xref: /freebsd-src/contrib/llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 5e801ac66d24704442eba426ed13c3effb8a34e7)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-module state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenModule.h"
14 #include "CGBlocks.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CGOpenMPRuntime.h"
22 #include "CGOpenMPRuntimeGPU.h"
23 #include "CodeGenFunction.h"
24 #include "CodeGenPGO.h"
25 #include "ConstantEmitter.h"
26 #include "CoverageMappingGen.h"
27 #include "TargetInfo.h"
28 #include "clang/AST/ASTContext.h"
29 #include "clang/AST/CharUnits.h"
30 #include "clang/AST/DeclCXX.h"
31 #include "clang/AST/DeclObjC.h"
32 #include "clang/AST/DeclTemplate.h"
33 #include "clang/AST/Mangle.h"
34 #include "clang/AST/RecordLayout.h"
35 #include "clang/AST/RecursiveASTVisitor.h"
36 #include "clang/AST/StmtVisitor.h"
37 #include "clang/Basic/Builtins.h"
38 #include "clang/Basic/CharInfo.h"
39 #include "clang/Basic/CodeGenOptions.h"
40 #include "clang/Basic/Diagnostic.h"
41 #include "clang/Basic/FileManager.h"
42 #include "clang/Basic/Module.h"
43 #include "clang/Basic/SourceManager.h"
44 #include "clang/Basic/TargetInfo.h"
45 #include "clang/Basic/Version.h"
46 #include "clang/CodeGen/ConstantInitBuilder.h"
47 #include "clang/Frontend/FrontendDiagnostic.h"
48 #include "llvm/ADT/StringSwitch.h"
49 #include "llvm/ADT/Triple.h"
50 #include "llvm/Analysis/TargetLibraryInfo.h"
51 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
52 #include "llvm/IR/CallingConv.h"
53 #include "llvm/IR/DataLayout.h"
54 #include "llvm/IR/Intrinsics.h"
55 #include "llvm/IR/LLVMContext.h"
56 #include "llvm/IR/Module.h"
57 #include "llvm/IR/ProfileSummary.h"
58 #include "llvm/ProfileData/InstrProfReader.h"
59 #include "llvm/Support/CodeGen.h"
60 #include "llvm/Support/CommandLine.h"
61 #include "llvm/Support/ConvertUTF.h"
62 #include "llvm/Support/ErrorHandling.h"
63 #include "llvm/Support/MD5.h"
64 #include "llvm/Support/TimeProfiler.h"
65 #include "llvm/Support/X86TargetParser.h"
66 
67 using namespace clang;
68 using namespace CodeGen;
69 
70 static llvm::cl::opt<bool> LimitedCoverage(
71     "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden,
72     llvm::cl::desc("Emit limited coverage mapping information (experimental)"),
73     llvm::cl::init(false));
74 
75 static const char AnnotationSection[] = "llvm.metadata";
76 
77 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
78   switch (CGM.getContext().getCXXABIKind()) {
79   case TargetCXXABI::AppleARM64:
80   case TargetCXXABI::Fuchsia:
81   case TargetCXXABI::GenericAArch64:
82   case TargetCXXABI::GenericARM:
83   case TargetCXXABI::iOS:
84   case TargetCXXABI::WatchOS:
85   case TargetCXXABI::GenericMIPS:
86   case TargetCXXABI::GenericItanium:
87   case TargetCXXABI::WebAssembly:
88   case TargetCXXABI::XL:
89     return CreateItaniumCXXABI(CGM);
90   case TargetCXXABI::Microsoft:
91     return CreateMicrosoftCXXABI(CGM);
92   }
93 
94   llvm_unreachable("invalid C++ ABI kind");
95 }
96 
97 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
98                              const PreprocessorOptions &PPO,
99                              const CodeGenOptions &CGO, llvm::Module &M,
100                              DiagnosticsEngine &diags,
101                              CoverageSourceInfo *CoverageInfo)
102     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
103       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
104       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
105       VMContext(M.getContext()), Types(*this), VTables(*this),
106       SanitizerMD(new SanitizerMetadata(*this)) {
107 
108   // Initialize the type cache.
109   llvm::LLVMContext &LLVMContext = M.getContext();
110   VoidTy = llvm::Type::getVoidTy(LLVMContext);
111   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
112   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
113   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
114   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
115   HalfTy = llvm::Type::getHalfTy(LLVMContext);
116   BFloatTy = llvm::Type::getBFloatTy(LLVMContext);
117   FloatTy = llvm::Type::getFloatTy(LLVMContext);
118   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
119   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
120   PointerAlignInBytes =
121     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
122   SizeSizeInBytes =
123     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
124   IntAlignInBytes =
125     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
126   CharTy =
127     llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth());
128   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
129   IntPtrTy = llvm::IntegerType::get(LLVMContext,
130     C.getTargetInfo().getMaxPointerWidth());
131   Int8PtrTy = Int8Ty->getPointerTo(0);
132   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
133   const llvm::DataLayout &DL = M.getDataLayout();
134   AllocaInt8PtrTy = Int8Ty->getPointerTo(DL.getAllocaAddrSpace());
135   GlobalsInt8PtrTy = Int8Ty->getPointerTo(DL.getDefaultGlobalsAddressSpace());
136   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
137 
138   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
139 
140   if (LangOpts.ObjC)
141     createObjCRuntime();
142   if (LangOpts.OpenCL)
143     createOpenCLRuntime();
144   if (LangOpts.OpenMP)
145     createOpenMPRuntime();
146   if (LangOpts.CUDA)
147     createCUDARuntime();
148 
149   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
150   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
151       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
152     TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
153                                getCXXABI().getMangleContext()));
154 
155   // If debug info or coverage generation is enabled, create the CGDebugInfo
156   // object.
157   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
158       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
159     DebugInfo.reset(new CGDebugInfo(*this));
160 
161   Block.GlobalUniqueCount = 0;
162 
163   if (C.getLangOpts().ObjC)
164     ObjCData.reset(new ObjCEntrypoints());
165 
166   if (CodeGenOpts.hasProfileClangUse()) {
167     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
168         CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile);
169     if (auto E = ReaderOrErr.takeError()) {
170       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
171                                               "Could not read profile %0: %1");
172       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
173         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
174                                   << EI.message();
175       });
176     } else
177       PGOReader = std::move(ReaderOrErr.get());
178   }
179 
180   // If coverage mapping generation is enabled, create the
181   // CoverageMappingModuleGen object.
182   if (CodeGenOpts.CoverageMapping)
183     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
184 
185   // Generate the module name hash here if needed.
186   if (CodeGenOpts.UniqueInternalLinkageNames &&
187       !getModule().getSourceFileName().empty()) {
188     std::string Path = getModule().getSourceFileName();
189     // Check if a path substitution is needed from the MacroPrefixMap.
190     for (const auto &Entry : LangOpts.MacroPrefixMap)
191       if (Path.rfind(Entry.first, 0) != std::string::npos) {
192         Path = Entry.second + Path.substr(Entry.first.size());
193         break;
194       }
195     llvm::MD5 Md5;
196     Md5.update(Path);
197     llvm::MD5::MD5Result R;
198     Md5.final(R);
199     SmallString<32> Str;
200     llvm::MD5::stringifyResult(R, Str);
201     // Convert MD5hash to Decimal. Demangler suffixes can either contain
202     // numbers or characters but not both.
203     llvm::APInt IntHash(128, Str.str(), 16);
204     // Prepend "__uniq" before the hash for tools like profilers to understand
205     // that this symbol is of internal linkage type.  The "__uniq" is the
206     // pre-determined prefix that is used to tell tools that this symbol was
207     // created with -funique-internal-linakge-symbols and the tools can strip or
208     // keep the prefix as needed.
209     ModuleNameHash = (Twine(".__uniq.") +
210         Twine(toString(IntHash, /* Radix = */ 10, /* Signed = */false))).str();
211   }
212 }
213 
214 CodeGenModule::~CodeGenModule() {}
215 
216 void CodeGenModule::createObjCRuntime() {
217   // This is just isGNUFamily(), but we want to force implementors of
218   // new ABIs to decide how best to do this.
219   switch (LangOpts.ObjCRuntime.getKind()) {
220   case ObjCRuntime::GNUstep:
221   case ObjCRuntime::GCC:
222   case ObjCRuntime::ObjFW:
223     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
224     return;
225 
226   case ObjCRuntime::FragileMacOSX:
227   case ObjCRuntime::MacOSX:
228   case ObjCRuntime::iOS:
229   case ObjCRuntime::WatchOS:
230     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
231     return;
232   }
233   llvm_unreachable("bad runtime kind");
234 }
235 
236 void CodeGenModule::createOpenCLRuntime() {
237   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
238 }
239 
240 void CodeGenModule::createOpenMPRuntime() {
241   // Select a specialized code generation class based on the target, if any.
242   // If it does not exist use the default implementation.
243   switch (getTriple().getArch()) {
244   case llvm::Triple::nvptx:
245   case llvm::Triple::nvptx64:
246   case llvm::Triple::amdgcn:
247     assert(getLangOpts().OpenMPIsDevice &&
248            "OpenMP AMDGPU/NVPTX is only prepared to deal with device code.");
249     OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this));
250     break;
251   default:
252     if (LangOpts.OpenMPSimd)
253       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
254     else
255       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
256     break;
257   }
258 }
259 
260 void CodeGenModule::createCUDARuntime() {
261   CUDARuntime.reset(CreateNVCUDARuntime(*this));
262 }
263 
264 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
265   Replacements[Name] = C;
266 }
267 
268 void CodeGenModule::applyReplacements() {
269   for (auto &I : Replacements) {
270     StringRef MangledName = I.first();
271     llvm::Constant *Replacement = I.second;
272     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
273     if (!Entry)
274       continue;
275     auto *OldF = cast<llvm::Function>(Entry);
276     auto *NewF = dyn_cast<llvm::Function>(Replacement);
277     if (!NewF) {
278       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
279         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
280       } else {
281         auto *CE = cast<llvm::ConstantExpr>(Replacement);
282         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
283                CE->getOpcode() == llvm::Instruction::GetElementPtr);
284         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
285       }
286     }
287 
288     // Replace old with new, but keep the old order.
289     OldF->replaceAllUsesWith(Replacement);
290     if (NewF) {
291       NewF->removeFromParent();
292       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
293                                                        NewF);
294     }
295     OldF->eraseFromParent();
296   }
297 }
298 
299 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
300   GlobalValReplacements.push_back(std::make_pair(GV, C));
301 }
302 
303 void CodeGenModule::applyGlobalValReplacements() {
304   for (auto &I : GlobalValReplacements) {
305     llvm::GlobalValue *GV = I.first;
306     llvm::Constant *C = I.second;
307 
308     GV->replaceAllUsesWith(C);
309     GV->eraseFromParent();
310   }
311 }
312 
313 // This is only used in aliases that we created and we know they have a
314 // linear structure.
315 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) {
316   const llvm::Constant *C;
317   if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV))
318     C = GA->getAliasee();
319   else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV))
320     C = GI->getResolver();
321   else
322     return GV;
323 
324   const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts());
325   if (!AliaseeGV)
326     return nullptr;
327 
328   const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject();
329   if (FinalGV == GV)
330     return nullptr;
331 
332   return FinalGV;
333 }
334 
335 static bool checkAliasedGlobal(DiagnosticsEngine &Diags,
336                                SourceLocation Location, bool IsIFunc,
337                                const llvm::GlobalValue *Alias,
338                                const llvm::GlobalValue *&GV) {
339   GV = getAliasedGlobal(Alias);
340   if (!GV) {
341     Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
342     return false;
343   }
344 
345   if (GV->isDeclaration()) {
346     Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc;
347     return false;
348   }
349 
350   if (IsIFunc) {
351     // Check resolver function type.
352     const auto *F = dyn_cast<llvm::Function>(GV);
353     if (!F) {
354       Diags.Report(Location, diag::err_alias_to_undefined)
355           << IsIFunc << IsIFunc;
356       return false;
357     }
358 
359     llvm::FunctionType *FTy = F->getFunctionType();
360     if (!FTy->getReturnType()->isPointerTy()) {
361       Diags.Report(Location, diag::err_ifunc_resolver_return);
362       return false;
363     }
364   }
365 
366   return true;
367 }
368 
369 void CodeGenModule::checkAliases() {
370   // Check if the constructed aliases are well formed. It is really unfortunate
371   // that we have to do this in CodeGen, but we only construct mangled names
372   // and aliases during codegen.
373   bool Error = false;
374   DiagnosticsEngine &Diags = getDiags();
375   for (const GlobalDecl &GD : Aliases) {
376     const auto *D = cast<ValueDecl>(GD.getDecl());
377     SourceLocation Location;
378     bool IsIFunc = D->hasAttr<IFuncAttr>();
379     if (const Attr *A = D->getDefiningAttr())
380       Location = A->getLocation();
381     else
382       llvm_unreachable("Not an alias or ifunc?");
383 
384     StringRef MangledName = getMangledName(GD);
385     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
386     const llvm::GlobalValue *GV = nullptr;
387     if (!checkAliasedGlobal(Diags, Location, IsIFunc, Alias, GV)) {
388       Error = true;
389       continue;
390     }
391 
392     llvm::Constant *Aliasee =
393         IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver()
394                 : cast<llvm::GlobalAlias>(Alias)->getAliasee();
395 
396     llvm::GlobalValue *AliaseeGV;
397     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
398       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
399     else
400       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
401 
402     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
403       StringRef AliasSection = SA->getName();
404       if (AliasSection != AliaseeGV->getSection())
405         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
406             << AliasSection << IsIFunc << IsIFunc;
407     }
408 
409     // We have to handle alias to weak aliases in here. LLVM itself disallows
410     // this since the object semantics would not match the IL one. For
411     // compatibility with gcc we implement it by just pointing the alias
412     // to its aliasee's aliasee. We also warn, since the user is probably
413     // expecting the link to be weak.
414     if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) {
415       if (GA->isInterposable()) {
416         Diags.Report(Location, diag::warn_alias_to_weak_alias)
417             << GV->getName() << GA->getName() << IsIFunc;
418         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
419             GA->getAliasee(), Alias->getType());
420 
421         if (IsIFunc)
422           cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee);
423         else
424           cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee);
425       }
426     }
427   }
428   if (!Error)
429     return;
430 
431   for (const GlobalDecl &GD : Aliases) {
432     StringRef MangledName = getMangledName(GD);
433     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
434     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
435     Alias->eraseFromParent();
436   }
437 }
438 
439 void CodeGenModule::clear() {
440   DeferredDeclsToEmit.clear();
441   if (OpenMPRuntime)
442     OpenMPRuntime->clear();
443 }
444 
445 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
446                                        StringRef MainFile) {
447   if (!hasDiagnostics())
448     return;
449   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
450     if (MainFile.empty())
451       MainFile = "<stdin>";
452     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
453   } else {
454     if (Mismatched > 0)
455       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
456 
457     if (Missing > 0)
458       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
459   }
460 }
461 
462 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO,
463                                              llvm::Module &M) {
464   if (!LO.VisibilityFromDLLStorageClass)
465     return;
466 
467   llvm::GlobalValue::VisibilityTypes DLLExportVisibility =
468       CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility());
469   llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility =
470       CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility());
471   llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility =
472       CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility());
473   llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility =
474       CodeGenModule::GetLLVMVisibility(
475           LO.getExternDeclNoDLLStorageClassVisibility());
476 
477   for (llvm::GlobalValue &GV : M.global_values()) {
478     if (GV.hasAppendingLinkage() || GV.hasLocalLinkage())
479       continue;
480 
481     // Reset DSO locality before setting the visibility. This removes
482     // any effects that visibility options and annotations may have
483     // had on the DSO locality. Setting the visibility will implicitly set
484     // appropriate globals to DSO Local; however, this will be pessimistic
485     // w.r.t. to the normal compiler IRGen.
486     GV.setDSOLocal(false);
487 
488     if (GV.isDeclarationForLinker()) {
489       GV.setVisibility(GV.getDLLStorageClass() ==
490                                llvm::GlobalValue::DLLImportStorageClass
491                            ? ExternDeclDLLImportVisibility
492                            : ExternDeclNoDLLStorageClassVisibility);
493     } else {
494       GV.setVisibility(GV.getDLLStorageClass() ==
495                                llvm::GlobalValue::DLLExportStorageClass
496                            ? DLLExportVisibility
497                            : NoDLLStorageClassVisibility);
498     }
499 
500     GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
501   }
502 }
503 
504 void CodeGenModule::Release() {
505   EmitDeferred();
506   EmitVTablesOpportunistically();
507   applyGlobalValReplacements();
508   applyReplacements();
509   checkAliases();
510   emitMultiVersionFunctions();
511   EmitCXXGlobalInitFunc();
512   EmitCXXGlobalCleanUpFunc();
513   registerGlobalDtorsWithAtExit();
514   EmitCXXThreadLocalInitFunc();
515   if (ObjCRuntime)
516     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
517       AddGlobalCtor(ObjCInitFunction);
518   if (Context.getLangOpts().CUDA && CUDARuntime) {
519     if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule())
520       AddGlobalCtor(CudaCtorFunction);
521   }
522   if (OpenMPRuntime) {
523     if (llvm::Function *OpenMPRequiresDirectiveRegFun =
524             OpenMPRuntime->emitRequiresDirectiveRegFun()) {
525       AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0);
526     }
527     OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
528     OpenMPRuntime->clear();
529   }
530   if (PGOReader) {
531     getModule().setProfileSummary(
532         PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
533         llvm::ProfileSummary::PSK_Instr);
534     if (PGOStats.hasDiagnostics())
535       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
536   }
537   EmitCtorList(GlobalCtors, "llvm.global_ctors");
538   EmitCtorList(GlobalDtors, "llvm.global_dtors");
539   EmitGlobalAnnotations();
540   EmitStaticExternCAliases();
541   EmitDeferredUnusedCoverageMappings();
542   CodeGenPGO(*this).setValueProfilingFlag(getModule());
543   if (CoverageMapping)
544     CoverageMapping->emit();
545   if (CodeGenOpts.SanitizeCfiCrossDso) {
546     CodeGenFunction(*this).EmitCfiCheckFail();
547     CodeGenFunction(*this).EmitCfiCheckStub();
548   }
549   emitAtAvailableLinkGuard();
550   if (Context.getTargetInfo().getTriple().isWasm() &&
551       !Context.getTargetInfo().getTriple().isOSEmscripten()) {
552     EmitMainVoidAlias();
553   }
554 
555   // Emit reference of __amdgpu_device_library_preserve_asan_functions to
556   // preserve ASAN functions in bitcode libraries.
557   if (LangOpts.Sanitize.has(SanitizerKind::Address) && getTriple().isAMDGPU()) {
558     auto *FT = llvm::FunctionType::get(VoidTy, {});
559     auto *F = llvm::Function::Create(
560         FT, llvm::GlobalValue::ExternalLinkage,
561         "__amdgpu_device_library_preserve_asan_functions", &getModule());
562     auto *Var = new llvm::GlobalVariable(
563         getModule(), FT->getPointerTo(),
564         /*isConstant=*/true, llvm::GlobalValue::WeakAnyLinkage, F,
565         "__amdgpu_device_library_preserve_asan_functions_ptr", nullptr,
566         llvm::GlobalVariable::NotThreadLocal);
567     addCompilerUsedGlobal(Var);
568     getModule().addModuleFlag(llvm::Module::Override, "amdgpu_hostcall", 1);
569   }
570 
571   emitLLVMUsed();
572   if (SanStats)
573     SanStats->finish();
574 
575   if (CodeGenOpts.Autolink &&
576       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
577     EmitModuleLinkOptions();
578   }
579 
580   // On ELF we pass the dependent library specifiers directly to the linker
581   // without manipulating them. This is in contrast to other platforms where
582   // they are mapped to a specific linker option by the compiler. This
583   // difference is a result of the greater variety of ELF linkers and the fact
584   // that ELF linkers tend to handle libraries in a more complicated fashion
585   // than on other platforms. This forces us to defer handling the dependent
586   // libs to the linker.
587   //
588   // CUDA/HIP device and host libraries are different. Currently there is no
589   // way to differentiate dependent libraries for host or device. Existing
590   // usage of #pragma comment(lib, *) is intended for host libraries on
591   // Windows. Therefore emit llvm.dependent-libraries only for host.
592   if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
593     auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
594     for (auto *MD : ELFDependentLibraries)
595       NMD->addOperand(MD);
596   }
597 
598   // Record mregparm value now so it is visible through rest of codegen.
599   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
600     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
601                               CodeGenOpts.NumRegisterParameters);
602 
603   if (CodeGenOpts.DwarfVersion) {
604     getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version",
605                               CodeGenOpts.DwarfVersion);
606   }
607 
608   if (CodeGenOpts.Dwarf64)
609     getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1);
610 
611   if (Context.getLangOpts().SemanticInterposition)
612     // Require various optimization to respect semantic interposition.
613     getModule().setSemanticInterposition(1);
614 
615   if (CodeGenOpts.EmitCodeView) {
616     // Indicate that we want CodeView in the metadata.
617     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
618   }
619   if (CodeGenOpts.CodeViewGHash) {
620     getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
621   }
622   if (CodeGenOpts.ControlFlowGuard) {
623     // Function ID tables and checks for Control Flow Guard (cfguard=2).
624     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
625   } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
626     // Function ID tables for Control Flow Guard (cfguard=1).
627     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
628   }
629   if (CodeGenOpts.EHContGuard) {
630     // Function ID tables for EH Continuation Guard.
631     getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1);
632   }
633   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
634     // We don't support LTO with 2 with different StrictVTablePointers
635     // FIXME: we could support it by stripping all the information introduced
636     // by StrictVTablePointers.
637 
638     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
639 
640     llvm::Metadata *Ops[2] = {
641               llvm::MDString::get(VMContext, "StrictVTablePointers"),
642               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
643                   llvm::Type::getInt32Ty(VMContext), 1))};
644 
645     getModule().addModuleFlag(llvm::Module::Require,
646                               "StrictVTablePointersRequirement",
647                               llvm::MDNode::get(VMContext, Ops));
648   }
649   if (getModuleDebugInfo())
650     // We support a single version in the linked module. The LLVM
651     // parser will drop debug info with a different version number
652     // (and warn about it, too).
653     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
654                               llvm::DEBUG_METADATA_VERSION);
655 
656   // We need to record the widths of enums and wchar_t, so that we can generate
657   // the correct build attributes in the ARM backend. wchar_size is also used by
658   // TargetLibraryInfo.
659   uint64_t WCharWidth =
660       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
661   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
662 
663   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
664   if (   Arch == llvm::Triple::arm
665       || Arch == llvm::Triple::armeb
666       || Arch == llvm::Triple::thumb
667       || Arch == llvm::Triple::thumbeb) {
668     // The minimum width of an enum in bytes
669     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
670     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
671   }
672 
673   if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) {
674     StringRef ABIStr = Target.getABI();
675     llvm::LLVMContext &Ctx = TheModule.getContext();
676     getModule().addModuleFlag(llvm::Module::Error, "target-abi",
677                               llvm::MDString::get(Ctx, ABIStr));
678   }
679 
680   if (CodeGenOpts.SanitizeCfiCrossDso) {
681     // Indicate that we want cross-DSO control flow integrity checks.
682     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
683   }
684 
685   if (CodeGenOpts.WholeProgramVTables) {
686     // Indicate whether VFE was enabled for this module, so that the
687     // vcall_visibility metadata added under whole program vtables is handled
688     // appropriately in the optimizer.
689     getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim",
690                               CodeGenOpts.VirtualFunctionElimination);
691   }
692 
693   if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
694     getModule().addModuleFlag(llvm::Module::Override,
695                               "CFI Canonical Jump Tables",
696                               CodeGenOpts.SanitizeCfiCanonicalJumpTables);
697   }
698 
699   if (CodeGenOpts.CFProtectionReturn &&
700       Target.checkCFProtectionReturnSupported(getDiags())) {
701     // Indicate that we want to instrument return control flow protection.
702     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return",
703                               1);
704   }
705 
706   if (CodeGenOpts.CFProtectionBranch &&
707       Target.checkCFProtectionBranchSupported(getDiags())) {
708     // Indicate that we want to instrument branch control flow protection.
709     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch",
710                               1);
711   }
712 
713   if (Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 ||
714       Arch == llvm::Triple::aarch64_be) {
715     getModule().addModuleFlag(llvm::Module::Error,
716                               "branch-target-enforcement",
717                               LangOpts.BranchTargetEnforcement);
718 
719     getModule().addModuleFlag(llvm::Module::Error, "sign-return-address",
720                               LangOpts.hasSignReturnAddress());
721 
722     getModule().addModuleFlag(llvm::Module::Error, "sign-return-address-all",
723                               LangOpts.isSignReturnAddressScopeAll());
724 
725     getModule().addModuleFlag(llvm::Module::Error,
726                               "sign-return-address-with-bkey",
727                               !LangOpts.isSignReturnAddressWithAKey());
728   }
729 
730   if (!CodeGenOpts.MemoryProfileOutput.empty()) {
731     llvm::LLVMContext &Ctx = TheModule.getContext();
732     getModule().addModuleFlag(
733         llvm::Module::Error, "MemProfProfileFilename",
734         llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput));
735   }
736 
737   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
738     // Indicate whether __nvvm_reflect should be configured to flush denormal
739     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
740     // property.)
741     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
742                               CodeGenOpts.FP32DenormalMode.Output !=
743                                   llvm::DenormalMode::IEEE);
744   }
745 
746   if (LangOpts.EHAsynch)
747     getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1);
748 
749   // Indicate whether this Module was compiled with -fopenmp
750   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
751     getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP);
752   if (getLangOpts().OpenMPIsDevice)
753     getModule().addModuleFlag(llvm::Module::Max, "openmp-device",
754                               LangOpts.OpenMP);
755 
756   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
757   if (LangOpts.OpenCL) {
758     EmitOpenCLMetadata();
759     // Emit SPIR version.
760     if (getTriple().isSPIR()) {
761       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
762       // opencl.spir.version named metadata.
763       // C++ for OpenCL has a distinct mapping for version compatibility with
764       // OpenCL.
765       auto Version = LangOpts.getOpenCLCompatibleVersion();
766       llvm::Metadata *SPIRVerElts[] = {
767           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
768               Int32Ty, Version / 100)),
769           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
770               Int32Ty, (Version / 100 > 1) ? 0 : 2))};
771       llvm::NamedMDNode *SPIRVerMD =
772           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
773       llvm::LLVMContext &Ctx = TheModule.getContext();
774       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
775     }
776   }
777 
778   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
779     assert(PLevel < 3 && "Invalid PIC Level");
780     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
781     if (Context.getLangOpts().PIE)
782       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
783   }
784 
785   if (getCodeGenOpts().CodeModel.size() > 0) {
786     unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
787                   .Case("tiny", llvm::CodeModel::Tiny)
788                   .Case("small", llvm::CodeModel::Small)
789                   .Case("kernel", llvm::CodeModel::Kernel)
790                   .Case("medium", llvm::CodeModel::Medium)
791                   .Case("large", llvm::CodeModel::Large)
792                   .Default(~0u);
793     if (CM != ~0u) {
794       llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
795       getModule().setCodeModel(codeModel);
796     }
797   }
798 
799   if (CodeGenOpts.NoPLT)
800     getModule().setRtLibUseGOT();
801   if (CodeGenOpts.UnwindTables)
802     getModule().setUwtable();
803 
804   switch (CodeGenOpts.getFramePointer()) {
805   case CodeGenOptions::FramePointerKind::None:
806     // 0 ("none") is the default.
807     break;
808   case CodeGenOptions::FramePointerKind::NonLeaf:
809     getModule().setFramePointer(llvm::FramePointerKind::NonLeaf);
810     break;
811   case CodeGenOptions::FramePointerKind::All:
812     getModule().setFramePointer(llvm::FramePointerKind::All);
813     break;
814   }
815 
816   SimplifyPersonality();
817 
818   if (getCodeGenOpts().EmitDeclMetadata)
819     EmitDeclMetadata();
820 
821   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
822     EmitCoverageFile();
823 
824   if (CGDebugInfo *DI = getModuleDebugInfo())
825     DI->finalize();
826 
827   if (getCodeGenOpts().EmitVersionIdentMetadata)
828     EmitVersionIdentMetadata();
829 
830   if (!getCodeGenOpts().RecordCommandLine.empty())
831     EmitCommandLineMetadata();
832 
833   if (!getCodeGenOpts().StackProtectorGuard.empty())
834     getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard);
835   if (!getCodeGenOpts().StackProtectorGuardReg.empty())
836     getModule().setStackProtectorGuardReg(
837         getCodeGenOpts().StackProtectorGuardReg);
838   if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX)
839     getModule().setStackProtectorGuardOffset(
840         getCodeGenOpts().StackProtectorGuardOffset);
841   if (getCodeGenOpts().StackAlignment)
842     getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment);
843   if (getCodeGenOpts().SkipRaxSetup)
844     getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1);
845 
846   getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames);
847 
848   EmitBackendOptionsMetadata(getCodeGenOpts());
849 
850   // Set visibility from DLL storage class
851   // We do this at the end of LLVM IR generation; after any operation
852   // that might affect the DLL storage class or the visibility, and
853   // before anything that might act on these.
854   setVisibilityFromDLLStorageClass(LangOpts, getModule());
855 }
856 
857 void CodeGenModule::EmitOpenCLMetadata() {
858   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
859   // opencl.ocl.version named metadata node.
860   // C++ for OpenCL has a distinct mapping for versions compatibile with OpenCL.
861   auto Version = LangOpts.getOpenCLCompatibleVersion();
862   llvm::Metadata *OCLVerElts[] = {
863       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
864           Int32Ty, Version / 100)),
865       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
866           Int32Ty, (Version % 100) / 10))};
867   llvm::NamedMDNode *OCLVerMD =
868       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
869   llvm::LLVMContext &Ctx = TheModule.getContext();
870   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
871 }
872 
873 void CodeGenModule::EmitBackendOptionsMetadata(
874     const CodeGenOptions CodeGenOpts) {
875   switch (getTriple().getArch()) {
876   default:
877     break;
878   case llvm::Triple::riscv32:
879   case llvm::Triple::riscv64:
880     getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit",
881                               CodeGenOpts.SmallDataLimit);
882     break;
883   }
884 }
885 
886 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
887   // Make sure that this type is translated.
888   Types.UpdateCompletedType(TD);
889 }
890 
891 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
892   // Make sure that this type is translated.
893   Types.RefreshTypeCacheForClass(RD);
894 }
895 
896 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
897   if (!TBAA)
898     return nullptr;
899   return TBAA->getTypeInfo(QTy);
900 }
901 
902 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
903   if (!TBAA)
904     return TBAAAccessInfo();
905   if (getLangOpts().CUDAIsDevice) {
906     // As CUDA builtin surface/texture types are replaced, skip generating TBAA
907     // access info.
908     if (AccessType->isCUDADeviceBuiltinSurfaceType()) {
909       if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() !=
910           nullptr)
911         return TBAAAccessInfo();
912     } else if (AccessType->isCUDADeviceBuiltinTextureType()) {
913       if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() !=
914           nullptr)
915         return TBAAAccessInfo();
916     }
917   }
918   return TBAA->getAccessInfo(AccessType);
919 }
920 
921 TBAAAccessInfo
922 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
923   if (!TBAA)
924     return TBAAAccessInfo();
925   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
926 }
927 
928 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
929   if (!TBAA)
930     return nullptr;
931   return TBAA->getTBAAStructInfo(QTy);
932 }
933 
934 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
935   if (!TBAA)
936     return nullptr;
937   return TBAA->getBaseTypeInfo(QTy);
938 }
939 
940 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
941   if (!TBAA)
942     return nullptr;
943   return TBAA->getAccessTagInfo(Info);
944 }
945 
946 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
947                                                    TBAAAccessInfo TargetInfo) {
948   if (!TBAA)
949     return TBAAAccessInfo();
950   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
951 }
952 
953 TBAAAccessInfo
954 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
955                                                    TBAAAccessInfo InfoB) {
956   if (!TBAA)
957     return TBAAAccessInfo();
958   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
959 }
960 
961 TBAAAccessInfo
962 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
963                                               TBAAAccessInfo SrcInfo) {
964   if (!TBAA)
965     return TBAAAccessInfo();
966   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
967 }
968 
969 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
970                                                 TBAAAccessInfo TBAAInfo) {
971   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
972     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
973 }
974 
975 void CodeGenModule::DecorateInstructionWithInvariantGroup(
976     llvm::Instruction *I, const CXXRecordDecl *RD) {
977   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
978                  llvm::MDNode::get(getLLVMContext(), {}));
979 }
980 
981 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
982   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
983   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
984 }
985 
986 /// ErrorUnsupported - Print out an error that codegen doesn't support the
987 /// specified stmt yet.
988 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
989   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
990                                                "cannot compile this %0 yet");
991   std::string Msg = Type;
992   getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
993       << Msg << S->getSourceRange();
994 }
995 
996 /// ErrorUnsupported - Print out an error that codegen doesn't support the
997 /// specified decl yet.
998 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
999   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1000                                                "cannot compile this %0 yet");
1001   std::string Msg = Type;
1002   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
1003 }
1004 
1005 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
1006   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
1007 }
1008 
1009 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
1010                                         const NamedDecl *D) const {
1011   if (GV->hasDLLImportStorageClass())
1012     return;
1013   // Internal definitions always have default visibility.
1014   if (GV->hasLocalLinkage()) {
1015     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1016     return;
1017   }
1018   if (!D)
1019     return;
1020   // Set visibility for definitions, and for declarations if requested globally
1021   // or set explicitly.
1022   LinkageInfo LV = D->getLinkageAndVisibility();
1023   if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
1024       !GV->isDeclarationForLinker())
1025     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
1026 }
1027 
1028 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
1029                                  llvm::GlobalValue *GV) {
1030   if (GV->hasLocalLinkage())
1031     return true;
1032 
1033   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
1034     return true;
1035 
1036   // DLLImport explicitly marks the GV as external.
1037   if (GV->hasDLLImportStorageClass())
1038     return false;
1039 
1040   const llvm::Triple &TT = CGM.getTriple();
1041   if (TT.isWindowsGNUEnvironment()) {
1042     // In MinGW, variables without DLLImport can still be automatically
1043     // imported from a DLL by the linker; don't mark variables that
1044     // potentially could come from another DLL as DSO local.
1045 
1046     // With EmulatedTLS, TLS variables can be autoimported from other DLLs
1047     // (and this actually happens in the public interface of libstdc++), so
1048     // such variables can't be marked as DSO local. (Native TLS variables
1049     // can't be dllimported at all, though.)
1050     if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
1051         (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS))
1052       return false;
1053   }
1054 
1055   // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
1056   // remain unresolved in the link, they can be resolved to zero, which is
1057   // outside the current DSO.
1058   if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
1059     return false;
1060 
1061   // Every other GV is local on COFF.
1062   // Make an exception for windows OS in the triple: Some firmware builds use
1063   // *-win32-macho triples. This (accidentally?) produced windows relocations
1064   // without GOT tables in older clang versions; Keep this behaviour.
1065   // FIXME: even thread local variables?
1066   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
1067     return true;
1068 
1069   // Only handle COFF and ELF for now.
1070   if (!TT.isOSBinFormatELF())
1071     return false;
1072 
1073   // If this is not an executable, don't assume anything is local.
1074   const auto &CGOpts = CGM.getCodeGenOpts();
1075   llvm::Reloc::Model RM = CGOpts.RelocationModel;
1076   const auto &LOpts = CGM.getLangOpts();
1077   if (RM != llvm::Reloc::Static && !LOpts.PIE) {
1078     // On ELF, if -fno-semantic-interposition is specified and the target
1079     // supports local aliases, there will be neither CC1
1080     // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set
1081     // dso_local on the function if using a local alias is preferable (can avoid
1082     // PLT indirection).
1083     if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias()))
1084       return false;
1085     return !(CGM.getLangOpts().SemanticInterposition ||
1086              CGM.getLangOpts().HalfNoSemanticInterposition);
1087   }
1088 
1089   // A definition cannot be preempted from an executable.
1090   if (!GV->isDeclarationForLinker())
1091     return true;
1092 
1093   // Most PIC code sequences that assume that a symbol is local cannot produce a
1094   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
1095   // depended, it seems worth it to handle it here.
1096   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
1097     return false;
1098 
1099   // PowerPC64 prefers TOC indirection to avoid copy relocations.
1100   if (TT.isPPC64())
1101     return false;
1102 
1103   if (CGOpts.DirectAccessExternalData) {
1104     // If -fdirect-access-external-data (default for -fno-pic), set dso_local
1105     // for non-thread-local variables. If the symbol is not defined in the
1106     // executable, a copy relocation will be needed at link time. dso_local is
1107     // excluded for thread-local variables because they generally don't support
1108     // copy relocations.
1109     if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
1110       if (!Var->isThreadLocal())
1111         return true;
1112 
1113     // -fno-pic sets dso_local on a function declaration to allow direct
1114     // accesses when taking its address (similar to a data symbol). If the
1115     // function is not defined in the executable, a canonical PLT entry will be
1116     // needed at link time. -fno-direct-access-external-data can avoid the
1117     // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as
1118     // it could just cause trouble without providing perceptible benefits.
1119     if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
1120       return true;
1121   }
1122 
1123   // If we can use copy relocations we can assume it is local.
1124 
1125   // Otherwise don't assume it is local.
1126   return false;
1127 }
1128 
1129 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
1130   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
1131 }
1132 
1133 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1134                                           GlobalDecl GD) const {
1135   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
1136   // C++ destructors have a few C++ ABI specific special cases.
1137   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
1138     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
1139     return;
1140   }
1141   setDLLImportDLLExport(GV, D);
1142 }
1143 
1144 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1145                                           const NamedDecl *D) const {
1146   if (D && D->isExternallyVisible()) {
1147     if (D->hasAttr<DLLImportAttr>())
1148       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1149     else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker())
1150       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1151   }
1152 }
1153 
1154 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1155                                     GlobalDecl GD) const {
1156   setDLLImportDLLExport(GV, GD);
1157   setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
1158 }
1159 
1160 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1161                                     const NamedDecl *D) const {
1162   setDLLImportDLLExport(GV, D);
1163   setGVPropertiesAux(GV, D);
1164 }
1165 
1166 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
1167                                        const NamedDecl *D) const {
1168   setGlobalVisibility(GV, D);
1169   setDSOLocal(GV);
1170   GV->setPartition(CodeGenOpts.SymbolPartition);
1171 }
1172 
1173 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
1174   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
1175       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
1176       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
1177       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
1178       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
1179 }
1180 
1181 llvm::GlobalVariable::ThreadLocalMode
1182 CodeGenModule::GetDefaultLLVMTLSModel() const {
1183   switch (CodeGenOpts.getDefaultTLSModel()) {
1184   case CodeGenOptions::GeneralDynamicTLSModel:
1185     return llvm::GlobalVariable::GeneralDynamicTLSModel;
1186   case CodeGenOptions::LocalDynamicTLSModel:
1187     return llvm::GlobalVariable::LocalDynamicTLSModel;
1188   case CodeGenOptions::InitialExecTLSModel:
1189     return llvm::GlobalVariable::InitialExecTLSModel;
1190   case CodeGenOptions::LocalExecTLSModel:
1191     return llvm::GlobalVariable::LocalExecTLSModel;
1192   }
1193   llvm_unreachable("Invalid TLS model!");
1194 }
1195 
1196 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
1197   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
1198 
1199   llvm::GlobalValue::ThreadLocalMode TLM;
1200   TLM = GetDefaultLLVMTLSModel();
1201 
1202   // Override the TLS model if it is explicitly specified.
1203   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
1204     TLM = GetLLVMTLSModel(Attr->getModel());
1205   }
1206 
1207   GV->setThreadLocalMode(TLM);
1208 }
1209 
1210 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
1211                                           StringRef Name) {
1212   const TargetInfo &Target = CGM.getTarget();
1213   return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
1214 }
1215 
1216 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
1217                                                  const CPUSpecificAttr *Attr,
1218                                                  unsigned CPUIndex,
1219                                                  raw_ostream &Out) {
1220   // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
1221   // supported.
1222   if (Attr)
1223     Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
1224   else if (CGM.getTarget().supportsIFunc())
1225     Out << ".resolver";
1226 }
1227 
1228 static void AppendTargetMangling(const CodeGenModule &CGM,
1229                                  const TargetAttr *Attr, raw_ostream &Out) {
1230   if (Attr->isDefaultVersion())
1231     return;
1232 
1233   Out << '.';
1234   const TargetInfo &Target = CGM.getTarget();
1235   ParsedTargetAttr Info =
1236       Attr->parse([&Target](StringRef LHS, StringRef RHS) {
1237         // Multiversioning doesn't allow "no-${feature}", so we can
1238         // only have "+" prefixes here.
1239         assert(LHS.startswith("+") && RHS.startswith("+") &&
1240                "Features should always have a prefix.");
1241         return Target.multiVersionSortPriority(LHS.substr(1)) >
1242                Target.multiVersionSortPriority(RHS.substr(1));
1243       });
1244 
1245   bool IsFirst = true;
1246 
1247   if (!Info.Architecture.empty()) {
1248     IsFirst = false;
1249     Out << "arch_" << Info.Architecture;
1250   }
1251 
1252   for (StringRef Feat : Info.Features) {
1253     if (!IsFirst)
1254       Out << '_';
1255     IsFirst = false;
1256     Out << Feat.substr(1);
1257   }
1258 }
1259 
1260 // Returns true if GD is a function decl with internal linkage and
1261 // needs a unique suffix after the mangled name.
1262 static bool isUniqueInternalLinkageDecl(GlobalDecl GD,
1263                                         CodeGenModule &CGM) {
1264   const Decl *D = GD.getDecl();
1265   return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) &&
1266          (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage);
1267 }
1268 
1269 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD,
1270                                       const NamedDecl *ND,
1271                                       bool OmitMultiVersionMangling = false) {
1272   SmallString<256> Buffer;
1273   llvm::raw_svector_ostream Out(Buffer);
1274   MangleContext &MC = CGM.getCXXABI().getMangleContext();
1275   if (!CGM.getModuleNameHash().empty())
1276     MC.needsUniqueInternalLinkageNames();
1277   bool ShouldMangle = MC.shouldMangleDeclName(ND);
1278   if (ShouldMangle)
1279     MC.mangleName(GD.getWithDecl(ND), Out);
1280   else {
1281     IdentifierInfo *II = ND->getIdentifier();
1282     assert(II && "Attempt to mangle unnamed decl.");
1283     const auto *FD = dyn_cast<FunctionDecl>(ND);
1284 
1285     if (FD &&
1286         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1287       Out << "__regcall3__" << II->getName();
1288     } else if (FD && FD->hasAttr<CUDAGlobalAttr>() &&
1289                GD.getKernelReferenceKind() == KernelReferenceKind::Stub) {
1290       Out << "__device_stub__" << II->getName();
1291     } else {
1292       Out << II->getName();
1293     }
1294   }
1295 
1296   // Check if the module name hash should be appended for internal linkage
1297   // symbols.   This should come before multi-version target suffixes are
1298   // appended. This is to keep the name and module hash suffix of the
1299   // internal linkage function together.  The unique suffix should only be
1300   // added when name mangling is done to make sure that the final name can
1301   // be properly demangled.  For example, for C functions without prototypes,
1302   // name mangling is not done and the unique suffix should not be appeneded
1303   // then.
1304   if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) {
1305     assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames &&
1306            "Hash computed when not explicitly requested");
1307     Out << CGM.getModuleNameHash();
1308   }
1309 
1310   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1311     if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1312       switch (FD->getMultiVersionKind()) {
1313       case MultiVersionKind::CPUDispatch:
1314       case MultiVersionKind::CPUSpecific:
1315         AppendCPUSpecificCPUDispatchMangling(CGM,
1316                                              FD->getAttr<CPUSpecificAttr>(),
1317                                              GD.getMultiVersionIndex(), Out);
1318         break;
1319       case MultiVersionKind::Target:
1320         AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
1321         break;
1322       case MultiVersionKind::None:
1323         llvm_unreachable("None multiversion type isn't valid here");
1324       }
1325     }
1326 
1327   // Make unique name for device side static file-scope variable for HIP.
1328   if (CGM.getContext().shouldExternalizeStaticVar(ND) &&
1329       CGM.getLangOpts().GPURelocatableDeviceCode &&
1330       CGM.getLangOpts().CUDAIsDevice && !CGM.getLangOpts().CUID.empty())
1331     CGM.printPostfixForExternalizedStaticVar(Out);
1332   return std::string(Out.str());
1333 }
1334 
1335 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1336                                             const FunctionDecl *FD) {
1337   if (!FD->isMultiVersion())
1338     return;
1339 
1340   // Get the name of what this would be without the 'target' attribute.  This
1341   // allows us to lookup the version that was emitted when this wasn't a
1342   // multiversion function.
1343   std::string NonTargetName =
1344       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1345   GlobalDecl OtherGD;
1346   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1347     assert(OtherGD.getCanonicalDecl()
1348                .getDecl()
1349                ->getAsFunction()
1350                ->isMultiVersion() &&
1351            "Other GD should now be a multiversioned function");
1352     // OtherFD is the version of this function that was mangled BEFORE
1353     // becoming a MultiVersion function.  It potentially needs to be updated.
1354     const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1355                                       .getDecl()
1356                                       ->getAsFunction()
1357                                       ->getMostRecentDecl();
1358     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1359     // This is so that if the initial version was already the 'default'
1360     // version, we don't try to update it.
1361     if (OtherName != NonTargetName) {
1362       // Remove instead of erase, since others may have stored the StringRef
1363       // to this.
1364       const auto ExistingRecord = Manglings.find(NonTargetName);
1365       if (ExistingRecord != std::end(Manglings))
1366         Manglings.remove(&(*ExistingRecord));
1367       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1368       MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first();
1369       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1370         Entry->setName(OtherName);
1371     }
1372   }
1373 }
1374 
1375 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1376   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1377 
1378   // Some ABIs don't have constructor variants.  Make sure that base and
1379   // complete constructors get mangled the same.
1380   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1381     if (!getTarget().getCXXABI().hasConstructorVariants()) {
1382       CXXCtorType OrigCtorType = GD.getCtorType();
1383       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
1384       if (OrigCtorType == Ctor_Base)
1385         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1386     }
1387   }
1388 
1389   // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a
1390   // static device variable depends on whether the variable is referenced by
1391   // a host or device host function. Therefore the mangled name cannot be
1392   // cached.
1393   if (!LangOpts.CUDAIsDevice ||
1394       !getContext().mayExternalizeStaticVar(GD.getDecl())) {
1395     auto FoundName = MangledDeclNames.find(CanonicalGD);
1396     if (FoundName != MangledDeclNames.end())
1397       return FoundName->second;
1398   }
1399 
1400   // Keep the first result in the case of a mangling collision.
1401   const auto *ND = cast<NamedDecl>(GD.getDecl());
1402   std::string MangledName = getMangledNameImpl(*this, GD, ND);
1403 
1404   // Ensure either we have different ABIs between host and device compilations,
1405   // says host compilation following MSVC ABI but device compilation follows
1406   // Itanium C++ ABI or, if they follow the same ABI, kernel names after
1407   // mangling should be the same after name stubbing. The later checking is
1408   // very important as the device kernel name being mangled in host-compilation
1409   // is used to resolve the device binaries to be executed. Inconsistent naming
1410   // result in undefined behavior. Even though we cannot check that naming
1411   // directly between host- and device-compilations, the host- and
1412   // device-mangling in host compilation could help catching certain ones.
1413   assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() ||
1414          getLangOpts().CUDAIsDevice ||
1415          (getContext().getAuxTargetInfo() &&
1416           (getContext().getAuxTargetInfo()->getCXXABI() !=
1417            getContext().getTargetInfo().getCXXABI())) ||
1418          getCUDARuntime().getDeviceSideName(ND) ==
1419              getMangledNameImpl(
1420                  *this,
1421                  GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel),
1422                  ND));
1423 
1424   auto Result = Manglings.insert(std::make_pair(MangledName, GD));
1425   return MangledDeclNames[CanonicalGD] = Result.first->first();
1426 }
1427 
1428 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
1429                                              const BlockDecl *BD) {
1430   MangleContext &MangleCtx = getCXXABI().getMangleContext();
1431   const Decl *D = GD.getDecl();
1432 
1433   SmallString<256> Buffer;
1434   llvm::raw_svector_ostream Out(Buffer);
1435   if (!D)
1436     MangleCtx.mangleGlobalBlock(BD,
1437       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1438   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1439     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1440   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1441     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1442   else
1443     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1444 
1445   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1446   return Result.first->first();
1447 }
1448 
1449 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1450   return getModule().getNamedValue(Name);
1451 }
1452 
1453 /// AddGlobalCtor - Add a function to the list that will be called before
1454 /// main() runs.
1455 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1456                                   llvm::Constant *AssociatedData) {
1457   // FIXME: Type coercion of void()* types.
1458   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
1459 }
1460 
1461 /// AddGlobalDtor - Add a function to the list that will be called
1462 /// when the module is unloaded.
1463 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority,
1464                                   bool IsDtorAttrFunc) {
1465   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit &&
1466       (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) {
1467     DtorsUsingAtExit[Priority].push_back(Dtor);
1468     return;
1469   }
1470 
1471   // FIXME: Type coercion of void()* types.
1472   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
1473 }
1474 
1475 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1476   if (Fns.empty()) return;
1477 
1478   // Ctor function type is void()*.
1479   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1480   llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
1481       TheModule.getDataLayout().getProgramAddressSpace());
1482 
1483   // Get the type of a ctor entry, { i32, void ()*, i8* }.
1484   llvm::StructType *CtorStructTy = llvm::StructType::get(
1485       Int32Ty, CtorPFTy, VoidPtrTy);
1486 
1487   // Construct the constructor and destructor arrays.
1488   ConstantInitBuilder builder(*this);
1489   auto ctors = builder.beginArray(CtorStructTy);
1490   for (const auto &I : Fns) {
1491     auto ctor = ctors.beginStruct(CtorStructTy);
1492     ctor.addInt(Int32Ty, I.Priority);
1493     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1494     if (I.AssociatedData)
1495       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1496     else
1497       ctor.addNullPointer(VoidPtrTy);
1498     ctor.finishAndAddTo(ctors);
1499   }
1500 
1501   auto list =
1502     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1503                                 /*constant*/ false,
1504                                 llvm::GlobalValue::AppendingLinkage);
1505 
1506   // The LTO linker doesn't seem to like it when we set an alignment
1507   // on appending variables.  Take it off as a workaround.
1508   list->setAlignment(llvm::None);
1509 
1510   Fns.clear();
1511 }
1512 
1513 llvm::GlobalValue::LinkageTypes
1514 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1515   const auto *D = cast<FunctionDecl>(GD.getDecl());
1516 
1517   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1518 
1519   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
1520     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
1521 
1522   if (isa<CXXConstructorDecl>(D) &&
1523       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1524       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1525     // Our approach to inheriting constructors is fundamentally different from
1526     // that used by the MS ABI, so keep our inheriting constructor thunks
1527     // internal rather than trying to pick an unambiguous mangling for them.
1528     return llvm::GlobalValue::InternalLinkage;
1529   }
1530 
1531   return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false);
1532 }
1533 
1534 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1535   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1536   if (!MDS) return nullptr;
1537 
1538   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1539 }
1540 
1541 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
1542                                               const CGFunctionInfo &Info,
1543                                               llvm::Function *F, bool IsThunk) {
1544   unsigned CallingConv;
1545   llvm::AttributeList PAL;
1546   ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv,
1547                          /*AttrOnCallSite=*/false, IsThunk);
1548   F->setAttributes(PAL);
1549   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1550 }
1551 
1552 static void removeImageAccessQualifier(std::string& TyName) {
1553   std::string ReadOnlyQual("__read_only");
1554   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
1555   if (ReadOnlyPos != std::string::npos)
1556     // "+ 1" for the space after access qualifier.
1557     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
1558   else {
1559     std::string WriteOnlyQual("__write_only");
1560     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
1561     if (WriteOnlyPos != std::string::npos)
1562       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
1563     else {
1564       std::string ReadWriteQual("__read_write");
1565       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
1566       if (ReadWritePos != std::string::npos)
1567         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
1568     }
1569   }
1570 }
1571 
1572 // Returns the address space id that should be produced to the
1573 // kernel_arg_addr_space metadata. This is always fixed to the ids
1574 // as specified in the SPIR 2.0 specification in order to differentiate
1575 // for example in clGetKernelArgInfo() implementation between the address
1576 // spaces with targets without unique mapping to the OpenCL address spaces
1577 // (basically all single AS CPUs).
1578 static unsigned ArgInfoAddressSpace(LangAS AS) {
1579   switch (AS) {
1580   case LangAS::opencl_global:
1581     return 1;
1582   case LangAS::opencl_constant:
1583     return 2;
1584   case LangAS::opencl_local:
1585     return 3;
1586   case LangAS::opencl_generic:
1587     return 4; // Not in SPIR 2.0 specs.
1588   case LangAS::opencl_global_device:
1589     return 5;
1590   case LangAS::opencl_global_host:
1591     return 6;
1592   default:
1593     return 0; // Assume private.
1594   }
1595 }
1596 
1597 void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn,
1598                                          const FunctionDecl *FD,
1599                                          CodeGenFunction *CGF) {
1600   assert(((FD && CGF) || (!FD && !CGF)) &&
1601          "Incorrect use - FD and CGF should either be both null or not!");
1602   // Create MDNodes that represent the kernel arg metadata.
1603   // Each MDNode is a list in the form of "key", N number of values which is
1604   // the same number of values as their are kernel arguments.
1605 
1606   const PrintingPolicy &Policy = Context.getPrintingPolicy();
1607 
1608   // MDNode for the kernel argument address space qualifiers.
1609   SmallVector<llvm::Metadata *, 8> addressQuals;
1610 
1611   // MDNode for the kernel argument access qualifiers (images only).
1612   SmallVector<llvm::Metadata *, 8> accessQuals;
1613 
1614   // MDNode for the kernel argument type names.
1615   SmallVector<llvm::Metadata *, 8> argTypeNames;
1616 
1617   // MDNode for the kernel argument base type names.
1618   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
1619 
1620   // MDNode for the kernel argument type qualifiers.
1621   SmallVector<llvm::Metadata *, 8> argTypeQuals;
1622 
1623   // MDNode for the kernel argument names.
1624   SmallVector<llvm::Metadata *, 8> argNames;
1625 
1626   if (FD && CGF)
1627     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
1628       const ParmVarDecl *parm = FD->getParamDecl(i);
1629       QualType ty = parm->getType();
1630       std::string typeQuals;
1631 
1632       // Get image and pipe access qualifier:
1633       if (ty->isImageType() || ty->isPipeType()) {
1634         const Decl *PDecl = parm;
1635         if (auto *TD = dyn_cast<TypedefType>(ty))
1636           PDecl = TD->getDecl();
1637         const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
1638         if (A && A->isWriteOnly())
1639           accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
1640         else if (A && A->isReadWrite())
1641           accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
1642         else
1643           accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
1644       } else
1645         accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
1646 
1647       // Get argument name.
1648       argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
1649 
1650       auto getTypeSpelling = [&](QualType Ty) {
1651         auto typeName = Ty.getUnqualifiedType().getAsString(Policy);
1652 
1653         if (Ty.isCanonical()) {
1654           StringRef typeNameRef = typeName;
1655           // Turn "unsigned type" to "utype"
1656           if (typeNameRef.consume_front("unsigned "))
1657             return std::string("u") + typeNameRef.str();
1658           if (typeNameRef.consume_front("signed "))
1659             return typeNameRef.str();
1660         }
1661 
1662         return typeName;
1663       };
1664 
1665       if (ty->isPointerType()) {
1666         QualType pointeeTy = ty->getPointeeType();
1667 
1668         // Get address qualifier.
1669         addressQuals.push_back(
1670             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
1671                 ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
1672 
1673         // Get argument type name.
1674         std::string typeName = getTypeSpelling(pointeeTy) + "*";
1675         std::string baseTypeName =
1676             getTypeSpelling(pointeeTy.getCanonicalType()) + "*";
1677         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1678         argBaseTypeNames.push_back(
1679             llvm::MDString::get(VMContext, baseTypeName));
1680 
1681         // Get argument type qualifiers:
1682         if (ty.isRestrictQualified())
1683           typeQuals = "restrict";
1684         if (pointeeTy.isConstQualified() ||
1685             (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
1686           typeQuals += typeQuals.empty() ? "const" : " const";
1687         if (pointeeTy.isVolatileQualified())
1688           typeQuals += typeQuals.empty() ? "volatile" : " volatile";
1689       } else {
1690         uint32_t AddrSpc = 0;
1691         bool isPipe = ty->isPipeType();
1692         if (ty->isImageType() || isPipe)
1693           AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
1694 
1695         addressQuals.push_back(
1696             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
1697 
1698         // Get argument type name.
1699         ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty;
1700         std::string typeName = getTypeSpelling(ty);
1701         std::string baseTypeName = getTypeSpelling(ty.getCanonicalType());
1702 
1703         // Remove access qualifiers on images
1704         // (as they are inseparable from type in clang implementation,
1705         // but OpenCL spec provides a special query to get access qualifier
1706         // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
1707         if (ty->isImageType()) {
1708           removeImageAccessQualifier(typeName);
1709           removeImageAccessQualifier(baseTypeName);
1710         }
1711 
1712         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1713         argBaseTypeNames.push_back(
1714             llvm::MDString::get(VMContext, baseTypeName));
1715 
1716         if (isPipe)
1717           typeQuals = "pipe";
1718       }
1719       argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
1720     }
1721 
1722   Fn->setMetadata("kernel_arg_addr_space",
1723                   llvm::MDNode::get(VMContext, addressQuals));
1724   Fn->setMetadata("kernel_arg_access_qual",
1725                   llvm::MDNode::get(VMContext, accessQuals));
1726   Fn->setMetadata("kernel_arg_type",
1727                   llvm::MDNode::get(VMContext, argTypeNames));
1728   Fn->setMetadata("kernel_arg_base_type",
1729                   llvm::MDNode::get(VMContext, argBaseTypeNames));
1730   Fn->setMetadata("kernel_arg_type_qual",
1731                   llvm::MDNode::get(VMContext, argTypeQuals));
1732   if (getCodeGenOpts().EmitOpenCLArgMetadata)
1733     Fn->setMetadata("kernel_arg_name",
1734                     llvm::MDNode::get(VMContext, argNames));
1735 }
1736 
1737 /// Determines whether the language options require us to model
1738 /// unwind exceptions.  We treat -fexceptions as mandating this
1739 /// except under the fragile ObjC ABI with only ObjC exceptions
1740 /// enabled.  This means, for example, that C with -fexceptions
1741 /// enables this.
1742 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1743   // If exceptions are completely disabled, obviously this is false.
1744   if (!LangOpts.Exceptions) return false;
1745 
1746   // If C++ exceptions are enabled, this is true.
1747   if (LangOpts.CXXExceptions) return true;
1748 
1749   // If ObjC exceptions are enabled, this depends on the ABI.
1750   if (LangOpts.ObjCExceptions) {
1751     return LangOpts.ObjCRuntime.hasUnwindExceptions();
1752   }
1753 
1754   return true;
1755 }
1756 
1757 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
1758                                                       const CXXMethodDecl *MD) {
1759   // Check that the type metadata can ever actually be used by a call.
1760   if (!CGM.getCodeGenOpts().LTOUnit ||
1761       !CGM.HasHiddenLTOVisibility(MD->getParent()))
1762     return false;
1763 
1764   // Only functions whose address can be taken with a member function pointer
1765   // need this sort of type metadata.
1766   return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) &&
1767          !isa<CXXDestructorDecl>(MD);
1768 }
1769 
1770 std::vector<const CXXRecordDecl *>
1771 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
1772   llvm::SetVector<const CXXRecordDecl *> MostBases;
1773 
1774   std::function<void (const CXXRecordDecl *)> CollectMostBases;
1775   CollectMostBases = [&](const CXXRecordDecl *RD) {
1776     if (RD->getNumBases() == 0)
1777       MostBases.insert(RD);
1778     for (const CXXBaseSpecifier &B : RD->bases())
1779       CollectMostBases(B.getType()->getAsCXXRecordDecl());
1780   };
1781   CollectMostBases(RD);
1782   return MostBases.takeVector();
1783 }
1784 
1785 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1786                                                            llvm::Function *F) {
1787   llvm::AttrBuilder B;
1788 
1789   if (CodeGenOpts.UnwindTables)
1790     B.addAttribute(llvm::Attribute::UWTable);
1791 
1792   if (CodeGenOpts.StackClashProtector)
1793     B.addAttribute("probe-stack", "inline-asm");
1794 
1795   if (!hasUnwindExceptions(LangOpts))
1796     B.addAttribute(llvm::Attribute::NoUnwind);
1797 
1798   if (!D || !D->hasAttr<NoStackProtectorAttr>()) {
1799     if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1800       B.addAttribute(llvm::Attribute::StackProtect);
1801     else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1802       B.addAttribute(llvm::Attribute::StackProtectStrong);
1803     else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1804       B.addAttribute(llvm::Attribute::StackProtectReq);
1805   }
1806 
1807   if (!D) {
1808     // If we don't have a declaration to control inlining, the function isn't
1809     // explicitly marked as alwaysinline for semantic reasons, and inlining is
1810     // disabled, mark the function as noinline.
1811     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1812         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1813       B.addAttribute(llvm::Attribute::NoInline);
1814 
1815     F->addFnAttrs(B);
1816     return;
1817   }
1818 
1819   // Track whether we need to add the optnone LLVM attribute,
1820   // starting with the default for this optimization level.
1821   bool ShouldAddOptNone =
1822       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
1823   // We can't add optnone in the following cases, it won't pass the verifier.
1824   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
1825   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
1826 
1827   // Add optnone, but do so only if the function isn't always_inline.
1828   if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
1829       !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1830     B.addAttribute(llvm::Attribute::OptimizeNone);
1831 
1832     // OptimizeNone implies noinline; we should not be inlining such functions.
1833     B.addAttribute(llvm::Attribute::NoInline);
1834 
1835     // We still need to handle naked functions even though optnone subsumes
1836     // much of their semantics.
1837     if (D->hasAttr<NakedAttr>())
1838       B.addAttribute(llvm::Attribute::Naked);
1839 
1840     // OptimizeNone wins over OptimizeForSize and MinSize.
1841     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
1842     F->removeFnAttr(llvm::Attribute::MinSize);
1843   } else if (D->hasAttr<NakedAttr>()) {
1844     // Naked implies noinline: we should not be inlining such functions.
1845     B.addAttribute(llvm::Attribute::Naked);
1846     B.addAttribute(llvm::Attribute::NoInline);
1847   } else if (D->hasAttr<NoDuplicateAttr>()) {
1848     B.addAttribute(llvm::Attribute::NoDuplicate);
1849   } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1850     // Add noinline if the function isn't always_inline.
1851     B.addAttribute(llvm::Attribute::NoInline);
1852   } else if (D->hasAttr<AlwaysInlineAttr>() &&
1853              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
1854     // (noinline wins over always_inline, and we can't specify both in IR)
1855     B.addAttribute(llvm::Attribute::AlwaysInline);
1856   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
1857     // If we're not inlining, then force everything that isn't always_inline to
1858     // carry an explicit noinline attribute.
1859     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
1860       B.addAttribute(llvm::Attribute::NoInline);
1861   } else {
1862     // Otherwise, propagate the inline hint attribute and potentially use its
1863     // absence to mark things as noinline.
1864     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1865       // Search function and template pattern redeclarations for inline.
1866       auto CheckForInline = [](const FunctionDecl *FD) {
1867         auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
1868           return Redecl->isInlineSpecified();
1869         };
1870         if (any_of(FD->redecls(), CheckRedeclForInline))
1871           return true;
1872         const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
1873         if (!Pattern)
1874           return false;
1875         return any_of(Pattern->redecls(), CheckRedeclForInline);
1876       };
1877       if (CheckForInline(FD)) {
1878         B.addAttribute(llvm::Attribute::InlineHint);
1879       } else if (CodeGenOpts.getInlining() ==
1880                      CodeGenOptions::OnlyHintInlining &&
1881                  !FD->isInlined() &&
1882                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1883         B.addAttribute(llvm::Attribute::NoInline);
1884       }
1885     }
1886   }
1887 
1888   // Add other optimization related attributes if we are optimizing this
1889   // function.
1890   if (!D->hasAttr<OptimizeNoneAttr>()) {
1891     if (D->hasAttr<ColdAttr>()) {
1892       if (!ShouldAddOptNone)
1893         B.addAttribute(llvm::Attribute::OptimizeForSize);
1894       B.addAttribute(llvm::Attribute::Cold);
1895     }
1896     if (D->hasAttr<HotAttr>())
1897       B.addAttribute(llvm::Attribute::Hot);
1898     if (D->hasAttr<MinSizeAttr>())
1899       B.addAttribute(llvm::Attribute::MinSize);
1900   }
1901 
1902   F->addFnAttrs(B);
1903 
1904   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
1905   if (alignment)
1906     F->setAlignment(llvm::Align(alignment));
1907 
1908   if (!D->hasAttr<AlignedAttr>())
1909     if (LangOpts.FunctionAlignment)
1910       F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
1911 
1912   // Some C++ ABIs require 2-byte alignment for member functions, in order to
1913   // reserve a bit for differentiating between virtual and non-virtual member
1914   // functions. If the current target's C++ ABI requires this and this is a
1915   // member function, set its alignment accordingly.
1916   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
1917     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
1918       F->setAlignment(llvm::Align(2));
1919   }
1920 
1921   // In the cross-dso CFI mode with canonical jump tables, we want !type
1922   // attributes on definitions only.
1923   if (CodeGenOpts.SanitizeCfiCrossDso &&
1924       CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
1925     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1926       // Skip available_externally functions. They won't be codegen'ed in the
1927       // current module anyway.
1928       if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
1929         CreateFunctionTypeMetadataForIcall(FD, F);
1930     }
1931   }
1932 
1933   // Emit type metadata on member functions for member function pointer checks.
1934   // These are only ever necessary on definitions; we're guaranteed that the
1935   // definition will be present in the LTO unit as a result of LTO visibility.
1936   auto *MD = dyn_cast<CXXMethodDecl>(D);
1937   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
1938     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
1939       llvm::Metadata *Id =
1940           CreateMetadataIdentifierForType(Context.getMemberPointerType(
1941               MD->getType(), Context.getRecordType(Base).getTypePtr()));
1942       F->addTypeMetadata(0, Id);
1943     }
1944   }
1945 }
1946 
1947 void CodeGenModule::setLLVMFunctionFEnvAttributes(const FunctionDecl *D,
1948                                                   llvm::Function *F) {
1949   if (D->hasAttr<StrictFPAttr>()) {
1950     llvm::AttrBuilder FuncAttrs;
1951     FuncAttrs.addAttribute("strictfp");
1952     F->addFnAttrs(FuncAttrs);
1953   }
1954 }
1955 
1956 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
1957   const Decl *D = GD.getDecl();
1958   if (isa_and_nonnull<NamedDecl>(D))
1959     setGVProperties(GV, GD);
1960   else
1961     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1962 
1963   if (D && D->hasAttr<UsedAttr>())
1964     addUsedOrCompilerUsedGlobal(GV);
1965 
1966   if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) {
1967     const auto *VD = cast<VarDecl>(D);
1968     if (VD->getType().isConstQualified() &&
1969         VD->getStorageDuration() == SD_Static)
1970       addUsedOrCompilerUsedGlobal(GV);
1971   }
1972 }
1973 
1974 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
1975                                                 llvm::AttrBuilder &Attrs) {
1976   // Add target-cpu and target-features attributes to functions. If
1977   // we have a decl for the function and it has a target attribute then
1978   // parse that and add it to the feature set.
1979   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
1980   StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU;
1981   std::vector<std::string> Features;
1982   const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
1983   FD = FD ? FD->getMostRecentDecl() : FD;
1984   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
1985   const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
1986   bool AddedAttr = false;
1987   if (TD || SD) {
1988     llvm::StringMap<bool> FeatureMap;
1989     getContext().getFunctionFeatureMap(FeatureMap, GD);
1990 
1991     // Produce the canonical string for this set of features.
1992     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
1993       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
1994 
1995     // Now add the target-cpu and target-features to the function.
1996     // While we populated the feature map above, we still need to
1997     // get and parse the target attribute so we can get the cpu for
1998     // the function.
1999     if (TD) {
2000       ParsedTargetAttr ParsedAttr = TD->parse();
2001       if (!ParsedAttr.Architecture.empty() &&
2002           getTarget().isValidCPUName(ParsedAttr.Architecture)) {
2003         TargetCPU = ParsedAttr.Architecture;
2004         TuneCPU = ""; // Clear the tune CPU.
2005       }
2006       if (!ParsedAttr.Tune.empty() &&
2007           getTarget().isValidCPUName(ParsedAttr.Tune))
2008         TuneCPU = ParsedAttr.Tune;
2009     }
2010   } else {
2011     // Otherwise just add the existing target cpu and target features to the
2012     // function.
2013     Features = getTarget().getTargetOpts().Features;
2014   }
2015 
2016   if (!TargetCPU.empty()) {
2017     Attrs.addAttribute("target-cpu", TargetCPU);
2018     AddedAttr = true;
2019   }
2020   if (!TuneCPU.empty()) {
2021     Attrs.addAttribute("tune-cpu", TuneCPU);
2022     AddedAttr = true;
2023   }
2024   if (!Features.empty()) {
2025     llvm::sort(Features);
2026     Attrs.addAttribute("target-features", llvm::join(Features, ","));
2027     AddedAttr = true;
2028   }
2029 
2030   return AddedAttr;
2031 }
2032 
2033 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
2034                                           llvm::GlobalObject *GO) {
2035   const Decl *D = GD.getDecl();
2036   SetCommonAttributes(GD, GO);
2037 
2038   if (D) {
2039     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
2040       if (D->hasAttr<RetainAttr>())
2041         addUsedGlobal(GV);
2042       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
2043         GV->addAttribute("bss-section", SA->getName());
2044       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
2045         GV->addAttribute("data-section", SA->getName());
2046       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
2047         GV->addAttribute("rodata-section", SA->getName());
2048       if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
2049         GV->addAttribute("relro-section", SA->getName());
2050     }
2051 
2052     if (auto *F = dyn_cast<llvm::Function>(GO)) {
2053       if (D->hasAttr<RetainAttr>())
2054         addUsedGlobal(F);
2055       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
2056         if (!D->getAttr<SectionAttr>())
2057           F->addFnAttr("implicit-section-name", SA->getName());
2058 
2059       llvm::AttrBuilder Attrs;
2060       if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
2061         // We know that GetCPUAndFeaturesAttributes will always have the
2062         // newest set, since it has the newest possible FunctionDecl, so the
2063         // new ones should replace the old.
2064         llvm::AttrBuilder RemoveAttrs;
2065         RemoveAttrs.addAttribute("target-cpu");
2066         RemoveAttrs.addAttribute("target-features");
2067         RemoveAttrs.addAttribute("tune-cpu");
2068         F->removeFnAttrs(RemoveAttrs);
2069         F->addFnAttrs(Attrs);
2070       }
2071     }
2072 
2073     if (const auto *CSA = D->getAttr<CodeSegAttr>())
2074       GO->setSection(CSA->getName());
2075     else if (const auto *SA = D->getAttr<SectionAttr>())
2076       GO->setSection(SA->getName());
2077   }
2078 
2079   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
2080 }
2081 
2082 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
2083                                                   llvm::Function *F,
2084                                                   const CGFunctionInfo &FI) {
2085   const Decl *D = GD.getDecl();
2086   SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false);
2087   SetLLVMFunctionAttributesForDefinition(D, F);
2088 
2089   F->setLinkage(llvm::Function::InternalLinkage);
2090 
2091   setNonAliasAttributes(GD, F);
2092 }
2093 
2094 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
2095   // Set linkage and visibility in case we never see a definition.
2096   LinkageInfo LV = ND->getLinkageAndVisibility();
2097   // Don't set internal linkage on declarations.
2098   // "extern_weak" is overloaded in LLVM; we probably should have
2099   // separate linkage types for this.
2100   if (isExternallyVisible(LV.getLinkage()) &&
2101       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
2102     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
2103 }
2104 
2105 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
2106                                                        llvm::Function *F) {
2107   // Only if we are checking indirect calls.
2108   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
2109     return;
2110 
2111   // Non-static class methods are handled via vtable or member function pointer
2112   // checks elsewhere.
2113   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2114     return;
2115 
2116   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
2117   F->addTypeMetadata(0, MD);
2118   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
2119 
2120   // Emit a hash-based bit set entry for cross-DSO calls.
2121   if (CodeGenOpts.SanitizeCfiCrossDso)
2122     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
2123       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
2124 }
2125 
2126 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
2127                                           bool IsIncompleteFunction,
2128                                           bool IsThunk) {
2129 
2130   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
2131     // If this is an intrinsic function, set the function's attributes
2132     // to the intrinsic's attributes.
2133     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
2134     return;
2135   }
2136 
2137   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2138 
2139   if (!IsIncompleteFunction)
2140     SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F,
2141                               IsThunk);
2142 
2143   // Add the Returned attribute for "this", except for iOS 5 and earlier
2144   // where substantial code, including the libstdc++ dylib, was compiled with
2145   // GCC and does not actually return "this".
2146   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
2147       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
2148     assert(!F->arg_empty() &&
2149            F->arg_begin()->getType()
2150              ->canLosslesslyBitCastTo(F->getReturnType()) &&
2151            "unexpected this return");
2152     F->addParamAttr(0, llvm::Attribute::Returned);
2153   }
2154 
2155   // Only a few attributes are set on declarations; these may later be
2156   // overridden by a definition.
2157 
2158   setLinkageForGV(F, FD);
2159   setGVProperties(F, FD);
2160 
2161   // Setup target-specific attributes.
2162   if (!IsIncompleteFunction && F->isDeclaration())
2163     getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
2164 
2165   if (const auto *CSA = FD->getAttr<CodeSegAttr>())
2166     F->setSection(CSA->getName());
2167   else if (const auto *SA = FD->getAttr<SectionAttr>())
2168      F->setSection(SA->getName());
2169 
2170   if (const auto *EA = FD->getAttr<ErrorAttr>()) {
2171     if (EA->isError())
2172       F->addFnAttr("dontcall-error", EA->getUserDiagnostic());
2173     else if (EA->isWarning())
2174       F->addFnAttr("dontcall-warn", EA->getUserDiagnostic());
2175   }
2176 
2177   // If we plan on emitting this inline builtin, we can't treat it as a builtin.
2178   if (FD->isInlineBuiltinDeclaration()) {
2179     const FunctionDecl *FDBody;
2180     bool HasBody = FD->hasBody(FDBody);
2181     (void)HasBody;
2182     assert(HasBody && "Inline builtin declarations should always have an "
2183                       "available body!");
2184     if (shouldEmitFunction(FDBody))
2185       F->addFnAttr(llvm::Attribute::NoBuiltin);
2186   }
2187 
2188   if (FD->isReplaceableGlobalAllocationFunction()) {
2189     // A replaceable global allocation function does not act like a builtin by
2190     // default, only if it is invoked by a new-expression or delete-expression.
2191     F->addFnAttr(llvm::Attribute::NoBuiltin);
2192   }
2193 
2194   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
2195     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2196   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
2197     if (MD->isVirtual())
2198       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2199 
2200   // Don't emit entries for function declarations in the cross-DSO mode. This
2201   // is handled with better precision by the receiving DSO. But if jump tables
2202   // are non-canonical then we need type metadata in order to produce the local
2203   // jump table.
2204   if (!CodeGenOpts.SanitizeCfiCrossDso ||
2205       !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
2206     CreateFunctionTypeMetadataForIcall(FD, F);
2207 
2208   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
2209     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
2210 
2211   if (const auto *CB = FD->getAttr<CallbackAttr>()) {
2212     // Annotate the callback behavior as metadata:
2213     //  - The callback callee (as argument number).
2214     //  - The callback payloads (as argument numbers).
2215     llvm::LLVMContext &Ctx = F->getContext();
2216     llvm::MDBuilder MDB(Ctx);
2217 
2218     // The payload indices are all but the first one in the encoding. The first
2219     // identifies the callback callee.
2220     int CalleeIdx = *CB->encoding_begin();
2221     ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
2222     F->addMetadata(llvm::LLVMContext::MD_callback,
2223                    *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
2224                                                CalleeIdx, PayloadIndices,
2225                                                /* VarArgsArePassed */ false)}));
2226   }
2227 }
2228 
2229 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
2230   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2231          "Only globals with definition can force usage.");
2232   LLVMUsed.emplace_back(GV);
2233 }
2234 
2235 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
2236   assert(!GV->isDeclaration() &&
2237          "Only globals with definition can force usage.");
2238   LLVMCompilerUsed.emplace_back(GV);
2239 }
2240 
2241 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) {
2242   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2243          "Only globals with definition can force usage.");
2244   if (getTriple().isOSBinFormatELF())
2245     LLVMCompilerUsed.emplace_back(GV);
2246   else
2247     LLVMUsed.emplace_back(GV);
2248 }
2249 
2250 static void emitUsed(CodeGenModule &CGM, StringRef Name,
2251                      std::vector<llvm::WeakTrackingVH> &List) {
2252   // Don't create llvm.used if there is no need.
2253   if (List.empty())
2254     return;
2255 
2256   // Convert List to what ConstantArray needs.
2257   SmallVector<llvm::Constant*, 8> UsedArray;
2258   UsedArray.resize(List.size());
2259   for (unsigned i = 0, e = List.size(); i != e; ++i) {
2260     UsedArray[i] =
2261         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
2262             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
2263   }
2264 
2265   if (UsedArray.empty())
2266     return;
2267   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
2268 
2269   auto *GV = new llvm::GlobalVariable(
2270       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
2271       llvm::ConstantArray::get(ATy, UsedArray), Name);
2272 
2273   GV->setSection("llvm.metadata");
2274 }
2275 
2276 void CodeGenModule::emitLLVMUsed() {
2277   emitUsed(*this, "llvm.used", LLVMUsed);
2278   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
2279 }
2280 
2281 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
2282   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
2283   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2284 }
2285 
2286 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
2287   llvm::SmallString<32> Opt;
2288   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
2289   if (Opt.empty())
2290     return;
2291   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2292   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2293 }
2294 
2295 void CodeGenModule::AddDependentLib(StringRef Lib) {
2296   auto &C = getLLVMContext();
2297   if (getTarget().getTriple().isOSBinFormatELF()) {
2298       ELFDependentLibraries.push_back(
2299         llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
2300     return;
2301   }
2302 
2303   llvm::SmallString<24> Opt;
2304   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
2305   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2306   LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
2307 }
2308 
2309 /// Add link options implied by the given module, including modules
2310 /// it depends on, using a postorder walk.
2311 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
2312                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
2313                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
2314   // Import this module's parent.
2315   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
2316     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
2317   }
2318 
2319   // Import this module's dependencies.
2320   for (Module *Import : llvm::reverse(Mod->Imports)) {
2321     if (Visited.insert(Import).second)
2322       addLinkOptionsPostorder(CGM, Import, Metadata, Visited);
2323   }
2324 
2325   // Add linker options to link against the libraries/frameworks
2326   // described by this module.
2327   llvm::LLVMContext &Context = CGM.getLLVMContext();
2328   bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
2329 
2330   // For modules that use export_as for linking, use that module
2331   // name instead.
2332   if (Mod->UseExportAsModuleLinkName)
2333     return;
2334 
2335   for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) {
2336     // Link against a framework.  Frameworks are currently Darwin only, so we
2337     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
2338     if (LL.IsFramework) {
2339       llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"),
2340                                  llvm::MDString::get(Context, LL.Library)};
2341 
2342       Metadata.push_back(llvm::MDNode::get(Context, Args));
2343       continue;
2344     }
2345 
2346     // Link against a library.
2347     if (IsELF) {
2348       llvm::Metadata *Args[2] = {
2349           llvm::MDString::get(Context, "lib"),
2350           llvm::MDString::get(Context, LL.Library),
2351       };
2352       Metadata.push_back(llvm::MDNode::get(Context, Args));
2353     } else {
2354       llvm::SmallString<24> Opt;
2355       CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt);
2356       auto *OptString = llvm::MDString::get(Context, Opt);
2357       Metadata.push_back(llvm::MDNode::get(Context, OptString));
2358     }
2359   }
2360 }
2361 
2362 void CodeGenModule::EmitModuleLinkOptions() {
2363   // Collect the set of all of the modules we want to visit to emit link
2364   // options, which is essentially the imported modules and all of their
2365   // non-explicit child modules.
2366   llvm::SetVector<clang::Module *> LinkModules;
2367   llvm::SmallPtrSet<clang::Module *, 16> Visited;
2368   SmallVector<clang::Module *, 16> Stack;
2369 
2370   // Seed the stack with imported modules.
2371   for (Module *M : ImportedModules) {
2372     // Do not add any link flags when an implementation TU of a module imports
2373     // a header of that same module.
2374     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
2375         !getLangOpts().isCompilingModule())
2376       continue;
2377     if (Visited.insert(M).second)
2378       Stack.push_back(M);
2379   }
2380 
2381   // Find all of the modules to import, making a little effort to prune
2382   // non-leaf modules.
2383   while (!Stack.empty()) {
2384     clang::Module *Mod = Stack.pop_back_val();
2385 
2386     bool AnyChildren = false;
2387 
2388     // Visit the submodules of this module.
2389     for (const auto &SM : Mod->submodules()) {
2390       // Skip explicit children; they need to be explicitly imported to be
2391       // linked against.
2392       if (SM->IsExplicit)
2393         continue;
2394 
2395       if (Visited.insert(SM).second) {
2396         Stack.push_back(SM);
2397         AnyChildren = true;
2398       }
2399     }
2400 
2401     // We didn't find any children, so add this module to the list of
2402     // modules to link against.
2403     if (!AnyChildren) {
2404       LinkModules.insert(Mod);
2405     }
2406   }
2407 
2408   // Add link options for all of the imported modules in reverse topological
2409   // order.  We don't do anything to try to order import link flags with respect
2410   // to linker options inserted by things like #pragma comment().
2411   SmallVector<llvm::MDNode *, 16> MetadataArgs;
2412   Visited.clear();
2413   for (Module *M : LinkModules)
2414     if (Visited.insert(M).second)
2415       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
2416   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
2417   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
2418 
2419   // Add the linker options metadata flag.
2420   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
2421   for (auto *MD : LinkerOptionsMetadata)
2422     NMD->addOperand(MD);
2423 }
2424 
2425 void CodeGenModule::EmitDeferred() {
2426   // Emit deferred declare target declarations.
2427   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
2428     getOpenMPRuntime().emitDeferredTargetDecls();
2429 
2430   // Emit code for any potentially referenced deferred decls.  Since a
2431   // previously unused static decl may become used during the generation of code
2432   // for a static function, iterate until no changes are made.
2433 
2434   if (!DeferredVTables.empty()) {
2435     EmitDeferredVTables();
2436 
2437     // Emitting a vtable doesn't directly cause more vtables to
2438     // become deferred, although it can cause functions to be
2439     // emitted that then need those vtables.
2440     assert(DeferredVTables.empty());
2441   }
2442 
2443   // Emit CUDA/HIP static device variables referenced by host code only.
2444   // Note we should not clear CUDADeviceVarODRUsedByHost since it is still
2445   // needed for further handling.
2446   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice)
2447     for (const auto *V : getContext().CUDADeviceVarODRUsedByHost)
2448       DeferredDeclsToEmit.push_back(V);
2449 
2450   // Stop if we're out of both deferred vtables and deferred declarations.
2451   if (DeferredDeclsToEmit.empty())
2452     return;
2453 
2454   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
2455   // work, it will not interfere with this.
2456   std::vector<GlobalDecl> CurDeclsToEmit;
2457   CurDeclsToEmit.swap(DeferredDeclsToEmit);
2458 
2459   for (GlobalDecl &D : CurDeclsToEmit) {
2460     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
2461     // to get GlobalValue with exactly the type we need, not something that
2462     // might had been created for another decl with the same mangled name but
2463     // different type.
2464     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
2465         GetAddrOfGlobal(D, ForDefinition));
2466 
2467     // In case of different address spaces, we may still get a cast, even with
2468     // IsForDefinition equal to true. Query mangled names table to get
2469     // GlobalValue.
2470     if (!GV)
2471       GV = GetGlobalValue(getMangledName(D));
2472 
2473     // Make sure GetGlobalValue returned non-null.
2474     assert(GV);
2475 
2476     // Check to see if we've already emitted this.  This is necessary
2477     // for a couple of reasons: first, decls can end up in the
2478     // deferred-decls queue multiple times, and second, decls can end
2479     // up with definitions in unusual ways (e.g. by an extern inline
2480     // function acquiring a strong function redefinition).  Just
2481     // ignore these cases.
2482     if (!GV->isDeclaration())
2483       continue;
2484 
2485     // If this is OpenMP, check if it is legal to emit this global normally.
2486     if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
2487       continue;
2488 
2489     // Otherwise, emit the definition and move on to the next one.
2490     EmitGlobalDefinition(D, GV);
2491 
2492     // If we found out that we need to emit more decls, do that recursively.
2493     // This has the advantage that the decls are emitted in a DFS and related
2494     // ones are close together, which is convenient for testing.
2495     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
2496       EmitDeferred();
2497       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
2498     }
2499   }
2500 }
2501 
2502 void CodeGenModule::EmitVTablesOpportunistically() {
2503   // Try to emit external vtables as available_externally if they have emitted
2504   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
2505   // is not allowed to create new references to things that need to be emitted
2506   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
2507 
2508   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
2509          && "Only emit opportunistic vtables with optimizations");
2510 
2511   for (const CXXRecordDecl *RD : OpportunisticVTables) {
2512     assert(getVTables().isVTableExternal(RD) &&
2513            "This queue should only contain external vtables");
2514     if (getCXXABI().canSpeculativelyEmitVTable(RD))
2515       VTables.GenerateClassData(RD);
2516   }
2517   OpportunisticVTables.clear();
2518 }
2519 
2520 void CodeGenModule::EmitGlobalAnnotations() {
2521   if (Annotations.empty())
2522     return;
2523 
2524   // Create a new global variable for the ConstantStruct in the Module.
2525   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
2526     Annotations[0]->getType(), Annotations.size()), Annotations);
2527   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
2528                                       llvm::GlobalValue::AppendingLinkage,
2529                                       Array, "llvm.global.annotations");
2530   gv->setSection(AnnotationSection);
2531 }
2532 
2533 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
2534   llvm::Constant *&AStr = AnnotationStrings[Str];
2535   if (AStr)
2536     return AStr;
2537 
2538   // Not found yet, create a new global.
2539   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
2540   auto *gv =
2541       new llvm::GlobalVariable(getModule(), s->getType(), true,
2542                                llvm::GlobalValue::PrivateLinkage, s, ".str");
2543   gv->setSection(AnnotationSection);
2544   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2545   AStr = gv;
2546   return gv;
2547 }
2548 
2549 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
2550   SourceManager &SM = getContext().getSourceManager();
2551   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
2552   if (PLoc.isValid())
2553     return EmitAnnotationString(PLoc.getFilename());
2554   return EmitAnnotationString(SM.getBufferName(Loc));
2555 }
2556 
2557 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
2558   SourceManager &SM = getContext().getSourceManager();
2559   PresumedLoc PLoc = SM.getPresumedLoc(L);
2560   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
2561     SM.getExpansionLineNumber(L);
2562   return llvm::ConstantInt::get(Int32Ty, LineNo);
2563 }
2564 
2565 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) {
2566   ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()};
2567   if (Exprs.empty())
2568     return llvm::ConstantPointerNull::get(GlobalsInt8PtrTy);
2569 
2570   llvm::FoldingSetNodeID ID;
2571   for (Expr *E : Exprs) {
2572     ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult());
2573   }
2574   llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()];
2575   if (Lookup)
2576     return Lookup;
2577 
2578   llvm::SmallVector<llvm::Constant *, 4> LLVMArgs;
2579   LLVMArgs.reserve(Exprs.size());
2580   ConstantEmitter ConstEmiter(*this);
2581   llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) {
2582     const auto *CE = cast<clang::ConstantExpr>(E);
2583     return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(),
2584                                     CE->getType());
2585   });
2586   auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs);
2587   auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true,
2588                                       llvm::GlobalValue::PrivateLinkage, Struct,
2589                                       ".args");
2590   GV->setSection(AnnotationSection);
2591   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2592   auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, GlobalsInt8PtrTy);
2593 
2594   Lookup = Bitcasted;
2595   return Bitcasted;
2596 }
2597 
2598 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
2599                                                 const AnnotateAttr *AA,
2600                                                 SourceLocation L) {
2601   // Get the globals for file name, annotation, and the line number.
2602   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
2603                  *UnitGV = EmitAnnotationUnit(L),
2604                  *LineNoCst = EmitAnnotationLineNo(L),
2605                  *Args = EmitAnnotationArgs(AA);
2606 
2607   llvm::Constant *GVInGlobalsAS = GV;
2608   if (GV->getAddressSpace() !=
2609       getDataLayout().getDefaultGlobalsAddressSpace()) {
2610     GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast(
2611         GV, GV->getValueType()->getPointerTo(
2612                 getDataLayout().getDefaultGlobalsAddressSpace()));
2613   }
2614 
2615   // Create the ConstantStruct for the global annotation.
2616   llvm::Constant *Fields[] = {
2617       llvm::ConstantExpr::getBitCast(GVInGlobalsAS, GlobalsInt8PtrTy),
2618       llvm::ConstantExpr::getBitCast(AnnoGV, GlobalsInt8PtrTy),
2619       llvm::ConstantExpr::getBitCast(UnitGV, GlobalsInt8PtrTy),
2620       LineNoCst,
2621       Args,
2622   };
2623   return llvm::ConstantStruct::getAnon(Fields);
2624 }
2625 
2626 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
2627                                          llvm::GlobalValue *GV) {
2628   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2629   // Get the struct elements for these annotations.
2630   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2631     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
2632 }
2633 
2634 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn,
2635                                        SourceLocation Loc) const {
2636   const auto &NoSanitizeL = getContext().getNoSanitizeList();
2637   // NoSanitize by function name.
2638   if (NoSanitizeL.containsFunction(Kind, Fn->getName()))
2639     return true;
2640   // NoSanitize by location.
2641   if (Loc.isValid())
2642     return NoSanitizeL.containsLocation(Kind, Loc);
2643   // If location is unknown, this may be a compiler-generated function. Assume
2644   // it's located in the main file.
2645   auto &SM = Context.getSourceManager();
2646   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
2647     return NoSanitizeL.containsFile(Kind, MainFile->getName());
2648   }
2649   return false;
2650 }
2651 
2652 bool CodeGenModule::isInNoSanitizeList(llvm::GlobalVariable *GV,
2653                                        SourceLocation Loc, QualType Ty,
2654                                        StringRef Category) const {
2655   // For now globals can be ignored only in ASan and KASan.
2656   const SanitizerMask EnabledAsanMask =
2657       LangOpts.Sanitize.Mask &
2658       (SanitizerKind::Address | SanitizerKind::KernelAddress |
2659        SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress |
2660        SanitizerKind::MemTag);
2661   if (!EnabledAsanMask)
2662     return false;
2663   const auto &NoSanitizeL = getContext().getNoSanitizeList();
2664   if (NoSanitizeL.containsGlobal(EnabledAsanMask, GV->getName(), Category))
2665     return true;
2666   if (NoSanitizeL.containsLocation(EnabledAsanMask, Loc, Category))
2667     return true;
2668   // Check global type.
2669   if (!Ty.isNull()) {
2670     // Drill down the array types: if global variable of a fixed type is
2671     // not sanitized, we also don't instrument arrays of them.
2672     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
2673       Ty = AT->getElementType();
2674     Ty = Ty.getCanonicalType().getUnqualifiedType();
2675     // Only record types (classes, structs etc.) are ignored.
2676     if (Ty->isRecordType()) {
2677       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
2678       if (NoSanitizeL.containsType(EnabledAsanMask, TypeStr, Category))
2679         return true;
2680     }
2681   }
2682   return false;
2683 }
2684 
2685 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
2686                                    StringRef Category) const {
2687   const auto &XRayFilter = getContext().getXRayFilter();
2688   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
2689   auto Attr = ImbueAttr::NONE;
2690   if (Loc.isValid())
2691     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
2692   if (Attr == ImbueAttr::NONE)
2693     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
2694   switch (Attr) {
2695   case ImbueAttr::NONE:
2696     return false;
2697   case ImbueAttr::ALWAYS:
2698     Fn->addFnAttr("function-instrument", "xray-always");
2699     break;
2700   case ImbueAttr::ALWAYS_ARG1:
2701     Fn->addFnAttr("function-instrument", "xray-always");
2702     Fn->addFnAttr("xray-log-args", "1");
2703     break;
2704   case ImbueAttr::NEVER:
2705     Fn->addFnAttr("function-instrument", "xray-never");
2706     break;
2707   }
2708   return true;
2709 }
2710 
2711 bool CodeGenModule::isProfileInstrExcluded(llvm::Function *Fn,
2712                                            SourceLocation Loc) const {
2713   const auto &ProfileList = getContext().getProfileList();
2714   // If the profile list is empty, then instrument everything.
2715   if (ProfileList.isEmpty())
2716     return false;
2717   CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr();
2718   // First, check the function name.
2719   Optional<bool> V = ProfileList.isFunctionExcluded(Fn->getName(), Kind);
2720   if (V.hasValue())
2721     return *V;
2722   // Next, check the source location.
2723   if (Loc.isValid()) {
2724     Optional<bool> V = ProfileList.isLocationExcluded(Loc, Kind);
2725     if (V.hasValue())
2726       return *V;
2727   }
2728   // If location is unknown, this may be a compiler-generated function. Assume
2729   // it's located in the main file.
2730   auto &SM = Context.getSourceManager();
2731   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
2732     Optional<bool> V = ProfileList.isFileExcluded(MainFile->getName(), Kind);
2733     if (V.hasValue())
2734       return *V;
2735   }
2736   return ProfileList.getDefault();
2737 }
2738 
2739 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
2740   // Never defer when EmitAllDecls is specified.
2741   if (LangOpts.EmitAllDecls)
2742     return true;
2743 
2744   if (CodeGenOpts.KeepStaticConsts) {
2745     const auto *VD = dyn_cast<VarDecl>(Global);
2746     if (VD && VD->getType().isConstQualified() &&
2747         VD->getStorageDuration() == SD_Static)
2748       return true;
2749   }
2750 
2751   return getContext().DeclMustBeEmitted(Global);
2752 }
2753 
2754 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
2755   // In OpenMP 5.0 variables and function may be marked as
2756   // device_type(host/nohost) and we should not emit them eagerly unless we sure
2757   // that they must be emitted on the host/device. To be sure we need to have
2758   // seen a declare target with an explicit mentioning of the function, we know
2759   // we have if the level of the declare target attribute is -1. Note that we
2760   // check somewhere else if we should emit this at all.
2761   if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) {
2762     llvm::Optional<OMPDeclareTargetDeclAttr *> ActiveAttr =
2763         OMPDeclareTargetDeclAttr::getActiveAttr(Global);
2764     if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1)
2765       return false;
2766   }
2767 
2768   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2769     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
2770       // Implicit template instantiations may change linkage if they are later
2771       // explicitly instantiated, so they should not be emitted eagerly.
2772       return false;
2773   }
2774   if (const auto *VD = dyn_cast<VarDecl>(Global))
2775     if (Context.getInlineVariableDefinitionKind(VD) ==
2776         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
2777       // A definition of an inline constexpr static data member may change
2778       // linkage later if it's redeclared outside the class.
2779       return false;
2780   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
2781   // codegen for global variables, because they may be marked as threadprivate.
2782   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
2783       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
2784       !isTypeConstant(Global->getType(), false) &&
2785       !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
2786     return false;
2787 
2788   return true;
2789 }
2790 
2791 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) {
2792   StringRef Name = getMangledName(GD);
2793 
2794   // The UUID descriptor should be pointer aligned.
2795   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
2796 
2797   // Look for an existing global.
2798   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
2799     return ConstantAddress(GV, Alignment);
2800 
2801   ConstantEmitter Emitter(*this);
2802   llvm::Constant *Init;
2803 
2804   APValue &V = GD->getAsAPValue();
2805   if (!V.isAbsent()) {
2806     // If possible, emit the APValue version of the initializer. In particular,
2807     // this gets the type of the constant right.
2808     Init = Emitter.emitForInitializer(
2809         GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType());
2810   } else {
2811     // As a fallback, directly construct the constant.
2812     // FIXME: This may get padding wrong under esoteric struct layout rules.
2813     // MSVC appears to create a complete type 'struct __s_GUID' that it
2814     // presumably uses to represent these constants.
2815     MSGuidDecl::Parts Parts = GD->getParts();
2816     llvm::Constant *Fields[4] = {
2817         llvm::ConstantInt::get(Int32Ty, Parts.Part1),
2818         llvm::ConstantInt::get(Int16Ty, Parts.Part2),
2819         llvm::ConstantInt::get(Int16Ty, Parts.Part3),
2820         llvm::ConstantDataArray::getRaw(
2821             StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8,
2822             Int8Ty)};
2823     Init = llvm::ConstantStruct::getAnon(Fields);
2824   }
2825 
2826   auto *GV = new llvm::GlobalVariable(
2827       getModule(), Init->getType(),
2828       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
2829   if (supportsCOMDAT())
2830     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2831   setDSOLocal(GV);
2832 
2833   llvm::Constant *Addr = GV;
2834   if (!V.isAbsent()) {
2835     Emitter.finalize(GV);
2836   } else {
2837     llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType());
2838     Addr = llvm::ConstantExpr::getBitCast(
2839         GV, Ty->getPointerTo(GV->getAddressSpace()));
2840   }
2841   return ConstantAddress(Addr, Alignment);
2842 }
2843 
2844 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject(
2845     const TemplateParamObjectDecl *TPO) {
2846   StringRef Name = getMangledName(TPO);
2847   CharUnits Alignment = getNaturalTypeAlignment(TPO->getType());
2848 
2849   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
2850     return ConstantAddress(GV, Alignment);
2851 
2852   ConstantEmitter Emitter(*this);
2853   llvm::Constant *Init = Emitter.emitForInitializer(
2854         TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType());
2855 
2856   if (!Init) {
2857     ErrorUnsupported(TPO, "template parameter object");
2858     return ConstantAddress::invalid();
2859   }
2860 
2861   auto *GV = new llvm::GlobalVariable(
2862       getModule(), Init->getType(),
2863       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
2864   if (supportsCOMDAT())
2865     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2866   Emitter.finalize(GV);
2867 
2868   return ConstantAddress(GV, Alignment);
2869 }
2870 
2871 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
2872   const AliasAttr *AA = VD->getAttr<AliasAttr>();
2873   assert(AA && "No alias?");
2874 
2875   CharUnits Alignment = getContext().getDeclAlign(VD);
2876   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
2877 
2878   // See if there is already something with the target's name in the module.
2879   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
2880   if (Entry) {
2881     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
2882     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
2883     return ConstantAddress(Ptr, Alignment);
2884   }
2885 
2886   llvm::Constant *Aliasee;
2887   if (isa<llvm::FunctionType>(DeclTy))
2888     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
2889                                       GlobalDecl(cast<FunctionDecl>(VD)),
2890                                       /*ForVTable=*/false);
2891   else
2892     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
2893                                     nullptr);
2894 
2895   auto *F = cast<llvm::GlobalValue>(Aliasee);
2896   F->setLinkage(llvm::Function::ExternalWeakLinkage);
2897   WeakRefReferences.insert(F);
2898 
2899   return ConstantAddress(Aliasee, Alignment);
2900 }
2901 
2902 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
2903   const auto *Global = cast<ValueDecl>(GD.getDecl());
2904 
2905   // Weak references don't produce any output by themselves.
2906   if (Global->hasAttr<WeakRefAttr>())
2907     return;
2908 
2909   // If this is an alias definition (which otherwise looks like a declaration)
2910   // emit it now.
2911   if (Global->hasAttr<AliasAttr>())
2912     return EmitAliasDefinition(GD);
2913 
2914   // IFunc like an alias whose value is resolved at runtime by calling resolver.
2915   if (Global->hasAttr<IFuncAttr>())
2916     return emitIFuncDefinition(GD);
2917 
2918   // If this is a cpu_dispatch multiversion function, emit the resolver.
2919   if (Global->hasAttr<CPUDispatchAttr>())
2920     return emitCPUDispatchDefinition(GD);
2921 
2922   // If this is CUDA, be selective about which declarations we emit.
2923   if (LangOpts.CUDA) {
2924     if (LangOpts.CUDAIsDevice) {
2925       if (!Global->hasAttr<CUDADeviceAttr>() &&
2926           !Global->hasAttr<CUDAGlobalAttr>() &&
2927           !Global->hasAttr<CUDAConstantAttr>() &&
2928           !Global->hasAttr<CUDASharedAttr>() &&
2929           !Global->getType()->isCUDADeviceBuiltinSurfaceType() &&
2930           !Global->getType()->isCUDADeviceBuiltinTextureType())
2931         return;
2932     } else {
2933       // We need to emit host-side 'shadows' for all global
2934       // device-side variables because the CUDA runtime needs their
2935       // size and host-side address in order to provide access to
2936       // their device-side incarnations.
2937 
2938       // So device-only functions are the only things we skip.
2939       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
2940           Global->hasAttr<CUDADeviceAttr>())
2941         return;
2942 
2943       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
2944              "Expected Variable or Function");
2945     }
2946   }
2947 
2948   if (LangOpts.OpenMP) {
2949     // If this is OpenMP, check if it is legal to emit this global normally.
2950     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
2951       return;
2952     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
2953       if (MustBeEmitted(Global))
2954         EmitOMPDeclareReduction(DRD);
2955       return;
2956     } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
2957       if (MustBeEmitted(Global))
2958         EmitOMPDeclareMapper(DMD);
2959       return;
2960     }
2961   }
2962 
2963   // Ignore declarations, they will be emitted on their first use.
2964   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2965     // Forward declarations are emitted lazily on first use.
2966     if (!FD->doesThisDeclarationHaveABody()) {
2967       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
2968         return;
2969 
2970       StringRef MangledName = getMangledName(GD);
2971 
2972       // Compute the function info and LLVM type.
2973       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2974       llvm::Type *Ty = getTypes().GetFunctionType(FI);
2975 
2976       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
2977                               /*DontDefer=*/false);
2978       return;
2979     }
2980   } else {
2981     const auto *VD = cast<VarDecl>(Global);
2982     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
2983     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
2984         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
2985       if (LangOpts.OpenMP) {
2986         // Emit declaration of the must-be-emitted declare target variable.
2987         if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2988                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
2989           bool UnifiedMemoryEnabled =
2990               getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
2991           if (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2992               !UnifiedMemoryEnabled) {
2993             (void)GetAddrOfGlobalVar(VD);
2994           } else {
2995             assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
2996                     (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2997                      UnifiedMemoryEnabled)) &&
2998                    "Link clause or to clause with unified memory expected.");
2999             (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
3000           }
3001 
3002           return;
3003         }
3004       }
3005       // If this declaration may have caused an inline variable definition to
3006       // change linkage, make sure that it's emitted.
3007       if (Context.getInlineVariableDefinitionKind(VD) ==
3008           ASTContext::InlineVariableDefinitionKind::Strong)
3009         GetAddrOfGlobalVar(VD);
3010       return;
3011     }
3012   }
3013 
3014   // Defer code generation to first use when possible, e.g. if this is an inline
3015   // function. If the global must always be emitted, do it eagerly if possible
3016   // to benefit from cache locality.
3017   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
3018     // Emit the definition if it can't be deferred.
3019     EmitGlobalDefinition(GD);
3020     return;
3021   }
3022 
3023   // If we're deferring emission of a C++ variable with an
3024   // initializer, remember the order in which it appeared in the file.
3025   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
3026       cast<VarDecl>(Global)->hasInit()) {
3027     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
3028     CXXGlobalInits.push_back(nullptr);
3029   }
3030 
3031   StringRef MangledName = getMangledName(GD);
3032   if (GetGlobalValue(MangledName) != nullptr) {
3033     // The value has already been used and should therefore be emitted.
3034     addDeferredDeclToEmit(GD);
3035   } else if (MustBeEmitted(Global)) {
3036     // The value must be emitted, but cannot be emitted eagerly.
3037     assert(!MayBeEmittedEagerly(Global));
3038     addDeferredDeclToEmit(GD);
3039   } else {
3040     // Otherwise, remember that we saw a deferred decl with this name.  The
3041     // first use of the mangled name will cause it to move into
3042     // DeferredDeclsToEmit.
3043     DeferredDecls[MangledName] = GD;
3044   }
3045 }
3046 
3047 // Check if T is a class type with a destructor that's not dllimport.
3048 static bool HasNonDllImportDtor(QualType T) {
3049   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
3050     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
3051       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
3052         return true;
3053 
3054   return false;
3055 }
3056 
3057 namespace {
3058   struct FunctionIsDirectlyRecursive
3059       : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
3060     const StringRef Name;
3061     const Builtin::Context &BI;
3062     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
3063         : Name(N), BI(C) {}
3064 
3065     bool VisitCallExpr(const CallExpr *E) {
3066       const FunctionDecl *FD = E->getDirectCallee();
3067       if (!FD)
3068         return false;
3069       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3070       if (Attr && Name == Attr->getLabel())
3071         return true;
3072       unsigned BuiltinID = FD->getBuiltinID();
3073       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
3074         return false;
3075       StringRef BuiltinName = BI.getName(BuiltinID);
3076       if (BuiltinName.startswith("__builtin_") &&
3077           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
3078         return true;
3079       }
3080       return false;
3081     }
3082 
3083     bool VisitStmt(const Stmt *S) {
3084       for (const Stmt *Child : S->children())
3085         if (Child && this->Visit(Child))
3086           return true;
3087       return false;
3088     }
3089   };
3090 
3091   // Make sure we're not referencing non-imported vars or functions.
3092   struct DLLImportFunctionVisitor
3093       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
3094     bool SafeToInline = true;
3095 
3096     bool shouldVisitImplicitCode() const { return true; }
3097 
3098     bool VisitVarDecl(VarDecl *VD) {
3099       if (VD->getTLSKind()) {
3100         // A thread-local variable cannot be imported.
3101         SafeToInline = false;
3102         return SafeToInline;
3103       }
3104 
3105       // A variable definition might imply a destructor call.
3106       if (VD->isThisDeclarationADefinition())
3107         SafeToInline = !HasNonDllImportDtor(VD->getType());
3108 
3109       return SafeToInline;
3110     }
3111 
3112     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
3113       if (const auto *D = E->getTemporary()->getDestructor())
3114         SafeToInline = D->hasAttr<DLLImportAttr>();
3115       return SafeToInline;
3116     }
3117 
3118     bool VisitDeclRefExpr(DeclRefExpr *E) {
3119       ValueDecl *VD = E->getDecl();
3120       if (isa<FunctionDecl>(VD))
3121         SafeToInline = VD->hasAttr<DLLImportAttr>();
3122       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
3123         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
3124       return SafeToInline;
3125     }
3126 
3127     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
3128       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
3129       return SafeToInline;
3130     }
3131 
3132     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
3133       CXXMethodDecl *M = E->getMethodDecl();
3134       if (!M) {
3135         // Call through a pointer to member function. This is safe to inline.
3136         SafeToInline = true;
3137       } else {
3138         SafeToInline = M->hasAttr<DLLImportAttr>();
3139       }
3140       return SafeToInline;
3141     }
3142 
3143     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
3144       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
3145       return SafeToInline;
3146     }
3147 
3148     bool VisitCXXNewExpr(CXXNewExpr *E) {
3149       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
3150       return SafeToInline;
3151     }
3152   };
3153 }
3154 
3155 // isTriviallyRecursive - Check if this function calls another
3156 // decl that, because of the asm attribute or the other decl being a builtin,
3157 // ends up pointing to itself.
3158 bool
3159 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
3160   StringRef Name;
3161   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
3162     // asm labels are a special kind of mangling we have to support.
3163     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3164     if (!Attr)
3165       return false;
3166     Name = Attr->getLabel();
3167   } else {
3168     Name = FD->getName();
3169   }
3170 
3171   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
3172   const Stmt *Body = FD->getBody();
3173   return Body ? Walker.Visit(Body) : false;
3174 }
3175 
3176 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
3177   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
3178     return true;
3179   const auto *F = cast<FunctionDecl>(GD.getDecl());
3180   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
3181     return false;
3182 
3183   if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) {
3184     // Check whether it would be safe to inline this dllimport function.
3185     DLLImportFunctionVisitor Visitor;
3186     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
3187     if (!Visitor.SafeToInline)
3188       return false;
3189 
3190     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
3191       // Implicit destructor invocations aren't captured in the AST, so the
3192       // check above can't see them. Check for them manually here.
3193       for (const Decl *Member : Dtor->getParent()->decls())
3194         if (isa<FieldDecl>(Member))
3195           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
3196             return false;
3197       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
3198         if (HasNonDllImportDtor(B.getType()))
3199           return false;
3200     }
3201   }
3202 
3203   // Inline builtins declaration must be emitted. They often are fortified
3204   // functions.
3205   if (F->isInlineBuiltinDeclaration())
3206     return true;
3207 
3208   // PR9614. Avoid cases where the source code is lying to us. An available
3209   // externally function should have an equivalent function somewhere else,
3210   // but a function that calls itself through asm label/`__builtin_` trickery is
3211   // clearly not equivalent to the real implementation.
3212   // This happens in glibc's btowc and in some configure checks.
3213   return !isTriviallyRecursive(F);
3214 }
3215 
3216 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
3217   return CodeGenOpts.OptimizationLevel > 0;
3218 }
3219 
3220 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
3221                                                        llvm::GlobalValue *GV) {
3222   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3223 
3224   if (FD->isCPUSpecificMultiVersion()) {
3225     auto *Spec = FD->getAttr<CPUSpecificAttr>();
3226     for (unsigned I = 0; I < Spec->cpus_size(); ++I)
3227       EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
3228     // Requires multiple emits.
3229   } else
3230     EmitGlobalFunctionDefinition(GD, GV);
3231 }
3232 
3233 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
3234   const auto *D = cast<ValueDecl>(GD.getDecl());
3235 
3236   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
3237                                  Context.getSourceManager(),
3238                                  "Generating code for declaration");
3239 
3240   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
3241     // At -O0, don't generate IR for functions with available_externally
3242     // linkage.
3243     if (!shouldEmitFunction(GD))
3244       return;
3245 
3246     llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
3247       std::string Name;
3248       llvm::raw_string_ostream OS(Name);
3249       FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
3250                                /*Qualified=*/true);
3251       return Name;
3252     });
3253 
3254     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
3255       // Make sure to emit the definition(s) before we emit the thunks.
3256       // This is necessary for the generation of certain thunks.
3257       if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
3258         ABI->emitCXXStructor(GD);
3259       else if (FD->isMultiVersion())
3260         EmitMultiVersionFunctionDefinition(GD, GV);
3261       else
3262         EmitGlobalFunctionDefinition(GD, GV);
3263 
3264       if (Method->isVirtual())
3265         getVTables().EmitThunks(GD);
3266 
3267       return;
3268     }
3269 
3270     if (FD->isMultiVersion())
3271       return EmitMultiVersionFunctionDefinition(GD, GV);
3272     return EmitGlobalFunctionDefinition(GD, GV);
3273   }
3274 
3275   if (const auto *VD = dyn_cast<VarDecl>(D))
3276     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
3277 
3278   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
3279 }
3280 
3281 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
3282                                                       llvm::Function *NewFn);
3283 
3284 static unsigned
3285 TargetMVPriority(const TargetInfo &TI,
3286                  const CodeGenFunction::MultiVersionResolverOption &RO) {
3287   unsigned Priority = 0;
3288   for (StringRef Feat : RO.Conditions.Features)
3289     Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
3290 
3291   if (!RO.Conditions.Architecture.empty())
3292     Priority = std::max(
3293         Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
3294   return Priority;
3295 }
3296 
3297 // Multiversion functions should be at most 'WeakODRLinkage' so that a different
3298 // TU can forward declare the function without causing problems.  Particularly
3299 // in the cases of CPUDispatch, this causes issues. This also makes sure we
3300 // work with internal linkage functions, so that the same function name can be
3301 // used with internal linkage in multiple TUs.
3302 llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM,
3303                                                        GlobalDecl GD) {
3304   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
3305   if (FD->getFormalLinkage() == InternalLinkage)
3306     return llvm::GlobalValue::InternalLinkage;
3307   return llvm::GlobalValue::WeakODRLinkage;
3308 }
3309 
3310 void CodeGenModule::emitMultiVersionFunctions() {
3311   std::vector<GlobalDecl> MVFuncsToEmit;
3312   MultiVersionFuncs.swap(MVFuncsToEmit);
3313   for (GlobalDecl GD : MVFuncsToEmit) {
3314     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3315     const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
3316     getContext().forEachMultiversionedFunctionVersion(
3317         FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
3318           GlobalDecl CurGD{
3319               (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
3320           StringRef MangledName = getMangledName(CurGD);
3321           llvm::Constant *Func = GetGlobalValue(MangledName);
3322           if (!Func) {
3323             if (CurFD->isDefined()) {
3324               EmitGlobalFunctionDefinition(CurGD, nullptr);
3325               Func = GetGlobalValue(MangledName);
3326             } else {
3327               const CGFunctionInfo &FI =
3328                   getTypes().arrangeGlobalDeclaration(GD);
3329               llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3330               Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
3331                                        /*DontDefer=*/false, ForDefinition);
3332             }
3333             assert(Func && "This should have just been created");
3334           }
3335 
3336           const auto *TA = CurFD->getAttr<TargetAttr>();
3337           llvm::SmallVector<StringRef, 8> Feats;
3338           TA->getAddedFeatures(Feats);
3339 
3340           Options.emplace_back(cast<llvm::Function>(Func),
3341                                TA->getArchitecture(), Feats);
3342         });
3343 
3344     llvm::Function *ResolverFunc;
3345     const TargetInfo &TI = getTarget();
3346 
3347     if (TI.supportsIFunc() || FD->isTargetMultiVersion()) {
3348       ResolverFunc = cast<llvm::Function>(
3349           GetGlobalValue((getMangledName(GD) + ".resolver").str()));
3350       ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
3351     } else {
3352       ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD)));
3353     }
3354 
3355     if (supportsCOMDAT())
3356       ResolverFunc->setComdat(
3357           getModule().getOrInsertComdat(ResolverFunc->getName()));
3358 
3359     llvm::stable_sort(
3360         Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
3361                        const CodeGenFunction::MultiVersionResolverOption &RHS) {
3362           return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
3363         });
3364     CodeGenFunction CGF(*this);
3365     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3366   }
3367 
3368   // Ensure that any additions to the deferred decls list caused by emitting a
3369   // variant are emitted.  This can happen when the variant itself is inline and
3370   // calls a function without linkage.
3371   if (!MVFuncsToEmit.empty())
3372     EmitDeferred();
3373 
3374   // Ensure that any additions to the multiversion funcs list from either the
3375   // deferred decls or the multiversion functions themselves are emitted.
3376   if (!MultiVersionFuncs.empty())
3377     emitMultiVersionFunctions();
3378 }
3379 
3380 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
3381   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3382   assert(FD && "Not a FunctionDecl?");
3383   const auto *DD = FD->getAttr<CPUDispatchAttr>();
3384   assert(DD && "Not a cpu_dispatch Function?");
3385   llvm::Type *DeclTy = getTypes().ConvertType(FD->getType());
3386 
3387   if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) {
3388     const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD);
3389     DeclTy = getTypes().GetFunctionType(FInfo);
3390   }
3391 
3392   StringRef ResolverName = getMangledName(GD);
3393 
3394   llvm::Type *ResolverType;
3395   GlobalDecl ResolverGD;
3396   if (getTarget().supportsIFunc())
3397     ResolverType = llvm::FunctionType::get(
3398         llvm::PointerType::get(DeclTy,
3399                                Context.getTargetAddressSpace(FD->getType())),
3400         false);
3401   else {
3402     ResolverType = DeclTy;
3403     ResolverGD = GD;
3404   }
3405 
3406   auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
3407       ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
3408   ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
3409   if (supportsCOMDAT())
3410     ResolverFunc->setComdat(
3411         getModule().getOrInsertComdat(ResolverFunc->getName()));
3412 
3413   SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3414   const TargetInfo &Target = getTarget();
3415   unsigned Index = 0;
3416   for (const IdentifierInfo *II : DD->cpus()) {
3417     // Get the name of the target function so we can look it up/create it.
3418     std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
3419                               getCPUSpecificMangling(*this, II->getName());
3420 
3421     llvm::Constant *Func = GetGlobalValue(MangledName);
3422 
3423     if (!Func) {
3424       GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
3425       if (ExistingDecl.getDecl() &&
3426           ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
3427         EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
3428         Func = GetGlobalValue(MangledName);
3429       } else {
3430         if (!ExistingDecl.getDecl())
3431           ExistingDecl = GD.getWithMultiVersionIndex(Index);
3432 
3433       Func = GetOrCreateLLVMFunction(
3434           MangledName, DeclTy, ExistingDecl,
3435           /*ForVTable=*/false, /*DontDefer=*/true,
3436           /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
3437       }
3438     }
3439 
3440     llvm::SmallVector<StringRef, 32> Features;
3441     Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
3442     llvm::transform(Features, Features.begin(),
3443                     [](StringRef Str) { return Str.substr(1); });
3444     llvm::erase_if(Features, [&Target](StringRef Feat) {
3445       return !Target.validateCpuSupports(Feat);
3446     });
3447     Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
3448     ++Index;
3449   }
3450 
3451   llvm::stable_sort(
3452       Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
3453                   const CodeGenFunction::MultiVersionResolverOption &RHS) {
3454         return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) >
3455                llvm::X86::getCpuSupportsMask(RHS.Conditions.Features);
3456       });
3457 
3458   // If the list contains multiple 'default' versions, such as when it contains
3459   // 'pentium' and 'generic', don't emit the call to the generic one (since we
3460   // always run on at least a 'pentium'). We do this by deleting the 'least
3461   // advanced' (read, lowest mangling letter).
3462   while (Options.size() > 1 &&
3463          llvm::X86::getCpuSupportsMask(
3464              (Options.end() - 2)->Conditions.Features) == 0) {
3465     StringRef LHSName = (Options.end() - 2)->Function->getName();
3466     StringRef RHSName = (Options.end() - 1)->Function->getName();
3467     if (LHSName.compare(RHSName) < 0)
3468       Options.erase(Options.end() - 2);
3469     else
3470       Options.erase(Options.end() - 1);
3471   }
3472 
3473   CodeGenFunction CGF(*this);
3474   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3475 
3476   if (getTarget().supportsIFunc()) {
3477     std::string AliasName = getMangledNameImpl(
3478         *this, GD, FD, /*OmitMultiVersionMangling=*/true);
3479     llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
3480     if (!AliasFunc) {
3481       auto *IFunc = cast<llvm::GlobalIFunc>(GetOrCreateLLVMFunction(
3482           AliasName, DeclTy, GD, /*ForVTable=*/false, /*DontDefer=*/true,
3483           /*IsThunk=*/false, llvm::AttributeList(), NotForDefinition));
3484       auto *GA = llvm::GlobalAlias::create(DeclTy, 0,
3485                                            getMultiversionLinkage(*this, GD),
3486                                            AliasName, IFunc, &getModule());
3487       SetCommonAttributes(GD, GA);
3488     }
3489   }
3490 }
3491 
3492 /// If a dispatcher for the specified mangled name is not in the module, create
3493 /// and return an llvm Function with the specified type.
3494 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(
3495     GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) {
3496   std::string MangledName =
3497       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
3498 
3499   // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
3500   // a separate resolver).
3501   std::string ResolverName = MangledName;
3502   if (getTarget().supportsIFunc())
3503     ResolverName += ".ifunc";
3504   else if (FD->isTargetMultiVersion())
3505     ResolverName += ".resolver";
3506 
3507   // If this already exists, just return that one.
3508   if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
3509     return ResolverGV;
3510 
3511   // Since this is the first time we've created this IFunc, make sure
3512   // that we put this multiversioned function into the list to be
3513   // replaced later if necessary (target multiversioning only).
3514   if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion())
3515     MultiVersionFuncs.push_back(GD);
3516 
3517   if (getTarget().supportsIFunc()) {
3518     llvm::Type *ResolverType = llvm::FunctionType::get(
3519         llvm::PointerType::get(
3520             DeclTy, getContext().getTargetAddressSpace(FD->getType())),
3521         false);
3522     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3523         MangledName + ".resolver", ResolverType, GlobalDecl{},
3524         /*ForVTable=*/false);
3525     llvm::GlobalIFunc *GIF =
3526         llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD),
3527                                   "", Resolver, &getModule());
3528     GIF->setName(ResolverName);
3529     SetCommonAttributes(FD, GIF);
3530 
3531     return GIF;
3532   }
3533 
3534   llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3535       ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
3536   assert(isa<llvm::GlobalValue>(Resolver) &&
3537          "Resolver should be created for the first time");
3538   SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
3539   return Resolver;
3540 }
3541 
3542 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
3543 /// module, create and return an llvm Function with the specified type. If there
3544 /// is something in the module with the specified name, return it potentially
3545 /// bitcasted to the right type.
3546 ///
3547 /// If D is non-null, it specifies a decl that correspond to this.  This is used
3548 /// to set the attributes on the function when it is first created.
3549 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
3550     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
3551     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
3552     ForDefinition_t IsForDefinition) {
3553   const Decl *D = GD.getDecl();
3554 
3555   // Any attempts to use a MultiVersion function should result in retrieving
3556   // the iFunc instead. Name Mangling will handle the rest of the changes.
3557   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
3558     // For the device mark the function as one that should be emitted.
3559     if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
3560         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
3561         !DontDefer && !IsForDefinition) {
3562       if (const FunctionDecl *FDDef = FD->getDefinition()) {
3563         GlobalDecl GDDef;
3564         if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
3565           GDDef = GlobalDecl(CD, GD.getCtorType());
3566         else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
3567           GDDef = GlobalDecl(DD, GD.getDtorType());
3568         else
3569           GDDef = GlobalDecl(FDDef);
3570         EmitGlobal(GDDef);
3571       }
3572     }
3573 
3574     if (FD->isMultiVersion()) {
3575       if (FD->hasAttr<TargetAttr>())
3576         UpdateMultiVersionNames(GD, FD);
3577       if (!IsForDefinition)
3578         return GetOrCreateMultiVersionResolver(GD, Ty, FD);
3579     }
3580   }
3581 
3582   // Lookup the entry, lazily creating it if necessary.
3583   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3584   if (Entry) {
3585     if (WeakRefReferences.erase(Entry)) {
3586       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
3587       if (FD && !FD->hasAttr<WeakAttr>())
3588         Entry->setLinkage(llvm::Function::ExternalLinkage);
3589     }
3590 
3591     // Handle dropped DLL attributes.
3592     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) {
3593       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3594       setDSOLocal(Entry);
3595     }
3596 
3597     // If there are two attempts to define the same mangled name, issue an
3598     // error.
3599     if (IsForDefinition && !Entry->isDeclaration()) {
3600       GlobalDecl OtherGD;
3601       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
3602       // to make sure that we issue an error only once.
3603       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3604           (GD.getCanonicalDecl().getDecl() !=
3605            OtherGD.getCanonicalDecl().getDecl()) &&
3606           DiagnosedConflictingDefinitions.insert(GD).second) {
3607         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3608             << MangledName;
3609         getDiags().Report(OtherGD.getDecl()->getLocation(),
3610                           diag::note_previous_definition);
3611       }
3612     }
3613 
3614     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
3615         (Entry->getValueType() == Ty)) {
3616       return Entry;
3617     }
3618 
3619     // Make sure the result is of the correct type.
3620     // (If function is requested for a definition, we always need to create a new
3621     // function, not just return a bitcast.)
3622     if (!IsForDefinition)
3623       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
3624   }
3625 
3626   // This function doesn't have a complete type (for example, the return
3627   // type is an incomplete struct). Use a fake type instead, and make
3628   // sure not to try to set attributes.
3629   bool IsIncompleteFunction = false;
3630 
3631   llvm::FunctionType *FTy;
3632   if (isa<llvm::FunctionType>(Ty)) {
3633     FTy = cast<llvm::FunctionType>(Ty);
3634   } else {
3635     FTy = llvm::FunctionType::get(VoidTy, false);
3636     IsIncompleteFunction = true;
3637   }
3638 
3639   llvm::Function *F =
3640       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
3641                              Entry ? StringRef() : MangledName, &getModule());
3642 
3643   // If we already created a function with the same mangled name (but different
3644   // type) before, take its name and add it to the list of functions to be
3645   // replaced with F at the end of CodeGen.
3646   //
3647   // This happens if there is a prototype for a function (e.g. "int f()") and
3648   // then a definition of a different type (e.g. "int f(int x)").
3649   if (Entry) {
3650     F->takeName(Entry);
3651 
3652     // This might be an implementation of a function without a prototype, in
3653     // which case, try to do special replacement of calls which match the new
3654     // prototype.  The really key thing here is that we also potentially drop
3655     // arguments from the call site so as to make a direct call, which makes the
3656     // inliner happier and suppresses a number of optimizer warnings (!) about
3657     // dropping arguments.
3658     if (!Entry->use_empty()) {
3659       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
3660       Entry->removeDeadConstantUsers();
3661     }
3662 
3663     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
3664         F, Entry->getValueType()->getPointerTo());
3665     addGlobalValReplacement(Entry, BC);
3666   }
3667 
3668   assert(F->getName() == MangledName && "name was uniqued!");
3669   if (D)
3670     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
3671   if (ExtraAttrs.hasFnAttrs()) {
3672     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex);
3673     F->addFnAttrs(B);
3674   }
3675 
3676   if (!DontDefer) {
3677     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
3678     // each other bottoming out with the base dtor.  Therefore we emit non-base
3679     // dtors on usage, even if there is no dtor definition in the TU.
3680     if (D && isa<CXXDestructorDecl>(D) &&
3681         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
3682                                            GD.getDtorType()))
3683       addDeferredDeclToEmit(GD);
3684 
3685     // This is the first use or definition of a mangled name.  If there is a
3686     // deferred decl with this name, remember that we need to emit it at the end
3687     // of the file.
3688     auto DDI = DeferredDecls.find(MangledName);
3689     if (DDI != DeferredDecls.end()) {
3690       // Move the potentially referenced deferred decl to the
3691       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
3692       // don't need it anymore).
3693       addDeferredDeclToEmit(DDI->second);
3694       DeferredDecls.erase(DDI);
3695 
3696       // Otherwise, there are cases we have to worry about where we're
3697       // using a declaration for which we must emit a definition but where
3698       // we might not find a top-level definition:
3699       //   - member functions defined inline in their classes
3700       //   - friend functions defined inline in some class
3701       //   - special member functions with implicit definitions
3702       // If we ever change our AST traversal to walk into class methods,
3703       // this will be unnecessary.
3704       //
3705       // We also don't emit a definition for a function if it's going to be an
3706       // entry in a vtable, unless it's already marked as used.
3707     } else if (getLangOpts().CPlusPlus && D) {
3708       // Look for a declaration that's lexically in a record.
3709       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
3710            FD = FD->getPreviousDecl()) {
3711         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
3712           if (FD->doesThisDeclarationHaveABody()) {
3713             addDeferredDeclToEmit(GD.getWithDecl(FD));
3714             break;
3715           }
3716         }
3717       }
3718     }
3719   }
3720 
3721   // Make sure the result is of the requested type.
3722   if (!IsIncompleteFunction) {
3723     assert(F->getFunctionType() == Ty);
3724     return F;
3725   }
3726 
3727   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
3728   return llvm::ConstantExpr::getBitCast(F, PTy);
3729 }
3730 
3731 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
3732 /// non-null, then this function will use the specified type if it has to
3733 /// create it (this occurs when we see a definition of the function).
3734 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
3735                                                  llvm::Type *Ty,
3736                                                  bool ForVTable,
3737                                                  bool DontDefer,
3738                                               ForDefinition_t IsForDefinition) {
3739   assert(!cast<FunctionDecl>(GD.getDecl())->isConsteval() &&
3740          "consteval function should never be emitted");
3741   // If there was no specific requested type, just convert it now.
3742   if (!Ty) {
3743     const auto *FD = cast<FunctionDecl>(GD.getDecl());
3744     Ty = getTypes().ConvertType(FD->getType());
3745   }
3746 
3747   // Devirtualized destructor calls may come through here instead of via
3748   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
3749   // of the complete destructor when necessary.
3750   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
3751     if (getTarget().getCXXABI().isMicrosoft() &&
3752         GD.getDtorType() == Dtor_Complete &&
3753         DD->getParent()->getNumVBases() == 0)
3754       GD = GlobalDecl(DD, Dtor_Base);
3755   }
3756 
3757   StringRef MangledName = getMangledName(GD);
3758   auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
3759                                     /*IsThunk=*/false, llvm::AttributeList(),
3760                                     IsForDefinition);
3761   // Returns kernel handle for HIP kernel stub function.
3762   if (LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
3763       cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) {
3764     auto *Handle = getCUDARuntime().getKernelHandle(
3765         cast<llvm::Function>(F->stripPointerCasts()), GD);
3766     if (IsForDefinition)
3767       return F;
3768     return llvm::ConstantExpr::getBitCast(Handle, Ty->getPointerTo());
3769   }
3770   return F;
3771 }
3772 
3773 static const FunctionDecl *
3774 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
3775   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
3776   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
3777 
3778   IdentifierInfo &CII = C.Idents.get(Name);
3779   for (const auto *Result : DC->lookup(&CII))
3780     if (const auto *FD = dyn_cast<FunctionDecl>(Result))
3781       return FD;
3782 
3783   if (!C.getLangOpts().CPlusPlus)
3784     return nullptr;
3785 
3786   // Demangle the premangled name from getTerminateFn()
3787   IdentifierInfo &CXXII =
3788       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
3789           ? C.Idents.get("terminate")
3790           : C.Idents.get(Name);
3791 
3792   for (const auto &N : {"__cxxabiv1", "std"}) {
3793     IdentifierInfo &NS = C.Idents.get(N);
3794     for (const auto *Result : DC->lookup(&NS)) {
3795       const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
3796       if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result))
3797         for (const auto *Result : LSD->lookup(&NS))
3798           if ((ND = dyn_cast<NamespaceDecl>(Result)))
3799             break;
3800 
3801       if (ND)
3802         for (const auto *Result : ND->lookup(&CXXII))
3803           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
3804             return FD;
3805     }
3806   }
3807 
3808   return nullptr;
3809 }
3810 
3811 /// CreateRuntimeFunction - Create a new runtime function with the specified
3812 /// type and name.
3813 llvm::FunctionCallee
3814 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
3815                                      llvm::AttributeList ExtraAttrs, bool Local,
3816                                      bool AssumeConvergent) {
3817   if (AssumeConvergent) {
3818     ExtraAttrs =
3819         ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent);
3820   }
3821 
3822   llvm::Constant *C =
3823       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
3824                               /*DontDefer=*/false, /*IsThunk=*/false,
3825                               ExtraAttrs);
3826 
3827   if (auto *F = dyn_cast<llvm::Function>(C)) {
3828     if (F->empty()) {
3829       F->setCallingConv(getRuntimeCC());
3830 
3831       // In Windows Itanium environments, try to mark runtime functions
3832       // dllimport. For Mingw and MSVC, don't. We don't really know if the user
3833       // will link their standard library statically or dynamically. Marking
3834       // functions imported when they are not imported can cause linker errors
3835       // and warnings.
3836       if (!Local && getTriple().isWindowsItaniumEnvironment() &&
3837           !getCodeGenOpts().LTOVisibilityPublicStd) {
3838         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
3839         if (!FD || FD->hasAttr<DLLImportAttr>()) {
3840           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
3841           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
3842         }
3843       }
3844       setDSOLocal(F);
3845     }
3846   }
3847 
3848   return {FTy, C};
3849 }
3850 
3851 /// isTypeConstant - Determine whether an object of this type can be emitted
3852 /// as a constant.
3853 ///
3854 /// If ExcludeCtor is true, the duration when the object's constructor runs
3855 /// will not be considered. The caller will need to verify that the object is
3856 /// not written to during its construction.
3857 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
3858   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
3859     return false;
3860 
3861   if (Context.getLangOpts().CPlusPlus) {
3862     if (const CXXRecordDecl *Record
3863           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
3864       return ExcludeCtor && !Record->hasMutableFields() &&
3865              Record->hasTrivialDestructor();
3866   }
3867 
3868   return true;
3869 }
3870 
3871 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
3872 /// create and return an llvm GlobalVariable with the specified type and address
3873 /// space. If there is something in the module with the specified name, return
3874 /// it potentially bitcasted to the right type.
3875 ///
3876 /// If D is non-null, it specifies a decl that correspond to this.  This is used
3877 /// to set the attributes on the global when it is first created.
3878 ///
3879 /// If IsForDefinition is true, it is guaranteed that an actual global with
3880 /// type Ty will be returned, not conversion of a variable with the same
3881 /// mangled name but some other type.
3882 llvm::Constant *
3883 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty,
3884                                      LangAS AddrSpace, const VarDecl *D,
3885                                      ForDefinition_t IsForDefinition) {
3886   // Lookup the entry, lazily creating it if necessary.
3887   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3888   unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace);
3889   if (Entry) {
3890     if (WeakRefReferences.erase(Entry)) {
3891       if (D && !D->hasAttr<WeakAttr>())
3892         Entry->setLinkage(llvm::Function::ExternalLinkage);
3893     }
3894 
3895     // Handle dropped DLL attributes.
3896     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
3897       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3898 
3899     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
3900       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
3901 
3902     if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS)
3903       return Entry;
3904 
3905     // If there are two attempts to define the same mangled name, issue an
3906     // error.
3907     if (IsForDefinition && !Entry->isDeclaration()) {
3908       GlobalDecl OtherGD;
3909       const VarDecl *OtherD;
3910 
3911       // Check that D is not yet in DiagnosedConflictingDefinitions is required
3912       // to make sure that we issue an error only once.
3913       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
3914           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
3915           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
3916           OtherD->hasInit() &&
3917           DiagnosedConflictingDefinitions.insert(D).second) {
3918         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3919             << MangledName;
3920         getDiags().Report(OtherGD.getDecl()->getLocation(),
3921                           diag::note_previous_definition);
3922       }
3923     }
3924 
3925     // Make sure the result is of the correct type.
3926     if (Entry->getType()->getAddressSpace() != TargetAS) {
3927       return llvm::ConstantExpr::getAddrSpaceCast(Entry,
3928                                                   Ty->getPointerTo(TargetAS));
3929     }
3930 
3931     // (If global is requested for a definition, we always need to create a new
3932     // global, not just return a bitcast.)
3933     if (!IsForDefinition)
3934       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo(TargetAS));
3935   }
3936 
3937   auto DAddrSpace = GetGlobalVarAddressSpace(D);
3938 
3939   auto *GV = new llvm::GlobalVariable(
3940       getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr,
3941       MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal,
3942       getContext().getTargetAddressSpace(DAddrSpace));
3943 
3944   // If we already created a global with the same mangled name (but different
3945   // type) before, take its name and remove it from its parent.
3946   if (Entry) {
3947     GV->takeName(Entry);
3948 
3949     if (!Entry->use_empty()) {
3950       llvm::Constant *NewPtrForOldDecl =
3951           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3952       Entry->replaceAllUsesWith(NewPtrForOldDecl);
3953     }
3954 
3955     Entry->eraseFromParent();
3956   }
3957 
3958   // This is the first use or definition of a mangled name.  If there is a
3959   // deferred decl with this name, remember that we need to emit it at the end
3960   // of the file.
3961   auto DDI = DeferredDecls.find(MangledName);
3962   if (DDI != DeferredDecls.end()) {
3963     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
3964     // list, and remove it from DeferredDecls (since we don't need it anymore).
3965     addDeferredDeclToEmit(DDI->second);
3966     DeferredDecls.erase(DDI);
3967   }
3968 
3969   // Handle things which are present even on external declarations.
3970   if (D) {
3971     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
3972       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
3973 
3974     // FIXME: This code is overly simple and should be merged with other global
3975     // handling.
3976     GV->setConstant(isTypeConstant(D->getType(), false));
3977 
3978     GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
3979 
3980     setLinkageForGV(GV, D);
3981 
3982     if (D->getTLSKind()) {
3983       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
3984         CXXThreadLocals.push_back(D);
3985       setTLSMode(GV, *D);
3986     }
3987 
3988     setGVProperties(GV, D);
3989 
3990     // If required by the ABI, treat declarations of static data members with
3991     // inline initializers as definitions.
3992     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
3993       EmitGlobalVarDefinition(D);
3994     }
3995 
3996     // Emit section information for extern variables.
3997     if (D->hasExternalStorage()) {
3998       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
3999         GV->setSection(SA->getName());
4000     }
4001 
4002     // Handle XCore specific ABI requirements.
4003     if (getTriple().getArch() == llvm::Triple::xcore &&
4004         D->getLanguageLinkage() == CLanguageLinkage &&
4005         D->getType().isConstant(Context) &&
4006         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
4007       GV->setSection(".cp.rodata");
4008 
4009     // Check if we a have a const declaration with an initializer, we may be
4010     // able to emit it as available_externally to expose it's value to the
4011     // optimizer.
4012     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
4013         D->getType().isConstQualified() && !GV->hasInitializer() &&
4014         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
4015       const auto *Record =
4016           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
4017       bool HasMutableFields = Record && Record->hasMutableFields();
4018       if (!HasMutableFields) {
4019         const VarDecl *InitDecl;
4020         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
4021         if (InitExpr) {
4022           ConstantEmitter emitter(*this);
4023           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
4024           if (Init) {
4025             auto *InitType = Init->getType();
4026             if (GV->getValueType() != InitType) {
4027               // The type of the initializer does not match the definition.
4028               // This happens when an initializer has a different type from
4029               // the type of the global (because of padding at the end of a
4030               // structure for instance).
4031               GV->setName(StringRef());
4032               // Make a new global with the correct type, this is now guaranteed
4033               // to work.
4034               auto *NewGV = cast<llvm::GlobalVariable>(
4035                   GetAddrOfGlobalVar(D, InitType, IsForDefinition)
4036                       ->stripPointerCasts());
4037 
4038               // Erase the old global, since it is no longer used.
4039               GV->eraseFromParent();
4040               GV = NewGV;
4041             } else {
4042               GV->setInitializer(Init);
4043               GV->setConstant(true);
4044               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
4045             }
4046             emitter.finalize(GV);
4047           }
4048         }
4049       }
4050     }
4051   }
4052 
4053   if (GV->isDeclaration()) {
4054     getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
4055     // External HIP managed variables needed to be recorded for transformation
4056     // in both device and host compilations.
4057     if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() &&
4058         D->hasExternalStorage())
4059       getCUDARuntime().handleVarRegistration(D, *GV);
4060   }
4061 
4062   LangAS ExpectedAS =
4063       D ? D->getType().getAddressSpace()
4064         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
4065   assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS);
4066   if (DAddrSpace != ExpectedAS) {
4067     return getTargetCodeGenInfo().performAddrSpaceCast(
4068         *this, GV, DAddrSpace, ExpectedAS, Ty->getPointerTo(TargetAS));
4069   }
4070 
4071   return GV;
4072 }
4073 
4074 llvm::Constant *
4075 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) {
4076   const Decl *D = GD.getDecl();
4077 
4078   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
4079     return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
4080                                 /*DontDefer=*/false, IsForDefinition);
4081 
4082   if (isa<CXXMethodDecl>(D)) {
4083     auto FInfo =
4084         &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D));
4085     auto Ty = getTypes().GetFunctionType(*FInfo);
4086     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
4087                              IsForDefinition);
4088   }
4089 
4090   if (isa<FunctionDecl>(D)) {
4091     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4092     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4093     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
4094                              IsForDefinition);
4095   }
4096 
4097   return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition);
4098 }
4099 
4100 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
4101     StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
4102     unsigned Alignment) {
4103   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
4104   llvm::GlobalVariable *OldGV = nullptr;
4105 
4106   if (GV) {
4107     // Check if the variable has the right type.
4108     if (GV->getValueType() == Ty)
4109       return GV;
4110 
4111     // Because C++ name mangling, the only way we can end up with an already
4112     // existing global with the same name is if it has been declared extern "C".
4113     assert(GV->isDeclaration() && "Declaration has wrong type!");
4114     OldGV = GV;
4115   }
4116 
4117   // Create a new variable.
4118   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
4119                                 Linkage, nullptr, Name);
4120 
4121   if (OldGV) {
4122     // Replace occurrences of the old variable if needed.
4123     GV->takeName(OldGV);
4124 
4125     if (!OldGV->use_empty()) {
4126       llvm::Constant *NewPtrForOldDecl =
4127       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
4128       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
4129     }
4130 
4131     OldGV->eraseFromParent();
4132   }
4133 
4134   if (supportsCOMDAT() && GV->isWeakForLinker() &&
4135       !GV->hasAvailableExternallyLinkage())
4136     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
4137 
4138   GV->setAlignment(llvm::MaybeAlign(Alignment));
4139 
4140   return GV;
4141 }
4142 
4143 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
4144 /// given global variable.  If Ty is non-null and if the global doesn't exist,
4145 /// then it will be created with the specified type instead of whatever the
4146 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
4147 /// that an actual global with type Ty will be returned, not conversion of a
4148 /// variable with the same mangled name but some other type.
4149 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
4150                                                   llvm::Type *Ty,
4151                                            ForDefinition_t IsForDefinition) {
4152   assert(D->hasGlobalStorage() && "Not a global variable");
4153   QualType ASTTy = D->getType();
4154   if (!Ty)
4155     Ty = getTypes().ConvertTypeForMem(ASTTy);
4156 
4157   StringRef MangledName = getMangledName(D);
4158   return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D,
4159                                IsForDefinition);
4160 }
4161 
4162 /// CreateRuntimeVariable - Create a new runtime global variable with the
4163 /// specified type and name.
4164 llvm::Constant *
4165 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
4166                                      StringRef Name) {
4167   LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global
4168                                                        : LangAS::Default;
4169   auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr);
4170   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
4171   return Ret;
4172 }
4173 
4174 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
4175   assert(!D->getInit() && "Cannot emit definite definitions here!");
4176 
4177   StringRef MangledName = getMangledName(D);
4178   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
4179 
4180   // We already have a definition, not declaration, with the same mangled name.
4181   // Emitting of declaration is not required (and actually overwrites emitted
4182   // definition).
4183   if (GV && !GV->isDeclaration())
4184     return;
4185 
4186   // If we have not seen a reference to this variable yet, place it into the
4187   // deferred declarations table to be emitted if needed later.
4188   if (!MustBeEmitted(D) && !GV) {
4189       DeferredDecls[MangledName] = D;
4190       return;
4191   }
4192 
4193   // The tentative definition is the only definition.
4194   EmitGlobalVarDefinition(D);
4195 }
4196 
4197 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) {
4198   EmitExternalVarDeclaration(D);
4199 }
4200 
4201 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
4202   return Context.toCharUnitsFromBits(
4203       getDataLayout().getTypeStoreSizeInBits(Ty));
4204 }
4205 
4206 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
4207   if (LangOpts.OpenCL) {
4208     LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
4209     assert(AS == LangAS::opencl_global ||
4210            AS == LangAS::opencl_global_device ||
4211            AS == LangAS::opencl_global_host ||
4212            AS == LangAS::opencl_constant ||
4213            AS == LangAS::opencl_local ||
4214            AS >= LangAS::FirstTargetAddressSpace);
4215     return AS;
4216   }
4217 
4218   if (LangOpts.SYCLIsDevice &&
4219       (!D || D->getType().getAddressSpace() == LangAS::Default))
4220     return LangAS::sycl_global;
4221 
4222   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
4223     if (D && D->hasAttr<CUDAConstantAttr>())
4224       return LangAS::cuda_constant;
4225     else if (D && D->hasAttr<CUDASharedAttr>())
4226       return LangAS::cuda_shared;
4227     else if (D && D->hasAttr<CUDADeviceAttr>())
4228       return LangAS::cuda_device;
4229     else if (D && D->getType().isConstQualified())
4230       return LangAS::cuda_constant;
4231     else
4232       return LangAS::cuda_device;
4233   }
4234 
4235   if (LangOpts.OpenMP) {
4236     LangAS AS;
4237     if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
4238       return AS;
4239   }
4240   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
4241 }
4242 
4243 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const {
4244   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
4245   if (LangOpts.OpenCL)
4246     return LangAS::opencl_constant;
4247   if (LangOpts.SYCLIsDevice)
4248     return LangAS::sycl_global;
4249   if (auto AS = getTarget().getConstantAddressSpace())
4250     return AS.getValue();
4251   return LangAS::Default;
4252 }
4253 
4254 // In address space agnostic languages, string literals are in default address
4255 // space in AST. However, certain targets (e.g. amdgcn) request them to be
4256 // emitted in constant address space in LLVM IR. To be consistent with other
4257 // parts of AST, string literal global variables in constant address space
4258 // need to be casted to default address space before being put into address
4259 // map and referenced by other part of CodeGen.
4260 // In OpenCL, string literals are in constant address space in AST, therefore
4261 // they should not be casted to default address space.
4262 static llvm::Constant *
4263 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
4264                                        llvm::GlobalVariable *GV) {
4265   llvm::Constant *Cast = GV;
4266   if (!CGM.getLangOpts().OpenCL) {
4267     auto AS = CGM.GetGlobalConstantAddressSpace();
4268     if (AS != LangAS::Default)
4269       Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
4270           CGM, GV, AS, LangAS::Default,
4271           GV->getValueType()->getPointerTo(
4272               CGM.getContext().getTargetAddressSpace(LangAS::Default)));
4273   }
4274   return Cast;
4275 }
4276 
4277 template<typename SomeDecl>
4278 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
4279                                                llvm::GlobalValue *GV) {
4280   if (!getLangOpts().CPlusPlus)
4281     return;
4282 
4283   // Must have 'used' attribute, or else inline assembly can't rely on
4284   // the name existing.
4285   if (!D->template hasAttr<UsedAttr>())
4286     return;
4287 
4288   // Must have internal linkage and an ordinary name.
4289   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
4290     return;
4291 
4292   // Must be in an extern "C" context. Entities declared directly within
4293   // a record are not extern "C" even if the record is in such a context.
4294   const SomeDecl *First = D->getFirstDecl();
4295   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
4296     return;
4297 
4298   // OK, this is an internal linkage entity inside an extern "C" linkage
4299   // specification. Make a note of that so we can give it the "expected"
4300   // mangled name if nothing else is using that name.
4301   std::pair<StaticExternCMap::iterator, bool> R =
4302       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
4303 
4304   // If we have multiple internal linkage entities with the same name
4305   // in extern "C" regions, none of them gets that name.
4306   if (!R.second)
4307     R.first->second = nullptr;
4308 }
4309 
4310 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
4311   if (!CGM.supportsCOMDAT())
4312     return false;
4313 
4314   if (D.hasAttr<SelectAnyAttr>())
4315     return true;
4316 
4317   GVALinkage Linkage;
4318   if (auto *VD = dyn_cast<VarDecl>(&D))
4319     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
4320   else
4321     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
4322 
4323   switch (Linkage) {
4324   case GVA_Internal:
4325   case GVA_AvailableExternally:
4326   case GVA_StrongExternal:
4327     return false;
4328   case GVA_DiscardableODR:
4329   case GVA_StrongODR:
4330     return true;
4331   }
4332   llvm_unreachable("No such linkage");
4333 }
4334 
4335 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
4336                                           llvm::GlobalObject &GO) {
4337   if (!shouldBeInCOMDAT(*this, D))
4338     return;
4339   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
4340 }
4341 
4342 /// Pass IsTentative as true if you want to create a tentative definition.
4343 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
4344                                             bool IsTentative) {
4345   // OpenCL global variables of sampler type are translated to function calls,
4346   // therefore no need to be translated.
4347   QualType ASTTy = D->getType();
4348   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
4349     return;
4350 
4351   // If this is OpenMP device, check if it is legal to emit this global
4352   // normally.
4353   if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
4354       OpenMPRuntime->emitTargetGlobalVariable(D))
4355     return;
4356 
4357   llvm::TrackingVH<llvm::Constant> Init;
4358   bool NeedsGlobalCtor = false;
4359   bool NeedsGlobalDtor =
4360       D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
4361 
4362   const VarDecl *InitDecl;
4363   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
4364 
4365   Optional<ConstantEmitter> emitter;
4366 
4367   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
4368   // as part of their declaration."  Sema has already checked for
4369   // error cases, so we just need to set Init to UndefValue.
4370   bool IsCUDASharedVar =
4371       getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
4372   // Shadows of initialized device-side global variables are also left
4373   // undefined.
4374   // Managed Variables should be initialized on both host side and device side.
4375   bool IsCUDAShadowVar =
4376       !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
4377       (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
4378        D->hasAttr<CUDASharedAttr>());
4379   bool IsCUDADeviceShadowVar =
4380       getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
4381       (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
4382        D->getType()->isCUDADeviceBuiltinTextureType());
4383   if (getLangOpts().CUDA &&
4384       (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar))
4385     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
4386   else if (D->hasAttr<LoaderUninitializedAttr>())
4387     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
4388   else if (!InitExpr) {
4389     // This is a tentative definition; tentative definitions are
4390     // implicitly initialized with { 0 }.
4391     //
4392     // Note that tentative definitions are only emitted at the end of
4393     // a translation unit, so they should never have incomplete
4394     // type. In addition, EmitTentativeDefinition makes sure that we
4395     // never attempt to emit a tentative definition if a real one
4396     // exists. A use may still exists, however, so we still may need
4397     // to do a RAUW.
4398     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
4399     Init = EmitNullConstant(D->getType());
4400   } else {
4401     initializedGlobalDecl = GlobalDecl(D);
4402     emitter.emplace(*this);
4403     llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl);
4404     if (!Initializer) {
4405       QualType T = InitExpr->getType();
4406       if (D->getType()->isReferenceType())
4407         T = D->getType();
4408 
4409       if (getLangOpts().CPlusPlus) {
4410         Init = EmitNullConstant(T);
4411         NeedsGlobalCtor = true;
4412       } else {
4413         ErrorUnsupported(D, "static initializer");
4414         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
4415       }
4416     } else {
4417       Init = Initializer;
4418       // We don't need an initializer, so remove the entry for the delayed
4419       // initializer position (just in case this entry was delayed) if we
4420       // also don't need to register a destructor.
4421       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
4422         DelayedCXXInitPosition.erase(D);
4423     }
4424   }
4425 
4426   llvm::Type* InitType = Init->getType();
4427   llvm::Constant *Entry =
4428       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
4429 
4430   // Strip off pointer casts if we got them.
4431   Entry = Entry->stripPointerCasts();
4432 
4433   // Entry is now either a Function or GlobalVariable.
4434   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
4435 
4436   // We have a definition after a declaration with the wrong type.
4437   // We must make a new GlobalVariable* and update everything that used OldGV
4438   // (a declaration or tentative definition) with the new GlobalVariable*
4439   // (which will be a definition).
4440   //
4441   // This happens if there is a prototype for a global (e.g.
4442   // "extern int x[];") and then a definition of a different type (e.g.
4443   // "int x[10];"). This also happens when an initializer has a different type
4444   // from the type of the global (this happens with unions).
4445   if (!GV || GV->getValueType() != InitType ||
4446       GV->getType()->getAddressSpace() !=
4447           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
4448 
4449     // Move the old entry aside so that we'll create a new one.
4450     Entry->setName(StringRef());
4451 
4452     // Make a new global with the correct type, this is now guaranteed to work.
4453     GV = cast<llvm::GlobalVariable>(
4454         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
4455             ->stripPointerCasts());
4456 
4457     // Replace all uses of the old global with the new global
4458     llvm::Constant *NewPtrForOldDecl =
4459         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV,
4460                                                              Entry->getType());
4461     Entry->replaceAllUsesWith(NewPtrForOldDecl);
4462 
4463     // Erase the old global, since it is no longer used.
4464     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
4465   }
4466 
4467   MaybeHandleStaticInExternC(D, GV);
4468 
4469   if (D->hasAttr<AnnotateAttr>())
4470     AddGlobalAnnotations(D, GV);
4471 
4472   // Set the llvm linkage type as appropriate.
4473   llvm::GlobalValue::LinkageTypes Linkage =
4474       getLLVMLinkageVarDefinition(D, GV->isConstant());
4475 
4476   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
4477   // the device. [...]"
4478   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
4479   // __device__, declares a variable that: [...]
4480   // Is accessible from all the threads within the grid and from the host
4481   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
4482   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
4483   if (GV && LangOpts.CUDA) {
4484     if (LangOpts.CUDAIsDevice) {
4485       if (Linkage != llvm::GlobalValue::InternalLinkage &&
4486           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
4487            D->getType()->isCUDADeviceBuiltinSurfaceType() ||
4488            D->getType()->isCUDADeviceBuiltinTextureType()))
4489         GV->setExternallyInitialized(true);
4490     } else {
4491       getCUDARuntime().internalizeDeviceSideVar(D, Linkage);
4492     }
4493     getCUDARuntime().handleVarRegistration(D, *GV);
4494   }
4495 
4496   GV->setInitializer(Init);
4497   if (emitter)
4498     emitter->finalize(GV);
4499 
4500   // If it is safe to mark the global 'constant', do so now.
4501   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
4502                   isTypeConstant(D->getType(), true));
4503 
4504   // If it is in a read-only section, mark it 'constant'.
4505   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
4506     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
4507     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
4508       GV->setConstant(true);
4509   }
4510 
4511   GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
4512 
4513   // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper
4514   // function is only defined alongside the variable, not also alongside
4515   // callers. Normally, all accesses to a thread_local go through the
4516   // thread-wrapper in order to ensure initialization has occurred, underlying
4517   // variable will never be used other than the thread-wrapper, so it can be
4518   // converted to internal linkage.
4519   //
4520   // However, if the variable has the 'constinit' attribute, it _can_ be
4521   // referenced directly, without calling the thread-wrapper, so the linkage
4522   // must not be changed.
4523   //
4524   // Additionally, if the variable isn't plain external linkage, e.g. if it's
4525   // weak or linkonce, the de-duplication semantics are important to preserve,
4526   // so we don't change the linkage.
4527   if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
4528       Linkage == llvm::GlobalValue::ExternalLinkage &&
4529       Context.getTargetInfo().getTriple().isOSDarwin() &&
4530       !D->hasAttr<ConstInitAttr>())
4531     Linkage = llvm::GlobalValue::InternalLinkage;
4532 
4533   GV->setLinkage(Linkage);
4534   if (D->hasAttr<DLLImportAttr>())
4535     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
4536   else if (D->hasAttr<DLLExportAttr>())
4537     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
4538   else
4539     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
4540 
4541   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
4542     // common vars aren't constant even if declared const.
4543     GV->setConstant(false);
4544     // Tentative definition of global variables may be initialized with
4545     // non-zero null pointers. In this case they should have weak linkage
4546     // since common linkage must have zero initializer and must not have
4547     // explicit section therefore cannot have non-zero initial value.
4548     if (!GV->getInitializer()->isNullValue())
4549       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
4550   }
4551 
4552   setNonAliasAttributes(D, GV);
4553 
4554   if (D->getTLSKind() && !GV->isThreadLocal()) {
4555     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4556       CXXThreadLocals.push_back(D);
4557     setTLSMode(GV, *D);
4558   }
4559 
4560   maybeSetTrivialComdat(*D, *GV);
4561 
4562   // Emit the initializer function if necessary.
4563   if (NeedsGlobalCtor || NeedsGlobalDtor)
4564     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
4565 
4566   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
4567 
4568   // Emit global variable debug information.
4569   if (CGDebugInfo *DI = getModuleDebugInfo())
4570     if (getCodeGenOpts().hasReducedDebugInfo())
4571       DI->EmitGlobalVariable(GV, D);
4572 }
4573 
4574 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
4575   if (CGDebugInfo *DI = getModuleDebugInfo())
4576     if (getCodeGenOpts().hasReducedDebugInfo()) {
4577       QualType ASTTy = D->getType();
4578       llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType());
4579       llvm::Constant *GV =
4580           GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D);
4581       DI->EmitExternalVariable(
4582           cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D);
4583     }
4584 }
4585 
4586 static bool isVarDeclStrongDefinition(const ASTContext &Context,
4587                                       CodeGenModule &CGM, const VarDecl *D,
4588                                       bool NoCommon) {
4589   // Don't give variables common linkage if -fno-common was specified unless it
4590   // was overridden by a NoCommon attribute.
4591   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
4592     return true;
4593 
4594   // C11 6.9.2/2:
4595   //   A declaration of an identifier for an object that has file scope without
4596   //   an initializer, and without a storage-class specifier or with the
4597   //   storage-class specifier static, constitutes a tentative definition.
4598   if (D->getInit() || D->hasExternalStorage())
4599     return true;
4600 
4601   // A variable cannot be both common and exist in a section.
4602   if (D->hasAttr<SectionAttr>())
4603     return true;
4604 
4605   // A variable cannot be both common and exist in a section.
4606   // We don't try to determine which is the right section in the front-end.
4607   // If no specialized section name is applicable, it will resort to default.
4608   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
4609       D->hasAttr<PragmaClangDataSectionAttr>() ||
4610       D->hasAttr<PragmaClangRelroSectionAttr>() ||
4611       D->hasAttr<PragmaClangRodataSectionAttr>())
4612     return true;
4613 
4614   // Thread local vars aren't considered common linkage.
4615   if (D->getTLSKind())
4616     return true;
4617 
4618   // Tentative definitions marked with WeakImportAttr are true definitions.
4619   if (D->hasAttr<WeakImportAttr>())
4620     return true;
4621 
4622   // A variable cannot be both common and exist in a comdat.
4623   if (shouldBeInCOMDAT(CGM, *D))
4624     return true;
4625 
4626   // Declarations with a required alignment do not have common linkage in MSVC
4627   // mode.
4628   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
4629     if (D->hasAttr<AlignedAttr>())
4630       return true;
4631     QualType VarType = D->getType();
4632     if (Context.isAlignmentRequired(VarType))
4633       return true;
4634 
4635     if (const auto *RT = VarType->getAs<RecordType>()) {
4636       const RecordDecl *RD = RT->getDecl();
4637       for (const FieldDecl *FD : RD->fields()) {
4638         if (FD->isBitField())
4639           continue;
4640         if (FD->hasAttr<AlignedAttr>())
4641           return true;
4642         if (Context.isAlignmentRequired(FD->getType()))
4643           return true;
4644       }
4645     }
4646   }
4647 
4648   // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
4649   // common symbols, so symbols with greater alignment requirements cannot be
4650   // common.
4651   // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
4652   // alignments for common symbols via the aligncomm directive, so this
4653   // restriction only applies to MSVC environments.
4654   if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
4655       Context.getTypeAlignIfKnown(D->getType()) >
4656           Context.toBits(CharUnits::fromQuantity(32)))
4657     return true;
4658 
4659   return false;
4660 }
4661 
4662 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
4663     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
4664   if (Linkage == GVA_Internal)
4665     return llvm::Function::InternalLinkage;
4666 
4667   if (D->hasAttr<WeakAttr>()) {
4668     if (IsConstantVariable)
4669       return llvm::GlobalVariable::WeakODRLinkage;
4670     else
4671       return llvm::GlobalVariable::WeakAnyLinkage;
4672   }
4673 
4674   if (const auto *FD = D->getAsFunction())
4675     if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
4676       return llvm::GlobalVariable::LinkOnceAnyLinkage;
4677 
4678   // We are guaranteed to have a strong definition somewhere else,
4679   // so we can use available_externally linkage.
4680   if (Linkage == GVA_AvailableExternally)
4681     return llvm::GlobalValue::AvailableExternallyLinkage;
4682 
4683   // Note that Apple's kernel linker doesn't support symbol
4684   // coalescing, so we need to avoid linkonce and weak linkages there.
4685   // Normally, this means we just map to internal, but for explicit
4686   // instantiations we'll map to external.
4687 
4688   // In C++, the compiler has to emit a definition in every translation unit
4689   // that references the function.  We should use linkonce_odr because
4690   // a) if all references in this translation unit are optimized away, we
4691   // don't need to codegen it.  b) if the function persists, it needs to be
4692   // merged with other definitions. c) C++ has the ODR, so we know the
4693   // definition is dependable.
4694   if (Linkage == GVA_DiscardableODR)
4695     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
4696                                             : llvm::Function::InternalLinkage;
4697 
4698   // An explicit instantiation of a template has weak linkage, since
4699   // explicit instantiations can occur in multiple translation units
4700   // and must all be equivalent. However, we are not allowed to
4701   // throw away these explicit instantiations.
4702   //
4703   // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU,
4704   // so say that CUDA templates are either external (for kernels) or internal.
4705   // This lets llvm perform aggressive inter-procedural optimizations. For
4706   // -fgpu-rdc case, device function calls across multiple TU's are allowed,
4707   // therefore we need to follow the normal linkage paradigm.
4708   if (Linkage == GVA_StrongODR) {
4709     if (getLangOpts().AppleKext)
4710       return llvm::Function::ExternalLinkage;
4711     if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
4712         !getLangOpts().GPURelocatableDeviceCode)
4713       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
4714                                           : llvm::Function::InternalLinkage;
4715     return llvm::Function::WeakODRLinkage;
4716   }
4717 
4718   // C++ doesn't have tentative definitions and thus cannot have common
4719   // linkage.
4720   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
4721       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
4722                                  CodeGenOpts.NoCommon))
4723     return llvm::GlobalVariable::CommonLinkage;
4724 
4725   // selectany symbols are externally visible, so use weak instead of
4726   // linkonce.  MSVC optimizes away references to const selectany globals, so
4727   // all definitions should be the same and ODR linkage should be used.
4728   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
4729   if (D->hasAttr<SelectAnyAttr>())
4730     return llvm::GlobalVariable::WeakODRLinkage;
4731 
4732   // Otherwise, we have strong external linkage.
4733   assert(Linkage == GVA_StrongExternal);
4734   return llvm::GlobalVariable::ExternalLinkage;
4735 }
4736 
4737 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
4738     const VarDecl *VD, bool IsConstant) {
4739   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
4740   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
4741 }
4742 
4743 /// Replace the uses of a function that was declared with a non-proto type.
4744 /// We want to silently drop extra arguments from call sites
4745 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
4746                                           llvm::Function *newFn) {
4747   // Fast path.
4748   if (old->use_empty()) return;
4749 
4750   llvm::Type *newRetTy = newFn->getReturnType();
4751   SmallVector<llvm::Value*, 4> newArgs;
4752 
4753   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
4754          ui != ue; ) {
4755     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
4756     llvm::User *user = use->getUser();
4757 
4758     // Recognize and replace uses of bitcasts.  Most calls to
4759     // unprototyped functions will use bitcasts.
4760     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
4761       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
4762         replaceUsesOfNonProtoConstant(bitcast, newFn);
4763       continue;
4764     }
4765 
4766     // Recognize calls to the function.
4767     llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
4768     if (!callSite) continue;
4769     if (!callSite->isCallee(&*use))
4770       continue;
4771 
4772     // If the return types don't match exactly, then we can't
4773     // transform this call unless it's dead.
4774     if (callSite->getType() != newRetTy && !callSite->use_empty())
4775       continue;
4776 
4777     // Get the call site's attribute list.
4778     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
4779     llvm::AttributeList oldAttrs = callSite->getAttributes();
4780 
4781     // If the function was passed too few arguments, don't transform.
4782     unsigned newNumArgs = newFn->arg_size();
4783     if (callSite->arg_size() < newNumArgs)
4784       continue;
4785 
4786     // If extra arguments were passed, we silently drop them.
4787     // If any of the types mismatch, we don't transform.
4788     unsigned argNo = 0;
4789     bool dontTransform = false;
4790     for (llvm::Argument &A : newFn->args()) {
4791       if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
4792         dontTransform = true;
4793         break;
4794       }
4795 
4796       // Add any parameter attributes.
4797       newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo));
4798       argNo++;
4799     }
4800     if (dontTransform)
4801       continue;
4802 
4803     // Okay, we can transform this.  Create the new call instruction and copy
4804     // over the required information.
4805     newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
4806 
4807     // Copy over any operand bundles.
4808     SmallVector<llvm::OperandBundleDef, 1> newBundles;
4809     callSite->getOperandBundlesAsDefs(newBundles);
4810 
4811     llvm::CallBase *newCall;
4812     if (isa<llvm::CallInst>(callSite)) {
4813       newCall =
4814           llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
4815     } else {
4816       auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
4817       newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
4818                                          oldInvoke->getUnwindDest(), newArgs,
4819                                          newBundles, "", callSite);
4820     }
4821     newArgs.clear(); // for the next iteration
4822 
4823     if (!newCall->getType()->isVoidTy())
4824       newCall->takeName(callSite);
4825     newCall->setAttributes(
4826         llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(),
4827                                  oldAttrs.getRetAttrs(), newArgAttrs));
4828     newCall->setCallingConv(callSite->getCallingConv());
4829 
4830     // Finally, remove the old call, replacing any uses with the new one.
4831     if (!callSite->use_empty())
4832       callSite->replaceAllUsesWith(newCall);
4833 
4834     // Copy debug location attached to CI.
4835     if (callSite->getDebugLoc())
4836       newCall->setDebugLoc(callSite->getDebugLoc());
4837 
4838     callSite->eraseFromParent();
4839   }
4840 }
4841 
4842 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
4843 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
4844 /// existing call uses of the old function in the module, this adjusts them to
4845 /// call the new function directly.
4846 ///
4847 /// This is not just a cleanup: the always_inline pass requires direct calls to
4848 /// functions to be able to inline them.  If there is a bitcast in the way, it
4849 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
4850 /// run at -O0.
4851 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
4852                                                       llvm::Function *NewFn) {
4853   // If we're redefining a global as a function, don't transform it.
4854   if (!isa<llvm::Function>(Old)) return;
4855 
4856   replaceUsesOfNonProtoConstant(Old, NewFn);
4857 }
4858 
4859 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
4860   auto DK = VD->isThisDeclarationADefinition();
4861   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
4862     return;
4863 
4864   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
4865   // If we have a definition, this might be a deferred decl. If the
4866   // instantiation is explicit, make sure we emit it at the end.
4867   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
4868     GetAddrOfGlobalVar(VD);
4869 
4870   EmitTopLevelDecl(VD);
4871 }
4872 
4873 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
4874                                                  llvm::GlobalValue *GV) {
4875   const auto *D = cast<FunctionDecl>(GD.getDecl());
4876 
4877   // Compute the function info and LLVM type.
4878   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4879   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4880 
4881   // Get or create the prototype for the function.
4882   if (!GV || (GV->getValueType() != Ty))
4883     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
4884                                                    /*DontDefer=*/true,
4885                                                    ForDefinition));
4886 
4887   // Already emitted.
4888   if (!GV->isDeclaration())
4889     return;
4890 
4891   // We need to set linkage and visibility on the function before
4892   // generating code for it because various parts of IR generation
4893   // want to propagate this information down (e.g. to local static
4894   // declarations).
4895   auto *Fn = cast<llvm::Function>(GV);
4896   setFunctionLinkage(GD, Fn);
4897 
4898   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
4899   setGVProperties(Fn, GD);
4900 
4901   MaybeHandleStaticInExternC(D, Fn);
4902 
4903   maybeSetTrivialComdat(*D, *Fn);
4904 
4905   // Set CodeGen attributes that represent floating point environment.
4906   setLLVMFunctionFEnvAttributes(D, Fn);
4907 
4908   CodeGenFunction(*this).GenerateCode(GD, Fn, FI);
4909 
4910   setNonAliasAttributes(GD, Fn);
4911   SetLLVMFunctionAttributesForDefinition(D, Fn);
4912 
4913   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
4914     AddGlobalCtor(Fn, CA->getPriority());
4915   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
4916     AddGlobalDtor(Fn, DA->getPriority(), true);
4917   if (D->hasAttr<AnnotateAttr>())
4918     AddGlobalAnnotations(D, Fn);
4919 }
4920 
4921 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
4922   const auto *D = cast<ValueDecl>(GD.getDecl());
4923   const AliasAttr *AA = D->getAttr<AliasAttr>();
4924   assert(AA && "Not an alias?");
4925 
4926   StringRef MangledName = getMangledName(GD);
4927 
4928   if (AA->getAliasee() == MangledName) {
4929     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4930     return;
4931   }
4932 
4933   // If there is a definition in the module, then it wins over the alias.
4934   // This is dubious, but allow it to be safe.  Just ignore the alias.
4935   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4936   if (Entry && !Entry->isDeclaration())
4937     return;
4938 
4939   Aliases.push_back(GD);
4940 
4941   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4942 
4943   // Create a reference to the named value.  This ensures that it is emitted
4944   // if a deferred decl.
4945   llvm::Constant *Aliasee;
4946   llvm::GlobalValue::LinkageTypes LT;
4947   if (isa<llvm::FunctionType>(DeclTy)) {
4948     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
4949                                       /*ForVTable=*/false);
4950     LT = getFunctionLinkage(GD);
4951   } else {
4952     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
4953                                     /*D=*/nullptr);
4954     if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl()))
4955       LT = getLLVMLinkageVarDefinition(VD, D->getType().isConstQualified());
4956     else
4957       LT = getFunctionLinkage(GD);
4958   }
4959 
4960   // Create the new alias itself, but don't set a name yet.
4961   unsigned AS = Aliasee->getType()->getPointerAddressSpace();
4962   auto *GA =
4963       llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule());
4964 
4965   if (Entry) {
4966     if (GA->getAliasee() == Entry) {
4967       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4968       return;
4969     }
4970 
4971     assert(Entry->isDeclaration());
4972 
4973     // If there is a declaration in the module, then we had an extern followed
4974     // by the alias, as in:
4975     //   extern int test6();
4976     //   ...
4977     //   int test6() __attribute__((alias("test7")));
4978     //
4979     // Remove it and replace uses of it with the alias.
4980     GA->takeName(Entry);
4981 
4982     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
4983                                                           Entry->getType()));
4984     Entry->eraseFromParent();
4985   } else {
4986     GA->setName(MangledName);
4987   }
4988 
4989   // Set attributes which are particular to an alias; this is a
4990   // specialization of the attributes which may be set on a global
4991   // variable/function.
4992   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
4993       D->isWeakImported()) {
4994     GA->setLinkage(llvm::Function::WeakAnyLinkage);
4995   }
4996 
4997   if (const auto *VD = dyn_cast<VarDecl>(D))
4998     if (VD->getTLSKind())
4999       setTLSMode(GA, *VD);
5000 
5001   SetCommonAttributes(GD, GA);
5002 }
5003 
5004 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
5005   const auto *D = cast<ValueDecl>(GD.getDecl());
5006   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
5007   assert(IFA && "Not an ifunc?");
5008 
5009   StringRef MangledName = getMangledName(GD);
5010 
5011   if (IFA->getResolver() == MangledName) {
5012     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
5013     return;
5014   }
5015 
5016   // Report an error if some definition overrides ifunc.
5017   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
5018   if (Entry && !Entry->isDeclaration()) {
5019     GlobalDecl OtherGD;
5020     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
5021         DiagnosedConflictingDefinitions.insert(GD).second) {
5022       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
5023           << MangledName;
5024       Diags.Report(OtherGD.getDecl()->getLocation(),
5025                    diag::note_previous_definition);
5026     }
5027     return;
5028   }
5029 
5030   Aliases.push_back(GD);
5031 
5032   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
5033   llvm::Type *ResolverTy = llvm::GlobalIFunc::getResolverFunctionType(DeclTy);
5034   llvm::Constant *Resolver =
5035       GetOrCreateLLVMFunction(IFA->getResolver(), ResolverTy, {},
5036                               /*ForVTable=*/false);
5037   llvm::GlobalIFunc *GIF =
5038       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
5039                                 "", Resolver, &getModule());
5040   if (Entry) {
5041     if (GIF->getResolver() == Entry) {
5042       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
5043       return;
5044     }
5045     assert(Entry->isDeclaration());
5046 
5047     // If there is a declaration in the module, then we had an extern followed
5048     // by the ifunc, as in:
5049     //   extern int test();
5050     //   ...
5051     //   int test() __attribute__((ifunc("resolver")));
5052     //
5053     // Remove it and replace uses of it with the ifunc.
5054     GIF->takeName(Entry);
5055 
5056     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
5057                                                           Entry->getType()));
5058     Entry->eraseFromParent();
5059   } else
5060     GIF->setName(MangledName);
5061 
5062   SetCommonAttributes(GD, GIF);
5063 }
5064 
5065 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
5066                                             ArrayRef<llvm::Type*> Tys) {
5067   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
5068                                          Tys);
5069 }
5070 
5071 static llvm::StringMapEntry<llvm::GlobalVariable *> &
5072 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
5073                          const StringLiteral *Literal, bool TargetIsLSB,
5074                          bool &IsUTF16, unsigned &StringLength) {
5075   StringRef String = Literal->getString();
5076   unsigned NumBytes = String.size();
5077 
5078   // Check for simple case.
5079   if (!Literal->containsNonAsciiOrNull()) {
5080     StringLength = NumBytes;
5081     return *Map.insert(std::make_pair(String, nullptr)).first;
5082   }
5083 
5084   // Otherwise, convert the UTF8 literals into a string of shorts.
5085   IsUTF16 = true;
5086 
5087   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
5088   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
5089   llvm::UTF16 *ToPtr = &ToBuf[0];
5090 
5091   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
5092                                  ToPtr + NumBytes, llvm::strictConversion);
5093 
5094   // ConvertUTF8toUTF16 returns the length in ToPtr.
5095   StringLength = ToPtr - &ToBuf[0];
5096 
5097   // Add an explicit null.
5098   *ToPtr = 0;
5099   return *Map.insert(std::make_pair(
5100                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
5101                                    (StringLength + 1) * 2),
5102                          nullptr)).first;
5103 }
5104 
5105 ConstantAddress
5106 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
5107   unsigned StringLength = 0;
5108   bool isUTF16 = false;
5109   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
5110       GetConstantCFStringEntry(CFConstantStringMap, Literal,
5111                                getDataLayout().isLittleEndian(), isUTF16,
5112                                StringLength);
5113 
5114   if (auto *C = Entry.second)
5115     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
5116 
5117   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
5118   llvm::Constant *Zeros[] = { Zero, Zero };
5119 
5120   const ASTContext &Context = getContext();
5121   const llvm::Triple &Triple = getTriple();
5122 
5123   const auto CFRuntime = getLangOpts().CFRuntime;
5124   const bool IsSwiftABI =
5125       static_cast<unsigned>(CFRuntime) >=
5126       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
5127   const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
5128 
5129   // If we don't already have it, get __CFConstantStringClassReference.
5130   if (!CFConstantStringClassRef) {
5131     const char *CFConstantStringClassName = "__CFConstantStringClassReference";
5132     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
5133     Ty = llvm::ArrayType::get(Ty, 0);
5134 
5135     switch (CFRuntime) {
5136     default: break;
5137     case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH;
5138     case LangOptions::CoreFoundationABI::Swift5_0:
5139       CFConstantStringClassName =
5140           Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
5141                               : "$s10Foundation19_NSCFConstantStringCN";
5142       Ty = IntPtrTy;
5143       break;
5144     case LangOptions::CoreFoundationABI::Swift4_2:
5145       CFConstantStringClassName =
5146           Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
5147                               : "$S10Foundation19_NSCFConstantStringCN";
5148       Ty = IntPtrTy;
5149       break;
5150     case LangOptions::CoreFoundationABI::Swift4_1:
5151       CFConstantStringClassName =
5152           Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
5153                               : "__T010Foundation19_NSCFConstantStringCN";
5154       Ty = IntPtrTy;
5155       break;
5156     }
5157 
5158     llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
5159 
5160     if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
5161       llvm::GlobalValue *GV = nullptr;
5162 
5163       if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
5164         IdentifierInfo &II = Context.Idents.get(GV->getName());
5165         TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
5166         DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
5167 
5168         const VarDecl *VD = nullptr;
5169         for (const auto *Result : DC->lookup(&II))
5170           if ((VD = dyn_cast<VarDecl>(Result)))
5171             break;
5172 
5173         if (Triple.isOSBinFormatELF()) {
5174           if (!VD)
5175             GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
5176         } else {
5177           GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
5178           if (!VD || !VD->hasAttr<DLLExportAttr>())
5179             GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
5180           else
5181             GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
5182         }
5183 
5184         setDSOLocal(GV);
5185       }
5186     }
5187 
5188     // Decay array -> ptr
5189     CFConstantStringClassRef =
5190         IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty)
5191                    : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros);
5192   }
5193 
5194   QualType CFTy = Context.getCFConstantStringType();
5195 
5196   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
5197 
5198   ConstantInitBuilder Builder(*this);
5199   auto Fields = Builder.beginStruct(STy);
5200 
5201   // Class pointer.
5202   Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));
5203 
5204   // Flags.
5205   if (IsSwiftABI) {
5206     Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
5207     Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
5208   } else {
5209     Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
5210   }
5211 
5212   // String pointer.
5213   llvm::Constant *C = nullptr;
5214   if (isUTF16) {
5215     auto Arr = llvm::makeArrayRef(
5216         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
5217         Entry.first().size() / 2);
5218     C = llvm::ConstantDataArray::get(VMContext, Arr);
5219   } else {
5220     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
5221   }
5222 
5223   // Note: -fwritable-strings doesn't make the backing store strings of
5224   // CFStrings writable. (See <rdar://problem/10657500>)
5225   auto *GV =
5226       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
5227                                llvm::GlobalValue::PrivateLinkage, C, ".str");
5228   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5229   // Don't enforce the target's minimum global alignment, since the only use
5230   // of the string is via this class initializer.
5231   CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
5232                             : Context.getTypeAlignInChars(Context.CharTy);
5233   GV->setAlignment(Align.getAsAlign());
5234 
5235   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
5236   // Without it LLVM can merge the string with a non unnamed_addr one during
5237   // LTO.  Doing that changes the section it ends in, which surprises ld64.
5238   if (Triple.isOSBinFormatMachO())
5239     GV->setSection(isUTF16 ? "__TEXT,__ustring"
5240                            : "__TEXT,__cstring,cstring_literals");
5241   // Make sure the literal ends up in .rodata to allow for safe ICF and for
5242   // the static linker to adjust permissions to read-only later on.
5243   else if (Triple.isOSBinFormatELF())
5244     GV->setSection(".rodata");
5245 
5246   // String.
5247   llvm::Constant *Str =
5248       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
5249 
5250   if (isUTF16)
5251     // Cast the UTF16 string to the correct type.
5252     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
5253   Fields.add(Str);
5254 
5255   // String length.
5256   llvm::IntegerType *LengthTy =
5257       llvm::IntegerType::get(getModule().getContext(),
5258                              Context.getTargetInfo().getLongWidth());
5259   if (IsSwiftABI) {
5260     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
5261         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
5262       LengthTy = Int32Ty;
5263     else
5264       LengthTy = IntPtrTy;
5265   }
5266   Fields.addInt(LengthTy, StringLength);
5267 
5268   // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
5269   // properly aligned on 32-bit platforms.
5270   CharUnits Alignment =
5271       IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
5272 
5273   // The struct.
5274   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
5275                                     /*isConstant=*/false,
5276                                     llvm::GlobalVariable::PrivateLinkage);
5277   GV->addAttribute("objc_arc_inert");
5278   switch (Triple.getObjectFormat()) {
5279   case llvm::Triple::UnknownObjectFormat:
5280     llvm_unreachable("unknown file format");
5281   case llvm::Triple::GOFF:
5282     llvm_unreachable("GOFF is not yet implemented");
5283   case llvm::Triple::XCOFF:
5284     llvm_unreachable("XCOFF is not yet implemented");
5285   case llvm::Triple::COFF:
5286   case llvm::Triple::ELF:
5287   case llvm::Triple::Wasm:
5288     GV->setSection("cfstring");
5289     break;
5290   case llvm::Triple::MachO:
5291     GV->setSection("__DATA,__cfstring");
5292     break;
5293   }
5294   Entry.second = GV;
5295 
5296   return ConstantAddress(GV, Alignment);
5297 }
5298 
5299 bool CodeGenModule::getExpressionLocationsEnabled() const {
5300   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
5301 }
5302 
5303 QualType CodeGenModule::getObjCFastEnumerationStateType() {
5304   if (ObjCFastEnumerationStateType.isNull()) {
5305     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
5306     D->startDefinition();
5307 
5308     QualType FieldTypes[] = {
5309       Context.UnsignedLongTy,
5310       Context.getPointerType(Context.getObjCIdType()),
5311       Context.getPointerType(Context.UnsignedLongTy),
5312       Context.getConstantArrayType(Context.UnsignedLongTy,
5313                            llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0)
5314     };
5315 
5316     for (size_t i = 0; i < 4; ++i) {
5317       FieldDecl *Field = FieldDecl::Create(Context,
5318                                            D,
5319                                            SourceLocation(),
5320                                            SourceLocation(), nullptr,
5321                                            FieldTypes[i], /*TInfo=*/nullptr,
5322                                            /*BitWidth=*/nullptr,
5323                                            /*Mutable=*/false,
5324                                            ICIS_NoInit);
5325       Field->setAccess(AS_public);
5326       D->addDecl(Field);
5327     }
5328 
5329     D->completeDefinition();
5330     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
5331   }
5332 
5333   return ObjCFastEnumerationStateType;
5334 }
5335 
5336 llvm::Constant *
5337 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
5338   assert(!E->getType()->isPointerType() && "Strings are always arrays");
5339 
5340   // Don't emit it as the address of the string, emit the string data itself
5341   // as an inline array.
5342   if (E->getCharByteWidth() == 1) {
5343     SmallString<64> Str(E->getString());
5344 
5345     // Resize the string to the right size, which is indicated by its type.
5346     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
5347     Str.resize(CAT->getSize().getZExtValue());
5348     return llvm::ConstantDataArray::getString(VMContext, Str, false);
5349   }
5350 
5351   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
5352   llvm::Type *ElemTy = AType->getElementType();
5353   unsigned NumElements = AType->getNumElements();
5354 
5355   // Wide strings have either 2-byte or 4-byte elements.
5356   if (ElemTy->getPrimitiveSizeInBits() == 16) {
5357     SmallVector<uint16_t, 32> Elements;
5358     Elements.reserve(NumElements);
5359 
5360     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5361       Elements.push_back(E->getCodeUnit(i));
5362     Elements.resize(NumElements);
5363     return llvm::ConstantDataArray::get(VMContext, Elements);
5364   }
5365 
5366   assert(ElemTy->getPrimitiveSizeInBits() == 32);
5367   SmallVector<uint32_t, 32> Elements;
5368   Elements.reserve(NumElements);
5369 
5370   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5371     Elements.push_back(E->getCodeUnit(i));
5372   Elements.resize(NumElements);
5373   return llvm::ConstantDataArray::get(VMContext, Elements);
5374 }
5375 
5376 static llvm::GlobalVariable *
5377 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
5378                       CodeGenModule &CGM, StringRef GlobalName,
5379                       CharUnits Alignment) {
5380   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
5381       CGM.GetGlobalConstantAddressSpace());
5382 
5383   llvm::Module &M = CGM.getModule();
5384   // Create a global variable for this string
5385   auto *GV = new llvm::GlobalVariable(
5386       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
5387       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
5388   GV->setAlignment(Alignment.getAsAlign());
5389   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5390   if (GV->isWeakForLinker()) {
5391     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
5392     GV->setComdat(M.getOrInsertComdat(GV->getName()));
5393   }
5394   CGM.setDSOLocal(GV);
5395 
5396   return GV;
5397 }
5398 
5399 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
5400 /// constant array for the given string literal.
5401 ConstantAddress
5402 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
5403                                                   StringRef Name) {
5404   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
5405 
5406   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
5407   llvm::GlobalVariable **Entry = nullptr;
5408   if (!LangOpts.WritableStrings) {
5409     Entry = &ConstantStringMap[C];
5410     if (auto GV = *Entry) {
5411       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
5412         GV->setAlignment(Alignment.getAsAlign());
5413       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5414                              Alignment);
5415     }
5416   }
5417 
5418   SmallString<256> MangledNameBuffer;
5419   StringRef GlobalVariableName;
5420   llvm::GlobalValue::LinkageTypes LT;
5421 
5422   // Mangle the string literal if that's how the ABI merges duplicate strings.
5423   // Don't do it if they are writable, since we don't want writes in one TU to
5424   // affect strings in another.
5425   if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
5426       !LangOpts.WritableStrings) {
5427     llvm::raw_svector_ostream Out(MangledNameBuffer);
5428     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
5429     LT = llvm::GlobalValue::LinkOnceODRLinkage;
5430     GlobalVariableName = MangledNameBuffer;
5431   } else {
5432     LT = llvm::GlobalValue::PrivateLinkage;
5433     GlobalVariableName = Name;
5434   }
5435 
5436   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
5437   if (Entry)
5438     *Entry = GV;
5439 
5440   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
5441                                   QualType());
5442 
5443   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5444                          Alignment);
5445 }
5446 
5447 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
5448 /// array for the given ObjCEncodeExpr node.
5449 ConstantAddress
5450 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
5451   std::string Str;
5452   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
5453 
5454   return GetAddrOfConstantCString(Str);
5455 }
5456 
5457 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
5458 /// the literal and a terminating '\0' character.
5459 /// The result has pointer to array type.
5460 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
5461     const std::string &Str, const char *GlobalName) {
5462   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
5463   CharUnits Alignment =
5464     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
5465 
5466   llvm::Constant *C =
5467       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
5468 
5469   // Don't share any string literals if strings aren't constant.
5470   llvm::GlobalVariable **Entry = nullptr;
5471   if (!LangOpts.WritableStrings) {
5472     Entry = &ConstantStringMap[C];
5473     if (auto GV = *Entry) {
5474       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
5475         GV->setAlignment(Alignment.getAsAlign());
5476       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5477                              Alignment);
5478     }
5479   }
5480 
5481   // Get the default prefix if a name wasn't specified.
5482   if (!GlobalName)
5483     GlobalName = ".str";
5484   // Create a global variable for this.
5485   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
5486                                   GlobalName, Alignment);
5487   if (Entry)
5488     *Entry = GV;
5489 
5490   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5491                          Alignment);
5492 }
5493 
5494 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
5495     const MaterializeTemporaryExpr *E, const Expr *Init) {
5496   assert((E->getStorageDuration() == SD_Static ||
5497           E->getStorageDuration() == SD_Thread) && "not a global temporary");
5498   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
5499 
5500   // If we're not materializing a subobject of the temporary, keep the
5501   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
5502   QualType MaterializedType = Init->getType();
5503   if (Init == E->getSubExpr())
5504     MaterializedType = E->getType();
5505 
5506   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
5507 
5508   auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr});
5509   if (!InsertResult.second) {
5510     // We've seen this before: either we already created it or we're in the
5511     // process of doing so.
5512     if (!InsertResult.first->second) {
5513       // We recursively re-entered this function, probably during emission of
5514       // the initializer. Create a placeholder. We'll clean this up in the
5515       // outer call, at the end of this function.
5516       llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType);
5517       InsertResult.first->second = new llvm::GlobalVariable(
5518           getModule(), Type, false, llvm::GlobalVariable::InternalLinkage,
5519           nullptr);
5520     }
5521     return ConstantAddress(InsertResult.first->second, Align);
5522   }
5523 
5524   // FIXME: If an externally-visible declaration extends multiple temporaries,
5525   // we need to give each temporary the same name in every translation unit (and
5526   // we also need to make the temporaries externally-visible).
5527   SmallString<256> Name;
5528   llvm::raw_svector_ostream Out(Name);
5529   getCXXABI().getMangleContext().mangleReferenceTemporary(
5530       VD, E->getManglingNumber(), Out);
5531 
5532   APValue *Value = nullptr;
5533   if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) {
5534     // If the initializer of the extending declaration is a constant
5535     // initializer, we should have a cached constant initializer for this
5536     // temporary. Note that this might have a different value from the value
5537     // computed by evaluating the initializer if the surrounding constant
5538     // expression modifies the temporary.
5539     Value = E->getOrCreateValue(false);
5540   }
5541 
5542   // Try evaluating it now, it might have a constant initializer.
5543   Expr::EvalResult EvalResult;
5544   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
5545       !EvalResult.hasSideEffects())
5546     Value = &EvalResult.Val;
5547 
5548   LangAS AddrSpace =
5549       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
5550 
5551   Optional<ConstantEmitter> emitter;
5552   llvm::Constant *InitialValue = nullptr;
5553   bool Constant = false;
5554   llvm::Type *Type;
5555   if (Value) {
5556     // The temporary has a constant initializer, use it.
5557     emitter.emplace(*this);
5558     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
5559                                                MaterializedType);
5560     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
5561     Type = InitialValue->getType();
5562   } else {
5563     // No initializer, the initialization will be provided when we
5564     // initialize the declaration which performed lifetime extension.
5565     Type = getTypes().ConvertTypeForMem(MaterializedType);
5566   }
5567 
5568   // Create a global variable for this lifetime-extended temporary.
5569   llvm::GlobalValue::LinkageTypes Linkage =
5570       getLLVMLinkageVarDefinition(VD, Constant);
5571   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
5572     const VarDecl *InitVD;
5573     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
5574         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
5575       // Temporaries defined inside a class get linkonce_odr linkage because the
5576       // class can be defined in multiple translation units.
5577       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
5578     } else {
5579       // There is no need for this temporary to have external linkage if the
5580       // VarDecl has external linkage.
5581       Linkage = llvm::GlobalVariable::InternalLinkage;
5582     }
5583   }
5584   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
5585   auto *GV = new llvm::GlobalVariable(
5586       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
5587       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
5588   if (emitter) emitter->finalize(GV);
5589   setGVProperties(GV, VD);
5590   GV->setAlignment(Align.getAsAlign());
5591   if (supportsCOMDAT() && GV->isWeakForLinker())
5592     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
5593   if (VD->getTLSKind())
5594     setTLSMode(GV, *VD);
5595   llvm::Constant *CV = GV;
5596   if (AddrSpace != LangAS::Default)
5597     CV = getTargetCodeGenInfo().performAddrSpaceCast(
5598         *this, GV, AddrSpace, LangAS::Default,
5599         Type->getPointerTo(
5600             getContext().getTargetAddressSpace(LangAS::Default)));
5601 
5602   // Update the map with the new temporary. If we created a placeholder above,
5603   // replace it with the new global now.
5604   llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E];
5605   if (Entry) {
5606     Entry->replaceAllUsesWith(
5607         llvm::ConstantExpr::getBitCast(CV, Entry->getType()));
5608     llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent();
5609   }
5610   Entry = CV;
5611 
5612   return ConstantAddress(CV, Align);
5613 }
5614 
5615 /// EmitObjCPropertyImplementations - Emit information for synthesized
5616 /// properties for an implementation.
5617 void CodeGenModule::EmitObjCPropertyImplementations(const
5618                                                     ObjCImplementationDecl *D) {
5619   for (const auto *PID : D->property_impls()) {
5620     // Dynamic is just for type-checking.
5621     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
5622       ObjCPropertyDecl *PD = PID->getPropertyDecl();
5623 
5624       // Determine which methods need to be implemented, some may have
5625       // been overridden. Note that ::isPropertyAccessor is not the method
5626       // we want, that just indicates if the decl came from a
5627       // property. What we want to know is if the method is defined in
5628       // this implementation.
5629       auto *Getter = PID->getGetterMethodDecl();
5630       if (!Getter || Getter->isSynthesizedAccessorStub())
5631         CodeGenFunction(*this).GenerateObjCGetter(
5632             const_cast<ObjCImplementationDecl *>(D), PID);
5633       auto *Setter = PID->getSetterMethodDecl();
5634       if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
5635         CodeGenFunction(*this).GenerateObjCSetter(
5636                                  const_cast<ObjCImplementationDecl *>(D), PID);
5637     }
5638   }
5639 }
5640 
5641 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
5642   const ObjCInterfaceDecl *iface = impl->getClassInterface();
5643   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
5644        ivar; ivar = ivar->getNextIvar())
5645     if (ivar->getType().isDestructedType())
5646       return true;
5647 
5648   return false;
5649 }
5650 
5651 static bool AllTrivialInitializers(CodeGenModule &CGM,
5652                                    ObjCImplementationDecl *D) {
5653   CodeGenFunction CGF(CGM);
5654   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
5655        E = D->init_end(); B != E; ++B) {
5656     CXXCtorInitializer *CtorInitExp = *B;
5657     Expr *Init = CtorInitExp->getInit();
5658     if (!CGF.isTrivialInitializer(Init))
5659       return false;
5660   }
5661   return true;
5662 }
5663 
5664 /// EmitObjCIvarInitializations - Emit information for ivar initialization
5665 /// for an implementation.
5666 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
5667   // We might need a .cxx_destruct even if we don't have any ivar initializers.
5668   if (needsDestructMethod(D)) {
5669     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
5670     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5671     ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
5672         getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5673         getContext().VoidTy, nullptr, D,
5674         /*isInstance=*/true, /*isVariadic=*/false,
5675         /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5676         /*isImplicitlyDeclared=*/true,
5677         /*isDefined=*/false, ObjCMethodDecl::Required);
5678     D->addInstanceMethod(DTORMethod);
5679     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
5680     D->setHasDestructors(true);
5681   }
5682 
5683   // If the implementation doesn't have any ivar initializers, we don't need
5684   // a .cxx_construct.
5685   if (D->getNumIvarInitializers() == 0 ||
5686       AllTrivialInitializers(*this, D))
5687     return;
5688 
5689   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
5690   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5691   // The constructor returns 'self'.
5692   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
5693       getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5694       getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
5695       /*isVariadic=*/false,
5696       /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5697       /*isImplicitlyDeclared=*/true,
5698       /*isDefined=*/false, ObjCMethodDecl::Required);
5699   D->addInstanceMethod(CTORMethod);
5700   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
5701   D->setHasNonZeroConstructors(true);
5702 }
5703 
5704 // EmitLinkageSpec - Emit all declarations in a linkage spec.
5705 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
5706   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
5707       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
5708     ErrorUnsupported(LSD, "linkage spec");
5709     return;
5710   }
5711 
5712   EmitDeclContext(LSD);
5713 }
5714 
5715 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
5716   for (auto *I : DC->decls()) {
5717     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
5718     // are themselves considered "top-level", so EmitTopLevelDecl on an
5719     // ObjCImplDecl does not recursively visit them. We need to do that in
5720     // case they're nested inside another construct (LinkageSpecDecl /
5721     // ExportDecl) that does stop them from being considered "top-level".
5722     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
5723       for (auto *M : OID->methods())
5724         EmitTopLevelDecl(M);
5725     }
5726 
5727     EmitTopLevelDecl(I);
5728   }
5729 }
5730 
5731 /// EmitTopLevelDecl - Emit code for a single top level declaration.
5732 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
5733   // Ignore dependent declarations.
5734   if (D->isTemplated())
5735     return;
5736 
5737   // Consteval function shouldn't be emitted.
5738   if (auto *FD = dyn_cast<FunctionDecl>(D))
5739     if (FD->isConsteval())
5740       return;
5741 
5742   switch (D->getKind()) {
5743   case Decl::CXXConversion:
5744   case Decl::CXXMethod:
5745   case Decl::Function:
5746     EmitGlobal(cast<FunctionDecl>(D));
5747     // Always provide some coverage mapping
5748     // even for the functions that aren't emitted.
5749     AddDeferredUnusedCoverageMapping(D);
5750     break;
5751 
5752   case Decl::CXXDeductionGuide:
5753     // Function-like, but does not result in code emission.
5754     break;
5755 
5756   case Decl::Var:
5757   case Decl::Decomposition:
5758   case Decl::VarTemplateSpecialization:
5759     EmitGlobal(cast<VarDecl>(D));
5760     if (auto *DD = dyn_cast<DecompositionDecl>(D))
5761       for (auto *B : DD->bindings())
5762         if (auto *HD = B->getHoldingVar())
5763           EmitGlobal(HD);
5764     break;
5765 
5766   // Indirect fields from global anonymous structs and unions can be
5767   // ignored; only the actual variable requires IR gen support.
5768   case Decl::IndirectField:
5769     break;
5770 
5771   // C++ Decls
5772   case Decl::Namespace:
5773     EmitDeclContext(cast<NamespaceDecl>(D));
5774     break;
5775   case Decl::ClassTemplateSpecialization: {
5776     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
5777     if (CGDebugInfo *DI = getModuleDebugInfo())
5778       if (Spec->getSpecializationKind() ==
5779               TSK_ExplicitInstantiationDefinition &&
5780           Spec->hasDefinition())
5781         DI->completeTemplateDefinition(*Spec);
5782   } LLVM_FALLTHROUGH;
5783   case Decl::CXXRecord: {
5784     CXXRecordDecl *CRD = cast<CXXRecordDecl>(D);
5785     if (CGDebugInfo *DI = getModuleDebugInfo()) {
5786       if (CRD->hasDefinition())
5787         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
5788       if (auto *ES = D->getASTContext().getExternalSource())
5789         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
5790           DI->completeUnusedClass(*CRD);
5791     }
5792     // Emit any static data members, they may be definitions.
5793     for (auto *I : CRD->decls())
5794       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
5795         EmitTopLevelDecl(I);
5796     break;
5797   }
5798     // No code generation needed.
5799   case Decl::UsingShadow:
5800   case Decl::ClassTemplate:
5801   case Decl::VarTemplate:
5802   case Decl::Concept:
5803   case Decl::VarTemplatePartialSpecialization:
5804   case Decl::FunctionTemplate:
5805   case Decl::TypeAliasTemplate:
5806   case Decl::Block:
5807   case Decl::Empty:
5808   case Decl::Binding:
5809     break;
5810   case Decl::Using:          // using X; [C++]
5811     if (CGDebugInfo *DI = getModuleDebugInfo())
5812         DI->EmitUsingDecl(cast<UsingDecl>(*D));
5813     break;
5814   case Decl::UsingEnum: // using enum X; [C++]
5815     if (CGDebugInfo *DI = getModuleDebugInfo())
5816       DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D));
5817     break;
5818   case Decl::NamespaceAlias:
5819     if (CGDebugInfo *DI = getModuleDebugInfo())
5820         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
5821     break;
5822   case Decl::UsingDirective: // using namespace X; [C++]
5823     if (CGDebugInfo *DI = getModuleDebugInfo())
5824       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
5825     break;
5826   case Decl::CXXConstructor:
5827     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
5828     break;
5829   case Decl::CXXDestructor:
5830     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
5831     break;
5832 
5833   case Decl::StaticAssert:
5834     // Nothing to do.
5835     break;
5836 
5837   // Objective-C Decls
5838 
5839   // Forward declarations, no (immediate) code generation.
5840   case Decl::ObjCInterface:
5841   case Decl::ObjCCategory:
5842     break;
5843 
5844   case Decl::ObjCProtocol: {
5845     auto *Proto = cast<ObjCProtocolDecl>(D);
5846     if (Proto->isThisDeclarationADefinition())
5847       ObjCRuntime->GenerateProtocol(Proto);
5848     break;
5849   }
5850 
5851   case Decl::ObjCCategoryImpl:
5852     // Categories have properties but don't support synthesize so we
5853     // can ignore them here.
5854     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
5855     break;
5856 
5857   case Decl::ObjCImplementation: {
5858     auto *OMD = cast<ObjCImplementationDecl>(D);
5859     EmitObjCPropertyImplementations(OMD);
5860     EmitObjCIvarInitializations(OMD);
5861     ObjCRuntime->GenerateClass(OMD);
5862     // Emit global variable debug information.
5863     if (CGDebugInfo *DI = getModuleDebugInfo())
5864       if (getCodeGenOpts().hasReducedDebugInfo())
5865         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
5866             OMD->getClassInterface()), OMD->getLocation());
5867     break;
5868   }
5869   case Decl::ObjCMethod: {
5870     auto *OMD = cast<ObjCMethodDecl>(D);
5871     // If this is not a prototype, emit the body.
5872     if (OMD->getBody())
5873       CodeGenFunction(*this).GenerateObjCMethod(OMD);
5874     break;
5875   }
5876   case Decl::ObjCCompatibleAlias:
5877     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
5878     break;
5879 
5880   case Decl::PragmaComment: {
5881     const auto *PCD = cast<PragmaCommentDecl>(D);
5882     switch (PCD->getCommentKind()) {
5883     case PCK_Unknown:
5884       llvm_unreachable("unexpected pragma comment kind");
5885     case PCK_Linker:
5886       AppendLinkerOptions(PCD->getArg());
5887       break;
5888     case PCK_Lib:
5889         AddDependentLib(PCD->getArg());
5890       break;
5891     case PCK_Compiler:
5892     case PCK_ExeStr:
5893     case PCK_User:
5894       break; // We ignore all of these.
5895     }
5896     break;
5897   }
5898 
5899   case Decl::PragmaDetectMismatch: {
5900     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
5901     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
5902     break;
5903   }
5904 
5905   case Decl::LinkageSpec:
5906     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
5907     break;
5908 
5909   case Decl::FileScopeAsm: {
5910     // File-scope asm is ignored during device-side CUDA compilation.
5911     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
5912       break;
5913     // File-scope asm is ignored during device-side OpenMP compilation.
5914     if (LangOpts.OpenMPIsDevice)
5915       break;
5916     // File-scope asm is ignored during device-side SYCL compilation.
5917     if (LangOpts.SYCLIsDevice)
5918       break;
5919     auto *AD = cast<FileScopeAsmDecl>(D);
5920     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
5921     break;
5922   }
5923 
5924   case Decl::Import: {
5925     auto *Import = cast<ImportDecl>(D);
5926 
5927     // If we've already imported this module, we're done.
5928     if (!ImportedModules.insert(Import->getImportedModule()))
5929       break;
5930 
5931     // Emit debug information for direct imports.
5932     if (!Import->getImportedOwningModule()) {
5933       if (CGDebugInfo *DI = getModuleDebugInfo())
5934         DI->EmitImportDecl(*Import);
5935     }
5936 
5937     // Find all of the submodules and emit the module initializers.
5938     llvm::SmallPtrSet<clang::Module *, 16> Visited;
5939     SmallVector<clang::Module *, 16> Stack;
5940     Visited.insert(Import->getImportedModule());
5941     Stack.push_back(Import->getImportedModule());
5942 
5943     while (!Stack.empty()) {
5944       clang::Module *Mod = Stack.pop_back_val();
5945       if (!EmittedModuleInitializers.insert(Mod).second)
5946         continue;
5947 
5948       for (auto *D : Context.getModuleInitializers(Mod))
5949         EmitTopLevelDecl(D);
5950 
5951       // Visit the submodules of this module.
5952       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
5953                                              SubEnd = Mod->submodule_end();
5954            Sub != SubEnd; ++Sub) {
5955         // Skip explicit children; they need to be explicitly imported to emit
5956         // the initializers.
5957         if ((*Sub)->IsExplicit)
5958           continue;
5959 
5960         if (Visited.insert(*Sub).second)
5961           Stack.push_back(*Sub);
5962       }
5963     }
5964     break;
5965   }
5966 
5967   case Decl::Export:
5968     EmitDeclContext(cast<ExportDecl>(D));
5969     break;
5970 
5971   case Decl::OMPThreadPrivate:
5972     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
5973     break;
5974 
5975   case Decl::OMPAllocate:
5976     EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D));
5977     break;
5978 
5979   case Decl::OMPDeclareReduction:
5980     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
5981     break;
5982 
5983   case Decl::OMPDeclareMapper:
5984     EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
5985     break;
5986 
5987   case Decl::OMPRequires:
5988     EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
5989     break;
5990 
5991   case Decl::Typedef:
5992   case Decl::TypeAlias: // using foo = bar; [C++11]
5993     if (CGDebugInfo *DI = getModuleDebugInfo())
5994       DI->EmitAndRetainType(
5995           getContext().getTypedefType(cast<TypedefNameDecl>(D)));
5996     break;
5997 
5998   case Decl::Record:
5999     if (CGDebugInfo *DI = getModuleDebugInfo())
6000       if (cast<RecordDecl>(D)->getDefinition())
6001         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
6002     break;
6003 
6004   case Decl::Enum:
6005     if (CGDebugInfo *DI = getModuleDebugInfo())
6006       if (cast<EnumDecl>(D)->getDefinition())
6007         DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D)));
6008     break;
6009 
6010   default:
6011     // Make sure we handled everything we should, every other kind is a
6012     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
6013     // function. Need to recode Decl::Kind to do that easily.
6014     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
6015     break;
6016   }
6017 }
6018 
6019 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
6020   // Do we need to generate coverage mapping?
6021   if (!CodeGenOpts.CoverageMapping)
6022     return;
6023   switch (D->getKind()) {
6024   case Decl::CXXConversion:
6025   case Decl::CXXMethod:
6026   case Decl::Function:
6027   case Decl::ObjCMethod:
6028   case Decl::CXXConstructor:
6029   case Decl::CXXDestructor: {
6030     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
6031       break;
6032     SourceManager &SM = getContext().getSourceManager();
6033     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
6034       break;
6035     auto I = DeferredEmptyCoverageMappingDecls.find(D);
6036     if (I == DeferredEmptyCoverageMappingDecls.end())
6037       DeferredEmptyCoverageMappingDecls[D] = true;
6038     break;
6039   }
6040   default:
6041     break;
6042   };
6043 }
6044 
6045 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
6046   // Do we need to generate coverage mapping?
6047   if (!CodeGenOpts.CoverageMapping)
6048     return;
6049   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
6050     if (Fn->isTemplateInstantiation())
6051       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
6052   }
6053   auto I = DeferredEmptyCoverageMappingDecls.find(D);
6054   if (I == DeferredEmptyCoverageMappingDecls.end())
6055     DeferredEmptyCoverageMappingDecls[D] = false;
6056   else
6057     I->second = false;
6058 }
6059 
6060 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
6061   // We call takeVector() here to avoid use-after-free.
6062   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
6063   // we deserialize function bodies to emit coverage info for them, and that
6064   // deserializes more declarations. How should we handle that case?
6065   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
6066     if (!Entry.second)
6067       continue;
6068     const Decl *D = Entry.first;
6069     switch (D->getKind()) {
6070     case Decl::CXXConversion:
6071     case Decl::CXXMethod:
6072     case Decl::Function:
6073     case Decl::ObjCMethod: {
6074       CodeGenPGO PGO(*this);
6075       GlobalDecl GD(cast<FunctionDecl>(D));
6076       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6077                                   getFunctionLinkage(GD));
6078       break;
6079     }
6080     case Decl::CXXConstructor: {
6081       CodeGenPGO PGO(*this);
6082       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
6083       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6084                                   getFunctionLinkage(GD));
6085       break;
6086     }
6087     case Decl::CXXDestructor: {
6088       CodeGenPGO PGO(*this);
6089       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
6090       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6091                                   getFunctionLinkage(GD));
6092       break;
6093     }
6094     default:
6095       break;
6096     };
6097   }
6098 }
6099 
6100 void CodeGenModule::EmitMainVoidAlias() {
6101   // In order to transition away from "__original_main" gracefully, emit an
6102   // alias for "main" in the no-argument case so that libc can detect when
6103   // new-style no-argument main is in used.
6104   if (llvm::Function *F = getModule().getFunction("main")) {
6105     if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() &&
6106         F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth()))
6107       addUsedGlobal(llvm::GlobalAlias::create("__main_void", F));
6108   }
6109 }
6110 
6111 /// Turns the given pointer into a constant.
6112 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
6113                                           const void *Ptr) {
6114   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
6115   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
6116   return llvm::ConstantInt::get(i64, PtrInt);
6117 }
6118 
6119 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
6120                                    llvm::NamedMDNode *&GlobalMetadata,
6121                                    GlobalDecl D,
6122                                    llvm::GlobalValue *Addr) {
6123   if (!GlobalMetadata)
6124     GlobalMetadata =
6125       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
6126 
6127   // TODO: should we report variant information for ctors/dtors?
6128   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
6129                            llvm::ConstantAsMetadata::get(GetPointerConstant(
6130                                CGM.getLLVMContext(), D.getDecl()))};
6131   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
6132 }
6133 
6134 /// For each function which is declared within an extern "C" region and marked
6135 /// as 'used', but has internal linkage, create an alias from the unmangled
6136 /// name to the mangled name if possible. People expect to be able to refer
6137 /// to such functions with an unmangled name from inline assembly within the
6138 /// same translation unit.
6139 void CodeGenModule::EmitStaticExternCAliases() {
6140   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
6141     return;
6142   for (auto &I : StaticExternCValues) {
6143     IdentifierInfo *Name = I.first;
6144     llvm::GlobalValue *Val = I.second;
6145     if (Val && !getModule().getNamedValue(Name->getName()))
6146       addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
6147   }
6148 }
6149 
6150 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
6151                                              GlobalDecl &Result) const {
6152   auto Res = Manglings.find(MangledName);
6153   if (Res == Manglings.end())
6154     return false;
6155   Result = Res->getValue();
6156   return true;
6157 }
6158 
6159 /// Emits metadata nodes associating all the global values in the
6160 /// current module with the Decls they came from.  This is useful for
6161 /// projects using IR gen as a subroutine.
6162 ///
6163 /// Since there's currently no way to associate an MDNode directly
6164 /// with an llvm::GlobalValue, we create a global named metadata
6165 /// with the name 'clang.global.decl.ptrs'.
6166 void CodeGenModule::EmitDeclMetadata() {
6167   llvm::NamedMDNode *GlobalMetadata = nullptr;
6168 
6169   for (auto &I : MangledDeclNames) {
6170     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
6171     // Some mangled names don't necessarily have an associated GlobalValue
6172     // in this module, e.g. if we mangled it for DebugInfo.
6173     if (Addr)
6174       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
6175   }
6176 }
6177 
6178 /// Emits metadata nodes for all the local variables in the current
6179 /// function.
6180 void CodeGenFunction::EmitDeclMetadata() {
6181   if (LocalDeclMap.empty()) return;
6182 
6183   llvm::LLVMContext &Context = getLLVMContext();
6184 
6185   // Find the unique metadata ID for this name.
6186   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
6187 
6188   llvm::NamedMDNode *GlobalMetadata = nullptr;
6189 
6190   for (auto &I : LocalDeclMap) {
6191     const Decl *D = I.first;
6192     llvm::Value *Addr = I.second.getPointer();
6193     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
6194       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
6195       Alloca->setMetadata(
6196           DeclPtrKind, llvm::MDNode::get(
6197                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
6198     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
6199       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
6200       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
6201     }
6202   }
6203 }
6204 
6205 void CodeGenModule::EmitVersionIdentMetadata() {
6206   llvm::NamedMDNode *IdentMetadata =
6207     TheModule.getOrInsertNamedMetadata("llvm.ident");
6208   std::string Version = getClangFullVersion();
6209   llvm::LLVMContext &Ctx = TheModule.getContext();
6210 
6211   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
6212   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
6213 }
6214 
6215 void CodeGenModule::EmitCommandLineMetadata() {
6216   llvm::NamedMDNode *CommandLineMetadata =
6217     TheModule.getOrInsertNamedMetadata("llvm.commandline");
6218   std::string CommandLine = getCodeGenOpts().RecordCommandLine;
6219   llvm::LLVMContext &Ctx = TheModule.getContext();
6220 
6221   llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
6222   CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
6223 }
6224 
6225 void CodeGenModule::EmitCoverageFile() {
6226   if (getCodeGenOpts().CoverageDataFile.empty() &&
6227       getCodeGenOpts().CoverageNotesFile.empty())
6228     return;
6229 
6230   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
6231   if (!CUNode)
6232     return;
6233 
6234   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
6235   llvm::LLVMContext &Ctx = TheModule.getContext();
6236   auto *CoverageDataFile =
6237       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
6238   auto *CoverageNotesFile =
6239       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
6240   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
6241     llvm::MDNode *CU = CUNode->getOperand(i);
6242     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
6243     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
6244   }
6245 }
6246 
6247 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
6248                                                        bool ForEH) {
6249   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
6250   // FIXME: should we even be calling this method if RTTI is disabled
6251   // and it's not for EH?
6252   if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice ||
6253       (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
6254        getTriple().isNVPTX()))
6255     return llvm::Constant::getNullValue(Int8PtrTy);
6256 
6257   if (ForEH && Ty->isObjCObjectPointerType() &&
6258       LangOpts.ObjCRuntime.isGNUFamily())
6259     return ObjCRuntime->GetEHType(Ty);
6260 
6261   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
6262 }
6263 
6264 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
6265   // Do not emit threadprivates in simd-only mode.
6266   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
6267     return;
6268   for (auto RefExpr : D->varlists()) {
6269     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
6270     bool PerformInit =
6271         VD->getAnyInitializer() &&
6272         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
6273                                                         /*ForRef=*/false);
6274 
6275     Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
6276     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
6277             VD, Addr, RefExpr->getBeginLoc(), PerformInit))
6278       CXXGlobalInits.push_back(InitFunction);
6279   }
6280 }
6281 
6282 llvm::Metadata *
6283 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
6284                                             StringRef Suffix) {
6285   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
6286   if (InternalId)
6287     return InternalId;
6288 
6289   if (isExternallyVisible(T->getLinkage())) {
6290     std::string OutName;
6291     llvm::raw_string_ostream Out(OutName);
6292     getCXXABI().getMangleContext().mangleTypeName(T, Out);
6293     Out << Suffix;
6294 
6295     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
6296   } else {
6297     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
6298                                            llvm::ArrayRef<llvm::Metadata *>());
6299   }
6300 
6301   return InternalId;
6302 }
6303 
6304 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
6305   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
6306 }
6307 
6308 llvm::Metadata *
6309 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
6310   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
6311 }
6312 
6313 // Generalize pointer types to a void pointer with the qualifiers of the
6314 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
6315 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
6316 // 'void *'.
6317 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
6318   if (!Ty->isPointerType())
6319     return Ty;
6320 
6321   return Ctx.getPointerType(
6322       QualType(Ctx.VoidTy).withCVRQualifiers(
6323           Ty->getPointeeType().getCVRQualifiers()));
6324 }
6325 
6326 // Apply type generalization to a FunctionType's return and argument types
6327 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
6328   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
6329     SmallVector<QualType, 8> GeneralizedParams;
6330     for (auto &Param : FnType->param_types())
6331       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
6332 
6333     return Ctx.getFunctionType(
6334         GeneralizeType(Ctx, FnType->getReturnType()),
6335         GeneralizedParams, FnType->getExtProtoInfo());
6336   }
6337 
6338   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
6339     return Ctx.getFunctionNoProtoType(
6340         GeneralizeType(Ctx, FnType->getReturnType()));
6341 
6342   llvm_unreachable("Encountered unknown FunctionType");
6343 }
6344 
6345 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
6346   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
6347                                       GeneralizedMetadataIdMap, ".generalized");
6348 }
6349 
6350 /// Returns whether this module needs the "all-vtables" type identifier.
6351 bool CodeGenModule::NeedAllVtablesTypeId() const {
6352   // Returns true if at least one of vtable-based CFI checkers is enabled and
6353   // is not in the trapping mode.
6354   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
6355            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
6356           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
6357            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
6358           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
6359            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
6360           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
6361            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
6362 }
6363 
6364 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
6365                                           CharUnits Offset,
6366                                           const CXXRecordDecl *RD) {
6367   llvm::Metadata *MD =
6368       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
6369   VTable->addTypeMetadata(Offset.getQuantity(), MD);
6370 
6371   if (CodeGenOpts.SanitizeCfiCrossDso)
6372     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
6373       VTable->addTypeMetadata(Offset.getQuantity(),
6374                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
6375 
6376   if (NeedAllVtablesTypeId()) {
6377     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
6378     VTable->addTypeMetadata(Offset.getQuantity(), MD);
6379   }
6380 }
6381 
6382 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
6383   if (!SanStats)
6384     SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
6385 
6386   return *SanStats;
6387 }
6388 
6389 llvm::Value *
6390 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
6391                                                   CodeGenFunction &CGF) {
6392   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
6393   auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
6394   auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
6395   auto *Call = CGF.EmitRuntimeCall(
6396       CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C});
6397   return Call;
6398 }
6399 
6400 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment(
6401     QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) {
6402   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
6403                                  /* forPointeeType= */ true);
6404 }
6405 
6406 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T,
6407                                                  LValueBaseInfo *BaseInfo,
6408                                                  TBAAAccessInfo *TBAAInfo,
6409                                                  bool forPointeeType) {
6410   if (TBAAInfo)
6411     *TBAAInfo = getTBAAAccessInfo(T);
6412 
6413   // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But
6414   // that doesn't return the information we need to compute BaseInfo.
6415 
6416   // Honor alignment typedef attributes even on incomplete types.
6417   // We also honor them straight for C++ class types, even as pointees;
6418   // there's an expressivity gap here.
6419   if (auto TT = T->getAs<TypedefType>()) {
6420     if (auto Align = TT->getDecl()->getMaxAlignment()) {
6421       if (BaseInfo)
6422         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
6423       return getContext().toCharUnitsFromBits(Align);
6424     }
6425   }
6426 
6427   bool AlignForArray = T->isArrayType();
6428 
6429   // Analyze the base element type, so we don't get confused by incomplete
6430   // array types.
6431   T = getContext().getBaseElementType(T);
6432 
6433   if (T->isIncompleteType()) {
6434     // We could try to replicate the logic from
6435     // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the
6436     // type is incomplete, so it's impossible to test. We could try to reuse
6437     // getTypeAlignIfKnown, but that doesn't return the information we need
6438     // to set BaseInfo.  So just ignore the possibility that the alignment is
6439     // greater than one.
6440     if (BaseInfo)
6441       *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
6442     return CharUnits::One();
6443   }
6444 
6445   if (BaseInfo)
6446     *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
6447 
6448   CharUnits Alignment;
6449   const CXXRecordDecl *RD;
6450   if (T.getQualifiers().hasUnaligned()) {
6451     Alignment = CharUnits::One();
6452   } else if (forPointeeType && !AlignForArray &&
6453              (RD = T->getAsCXXRecordDecl())) {
6454     // For C++ class pointees, we don't know whether we're pointing at a
6455     // base or a complete object, so we generally need to use the
6456     // non-virtual alignment.
6457     Alignment = getClassPointerAlignment(RD);
6458   } else {
6459     Alignment = getContext().getTypeAlignInChars(T);
6460   }
6461 
6462   // Cap to the global maximum type alignment unless the alignment
6463   // was somehow explicit on the type.
6464   if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
6465     if (Alignment.getQuantity() > MaxAlign &&
6466         !getContext().isAlignmentRequired(T))
6467       Alignment = CharUnits::fromQuantity(MaxAlign);
6468   }
6469   return Alignment;
6470 }
6471 
6472 bool CodeGenModule::stopAutoInit() {
6473   unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter;
6474   if (StopAfter) {
6475     // This number is positive only when -ftrivial-auto-var-init-stop-after=* is
6476     // used
6477     if (NumAutoVarInit >= StopAfter) {
6478       return true;
6479     }
6480     if (!NumAutoVarInit) {
6481       unsigned DiagID = getDiags().getCustomDiagID(
6482           DiagnosticsEngine::Warning,
6483           "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the "
6484           "number of times ftrivial-auto-var-init=%1 gets applied.");
6485       getDiags().Report(DiagID)
6486           << StopAfter
6487           << (getContext().getLangOpts().getTrivialAutoVarInit() ==
6488                       LangOptions::TrivialAutoVarInitKind::Zero
6489                   ? "zero"
6490                   : "pattern");
6491     }
6492     ++NumAutoVarInit;
6493   }
6494   return false;
6495 }
6496 
6497 void CodeGenModule::printPostfixForExternalizedStaticVar(
6498     llvm::raw_ostream &OS) const {
6499   OS << "__static__" << getContext().getCUIDHash();
6500 }
6501