1 //===--- CGExprComplex.cpp - Emit LLVM Code for Complex Exprs -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Expr nodes with complex types as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenFunction.h" 14 #include "CodeGenModule.h" 15 #include "clang/AST/StmtVisitor.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/IR/Constants.h" 18 #include "llvm/IR/Instructions.h" 19 #include "llvm/IR/MDBuilder.h" 20 #include "llvm/IR/Metadata.h" 21 #include <algorithm> 22 using namespace clang; 23 using namespace CodeGen; 24 25 //===----------------------------------------------------------------------===// 26 // Complex Expression Emitter 27 //===----------------------------------------------------------------------===// 28 29 typedef CodeGenFunction::ComplexPairTy ComplexPairTy; 30 31 /// Return the complex type that we are meant to emit. 32 static const ComplexType *getComplexType(QualType type) { 33 type = type.getCanonicalType(); 34 if (const ComplexType *comp = dyn_cast<ComplexType>(type)) { 35 return comp; 36 } else { 37 return cast<ComplexType>(cast<AtomicType>(type)->getValueType()); 38 } 39 } 40 41 namespace { 42 class ComplexExprEmitter 43 : public StmtVisitor<ComplexExprEmitter, ComplexPairTy> { 44 CodeGenFunction &CGF; 45 CGBuilderTy &Builder; 46 bool IgnoreReal; 47 bool IgnoreImag; 48 public: 49 ComplexExprEmitter(CodeGenFunction &cgf, bool ir=false, bool ii=false) 50 : CGF(cgf), Builder(CGF.Builder), IgnoreReal(ir), IgnoreImag(ii) { 51 } 52 53 54 //===--------------------------------------------------------------------===// 55 // Utilities 56 //===--------------------------------------------------------------------===// 57 58 bool TestAndClearIgnoreReal() { 59 bool I = IgnoreReal; 60 IgnoreReal = false; 61 return I; 62 } 63 bool TestAndClearIgnoreImag() { 64 bool I = IgnoreImag; 65 IgnoreImag = false; 66 return I; 67 } 68 69 /// EmitLoadOfLValue - Given an expression with complex type that represents a 70 /// value l-value, this method emits the address of the l-value, then loads 71 /// and returns the result. 72 ComplexPairTy EmitLoadOfLValue(const Expr *E) { 73 return EmitLoadOfLValue(CGF.EmitLValue(E), E->getExprLoc()); 74 } 75 76 ComplexPairTy EmitLoadOfLValue(LValue LV, SourceLocation Loc); 77 78 /// EmitStoreOfComplex - Store the specified real/imag parts into the 79 /// specified value pointer. 80 void EmitStoreOfComplex(ComplexPairTy Val, LValue LV, bool isInit); 81 82 /// Emit a cast from complex value Val to DestType. 83 ComplexPairTy EmitComplexToComplexCast(ComplexPairTy Val, QualType SrcType, 84 QualType DestType, SourceLocation Loc); 85 /// Emit a cast from scalar value Val to DestType. 86 ComplexPairTy EmitScalarToComplexCast(llvm::Value *Val, QualType SrcType, 87 QualType DestType, SourceLocation Loc); 88 89 //===--------------------------------------------------------------------===// 90 // Visitor Methods 91 //===--------------------------------------------------------------------===// 92 93 ComplexPairTy Visit(Expr *E) { 94 ApplyDebugLocation DL(CGF, E); 95 return StmtVisitor<ComplexExprEmitter, ComplexPairTy>::Visit(E); 96 } 97 98 ComplexPairTy VisitStmt(Stmt *S) { 99 S->dump(CGF.getContext().getSourceManager()); 100 llvm_unreachable("Stmt can't have complex result type!"); 101 } 102 ComplexPairTy VisitExpr(Expr *S); 103 ComplexPairTy VisitConstantExpr(ConstantExpr *E) { 104 return Visit(E->getSubExpr()); 105 } 106 ComplexPairTy VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr());} 107 ComplexPairTy VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 108 return Visit(GE->getResultExpr()); 109 } 110 ComplexPairTy VisitImaginaryLiteral(const ImaginaryLiteral *IL); 111 ComplexPairTy 112 VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE) { 113 return Visit(PE->getReplacement()); 114 } 115 ComplexPairTy VisitCoawaitExpr(CoawaitExpr *S) { 116 return CGF.EmitCoawaitExpr(*S).getComplexVal(); 117 } 118 ComplexPairTy VisitCoyieldExpr(CoyieldExpr *S) { 119 return CGF.EmitCoyieldExpr(*S).getComplexVal(); 120 } 121 ComplexPairTy VisitUnaryCoawait(const UnaryOperator *E) { 122 return Visit(E->getSubExpr()); 123 } 124 125 ComplexPairTy emitConstant(const CodeGenFunction::ConstantEmission &Constant, 126 Expr *E) { 127 assert(Constant && "not a constant"); 128 if (Constant.isReference()) 129 return EmitLoadOfLValue(Constant.getReferenceLValue(CGF, E), 130 E->getExprLoc()); 131 132 llvm::Constant *pair = Constant.getValue(); 133 return ComplexPairTy(pair->getAggregateElement(0U), 134 pair->getAggregateElement(1U)); 135 } 136 137 // l-values. 138 ComplexPairTy VisitDeclRefExpr(DeclRefExpr *E) { 139 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) 140 return emitConstant(Constant, E); 141 return EmitLoadOfLValue(E); 142 } 143 ComplexPairTy VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 144 return EmitLoadOfLValue(E); 145 } 146 ComplexPairTy VisitObjCMessageExpr(ObjCMessageExpr *E) { 147 return CGF.EmitObjCMessageExpr(E).getComplexVal(); 148 } 149 ComplexPairTy VisitArraySubscriptExpr(Expr *E) { return EmitLoadOfLValue(E); } 150 ComplexPairTy VisitMemberExpr(MemberExpr *ME) { 151 if (CodeGenFunction::ConstantEmission Constant = 152 CGF.tryEmitAsConstant(ME)) { 153 CGF.EmitIgnoredExpr(ME->getBase()); 154 return emitConstant(Constant, ME); 155 } 156 return EmitLoadOfLValue(ME); 157 } 158 ComplexPairTy VisitOpaqueValueExpr(OpaqueValueExpr *E) { 159 if (E->isGLValue()) 160 return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E), 161 E->getExprLoc()); 162 return CGF.getOrCreateOpaqueRValueMapping(E).getComplexVal(); 163 } 164 165 ComplexPairTy VisitPseudoObjectExpr(PseudoObjectExpr *E) { 166 return CGF.EmitPseudoObjectRValue(E).getComplexVal(); 167 } 168 169 // FIXME: CompoundLiteralExpr 170 171 ComplexPairTy EmitCast(CastKind CK, Expr *Op, QualType DestTy); 172 ComplexPairTy VisitImplicitCastExpr(ImplicitCastExpr *E) { 173 // Unlike for scalars, we don't have to worry about function->ptr demotion 174 // here. 175 return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType()); 176 } 177 ComplexPairTy VisitCastExpr(CastExpr *E) { 178 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E)) 179 CGF.CGM.EmitExplicitCastExprType(ECE, &CGF); 180 return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType()); 181 } 182 ComplexPairTy VisitCallExpr(const CallExpr *E); 183 ComplexPairTy VisitStmtExpr(const StmtExpr *E); 184 185 // Operators. 186 ComplexPairTy VisitPrePostIncDec(const UnaryOperator *E, 187 bool isInc, bool isPre) { 188 LValue LV = CGF.EmitLValue(E->getSubExpr()); 189 return CGF.EmitComplexPrePostIncDec(E, LV, isInc, isPre); 190 } 191 ComplexPairTy VisitUnaryPostDec(const UnaryOperator *E) { 192 return VisitPrePostIncDec(E, false, false); 193 } 194 ComplexPairTy VisitUnaryPostInc(const UnaryOperator *E) { 195 return VisitPrePostIncDec(E, true, false); 196 } 197 ComplexPairTy VisitUnaryPreDec(const UnaryOperator *E) { 198 return VisitPrePostIncDec(E, false, true); 199 } 200 ComplexPairTy VisitUnaryPreInc(const UnaryOperator *E) { 201 return VisitPrePostIncDec(E, true, true); 202 } 203 ComplexPairTy VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); } 204 ComplexPairTy VisitUnaryPlus (const UnaryOperator *E) { 205 TestAndClearIgnoreReal(); 206 TestAndClearIgnoreImag(); 207 return Visit(E->getSubExpr()); 208 } 209 ComplexPairTy VisitUnaryMinus (const UnaryOperator *E); 210 ComplexPairTy VisitUnaryNot (const UnaryOperator *E); 211 // LNot,Real,Imag never return complex. 212 ComplexPairTy VisitUnaryExtension(const UnaryOperator *E) { 213 return Visit(E->getSubExpr()); 214 } 215 ComplexPairTy VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 216 CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE); 217 return Visit(DAE->getExpr()); 218 } 219 ComplexPairTy VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 220 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE); 221 return Visit(DIE->getExpr()); 222 } 223 ComplexPairTy VisitExprWithCleanups(ExprWithCleanups *E) { 224 CGF.enterFullExpression(E); 225 CodeGenFunction::RunCleanupsScope Scope(CGF); 226 ComplexPairTy Vals = Visit(E->getSubExpr()); 227 // Defend against dominance problems caused by jumps out of expression 228 // evaluation through the shared cleanup block. 229 Scope.ForceCleanup({&Vals.first, &Vals.second}); 230 return Vals; 231 } 232 ComplexPairTy VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) { 233 assert(E->getType()->isAnyComplexType() && "Expected complex type!"); 234 QualType Elem = E->getType()->castAs<ComplexType>()->getElementType(); 235 llvm::Constant *Null = llvm::Constant::getNullValue(CGF.ConvertType(Elem)); 236 return ComplexPairTy(Null, Null); 237 } 238 ComplexPairTy VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) { 239 assert(E->getType()->isAnyComplexType() && "Expected complex type!"); 240 QualType Elem = E->getType()->castAs<ComplexType>()->getElementType(); 241 llvm::Constant *Null = 242 llvm::Constant::getNullValue(CGF.ConvertType(Elem)); 243 return ComplexPairTy(Null, Null); 244 } 245 246 struct BinOpInfo { 247 ComplexPairTy LHS; 248 ComplexPairTy RHS; 249 QualType Ty; // Computation Type. 250 }; 251 252 BinOpInfo EmitBinOps(const BinaryOperator *E); 253 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E, 254 ComplexPairTy (ComplexExprEmitter::*Func) 255 (const BinOpInfo &), 256 RValue &Val); 257 ComplexPairTy EmitCompoundAssign(const CompoundAssignOperator *E, 258 ComplexPairTy (ComplexExprEmitter::*Func) 259 (const BinOpInfo &)); 260 261 ComplexPairTy EmitBinAdd(const BinOpInfo &Op); 262 ComplexPairTy EmitBinSub(const BinOpInfo &Op); 263 ComplexPairTy EmitBinMul(const BinOpInfo &Op); 264 ComplexPairTy EmitBinDiv(const BinOpInfo &Op); 265 266 ComplexPairTy EmitComplexBinOpLibCall(StringRef LibCallName, 267 const BinOpInfo &Op); 268 269 ComplexPairTy VisitBinAdd(const BinaryOperator *E) { 270 return EmitBinAdd(EmitBinOps(E)); 271 } 272 ComplexPairTy VisitBinSub(const BinaryOperator *E) { 273 return EmitBinSub(EmitBinOps(E)); 274 } 275 ComplexPairTy VisitBinMul(const BinaryOperator *E) { 276 return EmitBinMul(EmitBinOps(E)); 277 } 278 ComplexPairTy VisitBinDiv(const BinaryOperator *E) { 279 return EmitBinDiv(EmitBinOps(E)); 280 } 281 282 ComplexPairTy VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) { 283 return Visit(E->getSemanticForm()); 284 } 285 286 // Compound assignments. 287 ComplexPairTy VisitBinAddAssign(const CompoundAssignOperator *E) { 288 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinAdd); 289 } 290 ComplexPairTy VisitBinSubAssign(const CompoundAssignOperator *E) { 291 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinSub); 292 } 293 ComplexPairTy VisitBinMulAssign(const CompoundAssignOperator *E) { 294 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinMul); 295 } 296 ComplexPairTy VisitBinDivAssign(const CompoundAssignOperator *E) { 297 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinDiv); 298 } 299 300 // GCC rejects rem/and/or/xor for integer complex. 301 // Logical and/or always return int, never complex. 302 303 // No comparisons produce a complex result. 304 305 LValue EmitBinAssignLValue(const BinaryOperator *E, 306 ComplexPairTy &Val); 307 ComplexPairTy VisitBinAssign (const BinaryOperator *E); 308 ComplexPairTy VisitBinComma (const BinaryOperator *E); 309 310 311 ComplexPairTy 312 VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO); 313 ComplexPairTy VisitChooseExpr(ChooseExpr *CE); 314 315 ComplexPairTy VisitInitListExpr(InitListExpr *E); 316 317 ComplexPairTy VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 318 return EmitLoadOfLValue(E); 319 } 320 321 ComplexPairTy VisitVAArgExpr(VAArgExpr *E); 322 323 ComplexPairTy VisitAtomicExpr(AtomicExpr *E) { 324 return CGF.EmitAtomicExpr(E).getComplexVal(); 325 } 326 }; 327 } // end anonymous namespace. 328 329 //===----------------------------------------------------------------------===// 330 // Utilities 331 //===----------------------------------------------------------------------===// 332 333 Address CodeGenFunction::emitAddrOfRealComponent(Address addr, 334 QualType complexType) { 335 return Builder.CreateStructGEP(addr, 0, addr.getName() + ".realp"); 336 } 337 338 Address CodeGenFunction::emitAddrOfImagComponent(Address addr, 339 QualType complexType) { 340 return Builder.CreateStructGEP(addr, 1, addr.getName() + ".imagp"); 341 } 342 343 /// EmitLoadOfLValue - Given an RValue reference for a complex, emit code to 344 /// load the real and imaginary pieces, returning them as Real/Imag. 345 ComplexPairTy ComplexExprEmitter::EmitLoadOfLValue(LValue lvalue, 346 SourceLocation loc) { 347 assert(lvalue.isSimple() && "non-simple complex l-value?"); 348 if (lvalue.getType()->isAtomicType()) 349 return CGF.EmitAtomicLoad(lvalue, loc).getComplexVal(); 350 351 Address SrcPtr = lvalue.getAddress(); 352 bool isVolatile = lvalue.isVolatileQualified(); 353 354 llvm::Value *Real = nullptr, *Imag = nullptr; 355 356 if (!IgnoreReal || isVolatile) { 357 Address RealP = CGF.emitAddrOfRealComponent(SrcPtr, lvalue.getType()); 358 Real = Builder.CreateLoad(RealP, isVolatile, SrcPtr.getName() + ".real"); 359 } 360 361 if (!IgnoreImag || isVolatile) { 362 Address ImagP = CGF.emitAddrOfImagComponent(SrcPtr, lvalue.getType()); 363 Imag = Builder.CreateLoad(ImagP, isVolatile, SrcPtr.getName() + ".imag"); 364 } 365 366 return ComplexPairTy(Real, Imag); 367 } 368 369 /// EmitStoreOfComplex - Store the specified real/imag parts into the 370 /// specified value pointer. 371 void ComplexExprEmitter::EmitStoreOfComplex(ComplexPairTy Val, LValue lvalue, 372 bool isInit) { 373 if (lvalue.getType()->isAtomicType() || 374 (!isInit && CGF.LValueIsSuitableForInlineAtomic(lvalue))) 375 return CGF.EmitAtomicStore(RValue::getComplex(Val), lvalue, isInit); 376 377 Address Ptr = lvalue.getAddress(); 378 Address RealPtr = CGF.emitAddrOfRealComponent(Ptr, lvalue.getType()); 379 Address ImagPtr = CGF.emitAddrOfImagComponent(Ptr, lvalue.getType()); 380 381 Builder.CreateStore(Val.first, RealPtr, lvalue.isVolatileQualified()); 382 Builder.CreateStore(Val.second, ImagPtr, lvalue.isVolatileQualified()); 383 } 384 385 386 387 //===----------------------------------------------------------------------===// 388 // Visitor Methods 389 //===----------------------------------------------------------------------===// 390 391 ComplexPairTy ComplexExprEmitter::VisitExpr(Expr *E) { 392 CGF.ErrorUnsupported(E, "complex expression"); 393 llvm::Type *EltTy = 394 CGF.ConvertType(getComplexType(E->getType())->getElementType()); 395 llvm::Value *U = llvm::UndefValue::get(EltTy); 396 return ComplexPairTy(U, U); 397 } 398 399 ComplexPairTy ComplexExprEmitter:: 400 VisitImaginaryLiteral(const ImaginaryLiteral *IL) { 401 llvm::Value *Imag = CGF.EmitScalarExpr(IL->getSubExpr()); 402 return ComplexPairTy(llvm::Constant::getNullValue(Imag->getType()), Imag); 403 } 404 405 406 ComplexPairTy ComplexExprEmitter::VisitCallExpr(const CallExpr *E) { 407 if (E->getCallReturnType(CGF.getContext())->isReferenceType()) 408 return EmitLoadOfLValue(E); 409 410 return CGF.EmitCallExpr(E).getComplexVal(); 411 } 412 413 ComplexPairTy ComplexExprEmitter::VisitStmtExpr(const StmtExpr *E) { 414 CodeGenFunction::StmtExprEvaluation eval(CGF); 415 Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), true); 416 assert(RetAlloca.isValid() && "Expected complex return value"); 417 return EmitLoadOfLValue(CGF.MakeAddrLValue(RetAlloca, E->getType()), 418 E->getExprLoc()); 419 } 420 421 /// Emit a cast from complex value Val to DestType. 422 ComplexPairTy ComplexExprEmitter::EmitComplexToComplexCast(ComplexPairTy Val, 423 QualType SrcType, 424 QualType DestType, 425 SourceLocation Loc) { 426 // Get the src/dest element type. 427 SrcType = SrcType->castAs<ComplexType>()->getElementType(); 428 DestType = DestType->castAs<ComplexType>()->getElementType(); 429 430 // C99 6.3.1.6: When a value of complex type is converted to another 431 // complex type, both the real and imaginary parts follow the conversion 432 // rules for the corresponding real types. 433 Val.first = CGF.EmitScalarConversion(Val.first, SrcType, DestType, Loc); 434 Val.second = CGF.EmitScalarConversion(Val.second, SrcType, DestType, Loc); 435 return Val; 436 } 437 438 ComplexPairTy ComplexExprEmitter::EmitScalarToComplexCast(llvm::Value *Val, 439 QualType SrcType, 440 QualType DestType, 441 SourceLocation Loc) { 442 // Convert the input element to the element type of the complex. 443 DestType = DestType->castAs<ComplexType>()->getElementType(); 444 Val = CGF.EmitScalarConversion(Val, SrcType, DestType, Loc); 445 446 // Return (realval, 0). 447 return ComplexPairTy(Val, llvm::Constant::getNullValue(Val->getType())); 448 } 449 450 ComplexPairTy ComplexExprEmitter::EmitCast(CastKind CK, Expr *Op, 451 QualType DestTy) { 452 switch (CK) { 453 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!"); 454 455 // Atomic to non-atomic casts may be more than a no-op for some platforms and 456 // for some types. 457 case CK_AtomicToNonAtomic: 458 case CK_NonAtomicToAtomic: 459 case CK_NoOp: 460 case CK_LValueToRValue: 461 case CK_UserDefinedConversion: 462 return Visit(Op); 463 464 case CK_LValueBitCast: { 465 LValue origLV = CGF.EmitLValue(Op); 466 Address V = origLV.getAddress(); 467 V = Builder.CreateElementBitCast(V, CGF.ConvertType(DestTy)); 468 return EmitLoadOfLValue(CGF.MakeAddrLValue(V, DestTy), Op->getExprLoc()); 469 } 470 471 case CK_LValueToRValueBitCast: { 472 LValue SourceLVal = CGF.EmitLValue(Op); 473 Address Addr = Builder.CreateElementBitCast(SourceLVal.getAddress(), 474 CGF.ConvertTypeForMem(DestTy)); 475 LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy); 476 DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo()); 477 return EmitLoadOfLValue(DestLV, Op->getExprLoc()); 478 } 479 480 case CK_BitCast: 481 case CK_BaseToDerived: 482 case CK_DerivedToBase: 483 case CK_UncheckedDerivedToBase: 484 case CK_Dynamic: 485 case CK_ToUnion: 486 case CK_ArrayToPointerDecay: 487 case CK_FunctionToPointerDecay: 488 case CK_NullToPointer: 489 case CK_NullToMemberPointer: 490 case CK_BaseToDerivedMemberPointer: 491 case CK_DerivedToBaseMemberPointer: 492 case CK_MemberPointerToBoolean: 493 case CK_ReinterpretMemberPointer: 494 case CK_ConstructorConversion: 495 case CK_IntegralToPointer: 496 case CK_PointerToIntegral: 497 case CK_PointerToBoolean: 498 case CK_ToVoid: 499 case CK_VectorSplat: 500 case CK_IntegralCast: 501 case CK_BooleanToSignedIntegral: 502 case CK_IntegralToBoolean: 503 case CK_IntegralToFloating: 504 case CK_FloatingToIntegral: 505 case CK_FloatingToBoolean: 506 case CK_FloatingCast: 507 case CK_CPointerToObjCPointerCast: 508 case CK_BlockPointerToObjCPointerCast: 509 case CK_AnyPointerToBlockPointerCast: 510 case CK_ObjCObjectLValueCast: 511 case CK_FloatingComplexToReal: 512 case CK_FloatingComplexToBoolean: 513 case CK_IntegralComplexToReal: 514 case CK_IntegralComplexToBoolean: 515 case CK_ARCProduceObject: 516 case CK_ARCConsumeObject: 517 case CK_ARCReclaimReturnedObject: 518 case CK_ARCExtendBlockObject: 519 case CK_CopyAndAutoreleaseBlockObject: 520 case CK_BuiltinFnToFnPtr: 521 case CK_ZeroToOCLOpaqueType: 522 case CK_AddressSpaceConversion: 523 case CK_IntToOCLSampler: 524 case CK_FixedPointCast: 525 case CK_FixedPointToBoolean: 526 case CK_FixedPointToIntegral: 527 case CK_IntegralToFixedPoint: 528 llvm_unreachable("invalid cast kind for complex value"); 529 530 case CK_FloatingRealToComplex: 531 case CK_IntegralRealToComplex: 532 return EmitScalarToComplexCast(CGF.EmitScalarExpr(Op), Op->getType(), 533 DestTy, Op->getExprLoc()); 534 535 case CK_FloatingComplexCast: 536 case CK_FloatingComplexToIntegralComplex: 537 case CK_IntegralComplexCast: 538 case CK_IntegralComplexToFloatingComplex: 539 return EmitComplexToComplexCast(Visit(Op), Op->getType(), DestTy, 540 Op->getExprLoc()); 541 } 542 543 llvm_unreachable("unknown cast resulting in complex value"); 544 } 545 546 ComplexPairTy ComplexExprEmitter::VisitUnaryMinus(const UnaryOperator *E) { 547 TestAndClearIgnoreReal(); 548 TestAndClearIgnoreImag(); 549 ComplexPairTy Op = Visit(E->getSubExpr()); 550 551 llvm::Value *ResR, *ResI; 552 if (Op.first->getType()->isFloatingPointTy()) { 553 ResR = Builder.CreateFNeg(Op.first, "neg.r"); 554 ResI = Builder.CreateFNeg(Op.second, "neg.i"); 555 } else { 556 ResR = Builder.CreateNeg(Op.first, "neg.r"); 557 ResI = Builder.CreateNeg(Op.second, "neg.i"); 558 } 559 return ComplexPairTy(ResR, ResI); 560 } 561 562 ComplexPairTy ComplexExprEmitter::VisitUnaryNot(const UnaryOperator *E) { 563 TestAndClearIgnoreReal(); 564 TestAndClearIgnoreImag(); 565 // ~(a+ib) = a + i*-b 566 ComplexPairTy Op = Visit(E->getSubExpr()); 567 llvm::Value *ResI; 568 if (Op.second->getType()->isFloatingPointTy()) 569 ResI = Builder.CreateFNeg(Op.second, "conj.i"); 570 else 571 ResI = Builder.CreateNeg(Op.second, "conj.i"); 572 573 return ComplexPairTy(Op.first, ResI); 574 } 575 576 ComplexPairTy ComplexExprEmitter::EmitBinAdd(const BinOpInfo &Op) { 577 llvm::Value *ResR, *ResI; 578 579 if (Op.LHS.first->getType()->isFloatingPointTy()) { 580 ResR = Builder.CreateFAdd(Op.LHS.first, Op.RHS.first, "add.r"); 581 if (Op.LHS.second && Op.RHS.second) 582 ResI = Builder.CreateFAdd(Op.LHS.second, Op.RHS.second, "add.i"); 583 else 584 ResI = Op.LHS.second ? Op.LHS.second : Op.RHS.second; 585 assert(ResI && "Only one operand may be real!"); 586 } else { 587 ResR = Builder.CreateAdd(Op.LHS.first, Op.RHS.first, "add.r"); 588 assert(Op.LHS.second && Op.RHS.second && 589 "Both operands of integer complex operators must be complex!"); 590 ResI = Builder.CreateAdd(Op.LHS.second, Op.RHS.second, "add.i"); 591 } 592 return ComplexPairTy(ResR, ResI); 593 } 594 595 ComplexPairTy ComplexExprEmitter::EmitBinSub(const BinOpInfo &Op) { 596 llvm::Value *ResR, *ResI; 597 if (Op.LHS.first->getType()->isFloatingPointTy()) { 598 ResR = Builder.CreateFSub(Op.LHS.first, Op.RHS.first, "sub.r"); 599 if (Op.LHS.second && Op.RHS.second) 600 ResI = Builder.CreateFSub(Op.LHS.second, Op.RHS.second, "sub.i"); 601 else 602 ResI = Op.LHS.second ? Op.LHS.second 603 : Builder.CreateFNeg(Op.RHS.second, "sub.i"); 604 assert(ResI && "Only one operand may be real!"); 605 } else { 606 ResR = Builder.CreateSub(Op.LHS.first, Op.RHS.first, "sub.r"); 607 assert(Op.LHS.second && Op.RHS.second && 608 "Both operands of integer complex operators must be complex!"); 609 ResI = Builder.CreateSub(Op.LHS.second, Op.RHS.second, "sub.i"); 610 } 611 return ComplexPairTy(ResR, ResI); 612 } 613 614 /// Emit a libcall for a binary operation on complex types. 615 ComplexPairTy ComplexExprEmitter::EmitComplexBinOpLibCall(StringRef LibCallName, 616 const BinOpInfo &Op) { 617 CallArgList Args; 618 Args.add(RValue::get(Op.LHS.first), 619 Op.Ty->castAs<ComplexType>()->getElementType()); 620 Args.add(RValue::get(Op.LHS.second), 621 Op.Ty->castAs<ComplexType>()->getElementType()); 622 Args.add(RValue::get(Op.RHS.first), 623 Op.Ty->castAs<ComplexType>()->getElementType()); 624 Args.add(RValue::get(Op.RHS.second), 625 Op.Ty->castAs<ComplexType>()->getElementType()); 626 627 // We *must* use the full CG function call building logic here because the 628 // complex type has special ABI handling. We also should not forget about 629 // special calling convention which may be used for compiler builtins. 630 631 // We create a function qualified type to state that this call does not have 632 // any exceptions. 633 FunctionProtoType::ExtProtoInfo EPI; 634 EPI = EPI.withExceptionSpec( 635 FunctionProtoType::ExceptionSpecInfo(EST_BasicNoexcept)); 636 SmallVector<QualType, 4> ArgsQTys( 637 4, Op.Ty->castAs<ComplexType>()->getElementType()); 638 QualType FQTy = CGF.getContext().getFunctionType(Op.Ty, ArgsQTys, EPI); 639 const CGFunctionInfo &FuncInfo = CGF.CGM.getTypes().arrangeFreeFunctionCall( 640 Args, cast<FunctionType>(FQTy.getTypePtr()), false); 641 642 llvm::FunctionType *FTy = CGF.CGM.getTypes().GetFunctionType(FuncInfo); 643 llvm::FunctionCallee Func = CGF.CGM.CreateRuntimeFunction( 644 FTy, LibCallName, llvm::AttributeList(), true); 645 CGCallee Callee = CGCallee::forDirect(Func, FQTy->getAs<FunctionProtoType>()); 646 647 llvm::CallBase *Call; 648 RValue Res = CGF.EmitCall(FuncInfo, Callee, ReturnValueSlot(), Args, &Call); 649 Call->setCallingConv(CGF.CGM.getRuntimeCC()); 650 return Res.getComplexVal(); 651 } 652 653 /// Lookup the libcall name for a given floating point type complex 654 /// multiply. 655 static StringRef getComplexMultiplyLibCallName(llvm::Type *Ty) { 656 switch (Ty->getTypeID()) { 657 default: 658 llvm_unreachable("Unsupported floating point type!"); 659 case llvm::Type::HalfTyID: 660 return "__mulhc3"; 661 case llvm::Type::FloatTyID: 662 return "__mulsc3"; 663 case llvm::Type::DoubleTyID: 664 return "__muldc3"; 665 case llvm::Type::PPC_FP128TyID: 666 return "__multc3"; 667 case llvm::Type::X86_FP80TyID: 668 return "__mulxc3"; 669 case llvm::Type::FP128TyID: 670 return "__multc3"; 671 } 672 } 673 674 // See C11 Annex G.5.1 for the semantics of multiplicative operators on complex 675 // typed values. 676 ComplexPairTy ComplexExprEmitter::EmitBinMul(const BinOpInfo &Op) { 677 using llvm::Value; 678 Value *ResR, *ResI; 679 llvm::MDBuilder MDHelper(CGF.getLLVMContext()); 680 681 if (Op.LHS.first->getType()->isFloatingPointTy()) { 682 // The general formulation is: 683 // (a + ib) * (c + id) = (a * c - b * d) + i(a * d + b * c) 684 // 685 // But we can fold away components which would be zero due to a real 686 // operand according to C11 Annex G.5.1p2. 687 // FIXME: C11 also provides for imaginary types which would allow folding 688 // still more of this within the type system. 689 690 if (Op.LHS.second && Op.RHS.second) { 691 // If both operands are complex, emit the core math directly, and then 692 // test for NaNs. If we find NaNs in the result, we delegate to a libcall 693 // to carefully re-compute the correct infinity representation if 694 // possible. The expectation is that the presence of NaNs here is 695 // *extremely* rare, and so the cost of the libcall is almost irrelevant. 696 // This is good, because the libcall re-computes the core multiplication 697 // exactly the same as we do here and re-tests for NaNs in order to be 698 // a generic complex*complex libcall. 699 700 // First compute the four products. 701 Value *AC = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul_ac"); 702 Value *BD = Builder.CreateFMul(Op.LHS.second, Op.RHS.second, "mul_bd"); 703 Value *AD = Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul_ad"); 704 Value *BC = Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul_bc"); 705 706 // The real part is the difference of the first two, the imaginary part is 707 // the sum of the second. 708 ResR = Builder.CreateFSub(AC, BD, "mul_r"); 709 ResI = Builder.CreateFAdd(AD, BC, "mul_i"); 710 711 // Emit the test for the real part becoming NaN and create a branch to 712 // handle it. We test for NaN by comparing the number to itself. 713 Value *IsRNaN = Builder.CreateFCmpUNO(ResR, ResR, "isnan_cmp"); 714 llvm::BasicBlock *ContBB = CGF.createBasicBlock("complex_mul_cont"); 715 llvm::BasicBlock *INaNBB = CGF.createBasicBlock("complex_mul_imag_nan"); 716 llvm::Instruction *Branch = Builder.CreateCondBr(IsRNaN, INaNBB, ContBB); 717 llvm::BasicBlock *OrigBB = Branch->getParent(); 718 719 // Give hint that we very much don't expect to see NaNs. 720 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp 721 llvm::MDNode *BrWeight = MDHelper.createBranchWeights(1, (1U << 20) - 1); 722 Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight); 723 724 // Now test the imaginary part and create its branch. 725 CGF.EmitBlock(INaNBB); 726 Value *IsINaN = Builder.CreateFCmpUNO(ResI, ResI, "isnan_cmp"); 727 llvm::BasicBlock *LibCallBB = CGF.createBasicBlock("complex_mul_libcall"); 728 Branch = Builder.CreateCondBr(IsINaN, LibCallBB, ContBB); 729 Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight); 730 731 // Now emit the libcall on this slowest of the slow paths. 732 CGF.EmitBlock(LibCallBB); 733 Value *LibCallR, *LibCallI; 734 std::tie(LibCallR, LibCallI) = EmitComplexBinOpLibCall( 735 getComplexMultiplyLibCallName(Op.LHS.first->getType()), Op); 736 Builder.CreateBr(ContBB); 737 738 // Finally continue execution by phi-ing together the different 739 // computation paths. 740 CGF.EmitBlock(ContBB); 741 llvm::PHINode *RealPHI = Builder.CreatePHI(ResR->getType(), 3, "real_mul_phi"); 742 RealPHI->addIncoming(ResR, OrigBB); 743 RealPHI->addIncoming(ResR, INaNBB); 744 RealPHI->addIncoming(LibCallR, LibCallBB); 745 llvm::PHINode *ImagPHI = Builder.CreatePHI(ResI->getType(), 3, "imag_mul_phi"); 746 ImagPHI->addIncoming(ResI, OrigBB); 747 ImagPHI->addIncoming(ResI, INaNBB); 748 ImagPHI->addIncoming(LibCallI, LibCallBB); 749 return ComplexPairTy(RealPHI, ImagPHI); 750 } 751 assert((Op.LHS.second || Op.RHS.second) && 752 "At least one operand must be complex!"); 753 754 // If either of the operands is a real rather than a complex, the 755 // imaginary component is ignored when computing the real component of the 756 // result. 757 ResR = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul.rl"); 758 759 ResI = Op.LHS.second 760 ? Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul.il") 761 : Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul.ir"); 762 } else { 763 assert(Op.LHS.second && Op.RHS.second && 764 "Both operands of integer complex operators must be complex!"); 765 Value *ResRl = Builder.CreateMul(Op.LHS.first, Op.RHS.first, "mul.rl"); 766 Value *ResRr = Builder.CreateMul(Op.LHS.second, Op.RHS.second, "mul.rr"); 767 ResR = Builder.CreateSub(ResRl, ResRr, "mul.r"); 768 769 Value *ResIl = Builder.CreateMul(Op.LHS.second, Op.RHS.first, "mul.il"); 770 Value *ResIr = Builder.CreateMul(Op.LHS.first, Op.RHS.second, "mul.ir"); 771 ResI = Builder.CreateAdd(ResIl, ResIr, "mul.i"); 772 } 773 return ComplexPairTy(ResR, ResI); 774 } 775 776 // See C11 Annex G.5.1 for the semantics of multiplicative operators on complex 777 // typed values. 778 ComplexPairTy ComplexExprEmitter::EmitBinDiv(const BinOpInfo &Op) { 779 llvm::Value *LHSr = Op.LHS.first, *LHSi = Op.LHS.second; 780 llvm::Value *RHSr = Op.RHS.first, *RHSi = Op.RHS.second; 781 782 llvm::Value *DSTr, *DSTi; 783 if (LHSr->getType()->isFloatingPointTy()) { 784 // If we have a complex operand on the RHS and FastMath is not allowed, we 785 // delegate to a libcall to handle all of the complexities and minimize 786 // underflow/overflow cases. When FastMath is allowed we construct the 787 // divide inline using the same algorithm as for integer operands. 788 // 789 // FIXME: We would be able to avoid the libcall in many places if we 790 // supported imaginary types in addition to complex types. 791 if (RHSi && !CGF.getLangOpts().FastMath) { 792 BinOpInfo LibCallOp = Op; 793 // If LHS was a real, supply a null imaginary part. 794 if (!LHSi) 795 LibCallOp.LHS.second = llvm::Constant::getNullValue(LHSr->getType()); 796 797 switch (LHSr->getType()->getTypeID()) { 798 default: 799 llvm_unreachable("Unsupported floating point type!"); 800 case llvm::Type::HalfTyID: 801 return EmitComplexBinOpLibCall("__divhc3", LibCallOp); 802 case llvm::Type::FloatTyID: 803 return EmitComplexBinOpLibCall("__divsc3", LibCallOp); 804 case llvm::Type::DoubleTyID: 805 return EmitComplexBinOpLibCall("__divdc3", LibCallOp); 806 case llvm::Type::PPC_FP128TyID: 807 return EmitComplexBinOpLibCall("__divtc3", LibCallOp); 808 case llvm::Type::X86_FP80TyID: 809 return EmitComplexBinOpLibCall("__divxc3", LibCallOp); 810 case llvm::Type::FP128TyID: 811 return EmitComplexBinOpLibCall("__divtc3", LibCallOp); 812 } 813 } else if (RHSi) { 814 if (!LHSi) 815 LHSi = llvm::Constant::getNullValue(RHSi->getType()); 816 817 // (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd)) 818 llvm::Value *AC = Builder.CreateFMul(LHSr, RHSr); // a*c 819 llvm::Value *BD = Builder.CreateFMul(LHSi, RHSi); // b*d 820 llvm::Value *ACpBD = Builder.CreateFAdd(AC, BD); // ac+bd 821 822 llvm::Value *CC = Builder.CreateFMul(RHSr, RHSr); // c*c 823 llvm::Value *DD = Builder.CreateFMul(RHSi, RHSi); // d*d 824 llvm::Value *CCpDD = Builder.CreateFAdd(CC, DD); // cc+dd 825 826 llvm::Value *BC = Builder.CreateFMul(LHSi, RHSr); // b*c 827 llvm::Value *AD = Builder.CreateFMul(LHSr, RHSi); // a*d 828 llvm::Value *BCmAD = Builder.CreateFSub(BC, AD); // bc-ad 829 830 DSTr = Builder.CreateFDiv(ACpBD, CCpDD); 831 DSTi = Builder.CreateFDiv(BCmAD, CCpDD); 832 } else { 833 assert(LHSi && "Can have at most one non-complex operand!"); 834 835 DSTr = Builder.CreateFDiv(LHSr, RHSr); 836 DSTi = Builder.CreateFDiv(LHSi, RHSr); 837 } 838 } else { 839 assert(Op.LHS.second && Op.RHS.second && 840 "Both operands of integer complex operators must be complex!"); 841 // (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd)) 842 llvm::Value *Tmp1 = Builder.CreateMul(LHSr, RHSr); // a*c 843 llvm::Value *Tmp2 = Builder.CreateMul(LHSi, RHSi); // b*d 844 llvm::Value *Tmp3 = Builder.CreateAdd(Tmp1, Tmp2); // ac+bd 845 846 llvm::Value *Tmp4 = Builder.CreateMul(RHSr, RHSr); // c*c 847 llvm::Value *Tmp5 = Builder.CreateMul(RHSi, RHSi); // d*d 848 llvm::Value *Tmp6 = Builder.CreateAdd(Tmp4, Tmp5); // cc+dd 849 850 llvm::Value *Tmp7 = Builder.CreateMul(LHSi, RHSr); // b*c 851 llvm::Value *Tmp8 = Builder.CreateMul(LHSr, RHSi); // a*d 852 llvm::Value *Tmp9 = Builder.CreateSub(Tmp7, Tmp8); // bc-ad 853 854 if (Op.Ty->castAs<ComplexType>()->getElementType()->isUnsignedIntegerType()) { 855 DSTr = Builder.CreateUDiv(Tmp3, Tmp6); 856 DSTi = Builder.CreateUDiv(Tmp9, Tmp6); 857 } else { 858 DSTr = Builder.CreateSDiv(Tmp3, Tmp6); 859 DSTi = Builder.CreateSDiv(Tmp9, Tmp6); 860 } 861 } 862 863 return ComplexPairTy(DSTr, DSTi); 864 } 865 866 ComplexExprEmitter::BinOpInfo 867 ComplexExprEmitter::EmitBinOps(const BinaryOperator *E) { 868 TestAndClearIgnoreReal(); 869 TestAndClearIgnoreImag(); 870 BinOpInfo Ops; 871 if (E->getLHS()->getType()->isRealFloatingType()) 872 Ops.LHS = ComplexPairTy(CGF.EmitScalarExpr(E->getLHS()), nullptr); 873 else 874 Ops.LHS = Visit(E->getLHS()); 875 if (E->getRHS()->getType()->isRealFloatingType()) 876 Ops.RHS = ComplexPairTy(CGF.EmitScalarExpr(E->getRHS()), nullptr); 877 else 878 Ops.RHS = Visit(E->getRHS()); 879 880 Ops.Ty = E->getType(); 881 return Ops; 882 } 883 884 885 LValue ComplexExprEmitter:: 886 EmitCompoundAssignLValue(const CompoundAssignOperator *E, 887 ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&), 888 RValue &Val) { 889 TestAndClearIgnoreReal(); 890 TestAndClearIgnoreImag(); 891 QualType LHSTy = E->getLHS()->getType(); 892 if (const AtomicType *AT = LHSTy->getAs<AtomicType>()) 893 LHSTy = AT->getValueType(); 894 895 BinOpInfo OpInfo; 896 897 // Load the RHS and LHS operands. 898 // __block variables need to have the rhs evaluated first, plus this should 899 // improve codegen a little. 900 OpInfo.Ty = E->getComputationResultType(); 901 QualType ComplexElementTy = cast<ComplexType>(OpInfo.Ty)->getElementType(); 902 903 // The RHS should have been converted to the computation type. 904 if (E->getRHS()->getType()->isRealFloatingType()) { 905 assert( 906 CGF.getContext() 907 .hasSameUnqualifiedType(ComplexElementTy, E->getRHS()->getType())); 908 OpInfo.RHS = ComplexPairTy(CGF.EmitScalarExpr(E->getRHS()), nullptr); 909 } else { 910 assert(CGF.getContext() 911 .hasSameUnqualifiedType(OpInfo.Ty, E->getRHS()->getType())); 912 OpInfo.RHS = Visit(E->getRHS()); 913 } 914 915 LValue LHS = CGF.EmitLValue(E->getLHS()); 916 917 // Load from the l-value and convert it. 918 SourceLocation Loc = E->getExprLoc(); 919 if (LHSTy->isAnyComplexType()) { 920 ComplexPairTy LHSVal = EmitLoadOfLValue(LHS, Loc); 921 OpInfo.LHS = EmitComplexToComplexCast(LHSVal, LHSTy, OpInfo.Ty, Loc); 922 } else { 923 llvm::Value *LHSVal = CGF.EmitLoadOfScalar(LHS, Loc); 924 // For floating point real operands we can directly pass the scalar form 925 // to the binary operator emission and potentially get more efficient code. 926 if (LHSTy->isRealFloatingType()) { 927 if (!CGF.getContext().hasSameUnqualifiedType(ComplexElementTy, LHSTy)) 928 LHSVal = CGF.EmitScalarConversion(LHSVal, LHSTy, ComplexElementTy, Loc); 929 OpInfo.LHS = ComplexPairTy(LHSVal, nullptr); 930 } else { 931 OpInfo.LHS = EmitScalarToComplexCast(LHSVal, LHSTy, OpInfo.Ty, Loc); 932 } 933 } 934 935 // Expand the binary operator. 936 ComplexPairTy Result = (this->*Func)(OpInfo); 937 938 // Truncate the result and store it into the LHS lvalue. 939 if (LHSTy->isAnyComplexType()) { 940 ComplexPairTy ResVal = 941 EmitComplexToComplexCast(Result, OpInfo.Ty, LHSTy, Loc); 942 EmitStoreOfComplex(ResVal, LHS, /*isInit*/ false); 943 Val = RValue::getComplex(ResVal); 944 } else { 945 llvm::Value *ResVal = 946 CGF.EmitComplexToScalarConversion(Result, OpInfo.Ty, LHSTy, Loc); 947 CGF.EmitStoreOfScalar(ResVal, LHS, /*isInit*/ false); 948 Val = RValue::get(ResVal); 949 } 950 951 return LHS; 952 } 953 954 // Compound assignments. 955 ComplexPairTy ComplexExprEmitter:: 956 EmitCompoundAssign(const CompoundAssignOperator *E, 957 ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&)){ 958 RValue Val; 959 LValue LV = EmitCompoundAssignLValue(E, Func, Val); 960 961 // The result of an assignment in C is the assigned r-value. 962 if (!CGF.getLangOpts().CPlusPlus) 963 return Val.getComplexVal(); 964 965 // If the lvalue is non-volatile, return the computed value of the assignment. 966 if (!LV.isVolatileQualified()) 967 return Val.getComplexVal(); 968 969 return EmitLoadOfLValue(LV, E->getExprLoc()); 970 } 971 972 LValue ComplexExprEmitter::EmitBinAssignLValue(const BinaryOperator *E, 973 ComplexPairTy &Val) { 974 assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(), 975 E->getRHS()->getType()) && 976 "Invalid assignment"); 977 TestAndClearIgnoreReal(); 978 TestAndClearIgnoreImag(); 979 980 // Emit the RHS. __block variables need the RHS evaluated first. 981 Val = Visit(E->getRHS()); 982 983 // Compute the address to store into. 984 LValue LHS = CGF.EmitLValue(E->getLHS()); 985 986 // Store the result value into the LHS lvalue. 987 EmitStoreOfComplex(Val, LHS, /*isInit*/ false); 988 989 return LHS; 990 } 991 992 ComplexPairTy ComplexExprEmitter::VisitBinAssign(const BinaryOperator *E) { 993 ComplexPairTy Val; 994 LValue LV = EmitBinAssignLValue(E, Val); 995 996 // The result of an assignment in C is the assigned r-value. 997 if (!CGF.getLangOpts().CPlusPlus) 998 return Val; 999 1000 // If the lvalue is non-volatile, return the computed value of the assignment. 1001 if (!LV.isVolatileQualified()) 1002 return Val; 1003 1004 return EmitLoadOfLValue(LV, E->getExprLoc()); 1005 } 1006 1007 ComplexPairTy ComplexExprEmitter::VisitBinComma(const BinaryOperator *E) { 1008 CGF.EmitIgnoredExpr(E->getLHS()); 1009 return Visit(E->getRHS()); 1010 } 1011 1012 ComplexPairTy ComplexExprEmitter:: 1013 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 1014 TestAndClearIgnoreReal(); 1015 TestAndClearIgnoreImag(); 1016 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 1017 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 1018 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 1019 1020 // Bind the common expression if necessary. 1021 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 1022 1023 1024 CodeGenFunction::ConditionalEvaluation eval(CGF); 1025 CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock, 1026 CGF.getProfileCount(E)); 1027 1028 eval.begin(CGF); 1029 CGF.EmitBlock(LHSBlock); 1030 CGF.incrementProfileCounter(E); 1031 ComplexPairTy LHS = Visit(E->getTrueExpr()); 1032 LHSBlock = Builder.GetInsertBlock(); 1033 CGF.EmitBranch(ContBlock); 1034 eval.end(CGF); 1035 1036 eval.begin(CGF); 1037 CGF.EmitBlock(RHSBlock); 1038 ComplexPairTy RHS = Visit(E->getFalseExpr()); 1039 RHSBlock = Builder.GetInsertBlock(); 1040 CGF.EmitBlock(ContBlock); 1041 eval.end(CGF); 1042 1043 // Create a PHI node for the real part. 1044 llvm::PHINode *RealPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.r"); 1045 RealPN->addIncoming(LHS.first, LHSBlock); 1046 RealPN->addIncoming(RHS.first, RHSBlock); 1047 1048 // Create a PHI node for the imaginary part. 1049 llvm::PHINode *ImagPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.i"); 1050 ImagPN->addIncoming(LHS.second, LHSBlock); 1051 ImagPN->addIncoming(RHS.second, RHSBlock); 1052 1053 return ComplexPairTy(RealPN, ImagPN); 1054 } 1055 1056 ComplexPairTy ComplexExprEmitter::VisitChooseExpr(ChooseExpr *E) { 1057 return Visit(E->getChosenSubExpr()); 1058 } 1059 1060 ComplexPairTy ComplexExprEmitter::VisitInitListExpr(InitListExpr *E) { 1061 bool Ignore = TestAndClearIgnoreReal(); 1062 (void)Ignore; 1063 assert (Ignore == false && "init list ignored"); 1064 Ignore = TestAndClearIgnoreImag(); 1065 (void)Ignore; 1066 assert (Ignore == false && "init list ignored"); 1067 1068 if (E->getNumInits() == 2) { 1069 llvm::Value *Real = CGF.EmitScalarExpr(E->getInit(0)); 1070 llvm::Value *Imag = CGF.EmitScalarExpr(E->getInit(1)); 1071 return ComplexPairTy(Real, Imag); 1072 } else if (E->getNumInits() == 1) { 1073 return Visit(E->getInit(0)); 1074 } 1075 1076 // Empty init list initializes to null 1077 assert(E->getNumInits() == 0 && "Unexpected number of inits"); 1078 QualType Ty = E->getType()->castAs<ComplexType>()->getElementType(); 1079 llvm::Type* LTy = CGF.ConvertType(Ty); 1080 llvm::Value* zeroConstant = llvm::Constant::getNullValue(LTy); 1081 return ComplexPairTy(zeroConstant, zeroConstant); 1082 } 1083 1084 ComplexPairTy ComplexExprEmitter::VisitVAArgExpr(VAArgExpr *E) { 1085 Address ArgValue = Address::invalid(); 1086 Address ArgPtr = CGF.EmitVAArg(E, ArgValue); 1087 1088 if (!ArgPtr.isValid()) { 1089 CGF.ErrorUnsupported(E, "complex va_arg expression"); 1090 llvm::Type *EltTy = 1091 CGF.ConvertType(E->getType()->castAs<ComplexType>()->getElementType()); 1092 llvm::Value *U = llvm::UndefValue::get(EltTy); 1093 return ComplexPairTy(U, U); 1094 } 1095 1096 return EmitLoadOfLValue(CGF.MakeAddrLValue(ArgPtr, E->getType()), 1097 E->getExprLoc()); 1098 } 1099 1100 //===----------------------------------------------------------------------===// 1101 // Entry Point into this File 1102 //===----------------------------------------------------------------------===// 1103 1104 /// EmitComplexExpr - Emit the computation of the specified expression of 1105 /// complex type, ignoring the result. 1106 ComplexPairTy CodeGenFunction::EmitComplexExpr(const Expr *E, bool IgnoreReal, 1107 bool IgnoreImag) { 1108 assert(E && getComplexType(E->getType()) && 1109 "Invalid complex expression to emit"); 1110 1111 return ComplexExprEmitter(*this, IgnoreReal, IgnoreImag) 1112 .Visit(const_cast<Expr *>(E)); 1113 } 1114 1115 void CodeGenFunction::EmitComplexExprIntoLValue(const Expr *E, LValue dest, 1116 bool isInit) { 1117 assert(E && getComplexType(E->getType()) && 1118 "Invalid complex expression to emit"); 1119 ComplexExprEmitter Emitter(*this); 1120 ComplexPairTy Val = Emitter.Visit(const_cast<Expr*>(E)); 1121 Emitter.EmitStoreOfComplex(Val, dest, isInit); 1122 } 1123 1124 /// EmitStoreOfComplex - Store a complex number into the specified l-value. 1125 void CodeGenFunction::EmitStoreOfComplex(ComplexPairTy V, LValue dest, 1126 bool isInit) { 1127 ComplexExprEmitter(*this).EmitStoreOfComplex(V, dest, isInit); 1128 } 1129 1130 /// EmitLoadOfComplex - Load a complex number from the specified address. 1131 ComplexPairTy CodeGenFunction::EmitLoadOfComplex(LValue src, 1132 SourceLocation loc) { 1133 return ComplexExprEmitter(*this).EmitLoadOfLValue(src, loc); 1134 } 1135 1136 LValue CodeGenFunction::EmitComplexAssignmentLValue(const BinaryOperator *E) { 1137 assert(E->getOpcode() == BO_Assign); 1138 ComplexPairTy Val; // ignored 1139 return ComplexExprEmitter(*this).EmitBinAssignLValue(E, Val); 1140 } 1141 1142 typedef ComplexPairTy (ComplexExprEmitter::*CompoundFunc)( 1143 const ComplexExprEmitter::BinOpInfo &); 1144 1145 static CompoundFunc getComplexOp(BinaryOperatorKind Op) { 1146 switch (Op) { 1147 case BO_MulAssign: return &ComplexExprEmitter::EmitBinMul; 1148 case BO_DivAssign: return &ComplexExprEmitter::EmitBinDiv; 1149 case BO_SubAssign: return &ComplexExprEmitter::EmitBinSub; 1150 case BO_AddAssign: return &ComplexExprEmitter::EmitBinAdd; 1151 default: 1152 llvm_unreachable("unexpected complex compound assignment"); 1153 } 1154 } 1155 1156 LValue CodeGenFunction:: 1157 EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E) { 1158 CompoundFunc Op = getComplexOp(E->getOpcode()); 1159 RValue Val; 1160 return ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val); 1161 } 1162 1163 LValue CodeGenFunction:: 1164 EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E, 1165 llvm::Value *&Result) { 1166 CompoundFunc Op = getComplexOp(E->getOpcode()); 1167 RValue Val; 1168 LValue Ret = ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val); 1169 Result = Val.getScalarVal(); 1170 return Ret; 1171 } 1172