svalBuilder.getConditionType(); 1570 QualType sizeTy = svalBuilder.getContext().getSizeType(); 1571 1572 // These two values allow checking two kinds of errors: 1573 // - actual overflows caused by a source that doesn't fit in the destination 1574 // - potential overflows caused by a bound that could exceed the destination 1575 SVal amountCopied = UnknownVal(); 1576 SVal maxLastElementIndex = UnknownVal(); 1577 const char *boundWarning = nullptr; 1578 1579 state = CheckOverlap(C, state, isBounded ? CE->getArg(2) : CE->getArg(1), Dst, srcExpr); 1580 1581 if (!state) 1582 return; 1583 1584 // If the function is strncpy, strncat, etc... it is bounded. 1585 if (isBounded) { 1586 // Get the max number of characters to copy. 1587 const Expr *lenExpr = CE->getArg(2); 1588 SVal lenVal = state->getSVal(lenExpr, LCtx); 1589 1590 // Protect against misdeclared strncpy(). 1591 lenVal = svalBuilder.evalCast(lenVal, sizeTy, lenExpr->getType()); 1592 1593 Optional<NonLoc> strLengthNL = strLength.getAs<NonLoc>(); 1594 Optional<NonLoc> lenValNL = lenVal.getAs<NonLoc>(); 1595 1596 // If we know both values, we might be able to figure out how much 1597 // we're copying. 1598 if (strLengthNL && lenValNL) { 1599 ProgramStateRef stateSourceTooLong, stateSourceNotTooLong; 1600 1601 // Check if the max number to copy is less than the length of the src. 1602 // If the bound is equal to the source length, strncpy won't null- 1603 // terminate the result! 1604 std::tie(stateSourceTooLong, stateSourceNotTooLong) = state->assume( 1605 svalBuilder.evalBinOpNN(state, BO_GE, *strLengthNL, *lenValNL, cmpTy) 1606 .castAs<DefinedOrUnknownSVal>()); 1607 1608 if (stateSourceTooLong && !stateSourceNotTooLong) { 1609 // Max number to copy is less than the length of the src, so the actual 1610 // strLength copied is the max number arg. 1611 state = stateSourceTooLong; 1612 amountCopied = lenVal; 1613 1614 } else if (!stateSourceTooLong && stateSourceNotTooLong) { 1615 // The source buffer entirely fits in the bound. 1616 state = stateSourceNotTooLong; 1617 amountCopied = strLength; 1618 } 1619 } 1620 1621 // We still want to know if the bound is known to be too large. 1622 if (lenValNL) { 1623 if (isAppending) { 1624 // For strncat, the check is strlen(dst) + lenVal < sizeof(dst) 1625 1626 // Get the string length of the destination. If the destination is 1627 // memory that can't have a string length, we shouldn't be copying 1628 // into it anyway. 1629 SVal dstStrLength = getCStringLength(C, state, Dst, DstVal); 1630 if (dstStrLength.isUndef()) 1631 return; 1632 1633 if (Optional<NonLoc> dstStrLengthNL = dstStrLength.getAs<NonLoc>()) { 1634 maxLastElementIndex = svalBuilder.evalBinOpNN(state, BO_Add, 1635 *lenValNL, 1636 *dstStrLengthNL, 1637 sizeTy); 1638 boundWarning = "Size argument is greater than the free space in the " 1639 "destination buffer"; 1640 } 1641 1642 } else { 1643 // For strncpy, this is just checking that lenVal <= sizeof(dst) 1644 // (Yes, strncpy and strncat differ in how they treat termination. 1645 // strncat ALWAYS terminates, but strncpy doesn't.) 1646 1647 // We need a special case for when the copy size is zero, in which 1648 // case strncpy will do no work at all. Our bounds check uses n-1 1649 // as the last element accessed, so n == 0 is problematic. 1650 ProgramStateRef StateZeroSize, StateNonZeroSize; 1651 std::tie(StateZeroSize, StateNonZeroSize) = 1652 assumeZero(C, state, *lenValNL, sizeTy); 1653 1654 // If the size is known to be zero, we're done. 1655 if (StateZeroSize && !StateNonZeroSize) { 1656 if (returnPtr) { 1657 StateZeroSize = StateZeroSize->BindExpr(CE, LCtx, DstVal); 1658 } else { 1659 StateZeroSize = StateZeroSize->BindExpr(CE, LCtx, *lenValNL); 1660 } 1661 C.addTransition(StateZeroSize); 1662 return; 1663 } 1664 1665 // Otherwise, go ahead and figure out the last element we'll touch. 1666 // We don't record the non-zero assumption here because we can't 1667 // be sure. We won't warn on a possible zero. 1668 NonLoc one = svalBuilder.makeIntVal(1, sizeTy).castAs<NonLoc>(); 1669 maxLastElementIndex = svalBuilder.evalBinOpNN(state, BO_Sub, *lenValNL, 1670 one, sizeTy); 1671 boundWarning = "Size argument is greater than the length of the " 1672 "destination buffer"; 1673 } 1674 } 1675 1676 // If we couldn't pin down the copy length, at least bound it. 1677 // FIXME: We should actually run this code path for append as well, but 1678 // right now it creates problems with constraints (since we can end up 1679 // trying to pass constraints from symbol to symbol). 1680 if (amountCopied.isUnknown() && !isAppending) { 1681 // Try to get a "hypothetical" string length symbol, which we can later 1682 // set as a real value if that turns out to be the case. 1683 amountCopied = getCStringLength(C, state, lenExpr, srcVal, true); 1684 assert(!amountCopied.isUndef()); 1685 1686 if (Optional<NonLoc> amountCopiedNL = amountCopied.getAs<NonLoc>()) { 1687 if (lenValNL) { 1688 // amountCopied <= lenVal 1689 SVal copiedLessThanBound = svalBuilder.evalBinOpNN(state, BO_LE, 1690 *amountCopiedNL, 1691 *lenValNL, 1692 cmpTy); 1693 state = state->assume( 1694 copiedLessThanBound.castAs<DefinedOrUnknownSVal>(), true); 1695 if (!state) 1696 return; 1697 } 1698 1699 if (strLengthNL) { 1700 // amountCopied <= strlen(source) 1701 SVal copiedLessThanSrc = svalBuilder.evalBinOpNN(state, BO_LE, 1702 *amountCopiedNL, 1703 *strLengthNL, 1704 cmpTy); 1705 state = state->assume( 1706 copiedLessThanSrc.castAs<DefinedOrUnknownSVal>(), true); 1707 if (!state) 1708 return; 1709 } 1710 } 1711 } 1712 1713 } else { 1714 // The function isn't bounded. The amount copied should match the length 1715 // of the source buffer. 1716 amountCopied = strLength; 1717 } 1718 1719 assert(state); 1720 1721 // This represents the number of characters copied into the destination 1722 // buffer. (It may not actually be the strlen if the destination buffer 1723 // is not terminated.) 1724 SVal finalStrLength = UnknownVal(); 1725 1726 // If this is an appending function (strcat, strncat...) then set the 1727 // string length to strlen(src) + strlen(dst) since the buffer will 1728 // ultimately contain both. 1729 if (isAppending) { 1730 // Get the string length of the destination. If the destination is memory 1731 // that can't have a string length, we shouldn't be copying into it anyway. 1732 SVal dstStrLength = getCStringLength(C, state, Dst, DstVal); 1733 if (dstStrLength.isUndef()) 1734 return; 1735 1736 Optional<NonLoc> srcStrLengthNL = amountCopied.getAs<NonLoc>(); 1737 Optional<NonLoc> dstStrLengthNL = dstStrLength.getAs<NonLoc>(); 1738 1739 // If we know both string lengths, we might know the final string length. 1740 if (srcStrLengthNL && dstStrLengthNL) { 1741 // Make sure the two lengths together don't overflow a size_t. 1742 state = checkAdditionOverflow(C, state, *srcStrLengthNL, *dstStrLengthNL); 1743 if (!state) 1744 return; 1745 1746 finalStrLength = svalBuilder.evalBinOpNN(state, BO_Add, *srcStrLengthNL, 1747 *dstStrLengthNL, sizeTy); 1748 } 1749 1750 // If we couldn't get a single value for the final string length, 1751 // we can at least bound it by the individual lengths. 1752 if (finalStrLength.isUnknown()) { 1753 // Try to get a "hypothetical" string length symbol, which we can later 1754 // set as a real value if that turns out to be the case. 1755 finalStrLength = getCStringLength(C, state, CE, DstVal, true); 1756 assert(!finalStrLength.isUndef()); 1757 1758 if (Optional<NonLoc> finalStrLengthNL = finalStrLength.getAs<NonLoc>()) { 1759 if (srcStrLengthNL) { 1760 // finalStrLength >= srcStrLength 1761 SVal sourceInResult = svalBuilder.evalBinOpNN(state, BO_GE, 1762 *finalStrLengthNL, 1763 *srcStrLengthNL, 1764 cmpTy); 1765 state = state->assume(sourceInResult.castAs<DefinedOrUnknownSVal>(), 1766 true); 1767 if (!state) 1768 return; 1769 } 1770 1771 if (dstStrLengthNL) { 1772 // finalStrLength >= dstStrLength 1773 SVal destInResult = svalBuilder.evalBinOpNN(state, BO_GE, 1774 *finalStrLengthNL, 1775 *dstStrLengthNL, 1776 cmpTy); 1777 state = 1778 state->assume(destInResult.castAs<DefinedOrUnknownSVal>(), true); 1779 if (!state) 1780 return; 1781 } 1782 } 1783 } 1784 1785 } else { 1786 // Otherwise, this is a copy-over function (strcpy, strncpy, ...), and 1787 // the final string length will match the input string length. 1788 finalStrLength = amountCopied; 1789 } 1790 1791 SVal Result; 1792 1793 if (returnPtr) { 1794 // The final result of the function will either be a pointer past the last 1795 // copied element, or a pointer to the start of the destination buffer. 1796 Result = (returnEnd ? UnknownVal() : DstVal); 1797 } else { 1798 Result = finalStrLength; 1799 } 1800 1801 assert(state); 1802 1803 // If the destination is a MemRegion, try to check for a buffer overflow and 1804 // record the new string length. 1805 if (Optional<loc::MemRegionVal> dstRegVal = 1806 DstVal.getAs<loc::MemRegionVal>()) { 1807 QualType ptrTy = Dst->getType(); 1808 1809 // If we have an exact value on a bounded copy, use that to check for 1810 // overflows, rather than our estimate about how much is actually copied. 1811 if (boundWarning) { 1812 if (Optional<NonLoc> maxLastNL = maxLastElementIndex.getAs<NonLoc>()) { 1813 SVal maxLastElement = svalBuilder.evalBinOpLN(state, BO_Add, *dstRegVal, 1814 *maxLastNL, ptrTy); 1815 state = CheckLocation(C, state, CE->getArg(2), maxLastElement, 1816 boundWarning); 1817 if (!state) 1818 return; 1819 } 1820 } 1821 1822 // Then, if the final length is known... 1823 if (Optional<NonLoc> knownStrLength = finalStrLength.getAs<NonLoc>()) { 1824 SVal lastElement = svalBuilder.evalBinOpLN(state, BO_Add, *dstRegVal, 1825 *knownStrLength, ptrTy); 1826 1827 // ...and we haven't checked the bound, we'll check the actual copy. 1828 if (!boundWarning) { 1829 const char * const warningMsg = 1830 "String copy function overflows destination buffer"; 1831 state = CheckLocation(C, state, Dst, lastElement, warningMsg); 1832 if (!state) 1833 return; 1834 } 1835 1836 // If this is a stpcpy-style copy, the last element is the return value. 1837 if (returnPtr && returnEnd) 1838 Result = lastElement; 1839 } 1840 1841 // Invalidate the destination (regular invalidation without pointer-escaping 1842 // the address of the top-level region). This must happen before we set the 1843 // C string length because invalidation will clear the length. 1844 // FIXME: Even if we can't perfectly model the copy, we should see if we 1845 // can use LazyCompoundVals to copy the source values into the destination. 1846 // This would probably remove any existing bindings past the end of the 1847 // string, but that's still an improvement over blank invalidation. 1848 state = InvalidateBuffer(C, state, Dst, *dstRegVal, 1849 /*IsSourceBuffer*/false, nullptr); 1850 1851 // Invalidate the source (const-invalidation without const-pointer-escaping 1852 // the address of the top-level region). 1853 state = InvalidateBuffer(C, state, srcExpr, srcVal, /*IsSourceBuffer*/true, 1854 nullptr); 1855 1856 // Set the C string length of the destination, if we know it. 1857 if (isBounded && !isAppending) { 1858 // strncpy is annoying in that it doesn't guarantee to null-terminate 1859 // the result string. If the original string didn't fit entirely inside 1860 // the bound (including the null-terminator), we don't know how long the 1861 // result is. 1862 if (amountCopied != strLength) 1863 finalStrLength = UnknownVal(); 1864 } 1865 state = setCStringLength(state, dstRegVal->getRegion(), finalStrLength); 1866 } 1867 1868 assert(state); 1869 1870 if (returnPtr) { 1871 // If this is a stpcpy-style copy, but we were unable to check for a buffer 1872 // overflow, we still need a result. Conjure a return value. 1873 if (returnEnd && Result.isUnknown()) { 1874 Result = svalBuilder.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount()); 1875 } 1876 } 1877 // Set the return value. 1878 state = state->BindExpr(CE, LCtx, Result); 1879 C.addTransition(state); 1880 } 1881 1882 void CStringChecker::evalStrcmp(CheckerContext &C, const CallExpr *CE) const { 1883 //int strcmp(const char *s1, const char *s2); 1884 evalStrcmpCommon(C, CE, /* isBounded = */ false, /* ignoreCase = */ false); 1885 } 1886 1887 void CStringChecker::evalStrncmp(CheckerContext &C, const CallExpr *CE) const { 1888 //int strncmp(const char *s1, const char *s2, size_t n); 1889 evalStrcmpCommon(C, CE, /* isBounded = */ true, /* ignoreCase = */ false); 1890 } 1891 1892 void CStringChecker::evalStrcasecmp(CheckerContext &C, 1893 const CallExpr *CE) const { 1894 //int strcasecmp(const char *s1, const char *s2); 1895 evalStrcmpCommon(C, CE, /* isBounded = */ false, /* ignoreCase = */ true); 1896 } 1897 1898 void CStringChecker::evalStrncasecmp(CheckerContext &C, 1899 const CallExpr *CE) const { 1900 //int strncasecmp(const char *s1, const char *s2, size_t n); 1901 evalStrcmpCommon(C, CE, /* isBounded = */ true, /* ignoreCase = */ true); 1902 } 1903 1904 void CStringChecker::evalStrcmpCommon(CheckerContext &C, const CallExpr *CE, 1905 bool isBounded, bool ignoreCase) const { 1906 CurrentFunctionDescription = "string comparison function"; 1907 ProgramStateRef state = C.getState(); 1908 const LocationContext *LCtx = C.getLocationContext(); 1909 1910 // Check that the first string is non-null 1911 const Expr *s1 = CE->getArg(0); 1912 SVal s1Val = state->getSVal(s1, LCtx); 1913 state = checkNonNull(C, state, s1, s1Val, 1); 1914 if (!state) 1915 return; 1916 1917 // Check that the second string is non-null. 1918 const Expr *s2 = CE->getArg(1); 1919 SVal s2Val = state->getSVal(s2, LCtx); 1920 state = checkNonNull(C, state, s2, s2Val, 2); 1921 if (!state) 1922 return; 1923 1924 // Get the string length of the first string or give up. 1925 SVal s1Length = getCStringLength(C, state, s1, s1Val); 1926 if (s1Length.isUndef()) 1927 return; 1928 1929 // Get the string length of the second string or give up. 1930 SVal s2Length = getCStringLength(C, state, s2, s2Val); 1931 if (s2Length.isUndef()) 1932 return; 1933 1934 // If we know the two buffers are the same, we know the result is 0. 1935 // First, get the two buffers' addresses. Another checker will have already 1936 // made sure they're not undefined. 1937 DefinedOrUnknownSVal LV = s1Val.castAs<DefinedOrUnknownSVal>(); 1938 DefinedOrUnknownSVal RV = s2Val.castAs<DefinedOrUnknownSVal>(); 1939 1940 // See if they are the same. 1941 SValBuilder &svalBuilder = C.getSValBuilder(); 1942 DefinedOrUnknownSVal SameBuf = svalBuilder.evalEQ(state, LV, RV); 1943 ProgramStateRef StSameBuf, StNotSameBuf; 1944 std::tie(StSameBuf, StNotSameBuf) = state->assume(SameBuf); 1945 1946 // If the two arguments might be the same buffer, we know the result is 0, 1947 // and we only need to check one size. 1948 if (StSameBuf) { 1949 StSameBuf = StSameBuf->BindExpr(CE, LCtx, 1950 svalBuilder.makeZeroVal(CE->getType())); 1951 C.addTransition(StSameBuf); 1952 1953 // If the two arguments are GUARANTEED to be the same, we're done! 1954 if (!StNotSameBuf) 1955 return; 1956 } 1957 1958 assert(StNotSameBuf); 1959 state = StNotSameBuf; 1960 1961 // At this point we can go about comparing the two buffers. 1962 // For now, we only do this if they're both known string literals. 1963 1964 // Attempt to extract string literals from both expressions. 1965 const StringLiteral *s1StrLiteral = getCStringLiteral(C, state, s1, s1Val); 1966 const StringLiteral *s2StrLiteral = getCStringLiteral(C, state, s2, s2Val); 1967 bool canComputeResult = false; 1968 SVal resultVal = svalBuilder.conjureSymbolVal(nullptr, CE, LCtx, 1969 C.blockCount()); 1970 1971 if (s1StrLiteral && s2StrLiteral) { 1972 StringRef s1StrRef = s1StrLiteral->getString(); 1973 StringRef s2StrRef = s2StrLiteral->getString(); 1974 1975 if (isBounded) { 1976 // Get the max number of characters to compare. 1977 const Expr *lenExpr = CE->getArg(2); 1978 SVal lenVal = state->getSVal(lenExpr, LCtx); 1979 1980 // If the length is known, we can get the right substrings. 1981 if (const llvm::APSInt *len = svalBuilder.getKnownValue(state, lenVal)) { 1982 // Create substrings of each to compare the prefix. 1983 s1StrRef = s1StrRef.substr(0, (size_t)len->getZExtValue()); 1984 s2StrRef = s2StrRef.substr(0, (size_t)len->getZExtValue()); 1985 canComputeResult = true; 1986 } 1987 } else { 1988 // This is a normal, unbounded strcmp. 1989 canComputeResult = true; 1990 } 1991 1992 if (canComputeResult) { 1993 // Real strcmp stops at null characters. 1994 size_t s1Term = s1StrRef.find('\0'); 1995 if (s1Term != StringRef::npos) 1996 s1StrRef = s1StrRef.substr(0, s1Term); 1997 1998 size_t s2Term = s2StrRef.find('\0'); 1999 if (s2Term != StringRef::npos) 2000 s2StrRef = s2StrRef.substr(0, s2Term); 2001 2002 // Use StringRef's comparison methods to compute the actual result. 2003 int compareRes = ignoreCase ? s1StrRef.compare_lower(s2StrRef) 2004 : s1StrRef.compare(s2StrRef); 2005 2006 // The strcmp function returns an integer greater than, equal to, or less 2007 // than zero, [c11, p7.24.4.2]. 2008 if (compareRes == 0) { 2009 resultVal = svalBuilder.makeIntVal(compareRes, CE->getType()); 2010 } 2011 else { 2012 DefinedSVal zeroVal = svalBuilder.makeIntVal(0, CE->getType()); 2013 // Constrain strcmp's result range based on the result of StringRef's 2014 // comparison methods. 2015 BinaryOperatorKind op = (compareRes == 1) ? BO_GT : BO_LT; 2016 SVal compareWithZero = 2017 svalBuilder.evalBinOp(state, op, resultVal, zeroVal, 2018 svalBuilder.getConditionType()); 2019 DefinedSVal compareWithZeroVal = compareWithZero.castAs<DefinedSVal>(); 2020 state = state->assume(compareWithZeroVal, true); 2021 } 2022 } 2023 } 2024 2025 state = state->BindExpr(CE, LCtx, resultVal); 2026 2027 // Record this as a possible path. 2028 C.addTransition(state); 2029 } 2030 2031 void CStringChecker::evalStrsep(CheckerContext &C, const CallExpr *CE) const { 2032 //char *strsep(char **stringp, const char *delim); 2033 // Sanity: does the search string parameter match the return type? 2034 const Expr *SearchStrPtr = CE->getArg(0); 2035 QualType CharPtrTy = SearchStrPtr->getType()->getPointeeType(); 2036 if (CharPtrTy.isNull() || 2037 CE->getType().getUnqualifiedType() != CharPtrTy.getUnqualifiedType()) 2038 return; 2039 2040 CurrentFunctionDescription = "strsep()"; 2041 ProgramStateRef State = C.getState(); 2042 const LocationContext *LCtx = C.getLocationContext(); 2043 2044 // Check that the search string pointer is non-null (though it may point to 2045 // a null string). 2046 SVal SearchStrVal = State->getSVal(SearchStrPtr, LCtx); 2047 State = checkNonNull(C, State, SearchStrPtr, SearchStrVal, 1); 2048 if (!State) 2049 return; 2050 2051 // Check that the delimiter string is non-null. 2052 const Expr *DelimStr = CE->getArg(1); 2053 SVal DelimStrVal = State->getSVal(DelimStr, LCtx); 2054 State = checkNonNull(C, State, DelimStr, DelimStrVal, 2); 2055 if (!State) 2056 return; 2057 2058 SValBuilder &SVB = C.getSValBuilder(); 2059 SVal Result; 2060 if (Optional<Loc> SearchStrLoc = SearchStrVal.getAs<Loc>()) { 2061 // Get the current value of the search string pointer, as a char*. 2062 Result = State->getSVal(*SearchStrLoc, CharPtrTy); 2063 2064 // Invalidate the search string, representing the change of one delimiter 2065 // character to NUL. 2066 State = InvalidateBuffer(C, State, SearchStrPtr, Result, 2067 /*IsSourceBuffer*/false, nullptr); 2068 2069 // Overwrite the search string pointer. The new value is either an address 2070 // further along in the same string, or NULL if there are no more tokens. 2071 State = State->bindLoc(*SearchStrLoc, 2072 SVB.conjureSymbolVal(getTag(), 2073 CE, 2074 LCtx, 2075 CharPtrTy, 2076 C.blockCount()), 2077 LCtx); 2078 } else { 2079 assert(SearchStrVal.isUnknown()); 2080 // Conjure a symbolic value. It's the best we can do. 2081 Result = SVB.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount()); 2082 } 2083 2084 // Set the return value, and finish. 2085 State = State->BindExpr(CE, LCtx, Result); 2086 C.addTransition(State); 2087 } 2088 2089 // These should probably be moved into a C++ standard library checker. 2090 void CStringChecker::evalStdCopy(CheckerContext &C, const CallExpr *CE) const { 2091 evalStdCopyCommon(C, CE); 2092 } 2093 2094 void CStringChecker::evalStdCopyBackward(CheckerContext &C, 2095 const CallExpr *CE) const { 2096 evalStdCopyCommon(C, CE); 2097 } 2098 2099 void CStringChecker::evalStdCopyCommon(CheckerContext &C, 2100 const CallExpr *CE) const { 2101 if (!CE->getArg(2)->getType()->isPointerType()) 2102 return; 2103 2104 ProgramStateRef State = C.getState(); 2105 2106 const LocationContext *LCtx = C.getLocationContext(); 2107 2108 // template <class _InputIterator, class _OutputIterator> 2109 // _OutputIterator 2110 // copy(_InputIterator __first, _InputIterator __last, 2111 // _OutputIterator __result) 2112 2113 // Invalidate the destination buffer 2114 const Expr *Dst = CE->getArg(2); 2115 SVal DstVal = State->getSVal(Dst, LCtx); 2116 State = InvalidateBuffer(C, State, Dst, DstVal, /*IsSource=*/false, 2117 /*Size=*/nullptr); 2118 2119 SValBuilder &SVB = C.getSValBuilder(); 2120 2121 SVal ResultVal = SVB.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount()); 2122 State = State->BindExpr(CE, LCtx, ResultVal); 2123 2124 C.addTransition(State); 2125 } 2126 2127 void CStringChecker::evalMemset(CheckerContext &C, const CallExpr *CE) const { 2128 CurrentFunctionDescription = "memory set function"; 2129 2130 const Expr *Mem = CE->getArg(0); 2131 const Expr *CharE = CE->getArg(1); 2132 const Expr *Size = CE->getArg(2); 2133 ProgramStateRef State = C.getState(); 2134 2135 // See if the size argument is zero. 2136 const LocationContext *LCtx = C.getLocationContext(); 2137 SVal SizeVal = State->getSVal(Size, LCtx); 2138 QualType SizeTy = Size->getType(); 2139 2140 ProgramStateRef StateZeroSize, StateNonZeroSize; 2141 std::tie(StateZeroSize, StateNonZeroSize) = 2142 assumeZero(C, State, SizeVal, SizeTy); 2143 2144 // Get the value of the memory area. 2145 SVal MemVal = State->getSVal(Mem, LCtx); 2146 2147 // If the size is zero, there won't be any actual memory access, so 2148 // just bind the return value to the Mem buffer and return. 2149 if (StateZeroSize && !StateNonZeroSize) { 2150 StateZeroSize = StateZeroSize->BindExpr(CE, LCtx, MemVal); 2151 C.addTransition(StateZeroSize); 2152 return; 2153 } 2154 2155 // Ensure the memory area is not null. 2156 // If it is NULL there will be a NULL pointer dereference. 2157 State = checkNonNull(C, StateNonZeroSize, Mem, MemVal, 1); 2158 if (!State) 2159 return; 2160 2161 State = CheckBufferAccess(C, State, Size, Mem); 2162 if (!State) 2163 return; 2164 2165 // According to the values of the arguments, bind the value of the second 2166 // argument to the destination buffer and set string length, or just 2167 // invalidate the destination buffer. 2168 if (!memsetAux(Mem, C.getSVal(CharE), Size, C, State)) 2169 return; 2170 2171 State = State->BindExpr(CE, LCtx, MemVal); 2172 C.addTransition(State); 2173 } 2174 2175 void CStringChecker::evalBzero(CheckerContext &C, const CallExpr *CE) const { 2176 CurrentFunctionDescription = "memory clearance function"; 2177 2178 const Expr *Mem = CE->getArg(0); 2179 const Expr *Size = CE->getArg(1); 2180 SVal Zero = C.getSValBuilder().makeZeroVal(C.getASTContext().IntTy); 2181 2182 ProgramStateRef State = C.getState(); 2183 2184 // See if the size argument is zero. 2185 SVal SizeVal = C.getSVal(Size); 2186 QualType SizeTy = Size->getType(); 2187 2188 ProgramStateRef StateZeroSize, StateNonZeroSize; 2189 std::tie(StateZeroSize, StateNonZeroSize) = 2190 assumeZero(C, State, SizeVal, SizeTy); 2191 2192 // If the size is zero, there won't be any actual memory access, 2193 // In this case we just return. 2194 if (StateZeroSize && !StateNonZeroSize) { 2195 C.addTransition(StateZeroSize); 2196 return; 2197 } 2198 2199 // Get the value of the memory area. 2200 SVal MemVal = C.getSVal(Mem); 2201 2202 // Ensure the memory area is not null. 2203 // If it is NULL there will be a NULL pointer dereference. 2204 State = checkNonNull(C, StateNonZeroSize, Mem, MemVal, 1); 2205 if (!State) 2206 return; 2207 2208 State = CheckBufferAccess(C, State, Size, Mem); 2209 if (!State) 2210 return; 2211 2212 if (!memsetAux(Mem, Zero, Size, C, State)) 2213 return; 2214 2215 C.addTransition(State); 2216 } 2217 2218 //===----------------------------------------------------------------------===// 2219 // The driver method, and other Checker callbacks. 2220 //===----------------------------------------------------------------------===// 2221 2222 CStringChecker::FnCheck CStringChecker::identifyCall(const CallEvent &Call, 2223 CheckerContext &C) const { 2224 const auto *CE = dyn_cast_or_null<CallExpr>(Call.getOriginExpr()); 2225 if (!CE) 2226 return nullptr; 2227 2228 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Call.getDecl()); 2229 if (!FD) 2230 return nullptr; 2231 2232 if (Call.isCalled(StdCopy)) { 2233 return &CStringChecker::evalStdCopy; 2234 } else if (Call.isCalled(StdCopyBackward)) { 2235 return &CStringChecker::evalStdCopyBackward; 2236 } 2237 2238 // Pro-actively check that argument types are safe to do arithmetic upon. 2239 // We do not want to crash if someone accidentally passes a structure 2240 // into, say, a C++ overload of any of these functions. We could not check 2241 // that for std::copy because they may have arguments of other types. 2242 for (auto I : CE->arguments()) { 2243 QualType T = I->getType(); 2244 if (!T->isIntegralOrEnumerationType() && !T->isPointerType()) 2245 return nullptr; 2246 } 2247 2248 const FnCheck *Callback = Callbacks.lookup(Call); 2249 if (Callback) 2250 return *Callback; 2251 2252 return nullptr; 2253 } 2254 2255 bool CStringChecker::evalCall(const CallEvent &Call, CheckerContext &C) const { 2256 FnCheck Callback = identifyCall(Call, C); 2257 2258 // If the callee isn't a string function, let another checker handle it. 2259 if (!Callback) 2260 return false; 2261 2262 // Check and evaluate the call. 2263 const auto *CE = cast<CallExpr>(Call.getOriginExpr()); 2264 (this->*Callback)(C, CE); 2265 2266 // If the evaluate call resulted in no change, chain to the next eval call 2267 // handler. 2268 // Note, the custom CString evaluation calls assume that basic safety 2269 // properties are held. However, if the user chooses to turn off some of these 2270 // checks, we ignore the issues and leave the call evaluation to a generic 2271 // handler. 2272 return C.isDifferent(); 2273 } 2274 2275 void CStringChecker::checkPreStmt(const DeclStmt *DS, CheckerContext &C) const { 2276 // Record string length for char a[] = "abc"; 2277 ProgramStateRef state = C.getState(); 2278 2279 for (const auto *I : DS->decls()) { 2280 const VarDecl *D = dyn_cast<VarDecl>(I); 2281 if (!D) 2282 continue; 2283 2284 // FIXME: Handle array fields of structs. 2285 if (!D->getType()->isArrayType()) 2286 continue; 2287 2288 const Expr *Init = D->getInit(); 2289 if (!Init) 2290 continue; 2291 if (!isa<StringLiteral>(Init)) 2292 continue; 2293 2294 Loc VarLoc = state->getLValue(D, C.getLocationContext()); 2295 const MemRegion *MR = VarLoc.getAsRegion(); 2296 if (!MR) 2297 continue; 2298 2299 SVal StrVal = C.getSVal(Init); 2300 assert(StrVal.isValid() && "Initializer string is unknown or undefined"); 2301 DefinedOrUnknownSVal strLength = 2302 getCStringLength(C, state, Init, StrVal).castAs<DefinedOrUnknownSVal>(); 2303 2304 state = state->set<CStringLength>(MR, strLength); 2305 } 2306 2307 C.addTransition(state); 2308 } 2309 2310 ProgramStateRef 2311 CStringChecker::checkRegionChanges(ProgramStateRef state, 2312 const InvalidatedSymbols *, 2313 ArrayRef<const MemRegion *> ExplicitRegions, 2314 ArrayRef<const MemRegion *> Regions, 2315 const LocationContext *LCtx, 2316 const CallEvent *Call) const { 2317 CStringLengthTy Entries = state->get<CStringLength>(); 2318 if (Entries.isEmpty()) 2319 return state; 2320 2321 llvm::SmallPtrSet<const MemRegion *, 8> Invalidated; 2322 llvm::SmallPtrSet<const MemRegion *, 32> SuperRegions; 2323 2324 // First build sets for the changed regions and their super-regions. 2325 for (ArrayRef<const MemRegion *>::iterator 2326 I = Regions.begin(), E = Regions.end(); I != E; ++I) { 2327 const MemRegion *MR = *I; 2328 Invalidated.insert(MR); 2329 2330 SuperRegions.insert(MR); 2331 while (const SubRegion *SR = dyn_cast<SubRegion>(MR)) { 2332 MR = SR->getSuperRegion(); 2333 SuperRegions.insert(MR); 2334 } 2335 } 2336 2337 CStringLengthTy::Factory &F = state->get_context<CStringLength>(); 2338 2339 // Then loop over the entries in the current state. 2340 for (CStringLengthTy::iterator I = Entries.begin(), 2341 E = Entries.end(); I != E; ++I) { 2342 const MemRegion *MR = I.getKey(); 2343 2344 // Is this entry for a super-region of a changed region? 2345 if (SuperRegions.count(MR)) { 2346 Entries = F.remove(Entries, MR); 2347 continue; 2348 } 2349 2350 // Is this entry for a sub-region of a changed region? 2351 const MemRegion *Super = MR; 2352 while (const SubRegion *SR = dyn_cast<SubRegion>(Super)) { 2353 Super = SR->getSuperRegion(); 2354 if (Invalidated.count(Super)) { 2355 Entries = F.remove(Entries, MR); 2356 break; 2357 } 2358 } 2359 } 2360 2361 return state->set<CStringLength>(Entries); 2362 } 2363 2364 void CStringChecker::checkLiveSymbols(ProgramStateRef state, 2365 SymbolReaper &SR) const { 2366 // Mark all symbols in our string length map as valid. 2367 CStringLengthTy Entries = state->get<CStringLength>(); 2368 2369 for (CStringLengthTy::iterator I = Entries.begin(), E = Entries.end(); 2370 I != E; ++I) { 2371 SVal Len = I.getData(); 2372 2373 for (SymExpr::symbol_iterator si = Len.symbol_begin(), 2374 se = Len.symbol_end(); si != se; ++si) 2375 SR.markInUse(*si); 2376 } 2377 } 2378 2379 void CStringChecker::checkDeadSymbols(SymbolReaper &SR, 2380 CheckerContext &C) const { 2381 ProgramStateRef state = C.getState(); 2382 CStringLengthTy Entries = state->get<CStringLength>(); 2383 if (Entries.isEmpty()) 2384 return; 2385 2386 CStringLengthTy::Factory &F = state->get_context<CStringLength>(); 2387 for (CStringLengthTy::iterator I = Entries.begin(), E = Entries.end(); 2388 I != E; ++I) { 2389 SVal Len = I.getData(); 2390 if (SymbolRef Sym = Len.getAsSymbol()) { 2391 if (SR.isDead(Sym)) 2392 Entries = F.remove(Entries, I.getKey()); 2393 } 2394 } 2395 2396 state = state->set<CStringLength>(Entries); 2397 C.addTransition(state); 2398 } 2399 2400 void ento::registerCStringModeling(CheckerManager &Mgr) { 2401 Mgr.registerChecker<CStringChecker>(); 2402 } 2403 2404 bool ento::shouldRegisterCStringModeling(const LangOptions &LO) { 2405 return true; 2406 } 2407 2408 #define REGISTER_CHECKER(name) \ 2409 void ento::register##name(CheckerManager &mgr) { \ 2410 CStringChecker *checker = mgr.getChecker<CStringChecker>(); \ 2411 checker->Filter.Check##name = true; \ 2412 checker->Filter.CheckName##name = mgr.getCurrentCheckerName(); \ 2413 } \ 2414 \ 2415 bool ento::shouldRegister##name(const LangOptions &LO) { return true; } 2416 2417 REGISTER_CHECKER(CStringNullArg) 2418 REGISTER_CHECKER(CStringOutOfBounds) 2419 REGISTER_CHECKER(CStringBufferOverlap) 2420 REGISTER_CHECKER(CStringNotNullTerm) 2421