xref: /freebsd-src/contrib/llvm-project/clang/lib/CodeGen/CGExprComplex.cpp (revision a7dea1671b87c07d2d266f836bfa8b58efc7c134)
1 //===--- CGExprComplex.cpp - Emit LLVM Code for Complex Exprs -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Expr nodes with complex types as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenFunction.h"
14 #include "CodeGenModule.h"
15 #include "clang/AST/StmtVisitor.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/IR/Constants.h"
18 #include "llvm/IR/Instructions.h"
19 #include "llvm/IR/MDBuilder.h"
20 #include "llvm/IR/Metadata.h"
21 #include <algorithm>
22 using namespace clang;
23 using namespace CodeGen;
24 
25 //===----------------------------------------------------------------------===//
26 //                        Complex Expression Emitter
27 //===----------------------------------------------------------------------===//
28 
29 typedef CodeGenFunction::ComplexPairTy ComplexPairTy;
30 
31 /// Return the complex type that we are meant to emit.
32 static const ComplexType *getComplexType(QualType type) {
33   type = type.getCanonicalType();
34   if (const ComplexType *comp = dyn_cast<ComplexType>(type)) {
35     return comp;
36   } else {
37     return cast<ComplexType>(cast<AtomicType>(type)->getValueType());
38   }
39 }
40 
41 namespace  {
42 class ComplexExprEmitter
43   : public StmtVisitor<ComplexExprEmitter, ComplexPairTy> {
44   CodeGenFunction &CGF;
45   CGBuilderTy &Builder;
46   bool IgnoreReal;
47   bool IgnoreImag;
48 public:
49   ComplexExprEmitter(CodeGenFunction &cgf, bool ir=false, bool ii=false)
50     : CGF(cgf), Builder(CGF.Builder), IgnoreReal(ir), IgnoreImag(ii) {
51   }
52 
53 
54   //===--------------------------------------------------------------------===//
55   //                               Utilities
56   //===--------------------------------------------------------------------===//
57 
58   bool TestAndClearIgnoreReal() {
59     bool I = IgnoreReal;
60     IgnoreReal = false;
61     return I;
62   }
63   bool TestAndClearIgnoreImag() {
64     bool I = IgnoreImag;
65     IgnoreImag = false;
66     return I;
67   }
68 
69   /// EmitLoadOfLValue - Given an expression with complex type that represents a
70   /// value l-value, this method emits the address of the l-value, then loads
71   /// and returns the result.
72   ComplexPairTy EmitLoadOfLValue(const Expr *E) {
73     return EmitLoadOfLValue(CGF.EmitLValue(E), E->getExprLoc());
74   }
75 
76   ComplexPairTy EmitLoadOfLValue(LValue LV, SourceLocation Loc);
77 
78   /// EmitStoreOfComplex - Store the specified real/imag parts into the
79   /// specified value pointer.
80   void EmitStoreOfComplex(ComplexPairTy Val, LValue LV, bool isInit);
81 
82   /// Emit a cast from complex value Val to DestType.
83   ComplexPairTy EmitComplexToComplexCast(ComplexPairTy Val, QualType SrcType,
84                                          QualType DestType, SourceLocation Loc);
85   /// Emit a cast from scalar value Val to DestType.
86   ComplexPairTy EmitScalarToComplexCast(llvm::Value *Val, QualType SrcType,
87                                         QualType DestType, SourceLocation Loc);
88 
89   //===--------------------------------------------------------------------===//
90   //                            Visitor Methods
91   //===--------------------------------------------------------------------===//
92 
93   ComplexPairTy Visit(Expr *E) {
94     ApplyDebugLocation DL(CGF, E);
95     return StmtVisitor<ComplexExprEmitter, ComplexPairTy>::Visit(E);
96   }
97 
98   ComplexPairTy VisitStmt(Stmt *S) {
99     S->dump(CGF.getContext().getSourceManager());
100     llvm_unreachable("Stmt can't have complex result type!");
101   }
102   ComplexPairTy VisitExpr(Expr *S);
103   ComplexPairTy VisitConstantExpr(ConstantExpr *E) {
104     return Visit(E->getSubExpr());
105   }
106   ComplexPairTy VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr());}
107   ComplexPairTy VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
108     return Visit(GE->getResultExpr());
109   }
110   ComplexPairTy VisitImaginaryLiteral(const ImaginaryLiteral *IL);
111   ComplexPairTy
112   VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE) {
113     return Visit(PE->getReplacement());
114   }
115   ComplexPairTy VisitCoawaitExpr(CoawaitExpr *S) {
116     return CGF.EmitCoawaitExpr(*S).getComplexVal();
117   }
118   ComplexPairTy VisitCoyieldExpr(CoyieldExpr *S) {
119     return CGF.EmitCoyieldExpr(*S).getComplexVal();
120   }
121   ComplexPairTy VisitUnaryCoawait(const UnaryOperator *E) {
122     return Visit(E->getSubExpr());
123   }
124 
125   ComplexPairTy emitConstant(const CodeGenFunction::ConstantEmission &Constant,
126                              Expr *E) {
127     assert(Constant && "not a constant");
128     if (Constant.isReference())
129       return EmitLoadOfLValue(Constant.getReferenceLValue(CGF, E),
130                               E->getExprLoc());
131 
132     llvm::Constant *pair = Constant.getValue();
133     return ComplexPairTy(pair->getAggregateElement(0U),
134                          pair->getAggregateElement(1U));
135   }
136 
137   // l-values.
138   ComplexPairTy VisitDeclRefExpr(DeclRefExpr *E) {
139     if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E))
140       return emitConstant(Constant, E);
141     return EmitLoadOfLValue(E);
142   }
143   ComplexPairTy VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
144     return EmitLoadOfLValue(E);
145   }
146   ComplexPairTy VisitObjCMessageExpr(ObjCMessageExpr *E) {
147     return CGF.EmitObjCMessageExpr(E).getComplexVal();
148   }
149   ComplexPairTy VisitArraySubscriptExpr(Expr *E) { return EmitLoadOfLValue(E); }
150   ComplexPairTy VisitMemberExpr(MemberExpr *ME) {
151     if (CodeGenFunction::ConstantEmission Constant =
152             CGF.tryEmitAsConstant(ME)) {
153       CGF.EmitIgnoredExpr(ME->getBase());
154       return emitConstant(Constant, ME);
155     }
156     return EmitLoadOfLValue(ME);
157   }
158   ComplexPairTy VisitOpaqueValueExpr(OpaqueValueExpr *E) {
159     if (E->isGLValue())
160       return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E),
161                               E->getExprLoc());
162     return CGF.getOrCreateOpaqueRValueMapping(E).getComplexVal();
163   }
164 
165   ComplexPairTy VisitPseudoObjectExpr(PseudoObjectExpr *E) {
166     return CGF.EmitPseudoObjectRValue(E).getComplexVal();
167   }
168 
169   // FIXME: CompoundLiteralExpr
170 
171   ComplexPairTy EmitCast(CastKind CK, Expr *Op, QualType DestTy);
172   ComplexPairTy VisitImplicitCastExpr(ImplicitCastExpr *E) {
173     // Unlike for scalars, we don't have to worry about function->ptr demotion
174     // here.
175     return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType());
176   }
177   ComplexPairTy VisitCastExpr(CastExpr *E) {
178     if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E))
179       CGF.CGM.EmitExplicitCastExprType(ECE, &CGF);
180     return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType());
181   }
182   ComplexPairTy VisitCallExpr(const CallExpr *E);
183   ComplexPairTy VisitStmtExpr(const StmtExpr *E);
184 
185   // Operators.
186   ComplexPairTy VisitPrePostIncDec(const UnaryOperator *E,
187                                    bool isInc, bool isPre) {
188     LValue LV = CGF.EmitLValue(E->getSubExpr());
189     return CGF.EmitComplexPrePostIncDec(E, LV, isInc, isPre);
190   }
191   ComplexPairTy VisitUnaryPostDec(const UnaryOperator *E) {
192     return VisitPrePostIncDec(E, false, false);
193   }
194   ComplexPairTy VisitUnaryPostInc(const UnaryOperator *E) {
195     return VisitPrePostIncDec(E, true, false);
196   }
197   ComplexPairTy VisitUnaryPreDec(const UnaryOperator *E) {
198     return VisitPrePostIncDec(E, false, true);
199   }
200   ComplexPairTy VisitUnaryPreInc(const UnaryOperator *E) {
201     return VisitPrePostIncDec(E, true, true);
202   }
203   ComplexPairTy VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); }
204   ComplexPairTy VisitUnaryPlus     (const UnaryOperator *E) {
205     TestAndClearIgnoreReal();
206     TestAndClearIgnoreImag();
207     return Visit(E->getSubExpr());
208   }
209   ComplexPairTy VisitUnaryMinus    (const UnaryOperator *E);
210   ComplexPairTy VisitUnaryNot      (const UnaryOperator *E);
211   // LNot,Real,Imag never return complex.
212   ComplexPairTy VisitUnaryExtension(const UnaryOperator *E) {
213     return Visit(E->getSubExpr());
214   }
215   ComplexPairTy VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
216     CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE);
217     return Visit(DAE->getExpr());
218   }
219   ComplexPairTy VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
220     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE);
221     return Visit(DIE->getExpr());
222   }
223   ComplexPairTy VisitExprWithCleanups(ExprWithCleanups *E) {
224     CGF.enterFullExpression(E);
225     CodeGenFunction::RunCleanupsScope Scope(CGF);
226     ComplexPairTy Vals = Visit(E->getSubExpr());
227     // Defend against dominance problems caused by jumps out of expression
228     // evaluation through the shared cleanup block.
229     Scope.ForceCleanup({&Vals.first, &Vals.second});
230     return Vals;
231   }
232   ComplexPairTy VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
233     assert(E->getType()->isAnyComplexType() && "Expected complex type!");
234     QualType Elem = E->getType()->castAs<ComplexType>()->getElementType();
235     llvm::Constant *Null = llvm::Constant::getNullValue(CGF.ConvertType(Elem));
236     return ComplexPairTy(Null, Null);
237   }
238   ComplexPairTy VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
239     assert(E->getType()->isAnyComplexType() && "Expected complex type!");
240     QualType Elem = E->getType()->castAs<ComplexType>()->getElementType();
241     llvm::Constant *Null =
242                        llvm::Constant::getNullValue(CGF.ConvertType(Elem));
243     return ComplexPairTy(Null, Null);
244   }
245 
246   struct BinOpInfo {
247     ComplexPairTy LHS;
248     ComplexPairTy RHS;
249     QualType Ty;  // Computation Type.
250   };
251 
252   BinOpInfo EmitBinOps(const BinaryOperator *E);
253   LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
254                                   ComplexPairTy (ComplexExprEmitter::*Func)
255                                   (const BinOpInfo &),
256                                   RValue &Val);
257   ComplexPairTy EmitCompoundAssign(const CompoundAssignOperator *E,
258                                    ComplexPairTy (ComplexExprEmitter::*Func)
259                                    (const BinOpInfo &));
260 
261   ComplexPairTy EmitBinAdd(const BinOpInfo &Op);
262   ComplexPairTy EmitBinSub(const BinOpInfo &Op);
263   ComplexPairTy EmitBinMul(const BinOpInfo &Op);
264   ComplexPairTy EmitBinDiv(const BinOpInfo &Op);
265 
266   ComplexPairTy EmitComplexBinOpLibCall(StringRef LibCallName,
267                                         const BinOpInfo &Op);
268 
269   ComplexPairTy VisitBinAdd(const BinaryOperator *E) {
270     return EmitBinAdd(EmitBinOps(E));
271   }
272   ComplexPairTy VisitBinSub(const BinaryOperator *E) {
273     return EmitBinSub(EmitBinOps(E));
274   }
275   ComplexPairTy VisitBinMul(const BinaryOperator *E) {
276     return EmitBinMul(EmitBinOps(E));
277   }
278   ComplexPairTy VisitBinDiv(const BinaryOperator *E) {
279     return EmitBinDiv(EmitBinOps(E));
280   }
281 
282   ComplexPairTy VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) {
283     return Visit(E->getSemanticForm());
284   }
285 
286   // Compound assignments.
287   ComplexPairTy VisitBinAddAssign(const CompoundAssignOperator *E) {
288     return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinAdd);
289   }
290   ComplexPairTy VisitBinSubAssign(const CompoundAssignOperator *E) {
291     return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinSub);
292   }
293   ComplexPairTy VisitBinMulAssign(const CompoundAssignOperator *E) {
294     return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinMul);
295   }
296   ComplexPairTy VisitBinDivAssign(const CompoundAssignOperator *E) {
297     return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinDiv);
298   }
299 
300   // GCC rejects rem/and/or/xor for integer complex.
301   // Logical and/or always return int, never complex.
302 
303   // No comparisons produce a complex result.
304 
305   LValue EmitBinAssignLValue(const BinaryOperator *E,
306                              ComplexPairTy &Val);
307   ComplexPairTy VisitBinAssign     (const BinaryOperator *E);
308   ComplexPairTy VisitBinComma      (const BinaryOperator *E);
309 
310 
311   ComplexPairTy
312   VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO);
313   ComplexPairTy VisitChooseExpr(ChooseExpr *CE);
314 
315   ComplexPairTy VisitInitListExpr(InitListExpr *E);
316 
317   ComplexPairTy VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
318     return EmitLoadOfLValue(E);
319   }
320 
321   ComplexPairTy VisitVAArgExpr(VAArgExpr *E);
322 
323   ComplexPairTy VisitAtomicExpr(AtomicExpr *E) {
324     return CGF.EmitAtomicExpr(E).getComplexVal();
325   }
326 };
327 }  // end anonymous namespace.
328 
329 //===----------------------------------------------------------------------===//
330 //                                Utilities
331 //===----------------------------------------------------------------------===//
332 
333 Address CodeGenFunction::emitAddrOfRealComponent(Address addr,
334                                                  QualType complexType) {
335   return Builder.CreateStructGEP(addr, 0, addr.getName() + ".realp");
336 }
337 
338 Address CodeGenFunction::emitAddrOfImagComponent(Address addr,
339                                                  QualType complexType) {
340   return Builder.CreateStructGEP(addr, 1, addr.getName() + ".imagp");
341 }
342 
343 /// EmitLoadOfLValue - Given an RValue reference for a complex, emit code to
344 /// load the real and imaginary pieces, returning them as Real/Imag.
345 ComplexPairTy ComplexExprEmitter::EmitLoadOfLValue(LValue lvalue,
346                                                    SourceLocation loc) {
347   assert(lvalue.isSimple() && "non-simple complex l-value?");
348   if (lvalue.getType()->isAtomicType())
349     return CGF.EmitAtomicLoad(lvalue, loc).getComplexVal();
350 
351   Address SrcPtr = lvalue.getAddress();
352   bool isVolatile = lvalue.isVolatileQualified();
353 
354   llvm::Value *Real = nullptr, *Imag = nullptr;
355 
356   if (!IgnoreReal || isVolatile) {
357     Address RealP = CGF.emitAddrOfRealComponent(SrcPtr, lvalue.getType());
358     Real = Builder.CreateLoad(RealP, isVolatile, SrcPtr.getName() + ".real");
359   }
360 
361   if (!IgnoreImag || isVolatile) {
362     Address ImagP = CGF.emitAddrOfImagComponent(SrcPtr, lvalue.getType());
363     Imag = Builder.CreateLoad(ImagP, isVolatile, SrcPtr.getName() + ".imag");
364   }
365 
366   return ComplexPairTy(Real, Imag);
367 }
368 
369 /// EmitStoreOfComplex - Store the specified real/imag parts into the
370 /// specified value pointer.
371 void ComplexExprEmitter::EmitStoreOfComplex(ComplexPairTy Val, LValue lvalue,
372                                             bool isInit) {
373   if (lvalue.getType()->isAtomicType() ||
374       (!isInit && CGF.LValueIsSuitableForInlineAtomic(lvalue)))
375     return CGF.EmitAtomicStore(RValue::getComplex(Val), lvalue, isInit);
376 
377   Address Ptr = lvalue.getAddress();
378   Address RealPtr = CGF.emitAddrOfRealComponent(Ptr, lvalue.getType());
379   Address ImagPtr = CGF.emitAddrOfImagComponent(Ptr, lvalue.getType());
380 
381   Builder.CreateStore(Val.first, RealPtr, lvalue.isVolatileQualified());
382   Builder.CreateStore(Val.second, ImagPtr, lvalue.isVolatileQualified());
383 }
384 
385 
386 
387 //===----------------------------------------------------------------------===//
388 //                            Visitor Methods
389 //===----------------------------------------------------------------------===//
390 
391 ComplexPairTy ComplexExprEmitter::VisitExpr(Expr *E) {
392   CGF.ErrorUnsupported(E, "complex expression");
393   llvm::Type *EltTy =
394     CGF.ConvertType(getComplexType(E->getType())->getElementType());
395   llvm::Value *U = llvm::UndefValue::get(EltTy);
396   return ComplexPairTy(U, U);
397 }
398 
399 ComplexPairTy ComplexExprEmitter::
400 VisitImaginaryLiteral(const ImaginaryLiteral *IL) {
401   llvm::Value *Imag = CGF.EmitScalarExpr(IL->getSubExpr());
402   return ComplexPairTy(llvm::Constant::getNullValue(Imag->getType()), Imag);
403 }
404 
405 
406 ComplexPairTy ComplexExprEmitter::VisitCallExpr(const CallExpr *E) {
407   if (E->getCallReturnType(CGF.getContext())->isReferenceType())
408     return EmitLoadOfLValue(E);
409 
410   return CGF.EmitCallExpr(E).getComplexVal();
411 }
412 
413 ComplexPairTy ComplexExprEmitter::VisitStmtExpr(const StmtExpr *E) {
414   CodeGenFunction::StmtExprEvaluation eval(CGF);
415   Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), true);
416   assert(RetAlloca.isValid() && "Expected complex return value");
417   return EmitLoadOfLValue(CGF.MakeAddrLValue(RetAlloca, E->getType()),
418                           E->getExprLoc());
419 }
420 
421 /// Emit a cast from complex value Val to DestType.
422 ComplexPairTy ComplexExprEmitter::EmitComplexToComplexCast(ComplexPairTy Val,
423                                                            QualType SrcType,
424                                                            QualType DestType,
425                                                            SourceLocation Loc) {
426   // Get the src/dest element type.
427   SrcType = SrcType->castAs<ComplexType>()->getElementType();
428   DestType = DestType->castAs<ComplexType>()->getElementType();
429 
430   // C99 6.3.1.6: When a value of complex type is converted to another
431   // complex type, both the real and imaginary parts follow the conversion
432   // rules for the corresponding real types.
433   Val.first = CGF.EmitScalarConversion(Val.first, SrcType, DestType, Loc);
434   Val.second = CGF.EmitScalarConversion(Val.second, SrcType, DestType, Loc);
435   return Val;
436 }
437 
438 ComplexPairTy ComplexExprEmitter::EmitScalarToComplexCast(llvm::Value *Val,
439                                                           QualType SrcType,
440                                                           QualType DestType,
441                                                           SourceLocation Loc) {
442   // Convert the input element to the element type of the complex.
443   DestType = DestType->castAs<ComplexType>()->getElementType();
444   Val = CGF.EmitScalarConversion(Val, SrcType, DestType, Loc);
445 
446   // Return (realval, 0).
447   return ComplexPairTy(Val, llvm::Constant::getNullValue(Val->getType()));
448 }
449 
450 ComplexPairTy ComplexExprEmitter::EmitCast(CastKind CK, Expr *Op,
451                                            QualType DestTy) {
452   switch (CK) {
453   case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
454 
455   // Atomic to non-atomic casts may be more than a no-op for some platforms and
456   // for some types.
457   case CK_AtomicToNonAtomic:
458   case CK_NonAtomicToAtomic:
459   case CK_NoOp:
460   case CK_LValueToRValue:
461   case CK_UserDefinedConversion:
462     return Visit(Op);
463 
464   case CK_LValueBitCast: {
465     LValue origLV = CGF.EmitLValue(Op);
466     Address V = origLV.getAddress();
467     V = Builder.CreateElementBitCast(V, CGF.ConvertType(DestTy));
468     return EmitLoadOfLValue(CGF.MakeAddrLValue(V, DestTy), Op->getExprLoc());
469   }
470 
471   case CK_LValueToRValueBitCast: {
472     LValue SourceLVal = CGF.EmitLValue(Op);
473     Address Addr = Builder.CreateElementBitCast(SourceLVal.getAddress(),
474                                                 CGF.ConvertTypeForMem(DestTy));
475     LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy);
476     DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo());
477     return EmitLoadOfLValue(DestLV, Op->getExprLoc());
478   }
479 
480   case CK_BitCast:
481   case CK_BaseToDerived:
482   case CK_DerivedToBase:
483   case CK_UncheckedDerivedToBase:
484   case CK_Dynamic:
485   case CK_ToUnion:
486   case CK_ArrayToPointerDecay:
487   case CK_FunctionToPointerDecay:
488   case CK_NullToPointer:
489   case CK_NullToMemberPointer:
490   case CK_BaseToDerivedMemberPointer:
491   case CK_DerivedToBaseMemberPointer:
492   case CK_MemberPointerToBoolean:
493   case CK_ReinterpretMemberPointer:
494   case CK_ConstructorConversion:
495   case CK_IntegralToPointer:
496   case CK_PointerToIntegral:
497   case CK_PointerToBoolean:
498   case CK_ToVoid:
499   case CK_VectorSplat:
500   case CK_IntegralCast:
501   case CK_BooleanToSignedIntegral:
502   case CK_IntegralToBoolean:
503   case CK_IntegralToFloating:
504   case CK_FloatingToIntegral:
505   case CK_FloatingToBoolean:
506   case CK_FloatingCast:
507   case CK_CPointerToObjCPointerCast:
508   case CK_BlockPointerToObjCPointerCast:
509   case CK_AnyPointerToBlockPointerCast:
510   case CK_ObjCObjectLValueCast:
511   case CK_FloatingComplexToReal:
512   case CK_FloatingComplexToBoolean:
513   case CK_IntegralComplexToReal:
514   case CK_IntegralComplexToBoolean:
515   case CK_ARCProduceObject:
516   case CK_ARCConsumeObject:
517   case CK_ARCReclaimReturnedObject:
518   case CK_ARCExtendBlockObject:
519   case CK_CopyAndAutoreleaseBlockObject:
520   case CK_BuiltinFnToFnPtr:
521   case CK_ZeroToOCLOpaqueType:
522   case CK_AddressSpaceConversion:
523   case CK_IntToOCLSampler:
524   case CK_FixedPointCast:
525   case CK_FixedPointToBoolean:
526   case CK_FixedPointToIntegral:
527   case CK_IntegralToFixedPoint:
528     llvm_unreachable("invalid cast kind for complex value");
529 
530   case CK_FloatingRealToComplex:
531   case CK_IntegralRealToComplex:
532     return EmitScalarToComplexCast(CGF.EmitScalarExpr(Op), Op->getType(),
533                                    DestTy, Op->getExprLoc());
534 
535   case CK_FloatingComplexCast:
536   case CK_FloatingComplexToIntegralComplex:
537   case CK_IntegralComplexCast:
538   case CK_IntegralComplexToFloatingComplex:
539     return EmitComplexToComplexCast(Visit(Op), Op->getType(), DestTy,
540                                     Op->getExprLoc());
541   }
542 
543   llvm_unreachable("unknown cast resulting in complex value");
544 }
545 
546 ComplexPairTy ComplexExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
547   TestAndClearIgnoreReal();
548   TestAndClearIgnoreImag();
549   ComplexPairTy Op = Visit(E->getSubExpr());
550 
551   llvm::Value *ResR, *ResI;
552   if (Op.first->getType()->isFloatingPointTy()) {
553     ResR = Builder.CreateFNeg(Op.first,  "neg.r");
554     ResI = Builder.CreateFNeg(Op.second, "neg.i");
555   } else {
556     ResR = Builder.CreateNeg(Op.first,  "neg.r");
557     ResI = Builder.CreateNeg(Op.second, "neg.i");
558   }
559   return ComplexPairTy(ResR, ResI);
560 }
561 
562 ComplexPairTy ComplexExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
563   TestAndClearIgnoreReal();
564   TestAndClearIgnoreImag();
565   // ~(a+ib) = a + i*-b
566   ComplexPairTy Op = Visit(E->getSubExpr());
567   llvm::Value *ResI;
568   if (Op.second->getType()->isFloatingPointTy())
569     ResI = Builder.CreateFNeg(Op.second, "conj.i");
570   else
571     ResI = Builder.CreateNeg(Op.second, "conj.i");
572 
573   return ComplexPairTy(Op.first, ResI);
574 }
575 
576 ComplexPairTy ComplexExprEmitter::EmitBinAdd(const BinOpInfo &Op) {
577   llvm::Value *ResR, *ResI;
578 
579   if (Op.LHS.first->getType()->isFloatingPointTy()) {
580     ResR = Builder.CreateFAdd(Op.LHS.first,  Op.RHS.first,  "add.r");
581     if (Op.LHS.second && Op.RHS.second)
582       ResI = Builder.CreateFAdd(Op.LHS.second, Op.RHS.second, "add.i");
583     else
584       ResI = Op.LHS.second ? Op.LHS.second : Op.RHS.second;
585     assert(ResI && "Only one operand may be real!");
586   } else {
587     ResR = Builder.CreateAdd(Op.LHS.first,  Op.RHS.first,  "add.r");
588     assert(Op.LHS.second && Op.RHS.second &&
589            "Both operands of integer complex operators must be complex!");
590     ResI = Builder.CreateAdd(Op.LHS.second, Op.RHS.second, "add.i");
591   }
592   return ComplexPairTy(ResR, ResI);
593 }
594 
595 ComplexPairTy ComplexExprEmitter::EmitBinSub(const BinOpInfo &Op) {
596   llvm::Value *ResR, *ResI;
597   if (Op.LHS.first->getType()->isFloatingPointTy()) {
598     ResR = Builder.CreateFSub(Op.LHS.first, Op.RHS.first, "sub.r");
599     if (Op.LHS.second && Op.RHS.second)
600       ResI = Builder.CreateFSub(Op.LHS.second, Op.RHS.second, "sub.i");
601     else
602       ResI = Op.LHS.second ? Op.LHS.second
603                            : Builder.CreateFNeg(Op.RHS.second, "sub.i");
604     assert(ResI && "Only one operand may be real!");
605   } else {
606     ResR = Builder.CreateSub(Op.LHS.first, Op.RHS.first, "sub.r");
607     assert(Op.LHS.second && Op.RHS.second &&
608            "Both operands of integer complex operators must be complex!");
609     ResI = Builder.CreateSub(Op.LHS.second, Op.RHS.second, "sub.i");
610   }
611   return ComplexPairTy(ResR, ResI);
612 }
613 
614 /// Emit a libcall for a binary operation on complex types.
615 ComplexPairTy ComplexExprEmitter::EmitComplexBinOpLibCall(StringRef LibCallName,
616                                                           const BinOpInfo &Op) {
617   CallArgList Args;
618   Args.add(RValue::get(Op.LHS.first),
619            Op.Ty->castAs<ComplexType>()->getElementType());
620   Args.add(RValue::get(Op.LHS.second),
621            Op.Ty->castAs<ComplexType>()->getElementType());
622   Args.add(RValue::get(Op.RHS.first),
623            Op.Ty->castAs<ComplexType>()->getElementType());
624   Args.add(RValue::get(Op.RHS.second),
625            Op.Ty->castAs<ComplexType>()->getElementType());
626 
627   // We *must* use the full CG function call building logic here because the
628   // complex type has special ABI handling. We also should not forget about
629   // special calling convention which may be used for compiler builtins.
630 
631   // We create a function qualified type to state that this call does not have
632   // any exceptions.
633   FunctionProtoType::ExtProtoInfo EPI;
634   EPI = EPI.withExceptionSpec(
635       FunctionProtoType::ExceptionSpecInfo(EST_BasicNoexcept));
636   SmallVector<QualType, 4> ArgsQTys(
637       4, Op.Ty->castAs<ComplexType>()->getElementType());
638   QualType FQTy = CGF.getContext().getFunctionType(Op.Ty, ArgsQTys, EPI);
639   const CGFunctionInfo &FuncInfo = CGF.CGM.getTypes().arrangeFreeFunctionCall(
640       Args, cast<FunctionType>(FQTy.getTypePtr()), false);
641 
642   llvm::FunctionType *FTy = CGF.CGM.getTypes().GetFunctionType(FuncInfo);
643   llvm::FunctionCallee Func = CGF.CGM.CreateRuntimeFunction(
644       FTy, LibCallName, llvm::AttributeList(), true);
645   CGCallee Callee = CGCallee::forDirect(Func, FQTy->getAs<FunctionProtoType>());
646 
647   llvm::CallBase *Call;
648   RValue Res = CGF.EmitCall(FuncInfo, Callee, ReturnValueSlot(), Args, &Call);
649   Call->setCallingConv(CGF.CGM.getRuntimeCC());
650   return Res.getComplexVal();
651 }
652 
653 /// Lookup the libcall name for a given floating point type complex
654 /// multiply.
655 static StringRef getComplexMultiplyLibCallName(llvm::Type *Ty) {
656   switch (Ty->getTypeID()) {
657   default:
658     llvm_unreachable("Unsupported floating point type!");
659   case llvm::Type::HalfTyID:
660     return "__mulhc3";
661   case llvm::Type::FloatTyID:
662     return "__mulsc3";
663   case llvm::Type::DoubleTyID:
664     return "__muldc3";
665   case llvm::Type::PPC_FP128TyID:
666     return "__multc3";
667   case llvm::Type::X86_FP80TyID:
668     return "__mulxc3";
669   case llvm::Type::FP128TyID:
670     return "__multc3";
671   }
672 }
673 
674 // See C11 Annex G.5.1 for the semantics of multiplicative operators on complex
675 // typed values.
676 ComplexPairTy ComplexExprEmitter::EmitBinMul(const BinOpInfo &Op) {
677   using llvm::Value;
678   Value *ResR, *ResI;
679   llvm::MDBuilder MDHelper(CGF.getLLVMContext());
680 
681   if (Op.LHS.first->getType()->isFloatingPointTy()) {
682     // The general formulation is:
683     // (a + ib) * (c + id) = (a * c - b * d) + i(a * d + b * c)
684     //
685     // But we can fold away components which would be zero due to a real
686     // operand according to C11 Annex G.5.1p2.
687     // FIXME: C11 also provides for imaginary types which would allow folding
688     // still more of this within the type system.
689 
690     if (Op.LHS.second && Op.RHS.second) {
691       // If both operands are complex, emit the core math directly, and then
692       // test for NaNs. If we find NaNs in the result, we delegate to a libcall
693       // to carefully re-compute the correct infinity representation if
694       // possible. The expectation is that the presence of NaNs here is
695       // *extremely* rare, and so the cost of the libcall is almost irrelevant.
696       // This is good, because the libcall re-computes the core multiplication
697       // exactly the same as we do here and re-tests for NaNs in order to be
698       // a generic complex*complex libcall.
699 
700       // First compute the four products.
701       Value *AC = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul_ac");
702       Value *BD = Builder.CreateFMul(Op.LHS.second, Op.RHS.second, "mul_bd");
703       Value *AD = Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul_ad");
704       Value *BC = Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul_bc");
705 
706       // The real part is the difference of the first two, the imaginary part is
707       // the sum of the second.
708       ResR = Builder.CreateFSub(AC, BD, "mul_r");
709       ResI = Builder.CreateFAdd(AD, BC, "mul_i");
710 
711       // Emit the test for the real part becoming NaN and create a branch to
712       // handle it. We test for NaN by comparing the number to itself.
713       Value *IsRNaN = Builder.CreateFCmpUNO(ResR, ResR, "isnan_cmp");
714       llvm::BasicBlock *ContBB = CGF.createBasicBlock("complex_mul_cont");
715       llvm::BasicBlock *INaNBB = CGF.createBasicBlock("complex_mul_imag_nan");
716       llvm::Instruction *Branch = Builder.CreateCondBr(IsRNaN, INaNBB, ContBB);
717       llvm::BasicBlock *OrigBB = Branch->getParent();
718 
719       // Give hint that we very much don't expect to see NaNs.
720       // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
721       llvm::MDNode *BrWeight = MDHelper.createBranchWeights(1, (1U << 20) - 1);
722       Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight);
723 
724       // Now test the imaginary part and create its branch.
725       CGF.EmitBlock(INaNBB);
726       Value *IsINaN = Builder.CreateFCmpUNO(ResI, ResI, "isnan_cmp");
727       llvm::BasicBlock *LibCallBB = CGF.createBasicBlock("complex_mul_libcall");
728       Branch = Builder.CreateCondBr(IsINaN, LibCallBB, ContBB);
729       Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight);
730 
731       // Now emit the libcall on this slowest of the slow paths.
732       CGF.EmitBlock(LibCallBB);
733       Value *LibCallR, *LibCallI;
734       std::tie(LibCallR, LibCallI) = EmitComplexBinOpLibCall(
735           getComplexMultiplyLibCallName(Op.LHS.first->getType()), Op);
736       Builder.CreateBr(ContBB);
737 
738       // Finally continue execution by phi-ing together the different
739       // computation paths.
740       CGF.EmitBlock(ContBB);
741       llvm::PHINode *RealPHI = Builder.CreatePHI(ResR->getType(), 3, "real_mul_phi");
742       RealPHI->addIncoming(ResR, OrigBB);
743       RealPHI->addIncoming(ResR, INaNBB);
744       RealPHI->addIncoming(LibCallR, LibCallBB);
745       llvm::PHINode *ImagPHI = Builder.CreatePHI(ResI->getType(), 3, "imag_mul_phi");
746       ImagPHI->addIncoming(ResI, OrigBB);
747       ImagPHI->addIncoming(ResI, INaNBB);
748       ImagPHI->addIncoming(LibCallI, LibCallBB);
749       return ComplexPairTy(RealPHI, ImagPHI);
750     }
751     assert((Op.LHS.second || Op.RHS.second) &&
752            "At least one operand must be complex!");
753 
754     // If either of the operands is a real rather than a complex, the
755     // imaginary component is ignored when computing the real component of the
756     // result.
757     ResR = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul.rl");
758 
759     ResI = Op.LHS.second
760                ? Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul.il")
761                : Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul.ir");
762   } else {
763     assert(Op.LHS.second && Op.RHS.second &&
764            "Both operands of integer complex operators must be complex!");
765     Value *ResRl = Builder.CreateMul(Op.LHS.first, Op.RHS.first, "mul.rl");
766     Value *ResRr = Builder.CreateMul(Op.LHS.second, Op.RHS.second, "mul.rr");
767     ResR = Builder.CreateSub(ResRl, ResRr, "mul.r");
768 
769     Value *ResIl = Builder.CreateMul(Op.LHS.second, Op.RHS.first, "mul.il");
770     Value *ResIr = Builder.CreateMul(Op.LHS.first, Op.RHS.second, "mul.ir");
771     ResI = Builder.CreateAdd(ResIl, ResIr, "mul.i");
772   }
773   return ComplexPairTy(ResR, ResI);
774 }
775 
776 // See C11 Annex G.5.1 for the semantics of multiplicative operators on complex
777 // typed values.
778 ComplexPairTy ComplexExprEmitter::EmitBinDiv(const BinOpInfo &Op) {
779   llvm::Value *LHSr = Op.LHS.first, *LHSi = Op.LHS.second;
780   llvm::Value *RHSr = Op.RHS.first, *RHSi = Op.RHS.second;
781 
782   llvm::Value *DSTr, *DSTi;
783   if (LHSr->getType()->isFloatingPointTy()) {
784     // If we have a complex operand on the RHS and FastMath is not allowed, we
785     // delegate to a libcall to handle all of the complexities and minimize
786     // underflow/overflow cases. When FastMath is allowed we construct the
787     // divide inline using the same algorithm as for integer operands.
788     //
789     // FIXME: We would be able to avoid the libcall in many places if we
790     // supported imaginary types in addition to complex types.
791     if (RHSi && !CGF.getLangOpts().FastMath) {
792       BinOpInfo LibCallOp = Op;
793       // If LHS was a real, supply a null imaginary part.
794       if (!LHSi)
795         LibCallOp.LHS.second = llvm::Constant::getNullValue(LHSr->getType());
796 
797       switch (LHSr->getType()->getTypeID()) {
798       default:
799         llvm_unreachable("Unsupported floating point type!");
800       case llvm::Type::HalfTyID:
801         return EmitComplexBinOpLibCall("__divhc3", LibCallOp);
802       case llvm::Type::FloatTyID:
803         return EmitComplexBinOpLibCall("__divsc3", LibCallOp);
804       case llvm::Type::DoubleTyID:
805         return EmitComplexBinOpLibCall("__divdc3", LibCallOp);
806       case llvm::Type::PPC_FP128TyID:
807         return EmitComplexBinOpLibCall("__divtc3", LibCallOp);
808       case llvm::Type::X86_FP80TyID:
809         return EmitComplexBinOpLibCall("__divxc3", LibCallOp);
810       case llvm::Type::FP128TyID:
811         return EmitComplexBinOpLibCall("__divtc3", LibCallOp);
812       }
813     } else if (RHSi) {
814       if (!LHSi)
815         LHSi = llvm::Constant::getNullValue(RHSi->getType());
816 
817       // (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd))
818       llvm::Value *AC = Builder.CreateFMul(LHSr, RHSr); // a*c
819       llvm::Value *BD = Builder.CreateFMul(LHSi, RHSi); // b*d
820       llvm::Value *ACpBD = Builder.CreateFAdd(AC, BD); // ac+bd
821 
822       llvm::Value *CC = Builder.CreateFMul(RHSr, RHSr); // c*c
823       llvm::Value *DD = Builder.CreateFMul(RHSi, RHSi); // d*d
824       llvm::Value *CCpDD = Builder.CreateFAdd(CC, DD); // cc+dd
825 
826       llvm::Value *BC = Builder.CreateFMul(LHSi, RHSr); // b*c
827       llvm::Value *AD = Builder.CreateFMul(LHSr, RHSi); // a*d
828       llvm::Value *BCmAD = Builder.CreateFSub(BC, AD); // bc-ad
829 
830       DSTr = Builder.CreateFDiv(ACpBD, CCpDD);
831       DSTi = Builder.CreateFDiv(BCmAD, CCpDD);
832     } else {
833       assert(LHSi && "Can have at most one non-complex operand!");
834 
835       DSTr = Builder.CreateFDiv(LHSr, RHSr);
836       DSTi = Builder.CreateFDiv(LHSi, RHSr);
837     }
838   } else {
839     assert(Op.LHS.second && Op.RHS.second &&
840            "Both operands of integer complex operators must be complex!");
841     // (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd))
842     llvm::Value *Tmp1 = Builder.CreateMul(LHSr, RHSr); // a*c
843     llvm::Value *Tmp2 = Builder.CreateMul(LHSi, RHSi); // b*d
844     llvm::Value *Tmp3 = Builder.CreateAdd(Tmp1, Tmp2); // ac+bd
845 
846     llvm::Value *Tmp4 = Builder.CreateMul(RHSr, RHSr); // c*c
847     llvm::Value *Tmp5 = Builder.CreateMul(RHSi, RHSi); // d*d
848     llvm::Value *Tmp6 = Builder.CreateAdd(Tmp4, Tmp5); // cc+dd
849 
850     llvm::Value *Tmp7 = Builder.CreateMul(LHSi, RHSr); // b*c
851     llvm::Value *Tmp8 = Builder.CreateMul(LHSr, RHSi); // a*d
852     llvm::Value *Tmp9 = Builder.CreateSub(Tmp7, Tmp8); // bc-ad
853 
854     if (Op.Ty->castAs<ComplexType>()->getElementType()->isUnsignedIntegerType()) {
855       DSTr = Builder.CreateUDiv(Tmp3, Tmp6);
856       DSTi = Builder.CreateUDiv(Tmp9, Tmp6);
857     } else {
858       DSTr = Builder.CreateSDiv(Tmp3, Tmp6);
859       DSTi = Builder.CreateSDiv(Tmp9, Tmp6);
860     }
861   }
862 
863   return ComplexPairTy(DSTr, DSTi);
864 }
865 
866 ComplexExprEmitter::BinOpInfo
867 ComplexExprEmitter::EmitBinOps(const BinaryOperator *E) {
868   TestAndClearIgnoreReal();
869   TestAndClearIgnoreImag();
870   BinOpInfo Ops;
871   if (E->getLHS()->getType()->isRealFloatingType())
872     Ops.LHS = ComplexPairTy(CGF.EmitScalarExpr(E->getLHS()), nullptr);
873   else
874     Ops.LHS = Visit(E->getLHS());
875   if (E->getRHS()->getType()->isRealFloatingType())
876     Ops.RHS = ComplexPairTy(CGF.EmitScalarExpr(E->getRHS()), nullptr);
877   else
878     Ops.RHS = Visit(E->getRHS());
879 
880   Ops.Ty = E->getType();
881   return Ops;
882 }
883 
884 
885 LValue ComplexExprEmitter::
886 EmitCompoundAssignLValue(const CompoundAssignOperator *E,
887           ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&),
888                          RValue &Val) {
889   TestAndClearIgnoreReal();
890   TestAndClearIgnoreImag();
891   QualType LHSTy = E->getLHS()->getType();
892   if (const AtomicType *AT = LHSTy->getAs<AtomicType>())
893     LHSTy = AT->getValueType();
894 
895   BinOpInfo OpInfo;
896 
897   // Load the RHS and LHS operands.
898   // __block variables need to have the rhs evaluated first, plus this should
899   // improve codegen a little.
900   OpInfo.Ty = E->getComputationResultType();
901   QualType ComplexElementTy = cast<ComplexType>(OpInfo.Ty)->getElementType();
902 
903   // The RHS should have been converted to the computation type.
904   if (E->getRHS()->getType()->isRealFloatingType()) {
905     assert(
906         CGF.getContext()
907             .hasSameUnqualifiedType(ComplexElementTy, E->getRHS()->getType()));
908     OpInfo.RHS = ComplexPairTy(CGF.EmitScalarExpr(E->getRHS()), nullptr);
909   } else {
910     assert(CGF.getContext()
911                .hasSameUnqualifiedType(OpInfo.Ty, E->getRHS()->getType()));
912     OpInfo.RHS = Visit(E->getRHS());
913   }
914 
915   LValue LHS = CGF.EmitLValue(E->getLHS());
916 
917   // Load from the l-value and convert it.
918   SourceLocation Loc = E->getExprLoc();
919   if (LHSTy->isAnyComplexType()) {
920     ComplexPairTy LHSVal = EmitLoadOfLValue(LHS, Loc);
921     OpInfo.LHS = EmitComplexToComplexCast(LHSVal, LHSTy, OpInfo.Ty, Loc);
922   } else {
923     llvm::Value *LHSVal = CGF.EmitLoadOfScalar(LHS, Loc);
924     // For floating point real operands we can directly pass the scalar form
925     // to the binary operator emission and potentially get more efficient code.
926     if (LHSTy->isRealFloatingType()) {
927       if (!CGF.getContext().hasSameUnqualifiedType(ComplexElementTy, LHSTy))
928         LHSVal = CGF.EmitScalarConversion(LHSVal, LHSTy, ComplexElementTy, Loc);
929       OpInfo.LHS = ComplexPairTy(LHSVal, nullptr);
930     } else {
931       OpInfo.LHS = EmitScalarToComplexCast(LHSVal, LHSTy, OpInfo.Ty, Loc);
932     }
933   }
934 
935   // Expand the binary operator.
936   ComplexPairTy Result = (this->*Func)(OpInfo);
937 
938   // Truncate the result and store it into the LHS lvalue.
939   if (LHSTy->isAnyComplexType()) {
940     ComplexPairTy ResVal =
941         EmitComplexToComplexCast(Result, OpInfo.Ty, LHSTy, Loc);
942     EmitStoreOfComplex(ResVal, LHS, /*isInit*/ false);
943     Val = RValue::getComplex(ResVal);
944   } else {
945     llvm::Value *ResVal =
946         CGF.EmitComplexToScalarConversion(Result, OpInfo.Ty, LHSTy, Loc);
947     CGF.EmitStoreOfScalar(ResVal, LHS, /*isInit*/ false);
948     Val = RValue::get(ResVal);
949   }
950 
951   return LHS;
952 }
953 
954 // Compound assignments.
955 ComplexPairTy ComplexExprEmitter::
956 EmitCompoundAssign(const CompoundAssignOperator *E,
957                    ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&)){
958   RValue Val;
959   LValue LV = EmitCompoundAssignLValue(E, Func, Val);
960 
961   // The result of an assignment in C is the assigned r-value.
962   if (!CGF.getLangOpts().CPlusPlus)
963     return Val.getComplexVal();
964 
965   // If the lvalue is non-volatile, return the computed value of the assignment.
966   if (!LV.isVolatileQualified())
967     return Val.getComplexVal();
968 
969   return EmitLoadOfLValue(LV, E->getExprLoc());
970 }
971 
972 LValue ComplexExprEmitter::EmitBinAssignLValue(const BinaryOperator *E,
973                                                ComplexPairTy &Val) {
974   assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
975                                                  E->getRHS()->getType()) &&
976          "Invalid assignment");
977   TestAndClearIgnoreReal();
978   TestAndClearIgnoreImag();
979 
980   // Emit the RHS.  __block variables need the RHS evaluated first.
981   Val = Visit(E->getRHS());
982 
983   // Compute the address to store into.
984   LValue LHS = CGF.EmitLValue(E->getLHS());
985 
986   // Store the result value into the LHS lvalue.
987   EmitStoreOfComplex(Val, LHS, /*isInit*/ false);
988 
989   return LHS;
990 }
991 
992 ComplexPairTy ComplexExprEmitter::VisitBinAssign(const BinaryOperator *E) {
993   ComplexPairTy Val;
994   LValue LV = EmitBinAssignLValue(E, Val);
995 
996   // The result of an assignment in C is the assigned r-value.
997   if (!CGF.getLangOpts().CPlusPlus)
998     return Val;
999 
1000   // If the lvalue is non-volatile, return the computed value of the assignment.
1001   if (!LV.isVolatileQualified())
1002     return Val;
1003 
1004   return EmitLoadOfLValue(LV, E->getExprLoc());
1005 }
1006 
1007 ComplexPairTy ComplexExprEmitter::VisitBinComma(const BinaryOperator *E) {
1008   CGF.EmitIgnoredExpr(E->getLHS());
1009   return Visit(E->getRHS());
1010 }
1011 
1012 ComplexPairTy ComplexExprEmitter::
1013 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
1014   TestAndClearIgnoreReal();
1015   TestAndClearIgnoreImag();
1016   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
1017   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
1018   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
1019 
1020   // Bind the common expression if necessary.
1021   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
1022 
1023 
1024   CodeGenFunction::ConditionalEvaluation eval(CGF);
1025   CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock,
1026                            CGF.getProfileCount(E));
1027 
1028   eval.begin(CGF);
1029   CGF.EmitBlock(LHSBlock);
1030   CGF.incrementProfileCounter(E);
1031   ComplexPairTy LHS = Visit(E->getTrueExpr());
1032   LHSBlock = Builder.GetInsertBlock();
1033   CGF.EmitBranch(ContBlock);
1034   eval.end(CGF);
1035 
1036   eval.begin(CGF);
1037   CGF.EmitBlock(RHSBlock);
1038   ComplexPairTy RHS = Visit(E->getFalseExpr());
1039   RHSBlock = Builder.GetInsertBlock();
1040   CGF.EmitBlock(ContBlock);
1041   eval.end(CGF);
1042 
1043   // Create a PHI node for the real part.
1044   llvm::PHINode *RealPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.r");
1045   RealPN->addIncoming(LHS.first, LHSBlock);
1046   RealPN->addIncoming(RHS.first, RHSBlock);
1047 
1048   // Create a PHI node for the imaginary part.
1049   llvm::PHINode *ImagPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.i");
1050   ImagPN->addIncoming(LHS.second, LHSBlock);
1051   ImagPN->addIncoming(RHS.second, RHSBlock);
1052 
1053   return ComplexPairTy(RealPN, ImagPN);
1054 }
1055 
1056 ComplexPairTy ComplexExprEmitter::VisitChooseExpr(ChooseExpr *E) {
1057   return Visit(E->getChosenSubExpr());
1058 }
1059 
1060 ComplexPairTy ComplexExprEmitter::VisitInitListExpr(InitListExpr *E) {
1061     bool Ignore = TestAndClearIgnoreReal();
1062     (void)Ignore;
1063     assert (Ignore == false && "init list ignored");
1064     Ignore = TestAndClearIgnoreImag();
1065     (void)Ignore;
1066     assert (Ignore == false && "init list ignored");
1067 
1068   if (E->getNumInits() == 2) {
1069     llvm::Value *Real = CGF.EmitScalarExpr(E->getInit(0));
1070     llvm::Value *Imag = CGF.EmitScalarExpr(E->getInit(1));
1071     return ComplexPairTy(Real, Imag);
1072   } else if (E->getNumInits() == 1) {
1073     return Visit(E->getInit(0));
1074   }
1075 
1076   // Empty init list initializes to null
1077   assert(E->getNumInits() == 0 && "Unexpected number of inits");
1078   QualType Ty = E->getType()->castAs<ComplexType>()->getElementType();
1079   llvm::Type* LTy = CGF.ConvertType(Ty);
1080   llvm::Value* zeroConstant = llvm::Constant::getNullValue(LTy);
1081   return ComplexPairTy(zeroConstant, zeroConstant);
1082 }
1083 
1084 ComplexPairTy ComplexExprEmitter::VisitVAArgExpr(VAArgExpr *E) {
1085   Address ArgValue = Address::invalid();
1086   Address ArgPtr = CGF.EmitVAArg(E, ArgValue);
1087 
1088   if (!ArgPtr.isValid()) {
1089     CGF.ErrorUnsupported(E, "complex va_arg expression");
1090     llvm::Type *EltTy =
1091       CGF.ConvertType(E->getType()->castAs<ComplexType>()->getElementType());
1092     llvm::Value *U = llvm::UndefValue::get(EltTy);
1093     return ComplexPairTy(U, U);
1094   }
1095 
1096   return EmitLoadOfLValue(CGF.MakeAddrLValue(ArgPtr, E->getType()),
1097                           E->getExprLoc());
1098 }
1099 
1100 //===----------------------------------------------------------------------===//
1101 //                         Entry Point into this File
1102 //===----------------------------------------------------------------------===//
1103 
1104 /// EmitComplexExpr - Emit the computation of the specified expression of
1105 /// complex type, ignoring the result.
1106 ComplexPairTy CodeGenFunction::EmitComplexExpr(const Expr *E, bool IgnoreReal,
1107                                                bool IgnoreImag) {
1108   assert(E && getComplexType(E->getType()) &&
1109          "Invalid complex expression to emit");
1110 
1111   return ComplexExprEmitter(*this, IgnoreReal, IgnoreImag)
1112       .Visit(const_cast<Expr *>(E));
1113 }
1114 
1115 void CodeGenFunction::EmitComplexExprIntoLValue(const Expr *E, LValue dest,
1116                                                 bool isInit) {
1117   assert(E && getComplexType(E->getType()) &&
1118          "Invalid complex expression to emit");
1119   ComplexExprEmitter Emitter(*this);
1120   ComplexPairTy Val = Emitter.Visit(const_cast<Expr*>(E));
1121   Emitter.EmitStoreOfComplex(Val, dest, isInit);
1122 }
1123 
1124 /// EmitStoreOfComplex - Store a complex number into the specified l-value.
1125 void CodeGenFunction::EmitStoreOfComplex(ComplexPairTy V, LValue dest,
1126                                          bool isInit) {
1127   ComplexExprEmitter(*this).EmitStoreOfComplex(V, dest, isInit);
1128 }
1129 
1130 /// EmitLoadOfComplex - Load a complex number from the specified address.
1131 ComplexPairTy CodeGenFunction::EmitLoadOfComplex(LValue src,
1132                                                  SourceLocation loc) {
1133   return ComplexExprEmitter(*this).EmitLoadOfLValue(src, loc);
1134 }
1135 
1136 LValue CodeGenFunction::EmitComplexAssignmentLValue(const BinaryOperator *E) {
1137   assert(E->getOpcode() == BO_Assign);
1138   ComplexPairTy Val; // ignored
1139   return ComplexExprEmitter(*this).EmitBinAssignLValue(E, Val);
1140 }
1141 
1142 typedef ComplexPairTy (ComplexExprEmitter::*CompoundFunc)(
1143     const ComplexExprEmitter::BinOpInfo &);
1144 
1145 static CompoundFunc getComplexOp(BinaryOperatorKind Op) {
1146   switch (Op) {
1147   case BO_MulAssign: return &ComplexExprEmitter::EmitBinMul;
1148   case BO_DivAssign: return &ComplexExprEmitter::EmitBinDiv;
1149   case BO_SubAssign: return &ComplexExprEmitter::EmitBinSub;
1150   case BO_AddAssign: return &ComplexExprEmitter::EmitBinAdd;
1151   default:
1152     llvm_unreachable("unexpected complex compound assignment");
1153   }
1154 }
1155 
1156 LValue CodeGenFunction::
1157 EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E) {
1158   CompoundFunc Op = getComplexOp(E->getOpcode());
1159   RValue Val;
1160   return ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val);
1161 }
1162 
1163 LValue CodeGenFunction::
1164 EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E,
1165                                     llvm::Value *&Result) {
1166   CompoundFunc Op = getComplexOp(E->getOpcode());
1167   RValue Val;
1168   LValue Ret = ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val);
1169   Result = Val.getScalarVal();
1170   return Ret;
1171 }
1172