10b57cec5SDimitry Andric //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===// 20b57cec5SDimitry Andric // 30b57cec5SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 40b57cec5SDimitry Andric // See https://llvm.org/LICENSE.txt for license information. 50b57cec5SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 60b57cec5SDimitry Andric // 70b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 80b57cec5SDimitry Andric // 90b57cec5SDimitry Andric // This contains code dealing with code generation of C++ expressions 100b57cec5SDimitry Andric // 110b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 120b57cec5SDimitry Andric 130b57cec5SDimitry Andric #include "CGCUDARuntime.h" 140b57cec5SDimitry Andric #include "CGCXXABI.h" 150b57cec5SDimitry Andric #include "CGDebugInfo.h" 160b57cec5SDimitry Andric #include "CGObjCRuntime.h" 170b57cec5SDimitry Andric #include "CodeGenFunction.h" 180b57cec5SDimitry Andric #include "ConstantEmitter.h" 190b57cec5SDimitry Andric #include "TargetInfo.h" 200b57cec5SDimitry Andric #include "clang/Basic/CodeGenOptions.h" 210b57cec5SDimitry Andric #include "clang/CodeGen/CGFunctionInfo.h" 220b57cec5SDimitry Andric #include "llvm/IR/Intrinsics.h" 230b57cec5SDimitry Andric 240b57cec5SDimitry Andric using namespace clang; 250b57cec5SDimitry Andric using namespace CodeGen; 260b57cec5SDimitry Andric 270b57cec5SDimitry Andric namespace { 280b57cec5SDimitry Andric struct MemberCallInfo { 290b57cec5SDimitry Andric RequiredArgs ReqArgs; 300b57cec5SDimitry Andric // Number of prefix arguments for the call. Ignores the `this` pointer. 310b57cec5SDimitry Andric unsigned PrefixSize; 320b57cec5SDimitry Andric }; 330b57cec5SDimitry Andric } 340b57cec5SDimitry Andric 350b57cec5SDimitry Andric static MemberCallInfo 361ac55f4cSDimitry Andric commonEmitCXXMemberOrOperatorCall(CodeGenFunction &CGF, GlobalDecl GD, 370b57cec5SDimitry Andric llvm::Value *This, llvm::Value *ImplicitParam, 380b57cec5SDimitry Andric QualType ImplicitParamTy, const CallExpr *CE, 390b57cec5SDimitry Andric CallArgList &Args, CallArgList *RtlArgs) { 401ac55f4cSDimitry Andric auto *MD = cast<CXXMethodDecl>(GD.getDecl()); 411ac55f4cSDimitry Andric 420b57cec5SDimitry Andric assert(CE == nullptr || isa<CXXMemberCallExpr>(CE) || 430b57cec5SDimitry Andric isa<CXXOperatorCallExpr>(CE)); 445f757f3fSDimitry Andric assert(MD->isImplicitObjectMemberFunction() && 450b57cec5SDimitry Andric "Trying to emit a member or operator call expr on a static method!"); 460b57cec5SDimitry Andric 470b57cec5SDimitry Andric // Push the this ptr. 480b57cec5SDimitry Andric const CXXRecordDecl *RD = 491ac55f4cSDimitry Andric CGF.CGM.getCXXABI().getThisArgumentTypeForMethod(GD); 500b57cec5SDimitry Andric Args.add(RValue::get(This), CGF.getTypes().DeriveThisType(RD, MD)); 510b57cec5SDimitry Andric 520b57cec5SDimitry Andric // If there is an implicit parameter (e.g. VTT), emit it. 530b57cec5SDimitry Andric if (ImplicitParam) { 540b57cec5SDimitry Andric Args.add(RValue::get(ImplicitParam), ImplicitParamTy); 550b57cec5SDimitry Andric } 560b57cec5SDimitry Andric 570b57cec5SDimitry Andric const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 580b57cec5SDimitry Andric RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size()); 590b57cec5SDimitry Andric unsigned PrefixSize = Args.size() - 1; 600b57cec5SDimitry Andric 610b57cec5SDimitry Andric // And the rest of the call args. 620b57cec5SDimitry Andric if (RtlArgs) { 630b57cec5SDimitry Andric // Special case: if the caller emitted the arguments right-to-left already 640b57cec5SDimitry Andric // (prior to emitting the *this argument), we're done. This happens for 650b57cec5SDimitry Andric // assignment operators. 660b57cec5SDimitry Andric Args.addFrom(*RtlArgs); 670b57cec5SDimitry Andric } else if (CE) { 680b57cec5SDimitry Andric // Special case: skip first argument of CXXOperatorCall (it is "this"). 695f757f3fSDimitry Andric unsigned ArgsToSkip = 0; 705f757f3fSDimitry Andric if (const auto *Op = dyn_cast<CXXOperatorCallExpr>(CE)) { 715f757f3fSDimitry Andric if (const auto *M = dyn_cast<CXXMethodDecl>(Op->getCalleeDecl())) 725f757f3fSDimitry Andric ArgsToSkip = 735f757f3fSDimitry Andric static_cast<unsigned>(!M->isExplicitObjectMemberFunction()); 745f757f3fSDimitry Andric } 750b57cec5SDimitry Andric CGF.EmitCallArgs(Args, FPT, drop_begin(CE->arguments(), ArgsToSkip), 760b57cec5SDimitry Andric CE->getDirectCallee()); 770b57cec5SDimitry Andric } else { 780b57cec5SDimitry Andric assert( 790b57cec5SDimitry Andric FPT->getNumParams() == 0 && 800b57cec5SDimitry Andric "No CallExpr specified for function with non-zero number of arguments"); 810b57cec5SDimitry Andric } 820b57cec5SDimitry Andric return {required, PrefixSize}; 830b57cec5SDimitry Andric } 840b57cec5SDimitry Andric 850b57cec5SDimitry Andric RValue CodeGenFunction::EmitCXXMemberOrOperatorCall( 860b57cec5SDimitry Andric const CXXMethodDecl *MD, const CGCallee &Callee, 870b57cec5SDimitry Andric ReturnValueSlot ReturnValue, 880b57cec5SDimitry Andric llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy, 890b57cec5SDimitry Andric const CallExpr *CE, CallArgList *RtlArgs) { 900b57cec5SDimitry Andric const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 910b57cec5SDimitry Andric CallArgList Args; 920b57cec5SDimitry Andric MemberCallInfo CallInfo = commonEmitCXXMemberOrOperatorCall( 930b57cec5SDimitry Andric *this, MD, This, ImplicitParam, ImplicitParamTy, CE, Args, RtlArgs); 940b57cec5SDimitry Andric auto &FnInfo = CGM.getTypes().arrangeCXXMethodCall( 950b57cec5SDimitry Andric Args, FPT, CallInfo.ReqArgs, CallInfo.PrefixSize); 960b57cec5SDimitry Andric return EmitCall(FnInfo, Callee, ReturnValue, Args, nullptr, 97fe6060f1SDimitry Andric CE && CE == MustTailCall, 980b57cec5SDimitry Andric CE ? CE->getExprLoc() : SourceLocation()); 990b57cec5SDimitry Andric } 1000b57cec5SDimitry Andric 1010b57cec5SDimitry Andric RValue CodeGenFunction::EmitCXXDestructorCall( 1020b57cec5SDimitry Andric GlobalDecl Dtor, const CGCallee &Callee, llvm::Value *This, QualType ThisTy, 1030b57cec5SDimitry Andric llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *CE) { 1040b57cec5SDimitry Andric const CXXMethodDecl *DtorDecl = cast<CXXMethodDecl>(Dtor.getDecl()); 1050b57cec5SDimitry Andric 1060b57cec5SDimitry Andric assert(!ThisTy.isNull()); 1070b57cec5SDimitry Andric assert(ThisTy->getAsCXXRecordDecl() == DtorDecl->getParent() && 1080b57cec5SDimitry Andric "Pointer/Object mixup"); 1090b57cec5SDimitry Andric 1100b57cec5SDimitry Andric LangAS SrcAS = ThisTy.getAddressSpace(); 1110b57cec5SDimitry Andric LangAS DstAS = DtorDecl->getMethodQualifiers().getAddressSpace(); 1120b57cec5SDimitry Andric if (SrcAS != DstAS) { 1130b57cec5SDimitry Andric QualType DstTy = DtorDecl->getThisType(); 1140b57cec5SDimitry Andric llvm::Type *NewType = CGM.getTypes().ConvertType(DstTy); 1150b57cec5SDimitry Andric This = getTargetHooks().performAddrSpaceCast(*this, This, SrcAS, DstAS, 1160b57cec5SDimitry Andric NewType); 1170b57cec5SDimitry Andric } 1180b57cec5SDimitry Andric 1190b57cec5SDimitry Andric CallArgList Args; 1201ac55f4cSDimitry Andric commonEmitCXXMemberOrOperatorCall(*this, Dtor, This, ImplicitParam, 1210b57cec5SDimitry Andric ImplicitParamTy, CE, Args, nullptr); 1220b57cec5SDimitry Andric return EmitCall(CGM.getTypes().arrangeCXXStructorDeclaration(Dtor), Callee, 123fe6060f1SDimitry Andric ReturnValueSlot(), Args, nullptr, CE && CE == MustTailCall, 124c3ca3130SDimitry Andric CE ? CE->getExprLoc() : SourceLocation{}); 1250b57cec5SDimitry Andric } 1260b57cec5SDimitry Andric 1270b57cec5SDimitry Andric RValue CodeGenFunction::EmitCXXPseudoDestructorExpr( 1280b57cec5SDimitry Andric const CXXPseudoDestructorExpr *E) { 1290b57cec5SDimitry Andric QualType DestroyedType = E->getDestroyedType(); 1300b57cec5SDimitry Andric if (DestroyedType.hasStrongOrWeakObjCLifetime()) { 1310b57cec5SDimitry Andric // Automatic Reference Counting: 1320b57cec5SDimitry Andric // If the pseudo-expression names a retainable object with weak or 1330b57cec5SDimitry Andric // strong lifetime, the object shall be released. 1340b57cec5SDimitry Andric Expr *BaseExpr = E->getBase(); 1350b57cec5SDimitry Andric Address BaseValue = Address::invalid(); 1360b57cec5SDimitry Andric Qualifiers BaseQuals; 1370b57cec5SDimitry Andric 1380b57cec5SDimitry Andric // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 1390b57cec5SDimitry Andric if (E->isArrow()) { 1400b57cec5SDimitry Andric BaseValue = EmitPointerWithAlignment(BaseExpr); 141480093f4SDimitry Andric const auto *PTy = BaseExpr->getType()->castAs<PointerType>(); 1420b57cec5SDimitry Andric BaseQuals = PTy->getPointeeType().getQualifiers(); 1430b57cec5SDimitry Andric } else { 1440b57cec5SDimitry Andric LValue BaseLV = EmitLValue(BaseExpr); 145*0fca6ea1SDimitry Andric BaseValue = BaseLV.getAddress(); 1460b57cec5SDimitry Andric QualType BaseTy = BaseExpr->getType(); 1470b57cec5SDimitry Andric BaseQuals = BaseTy.getQualifiers(); 1480b57cec5SDimitry Andric } 1490b57cec5SDimitry Andric 1500b57cec5SDimitry Andric switch (DestroyedType.getObjCLifetime()) { 1510b57cec5SDimitry Andric case Qualifiers::OCL_None: 1520b57cec5SDimitry Andric case Qualifiers::OCL_ExplicitNone: 1530b57cec5SDimitry Andric case Qualifiers::OCL_Autoreleasing: 1540b57cec5SDimitry Andric break; 1550b57cec5SDimitry Andric 1560b57cec5SDimitry Andric case Qualifiers::OCL_Strong: 1570b57cec5SDimitry Andric EmitARCRelease(Builder.CreateLoad(BaseValue, 1580b57cec5SDimitry Andric DestroyedType.isVolatileQualified()), 1590b57cec5SDimitry Andric ARCPreciseLifetime); 1600b57cec5SDimitry Andric break; 1610b57cec5SDimitry Andric 1620b57cec5SDimitry Andric case Qualifiers::OCL_Weak: 1630b57cec5SDimitry Andric EmitARCDestroyWeak(BaseValue); 1640b57cec5SDimitry Andric break; 1650b57cec5SDimitry Andric } 1660b57cec5SDimitry Andric } else { 1670b57cec5SDimitry Andric // C++ [expr.pseudo]p1: 1680b57cec5SDimitry Andric // The result shall only be used as the operand for the function call 1690b57cec5SDimitry Andric // operator (), and the result of such a call has type void. The only 1700b57cec5SDimitry Andric // effect is the evaluation of the postfix-expression before the dot or 1710b57cec5SDimitry Andric // arrow. 1720b57cec5SDimitry Andric EmitIgnoredExpr(E->getBase()); 1730b57cec5SDimitry Andric } 1740b57cec5SDimitry Andric 1750b57cec5SDimitry Andric return RValue::get(nullptr); 1760b57cec5SDimitry Andric } 1770b57cec5SDimitry Andric 1780b57cec5SDimitry Andric static CXXRecordDecl *getCXXRecord(const Expr *E) { 1790b57cec5SDimitry Andric QualType T = E->getType(); 1800b57cec5SDimitry Andric if (const PointerType *PTy = T->getAs<PointerType>()) 1810b57cec5SDimitry Andric T = PTy->getPointeeType(); 1820b57cec5SDimitry Andric const RecordType *Ty = T->castAs<RecordType>(); 1830b57cec5SDimitry Andric return cast<CXXRecordDecl>(Ty->getDecl()); 1840b57cec5SDimitry Andric } 1850b57cec5SDimitry Andric 1860b57cec5SDimitry Andric // Note: This function also emit constructor calls to support a MSVC 1870b57cec5SDimitry Andric // extensions allowing explicit constructor function call. 1880b57cec5SDimitry Andric RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE, 1890b57cec5SDimitry Andric ReturnValueSlot ReturnValue) { 1900b57cec5SDimitry Andric const Expr *callee = CE->getCallee()->IgnoreParens(); 1910b57cec5SDimitry Andric 1920b57cec5SDimitry Andric if (isa<BinaryOperator>(callee)) 1930b57cec5SDimitry Andric return EmitCXXMemberPointerCallExpr(CE, ReturnValue); 1940b57cec5SDimitry Andric 1950b57cec5SDimitry Andric const MemberExpr *ME = cast<MemberExpr>(callee); 1960b57cec5SDimitry Andric const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl()); 1970b57cec5SDimitry Andric 1980b57cec5SDimitry Andric if (MD->isStatic()) { 1990b57cec5SDimitry Andric // The method is static, emit it as we would a regular call. 2000b57cec5SDimitry Andric CGCallee callee = 2010b57cec5SDimitry Andric CGCallee::forDirect(CGM.GetAddrOfFunction(MD), GlobalDecl(MD)); 2020b57cec5SDimitry Andric return EmitCall(getContext().getPointerType(MD->getType()), callee, CE, 2030b57cec5SDimitry Andric ReturnValue); 2040b57cec5SDimitry Andric } 2050b57cec5SDimitry Andric 2060b57cec5SDimitry Andric bool HasQualifier = ME->hasQualifier(); 2070b57cec5SDimitry Andric NestedNameSpecifier *Qualifier = HasQualifier ? ME->getQualifier() : nullptr; 2080b57cec5SDimitry Andric bool IsArrow = ME->isArrow(); 2090b57cec5SDimitry Andric const Expr *Base = ME->getBase(); 2100b57cec5SDimitry Andric 2110b57cec5SDimitry Andric return EmitCXXMemberOrOperatorMemberCallExpr( 2120b57cec5SDimitry Andric CE, MD, ReturnValue, HasQualifier, Qualifier, IsArrow, Base); 2130b57cec5SDimitry Andric } 2140b57cec5SDimitry Andric 2150b57cec5SDimitry Andric RValue CodeGenFunction::EmitCXXMemberOrOperatorMemberCallExpr( 2160b57cec5SDimitry Andric const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue, 2170b57cec5SDimitry Andric bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow, 2180b57cec5SDimitry Andric const Expr *Base) { 2190b57cec5SDimitry Andric assert(isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE)); 2200b57cec5SDimitry Andric 2210b57cec5SDimitry Andric // Compute the object pointer. 2220b57cec5SDimitry Andric bool CanUseVirtualCall = MD->isVirtual() && !HasQualifier; 2230b57cec5SDimitry Andric 2240b57cec5SDimitry Andric const CXXMethodDecl *DevirtualizedMethod = nullptr; 2250b57cec5SDimitry Andric if (CanUseVirtualCall && 2260b57cec5SDimitry Andric MD->getDevirtualizedMethod(Base, getLangOpts().AppleKext)) { 2270b57cec5SDimitry Andric const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType(); 2280b57cec5SDimitry Andric DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl); 2290b57cec5SDimitry Andric assert(DevirtualizedMethod); 2300b57cec5SDimitry Andric const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent(); 231e8d8bef9SDimitry Andric const Expr *Inner = Base->IgnoreParenBaseCasts(); 2320b57cec5SDimitry Andric if (DevirtualizedMethod->getReturnType().getCanonicalType() != 2330b57cec5SDimitry Andric MD->getReturnType().getCanonicalType()) 2340b57cec5SDimitry Andric // If the return types are not the same, this might be a case where more 2350b57cec5SDimitry Andric // code needs to run to compensate for it. For example, the derived 2360b57cec5SDimitry Andric // method might return a type that inherits form from the return 2370b57cec5SDimitry Andric // type of MD and has a prefix. 2380b57cec5SDimitry Andric // For now we just avoid devirtualizing these covariant cases. 2390b57cec5SDimitry Andric DevirtualizedMethod = nullptr; 2400b57cec5SDimitry Andric else if (getCXXRecord(Inner) == DevirtualizedClass) 2410b57cec5SDimitry Andric // If the class of the Inner expression is where the dynamic method 2420b57cec5SDimitry Andric // is defined, build the this pointer from it. 2430b57cec5SDimitry Andric Base = Inner; 2440b57cec5SDimitry Andric else if (getCXXRecord(Base) != DevirtualizedClass) { 2450b57cec5SDimitry Andric // If the method is defined in a class that is not the best dynamic 2460b57cec5SDimitry Andric // one or the one of the full expression, we would have to build 2470b57cec5SDimitry Andric // a derived-to-base cast to compute the correct this pointer, but 2480b57cec5SDimitry Andric // we don't have support for that yet, so do a virtual call. 2490b57cec5SDimitry Andric DevirtualizedMethod = nullptr; 2500b57cec5SDimitry Andric } 2510b57cec5SDimitry Andric } 2520b57cec5SDimitry Andric 253480093f4SDimitry Andric bool TrivialForCodegen = 254480093f4SDimitry Andric MD->isTrivial() || (MD->isDefaulted() && MD->getParent()->isUnion()); 255480093f4SDimitry Andric bool TrivialAssignment = 256480093f4SDimitry Andric TrivialForCodegen && 257480093f4SDimitry Andric (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) && 258480093f4SDimitry Andric !MD->getParent()->mayInsertExtraPadding(); 259480093f4SDimitry Andric 2600b57cec5SDimitry Andric // C++17 demands that we evaluate the RHS of a (possibly-compound) assignment 2610b57cec5SDimitry Andric // operator before the LHS. 2620b57cec5SDimitry Andric CallArgList RtlArgStorage; 2630b57cec5SDimitry Andric CallArgList *RtlArgs = nullptr; 264480093f4SDimitry Andric LValue TrivialAssignmentRHS; 2650b57cec5SDimitry Andric if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(CE)) { 2660b57cec5SDimitry Andric if (OCE->isAssignmentOp()) { 267480093f4SDimitry Andric if (TrivialAssignment) { 268480093f4SDimitry Andric TrivialAssignmentRHS = EmitLValue(CE->getArg(1)); 269480093f4SDimitry Andric } else { 2700b57cec5SDimitry Andric RtlArgs = &RtlArgStorage; 2710b57cec5SDimitry Andric EmitCallArgs(*RtlArgs, MD->getType()->castAs<FunctionProtoType>(), 2720b57cec5SDimitry Andric drop_begin(CE->arguments(), 1), CE->getDirectCallee(), 2730b57cec5SDimitry Andric /*ParamsToSkip*/0, EvaluationOrder::ForceRightToLeft); 2740b57cec5SDimitry Andric } 2750b57cec5SDimitry Andric } 276480093f4SDimitry Andric } 2770b57cec5SDimitry Andric 2780b57cec5SDimitry Andric LValue This; 2790b57cec5SDimitry Andric if (IsArrow) { 2800b57cec5SDimitry Andric LValueBaseInfo BaseInfo; 2810b57cec5SDimitry Andric TBAAAccessInfo TBAAInfo; 2820b57cec5SDimitry Andric Address ThisValue = EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo); 283*0fca6ea1SDimitry Andric This = MakeAddrLValue(ThisValue, Base->getType()->getPointeeType(), 284*0fca6ea1SDimitry Andric BaseInfo, TBAAInfo); 2850b57cec5SDimitry Andric } else { 2860b57cec5SDimitry Andric This = EmitLValue(Base); 2870b57cec5SDimitry Andric } 2880b57cec5SDimitry Andric 2890b57cec5SDimitry Andric if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) { 2900b57cec5SDimitry Andric // This is the MSVC p->Ctor::Ctor(...) extension. We assume that's 2910b57cec5SDimitry Andric // constructing a new complete object of type Ctor. 2920b57cec5SDimitry Andric assert(!RtlArgs); 2930b57cec5SDimitry Andric assert(ReturnValue.isNull() && "Constructor shouldn't have return value"); 2940b57cec5SDimitry Andric CallArgList Args; 2950b57cec5SDimitry Andric commonEmitCXXMemberOrOperatorCall( 2961ac55f4cSDimitry Andric *this, {Ctor, Ctor_Complete}, This.getPointer(*this), 2971ac55f4cSDimitry Andric /*ImplicitParam=*/nullptr, 2980b57cec5SDimitry Andric /*ImplicitParamTy=*/QualType(), CE, Args, nullptr); 2990b57cec5SDimitry Andric 3000b57cec5SDimitry Andric EmitCXXConstructorCall(Ctor, Ctor_Complete, /*ForVirtualBase=*/false, 301*0fca6ea1SDimitry Andric /*Delegating=*/false, This.getAddress(), Args, 3020b57cec5SDimitry Andric AggValueSlot::DoesNotOverlap, CE->getExprLoc(), 3030b57cec5SDimitry Andric /*NewPointerIsChecked=*/false); 3040b57cec5SDimitry Andric return RValue::get(nullptr); 3050b57cec5SDimitry Andric } 3060b57cec5SDimitry Andric 307480093f4SDimitry Andric if (TrivialForCodegen) { 308480093f4SDimitry Andric if (isa<CXXDestructorDecl>(MD)) 309480093f4SDimitry Andric return RValue::get(nullptr); 310480093f4SDimitry Andric 311480093f4SDimitry Andric if (TrivialAssignment) { 3120b57cec5SDimitry Andric // We don't like to generate the trivial copy/move assignment operator 3130b57cec5SDimitry Andric // when it isn't necessary; just produce the proper effect here. 314480093f4SDimitry Andric // It's important that we use the result of EmitLValue here rather than 315480093f4SDimitry Andric // emitting call arguments, in order to preserve TBAA information from 316480093f4SDimitry Andric // the RHS. 3170b57cec5SDimitry Andric LValue RHS = isa<CXXOperatorCallExpr>(CE) 318480093f4SDimitry Andric ? TrivialAssignmentRHS 3190b57cec5SDimitry Andric : EmitLValue(*CE->arg_begin()); 3200b57cec5SDimitry Andric EmitAggregateAssign(This, RHS, CE->getType()); 321480093f4SDimitry Andric return RValue::get(This.getPointer(*this)); 3220b57cec5SDimitry Andric } 323480093f4SDimitry Andric 324480093f4SDimitry Andric assert(MD->getParent()->mayInsertExtraPadding() && 325480093f4SDimitry Andric "unknown trivial member function"); 3260b57cec5SDimitry Andric } 3270b57cec5SDimitry Andric 3280b57cec5SDimitry Andric // Compute the function type we're calling. 3290b57cec5SDimitry Andric const CXXMethodDecl *CalleeDecl = 3300b57cec5SDimitry Andric DevirtualizedMethod ? DevirtualizedMethod : MD; 3310b57cec5SDimitry Andric const CGFunctionInfo *FInfo = nullptr; 3320b57cec5SDimitry Andric if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl)) 3330b57cec5SDimitry Andric FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration( 3340b57cec5SDimitry Andric GlobalDecl(Dtor, Dtor_Complete)); 3350b57cec5SDimitry Andric else 3360b57cec5SDimitry Andric FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl); 3370b57cec5SDimitry Andric 3380b57cec5SDimitry Andric llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo); 3390b57cec5SDimitry Andric 3400b57cec5SDimitry Andric // C++11 [class.mfct.non-static]p2: 3410b57cec5SDimitry Andric // If a non-static member function of a class X is called for an object that 3420b57cec5SDimitry Andric // is not of type X, or of a type derived from X, the behavior is undefined. 3430b57cec5SDimitry Andric SourceLocation CallLoc; 3440b57cec5SDimitry Andric ASTContext &C = getContext(); 3450b57cec5SDimitry Andric if (CE) 3460b57cec5SDimitry Andric CallLoc = CE->getExprLoc(); 3470b57cec5SDimitry Andric 3480b57cec5SDimitry Andric SanitizerSet SkippedChecks; 3490b57cec5SDimitry Andric if (const auto *CMCE = dyn_cast<CXXMemberCallExpr>(CE)) { 3500b57cec5SDimitry Andric auto *IOA = CMCE->getImplicitObjectArgument(); 3510b57cec5SDimitry Andric bool IsImplicitObjectCXXThis = IsWrappedCXXThis(IOA); 3520b57cec5SDimitry Andric if (IsImplicitObjectCXXThis) 3530b57cec5SDimitry Andric SkippedChecks.set(SanitizerKind::Alignment, true); 3540b57cec5SDimitry Andric if (IsImplicitObjectCXXThis || isa<DeclRefExpr>(IOA)) 3550b57cec5SDimitry Andric SkippedChecks.set(SanitizerKind::Null, true); 3560b57cec5SDimitry Andric } 357*0fca6ea1SDimitry Andric 358*0fca6ea1SDimitry Andric if (sanitizePerformTypeCheck()) 359480093f4SDimitry Andric EmitTypeCheck(CodeGenFunction::TCK_MemberCall, CallLoc, 360*0fca6ea1SDimitry Andric This.emitRawPointer(*this), 3610b57cec5SDimitry Andric C.getRecordType(CalleeDecl->getParent()), 3620b57cec5SDimitry Andric /*Alignment=*/CharUnits::Zero(), SkippedChecks); 3630b57cec5SDimitry Andric 3640b57cec5SDimitry Andric // C++ [class.virtual]p12: 3650b57cec5SDimitry Andric // Explicit qualification with the scope operator (5.1) suppresses the 3660b57cec5SDimitry Andric // virtual call mechanism. 3670b57cec5SDimitry Andric // 3680b57cec5SDimitry Andric // We also don't emit a virtual call if the base expression has a record type 3690b57cec5SDimitry Andric // because then we know what the type is. 3700b57cec5SDimitry Andric bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod; 3710b57cec5SDimitry Andric 3720b57cec5SDimitry Andric if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl)) { 3730b57cec5SDimitry Andric assert(CE->arg_begin() == CE->arg_end() && 3740b57cec5SDimitry Andric "Destructor shouldn't have explicit parameters"); 3750b57cec5SDimitry Andric assert(ReturnValue.isNull() && "Destructor shouldn't have return value"); 3760b57cec5SDimitry Andric if (UseVirtualCall) { 377480093f4SDimitry Andric CGM.getCXXABI().EmitVirtualDestructorCall(*this, Dtor, Dtor_Complete, 378*0fca6ea1SDimitry Andric This.getAddress(), 3790b57cec5SDimitry Andric cast<CXXMemberCallExpr>(CE)); 3800b57cec5SDimitry Andric } else { 3810b57cec5SDimitry Andric GlobalDecl GD(Dtor, Dtor_Complete); 3820b57cec5SDimitry Andric CGCallee Callee; 3830b57cec5SDimitry Andric if (getLangOpts().AppleKext && Dtor->isVirtual() && HasQualifier) 3840b57cec5SDimitry Andric Callee = BuildAppleKextVirtualCall(Dtor, Qualifier, Ty); 3850b57cec5SDimitry Andric else if (!DevirtualizedMethod) 3860b57cec5SDimitry Andric Callee = 3870b57cec5SDimitry Andric CGCallee::forDirect(CGM.getAddrOfCXXStructor(GD, FInfo, Ty), GD); 3880b57cec5SDimitry Andric else { 3890b57cec5SDimitry Andric Callee = CGCallee::forDirect(CGM.GetAddrOfFunction(GD, Ty), GD); 3900b57cec5SDimitry Andric } 3910b57cec5SDimitry Andric 3920b57cec5SDimitry Andric QualType ThisTy = 3930b57cec5SDimitry Andric IsArrow ? Base->getType()->getPointeeType() : Base->getType(); 394480093f4SDimitry Andric EmitCXXDestructorCall(GD, Callee, This.getPointer(*this), ThisTy, 3950b57cec5SDimitry Andric /*ImplicitParam=*/nullptr, 396c3ca3130SDimitry Andric /*ImplicitParamTy=*/QualType(), CE); 3970b57cec5SDimitry Andric } 3980b57cec5SDimitry Andric return RValue::get(nullptr); 3990b57cec5SDimitry Andric } 4000b57cec5SDimitry Andric 4010b57cec5SDimitry Andric // FIXME: Uses of 'MD' past this point need to be audited. We may need to use 4020b57cec5SDimitry Andric // 'CalleeDecl' instead. 4030b57cec5SDimitry Andric 4040b57cec5SDimitry Andric CGCallee Callee; 4050b57cec5SDimitry Andric if (UseVirtualCall) { 406*0fca6ea1SDimitry Andric Callee = CGCallee::forVirtual(CE, MD, This.getAddress(), Ty); 4070b57cec5SDimitry Andric } else { 4080b57cec5SDimitry Andric if (SanOpts.has(SanitizerKind::CFINVCall) && 4090b57cec5SDimitry Andric MD->getParent()->isDynamicClass()) { 4100b57cec5SDimitry Andric llvm::Value *VTable; 4110b57cec5SDimitry Andric const CXXRecordDecl *RD; 412480093f4SDimitry Andric std::tie(VTable, RD) = CGM.getCXXABI().LoadVTablePtr( 413*0fca6ea1SDimitry Andric *this, This.getAddress(), CalleeDecl->getParent()); 4140b57cec5SDimitry Andric EmitVTablePtrCheckForCall(RD, VTable, CFITCK_NVCall, CE->getBeginLoc()); 4150b57cec5SDimitry Andric } 4160b57cec5SDimitry Andric 4170b57cec5SDimitry Andric if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier) 4180b57cec5SDimitry Andric Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty); 4190b57cec5SDimitry Andric else if (!DevirtualizedMethod) 4200b57cec5SDimitry Andric Callee = 4210b57cec5SDimitry Andric CGCallee::forDirect(CGM.GetAddrOfFunction(MD, Ty), GlobalDecl(MD)); 4220b57cec5SDimitry Andric else { 4230b57cec5SDimitry Andric Callee = 4240b57cec5SDimitry Andric CGCallee::forDirect(CGM.GetAddrOfFunction(DevirtualizedMethod, Ty), 4250b57cec5SDimitry Andric GlobalDecl(DevirtualizedMethod)); 4260b57cec5SDimitry Andric } 4270b57cec5SDimitry Andric } 4280b57cec5SDimitry Andric 4290b57cec5SDimitry Andric if (MD->isVirtual()) { 4300b57cec5SDimitry Andric Address NewThisAddr = 4310b57cec5SDimitry Andric CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall( 432*0fca6ea1SDimitry Andric *this, CalleeDecl, This.getAddress(), UseVirtualCall); 4330b57cec5SDimitry Andric This.setAddress(NewThisAddr); 4340b57cec5SDimitry Andric } 4350b57cec5SDimitry Andric 4360b57cec5SDimitry Andric return EmitCXXMemberOrOperatorCall( 437480093f4SDimitry Andric CalleeDecl, Callee, ReturnValue, This.getPointer(*this), 4380b57cec5SDimitry Andric /*ImplicitParam=*/nullptr, QualType(), CE, RtlArgs); 4390b57cec5SDimitry Andric } 4400b57cec5SDimitry Andric 4410b57cec5SDimitry Andric RValue 4420b57cec5SDimitry Andric CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 4430b57cec5SDimitry Andric ReturnValueSlot ReturnValue) { 4440b57cec5SDimitry Andric const BinaryOperator *BO = 4450b57cec5SDimitry Andric cast<BinaryOperator>(E->getCallee()->IgnoreParens()); 4460b57cec5SDimitry Andric const Expr *BaseExpr = BO->getLHS(); 4470b57cec5SDimitry Andric const Expr *MemFnExpr = BO->getRHS(); 4480b57cec5SDimitry Andric 449a7dea167SDimitry Andric const auto *MPT = MemFnExpr->getType()->castAs<MemberPointerType>(); 450a7dea167SDimitry Andric const auto *FPT = MPT->getPointeeType()->castAs<FunctionProtoType>(); 451a7dea167SDimitry Andric const auto *RD = 452a7dea167SDimitry Andric cast<CXXRecordDecl>(MPT->getClass()->castAs<RecordType>()->getDecl()); 4530b57cec5SDimitry Andric 4540b57cec5SDimitry Andric // Emit the 'this' pointer. 4550b57cec5SDimitry Andric Address This = Address::invalid(); 4560b57cec5SDimitry Andric if (BO->getOpcode() == BO_PtrMemI) 45706c3fb27SDimitry Andric This = EmitPointerWithAlignment(BaseExpr, nullptr, nullptr, KnownNonNull); 4580b57cec5SDimitry Andric else 459*0fca6ea1SDimitry Andric This = EmitLValue(BaseExpr, KnownNonNull).getAddress(); 4600b57cec5SDimitry Andric 461*0fca6ea1SDimitry Andric EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This.emitRawPointer(*this), 4620b57cec5SDimitry Andric QualType(MPT->getClass(), 0)); 4630b57cec5SDimitry Andric 4640b57cec5SDimitry Andric // Get the member function pointer. 4650b57cec5SDimitry Andric llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr); 4660b57cec5SDimitry Andric 4670b57cec5SDimitry Andric // Ask the ABI to load the callee. Note that This is modified. 4680b57cec5SDimitry Andric llvm::Value *ThisPtrForCall = nullptr; 4690b57cec5SDimitry Andric CGCallee Callee = 4700b57cec5SDimitry Andric CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, BO, This, 4710b57cec5SDimitry Andric ThisPtrForCall, MemFnPtr, MPT); 4720b57cec5SDimitry Andric 4730b57cec5SDimitry Andric CallArgList Args; 4740b57cec5SDimitry Andric 4750b57cec5SDimitry Andric QualType ThisType = 4760b57cec5SDimitry Andric getContext().getPointerType(getContext().getTagDeclType(RD)); 4770b57cec5SDimitry Andric 4780b57cec5SDimitry Andric // Push the this ptr. 4790b57cec5SDimitry Andric Args.add(RValue::get(ThisPtrForCall), ThisType); 4800b57cec5SDimitry Andric 4810b57cec5SDimitry Andric RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, 1); 4820b57cec5SDimitry Andric 4830b57cec5SDimitry Andric // And the rest of the call args 4840b57cec5SDimitry Andric EmitCallArgs(Args, FPT, E->arguments()); 4850b57cec5SDimitry Andric return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required, 4860b57cec5SDimitry Andric /*PrefixSize=*/0), 487fe6060f1SDimitry Andric Callee, ReturnValue, Args, nullptr, E == MustTailCall, 488fe6060f1SDimitry Andric E->getExprLoc()); 4890b57cec5SDimitry Andric } 4900b57cec5SDimitry Andric 4910b57cec5SDimitry Andric RValue 4920b57cec5SDimitry Andric CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 4930b57cec5SDimitry Andric const CXXMethodDecl *MD, 4940b57cec5SDimitry Andric ReturnValueSlot ReturnValue) { 4955f757f3fSDimitry Andric assert(MD->isImplicitObjectMemberFunction() && 4960b57cec5SDimitry Andric "Trying to emit a member call expr on a static method!"); 4970b57cec5SDimitry Andric return EmitCXXMemberOrOperatorMemberCallExpr( 4980b57cec5SDimitry Andric E, MD, ReturnValue, /*HasQualifier=*/false, /*Qualifier=*/nullptr, 4990b57cec5SDimitry Andric /*IsArrow=*/false, E->getArg(0)); 5000b57cec5SDimitry Andric } 5010b57cec5SDimitry Andric 5020b57cec5SDimitry Andric RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 5030b57cec5SDimitry Andric ReturnValueSlot ReturnValue) { 5040b57cec5SDimitry Andric return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue); 5050b57cec5SDimitry Andric } 5060b57cec5SDimitry Andric 5070b57cec5SDimitry Andric static void EmitNullBaseClassInitialization(CodeGenFunction &CGF, 5080b57cec5SDimitry Andric Address DestPtr, 5090b57cec5SDimitry Andric const CXXRecordDecl *Base) { 5100b57cec5SDimitry Andric if (Base->isEmpty()) 5110b57cec5SDimitry Andric return; 5120b57cec5SDimitry Andric 51306c3fb27SDimitry Andric DestPtr = DestPtr.withElementType(CGF.Int8Ty); 5140b57cec5SDimitry Andric 5150b57cec5SDimitry Andric const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base); 5160b57cec5SDimitry Andric CharUnits NVSize = Layout.getNonVirtualSize(); 5170b57cec5SDimitry Andric 5180b57cec5SDimitry Andric // We cannot simply zero-initialize the entire base sub-object if vbptrs are 5190b57cec5SDimitry Andric // present, they are initialized by the most derived class before calling the 5200b57cec5SDimitry Andric // constructor. 5210b57cec5SDimitry Andric SmallVector<std::pair<CharUnits, CharUnits>, 1> Stores; 5220b57cec5SDimitry Andric Stores.emplace_back(CharUnits::Zero(), NVSize); 5230b57cec5SDimitry Andric 5240b57cec5SDimitry Andric // Each store is split by the existence of a vbptr. 5250b57cec5SDimitry Andric CharUnits VBPtrWidth = CGF.getPointerSize(); 5260b57cec5SDimitry Andric std::vector<CharUnits> VBPtrOffsets = 5270b57cec5SDimitry Andric CGF.CGM.getCXXABI().getVBPtrOffsets(Base); 5280b57cec5SDimitry Andric for (CharUnits VBPtrOffset : VBPtrOffsets) { 5290b57cec5SDimitry Andric // Stop before we hit any virtual base pointers located in virtual bases. 5300b57cec5SDimitry Andric if (VBPtrOffset >= NVSize) 5310b57cec5SDimitry Andric break; 5320b57cec5SDimitry Andric std::pair<CharUnits, CharUnits> LastStore = Stores.pop_back_val(); 5330b57cec5SDimitry Andric CharUnits LastStoreOffset = LastStore.first; 5340b57cec5SDimitry Andric CharUnits LastStoreSize = LastStore.second; 5350b57cec5SDimitry Andric 5360b57cec5SDimitry Andric CharUnits SplitBeforeOffset = LastStoreOffset; 5370b57cec5SDimitry Andric CharUnits SplitBeforeSize = VBPtrOffset - SplitBeforeOffset; 5380b57cec5SDimitry Andric assert(!SplitBeforeSize.isNegative() && "negative store size!"); 5390b57cec5SDimitry Andric if (!SplitBeforeSize.isZero()) 5400b57cec5SDimitry Andric Stores.emplace_back(SplitBeforeOffset, SplitBeforeSize); 5410b57cec5SDimitry Andric 5420b57cec5SDimitry Andric CharUnits SplitAfterOffset = VBPtrOffset + VBPtrWidth; 5430b57cec5SDimitry Andric CharUnits SplitAfterSize = LastStoreSize - SplitAfterOffset; 5440b57cec5SDimitry Andric assert(!SplitAfterSize.isNegative() && "negative store size!"); 5450b57cec5SDimitry Andric if (!SplitAfterSize.isZero()) 5460b57cec5SDimitry Andric Stores.emplace_back(SplitAfterOffset, SplitAfterSize); 5470b57cec5SDimitry Andric } 5480b57cec5SDimitry Andric 5490b57cec5SDimitry Andric // If the type contains a pointer to data member we can't memset it to zero. 5500b57cec5SDimitry Andric // Instead, create a null constant and copy it to the destination. 5510b57cec5SDimitry Andric // TODO: there are other patterns besides zero that we can usefully memset, 5520b57cec5SDimitry Andric // like -1, which happens to be the pattern used by member-pointers. 5530b57cec5SDimitry Andric // TODO: isZeroInitializable can be over-conservative in the case where a 5540b57cec5SDimitry Andric // virtual base contains a member pointer. 5550b57cec5SDimitry Andric llvm::Constant *NullConstantForBase = CGF.CGM.EmitNullConstantForBase(Base); 5560b57cec5SDimitry Andric if (!NullConstantForBase->isNullValue()) { 5570b57cec5SDimitry Andric llvm::GlobalVariable *NullVariable = new llvm::GlobalVariable( 5580b57cec5SDimitry Andric CGF.CGM.getModule(), NullConstantForBase->getType(), 5590b57cec5SDimitry Andric /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, 5600b57cec5SDimitry Andric NullConstantForBase, Twine()); 5610b57cec5SDimitry Andric 56281ad6265SDimitry Andric CharUnits Align = 56381ad6265SDimitry Andric std::max(Layout.getNonVirtualAlignment(), DestPtr.getAlignment()); 564a7dea167SDimitry Andric NullVariable->setAlignment(Align.getAsAlign()); 5650b57cec5SDimitry Andric 56606c3fb27SDimitry Andric Address SrcPtr(NullVariable, CGF.Int8Ty, Align); 5670b57cec5SDimitry Andric 5680b57cec5SDimitry Andric // Get and call the appropriate llvm.memcpy overload. 5690b57cec5SDimitry Andric for (std::pair<CharUnits, CharUnits> Store : Stores) { 5700b57cec5SDimitry Andric CharUnits StoreOffset = Store.first; 5710b57cec5SDimitry Andric CharUnits StoreSize = Store.second; 5720b57cec5SDimitry Andric llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize); 5730b57cec5SDimitry Andric CGF.Builder.CreateMemCpy( 5740b57cec5SDimitry Andric CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset), 5750b57cec5SDimitry Andric CGF.Builder.CreateConstInBoundsByteGEP(SrcPtr, StoreOffset), 5760b57cec5SDimitry Andric StoreSizeVal); 5770b57cec5SDimitry Andric } 5780b57cec5SDimitry Andric 5790b57cec5SDimitry Andric // Otherwise, just memset the whole thing to zero. This is legal 5800b57cec5SDimitry Andric // because in LLVM, all default initializers (other than the ones we just 5810b57cec5SDimitry Andric // handled above) are guaranteed to have a bit pattern of all zeros. 5820b57cec5SDimitry Andric } else { 5830b57cec5SDimitry Andric for (std::pair<CharUnits, CharUnits> Store : Stores) { 5840b57cec5SDimitry Andric CharUnits StoreOffset = Store.first; 5850b57cec5SDimitry Andric CharUnits StoreSize = Store.second; 5860b57cec5SDimitry Andric llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize); 5870b57cec5SDimitry Andric CGF.Builder.CreateMemSet( 5880b57cec5SDimitry Andric CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset), 5890b57cec5SDimitry Andric CGF.Builder.getInt8(0), StoreSizeVal); 5900b57cec5SDimitry Andric } 5910b57cec5SDimitry Andric } 5920b57cec5SDimitry Andric } 5930b57cec5SDimitry Andric 5940b57cec5SDimitry Andric void 5950b57cec5SDimitry Andric CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E, 5960b57cec5SDimitry Andric AggValueSlot Dest) { 5970b57cec5SDimitry Andric assert(!Dest.isIgnored() && "Must have a destination!"); 5980b57cec5SDimitry Andric const CXXConstructorDecl *CD = E->getConstructor(); 5990b57cec5SDimitry Andric 6000b57cec5SDimitry Andric // If we require zero initialization before (or instead of) calling the 6010b57cec5SDimitry Andric // constructor, as can be the case with a non-user-provided default 6020b57cec5SDimitry Andric // constructor, emit the zero initialization now, unless destination is 6030b57cec5SDimitry Andric // already zeroed. 6040b57cec5SDimitry Andric if (E->requiresZeroInitialization() && !Dest.isZeroed()) { 6050b57cec5SDimitry Andric switch (E->getConstructionKind()) { 6065f757f3fSDimitry Andric case CXXConstructionKind::Delegating: 6075f757f3fSDimitry Andric case CXXConstructionKind::Complete: 6080b57cec5SDimitry Andric EmitNullInitialization(Dest.getAddress(), E->getType()); 6090b57cec5SDimitry Andric break; 6105f757f3fSDimitry Andric case CXXConstructionKind::VirtualBase: 6115f757f3fSDimitry Andric case CXXConstructionKind::NonVirtualBase: 6120b57cec5SDimitry Andric EmitNullBaseClassInitialization(*this, Dest.getAddress(), 6130b57cec5SDimitry Andric CD->getParent()); 6140b57cec5SDimitry Andric break; 6150b57cec5SDimitry Andric } 6160b57cec5SDimitry Andric } 6170b57cec5SDimitry Andric 6180b57cec5SDimitry Andric // If this is a call to a trivial default constructor, do nothing. 6190b57cec5SDimitry Andric if (CD->isTrivial() && CD->isDefaultConstructor()) 6200b57cec5SDimitry Andric return; 6210b57cec5SDimitry Andric 6220b57cec5SDimitry Andric // Elide the constructor if we're constructing from a temporary. 6230b57cec5SDimitry Andric if (getLangOpts().ElideConstructors && E->isElidable()) { 62428a41182SDimitry Andric // FIXME: This only handles the simplest case, where the source object 62528a41182SDimitry Andric // is passed directly as the first argument to the constructor. 62628a41182SDimitry Andric // This should also handle stepping though implicit casts and 62728a41182SDimitry Andric // conversion sequences which involve two steps, with a 62828a41182SDimitry Andric // conversion operator followed by a converting constructor. 62928a41182SDimitry Andric const Expr *SrcObj = E->getArg(0); 63028a41182SDimitry Andric assert(SrcObj->isTemporaryObject(getContext(), CD->getParent())); 63128a41182SDimitry Andric assert( 63228a41182SDimitry Andric getContext().hasSameUnqualifiedType(E->getType(), SrcObj->getType())); 63328a41182SDimitry Andric EmitAggExpr(SrcObj, Dest); 6340b57cec5SDimitry Andric return; 6350b57cec5SDimitry Andric } 6360b57cec5SDimitry Andric 6370b57cec5SDimitry Andric if (const ArrayType *arrayType 6380b57cec5SDimitry Andric = getContext().getAsArrayType(E->getType())) { 6390b57cec5SDimitry Andric EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddress(), E, 6400b57cec5SDimitry Andric Dest.isSanitizerChecked()); 6410b57cec5SDimitry Andric } else { 6420b57cec5SDimitry Andric CXXCtorType Type = Ctor_Complete; 6430b57cec5SDimitry Andric bool ForVirtualBase = false; 6440b57cec5SDimitry Andric bool Delegating = false; 6450b57cec5SDimitry Andric 6460b57cec5SDimitry Andric switch (E->getConstructionKind()) { 6475f757f3fSDimitry Andric case CXXConstructionKind::Delegating: 6480b57cec5SDimitry Andric // We should be emitting a constructor; GlobalDecl will assert this 6490b57cec5SDimitry Andric Type = CurGD.getCtorType(); 6500b57cec5SDimitry Andric Delegating = true; 6510b57cec5SDimitry Andric break; 6520b57cec5SDimitry Andric 6535f757f3fSDimitry Andric case CXXConstructionKind::Complete: 6540b57cec5SDimitry Andric Type = Ctor_Complete; 6550b57cec5SDimitry Andric break; 6560b57cec5SDimitry Andric 6575f757f3fSDimitry Andric case CXXConstructionKind::VirtualBase: 6580b57cec5SDimitry Andric ForVirtualBase = true; 659bdd1243dSDimitry Andric [[fallthrough]]; 6600b57cec5SDimitry Andric 6615f757f3fSDimitry Andric case CXXConstructionKind::NonVirtualBase: 6620b57cec5SDimitry Andric Type = Ctor_Base; 6630b57cec5SDimitry Andric } 6640b57cec5SDimitry Andric 6650b57cec5SDimitry Andric // Call the constructor. 6660b57cec5SDimitry Andric EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating, Dest, E); 6670b57cec5SDimitry Andric } 6680b57cec5SDimitry Andric } 6690b57cec5SDimitry Andric 6700b57cec5SDimitry Andric void CodeGenFunction::EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, 6710b57cec5SDimitry Andric const Expr *Exp) { 6720b57cec5SDimitry Andric if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp)) 6730b57cec5SDimitry Andric Exp = E->getSubExpr(); 6740b57cec5SDimitry Andric assert(isa<CXXConstructExpr>(Exp) && 6750b57cec5SDimitry Andric "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr"); 6760b57cec5SDimitry Andric const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp); 6770b57cec5SDimitry Andric const CXXConstructorDecl *CD = E->getConstructor(); 6780b57cec5SDimitry Andric RunCleanupsScope Scope(*this); 6790b57cec5SDimitry Andric 6800b57cec5SDimitry Andric // If we require zero initialization before (or instead of) calling the 6810b57cec5SDimitry Andric // constructor, as can be the case with a non-user-provided default 6820b57cec5SDimitry Andric // constructor, emit the zero initialization now. 6830b57cec5SDimitry Andric // FIXME. Do I still need this for a copy ctor synthesis? 6840b57cec5SDimitry Andric if (E->requiresZeroInitialization()) 6850b57cec5SDimitry Andric EmitNullInitialization(Dest, E->getType()); 6860b57cec5SDimitry Andric 6870b57cec5SDimitry Andric assert(!getContext().getAsConstantArrayType(E->getType()) 6880b57cec5SDimitry Andric && "EmitSynthesizedCXXCopyCtor - Copied-in Array"); 6890b57cec5SDimitry Andric EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E); 6900b57cec5SDimitry Andric } 6910b57cec5SDimitry Andric 6920b57cec5SDimitry Andric static CharUnits CalculateCookiePadding(CodeGenFunction &CGF, 6930b57cec5SDimitry Andric const CXXNewExpr *E) { 6940b57cec5SDimitry Andric if (!E->isArray()) 6950b57cec5SDimitry Andric return CharUnits::Zero(); 6960b57cec5SDimitry Andric 6970b57cec5SDimitry Andric // No cookie is required if the operator new[] being used is the 6980b57cec5SDimitry Andric // reserved placement operator new[]. 6990b57cec5SDimitry Andric if (E->getOperatorNew()->isReservedGlobalPlacementOperator()) 7000b57cec5SDimitry Andric return CharUnits::Zero(); 7010b57cec5SDimitry Andric 7020b57cec5SDimitry Andric return CGF.CGM.getCXXABI().GetArrayCookieSize(E); 7030b57cec5SDimitry Andric } 7040b57cec5SDimitry Andric 7050b57cec5SDimitry Andric static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF, 7060b57cec5SDimitry Andric const CXXNewExpr *e, 7070b57cec5SDimitry Andric unsigned minElements, 7080b57cec5SDimitry Andric llvm::Value *&numElements, 7090b57cec5SDimitry Andric llvm::Value *&sizeWithoutCookie) { 7100b57cec5SDimitry Andric QualType type = e->getAllocatedType(); 7110b57cec5SDimitry Andric 7120b57cec5SDimitry Andric if (!e->isArray()) { 7130b57cec5SDimitry Andric CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 7140b57cec5SDimitry Andric sizeWithoutCookie 7150b57cec5SDimitry Andric = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity()); 7160b57cec5SDimitry Andric return sizeWithoutCookie; 7170b57cec5SDimitry Andric } 7180b57cec5SDimitry Andric 7190b57cec5SDimitry Andric // The width of size_t. 7200b57cec5SDimitry Andric unsigned sizeWidth = CGF.SizeTy->getBitWidth(); 7210b57cec5SDimitry Andric 7220b57cec5SDimitry Andric // Figure out the cookie size. 7230b57cec5SDimitry Andric llvm::APInt cookieSize(sizeWidth, 7240b57cec5SDimitry Andric CalculateCookiePadding(CGF, e).getQuantity()); 7250b57cec5SDimitry Andric 7260b57cec5SDimitry Andric // Emit the array size expression. 7270b57cec5SDimitry Andric // We multiply the size of all dimensions for NumElements. 7280b57cec5SDimitry Andric // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6. 7290b57cec5SDimitry Andric numElements = 7300b57cec5SDimitry Andric ConstantEmitter(CGF).tryEmitAbstract(*e->getArraySize(), e->getType()); 7310b57cec5SDimitry Andric if (!numElements) 7320b57cec5SDimitry Andric numElements = CGF.EmitScalarExpr(*e->getArraySize()); 7330b57cec5SDimitry Andric assert(isa<llvm::IntegerType>(numElements->getType())); 7340b57cec5SDimitry Andric 7350b57cec5SDimitry Andric // The number of elements can be have an arbitrary integer type; 7360b57cec5SDimitry Andric // essentially, we need to multiply it by a constant factor, add a 7370b57cec5SDimitry Andric // cookie size, and verify that the result is representable as a 7380b57cec5SDimitry Andric // size_t. That's just a gloss, though, and it's wrong in one 7390b57cec5SDimitry Andric // important way: if the count is negative, it's an error even if 7400b57cec5SDimitry Andric // the cookie size would bring the total size >= 0. 7410b57cec5SDimitry Andric bool isSigned 7420b57cec5SDimitry Andric = (*e->getArraySize())->getType()->isSignedIntegerOrEnumerationType(); 7430b57cec5SDimitry Andric llvm::IntegerType *numElementsType 7440b57cec5SDimitry Andric = cast<llvm::IntegerType>(numElements->getType()); 7450b57cec5SDimitry Andric unsigned numElementsWidth = numElementsType->getBitWidth(); 7460b57cec5SDimitry Andric 7470b57cec5SDimitry Andric // Compute the constant factor. 7480b57cec5SDimitry Andric llvm::APInt arraySizeMultiplier(sizeWidth, 1); 7490b57cec5SDimitry Andric while (const ConstantArrayType *CAT 7500b57cec5SDimitry Andric = CGF.getContext().getAsConstantArrayType(type)) { 7510b57cec5SDimitry Andric type = CAT->getElementType(); 7520b57cec5SDimitry Andric arraySizeMultiplier *= CAT->getSize(); 7530b57cec5SDimitry Andric } 7540b57cec5SDimitry Andric 7550b57cec5SDimitry Andric CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 7560b57cec5SDimitry Andric llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity()); 7570b57cec5SDimitry Andric typeSizeMultiplier *= arraySizeMultiplier; 7580b57cec5SDimitry Andric 7590b57cec5SDimitry Andric // This will be a size_t. 7600b57cec5SDimitry Andric llvm::Value *size; 7610b57cec5SDimitry Andric 7620b57cec5SDimitry Andric // If someone is doing 'new int[42]' there is no need to do a dynamic check. 7630b57cec5SDimitry Andric // Don't bloat the -O0 code. 7640b57cec5SDimitry Andric if (llvm::ConstantInt *numElementsC = 7650b57cec5SDimitry Andric dyn_cast<llvm::ConstantInt>(numElements)) { 7660b57cec5SDimitry Andric const llvm::APInt &count = numElementsC->getValue(); 7670b57cec5SDimitry Andric 7680b57cec5SDimitry Andric bool hasAnyOverflow = false; 7690b57cec5SDimitry Andric 7700b57cec5SDimitry Andric // If 'count' was a negative number, it's an overflow. 7710b57cec5SDimitry Andric if (isSigned && count.isNegative()) 7720b57cec5SDimitry Andric hasAnyOverflow = true; 7730b57cec5SDimitry Andric 7740b57cec5SDimitry Andric // We want to do all this arithmetic in size_t. If numElements is 7750b57cec5SDimitry Andric // wider than that, check whether it's already too big, and if so, 7760b57cec5SDimitry Andric // overflow. 7770b57cec5SDimitry Andric else if (numElementsWidth > sizeWidth && 77806c3fb27SDimitry Andric numElementsWidth - sizeWidth > count.countl_zero()) 7790b57cec5SDimitry Andric hasAnyOverflow = true; 7800b57cec5SDimitry Andric 7810b57cec5SDimitry Andric // Okay, compute a count at the right width. 7820b57cec5SDimitry Andric llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth); 7830b57cec5SDimitry Andric 7840b57cec5SDimitry Andric // If there is a brace-initializer, we cannot allocate fewer elements than 7850b57cec5SDimitry Andric // there are initializers. If we do, that's treated like an overflow. 7860b57cec5SDimitry Andric if (adjustedCount.ult(minElements)) 7870b57cec5SDimitry Andric hasAnyOverflow = true; 7880b57cec5SDimitry Andric 7890b57cec5SDimitry Andric // Scale numElements by that. This might overflow, but we don't 7900b57cec5SDimitry Andric // care because it only overflows if allocationSize does, too, and 7910b57cec5SDimitry Andric // if that overflows then we shouldn't use this. 7920b57cec5SDimitry Andric numElements = llvm::ConstantInt::get(CGF.SizeTy, 7930b57cec5SDimitry Andric adjustedCount * arraySizeMultiplier); 7940b57cec5SDimitry Andric 7950b57cec5SDimitry Andric // Compute the size before cookie, and track whether it overflowed. 7960b57cec5SDimitry Andric bool overflow; 7970b57cec5SDimitry Andric llvm::APInt allocationSize 7980b57cec5SDimitry Andric = adjustedCount.umul_ov(typeSizeMultiplier, overflow); 7990b57cec5SDimitry Andric hasAnyOverflow |= overflow; 8000b57cec5SDimitry Andric 8010b57cec5SDimitry Andric // Add in the cookie, and check whether it's overflowed. 8020b57cec5SDimitry Andric if (cookieSize != 0) { 8030b57cec5SDimitry Andric // Save the current size without a cookie. This shouldn't be 8040b57cec5SDimitry Andric // used if there was overflow. 8050b57cec5SDimitry Andric sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 8060b57cec5SDimitry Andric 8070b57cec5SDimitry Andric allocationSize = allocationSize.uadd_ov(cookieSize, overflow); 8080b57cec5SDimitry Andric hasAnyOverflow |= overflow; 8090b57cec5SDimitry Andric } 8100b57cec5SDimitry Andric 8110b57cec5SDimitry Andric // On overflow, produce a -1 so operator new will fail. 8120b57cec5SDimitry Andric if (hasAnyOverflow) { 8130b57cec5SDimitry Andric size = llvm::Constant::getAllOnesValue(CGF.SizeTy); 8140b57cec5SDimitry Andric } else { 8150b57cec5SDimitry Andric size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 8160b57cec5SDimitry Andric } 8170b57cec5SDimitry Andric 8180b57cec5SDimitry Andric // Otherwise, we might need to use the overflow intrinsics. 8190b57cec5SDimitry Andric } else { 8200b57cec5SDimitry Andric // There are up to five conditions we need to test for: 8210b57cec5SDimitry Andric // 1) if isSigned, we need to check whether numElements is negative; 8220b57cec5SDimitry Andric // 2) if numElementsWidth > sizeWidth, we need to check whether 8230b57cec5SDimitry Andric // numElements is larger than something representable in size_t; 8240b57cec5SDimitry Andric // 3) if minElements > 0, we need to check whether numElements is smaller 8250b57cec5SDimitry Andric // than that. 8260b57cec5SDimitry Andric // 4) we need to compute 8270b57cec5SDimitry Andric // sizeWithoutCookie := numElements * typeSizeMultiplier 8280b57cec5SDimitry Andric // and check whether it overflows; and 8290b57cec5SDimitry Andric // 5) if we need a cookie, we need to compute 8300b57cec5SDimitry Andric // size := sizeWithoutCookie + cookieSize 8310b57cec5SDimitry Andric // and check whether it overflows. 8320b57cec5SDimitry Andric 8330b57cec5SDimitry Andric llvm::Value *hasOverflow = nullptr; 8340b57cec5SDimitry Andric 8350b57cec5SDimitry Andric // If numElementsWidth > sizeWidth, then one way or another, we're 8360b57cec5SDimitry Andric // going to have to do a comparison for (2), and this happens to 8370b57cec5SDimitry Andric // take care of (1), too. 8380b57cec5SDimitry Andric if (numElementsWidth > sizeWidth) { 83906c3fb27SDimitry Andric llvm::APInt threshold = 84006c3fb27SDimitry Andric llvm::APInt::getOneBitSet(numElementsWidth, sizeWidth); 8410b57cec5SDimitry Andric 8420b57cec5SDimitry Andric llvm::Value *thresholdV 8430b57cec5SDimitry Andric = llvm::ConstantInt::get(numElementsType, threshold); 8440b57cec5SDimitry Andric 8450b57cec5SDimitry Andric hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV); 8460b57cec5SDimitry Andric numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy); 8470b57cec5SDimitry Andric 8480b57cec5SDimitry Andric // Otherwise, if we're signed, we want to sext up to size_t. 8490b57cec5SDimitry Andric } else if (isSigned) { 8500b57cec5SDimitry Andric if (numElementsWidth < sizeWidth) 8510b57cec5SDimitry Andric numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy); 8520b57cec5SDimitry Andric 8530b57cec5SDimitry Andric // If there's a non-1 type size multiplier, then we can do the 8540b57cec5SDimitry Andric // signedness check at the same time as we do the multiply 8550b57cec5SDimitry Andric // because a negative number times anything will cause an 8560b57cec5SDimitry Andric // unsigned overflow. Otherwise, we have to do it here. But at least 8570b57cec5SDimitry Andric // in this case, we can subsume the >= minElements check. 8580b57cec5SDimitry Andric if (typeSizeMultiplier == 1) 8590b57cec5SDimitry Andric hasOverflow = CGF.Builder.CreateICmpSLT(numElements, 8600b57cec5SDimitry Andric llvm::ConstantInt::get(CGF.SizeTy, minElements)); 8610b57cec5SDimitry Andric 8620b57cec5SDimitry Andric // Otherwise, zext up to size_t if necessary. 8630b57cec5SDimitry Andric } else if (numElementsWidth < sizeWidth) { 8640b57cec5SDimitry Andric numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy); 8650b57cec5SDimitry Andric } 8660b57cec5SDimitry Andric 8670b57cec5SDimitry Andric assert(numElements->getType() == CGF.SizeTy); 8680b57cec5SDimitry Andric 8690b57cec5SDimitry Andric if (minElements) { 8700b57cec5SDimitry Andric // Don't allow allocation of fewer elements than we have initializers. 8710b57cec5SDimitry Andric if (!hasOverflow) { 8720b57cec5SDimitry Andric hasOverflow = CGF.Builder.CreateICmpULT(numElements, 8730b57cec5SDimitry Andric llvm::ConstantInt::get(CGF.SizeTy, minElements)); 8740b57cec5SDimitry Andric } else if (numElementsWidth > sizeWidth) { 8750b57cec5SDimitry Andric // The other existing overflow subsumes this check. 8760b57cec5SDimitry Andric // We do an unsigned comparison, since any signed value < -1 is 8770b57cec5SDimitry Andric // taken care of either above or below. 8780b57cec5SDimitry Andric hasOverflow = CGF.Builder.CreateOr(hasOverflow, 8790b57cec5SDimitry Andric CGF.Builder.CreateICmpULT(numElements, 8800b57cec5SDimitry Andric llvm::ConstantInt::get(CGF.SizeTy, minElements))); 8810b57cec5SDimitry Andric } 8820b57cec5SDimitry Andric } 8830b57cec5SDimitry Andric 8840b57cec5SDimitry Andric size = numElements; 8850b57cec5SDimitry Andric 8860b57cec5SDimitry Andric // Multiply by the type size if necessary. This multiplier 8870b57cec5SDimitry Andric // includes all the factors for nested arrays. 8880b57cec5SDimitry Andric // 8890b57cec5SDimitry Andric // This step also causes numElements to be scaled up by the 8900b57cec5SDimitry Andric // nested-array factor if necessary. Overflow on this computation 8910b57cec5SDimitry Andric // can be ignored because the result shouldn't be used if 8920b57cec5SDimitry Andric // allocation fails. 8930b57cec5SDimitry Andric if (typeSizeMultiplier != 1) { 8940b57cec5SDimitry Andric llvm::Function *umul_with_overflow 8950b57cec5SDimitry Andric = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy); 8960b57cec5SDimitry Andric 8970b57cec5SDimitry Andric llvm::Value *tsmV = 8980b57cec5SDimitry Andric llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier); 8990b57cec5SDimitry Andric llvm::Value *result = 9000b57cec5SDimitry Andric CGF.Builder.CreateCall(umul_with_overflow, {size, tsmV}); 9010b57cec5SDimitry Andric 9020b57cec5SDimitry Andric llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 9030b57cec5SDimitry Andric if (hasOverflow) 9040b57cec5SDimitry Andric hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 9050b57cec5SDimitry Andric else 9060b57cec5SDimitry Andric hasOverflow = overflowed; 9070b57cec5SDimitry Andric 9080b57cec5SDimitry Andric size = CGF.Builder.CreateExtractValue(result, 0); 9090b57cec5SDimitry Andric 9100b57cec5SDimitry Andric // Also scale up numElements by the array size multiplier. 9110b57cec5SDimitry Andric if (arraySizeMultiplier != 1) { 9120b57cec5SDimitry Andric // If the base element type size is 1, then we can re-use the 9130b57cec5SDimitry Andric // multiply we just did. 9140b57cec5SDimitry Andric if (typeSize.isOne()) { 9150b57cec5SDimitry Andric assert(arraySizeMultiplier == typeSizeMultiplier); 9160b57cec5SDimitry Andric numElements = size; 9170b57cec5SDimitry Andric 9180b57cec5SDimitry Andric // Otherwise we need a separate multiply. 9190b57cec5SDimitry Andric } else { 9200b57cec5SDimitry Andric llvm::Value *asmV = 9210b57cec5SDimitry Andric llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier); 9220b57cec5SDimitry Andric numElements = CGF.Builder.CreateMul(numElements, asmV); 9230b57cec5SDimitry Andric } 9240b57cec5SDimitry Andric } 9250b57cec5SDimitry Andric } else { 9260b57cec5SDimitry Andric // numElements doesn't need to be scaled. 9270b57cec5SDimitry Andric assert(arraySizeMultiplier == 1); 9280b57cec5SDimitry Andric } 9290b57cec5SDimitry Andric 9300b57cec5SDimitry Andric // Add in the cookie size if necessary. 9310b57cec5SDimitry Andric if (cookieSize != 0) { 9320b57cec5SDimitry Andric sizeWithoutCookie = size; 9330b57cec5SDimitry Andric 9340b57cec5SDimitry Andric llvm::Function *uadd_with_overflow 9350b57cec5SDimitry Andric = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy); 9360b57cec5SDimitry Andric 9370b57cec5SDimitry Andric llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize); 9380b57cec5SDimitry Andric llvm::Value *result = 9390b57cec5SDimitry Andric CGF.Builder.CreateCall(uadd_with_overflow, {size, cookieSizeV}); 9400b57cec5SDimitry Andric 9410b57cec5SDimitry Andric llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 9420b57cec5SDimitry Andric if (hasOverflow) 9430b57cec5SDimitry Andric hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 9440b57cec5SDimitry Andric else 9450b57cec5SDimitry Andric hasOverflow = overflowed; 9460b57cec5SDimitry Andric 9470b57cec5SDimitry Andric size = CGF.Builder.CreateExtractValue(result, 0); 9480b57cec5SDimitry Andric } 9490b57cec5SDimitry Andric 9500b57cec5SDimitry Andric // If we had any possibility of dynamic overflow, make a select to 9510b57cec5SDimitry Andric // overwrite 'size' with an all-ones value, which should cause 9520b57cec5SDimitry Andric // operator new to throw. 9530b57cec5SDimitry Andric if (hasOverflow) 9540b57cec5SDimitry Andric size = CGF.Builder.CreateSelect(hasOverflow, 9550b57cec5SDimitry Andric llvm::Constant::getAllOnesValue(CGF.SizeTy), 9560b57cec5SDimitry Andric size); 9570b57cec5SDimitry Andric } 9580b57cec5SDimitry Andric 9590b57cec5SDimitry Andric if (cookieSize == 0) 9600b57cec5SDimitry Andric sizeWithoutCookie = size; 9610b57cec5SDimitry Andric else 9620b57cec5SDimitry Andric assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?"); 9630b57cec5SDimitry Andric 9640b57cec5SDimitry Andric return size; 9650b57cec5SDimitry Andric } 9660b57cec5SDimitry Andric 9670b57cec5SDimitry Andric static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init, 9680b57cec5SDimitry Andric QualType AllocType, Address NewPtr, 9690b57cec5SDimitry Andric AggValueSlot::Overlap_t MayOverlap) { 9700b57cec5SDimitry Andric // FIXME: Refactor with EmitExprAsInit. 9710b57cec5SDimitry Andric switch (CGF.getEvaluationKind(AllocType)) { 9720b57cec5SDimitry Andric case TEK_Scalar: 9730b57cec5SDimitry Andric CGF.EmitScalarInit(Init, nullptr, 9740b57cec5SDimitry Andric CGF.MakeAddrLValue(NewPtr, AllocType), false); 9750b57cec5SDimitry Andric return; 9760b57cec5SDimitry Andric case TEK_Complex: 9770b57cec5SDimitry Andric CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType), 9780b57cec5SDimitry Andric /*isInit*/ true); 9790b57cec5SDimitry Andric return; 9800b57cec5SDimitry Andric case TEK_Aggregate: { 9810b57cec5SDimitry Andric AggValueSlot Slot 9820b57cec5SDimitry Andric = AggValueSlot::forAddr(NewPtr, AllocType.getQualifiers(), 9830b57cec5SDimitry Andric AggValueSlot::IsDestructed, 9840b57cec5SDimitry Andric AggValueSlot::DoesNotNeedGCBarriers, 9850b57cec5SDimitry Andric AggValueSlot::IsNotAliased, 9860b57cec5SDimitry Andric MayOverlap, AggValueSlot::IsNotZeroed, 9870b57cec5SDimitry Andric AggValueSlot::IsSanitizerChecked); 9880b57cec5SDimitry Andric CGF.EmitAggExpr(Init, Slot); 9890b57cec5SDimitry Andric return; 9900b57cec5SDimitry Andric } 9910b57cec5SDimitry Andric } 9920b57cec5SDimitry Andric llvm_unreachable("bad evaluation kind"); 9930b57cec5SDimitry Andric } 9940b57cec5SDimitry Andric 9950b57cec5SDimitry Andric void CodeGenFunction::EmitNewArrayInitializer( 9960b57cec5SDimitry Andric const CXXNewExpr *E, QualType ElementType, llvm::Type *ElementTy, 9970b57cec5SDimitry Andric Address BeginPtr, llvm::Value *NumElements, 9980b57cec5SDimitry Andric llvm::Value *AllocSizeWithoutCookie) { 9990b57cec5SDimitry Andric // If we have a type with trivial initialization and no initializer, 10000b57cec5SDimitry Andric // there's nothing to do. 10010b57cec5SDimitry Andric if (!E->hasInitializer()) 10020b57cec5SDimitry Andric return; 10030b57cec5SDimitry Andric 10040b57cec5SDimitry Andric Address CurPtr = BeginPtr; 10050b57cec5SDimitry Andric 10060b57cec5SDimitry Andric unsigned InitListElements = 0; 10070b57cec5SDimitry Andric 10080b57cec5SDimitry Andric const Expr *Init = E->getInitializer(); 10090b57cec5SDimitry Andric Address EndOfInit = Address::invalid(); 10100b57cec5SDimitry Andric QualType::DestructionKind DtorKind = ElementType.isDestructedType(); 1011*0fca6ea1SDimitry Andric CleanupDeactivationScope deactivation(*this); 1012*0fca6ea1SDimitry Andric bool pushedCleanup = false; 10130b57cec5SDimitry Andric 10140b57cec5SDimitry Andric CharUnits ElementSize = getContext().getTypeSizeInChars(ElementType); 10150b57cec5SDimitry Andric CharUnits ElementAlign = 10160b57cec5SDimitry Andric BeginPtr.getAlignment().alignmentOfArrayElement(ElementSize); 10170b57cec5SDimitry Andric 10180b57cec5SDimitry Andric // Attempt to perform zero-initialization using memset. 10190b57cec5SDimitry Andric auto TryMemsetInitialization = [&]() -> bool { 10200b57cec5SDimitry Andric // FIXME: If the type is a pointer-to-data-member under the Itanium ABI, 10210b57cec5SDimitry Andric // we can initialize with a memset to -1. 10220b57cec5SDimitry Andric if (!CGM.getTypes().isZeroInitializable(ElementType)) 10230b57cec5SDimitry Andric return false; 10240b57cec5SDimitry Andric 10250b57cec5SDimitry Andric // Optimization: since zero initialization will just set the memory 10260b57cec5SDimitry Andric // to all zeroes, generate a single memset to do it in one shot. 10270b57cec5SDimitry Andric 10280b57cec5SDimitry Andric // Subtract out the size of any elements we've already initialized. 10290b57cec5SDimitry Andric auto *RemainingSize = AllocSizeWithoutCookie; 10300b57cec5SDimitry Andric if (InitListElements) { 10310b57cec5SDimitry Andric // We know this can't overflow; we check this when doing the allocation. 10320b57cec5SDimitry Andric auto *InitializedSize = llvm::ConstantInt::get( 10330b57cec5SDimitry Andric RemainingSize->getType(), 10340b57cec5SDimitry Andric getContext().getTypeSizeInChars(ElementType).getQuantity() * 10350b57cec5SDimitry Andric InitListElements); 10360b57cec5SDimitry Andric RemainingSize = Builder.CreateSub(RemainingSize, InitializedSize); 10370b57cec5SDimitry Andric } 10380b57cec5SDimitry Andric 10390b57cec5SDimitry Andric // Create the memset. 10400b57cec5SDimitry Andric Builder.CreateMemSet(CurPtr, Builder.getInt8(0), RemainingSize, false); 10410b57cec5SDimitry Andric return true; 10420b57cec5SDimitry Andric }; 10430b57cec5SDimitry Andric 10447a6dacacSDimitry Andric const InitListExpr *ILE = dyn_cast<InitListExpr>(Init); 10457a6dacacSDimitry Andric const CXXParenListInitExpr *CPLIE = nullptr; 10467a6dacacSDimitry Andric const StringLiteral *SL = nullptr; 10477a6dacacSDimitry Andric const ObjCEncodeExpr *OCEE = nullptr; 10487a6dacacSDimitry Andric const Expr *IgnoreParen = nullptr; 10497a6dacacSDimitry Andric if (!ILE) { 10507a6dacacSDimitry Andric IgnoreParen = Init->IgnoreParenImpCasts(); 10517a6dacacSDimitry Andric CPLIE = dyn_cast<CXXParenListInitExpr>(IgnoreParen); 10527a6dacacSDimitry Andric SL = dyn_cast<StringLiteral>(IgnoreParen); 10537a6dacacSDimitry Andric OCEE = dyn_cast<ObjCEncodeExpr>(IgnoreParen); 10547a6dacacSDimitry Andric } 10557a6dacacSDimitry Andric 10560b57cec5SDimitry Andric // If the initializer is an initializer list, first do the explicit elements. 10577a6dacacSDimitry Andric if (ILE || CPLIE || SL || OCEE) { 10580b57cec5SDimitry Andric // Initializing from a (braced) string literal is a special case; the init 10590b57cec5SDimitry Andric // list element does not initialize a (single) array element. 10607a6dacacSDimitry Andric if ((ILE && ILE->isStringLiteralInit()) || SL || OCEE) { 10617a6dacacSDimitry Andric if (!ILE) 10627a6dacacSDimitry Andric Init = IgnoreParen; 10630b57cec5SDimitry Andric // Initialize the initial portion of length equal to that of the string 10640b57cec5SDimitry Andric // literal. The allocation must be for at least this much; we emitted a 10650b57cec5SDimitry Andric // check for that earlier. 10660b57cec5SDimitry Andric AggValueSlot Slot = 10670b57cec5SDimitry Andric AggValueSlot::forAddr(CurPtr, ElementType.getQualifiers(), 10680b57cec5SDimitry Andric AggValueSlot::IsDestructed, 10690b57cec5SDimitry Andric AggValueSlot::DoesNotNeedGCBarriers, 10700b57cec5SDimitry Andric AggValueSlot::IsNotAliased, 10710b57cec5SDimitry Andric AggValueSlot::DoesNotOverlap, 10720b57cec5SDimitry Andric AggValueSlot::IsNotZeroed, 10730b57cec5SDimitry Andric AggValueSlot::IsSanitizerChecked); 10747a6dacacSDimitry Andric EmitAggExpr(ILE ? ILE->getInit(0) : Init, Slot); 10750b57cec5SDimitry Andric 10760b57cec5SDimitry Andric // Move past these elements. 10770b57cec5SDimitry Andric InitListElements = 10787a6dacacSDimitry Andric cast<ConstantArrayType>(Init->getType()->getAsArrayTypeUnsafe()) 1079*0fca6ea1SDimitry Andric ->getZExtSize(); 10800eae32dcSDimitry Andric CurPtr = Builder.CreateConstInBoundsGEP( 10810eae32dcSDimitry Andric CurPtr, InitListElements, "string.init.end"); 10820b57cec5SDimitry Andric 10830b57cec5SDimitry Andric // Zero out the rest, if any remain. 10840b57cec5SDimitry Andric llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements); 10850b57cec5SDimitry Andric if (!ConstNum || !ConstNum->equalsInt(InitListElements)) { 10860b57cec5SDimitry Andric bool OK = TryMemsetInitialization(); 10870b57cec5SDimitry Andric (void)OK; 10880b57cec5SDimitry Andric assert(OK && "couldn't memset character type?"); 10890b57cec5SDimitry Andric } 10900b57cec5SDimitry Andric return; 10910b57cec5SDimitry Andric } 10920b57cec5SDimitry Andric 10937a6dacacSDimitry Andric ArrayRef<const Expr *> InitExprs = 10947a6dacacSDimitry Andric ILE ? ILE->inits() : CPLIE->getInitExprs(); 10957a6dacacSDimitry Andric InitListElements = InitExprs.size(); 10960b57cec5SDimitry Andric 10970b57cec5SDimitry Andric // If this is a multi-dimensional array new, we will initialize multiple 10980b57cec5SDimitry Andric // elements with each init list element. 10990b57cec5SDimitry Andric QualType AllocType = E->getAllocatedType(); 11000b57cec5SDimitry Andric if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>( 11010b57cec5SDimitry Andric AllocType->getAsArrayTypeUnsafe())) { 11020b57cec5SDimitry Andric ElementTy = ConvertTypeForMem(AllocType); 110306c3fb27SDimitry Andric CurPtr = CurPtr.withElementType(ElementTy); 11040b57cec5SDimitry Andric InitListElements *= getContext().getConstantArrayElementCount(CAT); 11050b57cec5SDimitry Andric } 11060b57cec5SDimitry Andric 11070b57cec5SDimitry Andric // Enter a partial-destruction Cleanup if necessary. 1108*0fca6ea1SDimitry Andric if (DtorKind) { 1109*0fca6ea1SDimitry Andric AllocaTrackerRAII AllocaTracker(*this); 11100b57cec5SDimitry Andric // In principle we could tell the Cleanup where we are more 11110b57cec5SDimitry Andric // directly, but the control flow can get so varied here that it 11120b57cec5SDimitry Andric // would actually be quite complex. Therefore we go through an 11130b57cec5SDimitry Andric // alloca. 1114*0fca6ea1SDimitry Andric llvm::Instruction *DominatingIP = 1115*0fca6ea1SDimitry Andric Builder.CreateFlagLoad(llvm::ConstantInt::getNullValue(Int8PtrTy)); 11160b57cec5SDimitry Andric EndOfInit = CreateTempAlloca(BeginPtr.getType(), getPointerAlign(), 11170b57cec5SDimitry Andric "array.init.end"); 1118*0fca6ea1SDimitry Andric pushIrregularPartialArrayCleanup(BeginPtr.emitRawPointer(*this), 1119*0fca6ea1SDimitry Andric EndOfInit, ElementType, ElementAlign, 11200b57cec5SDimitry Andric getDestroyer(DtorKind)); 1121*0fca6ea1SDimitry Andric cast<EHCleanupScope>(*EHStack.find(EHStack.stable_begin())) 1122*0fca6ea1SDimitry Andric .AddAuxAllocas(AllocaTracker.Take()); 1123*0fca6ea1SDimitry Andric DeferredDeactivationCleanupStack.push_back( 1124*0fca6ea1SDimitry Andric {EHStack.stable_begin(), DominatingIP}); 1125*0fca6ea1SDimitry Andric pushedCleanup = true; 11260b57cec5SDimitry Andric } 11270b57cec5SDimitry Andric 11280b57cec5SDimitry Andric CharUnits StartAlign = CurPtr.getAlignment(); 11297a6dacacSDimitry Andric unsigned i = 0; 11307a6dacacSDimitry Andric for (const Expr *IE : InitExprs) { 11310b57cec5SDimitry Andric // Tell the cleanup that it needs to destroy up to this 11320b57cec5SDimitry Andric // element. TODO: some of these stores can be trivially 11330b57cec5SDimitry Andric // observed to be unnecessary. 11340b57cec5SDimitry Andric if (EndOfInit.isValid()) { 1135*0fca6ea1SDimitry Andric Builder.CreateStore(CurPtr.emitRawPointer(*this), EndOfInit); 11360b57cec5SDimitry Andric } 11370b57cec5SDimitry Andric // FIXME: If the last initializer is an incomplete initializer list for 11380b57cec5SDimitry Andric // an array, and we have an array filler, we can fold together the two 11390b57cec5SDimitry Andric // initialization loops. 11407a6dacacSDimitry Andric StoreAnyExprIntoOneUnit(*this, IE, IE->getType(), CurPtr, 11410b57cec5SDimitry Andric AggValueSlot::DoesNotOverlap); 1142*0fca6ea1SDimitry Andric CurPtr = Address(Builder.CreateInBoundsGEP(CurPtr.getElementType(), 1143*0fca6ea1SDimitry Andric CurPtr.emitRawPointer(*this), 1144*0fca6ea1SDimitry Andric Builder.getSize(1), 1145*0fca6ea1SDimitry Andric "array.exp.next"), 11461fd87a68SDimitry Andric CurPtr.getElementType(), 11477a6dacacSDimitry Andric StartAlign.alignmentAtOffset((++i) * ElementSize)); 11480b57cec5SDimitry Andric } 11490b57cec5SDimitry Andric 11500b57cec5SDimitry Andric // The remaining elements are filled with the array filler expression. 11517a6dacacSDimitry Andric Init = ILE ? ILE->getArrayFiller() : CPLIE->getArrayFiller(); 11520b57cec5SDimitry Andric 11530b57cec5SDimitry Andric // Extract the initializer for the individual array elements by pulling 11540b57cec5SDimitry Andric // out the array filler from all the nested initializer lists. This avoids 11550b57cec5SDimitry Andric // generating a nested loop for the initialization. 11560b57cec5SDimitry Andric while (Init && Init->getType()->isConstantArrayType()) { 11570b57cec5SDimitry Andric auto *SubILE = dyn_cast<InitListExpr>(Init); 11580b57cec5SDimitry Andric if (!SubILE) 11590b57cec5SDimitry Andric break; 11600b57cec5SDimitry Andric assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?"); 11610b57cec5SDimitry Andric Init = SubILE->getArrayFiller(); 11620b57cec5SDimitry Andric } 11630b57cec5SDimitry Andric 11640b57cec5SDimitry Andric // Switch back to initializing one base element at a time. 116506c3fb27SDimitry Andric CurPtr = CurPtr.withElementType(BeginPtr.getElementType()); 11660b57cec5SDimitry Andric } 11670b57cec5SDimitry Andric 11680b57cec5SDimitry Andric // If all elements have already been initialized, skip any further 11690b57cec5SDimitry Andric // initialization. 11700b57cec5SDimitry Andric llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements); 11710b57cec5SDimitry Andric if (ConstNum && ConstNum->getZExtValue() <= InitListElements) { 11720b57cec5SDimitry Andric return; 11730b57cec5SDimitry Andric } 11740b57cec5SDimitry Andric 11750b57cec5SDimitry Andric assert(Init && "have trailing elements to initialize but no initializer"); 11760b57cec5SDimitry Andric 11770b57cec5SDimitry Andric // If this is a constructor call, try to optimize it out, and failing that 11780b57cec5SDimitry Andric // emit a single loop to initialize all remaining elements. 11790b57cec5SDimitry Andric if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) { 11800b57cec5SDimitry Andric CXXConstructorDecl *Ctor = CCE->getConstructor(); 11810b57cec5SDimitry Andric if (Ctor->isTrivial()) { 11820b57cec5SDimitry Andric // If new expression did not specify value-initialization, then there 11830b57cec5SDimitry Andric // is no initialization. 11840b57cec5SDimitry Andric if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty()) 11850b57cec5SDimitry Andric return; 11860b57cec5SDimitry Andric 11870b57cec5SDimitry Andric if (TryMemsetInitialization()) 11880b57cec5SDimitry Andric return; 11890b57cec5SDimitry Andric } 11900b57cec5SDimitry Andric 11910b57cec5SDimitry Andric // Store the new Cleanup position for irregular Cleanups. 11920b57cec5SDimitry Andric // 11930b57cec5SDimitry Andric // FIXME: Share this cleanup with the constructor call emission rather than 11940b57cec5SDimitry Andric // having it create a cleanup of its own. 11950b57cec5SDimitry Andric if (EndOfInit.isValid()) 1196*0fca6ea1SDimitry Andric Builder.CreateStore(CurPtr.emitRawPointer(*this), EndOfInit); 11970b57cec5SDimitry Andric 11980b57cec5SDimitry Andric // Emit a constructor call loop to initialize the remaining elements. 11990b57cec5SDimitry Andric if (InitListElements) 12000b57cec5SDimitry Andric NumElements = Builder.CreateSub( 12010b57cec5SDimitry Andric NumElements, 12020b57cec5SDimitry Andric llvm::ConstantInt::get(NumElements->getType(), InitListElements)); 12030b57cec5SDimitry Andric EmitCXXAggrConstructorCall(Ctor, NumElements, CurPtr, CCE, 12040b57cec5SDimitry Andric /*NewPointerIsChecked*/true, 12050b57cec5SDimitry Andric CCE->requiresZeroInitialization()); 12060b57cec5SDimitry Andric return; 12070b57cec5SDimitry Andric } 12080b57cec5SDimitry Andric 12090b57cec5SDimitry Andric // If this is value-initialization, we can usually use memset. 12100b57cec5SDimitry Andric ImplicitValueInitExpr IVIE(ElementType); 12110b57cec5SDimitry Andric if (isa<ImplicitValueInitExpr>(Init)) { 12120b57cec5SDimitry Andric if (TryMemsetInitialization()) 12130b57cec5SDimitry Andric return; 12140b57cec5SDimitry Andric 12150b57cec5SDimitry Andric // Switch to an ImplicitValueInitExpr for the element type. This handles 12160b57cec5SDimitry Andric // only one case: multidimensional array new of pointers to members. In 12170b57cec5SDimitry Andric // all other cases, we already have an initializer for the array element. 12180b57cec5SDimitry Andric Init = &IVIE; 12190b57cec5SDimitry Andric } 12200b57cec5SDimitry Andric 12210b57cec5SDimitry Andric // At this point we should have found an initializer for the individual 12220b57cec5SDimitry Andric // elements of the array. 12230b57cec5SDimitry Andric assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) && 12240b57cec5SDimitry Andric "got wrong type of element to initialize"); 12250b57cec5SDimitry Andric 12260b57cec5SDimitry Andric // If we have an empty initializer list, we can usually use memset. 12270b57cec5SDimitry Andric if (auto *ILE = dyn_cast<InitListExpr>(Init)) 12280b57cec5SDimitry Andric if (ILE->getNumInits() == 0 && TryMemsetInitialization()) 12290b57cec5SDimitry Andric return; 12300b57cec5SDimitry Andric 12310b57cec5SDimitry Andric // If we have a struct whose every field is value-initialized, we can 12320b57cec5SDimitry Andric // usually use memset. 12330b57cec5SDimitry Andric if (auto *ILE = dyn_cast<InitListExpr>(Init)) { 12340b57cec5SDimitry Andric if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) { 12350b57cec5SDimitry Andric if (RType->getDecl()->isStruct()) { 12360b57cec5SDimitry Andric unsigned NumElements = 0; 12370b57cec5SDimitry Andric if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RType->getDecl())) 12380b57cec5SDimitry Andric NumElements = CXXRD->getNumBases(); 12390b57cec5SDimitry Andric for (auto *Field : RType->getDecl()->fields()) 1240*0fca6ea1SDimitry Andric if (!Field->isUnnamedBitField()) 12410b57cec5SDimitry Andric ++NumElements; 12420b57cec5SDimitry Andric // FIXME: Recurse into nested InitListExprs. 12430b57cec5SDimitry Andric if (ILE->getNumInits() == NumElements) 12440b57cec5SDimitry Andric for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) 12450b57cec5SDimitry Andric if (!isa<ImplicitValueInitExpr>(ILE->getInit(i))) 12460b57cec5SDimitry Andric --NumElements; 12470b57cec5SDimitry Andric if (ILE->getNumInits() == NumElements && TryMemsetInitialization()) 12480b57cec5SDimitry Andric return; 12490b57cec5SDimitry Andric } 12500b57cec5SDimitry Andric } 12510b57cec5SDimitry Andric } 12520b57cec5SDimitry Andric 12530b57cec5SDimitry Andric // Create the loop blocks. 12540b57cec5SDimitry Andric llvm::BasicBlock *EntryBB = Builder.GetInsertBlock(); 12550b57cec5SDimitry Andric llvm::BasicBlock *LoopBB = createBasicBlock("new.loop"); 12560b57cec5SDimitry Andric llvm::BasicBlock *ContBB = createBasicBlock("new.loop.end"); 12570b57cec5SDimitry Andric 12580b57cec5SDimitry Andric // Find the end of the array, hoisted out of the loop. 1259*0fca6ea1SDimitry Andric llvm::Value *EndPtr = Builder.CreateInBoundsGEP( 1260*0fca6ea1SDimitry Andric BeginPtr.getElementType(), BeginPtr.emitRawPointer(*this), NumElements, 1261*0fca6ea1SDimitry Andric "array.end"); 12620b57cec5SDimitry Andric 12630b57cec5SDimitry Andric // If the number of elements isn't constant, we have to now check if there is 12640b57cec5SDimitry Andric // anything left to initialize. 12650b57cec5SDimitry Andric if (!ConstNum) { 1266*0fca6ea1SDimitry Andric llvm::Value *IsEmpty = Builder.CreateICmpEQ(CurPtr.emitRawPointer(*this), 1267*0fca6ea1SDimitry Andric EndPtr, "array.isempty"); 12680b57cec5SDimitry Andric Builder.CreateCondBr(IsEmpty, ContBB, LoopBB); 12690b57cec5SDimitry Andric } 12700b57cec5SDimitry Andric 12710b57cec5SDimitry Andric // Enter the loop. 12720b57cec5SDimitry Andric EmitBlock(LoopBB); 12730b57cec5SDimitry Andric 12740b57cec5SDimitry Andric // Set up the current-element phi. 12750b57cec5SDimitry Andric llvm::PHINode *CurPtrPhi = 12760b57cec5SDimitry Andric Builder.CreatePHI(CurPtr.getType(), 2, "array.cur"); 1277*0fca6ea1SDimitry Andric CurPtrPhi->addIncoming(CurPtr.emitRawPointer(*this), EntryBB); 12780b57cec5SDimitry Andric 127981ad6265SDimitry Andric CurPtr = Address(CurPtrPhi, CurPtr.getElementType(), ElementAlign); 12800b57cec5SDimitry Andric 12810b57cec5SDimitry Andric // Store the new Cleanup position for irregular Cleanups. 12820b57cec5SDimitry Andric if (EndOfInit.isValid()) 1283*0fca6ea1SDimitry Andric Builder.CreateStore(CurPtr.emitRawPointer(*this), EndOfInit); 12840b57cec5SDimitry Andric 12850b57cec5SDimitry Andric // Enter a partial-destruction Cleanup if necessary. 1286*0fca6ea1SDimitry Andric if (!pushedCleanup && needsEHCleanup(DtorKind)) { 1287*0fca6ea1SDimitry Andric llvm::Instruction *DominatingIP = 1288*0fca6ea1SDimitry Andric Builder.CreateFlagLoad(llvm::ConstantInt::getNullValue(Int8PtrTy)); 1289*0fca6ea1SDimitry Andric pushRegularPartialArrayCleanup(BeginPtr.emitRawPointer(*this), 1290*0fca6ea1SDimitry Andric CurPtr.emitRawPointer(*this), ElementType, 1291*0fca6ea1SDimitry Andric ElementAlign, getDestroyer(DtorKind)); 1292*0fca6ea1SDimitry Andric DeferredDeactivationCleanupStack.push_back( 1293*0fca6ea1SDimitry Andric {EHStack.stable_begin(), DominatingIP}); 12940b57cec5SDimitry Andric } 12950b57cec5SDimitry Andric 12960b57cec5SDimitry Andric // Emit the initializer into this element. 12970b57cec5SDimitry Andric StoreAnyExprIntoOneUnit(*this, Init, Init->getType(), CurPtr, 12980b57cec5SDimitry Andric AggValueSlot::DoesNotOverlap); 12990b57cec5SDimitry Andric 13000b57cec5SDimitry Andric // Leave the Cleanup if we entered one. 1301*0fca6ea1SDimitry Andric deactivation.ForceDeactivate(); 13020b57cec5SDimitry Andric 13030b57cec5SDimitry Andric // Advance to the next element by adjusting the pointer type as necessary. 1304*0fca6ea1SDimitry Andric llvm::Value *NextPtr = Builder.CreateConstInBoundsGEP1_32( 1305*0fca6ea1SDimitry Andric ElementTy, CurPtr.emitRawPointer(*this), 1, "array.next"); 13060b57cec5SDimitry Andric 13070b57cec5SDimitry Andric // Check whether we've gotten to the end of the array and, if so, 13080b57cec5SDimitry Andric // exit the loop. 13090b57cec5SDimitry Andric llvm::Value *IsEnd = Builder.CreateICmpEQ(NextPtr, EndPtr, "array.atend"); 13100b57cec5SDimitry Andric Builder.CreateCondBr(IsEnd, ContBB, LoopBB); 13110b57cec5SDimitry Andric CurPtrPhi->addIncoming(NextPtr, Builder.GetInsertBlock()); 13120b57cec5SDimitry Andric 13130b57cec5SDimitry Andric EmitBlock(ContBB); 13140b57cec5SDimitry Andric } 13150b57cec5SDimitry Andric 13160b57cec5SDimitry Andric static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E, 13170b57cec5SDimitry Andric QualType ElementType, llvm::Type *ElementTy, 13180b57cec5SDimitry Andric Address NewPtr, llvm::Value *NumElements, 13190b57cec5SDimitry Andric llvm::Value *AllocSizeWithoutCookie) { 13200b57cec5SDimitry Andric ApplyDebugLocation DL(CGF, E); 13210b57cec5SDimitry Andric if (E->isArray()) 13220b57cec5SDimitry Andric CGF.EmitNewArrayInitializer(E, ElementType, ElementTy, NewPtr, NumElements, 13230b57cec5SDimitry Andric AllocSizeWithoutCookie); 13240b57cec5SDimitry Andric else if (const Expr *Init = E->getInitializer()) 13250b57cec5SDimitry Andric StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr, 13260b57cec5SDimitry Andric AggValueSlot::DoesNotOverlap); 13270b57cec5SDimitry Andric } 13280b57cec5SDimitry Andric 13290b57cec5SDimitry Andric /// Emit a call to an operator new or operator delete function, as implicitly 13300b57cec5SDimitry Andric /// created by new-expressions and delete-expressions. 13310b57cec5SDimitry Andric static RValue EmitNewDeleteCall(CodeGenFunction &CGF, 13320b57cec5SDimitry Andric const FunctionDecl *CalleeDecl, 13330b57cec5SDimitry Andric const FunctionProtoType *CalleeType, 13340b57cec5SDimitry Andric const CallArgList &Args) { 13350b57cec5SDimitry Andric llvm::CallBase *CallOrInvoke; 13360b57cec5SDimitry Andric llvm::Constant *CalleePtr = CGF.CGM.GetAddrOfFunction(CalleeDecl); 13370b57cec5SDimitry Andric CGCallee Callee = CGCallee::forDirect(CalleePtr, GlobalDecl(CalleeDecl)); 13380b57cec5SDimitry Andric RValue RV = 13390b57cec5SDimitry Andric CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall( 13400b57cec5SDimitry Andric Args, CalleeType, /*ChainCall=*/false), 13410b57cec5SDimitry Andric Callee, ReturnValueSlot(), Args, &CallOrInvoke); 13420b57cec5SDimitry Andric 13430b57cec5SDimitry Andric /// C++1y [expr.new]p10: 13440b57cec5SDimitry Andric /// [In a new-expression,] an implementation is allowed to omit a call 13450b57cec5SDimitry Andric /// to a replaceable global allocation function. 13460b57cec5SDimitry Andric /// 13470b57cec5SDimitry Andric /// We model such elidable calls with the 'builtin' attribute. 13480b57cec5SDimitry Andric llvm::Function *Fn = dyn_cast<llvm::Function>(CalleePtr); 13490b57cec5SDimitry Andric if (CalleeDecl->isReplaceableGlobalAllocationFunction() && 13500b57cec5SDimitry Andric Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) { 1351349cc55cSDimitry Andric CallOrInvoke->addFnAttr(llvm::Attribute::Builtin); 13520b57cec5SDimitry Andric } 13530b57cec5SDimitry Andric 13540b57cec5SDimitry Andric return RV; 13550b57cec5SDimitry Andric } 13560b57cec5SDimitry Andric 13570b57cec5SDimitry Andric RValue CodeGenFunction::EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, 13580b57cec5SDimitry Andric const CallExpr *TheCall, 13590b57cec5SDimitry Andric bool IsDelete) { 13600b57cec5SDimitry Andric CallArgList Args; 1361e8d8bef9SDimitry Andric EmitCallArgs(Args, Type, TheCall->arguments()); 13620b57cec5SDimitry Andric // Find the allocation or deallocation function that we're calling. 13630b57cec5SDimitry Andric ASTContext &Ctx = getContext(); 13640b57cec5SDimitry Andric DeclarationName Name = Ctx.DeclarationNames 13650b57cec5SDimitry Andric .getCXXOperatorName(IsDelete ? OO_Delete : OO_New); 13660b57cec5SDimitry Andric 13670b57cec5SDimitry Andric for (auto *Decl : Ctx.getTranslationUnitDecl()->lookup(Name)) 13680b57cec5SDimitry Andric if (auto *FD = dyn_cast<FunctionDecl>(Decl)) 13690b57cec5SDimitry Andric if (Ctx.hasSameType(FD->getType(), QualType(Type, 0))) 13700b57cec5SDimitry Andric return EmitNewDeleteCall(*this, FD, Type, Args); 13710b57cec5SDimitry Andric llvm_unreachable("predeclared global operator new/delete is missing"); 13720b57cec5SDimitry Andric } 13730b57cec5SDimitry Andric 13740b57cec5SDimitry Andric namespace { 13750b57cec5SDimitry Andric /// The parameters to pass to a usual operator delete. 13760b57cec5SDimitry Andric struct UsualDeleteParams { 13770b57cec5SDimitry Andric bool DestroyingDelete = false; 13780b57cec5SDimitry Andric bool Size = false; 13790b57cec5SDimitry Andric bool Alignment = false; 13800b57cec5SDimitry Andric }; 13810b57cec5SDimitry Andric } 13820b57cec5SDimitry Andric 13830b57cec5SDimitry Andric static UsualDeleteParams getUsualDeleteParams(const FunctionDecl *FD) { 13840b57cec5SDimitry Andric UsualDeleteParams Params; 13850b57cec5SDimitry Andric 13860b57cec5SDimitry Andric const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>(); 13870b57cec5SDimitry Andric auto AI = FPT->param_type_begin(), AE = FPT->param_type_end(); 13880b57cec5SDimitry Andric 13890b57cec5SDimitry Andric // The first argument is always a void*. 13900b57cec5SDimitry Andric ++AI; 13910b57cec5SDimitry Andric 13920b57cec5SDimitry Andric // The next parameter may be a std::destroying_delete_t. 13930b57cec5SDimitry Andric if (FD->isDestroyingOperatorDelete()) { 13940b57cec5SDimitry Andric Params.DestroyingDelete = true; 13950b57cec5SDimitry Andric assert(AI != AE); 13960b57cec5SDimitry Andric ++AI; 13970b57cec5SDimitry Andric } 13980b57cec5SDimitry Andric 13990b57cec5SDimitry Andric // Figure out what other parameters we should be implicitly passing. 14000b57cec5SDimitry Andric if (AI != AE && (*AI)->isIntegerType()) { 14010b57cec5SDimitry Andric Params.Size = true; 14020b57cec5SDimitry Andric ++AI; 14030b57cec5SDimitry Andric } 14040b57cec5SDimitry Andric 14050b57cec5SDimitry Andric if (AI != AE && (*AI)->isAlignValT()) { 14060b57cec5SDimitry Andric Params.Alignment = true; 14070b57cec5SDimitry Andric ++AI; 14080b57cec5SDimitry Andric } 14090b57cec5SDimitry Andric 14100b57cec5SDimitry Andric assert(AI == AE && "unexpected usual deallocation function parameter"); 14110b57cec5SDimitry Andric return Params; 14120b57cec5SDimitry Andric } 14130b57cec5SDimitry Andric 14140b57cec5SDimitry Andric namespace { 14150b57cec5SDimitry Andric /// A cleanup to call the given 'operator delete' function upon abnormal 14160b57cec5SDimitry Andric /// exit from a new expression. Templated on a traits type that deals with 14170b57cec5SDimitry Andric /// ensuring that the arguments dominate the cleanup if necessary. 14180b57cec5SDimitry Andric template<typename Traits> 14190b57cec5SDimitry Andric class CallDeleteDuringNew final : public EHScopeStack::Cleanup { 14200b57cec5SDimitry Andric /// Type used to hold llvm::Value*s. 14210b57cec5SDimitry Andric typedef typename Traits::ValueTy ValueTy; 14220b57cec5SDimitry Andric /// Type used to hold RValues. 14230b57cec5SDimitry Andric typedef typename Traits::RValueTy RValueTy; 14240b57cec5SDimitry Andric struct PlacementArg { 14250b57cec5SDimitry Andric RValueTy ArgValue; 14260b57cec5SDimitry Andric QualType ArgType; 14270b57cec5SDimitry Andric }; 14280b57cec5SDimitry Andric 14290b57cec5SDimitry Andric unsigned NumPlacementArgs : 31; 1430*0fca6ea1SDimitry Andric LLVM_PREFERRED_TYPE(bool) 14310b57cec5SDimitry Andric unsigned PassAlignmentToPlacementDelete : 1; 14320b57cec5SDimitry Andric const FunctionDecl *OperatorDelete; 14330b57cec5SDimitry Andric ValueTy Ptr; 14340b57cec5SDimitry Andric ValueTy AllocSize; 14350b57cec5SDimitry Andric CharUnits AllocAlign; 14360b57cec5SDimitry Andric 14370b57cec5SDimitry Andric PlacementArg *getPlacementArgs() { 14380b57cec5SDimitry Andric return reinterpret_cast<PlacementArg *>(this + 1); 14390b57cec5SDimitry Andric } 14400b57cec5SDimitry Andric 14410b57cec5SDimitry Andric public: 14420b57cec5SDimitry Andric static size_t getExtraSize(size_t NumPlacementArgs) { 14430b57cec5SDimitry Andric return NumPlacementArgs * sizeof(PlacementArg); 14440b57cec5SDimitry Andric } 14450b57cec5SDimitry Andric 14460b57cec5SDimitry Andric CallDeleteDuringNew(size_t NumPlacementArgs, 14470b57cec5SDimitry Andric const FunctionDecl *OperatorDelete, ValueTy Ptr, 14480b57cec5SDimitry Andric ValueTy AllocSize, bool PassAlignmentToPlacementDelete, 14490b57cec5SDimitry Andric CharUnits AllocAlign) 14500b57cec5SDimitry Andric : NumPlacementArgs(NumPlacementArgs), 14510b57cec5SDimitry Andric PassAlignmentToPlacementDelete(PassAlignmentToPlacementDelete), 14520b57cec5SDimitry Andric OperatorDelete(OperatorDelete), Ptr(Ptr), AllocSize(AllocSize), 14530b57cec5SDimitry Andric AllocAlign(AllocAlign) {} 14540b57cec5SDimitry Andric 14550b57cec5SDimitry Andric void setPlacementArg(unsigned I, RValueTy Arg, QualType Type) { 14560b57cec5SDimitry Andric assert(I < NumPlacementArgs && "index out of range"); 14570b57cec5SDimitry Andric getPlacementArgs()[I] = {Arg, Type}; 14580b57cec5SDimitry Andric } 14590b57cec5SDimitry Andric 14600b57cec5SDimitry Andric void Emit(CodeGenFunction &CGF, Flags flags) override { 1461480093f4SDimitry Andric const auto *FPT = OperatorDelete->getType()->castAs<FunctionProtoType>(); 14620b57cec5SDimitry Andric CallArgList DeleteArgs; 14630b57cec5SDimitry Andric 14640b57cec5SDimitry Andric // The first argument is always a void* (or C* for a destroying operator 14650b57cec5SDimitry Andric // delete for class type C). 14660b57cec5SDimitry Andric DeleteArgs.add(Traits::get(CGF, Ptr), FPT->getParamType(0)); 14670b57cec5SDimitry Andric 14680b57cec5SDimitry Andric // Figure out what other parameters we should be implicitly passing. 14690b57cec5SDimitry Andric UsualDeleteParams Params; 14700b57cec5SDimitry Andric if (NumPlacementArgs) { 14710b57cec5SDimitry Andric // A placement deallocation function is implicitly passed an alignment 14720b57cec5SDimitry Andric // if the placement allocation function was, but is never passed a size. 14730b57cec5SDimitry Andric Params.Alignment = PassAlignmentToPlacementDelete; 14740b57cec5SDimitry Andric } else { 14750b57cec5SDimitry Andric // For a non-placement new-expression, 'operator delete' can take a 14760b57cec5SDimitry Andric // size and/or an alignment if it has the right parameters. 14770b57cec5SDimitry Andric Params = getUsualDeleteParams(OperatorDelete); 14780b57cec5SDimitry Andric } 14790b57cec5SDimitry Andric 14800b57cec5SDimitry Andric assert(!Params.DestroyingDelete && 14810b57cec5SDimitry Andric "should not call destroying delete in a new-expression"); 14820b57cec5SDimitry Andric 14830b57cec5SDimitry Andric // The second argument can be a std::size_t (for non-placement delete). 14840b57cec5SDimitry Andric if (Params.Size) 14850b57cec5SDimitry Andric DeleteArgs.add(Traits::get(CGF, AllocSize), 14860b57cec5SDimitry Andric CGF.getContext().getSizeType()); 14870b57cec5SDimitry Andric 14880b57cec5SDimitry Andric // The next (second or third) argument can be a std::align_val_t, which 14890b57cec5SDimitry Andric // is an enum whose underlying type is std::size_t. 14900b57cec5SDimitry Andric // FIXME: Use the right type as the parameter type. Note that in a call 14910b57cec5SDimitry Andric // to operator delete(size_t, ...), we may not have it available. 14920b57cec5SDimitry Andric if (Params.Alignment) 14930b57cec5SDimitry Andric DeleteArgs.add(RValue::get(llvm::ConstantInt::get( 14940b57cec5SDimitry Andric CGF.SizeTy, AllocAlign.getQuantity())), 14950b57cec5SDimitry Andric CGF.getContext().getSizeType()); 14960b57cec5SDimitry Andric 14970b57cec5SDimitry Andric // Pass the rest of the arguments, which must match exactly. 14980b57cec5SDimitry Andric for (unsigned I = 0; I != NumPlacementArgs; ++I) { 14990b57cec5SDimitry Andric auto Arg = getPlacementArgs()[I]; 15000b57cec5SDimitry Andric DeleteArgs.add(Traits::get(CGF, Arg.ArgValue), Arg.ArgType); 15010b57cec5SDimitry Andric } 15020b57cec5SDimitry Andric 15030b57cec5SDimitry Andric // Call 'operator delete'. 15040b57cec5SDimitry Andric EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs); 15050b57cec5SDimitry Andric } 15060b57cec5SDimitry Andric }; 15070b57cec5SDimitry Andric } 15080b57cec5SDimitry Andric 15090b57cec5SDimitry Andric /// Enter a cleanup to call 'operator delete' if the initializer in a 15100b57cec5SDimitry Andric /// new-expression throws. 15110b57cec5SDimitry Andric static void EnterNewDeleteCleanup(CodeGenFunction &CGF, 15120b57cec5SDimitry Andric const CXXNewExpr *E, 15130b57cec5SDimitry Andric Address NewPtr, 15140b57cec5SDimitry Andric llvm::Value *AllocSize, 15150b57cec5SDimitry Andric CharUnits AllocAlign, 15160b57cec5SDimitry Andric const CallArgList &NewArgs) { 15170b57cec5SDimitry Andric unsigned NumNonPlacementArgs = E->passAlignment() ? 2 : 1; 15180b57cec5SDimitry Andric 15190b57cec5SDimitry Andric // If we're not inside a conditional branch, then the cleanup will 15200b57cec5SDimitry Andric // dominate and we can do the easier (and more efficient) thing. 15210b57cec5SDimitry Andric if (!CGF.isInConditionalBranch()) { 15220b57cec5SDimitry Andric struct DirectCleanupTraits { 15230b57cec5SDimitry Andric typedef llvm::Value *ValueTy; 15240b57cec5SDimitry Andric typedef RValue RValueTy; 15250b57cec5SDimitry Andric static RValue get(CodeGenFunction &, ValueTy V) { return RValue::get(V); } 15260b57cec5SDimitry Andric static RValue get(CodeGenFunction &, RValueTy V) { return V; } 15270b57cec5SDimitry Andric }; 15280b57cec5SDimitry Andric 15290b57cec5SDimitry Andric typedef CallDeleteDuringNew<DirectCleanupTraits> DirectCleanup; 15300b57cec5SDimitry Andric 1531*0fca6ea1SDimitry Andric DirectCleanup *Cleanup = CGF.EHStack.pushCleanupWithExtra<DirectCleanup>( 1532*0fca6ea1SDimitry Andric EHCleanup, E->getNumPlacementArgs(), E->getOperatorDelete(), 1533*0fca6ea1SDimitry Andric NewPtr.emitRawPointer(CGF), AllocSize, E->passAlignment(), AllocAlign); 15340b57cec5SDimitry Andric for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) { 15350b57cec5SDimitry Andric auto &Arg = NewArgs[I + NumNonPlacementArgs]; 15360b57cec5SDimitry Andric Cleanup->setPlacementArg(I, Arg.getRValue(CGF), Arg.Ty); 15370b57cec5SDimitry Andric } 15380b57cec5SDimitry Andric 15390b57cec5SDimitry Andric return; 15400b57cec5SDimitry Andric } 15410b57cec5SDimitry Andric 15420b57cec5SDimitry Andric // Otherwise, we need to save all this stuff. 15430b57cec5SDimitry Andric DominatingValue<RValue>::saved_type SavedNewPtr = 1544*0fca6ea1SDimitry Andric DominatingValue<RValue>::save(CGF, RValue::get(NewPtr, CGF)); 15450b57cec5SDimitry Andric DominatingValue<RValue>::saved_type SavedAllocSize = 15460b57cec5SDimitry Andric DominatingValue<RValue>::save(CGF, RValue::get(AllocSize)); 15470b57cec5SDimitry Andric 15480b57cec5SDimitry Andric struct ConditionalCleanupTraits { 15490b57cec5SDimitry Andric typedef DominatingValue<RValue>::saved_type ValueTy; 15500b57cec5SDimitry Andric typedef DominatingValue<RValue>::saved_type RValueTy; 15510b57cec5SDimitry Andric static RValue get(CodeGenFunction &CGF, ValueTy V) { 15520b57cec5SDimitry Andric return V.restore(CGF); 15530b57cec5SDimitry Andric } 15540b57cec5SDimitry Andric }; 15550b57cec5SDimitry Andric typedef CallDeleteDuringNew<ConditionalCleanupTraits> ConditionalCleanup; 15560b57cec5SDimitry Andric 15570b57cec5SDimitry Andric ConditionalCleanup *Cleanup = CGF.EHStack 15580b57cec5SDimitry Andric .pushCleanupWithExtra<ConditionalCleanup>(EHCleanup, 15590b57cec5SDimitry Andric E->getNumPlacementArgs(), 15600b57cec5SDimitry Andric E->getOperatorDelete(), 15610b57cec5SDimitry Andric SavedNewPtr, 15620b57cec5SDimitry Andric SavedAllocSize, 15630b57cec5SDimitry Andric E->passAlignment(), 15640b57cec5SDimitry Andric AllocAlign); 15650b57cec5SDimitry Andric for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) { 15660b57cec5SDimitry Andric auto &Arg = NewArgs[I + NumNonPlacementArgs]; 15670b57cec5SDimitry Andric Cleanup->setPlacementArg( 15680b57cec5SDimitry Andric I, DominatingValue<RValue>::save(CGF, Arg.getRValue(CGF)), Arg.Ty); 15690b57cec5SDimitry Andric } 15700b57cec5SDimitry Andric 15710b57cec5SDimitry Andric CGF.initFullExprCleanup(); 15720b57cec5SDimitry Andric } 15730b57cec5SDimitry Andric 15740b57cec5SDimitry Andric llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) { 15750b57cec5SDimitry Andric // The element type being allocated. 15760b57cec5SDimitry Andric QualType allocType = getContext().getBaseElementType(E->getAllocatedType()); 15770b57cec5SDimitry Andric 15780b57cec5SDimitry Andric // 1. Build a call to the allocation function. 15790b57cec5SDimitry Andric FunctionDecl *allocator = E->getOperatorNew(); 15800b57cec5SDimitry Andric 15817a6dacacSDimitry Andric // If there is a brace-initializer or C++20 parenthesized initializer, cannot 15827a6dacacSDimitry Andric // allocate fewer elements than inits. 15830b57cec5SDimitry Andric unsigned minElements = 0; 15840b57cec5SDimitry Andric if (E->isArray() && E->hasInitializer()) { 15857a6dacacSDimitry Andric const Expr *Init = E->getInitializer(); 15867a6dacacSDimitry Andric const InitListExpr *ILE = dyn_cast<InitListExpr>(Init); 15877a6dacacSDimitry Andric const CXXParenListInitExpr *CPLIE = dyn_cast<CXXParenListInitExpr>(Init); 15887a6dacacSDimitry Andric const Expr *IgnoreParen = Init->IgnoreParenImpCasts(); 15897a6dacacSDimitry Andric if ((ILE && ILE->isStringLiteralInit()) || 15907a6dacacSDimitry Andric isa<StringLiteral>(IgnoreParen) || isa<ObjCEncodeExpr>(IgnoreParen)) { 15910b57cec5SDimitry Andric minElements = 15927a6dacacSDimitry Andric cast<ConstantArrayType>(Init->getType()->getAsArrayTypeUnsafe()) 1593*0fca6ea1SDimitry Andric ->getZExtSize(); 15947a6dacacSDimitry Andric } else if (ILE || CPLIE) { 15957a6dacacSDimitry Andric minElements = ILE ? ILE->getNumInits() : CPLIE->getInitExprs().size(); 15967a6dacacSDimitry Andric } 15970b57cec5SDimitry Andric } 15980b57cec5SDimitry Andric 15990b57cec5SDimitry Andric llvm::Value *numElements = nullptr; 16000b57cec5SDimitry Andric llvm::Value *allocSizeWithoutCookie = nullptr; 16010b57cec5SDimitry Andric llvm::Value *allocSize = 16020b57cec5SDimitry Andric EmitCXXNewAllocSize(*this, E, minElements, numElements, 16030b57cec5SDimitry Andric allocSizeWithoutCookie); 16042a66634dSDimitry Andric CharUnits allocAlign = getContext().getTypeAlignInChars(allocType); 16050b57cec5SDimitry Andric 16060b57cec5SDimitry Andric // Emit the allocation call. If the allocator is a global placement 16070b57cec5SDimitry Andric // operator, just "inline" it directly. 16080b57cec5SDimitry Andric Address allocation = Address::invalid(); 16090b57cec5SDimitry Andric CallArgList allocatorArgs; 16100b57cec5SDimitry Andric if (allocator->isReservedGlobalPlacementOperator()) { 16110b57cec5SDimitry Andric assert(E->getNumPlacementArgs() == 1); 16120b57cec5SDimitry Andric const Expr *arg = *E->placement_arguments().begin(); 16130b57cec5SDimitry Andric 16140b57cec5SDimitry Andric LValueBaseInfo BaseInfo; 16150b57cec5SDimitry Andric allocation = EmitPointerWithAlignment(arg, &BaseInfo); 16160b57cec5SDimitry Andric 16170b57cec5SDimitry Andric // The pointer expression will, in many cases, be an opaque void*. 16180b57cec5SDimitry Andric // In these cases, discard the computed alignment and use the 16190b57cec5SDimitry Andric // formal alignment of the allocated type. 16200b57cec5SDimitry Andric if (BaseInfo.getAlignmentSource() != AlignmentSource::Decl) 1621*0fca6ea1SDimitry Andric allocation.setAlignment(allocAlign); 16220b57cec5SDimitry Andric 16230b57cec5SDimitry Andric // Set up allocatorArgs for the call to operator delete if it's not 16240b57cec5SDimitry Andric // the reserved global operator. 16250b57cec5SDimitry Andric if (E->getOperatorDelete() && 16260b57cec5SDimitry Andric !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) { 16270b57cec5SDimitry Andric allocatorArgs.add(RValue::get(allocSize), getContext().getSizeType()); 1628*0fca6ea1SDimitry Andric allocatorArgs.add(RValue::get(allocation, *this), arg->getType()); 16290b57cec5SDimitry Andric } 16300b57cec5SDimitry Andric 16310b57cec5SDimitry Andric } else { 16320b57cec5SDimitry Andric const FunctionProtoType *allocatorType = 16330b57cec5SDimitry Andric allocator->getType()->castAs<FunctionProtoType>(); 16340b57cec5SDimitry Andric unsigned ParamsToSkip = 0; 16350b57cec5SDimitry Andric 16360b57cec5SDimitry Andric // The allocation size is the first argument. 16370b57cec5SDimitry Andric QualType sizeType = getContext().getSizeType(); 16380b57cec5SDimitry Andric allocatorArgs.add(RValue::get(allocSize), sizeType); 16390b57cec5SDimitry Andric ++ParamsToSkip; 16400b57cec5SDimitry Andric 16410b57cec5SDimitry Andric if (allocSize != allocSizeWithoutCookie) { 16420b57cec5SDimitry Andric CharUnits cookieAlign = getSizeAlign(); // FIXME: Ask the ABI. 16430b57cec5SDimitry Andric allocAlign = std::max(allocAlign, cookieAlign); 16440b57cec5SDimitry Andric } 16450b57cec5SDimitry Andric 16460b57cec5SDimitry Andric // The allocation alignment may be passed as the second argument. 16470b57cec5SDimitry Andric if (E->passAlignment()) { 16480b57cec5SDimitry Andric QualType AlignValT = sizeType; 16490b57cec5SDimitry Andric if (allocatorType->getNumParams() > 1) { 16500b57cec5SDimitry Andric AlignValT = allocatorType->getParamType(1); 16510b57cec5SDimitry Andric assert(getContext().hasSameUnqualifiedType( 16520b57cec5SDimitry Andric AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(), 16530b57cec5SDimitry Andric sizeType) && 16540b57cec5SDimitry Andric "wrong type for alignment parameter"); 16550b57cec5SDimitry Andric ++ParamsToSkip; 16560b57cec5SDimitry Andric } else { 16570b57cec5SDimitry Andric // Corner case, passing alignment to 'operator new(size_t, ...)'. 16580b57cec5SDimitry Andric assert(allocator->isVariadic() && "can't pass alignment to allocator"); 16590b57cec5SDimitry Andric } 16600b57cec5SDimitry Andric allocatorArgs.add( 16610b57cec5SDimitry Andric RValue::get(llvm::ConstantInt::get(SizeTy, allocAlign.getQuantity())), 16620b57cec5SDimitry Andric AlignValT); 16630b57cec5SDimitry Andric } 16640b57cec5SDimitry Andric 16650b57cec5SDimitry Andric // FIXME: Why do we not pass a CalleeDecl here? 16660b57cec5SDimitry Andric EmitCallArgs(allocatorArgs, allocatorType, E->placement_arguments(), 16670b57cec5SDimitry Andric /*AC*/AbstractCallee(), /*ParamsToSkip*/ParamsToSkip); 16680b57cec5SDimitry Andric 16690b57cec5SDimitry Andric RValue RV = 16700b57cec5SDimitry Andric EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs); 16710b57cec5SDimitry Andric 16725ffd83dbSDimitry Andric // Set !heapallocsite metadata on the call to operator new. 16735ffd83dbSDimitry Andric if (getDebugInfo()) 16745ffd83dbSDimitry Andric if (auto *newCall = dyn_cast<llvm::CallBase>(RV.getScalarVal())) 16755ffd83dbSDimitry Andric getDebugInfo()->addHeapAllocSiteMetadata(newCall, allocType, 16765ffd83dbSDimitry Andric E->getExprLoc()); 16775ffd83dbSDimitry Andric 16780b57cec5SDimitry Andric // If this was a call to a global replaceable allocation function that does 16790b57cec5SDimitry Andric // not take an alignment argument, the allocator is known to produce 16800b57cec5SDimitry Andric // storage that's suitably aligned for any object that fits, up to a known 16810b57cec5SDimitry Andric // threshold. Otherwise assume it's suitably aligned for the allocated type. 16820b57cec5SDimitry Andric CharUnits allocationAlign = allocAlign; 16830b57cec5SDimitry Andric if (!E->passAlignment() && 16840b57cec5SDimitry Andric allocator->isReplaceableGlobalAllocationFunction()) { 168506c3fb27SDimitry Andric unsigned AllocatorAlign = llvm::bit_floor(std::min<uint64_t>( 16860b57cec5SDimitry Andric Target.getNewAlign(), getContext().getTypeSize(allocType))); 16870b57cec5SDimitry Andric allocationAlign = std::max( 16880b57cec5SDimitry Andric allocationAlign, getContext().toCharUnitsFromBits(AllocatorAlign)); 16890b57cec5SDimitry Andric } 16900b57cec5SDimitry Andric 16910eae32dcSDimitry Andric allocation = Address(RV.getScalarVal(), Int8Ty, allocationAlign); 16920b57cec5SDimitry Andric } 16930b57cec5SDimitry Andric 16940b57cec5SDimitry Andric // Emit a null check on the allocation result if the allocation 16950b57cec5SDimitry Andric // function is allowed to return null (because it has a non-throwing 16960b57cec5SDimitry Andric // exception spec or is the reserved placement new) and we have an 16970b57cec5SDimitry Andric // interesting initializer will be running sanitizers on the initialization. 16980b57cec5SDimitry Andric bool nullCheck = E->shouldNullCheckAllocation() && 16990b57cec5SDimitry Andric (!allocType.isPODType(getContext()) || E->hasInitializer() || 17000b57cec5SDimitry Andric sanitizePerformTypeCheck()); 17010b57cec5SDimitry Andric 17020b57cec5SDimitry Andric llvm::BasicBlock *nullCheckBB = nullptr; 17030b57cec5SDimitry Andric llvm::BasicBlock *contBB = nullptr; 17040b57cec5SDimitry Andric 17050b57cec5SDimitry Andric // The null-check means that the initializer is conditionally 17060b57cec5SDimitry Andric // evaluated. 17070b57cec5SDimitry Andric ConditionalEvaluation conditional(*this); 17080b57cec5SDimitry Andric 17090b57cec5SDimitry Andric if (nullCheck) { 17100b57cec5SDimitry Andric conditional.begin(*this); 17110b57cec5SDimitry Andric 17120b57cec5SDimitry Andric nullCheckBB = Builder.GetInsertBlock(); 17130b57cec5SDimitry Andric llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull"); 17140b57cec5SDimitry Andric contBB = createBasicBlock("new.cont"); 17150b57cec5SDimitry Andric 1716*0fca6ea1SDimitry Andric llvm::Value *isNull = Builder.CreateIsNull(allocation, "new.isnull"); 17170b57cec5SDimitry Andric Builder.CreateCondBr(isNull, contBB, notNullBB); 17180b57cec5SDimitry Andric EmitBlock(notNullBB); 17190b57cec5SDimitry Andric } 17200b57cec5SDimitry Andric 17210b57cec5SDimitry Andric // If there's an operator delete, enter a cleanup to call it if an 17220b57cec5SDimitry Andric // exception is thrown. 17230b57cec5SDimitry Andric EHScopeStack::stable_iterator operatorDeleteCleanup; 17240b57cec5SDimitry Andric llvm::Instruction *cleanupDominator = nullptr; 17250b57cec5SDimitry Andric if (E->getOperatorDelete() && 17260b57cec5SDimitry Andric !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) { 17270b57cec5SDimitry Andric EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocAlign, 17280b57cec5SDimitry Andric allocatorArgs); 17290b57cec5SDimitry Andric operatorDeleteCleanup = EHStack.stable_begin(); 17300b57cec5SDimitry Andric cleanupDominator = Builder.CreateUnreachable(); 17310b57cec5SDimitry Andric } 17320b57cec5SDimitry Andric 17330b57cec5SDimitry Andric assert((allocSize == allocSizeWithoutCookie) == 17340b57cec5SDimitry Andric CalculateCookiePadding(*this, E).isZero()); 17350b57cec5SDimitry Andric if (allocSize != allocSizeWithoutCookie) { 17360b57cec5SDimitry Andric assert(E->isArray()); 17370b57cec5SDimitry Andric allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation, 17380b57cec5SDimitry Andric numElements, 17390b57cec5SDimitry Andric E, allocType); 17400b57cec5SDimitry Andric } 17410b57cec5SDimitry Andric 17420b57cec5SDimitry Andric llvm::Type *elementTy = ConvertTypeForMem(allocType); 174306c3fb27SDimitry Andric Address result = allocation.withElementType(elementTy); 17440b57cec5SDimitry Andric 17450b57cec5SDimitry Andric // Passing pointer through launder.invariant.group to avoid propagation of 17460b57cec5SDimitry Andric // vptrs information which may be included in previous type. 17470b57cec5SDimitry Andric // To not break LTO with different optimizations levels, we do it regardless 17480b57cec5SDimitry Andric // of optimization level. 17490b57cec5SDimitry Andric if (CGM.getCodeGenOpts().StrictVTablePointers && 17500b57cec5SDimitry Andric allocator->isReservedGlobalPlacementOperator()) 17510eae32dcSDimitry Andric result = Builder.CreateLaunderInvariantGroup(result); 17520b57cec5SDimitry Andric 17530b57cec5SDimitry Andric // Emit sanitizer checks for pointer value now, so that in the case of an 17540b57cec5SDimitry Andric // array it was checked only once and not at each constructor call. We may 17550b57cec5SDimitry Andric // have already checked that the pointer is non-null. 17560b57cec5SDimitry Andric // FIXME: If we have an array cookie and a potentially-throwing allocator, 17570b57cec5SDimitry Andric // we'll null check the wrong pointer here. 17580b57cec5SDimitry Andric SanitizerSet SkippedChecks; 17590b57cec5SDimitry Andric SkippedChecks.set(SanitizerKind::Null, nullCheck); 17600b57cec5SDimitry Andric EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall, 17610b57cec5SDimitry Andric E->getAllocatedTypeSourceInfo()->getTypeLoc().getBeginLoc(), 1762*0fca6ea1SDimitry Andric result, allocType, result.getAlignment(), SkippedChecks, 1763*0fca6ea1SDimitry Andric numElements); 17640b57cec5SDimitry Andric 17650b57cec5SDimitry Andric EmitNewInitializer(*this, E, allocType, elementTy, result, numElements, 17660b57cec5SDimitry Andric allocSizeWithoutCookie); 1767*0fca6ea1SDimitry Andric llvm::Value *resultPtr = result.emitRawPointer(*this); 17680b57cec5SDimitry Andric if (E->isArray()) { 17690b57cec5SDimitry Andric // NewPtr is a pointer to the base element type. If we're 17700b57cec5SDimitry Andric // allocating an array of arrays, we'll need to cast back to the 17710b57cec5SDimitry Andric // array pointer type. 17720b57cec5SDimitry Andric llvm::Type *resultType = ConvertTypeForMem(E->getType()); 177381ad6265SDimitry Andric if (resultPtr->getType() != resultType) 177481ad6265SDimitry Andric resultPtr = Builder.CreateBitCast(resultPtr, resultType); 17750b57cec5SDimitry Andric } 17760b57cec5SDimitry Andric 17770b57cec5SDimitry Andric // Deactivate the 'operator delete' cleanup if we finished 17780b57cec5SDimitry Andric // initialization. 17790b57cec5SDimitry Andric if (operatorDeleteCleanup.isValid()) { 17800b57cec5SDimitry Andric DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator); 17810b57cec5SDimitry Andric cleanupDominator->eraseFromParent(); 17820b57cec5SDimitry Andric } 17830b57cec5SDimitry Andric 17840b57cec5SDimitry Andric if (nullCheck) { 17850b57cec5SDimitry Andric conditional.end(*this); 17860b57cec5SDimitry Andric 17870b57cec5SDimitry Andric llvm::BasicBlock *notNullBB = Builder.GetInsertBlock(); 17880b57cec5SDimitry Andric EmitBlock(contBB); 17890b57cec5SDimitry Andric 17900b57cec5SDimitry Andric llvm::PHINode *PHI = Builder.CreatePHI(resultPtr->getType(), 2); 17910b57cec5SDimitry Andric PHI->addIncoming(resultPtr, notNullBB); 17920b57cec5SDimitry Andric PHI->addIncoming(llvm::Constant::getNullValue(resultPtr->getType()), 17930b57cec5SDimitry Andric nullCheckBB); 17940b57cec5SDimitry Andric 17950b57cec5SDimitry Andric resultPtr = PHI; 17960b57cec5SDimitry Andric } 17970b57cec5SDimitry Andric 17980b57cec5SDimitry Andric return resultPtr; 17990b57cec5SDimitry Andric } 18000b57cec5SDimitry Andric 18010b57cec5SDimitry Andric void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD, 18020b57cec5SDimitry Andric llvm::Value *Ptr, QualType DeleteTy, 18030b57cec5SDimitry Andric llvm::Value *NumElements, 18040b57cec5SDimitry Andric CharUnits CookieSize) { 18050b57cec5SDimitry Andric assert((!NumElements && CookieSize.isZero()) || 18060b57cec5SDimitry Andric DeleteFD->getOverloadedOperator() == OO_Array_Delete); 18070b57cec5SDimitry Andric 1808480093f4SDimitry Andric const auto *DeleteFTy = DeleteFD->getType()->castAs<FunctionProtoType>(); 18090b57cec5SDimitry Andric CallArgList DeleteArgs; 18100b57cec5SDimitry Andric 18110b57cec5SDimitry Andric auto Params = getUsualDeleteParams(DeleteFD); 18120b57cec5SDimitry Andric auto ParamTypeIt = DeleteFTy->param_type_begin(); 18130b57cec5SDimitry Andric 18140b57cec5SDimitry Andric // Pass the pointer itself. 18150b57cec5SDimitry Andric QualType ArgTy = *ParamTypeIt++; 18160b57cec5SDimitry Andric llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy)); 18170b57cec5SDimitry Andric DeleteArgs.add(RValue::get(DeletePtr), ArgTy); 18180b57cec5SDimitry Andric 18190b57cec5SDimitry Andric // Pass the std::destroying_delete tag if present. 1820e8d8bef9SDimitry Andric llvm::AllocaInst *DestroyingDeleteTag = nullptr; 18210b57cec5SDimitry Andric if (Params.DestroyingDelete) { 18220b57cec5SDimitry Andric QualType DDTag = *ParamTypeIt++; 1823e8d8bef9SDimitry Andric llvm::Type *Ty = getTypes().ConvertType(DDTag); 1824e8d8bef9SDimitry Andric CharUnits Align = CGM.getNaturalTypeAlignment(DDTag); 1825e8d8bef9SDimitry Andric DestroyingDeleteTag = CreateTempAlloca(Ty, "destroying.delete.tag"); 1826e8d8bef9SDimitry Andric DestroyingDeleteTag->setAlignment(Align.getAsAlign()); 182781ad6265SDimitry Andric DeleteArgs.add( 182881ad6265SDimitry Andric RValue::getAggregate(Address(DestroyingDeleteTag, Ty, Align)), DDTag); 18290b57cec5SDimitry Andric } 18300b57cec5SDimitry Andric 18310b57cec5SDimitry Andric // Pass the size if the delete function has a size_t parameter. 18320b57cec5SDimitry Andric if (Params.Size) { 18330b57cec5SDimitry Andric QualType SizeType = *ParamTypeIt++; 18340b57cec5SDimitry Andric CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy); 18350b57cec5SDimitry Andric llvm::Value *Size = llvm::ConstantInt::get(ConvertType(SizeType), 18360b57cec5SDimitry Andric DeleteTypeSize.getQuantity()); 18370b57cec5SDimitry Andric 18380b57cec5SDimitry Andric // For array new, multiply by the number of elements. 18390b57cec5SDimitry Andric if (NumElements) 18400b57cec5SDimitry Andric Size = Builder.CreateMul(Size, NumElements); 18410b57cec5SDimitry Andric 18420b57cec5SDimitry Andric // If there is a cookie, add the cookie size. 18430b57cec5SDimitry Andric if (!CookieSize.isZero()) 18440b57cec5SDimitry Andric Size = Builder.CreateAdd( 18450b57cec5SDimitry Andric Size, llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity())); 18460b57cec5SDimitry Andric 18470b57cec5SDimitry Andric DeleteArgs.add(RValue::get(Size), SizeType); 18480b57cec5SDimitry Andric } 18490b57cec5SDimitry Andric 18500b57cec5SDimitry Andric // Pass the alignment if the delete function has an align_val_t parameter. 18510b57cec5SDimitry Andric if (Params.Alignment) { 18520b57cec5SDimitry Andric QualType AlignValType = *ParamTypeIt++; 1853e8d8bef9SDimitry Andric CharUnits DeleteTypeAlign = 1854e8d8bef9SDimitry Andric getContext().toCharUnitsFromBits(getContext().getTypeAlignIfKnown( 1855e8d8bef9SDimitry Andric DeleteTy, true /* NeedsPreferredAlignment */)); 18560b57cec5SDimitry Andric llvm::Value *Align = llvm::ConstantInt::get(ConvertType(AlignValType), 18570b57cec5SDimitry Andric DeleteTypeAlign.getQuantity()); 18580b57cec5SDimitry Andric DeleteArgs.add(RValue::get(Align), AlignValType); 18590b57cec5SDimitry Andric } 18600b57cec5SDimitry Andric 18610b57cec5SDimitry Andric assert(ParamTypeIt == DeleteFTy->param_type_end() && 18620b57cec5SDimitry Andric "unknown parameter to usual delete function"); 18630b57cec5SDimitry Andric 18640b57cec5SDimitry Andric // Emit the call to delete. 18650b57cec5SDimitry Andric EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs); 1866e8d8bef9SDimitry Andric 1867e8d8bef9SDimitry Andric // If call argument lowering didn't use the destroying_delete_t alloca, 1868e8d8bef9SDimitry Andric // remove it again. 1869e8d8bef9SDimitry Andric if (DestroyingDeleteTag && DestroyingDeleteTag->use_empty()) 1870e8d8bef9SDimitry Andric DestroyingDeleteTag->eraseFromParent(); 18710b57cec5SDimitry Andric } 18720b57cec5SDimitry Andric 18730b57cec5SDimitry Andric namespace { 18740b57cec5SDimitry Andric /// Calls the given 'operator delete' on a single object. 18750b57cec5SDimitry Andric struct CallObjectDelete final : EHScopeStack::Cleanup { 18760b57cec5SDimitry Andric llvm::Value *Ptr; 18770b57cec5SDimitry Andric const FunctionDecl *OperatorDelete; 18780b57cec5SDimitry Andric QualType ElementType; 18790b57cec5SDimitry Andric 18800b57cec5SDimitry Andric CallObjectDelete(llvm::Value *Ptr, 18810b57cec5SDimitry Andric const FunctionDecl *OperatorDelete, 18820b57cec5SDimitry Andric QualType ElementType) 18830b57cec5SDimitry Andric : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {} 18840b57cec5SDimitry Andric 18850b57cec5SDimitry Andric void Emit(CodeGenFunction &CGF, Flags flags) override { 18860b57cec5SDimitry Andric CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType); 18870b57cec5SDimitry Andric } 18880b57cec5SDimitry Andric }; 18890b57cec5SDimitry Andric } 18900b57cec5SDimitry Andric 18910b57cec5SDimitry Andric void 18920b57cec5SDimitry Andric CodeGenFunction::pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete, 18930b57cec5SDimitry Andric llvm::Value *CompletePtr, 18940b57cec5SDimitry Andric QualType ElementType) { 18950b57cec5SDimitry Andric EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, CompletePtr, 18960b57cec5SDimitry Andric OperatorDelete, ElementType); 18970b57cec5SDimitry Andric } 18980b57cec5SDimitry Andric 18990b57cec5SDimitry Andric /// Emit the code for deleting a single object with a destroying operator 19000b57cec5SDimitry Andric /// delete. If the element type has a non-virtual destructor, Ptr has already 19010b57cec5SDimitry Andric /// been converted to the type of the parameter of 'operator delete'. Otherwise 19020b57cec5SDimitry Andric /// Ptr points to an object of the static type. 19030b57cec5SDimitry Andric static void EmitDestroyingObjectDelete(CodeGenFunction &CGF, 19040b57cec5SDimitry Andric const CXXDeleteExpr *DE, Address Ptr, 19050b57cec5SDimitry Andric QualType ElementType) { 19060b57cec5SDimitry Andric auto *Dtor = ElementType->getAsCXXRecordDecl()->getDestructor(); 19070b57cec5SDimitry Andric if (Dtor && Dtor->isVirtual()) 19080b57cec5SDimitry Andric CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType, 19090b57cec5SDimitry Andric Dtor); 19100b57cec5SDimitry Andric else 1911*0fca6ea1SDimitry Andric CGF.EmitDeleteCall(DE->getOperatorDelete(), Ptr.emitRawPointer(CGF), 1912*0fca6ea1SDimitry Andric ElementType); 19130b57cec5SDimitry Andric } 19140b57cec5SDimitry Andric 19150b57cec5SDimitry Andric /// Emit the code for deleting a single object. 19165ffd83dbSDimitry Andric /// \return \c true if we started emitting UnconditionalDeleteBlock, \c false 19175ffd83dbSDimitry Andric /// if not. 19185ffd83dbSDimitry Andric static bool EmitObjectDelete(CodeGenFunction &CGF, 19190b57cec5SDimitry Andric const CXXDeleteExpr *DE, 19200b57cec5SDimitry Andric Address Ptr, 19215ffd83dbSDimitry Andric QualType ElementType, 19225ffd83dbSDimitry Andric llvm::BasicBlock *UnconditionalDeleteBlock) { 19230b57cec5SDimitry Andric // C++11 [expr.delete]p3: 19240b57cec5SDimitry Andric // If the static type of the object to be deleted is different from its 19250b57cec5SDimitry Andric // dynamic type, the static type shall be a base class of the dynamic type 19260b57cec5SDimitry Andric // of the object to be deleted and the static type shall have a virtual 19270b57cec5SDimitry Andric // destructor or the behavior is undefined. 1928*0fca6ea1SDimitry Andric CGF.EmitTypeCheck(CodeGenFunction::TCK_MemberCall, DE->getExprLoc(), Ptr, 19290b57cec5SDimitry Andric ElementType); 19300b57cec5SDimitry Andric 19310b57cec5SDimitry Andric const FunctionDecl *OperatorDelete = DE->getOperatorDelete(); 19320b57cec5SDimitry Andric assert(!OperatorDelete->isDestroyingOperatorDelete()); 19330b57cec5SDimitry Andric 19340b57cec5SDimitry Andric // Find the destructor for the type, if applicable. If the 19350b57cec5SDimitry Andric // destructor is virtual, we'll just emit the vcall and return. 19360b57cec5SDimitry Andric const CXXDestructorDecl *Dtor = nullptr; 19370b57cec5SDimitry Andric if (const RecordType *RT = ElementType->getAs<RecordType>()) { 19380b57cec5SDimitry Andric CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 19390b57cec5SDimitry Andric if (RD->hasDefinition() && !RD->hasTrivialDestructor()) { 19400b57cec5SDimitry Andric Dtor = RD->getDestructor(); 19410b57cec5SDimitry Andric 19420b57cec5SDimitry Andric if (Dtor->isVirtual()) { 1943a7dea167SDimitry Andric bool UseVirtualCall = true; 1944a7dea167SDimitry Andric const Expr *Base = DE->getArgument(); 1945a7dea167SDimitry Andric if (auto *DevirtualizedDtor = 1946a7dea167SDimitry Andric dyn_cast_or_null<const CXXDestructorDecl>( 1947a7dea167SDimitry Andric Dtor->getDevirtualizedMethod( 1948a7dea167SDimitry Andric Base, CGF.CGM.getLangOpts().AppleKext))) { 1949a7dea167SDimitry Andric UseVirtualCall = false; 1950a7dea167SDimitry Andric const CXXRecordDecl *DevirtualizedClass = 1951a7dea167SDimitry Andric DevirtualizedDtor->getParent(); 1952a7dea167SDimitry Andric if (declaresSameEntity(getCXXRecord(Base), DevirtualizedClass)) { 1953a7dea167SDimitry Andric // Devirtualized to the class of the base type (the type of the 1954a7dea167SDimitry Andric // whole expression). 1955a7dea167SDimitry Andric Dtor = DevirtualizedDtor; 1956a7dea167SDimitry Andric } else { 1957a7dea167SDimitry Andric // Devirtualized to some other type. Would need to cast the this 1958a7dea167SDimitry Andric // pointer to that type but we don't have support for that yet, so 1959a7dea167SDimitry Andric // do a virtual call. FIXME: handle the case where it is 1960a7dea167SDimitry Andric // devirtualized to the derived type (the type of the inner 1961a7dea167SDimitry Andric // expression) as in EmitCXXMemberOrOperatorMemberCallExpr. 1962a7dea167SDimitry Andric UseVirtualCall = true; 1963a7dea167SDimitry Andric } 1964a7dea167SDimitry Andric } 1965a7dea167SDimitry Andric if (UseVirtualCall) { 19660b57cec5SDimitry Andric CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType, 19670b57cec5SDimitry Andric Dtor); 19685ffd83dbSDimitry Andric return false; 19690b57cec5SDimitry Andric } 19700b57cec5SDimitry Andric } 19710b57cec5SDimitry Andric } 1972a7dea167SDimitry Andric } 19730b57cec5SDimitry Andric 19740b57cec5SDimitry Andric // Make sure that we call delete even if the dtor throws. 19750b57cec5SDimitry Andric // This doesn't have to a conditional cleanup because we're going 19760b57cec5SDimitry Andric // to pop it off in a second. 1977*0fca6ea1SDimitry Andric CGF.EHStack.pushCleanup<CallObjectDelete>( 1978*0fca6ea1SDimitry Andric NormalAndEHCleanup, Ptr.emitRawPointer(CGF), OperatorDelete, ElementType); 19790b57cec5SDimitry Andric 19800b57cec5SDimitry Andric if (Dtor) 19810b57cec5SDimitry Andric CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 19820b57cec5SDimitry Andric /*ForVirtualBase=*/false, 19830b57cec5SDimitry Andric /*Delegating=*/false, 19840b57cec5SDimitry Andric Ptr, ElementType); 19850b57cec5SDimitry Andric else if (auto Lifetime = ElementType.getObjCLifetime()) { 19860b57cec5SDimitry Andric switch (Lifetime) { 19870b57cec5SDimitry Andric case Qualifiers::OCL_None: 19880b57cec5SDimitry Andric case Qualifiers::OCL_ExplicitNone: 19890b57cec5SDimitry Andric case Qualifiers::OCL_Autoreleasing: 19900b57cec5SDimitry Andric break; 19910b57cec5SDimitry Andric 19920b57cec5SDimitry Andric case Qualifiers::OCL_Strong: 19930b57cec5SDimitry Andric CGF.EmitARCDestroyStrong(Ptr, ARCPreciseLifetime); 19940b57cec5SDimitry Andric break; 19950b57cec5SDimitry Andric 19960b57cec5SDimitry Andric case Qualifiers::OCL_Weak: 19970b57cec5SDimitry Andric CGF.EmitARCDestroyWeak(Ptr); 19980b57cec5SDimitry Andric break; 19990b57cec5SDimitry Andric } 20000b57cec5SDimitry Andric } 20010b57cec5SDimitry Andric 20025ffd83dbSDimitry Andric // When optimizing for size, call 'operator delete' unconditionally. 20035ffd83dbSDimitry Andric if (CGF.CGM.getCodeGenOpts().OptimizeSize > 1) { 20045ffd83dbSDimitry Andric CGF.EmitBlock(UnconditionalDeleteBlock); 20050b57cec5SDimitry Andric CGF.PopCleanupBlock(); 20065ffd83dbSDimitry Andric return true; 20075ffd83dbSDimitry Andric } 20085ffd83dbSDimitry Andric 20095ffd83dbSDimitry Andric CGF.PopCleanupBlock(); 20105ffd83dbSDimitry Andric return false; 20110b57cec5SDimitry Andric } 20120b57cec5SDimitry Andric 20130b57cec5SDimitry Andric namespace { 20140b57cec5SDimitry Andric /// Calls the given 'operator delete' on an array of objects. 20150b57cec5SDimitry Andric struct CallArrayDelete final : EHScopeStack::Cleanup { 20160b57cec5SDimitry Andric llvm::Value *Ptr; 20170b57cec5SDimitry Andric const FunctionDecl *OperatorDelete; 20180b57cec5SDimitry Andric llvm::Value *NumElements; 20190b57cec5SDimitry Andric QualType ElementType; 20200b57cec5SDimitry Andric CharUnits CookieSize; 20210b57cec5SDimitry Andric 20220b57cec5SDimitry Andric CallArrayDelete(llvm::Value *Ptr, 20230b57cec5SDimitry Andric const FunctionDecl *OperatorDelete, 20240b57cec5SDimitry Andric llvm::Value *NumElements, 20250b57cec5SDimitry Andric QualType ElementType, 20260b57cec5SDimitry Andric CharUnits CookieSize) 20270b57cec5SDimitry Andric : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements), 20280b57cec5SDimitry Andric ElementType(ElementType), CookieSize(CookieSize) {} 20290b57cec5SDimitry Andric 20300b57cec5SDimitry Andric void Emit(CodeGenFunction &CGF, Flags flags) override { 20310b57cec5SDimitry Andric CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType, NumElements, 20320b57cec5SDimitry Andric CookieSize); 20330b57cec5SDimitry Andric } 20340b57cec5SDimitry Andric }; 20350b57cec5SDimitry Andric } 20360b57cec5SDimitry Andric 20370b57cec5SDimitry Andric /// Emit the code for deleting an array of objects. 20380b57cec5SDimitry Andric static void EmitArrayDelete(CodeGenFunction &CGF, 20390b57cec5SDimitry Andric const CXXDeleteExpr *E, 20400b57cec5SDimitry Andric Address deletedPtr, 20410b57cec5SDimitry Andric QualType elementType) { 20420b57cec5SDimitry Andric llvm::Value *numElements = nullptr; 20430b57cec5SDimitry Andric llvm::Value *allocatedPtr = nullptr; 20440b57cec5SDimitry Andric CharUnits cookieSize; 20450b57cec5SDimitry Andric CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType, 20460b57cec5SDimitry Andric numElements, allocatedPtr, cookieSize); 20470b57cec5SDimitry Andric 20480b57cec5SDimitry Andric assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer"); 20490b57cec5SDimitry Andric 20500b57cec5SDimitry Andric // Make sure that we call delete even if one of the dtors throws. 20510b57cec5SDimitry Andric const FunctionDecl *operatorDelete = E->getOperatorDelete(); 20520b57cec5SDimitry Andric CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup, 20530b57cec5SDimitry Andric allocatedPtr, operatorDelete, 20540b57cec5SDimitry Andric numElements, elementType, 20550b57cec5SDimitry Andric cookieSize); 20560b57cec5SDimitry Andric 20570b57cec5SDimitry Andric // Destroy the elements. 20580b57cec5SDimitry Andric if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) { 20590b57cec5SDimitry Andric assert(numElements && "no element count for a type with a destructor!"); 20600b57cec5SDimitry Andric 20610b57cec5SDimitry Andric CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType); 20620b57cec5SDimitry Andric CharUnits elementAlign = 20630b57cec5SDimitry Andric deletedPtr.getAlignment().alignmentOfArrayElement(elementSize); 20640b57cec5SDimitry Andric 2065*0fca6ea1SDimitry Andric llvm::Value *arrayBegin = deletedPtr.emitRawPointer(CGF); 2066fe6060f1SDimitry Andric llvm::Value *arrayEnd = CGF.Builder.CreateInBoundsGEP( 2067fe6060f1SDimitry Andric deletedPtr.getElementType(), arrayBegin, numElements, "delete.end"); 20680b57cec5SDimitry Andric 20690b57cec5SDimitry Andric // Note that it is legal to allocate a zero-length array, and we 20700b57cec5SDimitry Andric // can never fold the check away because the length should always 20710b57cec5SDimitry Andric // come from a cookie. 20720b57cec5SDimitry Andric CGF.emitArrayDestroy(arrayBegin, arrayEnd, elementType, elementAlign, 20730b57cec5SDimitry Andric CGF.getDestroyer(dtorKind), 20740b57cec5SDimitry Andric /*checkZeroLength*/ true, 20750b57cec5SDimitry Andric CGF.needsEHCleanup(dtorKind)); 20760b57cec5SDimitry Andric } 20770b57cec5SDimitry Andric 20780b57cec5SDimitry Andric // Pop the cleanup block. 20790b57cec5SDimitry Andric CGF.PopCleanupBlock(); 20800b57cec5SDimitry Andric } 20810b57cec5SDimitry Andric 20820b57cec5SDimitry Andric void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) { 20830b57cec5SDimitry Andric const Expr *Arg = E->getArgument(); 20840b57cec5SDimitry Andric Address Ptr = EmitPointerWithAlignment(Arg); 20850b57cec5SDimitry Andric 20860b57cec5SDimitry Andric // Null check the pointer. 20875ffd83dbSDimitry Andric // 20885ffd83dbSDimitry Andric // We could avoid this null check if we can determine that the object 20895ffd83dbSDimitry Andric // destruction is trivial and doesn't require an array cookie; we can 20905ffd83dbSDimitry Andric // unconditionally perform the operator delete call in that case. For now, we 20915ffd83dbSDimitry Andric // assume that deleted pointers are null rarely enough that it's better to 20925ffd83dbSDimitry Andric // keep the branch. This might be worth revisiting for a -O0 code size win. 20930b57cec5SDimitry Andric llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull"); 20940b57cec5SDimitry Andric llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end"); 20950b57cec5SDimitry Andric 2096*0fca6ea1SDimitry Andric llvm::Value *IsNull = Builder.CreateIsNull(Ptr, "isnull"); 20970b57cec5SDimitry Andric 20980b57cec5SDimitry Andric Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull); 20990b57cec5SDimitry Andric EmitBlock(DeleteNotNull); 210006c3fb27SDimitry Andric Ptr.setKnownNonNull(); 21010b57cec5SDimitry Andric 21020b57cec5SDimitry Andric QualType DeleteTy = E->getDestroyedType(); 21030b57cec5SDimitry Andric 21040b57cec5SDimitry Andric // A destroying operator delete overrides the entire operation of the 21050b57cec5SDimitry Andric // delete expression. 21060b57cec5SDimitry Andric if (E->getOperatorDelete()->isDestroyingOperatorDelete()) { 21070b57cec5SDimitry Andric EmitDestroyingObjectDelete(*this, E, Ptr, DeleteTy); 21080b57cec5SDimitry Andric EmitBlock(DeleteEnd); 21090b57cec5SDimitry Andric return; 21100b57cec5SDimitry Andric } 21110b57cec5SDimitry Andric 21120b57cec5SDimitry Andric // We might be deleting a pointer to array. If so, GEP down to the 21130b57cec5SDimitry Andric // first non-array element. 21140b57cec5SDimitry Andric // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*) 21150b57cec5SDimitry Andric if (DeleteTy->isConstantArrayType()) { 21160b57cec5SDimitry Andric llvm::Value *Zero = Builder.getInt32(0); 21170b57cec5SDimitry Andric SmallVector<llvm::Value*,8> GEP; 21180b57cec5SDimitry Andric 21190b57cec5SDimitry Andric GEP.push_back(Zero); // point at the outermost array 21200b57cec5SDimitry Andric 21210b57cec5SDimitry Andric // For each layer of array type we're pointing at: 21220b57cec5SDimitry Andric while (const ConstantArrayType *Arr 21230b57cec5SDimitry Andric = getContext().getAsConstantArrayType(DeleteTy)) { 21240b57cec5SDimitry Andric // 1. Unpeel the array type. 21250b57cec5SDimitry Andric DeleteTy = Arr->getElementType(); 21260b57cec5SDimitry Andric 21270b57cec5SDimitry Andric // 2. GEP to the first element of the array. 21280b57cec5SDimitry Andric GEP.push_back(Zero); 21290b57cec5SDimitry Andric } 21300b57cec5SDimitry Andric 2131*0fca6ea1SDimitry Andric Ptr = Builder.CreateInBoundsGEP(Ptr, GEP, ConvertTypeForMem(DeleteTy), 2132*0fca6ea1SDimitry Andric Ptr.getAlignment(), "del.first"); 21330b57cec5SDimitry Andric } 21340b57cec5SDimitry Andric 21350b57cec5SDimitry Andric assert(ConvertTypeForMem(DeleteTy) == Ptr.getElementType()); 21360b57cec5SDimitry Andric 21370b57cec5SDimitry Andric if (E->isArrayForm()) { 21380b57cec5SDimitry Andric EmitArrayDelete(*this, E, Ptr, DeleteTy); 21390b57cec5SDimitry Andric EmitBlock(DeleteEnd); 21405ffd83dbSDimitry Andric } else { 21415ffd83dbSDimitry Andric if (!EmitObjectDelete(*this, E, Ptr, DeleteTy, DeleteEnd)) 21425ffd83dbSDimitry Andric EmitBlock(DeleteEnd); 21435ffd83dbSDimitry Andric } 21440b57cec5SDimitry Andric } 21450b57cec5SDimitry Andric 21460b57cec5SDimitry Andric static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E, 2147*0fca6ea1SDimitry Andric llvm::Type *StdTypeInfoPtrTy, 2148*0fca6ea1SDimitry Andric bool HasNullCheck) { 21490b57cec5SDimitry Andric // Get the vtable pointer. 2150*0fca6ea1SDimitry Andric Address ThisPtr = CGF.EmitLValue(E).getAddress(); 21510b57cec5SDimitry Andric 21520b57cec5SDimitry Andric QualType SrcRecordTy = E->getType(); 21530b57cec5SDimitry Andric 21540b57cec5SDimitry Andric // C++ [class.cdtor]p4: 21550b57cec5SDimitry Andric // If the operand of typeid refers to the object under construction or 21560b57cec5SDimitry Andric // destruction and the static type of the operand is neither the constructor 21570b57cec5SDimitry Andric // or destructor’s class nor one of its bases, the behavior is undefined. 21580b57cec5SDimitry Andric CGF.EmitTypeCheck(CodeGenFunction::TCK_DynamicOperation, E->getExprLoc(), 2159*0fca6ea1SDimitry Andric ThisPtr, SrcRecordTy); 21600b57cec5SDimitry Andric 2161*0fca6ea1SDimitry Andric // Whether we need an explicit null pointer check. For example, with the 2162*0fca6ea1SDimitry Andric // Microsoft ABI, if this is a call to __RTtypeid, the null pointer check and 2163*0fca6ea1SDimitry Andric // exception throw is inside the __RTtypeid(nullptr) call 2164*0fca6ea1SDimitry Andric if (HasNullCheck && 2165*0fca6ea1SDimitry Andric CGF.CGM.getCXXABI().shouldTypeidBeNullChecked(SrcRecordTy)) { 21660b57cec5SDimitry Andric llvm::BasicBlock *BadTypeidBlock = 21670b57cec5SDimitry Andric CGF.createBasicBlock("typeid.bad_typeid"); 21680b57cec5SDimitry Andric llvm::BasicBlock *EndBlock = CGF.createBasicBlock("typeid.end"); 21690b57cec5SDimitry Andric 2170*0fca6ea1SDimitry Andric llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr); 21710b57cec5SDimitry Andric CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock); 21720b57cec5SDimitry Andric 21730b57cec5SDimitry Andric CGF.EmitBlock(BadTypeidBlock); 21740b57cec5SDimitry Andric CGF.CGM.getCXXABI().EmitBadTypeidCall(CGF); 21750b57cec5SDimitry Andric CGF.EmitBlock(EndBlock); 21760b57cec5SDimitry Andric } 21770b57cec5SDimitry Andric 21780b57cec5SDimitry Andric return CGF.CGM.getCXXABI().EmitTypeid(CGF, SrcRecordTy, ThisPtr, 21790b57cec5SDimitry Andric StdTypeInfoPtrTy); 21800b57cec5SDimitry Andric } 21810b57cec5SDimitry Andric 21820b57cec5SDimitry Andric llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) { 2183*0fca6ea1SDimitry Andric // Ideally, we would like to use GlobalsInt8PtrTy here, however, we cannot, 2184*0fca6ea1SDimitry Andric // primarily because the result of applying typeid is a value of type 2185*0fca6ea1SDimitry Andric // type_info, which is declared & defined by the standard library 2186*0fca6ea1SDimitry Andric // implementation and expects to operate on the generic (default) AS. 2187*0fca6ea1SDimitry Andric // https://reviews.llvm.org/D157452 has more context, and a possible solution. 2188*0fca6ea1SDimitry Andric llvm::Type *PtrTy = Int8PtrTy; 21895f757f3fSDimitry Andric LangAS GlobAS = CGM.GetGlobalVarAddressSpace(nullptr); 21905f757f3fSDimitry Andric 21915f757f3fSDimitry Andric auto MaybeASCast = [=](auto &&TypeInfo) { 21925f757f3fSDimitry Andric if (GlobAS == LangAS::Default) 21935f757f3fSDimitry Andric return TypeInfo; 21945f757f3fSDimitry Andric return getTargetHooks().performAddrSpaceCast(CGM,TypeInfo, GlobAS, 21955f757f3fSDimitry Andric LangAS::Default, PtrTy); 21965f757f3fSDimitry Andric }; 21970b57cec5SDimitry Andric 21980b57cec5SDimitry Andric if (E->isTypeOperand()) { 21990b57cec5SDimitry Andric llvm::Constant *TypeInfo = 22000b57cec5SDimitry Andric CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext())); 22015f757f3fSDimitry Andric return MaybeASCast(TypeInfo); 22020b57cec5SDimitry Andric } 22030b57cec5SDimitry Andric 22040b57cec5SDimitry Andric // C++ [expr.typeid]p2: 22050b57cec5SDimitry Andric // When typeid is applied to a glvalue expression whose type is a 22060b57cec5SDimitry Andric // polymorphic class type, the result refers to a std::type_info object 22070b57cec5SDimitry Andric // representing the type of the most derived object (that is, the dynamic 22080b57cec5SDimitry Andric // type) to which the glvalue refers. 2209e8d8bef9SDimitry Andric // If the operand is already most derived object, no need to look up vtable. 2210e8d8bef9SDimitry Andric if (E->isPotentiallyEvaluated() && !E->isMostDerived(getContext())) 2211*0fca6ea1SDimitry Andric return EmitTypeidFromVTable(*this, E->getExprOperand(), PtrTy, 2212*0fca6ea1SDimitry Andric E->hasNullCheck()); 22130b57cec5SDimitry Andric 22140b57cec5SDimitry Andric QualType OperandTy = E->getExprOperand()->getType(); 22155f757f3fSDimitry Andric return MaybeASCast(CGM.GetAddrOfRTTIDescriptor(OperandTy)); 22160b57cec5SDimitry Andric } 22170b57cec5SDimitry Andric 22180b57cec5SDimitry Andric static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF, 22190b57cec5SDimitry Andric QualType DestTy) { 22200b57cec5SDimitry Andric llvm::Type *DestLTy = CGF.ConvertType(DestTy); 22210b57cec5SDimitry Andric if (DestTy->isPointerType()) 22220b57cec5SDimitry Andric return llvm::Constant::getNullValue(DestLTy); 22230b57cec5SDimitry Andric 22240b57cec5SDimitry Andric /// C++ [expr.dynamic.cast]p9: 22250b57cec5SDimitry Andric /// A failed cast to reference type throws std::bad_cast 22260b57cec5SDimitry Andric if (!CGF.CGM.getCXXABI().EmitBadCastCall(CGF)) 22270b57cec5SDimitry Andric return nullptr; 22280b57cec5SDimitry Andric 222906c3fb27SDimitry Andric CGF.Builder.ClearInsertionPoint(); 223006c3fb27SDimitry Andric return llvm::PoisonValue::get(DestLTy); 22310b57cec5SDimitry Andric } 22320b57cec5SDimitry Andric 22330b57cec5SDimitry Andric llvm::Value *CodeGenFunction::EmitDynamicCast(Address ThisAddr, 22340b57cec5SDimitry Andric const CXXDynamicCastExpr *DCE) { 22350b57cec5SDimitry Andric CGM.EmitExplicitCastExprType(DCE, this); 22360b57cec5SDimitry Andric QualType DestTy = DCE->getTypeAsWritten(); 22370b57cec5SDimitry Andric 22380b57cec5SDimitry Andric QualType SrcTy = DCE->getSubExpr()->getType(); 22390b57cec5SDimitry Andric 22400b57cec5SDimitry Andric // C++ [expr.dynamic.cast]p7: 22410b57cec5SDimitry Andric // If T is "pointer to cv void," then the result is a pointer to the most 22420b57cec5SDimitry Andric // derived object pointed to by v. 224306c3fb27SDimitry Andric bool IsDynamicCastToVoid = DestTy->isVoidPointerType(); 22440b57cec5SDimitry Andric QualType SrcRecordTy; 22450b57cec5SDimitry Andric QualType DestRecordTy; 224606c3fb27SDimitry Andric if (IsDynamicCastToVoid) { 224706c3fb27SDimitry Andric SrcRecordTy = SrcTy->getPointeeType(); 224806c3fb27SDimitry Andric // No DestRecordTy. 224906c3fb27SDimitry Andric } else if (const PointerType *DestPTy = DestTy->getAs<PointerType>()) { 22500b57cec5SDimitry Andric SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType(); 22510b57cec5SDimitry Andric DestRecordTy = DestPTy->getPointeeType(); 22520b57cec5SDimitry Andric } else { 22530b57cec5SDimitry Andric SrcRecordTy = SrcTy; 22540b57cec5SDimitry Andric DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType(); 22550b57cec5SDimitry Andric } 22560b57cec5SDimitry Andric 22570b57cec5SDimitry Andric // C++ [class.cdtor]p5: 22580b57cec5SDimitry Andric // If the operand of the dynamic_cast refers to the object under 22590b57cec5SDimitry Andric // construction or destruction and the static type of the operand is not a 22600b57cec5SDimitry Andric // pointer to or object of the constructor or destructor’s own class or one 22610b57cec5SDimitry Andric // of its bases, the dynamic_cast results in undefined behavior. 2262*0fca6ea1SDimitry Andric EmitTypeCheck(TCK_DynamicOperation, DCE->getExprLoc(), ThisAddr, SrcRecordTy); 22630b57cec5SDimitry Andric 226406c3fb27SDimitry Andric if (DCE->isAlwaysNull()) { 226506c3fb27SDimitry Andric if (llvm::Value *T = EmitDynamicCastToNull(*this, DestTy)) { 226606c3fb27SDimitry Andric // Expression emission is expected to retain a valid insertion point. 226706c3fb27SDimitry Andric if (!Builder.GetInsertBlock()) 226806c3fb27SDimitry Andric EmitBlock(createBasicBlock("dynamic_cast.unreachable")); 22690b57cec5SDimitry Andric return T; 227006c3fb27SDimitry Andric } 227106c3fb27SDimitry Andric } 22720b57cec5SDimitry Andric 22730b57cec5SDimitry Andric assert(SrcRecordTy->isRecordType() && "source type must be a record type!"); 22740b57cec5SDimitry Andric 227506c3fb27SDimitry Andric // If the destination is effectively final, the cast succeeds if and only 227606c3fb27SDimitry Andric // if the dynamic type of the pointer is exactly the destination type. 227706c3fb27SDimitry Andric bool IsExact = !IsDynamicCastToVoid && 227806c3fb27SDimitry Andric CGM.getCodeGenOpts().OptimizationLevel > 0 && 227906c3fb27SDimitry Andric DestRecordTy->getAsCXXRecordDecl()->isEffectivelyFinal() && 228006c3fb27SDimitry Andric CGM.getCXXABI().shouldEmitExactDynamicCast(DestRecordTy); 228106c3fb27SDimitry Andric 22820b57cec5SDimitry Andric // C++ [expr.dynamic.cast]p4: 22830b57cec5SDimitry Andric // If the value of v is a null pointer value in the pointer case, the result 22840b57cec5SDimitry Andric // is the null pointer value of type T. 22850b57cec5SDimitry Andric bool ShouldNullCheckSrcValue = 228606c3fb27SDimitry Andric IsExact || CGM.getCXXABI().shouldDynamicCastCallBeNullChecked( 228706c3fb27SDimitry Andric SrcTy->isPointerType(), SrcRecordTy); 22880b57cec5SDimitry Andric 22890b57cec5SDimitry Andric llvm::BasicBlock *CastNull = nullptr; 22900b57cec5SDimitry Andric llvm::BasicBlock *CastNotNull = nullptr; 22910b57cec5SDimitry Andric llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end"); 22920b57cec5SDimitry Andric 22930b57cec5SDimitry Andric if (ShouldNullCheckSrcValue) { 22940b57cec5SDimitry Andric CastNull = createBasicBlock("dynamic_cast.null"); 22950b57cec5SDimitry Andric CastNotNull = createBasicBlock("dynamic_cast.notnull"); 22960b57cec5SDimitry Andric 2297*0fca6ea1SDimitry Andric llvm::Value *IsNull = Builder.CreateIsNull(ThisAddr); 22980b57cec5SDimitry Andric Builder.CreateCondBr(IsNull, CastNull, CastNotNull); 22990b57cec5SDimitry Andric EmitBlock(CastNotNull); 23000b57cec5SDimitry Andric } 23010b57cec5SDimitry Andric 23020b57cec5SDimitry Andric llvm::Value *Value; 230306c3fb27SDimitry Andric if (IsDynamicCastToVoid) { 230406c3fb27SDimitry Andric Value = CGM.getCXXABI().emitDynamicCastToVoid(*this, ThisAddr, SrcRecordTy); 230506c3fb27SDimitry Andric } else if (IsExact) { 230606c3fb27SDimitry Andric // If the destination type is effectively final, this pointer points to the 230706c3fb27SDimitry Andric // right type if and only if its vptr has the right value. 230806c3fb27SDimitry Andric Value = CGM.getCXXABI().emitExactDynamicCast( 230906c3fb27SDimitry Andric *this, ThisAddr, SrcRecordTy, DestTy, DestRecordTy, CastEnd, CastNull); 23100b57cec5SDimitry Andric } else { 23110b57cec5SDimitry Andric assert(DestRecordTy->isRecordType() && 23120b57cec5SDimitry Andric "destination type must be a record type!"); 231306c3fb27SDimitry Andric Value = CGM.getCXXABI().emitDynamicCastCall(*this, ThisAddr, SrcRecordTy, 23140b57cec5SDimitry Andric DestTy, DestRecordTy, CastEnd); 23150b57cec5SDimitry Andric } 231606c3fb27SDimitry Andric CastNotNull = Builder.GetInsertBlock(); 23170b57cec5SDimitry Andric 231806c3fb27SDimitry Andric llvm::Value *NullValue = nullptr; 23190b57cec5SDimitry Andric if (ShouldNullCheckSrcValue) { 23200b57cec5SDimitry Andric EmitBranch(CastEnd); 23210b57cec5SDimitry Andric 23220b57cec5SDimitry Andric EmitBlock(CastNull); 232306c3fb27SDimitry Andric NullValue = EmitDynamicCastToNull(*this, DestTy); 232406c3fb27SDimitry Andric CastNull = Builder.GetInsertBlock(); 232506c3fb27SDimitry Andric 23260b57cec5SDimitry Andric EmitBranch(CastEnd); 23270b57cec5SDimitry Andric } 23280b57cec5SDimitry Andric 23290b57cec5SDimitry Andric EmitBlock(CastEnd); 23300b57cec5SDimitry Andric 233106c3fb27SDimitry Andric if (CastNull) { 23320b57cec5SDimitry Andric llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2); 23330b57cec5SDimitry Andric PHI->addIncoming(Value, CastNotNull); 233406c3fb27SDimitry Andric PHI->addIncoming(NullValue, CastNull); 23350b57cec5SDimitry Andric 23360b57cec5SDimitry Andric Value = PHI; 23370b57cec5SDimitry Andric } 23380b57cec5SDimitry Andric 23390b57cec5SDimitry Andric return Value; 23400b57cec5SDimitry Andric } 2341