10b57cec5SDimitry Andric //===----- CGOpenCLRuntime.cpp - Interface to OpenCL Runtimes -------------===//
20b57cec5SDimitry Andric //
30b57cec5SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
40b57cec5SDimitry Andric // See https://llvm.org/LICENSE.txt for license information.
50b57cec5SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
60b57cec5SDimitry Andric //
70b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
80b57cec5SDimitry Andric //
90b57cec5SDimitry Andric // This provides an abstract class for OpenCL code generation. Concrete
100b57cec5SDimitry Andric // subclasses of this implement code generation for specific OpenCL
110b57cec5SDimitry Andric // runtime libraries.
120b57cec5SDimitry Andric //
130b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
140b57cec5SDimitry Andric
150b57cec5SDimitry Andric #include "CGOpenCLRuntime.h"
160b57cec5SDimitry Andric #include "CodeGenFunction.h"
170b57cec5SDimitry Andric #include "TargetInfo.h"
180b57cec5SDimitry Andric #include "clang/CodeGen/ConstantInitBuilder.h"
190b57cec5SDimitry Andric #include "llvm/IR/DerivedTypes.h"
200b57cec5SDimitry Andric #include "llvm/IR/GlobalValue.h"
210b57cec5SDimitry Andric #include <assert.h>
220b57cec5SDimitry Andric
230b57cec5SDimitry Andric using namespace clang;
240b57cec5SDimitry Andric using namespace CodeGen;
250b57cec5SDimitry Andric
~CGOpenCLRuntime()260b57cec5SDimitry Andric CGOpenCLRuntime::~CGOpenCLRuntime() {}
270b57cec5SDimitry Andric
EmitWorkGroupLocalVarDecl(CodeGenFunction & CGF,const VarDecl & D)280b57cec5SDimitry Andric void CGOpenCLRuntime::EmitWorkGroupLocalVarDecl(CodeGenFunction &CGF,
290b57cec5SDimitry Andric const VarDecl &D) {
300b57cec5SDimitry Andric return CGF.EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage);
310b57cec5SDimitry Andric }
320b57cec5SDimitry Andric
convertOpenCLSpecificType(const Type * T)330b57cec5SDimitry Andric llvm::Type *CGOpenCLRuntime::convertOpenCLSpecificType(const Type *T) {
3406c3fb27SDimitry Andric assert(T->isOpenCLSpecificType() && "Not an OpenCL specific type!");
3506c3fb27SDimitry Andric
3606c3fb27SDimitry Andric // Check if the target has a specific translation for this type first.
3706c3fb27SDimitry Andric if (llvm::Type *TransTy = CGM.getTargetCodeGenInfo().getOpenCLType(CGM, T))
3806c3fb27SDimitry Andric return TransTy;
390b57cec5SDimitry Andric
40*5f757f3fSDimitry Andric if (T->isSamplerT())
410b57cec5SDimitry Andric return getSamplerType(T);
42*5f757f3fSDimitry Andric
43*5f757f3fSDimitry Andric return getPointerType(T);
440b57cec5SDimitry Andric }
450b57cec5SDimitry Andric
getPointerType(const Type * T)46*5f757f3fSDimitry Andric llvm::PointerType *CGOpenCLRuntime::getPointerType(const Type *T) {
4781ad6265SDimitry Andric uint32_t AddrSpc = CGM.getContext().getTargetAddressSpace(
4881ad6265SDimitry Andric CGM.getContext().getOpenCLTypeAddrSpace(T));
49*5f757f3fSDimitry Andric return llvm::PointerType::get(CGM.getLLVMContext(), AddrSpc);
5081ad6265SDimitry Andric }
5181ad6265SDimitry Andric
getPipeType(const PipeType * T)520b57cec5SDimitry Andric llvm::Type *CGOpenCLRuntime::getPipeType(const PipeType *T) {
5306c3fb27SDimitry Andric if (llvm::Type *PipeTy = CGM.getTargetCodeGenInfo().getOpenCLType(CGM, T))
5406c3fb27SDimitry Andric return PipeTy;
5506c3fb27SDimitry Andric
560b57cec5SDimitry Andric if (T->isReadOnly())
570b57cec5SDimitry Andric return getPipeType(T, "opencl.pipe_ro_t", PipeROTy);
580b57cec5SDimitry Andric else
590b57cec5SDimitry Andric return getPipeType(T, "opencl.pipe_wo_t", PipeWOTy);
600b57cec5SDimitry Andric }
610b57cec5SDimitry Andric
getPipeType(const PipeType * T,StringRef Name,llvm::Type * & PipeTy)620b57cec5SDimitry Andric llvm::Type *CGOpenCLRuntime::getPipeType(const PipeType *T, StringRef Name,
630b57cec5SDimitry Andric llvm::Type *&PipeTy) {
640b57cec5SDimitry Andric if (!PipeTy)
65*5f757f3fSDimitry Andric PipeTy = getPointerType(T);
660b57cec5SDimitry Andric return PipeTy;
670b57cec5SDimitry Andric }
680b57cec5SDimitry Andric
getSamplerType(const Type * T)6906c3fb27SDimitry Andric llvm::Type *CGOpenCLRuntime::getSamplerType(const Type *T) {
7006c3fb27SDimitry Andric if (SamplerTy)
7106c3fb27SDimitry Andric return SamplerTy;
7206c3fb27SDimitry Andric
7306c3fb27SDimitry Andric if (llvm::Type *TransTy = CGM.getTargetCodeGenInfo().getOpenCLType(
7406c3fb27SDimitry Andric CGM, CGM.getContext().OCLSamplerTy.getTypePtr()))
7506c3fb27SDimitry Andric SamplerTy = TransTy;
7606c3fb27SDimitry Andric else
77*5f757f3fSDimitry Andric SamplerTy = getPointerType(T);
780b57cec5SDimitry Andric return SamplerTy;
790b57cec5SDimitry Andric }
800b57cec5SDimitry Andric
getPipeElemSize(const Expr * PipeArg)810b57cec5SDimitry Andric llvm::Value *CGOpenCLRuntime::getPipeElemSize(const Expr *PipeArg) {
82480093f4SDimitry Andric const PipeType *PipeTy = PipeArg->getType()->castAs<PipeType>();
830b57cec5SDimitry Andric // The type of the last (implicit) argument to be passed.
840b57cec5SDimitry Andric llvm::Type *Int32Ty = llvm::IntegerType::getInt32Ty(CGM.getLLVMContext());
850b57cec5SDimitry Andric unsigned TypeSize = CGM.getContext()
860b57cec5SDimitry Andric .getTypeSizeInChars(PipeTy->getElementType())
870b57cec5SDimitry Andric .getQuantity();
880b57cec5SDimitry Andric return llvm::ConstantInt::get(Int32Ty, TypeSize, false);
890b57cec5SDimitry Andric }
900b57cec5SDimitry Andric
getPipeElemAlign(const Expr * PipeArg)910b57cec5SDimitry Andric llvm::Value *CGOpenCLRuntime::getPipeElemAlign(const Expr *PipeArg) {
92480093f4SDimitry Andric const PipeType *PipeTy = PipeArg->getType()->castAs<PipeType>();
930b57cec5SDimitry Andric // The type of the last (implicit) argument to be passed.
940b57cec5SDimitry Andric llvm::Type *Int32Ty = llvm::IntegerType::getInt32Ty(CGM.getLLVMContext());
950b57cec5SDimitry Andric unsigned TypeSize = CGM.getContext()
960b57cec5SDimitry Andric .getTypeAlignInChars(PipeTy->getElementType())
970b57cec5SDimitry Andric .getQuantity();
980b57cec5SDimitry Andric return llvm::ConstantInt::get(Int32Ty, TypeSize, false);
990b57cec5SDimitry Andric }
1000b57cec5SDimitry Andric
getGenericVoidPointerType()1010b57cec5SDimitry Andric llvm::PointerType *CGOpenCLRuntime::getGenericVoidPointerType() {
1020b57cec5SDimitry Andric assert(CGM.getLangOpts().OpenCL);
103*5f757f3fSDimitry Andric return llvm::PointerType::get(
1040b57cec5SDimitry Andric CGM.getLLVMContext(),
1050b57cec5SDimitry Andric CGM.getContext().getTargetAddressSpace(LangAS::opencl_generic));
1060b57cec5SDimitry Andric }
1070b57cec5SDimitry Andric
1080b57cec5SDimitry Andric // Get the block literal from an expression derived from the block expression.
1090b57cec5SDimitry Andric // OpenCL v2.0 s6.12.5:
1100b57cec5SDimitry Andric // Block variable declarations are implicitly qualified with const. Therefore
1110b57cec5SDimitry Andric // all block variables must be initialized at declaration time and may not be
1120b57cec5SDimitry Andric // reassigned.
getBlockExpr(const Expr * E)1130b57cec5SDimitry Andric static const BlockExpr *getBlockExpr(const Expr *E) {
1140b57cec5SDimitry Andric const Expr *Prev = nullptr; // to make sure we do not stuck in infinite loop.
1150b57cec5SDimitry Andric while(!isa<BlockExpr>(E) && E != Prev) {
1160b57cec5SDimitry Andric Prev = E;
1170b57cec5SDimitry Andric E = E->IgnoreCasts();
1180b57cec5SDimitry Andric if (auto DR = dyn_cast<DeclRefExpr>(E)) {
1190b57cec5SDimitry Andric E = cast<VarDecl>(DR->getDecl())->getInit();
1200b57cec5SDimitry Andric }
1210b57cec5SDimitry Andric }
1220b57cec5SDimitry Andric return cast<BlockExpr>(E);
1230b57cec5SDimitry Andric }
1240b57cec5SDimitry Andric
1250b57cec5SDimitry Andric /// Record emitted llvm invoke function and llvm block literal for the
1260b57cec5SDimitry Andric /// corresponding block expression.
recordBlockInfo(const BlockExpr * E,llvm::Function * InvokeF,llvm::Value * Block,llvm::Type * BlockTy)1270b57cec5SDimitry Andric void CGOpenCLRuntime::recordBlockInfo(const BlockExpr *E,
1280b57cec5SDimitry Andric llvm::Function *InvokeF,
12981ad6265SDimitry Andric llvm::Value *Block, llvm::Type *BlockTy) {
13006c3fb27SDimitry Andric assert(!EnqueuedBlockMap.contains(E) && "Block expression emitted twice");
1310b57cec5SDimitry Andric assert(isa<llvm::Function>(InvokeF) && "Invalid invoke function");
1320b57cec5SDimitry Andric assert(Block->getType()->isPointerTy() && "Invalid block literal type");
1330b57cec5SDimitry Andric EnqueuedBlockMap[E].InvokeFunc = InvokeF;
1340b57cec5SDimitry Andric EnqueuedBlockMap[E].BlockArg = Block;
13581ad6265SDimitry Andric EnqueuedBlockMap[E].BlockTy = BlockTy;
13606c3fb27SDimitry Andric EnqueuedBlockMap[E].KernelHandle = nullptr;
1370b57cec5SDimitry Andric }
1380b57cec5SDimitry Andric
getInvokeFunction(const Expr * E)1390b57cec5SDimitry Andric llvm::Function *CGOpenCLRuntime::getInvokeFunction(const Expr *E) {
1400b57cec5SDimitry Andric return EnqueuedBlockMap[getBlockExpr(E)].InvokeFunc;
1410b57cec5SDimitry Andric }
1420b57cec5SDimitry Andric
1430b57cec5SDimitry Andric CGOpenCLRuntime::EnqueuedBlockInfo
emitOpenCLEnqueuedBlock(CodeGenFunction & CGF,const Expr * E)1440b57cec5SDimitry Andric CGOpenCLRuntime::emitOpenCLEnqueuedBlock(CodeGenFunction &CGF, const Expr *E) {
1450b57cec5SDimitry Andric CGF.EmitScalarExpr(E);
1460b57cec5SDimitry Andric
1470b57cec5SDimitry Andric // The block literal may be assigned to a const variable. Chasing down
1480b57cec5SDimitry Andric // to get the block literal.
1490b57cec5SDimitry Andric const BlockExpr *Block = getBlockExpr(E);
1500b57cec5SDimitry Andric
15106c3fb27SDimitry Andric assert(EnqueuedBlockMap.contains(Block) && "Block expression not emitted");
1520b57cec5SDimitry Andric
1530b57cec5SDimitry Andric // Do not emit the block wrapper again if it has been emitted.
15406c3fb27SDimitry Andric if (EnqueuedBlockMap[Block].KernelHandle) {
1550b57cec5SDimitry Andric return EnqueuedBlockMap[Block];
1560b57cec5SDimitry Andric }
1570b57cec5SDimitry Andric
1580b57cec5SDimitry Andric auto *F = CGF.getTargetHooks().createEnqueuedBlockKernel(
15981ad6265SDimitry Andric CGF, EnqueuedBlockMap[Block].InvokeFunc, EnqueuedBlockMap[Block].BlockTy);
1600b57cec5SDimitry Andric
1610b57cec5SDimitry Andric // The common part of the post-processing of the kernel goes here.
16206c3fb27SDimitry Andric EnqueuedBlockMap[Block].KernelHandle = F;
1630b57cec5SDimitry Andric return EnqueuedBlockMap[Block];
1640b57cec5SDimitry Andric }
165