1b89a7cc2SEnji Cooper // Copyright 2007, Google Inc. 2b89a7cc2SEnji Cooper // All rights reserved. 3b89a7cc2SEnji Cooper // 4b89a7cc2SEnji Cooper // Redistribution and use in source and binary forms, with or without 5b89a7cc2SEnji Cooper // modification, are permitted provided that the following conditions are 6b89a7cc2SEnji Cooper // met: 7b89a7cc2SEnji Cooper // 8b89a7cc2SEnji Cooper // * Redistributions of source code must retain the above copyright 9b89a7cc2SEnji Cooper // notice, this list of conditions and the following disclaimer. 10b89a7cc2SEnji Cooper // * Redistributions in binary form must reproduce the above 11b89a7cc2SEnji Cooper // copyright notice, this list of conditions and the following disclaimer 12b89a7cc2SEnji Cooper // in the documentation and/or other materials provided with the 13b89a7cc2SEnji Cooper // distribution. 14b89a7cc2SEnji Cooper // * Neither the name of Google Inc. nor the names of its 15b89a7cc2SEnji Cooper // contributors may be used to endorse or promote products derived from 16b89a7cc2SEnji Cooper // this software without specific prior written permission. 17b89a7cc2SEnji Cooper // 18b89a7cc2SEnji Cooper // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 19b89a7cc2SEnji Cooper // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 20b89a7cc2SEnji Cooper // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 21b89a7cc2SEnji Cooper // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 22b89a7cc2SEnji Cooper // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 23b89a7cc2SEnji Cooper // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 24b89a7cc2SEnji Cooper // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 25b89a7cc2SEnji Cooper // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26b89a7cc2SEnji Cooper // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27b89a7cc2SEnji Cooper // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28b89a7cc2SEnji Cooper // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29b89a7cc2SEnji Cooper 30b89a7cc2SEnji Cooper // Google Mock - a framework for writing C++ mock classes. 31b89a7cc2SEnji Cooper // 3228f6c2f2SEnji Cooper // The ACTION* family of macros can be used in a namespace scope to 3328f6c2f2SEnji Cooper // define custom actions easily. The syntax: 3428f6c2f2SEnji Cooper // 3528f6c2f2SEnji Cooper // ACTION(name) { statements; } 3628f6c2f2SEnji Cooper // 3728f6c2f2SEnji Cooper // will define an action with the given name that executes the 3828f6c2f2SEnji Cooper // statements. The value returned by the statements will be used as 3928f6c2f2SEnji Cooper // the return value of the action. Inside the statements, you can 4028f6c2f2SEnji Cooper // refer to the K-th (0-based) argument of the mock function by 4128f6c2f2SEnji Cooper // 'argK', and refer to its type by 'argK_type'. For example: 4228f6c2f2SEnji Cooper // 4328f6c2f2SEnji Cooper // ACTION(IncrementArg1) { 4428f6c2f2SEnji Cooper // arg1_type temp = arg1; 4528f6c2f2SEnji Cooper // return ++(*temp); 4628f6c2f2SEnji Cooper // } 4728f6c2f2SEnji Cooper // 4828f6c2f2SEnji Cooper // allows you to write 4928f6c2f2SEnji Cooper // 5028f6c2f2SEnji Cooper // ...WillOnce(IncrementArg1()); 5128f6c2f2SEnji Cooper // 5228f6c2f2SEnji Cooper // You can also refer to the entire argument tuple and its type by 5328f6c2f2SEnji Cooper // 'args' and 'args_type', and refer to the mock function type and its 5428f6c2f2SEnji Cooper // return type by 'function_type' and 'return_type'. 5528f6c2f2SEnji Cooper // 5628f6c2f2SEnji Cooper // Note that you don't need to specify the types of the mock function 5728f6c2f2SEnji Cooper // arguments. However rest assured that your code is still type-safe: 5828f6c2f2SEnji Cooper // you'll get a compiler error if *arg1 doesn't support the ++ 5928f6c2f2SEnji Cooper // operator, or if the type of ++(*arg1) isn't compatible with the 6028f6c2f2SEnji Cooper // mock function's return type, for example. 6128f6c2f2SEnji Cooper // 6228f6c2f2SEnji Cooper // Sometimes you'll want to parameterize the action. For that you can use 6328f6c2f2SEnji Cooper // another macro: 6428f6c2f2SEnji Cooper // 6528f6c2f2SEnji Cooper // ACTION_P(name, param_name) { statements; } 6628f6c2f2SEnji Cooper // 6728f6c2f2SEnji Cooper // For example: 6828f6c2f2SEnji Cooper // 6928f6c2f2SEnji Cooper // ACTION_P(Add, n) { return arg0 + n; } 7028f6c2f2SEnji Cooper // 7128f6c2f2SEnji Cooper // will allow you to write: 7228f6c2f2SEnji Cooper // 7328f6c2f2SEnji Cooper // ...WillOnce(Add(5)); 7428f6c2f2SEnji Cooper // 7528f6c2f2SEnji Cooper // Note that you don't need to provide the type of the parameter 7628f6c2f2SEnji Cooper // either. If you need to reference the type of a parameter named 7728f6c2f2SEnji Cooper // 'foo', you can write 'foo_type'. For example, in the body of 7828f6c2f2SEnji Cooper // ACTION_P(Add, n) above, you can write 'n_type' to refer to the type 7928f6c2f2SEnji Cooper // of 'n'. 8028f6c2f2SEnji Cooper // 8128f6c2f2SEnji Cooper // We also provide ACTION_P2, ACTION_P3, ..., up to ACTION_P10 to support 8228f6c2f2SEnji Cooper // multi-parameter actions. 8328f6c2f2SEnji Cooper // 8428f6c2f2SEnji Cooper // For the purpose of typing, you can view 8528f6c2f2SEnji Cooper // 8628f6c2f2SEnji Cooper // ACTION_Pk(Foo, p1, ..., pk) { ... } 8728f6c2f2SEnji Cooper // 8828f6c2f2SEnji Cooper // as shorthand for 8928f6c2f2SEnji Cooper // 9028f6c2f2SEnji Cooper // template <typename p1_type, ..., typename pk_type> 9128f6c2f2SEnji Cooper // FooActionPk<p1_type, ..., pk_type> Foo(p1_type p1, ..., pk_type pk) { ... } 9228f6c2f2SEnji Cooper // 9328f6c2f2SEnji Cooper // In particular, you can provide the template type arguments 9428f6c2f2SEnji Cooper // explicitly when invoking Foo(), as in Foo<long, bool>(5, false); 9528f6c2f2SEnji Cooper // although usually you can rely on the compiler to infer the types 9628f6c2f2SEnji Cooper // for you automatically. You can assign the result of expression 9728f6c2f2SEnji Cooper // Foo(p1, ..., pk) to a variable of type FooActionPk<p1_type, ..., 9828f6c2f2SEnji Cooper // pk_type>. This can be useful when composing actions. 9928f6c2f2SEnji Cooper // 10028f6c2f2SEnji Cooper // You can also overload actions with different numbers of parameters: 10128f6c2f2SEnji Cooper // 10228f6c2f2SEnji Cooper // ACTION_P(Plus, a) { ... } 10328f6c2f2SEnji Cooper // ACTION_P2(Plus, a, b) { ... } 10428f6c2f2SEnji Cooper // 10528f6c2f2SEnji Cooper // While it's tempting to always use the ACTION* macros when defining 10628f6c2f2SEnji Cooper // a new action, you should also consider implementing ActionInterface 10728f6c2f2SEnji Cooper // or using MakePolymorphicAction() instead, especially if you need to 10828f6c2f2SEnji Cooper // use the action a lot. While these approaches require more work, 10928f6c2f2SEnji Cooper // they give you more control on the types of the mock function 11028f6c2f2SEnji Cooper // arguments and the action parameters, which in general leads to 11128f6c2f2SEnji Cooper // better compiler error messages that pay off in the long run. They 11228f6c2f2SEnji Cooper // also allow overloading actions based on parameter types (as opposed 11328f6c2f2SEnji Cooper // to just based on the number of parameters). 11428f6c2f2SEnji Cooper // 11528f6c2f2SEnji Cooper // CAVEAT: 11628f6c2f2SEnji Cooper // 11728f6c2f2SEnji Cooper // ACTION*() can only be used in a namespace scope as templates cannot be 11828f6c2f2SEnji Cooper // declared inside of a local class. 11928f6c2f2SEnji Cooper // Users can, however, define any local functors (e.g. a lambda) that 12028f6c2f2SEnji Cooper // can be used as actions. 12128f6c2f2SEnji Cooper // 12228f6c2f2SEnji Cooper // MORE INFORMATION: 12328f6c2f2SEnji Cooper // 12428f6c2f2SEnji Cooper // To learn more about using these macros, please search for 'ACTION' on 12528f6c2f2SEnji Cooper // https://github.com/google/googletest/blob/main/docs/gmock_cook_book.md 126b89a7cc2SEnji Cooper 12728f6c2f2SEnji Cooper // IWYU pragma: private, include "gmock/gmock.h" 12828f6c2f2SEnji Cooper // IWYU pragma: friend gmock/.* 129b89a7cc2SEnji Cooper 13028f6c2f2SEnji Cooper #ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_ 13128f6c2f2SEnji Cooper #define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_ 132b89a7cc2SEnji Cooper 133b89a7cc2SEnji Cooper #ifndef _WIN32_WCE 134b89a7cc2SEnji Cooper #include <errno.h> 135b89a7cc2SEnji Cooper #endif 136b89a7cc2SEnji Cooper 137b89a7cc2SEnji Cooper #include <algorithm> 138*5ca8c28cSEnji Cooper #include <exception> 13928f6c2f2SEnji Cooper #include <functional> 14028f6c2f2SEnji Cooper #include <memory> 141b89a7cc2SEnji Cooper #include <string> 14228f6c2f2SEnji Cooper #include <tuple> 14328f6c2f2SEnji Cooper #include <type_traits> 14428f6c2f2SEnji Cooper #include <utility> 145b89a7cc2SEnji Cooper 146b89a7cc2SEnji Cooper #include "gmock/internal/gmock-internal-utils.h" 147b89a7cc2SEnji Cooper #include "gmock/internal/gmock-port.h" 14828f6c2f2SEnji Cooper #include "gmock/internal/gmock-pp.h" 149b89a7cc2SEnji Cooper 15028f6c2f2SEnji Cooper GTEST_DISABLE_MSC_WARNINGS_PUSH_(4100) 151b89a7cc2SEnji Cooper 152b89a7cc2SEnji Cooper namespace testing { 153b89a7cc2SEnji Cooper 154b89a7cc2SEnji Cooper // To implement an action Foo, define: 155b89a7cc2SEnji Cooper // 1. a class FooAction that implements the ActionInterface interface, and 156b89a7cc2SEnji Cooper // 2. a factory function that creates an Action object from a 157b89a7cc2SEnji Cooper // const FooAction*. 158b89a7cc2SEnji Cooper // 159b89a7cc2SEnji Cooper // The two-level delegation design follows that of Matcher, providing 160b89a7cc2SEnji Cooper // consistency for extension developers. It also eases ownership 161b89a7cc2SEnji Cooper // management as Action objects can now be copied like plain values. 162b89a7cc2SEnji Cooper 163b89a7cc2SEnji Cooper namespace internal { 164b89a7cc2SEnji Cooper 165b89a7cc2SEnji Cooper // BuiltInDefaultValueGetter<T, true>::Get() returns a 166b89a7cc2SEnji Cooper // default-constructed T value. BuiltInDefaultValueGetter<T, 167b89a7cc2SEnji Cooper // false>::Get() crashes with an error. 168b89a7cc2SEnji Cooper // 169b89a7cc2SEnji Cooper // This primary template is used when kDefaultConstructible is true. 170b89a7cc2SEnji Cooper template <typename T, bool kDefaultConstructible> 171b89a7cc2SEnji Cooper struct BuiltInDefaultValueGetter { 172b89a7cc2SEnji Cooper static T Get() { return T(); } 173b89a7cc2SEnji Cooper }; 174b89a7cc2SEnji Cooper template <typename T> 175b89a7cc2SEnji Cooper struct BuiltInDefaultValueGetter<T, false> { 176b89a7cc2SEnji Cooper static T Get() { 177b89a7cc2SEnji Cooper Assert(false, __FILE__, __LINE__, 178b89a7cc2SEnji Cooper "Default action undefined for the function return type."); 179*5ca8c28cSEnji Cooper #if defined(__GNUC__) || defined(__clang__) 180*5ca8c28cSEnji Cooper __builtin_unreachable(); 181*5ca8c28cSEnji Cooper #elif defined(_MSC_VER) 182*5ca8c28cSEnji Cooper __assume(0); 183*5ca8c28cSEnji Cooper #else 184*5ca8c28cSEnji Cooper return Invalid<T>(); 185b89a7cc2SEnji Cooper // The above statement will never be reached, but is required in 186b89a7cc2SEnji Cooper // order for this function to compile. 187*5ca8c28cSEnji Cooper #endif 188b89a7cc2SEnji Cooper } 189b89a7cc2SEnji Cooper }; 190b89a7cc2SEnji Cooper 191b89a7cc2SEnji Cooper // BuiltInDefaultValue<T>::Get() returns the "built-in" default value 192b89a7cc2SEnji Cooper // for type T, which is NULL when T is a raw pointer type, 0 when T is 193b89a7cc2SEnji Cooper // a numeric type, false when T is bool, or "" when T is string or 194b89a7cc2SEnji Cooper // std::string. In addition, in C++11 and above, it turns a 195b89a7cc2SEnji Cooper // default-constructed T value if T is default constructible. For any 196b89a7cc2SEnji Cooper // other type T, the built-in default T value is undefined, and the 197b89a7cc2SEnji Cooper // function will abort the process. 198b89a7cc2SEnji Cooper template <typename T> 199b89a7cc2SEnji Cooper class BuiltInDefaultValue { 200b89a7cc2SEnji Cooper public: 20128f6c2f2SEnji Cooper // This function returns true if and only if type T has a built-in default 20228f6c2f2SEnji Cooper // value. 20328f6c2f2SEnji Cooper static bool Exists() { return ::std::is_default_constructible<T>::value; } 204b89a7cc2SEnji Cooper 205b89a7cc2SEnji Cooper static T Get() { 206b89a7cc2SEnji Cooper return BuiltInDefaultValueGetter< 207b89a7cc2SEnji Cooper T, ::std::is_default_constructible<T>::value>::Get(); 208b89a7cc2SEnji Cooper } 209b89a7cc2SEnji Cooper }; 210b89a7cc2SEnji Cooper 211b89a7cc2SEnji Cooper // This partial specialization says that we use the same built-in 212b89a7cc2SEnji Cooper // default value for T and const T. 213b89a7cc2SEnji Cooper template <typename T> 214b89a7cc2SEnji Cooper class BuiltInDefaultValue<const T> { 215b89a7cc2SEnji Cooper public: 216b89a7cc2SEnji Cooper static bool Exists() { return BuiltInDefaultValue<T>::Exists(); } 217b89a7cc2SEnji Cooper static T Get() { return BuiltInDefaultValue<T>::Get(); } 218b89a7cc2SEnji Cooper }; 219b89a7cc2SEnji Cooper 220b89a7cc2SEnji Cooper // This partial specialization defines the default values for pointer 221b89a7cc2SEnji Cooper // types. 222b89a7cc2SEnji Cooper template <typename T> 223b89a7cc2SEnji Cooper class BuiltInDefaultValue<T*> { 224b89a7cc2SEnji Cooper public: 225b89a7cc2SEnji Cooper static bool Exists() { return true; } 22628f6c2f2SEnji Cooper static T* Get() { return nullptr; } 227b89a7cc2SEnji Cooper }; 228b89a7cc2SEnji Cooper 229b89a7cc2SEnji Cooper // The following specializations define the default values for 230b89a7cc2SEnji Cooper // specific types we care about. 231b89a7cc2SEnji Cooper #define GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(type, value) \ 232b89a7cc2SEnji Cooper template <> \ 233b89a7cc2SEnji Cooper class BuiltInDefaultValue<type> { \ 234b89a7cc2SEnji Cooper public: \ 235b89a7cc2SEnji Cooper static bool Exists() { return true; } \ 236b89a7cc2SEnji Cooper static type Get() { return value; } \ 237b89a7cc2SEnji Cooper } 238b89a7cc2SEnji Cooper 239b89a7cc2SEnji Cooper GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(void, ); // NOLINT 240b89a7cc2SEnji Cooper GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(::std::string, ""); 241b89a7cc2SEnji Cooper GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(bool, false); 242b89a7cc2SEnji Cooper GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned char, '\0'); 243b89a7cc2SEnji Cooper GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed char, '\0'); 244b89a7cc2SEnji Cooper GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(char, '\0'); 245b89a7cc2SEnji Cooper 246b89a7cc2SEnji Cooper // There's no need for a default action for signed wchar_t, as that 247b89a7cc2SEnji Cooper // type is the same as wchar_t for gcc, and invalid for MSVC. 248b89a7cc2SEnji Cooper // 249b89a7cc2SEnji Cooper // There's also no need for a default action for unsigned wchar_t, as 250b89a7cc2SEnji Cooper // that type is the same as unsigned int for gcc, and invalid for 251b89a7cc2SEnji Cooper // MSVC. 252b89a7cc2SEnji Cooper #if GMOCK_WCHAR_T_IS_NATIVE_ 253b89a7cc2SEnji Cooper GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(wchar_t, 0U); // NOLINT 254b89a7cc2SEnji Cooper #endif 255b89a7cc2SEnji Cooper 256b89a7cc2SEnji Cooper GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned short, 0U); // NOLINT 257b89a7cc2SEnji Cooper GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed short, 0); // NOLINT 258b89a7cc2SEnji Cooper GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned int, 0U); 259b89a7cc2SEnji Cooper GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed int, 0); 260b89a7cc2SEnji Cooper GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long, 0UL); // NOLINT 261b89a7cc2SEnji Cooper GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long, 0L); // NOLINT 26228f6c2f2SEnji Cooper GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long long, 0); // NOLINT 26328f6c2f2SEnji Cooper GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long long, 0); // NOLINT 264b89a7cc2SEnji Cooper GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(float, 0); 265b89a7cc2SEnji Cooper GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(double, 0); 266b89a7cc2SEnji Cooper 267b89a7cc2SEnji Cooper #undef GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_ 268b89a7cc2SEnji Cooper 26928f6c2f2SEnji Cooper // Partial implementations of metaprogramming types from the standard library 27028f6c2f2SEnji Cooper // not available in C++11. 27128f6c2f2SEnji Cooper 27228f6c2f2SEnji Cooper template <typename P> 27328f6c2f2SEnji Cooper struct negation 27428f6c2f2SEnji Cooper // NOLINTNEXTLINE 27528f6c2f2SEnji Cooper : std::integral_constant<bool, bool(!P::value)> {}; 27628f6c2f2SEnji Cooper 27728f6c2f2SEnji Cooper // Base case: with zero predicates the answer is always true. 27828f6c2f2SEnji Cooper template <typename...> 27928f6c2f2SEnji Cooper struct conjunction : std::true_type {}; 28028f6c2f2SEnji Cooper 28128f6c2f2SEnji Cooper // With a single predicate, the answer is that predicate. 28228f6c2f2SEnji Cooper template <typename P1> 28328f6c2f2SEnji Cooper struct conjunction<P1> : P1 {}; 28428f6c2f2SEnji Cooper 28528f6c2f2SEnji Cooper // With multiple predicates the answer is the first predicate if that is false, 28628f6c2f2SEnji Cooper // and we recurse otherwise. 28728f6c2f2SEnji Cooper template <typename P1, typename... Ps> 28828f6c2f2SEnji Cooper struct conjunction<P1, Ps...> 28928f6c2f2SEnji Cooper : std::conditional<bool(P1::value), conjunction<Ps...>, P1>::type {}; 29028f6c2f2SEnji Cooper 29128f6c2f2SEnji Cooper template <typename...> 29228f6c2f2SEnji Cooper struct disjunction : std::false_type {}; 29328f6c2f2SEnji Cooper 29428f6c2f2SEnji Cooper template <typename P1> 29528f6c2f2SEnji Cooper struct disjunction<P1> : P1 {}; 29628f6c2f2SEnji Cooper 29728f6c2f2SEnji Cooper template <typename P1, typename... Ps> 29828f6c2f2SEnji Cooper struct disjunction<P1, Ps...> 29928f6c2f2SEnji Cooper // NOLINTNEXTLINE 30028f6c2f2SEnji Cooper : std::conditional<!bool(P1::value), disjunction<Ps...>, P1>::type {}; 30128f6c2f2SEnji Cooper 30228f6c2f2SEnji Cooper template <typename...> 30328f6c2f2SEnji Cooper using void_t = void; 30428f6c2f2SEnji Cooper 30528f6c2f2SEnji Cooper // Detects whether an expression of type `From` can be implicitly converted to 30628f6c2f2SEnji Cooper // `To` according to [conv]. In C++17, [conv]/3 defines this as follows: 30728f6c2f2SEnji Cooper // 30828f6c2f2SEnji Cooper // An expression e can be implicitly converted to a type T if and only if 30928f6c2f2SEnji Cooper // the declaration T t=e; is well-formed, for some invented temporary 31028f6c2f2SEnji Cooper // variable t ([dcl.init]). 31128f6c2f2SEnji Cooper // 31228f6c2f2SEnji Cooper // [conv]/2 implies we can use function argument passing to detect whether this 31328f6c2f2SEnji Cooper // initialization is valid. 31428f6c2f2SEnji Cooper // 31528f6c2f2SEnji Cooper // Note that this is distinct from is_convertible, which requires this be valid: 31628f6c2f2SEnji Cooper // 31728f6c2f2SEnji Cooper // To test() { 31828f6c2f2SEnji Cooper // return declval<From>(); 31928f6c2f2SEnji Cooper // } 32028f6c2f2SEnji Cooper // 32128f6c2f2SEnji Cooper // In particular, is_convertible doesn't give the correct answer when `To` and 32228f6c2f2SEnji Cooper // `From` are the same non-moveable type since `declval<From>` will be an rvalue 32328f6c2f2SEnji Cooper // reference, defeating the guaranteed copy elision that would otherwise make 32428f6c2f2SEnji Cooper // this function work. 32528f6c2f2SEnji Cooper // 32628f6c2f2SEnji Cooper // REQUIRES: `From` is not cv void. 32728f6c2f2SEnji Cooper template <typename From, typename To> 32828f6c2f2SEnji Cooper struct is_implicitly_convertible { 32928f6c2f2SEnji Cooper private: 33028f6c2f2SEnji Cooper // A function that accepts a parameter of type T. This can be called with type 33128f6c2f2SEnji Cooper // U successfully only if U is implicitly convertible to T. 33228f6c2f2SEnji Cooper template <typename T> 33328f6c2f2SEnji Cooper static void Accept(T); 33428f6c2f2SEnji Cooper 33528f6c2f2SEnji Cooper // A function that creates a value of type T. 33628f6c2f2SEnji Cooper template <typename T> 33728f6c2f2SEnji Cooper static T Make(); 33828f6c2f2SEnji Cooper 33928f6c2f2SEnji Cooper // An overload be selected when implicit conversion from T to To is possible. 34028f6c2f2SEnji Cooper template <typename T, typename = decltype(Accept<To>(Make<T>()))> 34128f6c2f2SEnji Cooper static std::true_type TestImplicitConversion(int); 34228f6c2f2SEnji Cooper 34328f6c2f2SEnji Cooper // A fallback overload selected in all other cases. 34428f6c2f2SEnji Cooper template <typename T> 34528f6c2f2SEnji Cooper static std::false_type TestImplicitConversion(...); 34628f6c2f2SEnji Cooper 34728f6c2f2SEnji Cooper public: 34828f6c2f2SEnji Cooper using type = decltype(TestImplicitConversion<From>(0)); 34928f6c2f2SEnji Cooper static constexpr bool value = type::value; 35028f6c2f2SEnji Cooper }; 35128f6c2f2SEnji Cooper 35228f6c2f2SEnji Cooper // Like std::invoke_result_t from C++17, but works only for objects with call 35328f6c2f2SEnji Cooper // operators (not e.g. member function pointers, which we don't need specific 35428f6c2f2SEnji Cooper // support for in OnceAction because std::function deals with them). 35528f6c2f2SEnji Cooper template <typename F, typename... Args> 35628f6c2f2SEnji Cooper using call_result_t = decltype(std::declval<F>()(std::declval<Args>()...)); 35728f6c2f2SEnji Cooper 35828f6c2f2SEnji Cooper template <typename Void, typename R, typename F, typename... Args> 35928f6c2f2SEnji Cooper struct is_callable_r_impl : std::false_type {}; 36028f6c2f2SEnji Cooper 36128f6c2f2SEnji Cooper // Specialize the struct for those template arguments where call_result_t is 36228f6c2f2SEnji Cooper // well-formed. When it's not, the generic template above is chosen, resulting 36328f6c2f2SEnji Cooper // in std::false_type. 36428f6c2f2SEnji Cooper template <typename R, typename F, typename... Args> 36528f6c2f2SEnji Cooper struct is_callable_r_impl<void_t<call_result_t<F, Args...>>, R, F, Args...> 36628f6c2f2SEnji Cooper : std::conditional< 36728f6c2f2SEnji Cooper std::is_void<R>::value, // 36828f6c2f2SEnji Cooper std::true_type, // 36928f6c2f2SEnji Cooper is_implicitly_convertible<call_result_t<F, Args...>, R>>::type {}; 37028f6c2f2SEnji Cooper 37128f6c2f2SEnji Cooper // Like std::is_invocable_r from C++17, but works only for objects with call 37228f6c2f2SEnji Cooper // operators. See the note on call_result_t. 37328f6c2f2SEnji Cooper template <typename R, typename F, typename... Args> 37428f6c2f2SEnji Cooper using is_callable_r = is_callable_r_impl<void, R, F, Args...>; 37528f6c2f2SEnji Cooper 37628f6c2f2SEnji Cooper // Like std::as_const from C++17. 37728f6c2f2SEnji Cooper template <typename T> 37828f6c2f2SEnji Cooper typename std::add_const<T>::type& as_const(T& t) { 37928f6c2f2SEnji Cooper return t; 38028f6c2f2SEnji Cooper } 38128f6c2f2SEnji Cooper 382b89a7cc2SEnji Cooper } // namespace internal 383b89a7cc2SEnji Cooper 38428f6c2f2SEnji Cooper // Specialized for function types below. 38528f6c2f2SEnji Cooper template <typename F> 38628f6c2f2SEnji Cooper class OnceAction; 38728f6c2f2SEnji Cooper 38828f6c2f2SEnji Cooper // An action that can only be used once. 38928f6c2f2SEnji Cooper // 39028f6c2f2SEnji Cooper // This is accepted by WillOnce, which doesn't require the underlying action to 39128f6c2f2SEnji Cooper // be copy-constructible (only move-constructible), and promises to invoke it as 39228f6c2f2SEnji Cooper // an rvalue reference. This allows the action to work with move-only types like 39328f6c2f2SEnji Cooper // std::move_only_function in a type-safe manner. 39428f6c2f2SEnji Cooper // 39528f6c2f2SEnji Cooper // For example: 39628f6c2f2SEnji Cooper // 39728f6c2f2SEnji Cooper // // Assume we have some API that needs to accept a unique pointer to some 39828f6c2f2SEnji Cooper // // non-copyable object Foo. 39928f6c2f2SEnji Cooper // void AcceptUniquePointer(std::unique_ptr<Foo> foo); 40028f6c2f2SEnji Cooper // 40128f6c2f2SEnji Cooper // // We can define an action that provides a Foo to that API. Because It 40228f6c2f2SEnji Cooper // // has to give away its unique pointer, it must not be called more than 40328f6c2f2SEnji Cooper // // once, so its call operator is &&-qualified. 40428f6c2f2SEnji Cooper // struct ProvideFoo { 40528f6c2f2SEnji Cooper // std::unique_ptr<Foo> foo; 40628f6c2f2SEnji Cooper // 40728f6c2f2SEnji Cooper // void operator()() && { 40828f6c2f2SEnji Cooper // AcceptUniquePointer(std::move(Foo)); 40928f6c2f2SEnji Cooper // } 41028f6c2f2SEnji Cooper // }; 41128f6c2f2SEnji Cooper // 41228f6c2f2SEnji Cooper // // This action can be used with WillOnce. 41328f6c2f2SEnji Cooper // EXPECT_CALL(mock, Call) 41428f6c2f2SEnji Cooper // .WillOnce(ProvideFoo{std::make_unique<Foo>(...)}); 41528f6c2f2SEnji Cooper // 41628f6c2f2SEnji Cooper // // But a call to WillRepeatedly will fail to compile. This is correct, 41728f6c2f2SEnji Cooper // // since the action cannot correctly be used repeatedly. 41828f6c2f2SEnji Cooper // EXPECT_CALL(mock, Call) 41928f6c2f2SEnji Cooper // .WillRepeatedly(ProvideFoo{std::make_unique<Foo>(...)}); 42028f6c2f2SEnji Cooper // 42128f6c2f2SEnji Cooper // A less-contrived example would be an action that returns an arbitrary type, 42228f6c2f2SEnji Cooper // whose &&-qualified call operator is capable of dealing with move-only types. 42328f6c2f2SEnji Cooper template <typename Result, typename... Args> 42428f6c2f2SEnji Cooper class OnceAction<Result(Args...)> final { 42528f6c2f2SEnji Cooper private: 42628f6c2f2SEnji Cooper // True iff we can use the given callable type (or lvalue reference) directly 42728f6c2f2SEnji Cooper // via StdFunctionAdaptor. 42828f6c2f2SEnji Cooper template <typename Callable> 42928f6c2f2SEnji Cooper using IsDirectlyCompatible = internal::conjunction< 43028f6c2f2SEnji Cooper // It must be possible to capture the callable in StdFunctionAdaptor. 43128f6c2f2SEnji Cooper std::is_constructible<typename std::decay<Callable>::type, Callable>, 43228f6c2f2SEnji Cooper // The callable must be compatible with our signature. 43328f6c2f2SEnji Cooper internal::is_callable_r<Result, typename std::decay<Callable>::type, 43428f6c2f2SEnji Cooper Args...>>; 43528f6c2f2SEnji Cooper 43628f6c2f2SEnji Cooper // True iff we can use the given callable type via StdFunctionAdaptor once we 43728f6c2f2SEnji Cooper // ignore incoming arguments. 43828f6c2f2SEnji Cooper template <typename Callable> 43928f6c2f2SEnji Cooper using IsCompatibleAfterIgnoringArguments = internal::conjunction< 44028f6c2f2SEnji Cooper // It must be possible to capture the callable in a lambda. 44128f6c2f2SEnji Cooper std::is_constructible<typename std::decay<Callable>::type, Callable>, 44228f6c2f2SEnji Cooper // The callable must be invocable with zero arguments, returning something 44328f6c2f2SEnji Cooper // convertible to Result. 44428f6c2f2SEnji Cooper internal::is_callable_r<Result, typename std::decay<Callable>::type>>; 44528f6c2f2SEnji Cooper 44628f6c2f2SEnji Cooper public: 44728f6c2f2SEnji Cooper // Construct from a callable that is directly compatible with our mocked 44828f6c2f2SEnji Cooper // signature: it accepts our function type's arguments and returns something 44928f6c2f2SEnji Cooper // convertible to our result type. 45028f6c2f2SEnji Cooper template <typename Callable, 45128f6c2f2SEnji Cooper typename std::enable_if< 45228f6c2f2SEnji Cooper internal::conjunction< 45328f6c2f2SEnji Cooper // Teach clang on macOS that we're not talking about a 45428f6c2f2SEnji Cooper // copy/move constructor here. Otherwise it gets confused 45528f6c2f2SEnji Cooper // when checking the is_constructible requirement of our 45628f6c2f2SEnji Cooper // traits above. 45728f6c2f2SEnji Cooper internal::negation<std::is_same< 45828f6c2f2SEnji Cooper OnceAction, typename std::decay<Callable>::type>>, 45928f6c2f2SEnji Cooper IsDirectlyCompatible<Callable>> // 46028f6c2f2SEnji Cooper ::value, 46128f6c2f2SEnji Cooper int>::type = 0> 46228f6c2f2SEnji Cooper OnceAction(Callable&& callable) // NOLINT 46328f6c2f2SEnji Cooper : function_(StdFunctionAdaptor<typename std::decay<Callable>::type>( 46428f6c2f2SEnji Cooper {}, std::forward<Callable>(callable))) {} 46528f6c2f2SEnji Cooper 46628f6c2f2SEnji Cooper // As above, but for a callable that ignores the mocked function's arguments. 46728f6c2f2SEnji Cooper template <typename Callable, 46828f6c2f2SEnji Cooper typename std::enable_if< 46928f6c2f2SEnji Cooper internal::conjunction< 47028f6c2f2SEnji Cooper // Teach clang on macOS that we're not talking about a 47128f6c2f2SEnji Cooper // copy/move constructor here. Otherwise it gets confused 47228f6c2f2SEnji Cooper // when checking the is_constructible requirement of our 47328f6c2f2SEnji Cooper // traits above. 47428f6c2f2SEnji Cooper internal::negation<std::is_same< 47528f6c2f2SEnji Cooper OnceAction, typename std::decay<Callable>::type>>, 47628f6c2f2SEnji Cooper // Exclude callables for which the overload above works. 47728f6c2f2SEnji Cooper // We'd rather provide the arguments if possible. 47828f6c2f2SEnji Cooper internal::negation<IsDirectlyCompatible<Callable>>, 47928f6c2f2SEnji Cooper IsCompatibleAfterIgnoringArguments<Callable>>::value, 48028f6c2f2SEnji Cooper int>::type = 0> 48128f6c2f2SEnji Cooper OnceAction(Callable&& callable) // NOLINT 48228f6c2f2SEnji Cooper // Call the constructor above with a callable 48328f6c2f2SEnji Cooper // that ignores the input arguments. 48428f6c2f2SEnji Cooper : OnceAction(IgnoreIncomingArguments<typename std::decay<Callable>::type>{ 48528f6c2f2SEnji Cooper std::forward<Callable>(callable)}) {} 48628f6c2f2SEnji Cooper 48728f6c2f2SEnji Cooper // We are naturally copyable because we store only an std::function, but 48828f6c2f2SEnji Cooper // semantically we should not be copyable. 48928f6c2f2SEnji Cooper OnceAction(const OnceAction&) = delete; 49028f6c2f2SEnji Cooper OnceAction& operator=(const OnceAction&) = delete; 49128f6c2f2SEnji Cooper OnceAction(OnceAction&&) = default; 49228f6c2f2SEnji Cooper 49328f6c2f2SEnji Cooper // Invoke the underlying action callable with which we were constructed, 49428f6c2f2SEnji Cooper // handing it the supplied arguments. 49528f6c2f2SEnji Cooper Result Call(Args... args) && { 49628f6c2f2SEnji Cooper return function_(std::forward<Args>(args)...); 49728f6c2f2SEnji Cooper } 49828f6c2f2SEnji Cooper 49928f6c2f2SEnji Cooper private: 50028f6c2f2SEnji Cooper // An adaptor that wraps a callable that is compatible with our signature and 50128f6c2f2SEnji Cooper // being invoked as an rvalue reference so that it can be used as an 50228f6c2f2SEnji Cooper // StdFunctionAdaptor. This throws away type safety, but that's fine because 50328f6c2f2SEnji Cooper // this is only used by WillOnce, which we know calls at most once. 50428f6c2f2SEnji Cooper // 50528f6c2f2SEnji Cooper // Once we have something like std::move_only_function from C++23, we can do 50628f6c2f2SEnji Cooper // away with this. 50728f6c2f2SEnji Cooper template <typename Callable> 50828f6c2f2SEnji Cooper class StdFunctionAdaptor final { 50928f6c2f2SEnji Cooper public: 51028f6c2f2SEnji Cooper // A tag indicating that the (otherwise universal) constructor is accepting 51128f6c2f2SEnji Cooper // the callable itself, instead of e.g. stealing calls for the move 51228f6c2f2SEnji Cooper // constructor. 51328f6c2f2SEnji Cooper struct CallableTag final {}; 51428f6c2f2SEnji Cooper 51528f6c2f2SEnji Cooper template <typename F> 51628f6c2f2SEnji Cooper explicit StdFunctionAdaptor(CallableTag, F&& callable) 51728f6c2f2SEnji Cooper : callable_(std::make_shared<Callable>(std::forward<F>(callable))) {} 51828f6c2f2SEnji Cooper 51928f6c2f2SEnji Cooper // Rather than explicitly returning Result, we return whatever the wrapped 52028f6c2f2SEnji Cooper // callable returns. This allows for compatibility with existing uses like 52128f6c2f2SEnji Cooper // the following, when the mocked function returns void: 52228f6c2f2SEnji Cooper // 52328f6c2f2SEnji Cooper // EXPECT_CALL(mock_fn_, Call) 52428f6c2f2SEnji Cooper // .WillOnce([&] { 52528f6c2f2SEnji Cooper // [...] 52628f6c2f2SEnji Cooper // return 0; 52728f6c2f2SEnji Cooper // }); 52828f6c2f2SEnji Cooper // 52928f6c2f2SEnji Cooper // Such a callable can be turned into std::function<void()>. If we use an 53028f6c2f2SEnji Cooper // explicit return type of Result here then it *doesn't* work with 53128f6c2f2SEnji Cooper // std::function, because we'll get a "void function should not return a 53228f6c2f2SEnji Cooper // value" error. 53328f6c2f2SEnji Cooper // 53428f6c2f2SEnji Cooper // We need not worry about incompatible result types because the SFINAE on 53528f6c2f2SEnji Cooper // OnceAction already checks this for us. std::is_invocable_r_v itself makes 53628f6c2f2SEnji Cooper // the same allowance for void result types. 53728f6c2f2SEnji Cooper template <typename... ArgRefs> 53828f6c2f2SEnji Cooper internal::call_result_t<Callable, ArgRefs...> operator()( 53928f6c2f2SEnji Cooper ArgRefs&&... args) const { 54028f6c2f2SEnji Cooper return std::move(*callable_)(std::forward<ArgRefs>(args)...); 54128f6c2f2SEnji Cooper } 54228f6c2f2SEnji Cooper 54328f6c2f2SEnji Cooper private: 54428f6c2f2SEnji Cooper // We must put the callable on the heap so that we are copyable, which 54528f6c2f2SEnji Cooper // std::function needs. 54628f6c2f2SEnji Cooper std::shared_ptr<Callable> callable_; 54728f6c2f2SEnji Cooper }; 54828f6c2f2SEnji Cooper 54928f6c2f2SEnji Cooper // An adaptor that makes a callable that accepts zero arguments callable with 55028f6c2f2SEnji Cooper // our mocked arguments. 55128f6c2f2SEnji Cooper template <typename Callable> 55228f6c2f2SEnji Cooper struct IgnoreIncomingArguments { 55328f6c2f2SEnji Cooper internal::call_result_t<Callable> operator()(Args&&...) { 55428f6c2f2SEnji Cooper return std::move(callable)(); 55528f6c2f2SEnji Cooper } 55628f6c2f2SEnji Cooper 55728f6c2f2SEnji Cooper Callable callable; 55828f6c2f2SEnji Cooper }; 55928f6c2f2SEnji Cooper 56028f6c2f2SEnji Cooper std::function<Result(Args...)> function_; 56128f6c2f2SEnji Cooper }; 56228f6c2f2SEnji Cooper 563b89a7cc2SEnji Cooper // When an unexpected function call is encountered, Google Mock will 564b89a7cc2SEnji Cooper // let it return a default value if the user has specified one for its 565b89a7cc2SEnji Cooper // return type, or if the return type has a built-in default value; 566b89a7cc2SEnji Cooper // otherwise Google Mock won't know what value to return and will have 567b89a7cc2SEnji Cooper // to abort the process. 568b89a7cc2SEnji Cooper // 569b89a7cc2SEnji Cooper // The DefaultValue<T> class allows a user to specify the 570b89a7cc2SEnji Cooper // default value for a type T that is both copyable and publicly 571b89a7cc2SEnji Cooper // destructible (i.e. anything that can be used as a function return 572b89a7cc2SEnji Cooper // type). The usage is: 573b89a7cc2SEnji Cooper // 574b89a7cc2SEnji Cooper // // Sets the default value for type T to be foo. 575b89a7cc2SEnji Cooper // DefaultValue<T>::Set(foo); 576b89a7cc2SEnji Cooper template <typename T> 577b89a7cc2SEnji Cooper class DefaultValue { 578b89a7cc2SEnji Cooper public: 579b89a7cc2SEnji Cooper // Sets the default value for type T; requires T to be 580b89a7cc2SEnji Cooper // copy-constructable and have a public destructor. 581b89a7cc2SEnji Cooper static void Set(T x) { 582b89a7cc2SEnji Cooper delete producer_; 583b89a7cc2SEnji Cooper producer_ = new FixedValueProducer(x); 584b89a7cc2SEnji Cooper } 585b89a7cc2SEnji Cooper 586b89a7cc2SEnji Cooper // Provides a factory function to be called to generate the default value. 587b89a7cc2SEnji Cooper // This method can be used even if T is only move-constructible, but it is not 588b89a7cc2SEnji Cooper // limited to that case. 589b89a7cc2SEnji Cooper typedef T (*FactoryFunction)(); 590b89a7cc2SEnji Cooper static void SetFactory(FactoryFunction factory) { 591b89a7cc2SEnji Cooper delete producer_; 592b89a7cc2SEnji Cooper producer_ = new FactoryValueProducer(factory); 593b89a7cc2SEnji Cooper } 594b89a7cc2SEnji Cooper 595b89a7cc2SEnji Cooper // Unsets the default value for type T. 596b89a7cc2SEnji Cooper static void Clear() { 597b89a7cc2SEnji Cooper delete producer_; 59828f6c2f2SEnji Cooper producer_ = nullptr; 599b89a7cc2SEnji Cooper } 600b89a7cc2SEnji Cooper 60128f6c2f2SEnji Cooper // Returns true if and only if the user has set the default value for type T. 60228f6c2f2SEnji Cooper static bool IsSet() { return producer_ != nullptr; } 603b89a7cc2SEnji Cooper 604b89a7cc2SEnji Cooper // Returns true if T has a default return value set by the user or there 605b89a7cc2SEnji Cooper // exists a built-in default value. 606b89a7cc2SEnji Cooper static bool Exists() { 607b89a7cc2SEnji Cooper return IsSet() || internal::BuiltInDefaultValue<T>::Exists(); 608b89a7cc2SEnji Cooper } 609b89a7cc2SEnji Cooper 610b89a7cc2SEnji Cooper // Returns the default value for type T if the user has set one; 611b89a7cc2SEnji Cooper // otherwise returns the built-in default value. Requires that Exists() 612b89a7cc2SEnji Cooper // is true, which ensures that the return value is well-defined. 613b89a7cc2SEnji Cooper static T Get() { 61428f6c2f2SEnji Cooper return producer_ == nullptr ? internal::BuiltInDefaultValue<T>::Get() 61528f6c2f2SEnji Cooper : producer_->Produce(); 616b89a7cc2SEnji Cooper } 617b89a7cc2SEnji Cooper 618b89a7cc2SEnji Cooper private: 619b89a7cc2SEnji Cooper class ValueProducer { 620b89a7cc2SEnji Cooper public: 62128f6c2f2SEnji Cooper virtual ~ValueProducer() = default; 622b89a7cc2SEnji Cooper virtual T Produce() = 0; 623b89a7cc2SEnji Cooper }; 624b89a7cc2SEnji Cooper 625b89a7cc2SEnji Cooper class FixedValueProducer : public ValueProducer { 626b89a7cc2SEnji Cooper public: 627b89a7cc2SEnji Cooper explicit FixedValueProducer(T value) : value_(value) {} 62828f6c2f2SEnji Cooper T Produce() override { return value_; } 629b89a7cc2SEnji Cooper 630b89a7cc2SEnji Cooper private: 631b89a7cc2SEnji Cooper const T value_; 63228f6c2f2SEnji Cooper FixedValueProducer(const FixedValueProducer&) = delete; 63328f6c2f2SEnji Cooper FixedValueProducer& operator=(const FixedValueProducer&) = delete; 634b89a7cc2SEnji Cooper }; 635b89a7cc2SEnji Cooper 636b89a7cc2SEnji Cooper class FactoryValueProducer : public ValueProducer { 637b89a7cc2SEnji Cooper public: 638b89a7cc2SEnji Cooper explicit FactoryValueProducer(FactoryFunction factory) 639b89a7cc2SEnji Cooper : factory_(factory) {} 64028f6c2f2SEnji Cooper T Produce() override { return factory_(); } 641b89a7cc2SEnji Cooper 642b89a7cc2SEnji Cooper private: 643b89a7cc2SEnji Cooper const FactoryFunction factory_; 64428f6c2f2SEnji Cooper FactoryValueProducer(const FactoryValueProducer&) = delete; 64528f6c2f2SEnji Cooper FactoryValueProducer& operator=(const FactoryValueProducer&) = delete; 646b89a7cc2SEnji Cooper }; 647b89a7cc2SEnji Cooper 648b89a7cc2SEnji Cooper static ValueProducer* producer_; 649b89a7cc2SEnji Cooper }; 650b89a7cc2SEnji Cooper 651b89a7cc2SEnji Cooper // This partial specialization allows a user to set default values for 652b89a7cc2SEnji Cooper // reference types. 653b89a7cc2SEnji Cooper template <typename T> 654b89a7cc2SEnji Cooper class DefaultValue<T&> { 655b89a7cc2SEnji Cooper public: 656b89a7cc2SEnji Cooper // Sets the default value for type T&. 657b89a7cc2SEnji Cooper static void Set(T& x) { // NOLINT 658b89a7cc2SEnji Cooper address_ = &x; 659b89a7cc2SEnji Cooper } 660b89a7cc2SEnji Cooper 661b89a7cc2SEnji Cooper // Unsets the default value for type T&. 66228f6c2f2SEnji Cooper static void Clear() { address_ = nullptr; } 663b89a7cc2SEnji Cooper 66428f6c2f2SEnji Cooper // Returns true if and only if the user has set the default value for type T&. 66528f6c2f2SEnji Cooper static bool IsSet() { return address_ != nullptr; } 666b89a7cc2SEnji Cooper 667b89a7cc2SEnji Cooper // Returns true if T has a default return value set by the user or there 668b89a7cc2SEnji Cooper // exists a built-in default value. 669b89a7cc2SEnji Cooper static bool Exists() { 670b89a7cc2SEnji Cooper return IsSet() || internal::BuiltInDefaultValue<T&>::Exists(); 671b89a7cc2SEnji Cooper } 672b89a7cc2SEnji Cooper 673b89a7cc2SEnji Cooper // Returns the default value for type T& if the user has set one; 674b89a7cc2SEnji Cooper // otherwise returns the built-in default value if there is one; 675b89a7cc2SEnji Cooper // otherwise aborts the process. 676b89a7cc2SEnji Cooper static T& Get() { 67728f6c2f2SEnji Cooper return address_ == nullptr ? internal::BuiltInDefaultValue<T&>::Get() 67828f6c2f2SEnji Cooper : *address_; 679b89a7cc2SEnji Cooper } 680b89a7cc2SEnji Cooper 681b89a7cc2SEnji Cooper private: 682b89a7cc2SEnji Cooper static T* address_; 683b89a7cc2SEnji Cooper }; 684b89a7cc2SEnji Cooper 685b89a7cc2SEnji Cooper // This specialization allows DefaultValue<void>::Get() to 686b89a7cc2SEnji Cooper // compile. 687b89a7cc2SEnji Cooper template <> 688b89a7cc2SEnji Cooper class DefaultValue<void> { 689b89a7cc2SEnji Cooper public: 690b89a7cc2SEnji Cooper static bool Exists() { return true; } 691b89a7cc2SEnji Cooper static void Get() {} 692b89a7cc2SEnji Cooper }; 693b89a7cc2SEnji Cooper 694b89a7cc2SEnji Cooper // Points to the user-set default value for type T. 695b89a7cc2SEnji Cooper template <typename T> 69628f6c2f2SEnji Cooper typename DefaultValue<T>::ValueProducer* DefaultValue<T>::producer_ = nullptr; 697b89a7cc2SEnji Cooper 698b89a7cc2SEnji Cooper // Points to the user-set default value for type T&. 699b89a7cc2SEnji Cooper template <typename T> 70028f6c2f2SEnji Cooper T* DefaultValue<T&>::address_ = nullptr; 701b89a7cc2SEnji Cooper 702b89a7cc2SEnji Cooper // Implement this interface to define an action for function type F. 703b89a7cc2SEnji Cooper template <typename F> 704b89a7cc2SEnji Cooper class ActionInterface { 705b89a7cc2SEnji Cooper public: 706b89a7cc2SEnji Cooper typedef typename internal::Function<F>::Result Result; 707b89a7cc2SEnji Cooper typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; 708b89a7cc2SEnji Cooper 70928f6c2f2SEnji Cooper ActionInterface() = default; 71028f6c2f2SEnji Cooper virtual ~ActionInterface() = default; 711b89a7cc2SEnji Cooper 712b89a7cc2SEnji Cooper // Performs the action. This method is not const, as in general an 713b89a7cc2SEnji Cooper // action can have side effects and be stateful. For example, a 714b89a7cc2SEnji Cooper // get-the-next-element-from-the-collection action will need to 715b89a7cc2SEnji Cooper // remember the current element. 716b89a7cc2SEnji Cooper virtual Result Perform(const ArgumentTuple& args) = 0; 717b89a7cc2SEnji Cooper 718b89a7cc2SEnji Cooper private: 71928f6c2f2SEnji Cooper ActionInterface(const ActionInterface&) = delete; 72028f6c2f2SEnji Cooper ActionInterface& operator=(const ActionInterface&) = delete; 721b89a7cc2SEnji Cooper }; 722b89a7cc2SEnji Cooper 723b89a7cc2SEnji Cooper template <typename F> 72428f6c2f2SEnji Cooper class Action; 72528f6c2f2SEnji Cooper 72628f6c2f2SEnji Cooper // An Action<R(Args...)> is a copyable and IMMUTABLE (except by assignment) 72728f6c2f2SEnji Cooper // object that represents an action to be taken when a mock function of type 72828f6c2f2SEnji Cooper // R(Args...) is called. The implementation of Action<T> is just a 72928f6c2f2SEnji Cooper // std::shared_ptr to const ActionInterface<T>. Don't inherit from Action! You 73028f6c2f2SEnji Cooper // can view an object implementing ActionInterface<F> as a concrete action 73128f6c2f2SEnji Cooper // (including its current state), and an Action<F> object as a handle to it. 73228f6c2f2SEnji Cooper template <typename R, typename... Args> 73328f6c2f2SEnji Cooper class Action<R(Args...)> { 73428f6c2f2SEnji Cooper private: 73528f6c2f2SEnji Cooper using F = R(Args...); 73628f6c2f2SEnji Cooper 73728f6c2f2SEnji Cooper // Adapter class to allow constructing Action from a legacy ActionInterface. 73828f6c2f2SEnji Cooper // New code should create Actions from functors instead. 73928f6c2f2SEnji Cooper struct ActionAdapter { 74028f6c2f2SEnji Cooper // Adapter must be copyable to satisfy std::function requirements. 74128f6c2f2SEnji Cooper ::std::shared_ptr<ActionInterface<F>> impl_; 74228f6c2f2SEnji Cooper 74328f6c2f2SEnji Cooper template <typename... InArgs> 74428f6c2f2SEnji Cooper typename internal::Function<F>::Result operator()(InArgs&&... args) { 74528f6c2f2SEnji Cooper return impl_->Perform( 74628f6c2f2SEnji Cooper ::std::forward_as_tuple(::std::forward<InArgs>(args)...)); 74728f6c2f2SEnji Cooper } 74828f6c2f2SEnji Cooper }; 74928f6c2f2SEnji Cooper 75028f6c2f2SEnji Cooper template <typename G> 75128f6c2f2SEnji Cooper using IsCompatibleFunctor = std::is_constructible<std::function<F>, G>; 75228f6c2f2SEnji Cooper 753b89a7cc2SEnji Cooper public: 754b89a7cc2SEnji Cooper typedef typename internal::Function<F>::Result Result; 755b89a7cc2SEnji Cooper typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; 756b89a7cc2SEnji Cooper 757b89a7cc2SEnji Cooper // Constructs a null Action. Needed for storing Action objects in 758b89a7cc2SEnji Cooper // STL containers. 75928f6c2f2SEnji Cooper Action() = default; 760b89a7cc2SEnji Cooper 761b89a7cc2SEnji Cooper // Construct an Action from a specified callable. 762b89a7cc2SEnji Cooper // This cannot take std::function directly, because then Action would not be 763b89a7cc2SEnji Cooper // directly constructible from lambda (it would require two conversions). 76428f6c2f2SEnji Cooper template < 76528f6c2f2SEnji Cooper typename G, 76628f6c2f2SEnji Cooper typename = typename std::enable_if<internal::disjunction< 76728f6c2f2SEnji Cooper IsCompatibleFunctor<G>, std::is_constructible<std::function<Result()>, 76828f6c2f2SEnji Cooper G>>::value>::type> 76928f6c2f2SEnji Cooper Action(G&& fun) { // NOLINT 77028f6c2f2SEnji Cooper Init(::std::forward<G>(fun), IsCompatibleFunctor<G>()); 77128f6c2f2SEnji Cooper } 772b89a7cc2SEnji Cooper 773b89a7cc2SEnji Cooper // Constructs an Action from its implementation. 77428f6c2f2SEnji Cooper explicit Action(ActionInterface<F>* impl) 77528f6c2f2SEnji Cooper : fun_(ActionAdapter{::std::shared_ptr<ActionInterface<F>>(impl)}) {} 776b89a7cc2SEnji Cooper 777b89a7cc2SEnji Cooper // This constructor allows us to turn an Action<Func> object into an 778b89a7cc2SEnji Cooper // Action<F>, as long as F's arguments can be implicitly converted 77928f6c2f2SEnji Cooper // to Func's and Func's return type can be implicitly converted to F's. 780b89a7cc2SEnji Cooper template <typename Func> 78128f6c2f2SEnji Cooper Action(const Action<Func>& action) // NOLINT 78228f6c2f2SEnji Cooper : fun_(action.fun_) {} 783b89a7cc2SEnji Cooper 78428f6c2f2SEnji Cooper // Returns true if and only if this is the DoDefault() action. 78528f6c2f2SEnji Cooper bool IsDoDefault() const { return fun_ == nullptr; } 786b89a7cc2SEnji Cooper 787b89a7cc2SEnji Cooper // Performs the action. Note that this method is const even though 788b89a7cc2SEnji Cooper // the corresponding method in ActionInterface is not. The reason 789b89a7cc2SEnji Cooper // is that a const Action<F> means that it cannot be re-bound to 790b89a7cc2SEnji Cooper // another concrete action, not that the concrete action it binds to 791b89a7cc2SEnji Cooper // cannot change state. (Think of the difference between a const 792b89a7cc2SEnji Cooper // pointer and a pointer to const.) 793b89a7cc2SEnji Cooper Result Perform(ArgumentTuple args) const { 794b89a7cc2SEnji Cooper if (IsDoDefault()) { 795b89a7cc2SEnji Cooper internal::IllegalDoDefault(__FILE__, __LINE__); 796b89a7cc2SEnji Cooper } 797b89a7cc2SEnji Cooper return internal::Apply(fun_, ::std::move(args)); 798b89a7cc2SEnji Cooper } 79928f6c2f2SEnji Cooper 80028f6c2f2SEnji Cooper // An action can be used as a OnceAction, since it's obviously safe to call it 80128f6c2f2SEnji Cooper // once. 80228f6c2f2SEnji Cooper operator OnceAction<F>() const { // NOLINT 80328f6c2f2SEnji Cooper // Return a OnceAction-compatible callable that calls Perform with the 80428f6c2f2SEnji Cooper // arguments it is provided. We could instead just return fun_, but then 80528f6c2f2SEnji Cooper // we'd need to handle the IsDoDefault() case separately. 80628f6c2f2SEnji Cooper struct OA { 80728f6c2f2SEnji Cooper Action<F> action; 80828f6c2f2SEnji Cooper 80928f6c2f2SEnji Cooper R operator()(Args... args) && { 81028f6c2f2SEnji Cooper return action.Perform( 81128f6c2f2SEnji Cooper std::forward_as_tuple(std::forward<Args>(args)...)); 81228f6c2f2SEnji Cooper } 81328f6c2f2SEnji Cooper }; 81428f6c2f2SEnji Cooper 81528f6c2f2SEnji Cooper return OA{*this}; 816b89a7cc2SEnji Cooper } 817b89a7cc2SEnji Cooper 818b89a7cc2SEnji Cooper private: 819b89a7cc2SEnji Cooper template <typename G> 820b89a7cc2SEnji Cooper friend class Action; 821b89a7cc2SEnji Cooper 82228f6c2f2SEnji Cooper template <typename G> 82328f6c2f2SEnji Cooper void Init(G&& g, ::std::true_type) { 82428f6c2f2SEnji Cooper fun_ = ::std::forward<G>(g); 82528f6c2f2SEnji Cooper } 82628f6c2f2SEnji Cooper 82728f6c2f2SEnji Cooper template <typename G> 82828f6c2f2SEnji Cooper void Init(G&& g, ::std::false_type) { 82928f6c2f2SEnji Cooper fun_ = IgnoreArgs<typename ::std::decay<G>::type>{::std::forward<G>(g)}; 83028f6c2f2SEnji Cooper } 83128f6c2f2SEnji Cooper 83228f6c2f2SEnji Cooper template <typename FunctionImpl> 83328f6c2f2SEnji Cooper struct IgnoreArgs { 83428f6c2f2SEnji Cooper template <typename... InArgs> 83528f6c2f2SEnji Cooper Result operator()(const InArgs&...) const { 83628f6c2f2SEnji Cooper return function_impl(); 83728f6c2f2SEnji Cooper } 83828f6c2f2SEnji Cooper 83928f6c2f2SEnji Cooper FunctionImpl function_impl; 84028f6c2f2SEnji Cooper }; 84128f6c2f2SEnji Cooper 84228f6c2f2SEnji Cooper // fun_ is an empty function if and only if this is the DoDefault() action. 843b89a7cc2SEnji Cooper ::std::function<F> fun_; 844b89a7cc2SEnji Cooper }; 845b89a7cc2SEnji Cooper 846b89a7cc2SEnji Cooper // The PolymorphicAction class template makes it easy to implement a 847b89a7cc2SEnji Cooper // polymorphic action (i.e. an action that can be used in mock 848b89a7cc2SEnji Cooper // functions of than one type, e.g. Return()). 849b89a7cc2SEnji Cooper // 850b89a7cc2SEnji Cooper // To define a polymorphic action, a user first provides a COPYABLE 851b89a7cc2SEnji Cooper // implementation class that has a Perform() method template: 852b89a7cc2SEnji Cooper // 853b89a7cc2SEnji Cooper // class FooAction { 854b89a7cc2SEnji Cooper // public: 855b89a7cc2SEnji Cooper // template <typename Result, typename ArgumentTuple> 856b89a7cc2SEnji Cooper // Result Perform(const ArgumentTuple& args) const { 857b89a7cc2SEnji Cooper // // Processes the arguments and returns a result, using 85828f6c2f2SEnji Cooper // // std::get<N>(args) to get the N-th (0-based) argument in the tuple. 859b89a7cc2SEnji Cooper // } 860b89a7cc2SEnji Cooper // ... 861b89a7cc2SEnji Cooper // }; 862b89a7cc2SEnji Cooper // 863b89a7cc2SEnji Cooper // Then the user creates the polymorphic action using 864b89a7cc2SEnji Cooper // MakePolymorphicAction(object) where object has type FooAction. See 865b89a7cc2SEnji Cooper // the definition of Return(void) and SetArgumentPointee<N>(value) for 866b89a7cc2SEnji Cooper // complete examples. 867b89a7cc2SEnji Cooper template <typename Impl> 868b89a7cc2SEnji Cooper class PolymorphicAction { 869b89a7cc2SEnji Cooper public: 870b89a7cc2SEnji Cooper explicit PolymorphicAction(const Impl& impl) : impl_(impl) {} 871b89a7cc2SEnji Cooper 872b89a7cc2SEnji Cooper template <typename F> 873b89a7cc2SEnji Cooper operator Action<F>() const { 874b89a7cc2SEnji Cooper return Action<F>(new MonomorphicImpl<F>(impl_)); 875b89a7cc2SEnji Cooper } 876b89a7cc2SEnji Cooper 877b89a7cc2SEnji Cooper private: 878b89a7cc2SEnji Cooper template <typename F> 879b89a7cc2SEnji Cooper class MonomorphicImpl : public ActionInterface<F> { 880b89a7cc2SEnji Cooper public: 881b89a7cc2SEnji Cooper typedef typename internal::Function<F>::Result Result; 882b89a7cc2SEnji Cooper typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; 883b89a7cc2SEnji Cooper 884b89a7cc2SEnji Cooper explicit MonomorphicImpl(const Impl& impl) : impl_(impl) {} 885b89a7cc2SEnji Cooper 88628f6c2f2SEnji Cooper Result Perform(const ArgumentTuple& args) override { 887b89a7cc2SEnji Cooper return impl_.template Perform<Result>(args); 888b89a7cc2SEnji Cooper } 889b89a7cc2SEnji Cooper 890b89a7cc2SEnji Cooper private: 891b89a7cc2SEnji Cooper Impl impl_; 892b89a7cc2SEnji Cooper }; 893b89a7cc2SEnji Cooper 894b89a7cc2SEnji Cooper Impl impl_; 895b89a7cc2SEnji Cooper }; 896b89a7cc2SEnji Cooper 897b89a7cc2SEnji Cooper // Creates an Action from its implementation and returns it. The 898b89a7cc2SEnji Cooper // created Action object owns the implementation. 899b89a7cc2SEnji Cooper template <typename F> 900b89a7cc2SEnji Cooper Action<F> MakeAction(ActionInterface<F>* impl) { 901b89a7cc2SEnji Cooper return Action<F>(impl); 902b89a7cc2SEnji Cooper } 903b89a7cc2SEnji Cooper 904b89a7cc2SEnji Cooper // Creates a polymorphic action from its implementation. This is 905b89a7cc2SEnji Cooper // easier to use than the PolymorphicAction<Impl> constructor as it 906b89a7cc2SEnji Cooper // doesn't require you to explicitly write the template argument, e.g. 907b89a7cc2SEnji Cooper // 908b89a7cc2SEnji Cooper // MakePolymorphicAction(foo); 909b89a7cc2SEnji Cooper // vs 910b89a7cc2SEnji Cooper // PolymorphicAction<TypeOfFoo>(foo); 911b89a7cc2SEnji Cooper template <typename Impl> 912b89a7cc2SEnji Cooper inline PolymorphicAction<Impl> MakePolymorphicAction(const Impl& impl) { 913b89a7cc2SEnji Cooper return PolymorphicAction<Impl>(impl); 914b89a7cc2SEnji Cooper } 915b89a7cc2SEnji Cooper 916b89a7cc2SEnji Cooper namespace internal { 917b89a7cc2SEnji Cooper 918b89a7cc2SEnji Cooper // Helper struct to specialize ReturnAction to execute a move instead of a copy 919b89a7cc2SEnji Cooper // on return. Useful for move-only types, but could be used on any type. 920b89a7cc2SEnji Cooper template <typename T> 921b89a7cc2SEnji Cooper struct ByMoveWrapper { 92228f6c2f2SEnji Cooper explicit ByMoveWrapper(T value) : payload(std::move(value)) {} 923b89a7cc2SEnji Cooper T payload; 924b89a7cc2SEnji Cooper }; 925b89a7cc2SEnji Cooper 92628f6c2f2SEnji Cooper // The general implementation of Return(R). Specializations follow below. 92728f6c2f2SEnji Cooper template <typename R> 92828f6c2f2SEnji Cooper class ReturnAction final { 92928f6c2f2SEnji Cooper public: 93028f6c2f2SEnji Cooper explicit ReturnAction(R value) : value_(std::move(value)) {} 93128f6c2f2SEnji Cooper 93228f6c2f2SEnji Cooper template <typename U, typename... Args, 93328f6c2f2SEnji Cooper typename = typename std::enable_if<conjunction< 93428f6c2f2SEnji Cooper // See the requirements documented on Return. 93528f6c2f2SEnji Cooper negation<std::is_same<void, U>>, // 93628f6c2f2SEnji Cooper negation<std::is_reference<U>>, // 93728f6c2f2SEnji Cooper std::is_convertible<R, U>, // 93828f6c2f2SEnji Cooper std::is_move_constructible<U>>::value>::type> 93928f6c2f2SEnji Cooper operator OnceAction<U(Args...)>() && { // NOLINT 94028f6c2f2SEnji Cooper return Impl<U>(std::move(value_)); 94128f6c2f2SEnji Cooper } 94228f6c2f2SEnji Cooper 94328f6c2f2SEnji Cooper template <typename U, typename... Args, 94428f6c2f2SEnji Cooper typename = typename std::enable_if<conjunction< 94528f6c2f2SEnji Cooper // See the requirements documented on Return. 94628f6c2f2SEnji Cooper negation<std::is_same<void, U>>, // 94728f6c2f2SEnji Cooper negation<std::is_reference<U>>, // 94828f6c2f2SEnji Cooper std::is_convertible<const R&, U>, // 94928f6c2f2SEnji Cooper std::is_copy_constructible<U>>::value>::type> 95028f6c2f2SEnji Cooper operator Action<U(Args...)>() const { // NOLINT 95128f6c2f2SEnji Cooper return Impl<U>(value_); 95228f6c2f2SEnji Cooper } 95328f6c2f2SEnji Cooper 95428f6c2f2SEnji Cooper private: 95528f6c2f2SEnji Cooper // Implements the Return(x) action for a mock function that returns type U. 95628f6c2f2SEnji Cooper template <typename U> 95728f6c2f2SEnji Cooper class Impl final { 95828f6c2f2SEnji Cooper public: 95928f6c2f2SEnji Cooper // The constructor used when the return value is allowed to move from the 96028f6c2f2SEnji Cooper // input value (i.e. we are converting to OnceAction). 96128f6c2f2SEnji Cooper explicit Impl(R&& input_value) 96228f6c2f2SEnji Cooper : state_(new State(std::move(input_value))) {} 96328f6c2f2SEnji Cooper 96428f6c2f2SEnji Cooper // The constructor used when the return value is not allowed to move from 96528f6c2f2SEnji Cooper // the input value (i.e. we are converting to Action). 96628f6c2f2SEnji Cooper explicit Impl(const R& input_value) : state_(new State(input_value)) {} 96728f6c2f2SEnji Cooper 96828f6c2f2SEnji Cooper U operator()() && { return std::move(state_->value); } 96928f6c2f2SEnji Cooper U operator()() const& { return state_->value; } 97028f6c2f2SEnji Cooper 97128f6c2f2SEnji Cooper private: 97228f6c2f2SEnji Cooper // We put our state on the heap so that the compiler-generated copy/move 97328f6c2f2SEnji Cooper // constructors work correctly even when U is a reference-like type. This is 97428f6c2f2SEnji Cooper // necessary only because we eagerly create State::value (see the note on 97528f6c2f2SEnji Cooper // that symbol for details). If we instead had only the input value as a 97628f6c2f2SEnji Cooper // member then the default constructors would work fine. 977b89a7cc2SEnji Cooper // 97828f6c2f2SEnji Cooper // For example, when R is std::string and U is std::string_view, value is a 97928f6c2f2SEnji Cooper // reference to the string backed by input_value. The copy constructor would 98028f6c2f2SEnji Cooper // copy both, so that we wind up with a new input_value object (with the 98128f6c2f2SEnji Cooper // same contents) and a reference to the *old* input_value object rather 98228f6c2f2SEnji Cooper // than the new one. 98328f6c2f2SEnji Cooper struct State { 98428f6c2f2SEnji Cooper explicit State(const R& input_value_in) 98528f6c2f2SEnji Cooper : input_value(input_value_in), 98628f6c2f2SEnji Cooper // Make an implicit conversion to Result before initializing the U 98728f6c2f2SEnji Cooper // object we store, avoiding calling any explicit constructor of U 98828f6c2f2SEnji Cooper // from R. 989b89a7cc2SEnji Cooper // 99028f6c2f2SEnji Cooper // This simulates the language rules: a function with return type U 99128f6c2f2SEnji Cooper // that does `return R()` requires R to be implicitly convertible to 99228f6c2f2SEnji Cooper // U, and uses that path for the conversion, even U Result has an 99328f6c2f2SEnji Cooper // explicit constructor from R. 99428f6c2f2SEnji Cooper value(ImplicitCast_<U>(internal::as_const(input_value))) {} 99528f6c2f2SEnji Cooper 99628f6c2f2SEnji Cooper // As above, but for the case where we're moving from the ReturnAction 99728f6c2f2SEnji Cooper // object because it's being used as a OnceAction. 99828f6c2f2SEnji Cooper explicit State(R&& input_value_in) 99928f6c2f2SEnji Cooper : input_value(std::move(input_value_in)), 100028f6c2f2SEnji Cooper // For the same reason as above we make an implicit conversion to U 100128f6c2f2SEnji Cooper // before initializing the value. 100228f6c2f2SEnji Cooper // 100328f6c2f2SEnji Cooper // Unlike above we provide the input value as an rvalue to the 100428f6c2f2SEnji Cooper // implicit conversion because this is a OnceAction: it's fine if it 100528f6c2f2SEnji Cooper // wants to consume the input value. 100628f6c2f2SEnji Cooper value(ImplicitCast_<U>(std::move(input_value))) {} 100728f6c2f2SEnji Cooper 100828f6c2f2SEnji Cooper // A copy of the value originally provided by the user. We retain this in 100928f6c2f2SEnji Cooper // addition to the value of the mock function's result type below in case 101028f6c2f2SEnji Cooper // the latter is a reference-like type. See the std::string_view example 101128f6c2f2SEnji Cooper // in the documentation on Return. 101228f6c2f2SEnji Cooper R input_value; 101328f6c2f2SEnji Cooper 101428f6c2f2SEnji Cooper // The value we actually return, as the type returned by the mock function 101528f6c2f2SEnji Cooper // itself. 101628f6c2f2SEnji Cooper // 101728f6c2f2SEnji Cooper // We eagerly initialize this here, rather than lazily doing the implicit 101828f6c2f2SEnji Cooper // conversion automatically each time Perform is called, for historical 101928f6c2f2SEnji Cooper // reasons: in 2009-11, commit a070cbd91c (Google changelist 13540126) 102028f6c2f2SEnji Cooper // made the Action<U()> conversion operator eagerly convert the R value to 102128f6c2f2SEnji Cooper // U, but without keeping the R alive. This broke the use case discussed 102228f6c2f2SEnji Cooper // in the documentation for Return, making reference-like types such as 102328f6c2f2SEnji Cooper // std::string_view not safe to use as U where the input type R is a 102428f6c2f2SEnji Cooper // value-like type such as std::string. 102528f6c2f2SEnji Cooper // 102628f6c2f2SEnji Cooper // The example the commit gave was not very clear, nor was the issue 102728f6c2f2SEnji Cooper // thread (https://github.com/google/googlemock/issues/86), but it seems 102828f6c2f2SEnji Cooper // the worry was about reference-like input types R that flatten to a 102928f6c2f2SEnji Cooper // value-like type U when being implicitly converted. An example of this 103028f6c2f2SEnji Cooper // is std::vector<bool>::reference, which is often a proxy type with an 103128f6c2f2SEnji Cooper // reference to the underlying vector: 103228f6c2f2SEnji Cooper // 103328f6c2f2SEnji Cooper // // Helper method: have the mock function return bools according 103428f6c2f2SEnji Cooper // // to the supplied script. 103528f6c2f2SEnji Cooper // void SetActions(MockFunction<bool(size_t)>& mock, 103628f6c2f2SEnji Cooper // const std::vector<bool>& script) { 103728f6c2f2SEnji Cooper // for (size_t i = 0; i < script.size(); ++i) { 103828f6c2f2SEnji Cooper // EXPECT_CALL(mock, Call(i)).WillOnce(Return(script[i])); 103928f6c2f2SEnji Cooper // } 1040b89a7cc2SEnji Cooper // } 1041b89a7cc2SEnji Cooper // 104228f6c2f2SEnji Cooper // TEST(Foo, Bar) { 104328f6c2f2SEnji Cooper // // Set actions using a temporary vector, whose operator[] 104428f6c2f2SEnji Cooper // // returns proxy objects that references that will be 104528f6c2f2SEnji Cooper // // dangling once the call to SetActions finishes and the 104628f6c2f2SEnji Cooper // // vector is destroyed. 104728f6c2f2SEnji Cooper // MockFunction<bool(size_t)> mock; 104828f6c2f2SEnji Cooper // SetActions(mock, {false, true}); 1049b89a7cc2SEnji Cooper // 105028f6c2f2SEnji Cooper // EXPECT_FALSE(mock.AsStdFunction()(0)); 105128f6c2f2SEnji Cooper // EXPECT_TRUE(mock.AsStdFunction()(1)); 105228f6c2f2SEnji Cooper // } 1053b89a7cc2SEnji Cooper // 105428f6c2f2SEnji Cooper // This eager conversion helps with a simple case like this, but doesn't 105528f6c2f2SEnji Cooper // fully make these types work in general. For example the following still 105628f6c2f2SEnji Cooper // uses a dangling reference: 105728f6c2f2SEnji Cooper // 105828f6c2f2SEnji Cooper // TEST(Foo, Baz) { 105928f6c2f2SEnji Cooper // MockFunction<std::vector<std::string>()> mock; 106028f6c2f2SEnji Cooper // 106128f6c2f2SEnji Cooper // // Return the same vector twice, and then the empty vector 106228f6c2f2SEnji Cooper // // thereafter. 106328f6c2f2SEnji Cooper // auto action = Return(std::initializer_list<std::string>{ 106428f6c2f2SEnji Cooper // "taco", "burrito", 106528f6c2f2SEnji Cooper // }); 106628f6c2f2SEnji Cooper // 106728f6c2f2SEnji Cooper // EXPECT_CALL(mock, Call) 106828f6c2f2SEnji Cooper // .WillOnce(action) 106928f6c2f2SEnji Cooper // .WillOnce(action) 107028f6c2f2SEnji Cooper // .WillRepeatedly(Return(std::vector<std::string>{})); 107128f6c2f2SEnji Cooper // 107228f6c2f2SEnji Cooper // EXPECT_THAT(mock.AsStdFunction()(), 107328f6c2f2SEnji Cooper // ElementsAre("taco", "burrito")); 107428f6c2f2SEnji Cooper // EXPECT_THAT(mock.AsStdFunction()(), 107528f6c2f2SEnji Cooper // ElementsAre("taco", "burrito")); 107628f6c2f2SEnji Cooper // EXPECT_THAT(mock.AsStdFunction()(), IsEmpty()); 107728f6c2f2SEnji Cooper // } 107828f6c2f2SEnji Cooper // 107928f6c2f2SEnji Cooper U value; 108028f6c2f2SEnji Cooper }; 1081b89a7cc2SEnji Cooper 108228f6c2f2SEnji Cooper const std::shared_ptr<State> state_; 108328f6c2f2SEnji Cooper }; 108428f6c2f2SEnji Cooper 108528f6c2f2SEnji Cooper R value_; 108628f6c2f2SEnji Cooper }; 108728f6c2f2SEnji Cooper 108828f6c2f2SEnji Cooper // A specialization of ReturnAction<R> when R is ByMoveWrapper<T> for some T. 108928f6c2f2SEnji Cooper // 109028f6c2f2SEnji Cooper // This version applies the type system-defeating hack of moving from T even in 109128f6c2f2SEnji Cooper // the const call operator, checking at runtime that it isn't called more than 109228f6c2f2SEnji Cooper // once, since the user has declared their intent to do so by using ByMove. 109328f6c2f2SEnji Cooper template <typename T> 109428f6c2f2SEnji Cooper class ReturnAction<ByMoveWrapper<T>> final { 109528f6c2f2SEnji Cooper public: 109628f6c2f2SEnji Cooper explicit ReturnAction(ByMoveWrapper<T> wrapper) 109728f6c2f2SEnji Cooper : state_(new State(std::move(wrapper.payload))) {} 109828f6c2f2SEnji Cooper 109928f6c2f2SEnji Cooper T operator()() const { 110028f6c2f2SEnji Cooper GTEST_CHECK_(!state_->called) 110128f6c2f2SEnji Cooper << "A ByMove() action must be performed at most once."; 110228f6c2f2SEnji Cooper 110328f6c2f2SEnji Cooper state_->called = true; 110428f6c2f2SEnji Cooper return std::move(state_->value); 1105b89a7cc2SEnji Cooper } 1106b89a7cc2SEnji Cooper 1107b89a7cc2SEnji Cooper private: 110828f6c2f2SEnji Cooper // We store our state on the heap so that we are copyable as required by 110928f6c2f2SEnji Cooper // Action, despite the fact that we are stateful and T may not be copyable. 111028f6c2f2SEnji Cooper struct State { 111128f6c2f2SEnji Cooper explicit State(T&& value_in) : value(std::move(value_in)) {} 1112b89a7cc2SEnji Cooper 111328f6c2f2SEnji Cooper T value; 111428f6c2f2SEnji Cooper bool called = false; 1115b89a7cc2SEnji Cooper }; 1116b89a7cc2SEnji Cooper 111728f6c2f2SEnji Cooper const std::shared_ptr<State> state_; 1118b89a7cc2SEnji Cooper }; 1119b89a7cc2SEnji Cooper 1120b89a7cc2SEnji Cooper // Implements the ReturnNull() action. 1121b89a7cc2SEnji Cooper class ReturnNullAction { 1122b89a7cc2SEnji Cooper public: 1123b89a7cc2SEnji Cooper // Allows ReturnNull() to be used in any pointer-returning function. In C++11 1124b89a7cc2SEnji Cooper // this is enforced by returning nullptr, and in non-C++11 by asserting a 1125b89a7cc2SEnji Cooper // pointer type on compile time. 1126b89a7cc2SEnji Cooper template <typename Result, typename ArgumentTuple> 1127b89a7cc2SEnji Cooper static Result Perform(const ArgumentTuple&) { 1128b89a7cc2SEnji Cooper return nullptr; 1129b89a7cc2SEnji Cooper } 1130b89a7cc2SEnji Cooper }; 1131b89a7cc2SEnji Cooper 1132b89a7cc2SEnji Cooper // Implements the Return() action. 1133b89a7cc2SEnji Cooper class ReturnVoidAction { 1134b89a7cc2SEnji Cooper public: 1135b89a7cc2SEnji Cooper // Allows Return() to be used in any void-returning function. 1136b89a7cc2SEnji Cooper template <typename Result, typename ArgumentTuple> 1137b89a7cc2SEnji Cooper static void Perform(const ArgumentTuple&) { 113828f6c2f2SEnji Cooper static_assert(std::is_void<Result>::value, "Result should be void."); 1139b89a7cc2SEnji Cooper } 1140b89a7cc2SEnji Cooper }; 1141b89a7cc2SEnji Cooper 1142b89a7cc2SEnji Cooper // Implements the polymorphic ReturnRef(x) action, which can be used 1143b89a7cc2SEnji Cooper // in any function that returns a reference to the type of x, 1144b89a7cc2SEnji Cooper // regardless of the argument types. 1145b89a7cc2SEnji Cooper template <typename T> 1146b89a7cc2SEnji Cooper class ReturnRefAction { 1147b89a7cc2SEnji Cooper public: 1148b89a7cc2SEnji Cooper // Constructs a ReturnRefAction object from the reference to be returned. 1149b89a7cc2SEnji Cooper explicit ReturnRefAction(T& ref) : ref_(ref) {} // NOLINT 1150b89a7cc2SEnji Cooper 1151b89a7cc2SEnji Cooper // This template type conversion operator allows ReturnRef(x) to be 1152b89a7cc2SEnji Cooper // used in ANY function that returns a reference to x's type. 1153b89a7cc2SEnji Cooper template <typename F> 1154b89a7cc2SEnji Cooper operator Action<F>() const { 1155b89a7cc2SEnji Cooper typedef typename Function<F>::Result Result; 1156b89a7cc2SEnji Cooper // Asserts that the function return type is a reference. This 1157b89a7cc2SEnji Cooper // catches the user error of using ReturnRef(x) when Return(x) 1158b89a7cc2SEnji Cooper // should be used, and generates some helpful error message. 115928f6c2f2SEnji Cooper static_assert(std::is_reference<Result>::value, 116028f6c2f2SEnji Cooper "use Return instead of ReturnRef to return a value"); 1161b89a7cc2SEnji Cooper return Action<F>(new Impl<F>(ref_)); 1162b89a7cc2SEnji Cooper } 1163b89a7cc2SEnji Cooper 1164b89a7cc2SEnji Cooper private: 1165b89a7cc2SEnji Cooper // Implements the ReturnRef(x) action for a particular function type F. 1166b89a7cc2SEnji Cooper template <typename F> 1167b89a7cc2SEnji Cooper class Impl : public ActionInterface<F> { 1168b89a7cc2SEnji Cooper public: 1169b89a7cc2SEnji Cooper typedef typename Function<F>::Result Result; 1170b89a7cc2SEnji Cooper typedef typename Function<F>::ArgumentTuple ArgumentTuple; 1171b89a7cc2SEnji Cooper 1172b89a7cc2SEnji Cooper explicit Impl(T& ref) : ref_(ref) {} // NOLINT 1173b89a7cc2SEnji Cooper 117428f6c2f2SEnji Cooper Result Perform(const ArgumentTuple&) override { return ref_; } 1175b89a7cc2SEnji Cooper 1176b89a7cc2SEnji Cooper private: 1177b89a7cc2SEnji Cooper T& ref_; 1178b89a7cc2SEnji Cooper }; 1179b89a7cc2SEnji Cooper 1180b89a7cc2SEnji Cooper T& ref_; 1181b89a7cc2SEnji Cooper }; 1182b89a7cc2SEnji Cooper 1183b89a7cc2SEnji Cooper // Implements the polymorphic ReturnRefOfCopy(x) action, which can be 1184b89a7cc2SEnji Cooper // used in any function that returns a reference to the type of x, 1185b89a7cc2SEnji Cooper // regardless of the argument types. 1186b89a7cc2SEnji Cooper template <typename T> 1187b89a7cc2SEnji Cooper class ReturnRefOfCopyAction { 1188b89a7cc2SEnji Cooper public: 1189b89a7cc2SEnji Cooper // Constructs a ReturnRefOfCopyAction object from the reference to 1190b89a7cc2SEnji Cooper // be returned. 1191b89a7cc2SEnji Cooper explicit ReturnRefOfCopyAction(const T& value) : value_(value) {} // NOLINT 1192b89a7cc2SEnji Cooper 1193b89a7cc2SEnji Cooper // This template type conversion operator allows ReturnRefOfCopy(x) to be 1194b89a7cc2SEnji Cooper // used in ANY function that returns a reference to x's type. 1195b89a7cc2SEnji Cooper template <typename F> 1196b89a7cc2SEnji Cooper operator Action<F>() const { 1197b89a7cc2SEnji Cooper typedef typename Function<F>::Result Result; 1198b89a7cc2SEnji Cooper // Asserts that the function return type is a reference. This 1199b89a7cc2SEnji Cooper // catches the user error of using ReturnRefOfCopy(x) when Return(x) 1200b89a7cc2SEnji Cooper // should be used, and generates some helpful error message. 120128f6c2f2SEnji Cooper static_assert(std::is_reference<Result>::value, 120228f6c2f2SEnji Cooper "use Return instead of ReturnRefOfCopy to return a value"); 1203b89a7cc2SEnji Cooper return Action<F>(new Impl<F>(value_)); 1204b89a7cc2SEnji Cooper } 1205b89a7cc2SEnji Cooper 1206b89a7cc2SEnji Cooper private: 1207b89a7cc2SEnji Cooper // Implements the ReturnRefOfCopy(x) action for a particular function type F. 1208b89a7cc2SEnji Cooper template <typename F> 1209b89a7cc2SEnji Cooper class Impl : public ActionInterface<F> { 1210b89a7cc2SEnji Cooper public: 1211b89a7cc2SEnji Cooper typedef typename Function<F>::Result Result; 1212b89a7cc2SEnji Cooper typedef typename Function<F>::ArgumentTuple ArgumentTuple; 1213b89a7cc2SEnji Cooper 1214b89a7cc2SEnji Cooper explicit Impl(const T& value) : value_(value) {} // NOLINT 1215b89a7cc2SEnji Cooper 121628f6c2f2SEnji Cooper Result Perform(const ArgumentTuple&) override { return value_; } 1217b89a7cc2SEnji Cooper 1218b89a7cc2SEnji Cooper private: 1219b89a7cc2SEnji Cooper T value_; 1220b89a7cc2SEnji Cooper }; 1221b89a7cc2SEnji Cooper 1222b89a7cc2SEnji Cooper const T value_; 122328f6c2f2SEnji Cooper }; 1224b89a7cc2SEnji Cooper 122528f6c2f2SEnji Cooper // Implements the polymorphic ReturnRoundRobin(v) action, which can be 122628f6c2f2SEnji Cooper // used in any function that returns the element_type of v. 122728f6c2f2SEnji Cooper template <typename T> 122828f6c2f2SEnji Cooper class ReturnRoundRobinAction { 122928f6c2f2SEnji Cooper public: 123028f6c2f2SEnji Cooper explicit ReturnRoundRobinAction(std::vector<T> values) { 123128f6c2f2SEnji Cooper GTEST_CHECK_(!values.empty()) 123228f6c2f2SEnji Cooper << "ReturnRoundRobin requires at least one element."; 123328f6c2f2SEnji Cooper state_->values = std::move(values); 123428f6c2f2SEnji Cooper } 123528f6c2f2SEnji Cooper 123628f6c2f2SEnji Cooper template <typename... Args> 123728f6c2f2SEnji Cooper T operator()(Args&&...) const { 123828f6c2f2SEnji Cooper return state_->Next(); 123928f6c2f2SEnji Cooper } 124028f6c2f2SEnji Cooper 124128f6c2f2SEnji Cooper private: 124228f6c2f2SEnji Cooper struct State { 124328f6c2f2SEnji Cooper T Next() { 124428f6c2f2SEnji Cooper T ret_val = values[i++]; 124528f6c2f2SEnji Cooper if (i == values.size()) i = 0; 124628f6c2f2SEnji Cooper return ret_val; 124728f6c2f2SEnji Cooper } 124828f6c2f2SEnji Cooper 124928f6c2f2SEnji Cooper std::vector<T> values; 125028f6c2f2SEnji Cooper size_t i = 0; 125128f6c2f2SEnji Cooper }; 125228f6c2f2SEnji Cooper std::shared_ptr<State> state_ = std::make_shared<State>(); 1253b89a7cc2SEnji Cooper }; 1254b89a7cc2SEnji Cooper 1255b89a7cc2SEnji Cooper // Implements the polymorphic DoDefault() action. 1256b89a7cc2SEnji Cooper class DoDefaultAction { 1257b89a7cc2SEnji Cooper public: 1258b89a7cc2SEnji Cooper // This template type conversion operator allows DoDefault() to be 1259b89a7cc2SEnji Cooper // used in any function. 1260b89a7cc2SEnji Cooper template <typename F> 126128f6c2f2SEnji Cooper operator Action<F>() const { 126228f6c2f2SEnji Cooper return Action<F>(); 126328f6c2f2SEnji Cooper } // NOLINT 1264b89a7cc2SEnji Cooper }; 1265b89a7cc2SEnji Cooper 1266b89a7cc2SEnji Cooper // Implements the Assign action to set a given pointer referent to a 1267b89a7cc2SEnji Cooper // particular value. 1268b89a7cc2SEnji Cooper template <typename T1, typename T2> 1269b89a7cc2SEnji Cooper class AssignAction { 1270b89a7cc2SEnji Cooper public: 1271b89a7cc2SEnji Cooper AssignAction(T1* ptr, T2 value) : ptr_(ptr), value_(value) {} 1272b89a7cc2SEnji Cooper 1273b89a7cc2SEnji Cooper template <typename Result, typename ArgumentTuple> 1274b89a7cc2SEnji Cooper void Perform(const ArgumentTuple& /* args */) const { 1275b89a7cc2SEnji Cooper *ptr_ = value_; 1276b89a7cc2SEnji Cooper } 1277b89a7cc2SEnji Cooper 1278b89a7cc2SEnji Cooper private: 1279b89a7cc2SEnji Cooper T1* const ptr_; 1280b89a7cc2SEnji Cooper const T2 value_; 1281b89a7cc2SEnji Cooper }; 1282b89a7cc2SEnji Cooper 128328f6c2f2SEnji Cooper #ifndef GTEST_OS_WINDOWS_MOBILE 1284b89a7cc2SEnji Cooper 1285b89a7cc2SEnji Cooper // Implements the SetErrnoAndReturn action to simulate return from 1286b89a7cc2SEnji Cooper // various system calls and libc functions. 1287b89a7cc2SEnji Cooper template <typename T> 1288b89a7cc2SEnji Cooper class SetErrnoAndReturnAction { 1289b89a7cc2SEnji Cooper public: 1290b89a7cc2SEnji Cooper SetErrnoAndReturnAction(int errno_value, T result) 129128f6c2f2SEnji Cooper : errno_(errno_value), result_(result) {} 1292b89a7cc2SEnji Cooper template <typename Result, typename ArgumentTuple> 1293b89a7cc2SEnji Cooper Result Perform(const ArgumentTuple& /* args */) const { 1294b89a7cc2SEnji Cooper errno = errno_; 1295b89a7cc2SEnji Cooper return result_; 1296b89a7cc2SEnji Cooper } 1297b89a7cc2SEnji Cooper 1298b89a7cc2SEnji Cooper private: 1299b89a7cc2SEnji Cooper const int errno_; 1300b89a7cc2SEnji Cooper const T result_; 1301b89a7cc2SEnji Cooper }; 1302b89a7cc2SEnji Cooper 1303b89a7cc2SEnji Cooper #endif // !GTEST_OS_WINDOWS_MOBILE 1304b89a7cc2SEnji Cooper 1305b89a7cc2SEnji Cooper // Implements the SetArgumentPointee<N>(x) action for any function 130628f6c2f2SEnji Cooper // whose N-th argument (0-based) is a pointer to x's type. 130728f6c2f2SEnji Cooper template <size_t N, typename A, typename = void> 130828f6c2f2SEnji Cooper struct SetArgumentPointeeAction { 130928f6c2f2SEnji Cooper A value; 1310b89a7cc2SEnji Cooper 131128f6c2f2SEnji Cooper template <typename... Args> 131228f6c2f2SEnji Cooper void operator()(const Args&... args) const { 131328f6c2f2SEnji Cooper *::std::get<N>(std::tie(args...)) = value; 1314b89a7cc2SEnji Cooper } 1315b89a7cc2SEnji Cooper }; 1316b89a7cc2SEnji Cooper 131728f6c2f2SEnji Cooper // Implements the Invoke(object_ptr, &Class::Method) action. 131828f6c2f2SEnji Cooper template <class Class, typename MethodPtr> 131928f6c2f2SEnji Cooper struct InvokeMethodAction { 132028f6c2f2SEnji Cooper Class* const obj_ptr; 132128f6c2f2SEnji Cooper const MethodPtr method_ptr; 132228f6c2f2SEnji Cooper 132328f6c2f2SEnji Cooper template <typename... Args> 132428f6c2f2SEnji Cooper auto operator()(Args&&... args) const 132528f6c2f2SEnji Cooper -> decltype((obj_ptr->*method_ptr)(std::forward<Args>(args)...)) { 132628f6c2f2SEnji Cooper return (obj_ptr->*method_ptr)(std::forward<Args>(args)...); 1327b89a7cc2SEnji Cooper } 1328b89a7cc2SEnji Cooper }; 1329b89a7cc2SEnji Cooper 1330b89a7cc2SEnji Cooper // Implements the InvokeWithoutArgs(f) action. The template argument 1331b89a7cc2SEnji Cooper // FunctionImpl is the implementation type of f, which can be either a 1332b89a7cc2SEnji Cooper // function pointer or a functor. InvokeWithoutArgs(f) can be used as an 133328f6c2f2SEnji Cooper // Action<F> as long as f's type is compatible with F. 1334b89a7cc2SEnji Cooper template <typename FunctionImpl> 133528f6c2f2SEnji Cooper struct InvokeWithoutArgsAction { 133628f6c2f2SEnji Cooper FunctionImpl function_impl; 1337b89a7cc2SEnji Cooper 1338b89a7cc2SEnji Cooper // Allows InvokeWithoutArgs(f) to be used as any action whose type is 1339b89a7cc2SEnji Cooper // compatible with f. 134028f6c2f2SEnji Cooper template <typename... Args> 134128f6c2f2SEnji Cooper auto operator()(const Args&...) -> decltype(function_impl()) { 134228f6c2f2SEnji Cooper return function_impl(); 134328f6c2f2SEnji Cooper } 1344b89a7cc2SEnji Cooper }; 1345b89a7cc2SEnji Cooper 1346b89a7cc2SEnji Cooper // Implements the InvokeWithoutArgs(object_ptr, &Class::Method) action. 1347b89a7cc2SEnji Cooper template <class Class, typename MethodPtr> 134828f6c2f2SEnji Cooper struct InvokeMethodWithoutArgsAction { 134928f6c2f2SEnji Cooper Class* const obj_ptr; 135028f6c2f2SEnji Cooper const MethodPtr method_ptr; 1351b89a7cc2SEnji Cooper 135228f6c2f2SEnji Cooper using ReturnType = 135328f6c2f2SEnji Cooper decltype((std::declval<Class*>()->*std::declval<MethodPtr>())()); 135428f6c2f2SEnji Cooper 135528f6c2f2SEnji Cooper template <typename... Args> 135628f6c2f2SEnji Cooper ReturnType operator()(const Args&...) const { 135728f6c2f2SEnji Cooper return (obj_ptr->*method_ptr)(); 1358b89a7cc2SEnji Cooper } 1359b89a7cc2SEnji Cooper }; 1360b89a7cc2SEnji Cooper 1361b89a7cc2SEnji Cooper // Implements the IgnoreResult(action) action. 1362b89a7cc2SEnji Cooper template <typename A> 1363b89a7cc2SEnji Cooper class IgnoreResultAction { 1364b89a7cc2SEnji Cooper public: 1365b89a7cc2SEnji Cooper explicit IgnoreResultAction(const A& action) : action_(action) {} 1366b89a7cc2SEnji Cooper 1367b89a7cc2SEnji Cooper template <typename F> 1368b89a7cc2SEnji Cooper operator Action<F>() const { 1369b89a7cc2SEnji Cooper // Assert statement belongs here because this is the best place to verify 1370b89a7cc2SEnji Cooper // conditions on F. It produces the clearest error messages 1371b89a7cc2SEnji Cooper // in most compilers. 1372b89a7cc2SEnji Cooper // Impl really belongs in this scope as a local class but can't 1373b89a7cc2SEnji Cooper // because MSVC produces duplicate symbols in different translation units 1374b89a7cc2SEnji Cooper // in this case. Until MS fixes that bug we put Impl into the class scope 1375b89a7cc2SEnji Cooper // and put the typedef both here (for use in assert statement) and 1376b89a7cc2SEnji Cooper // in the Impl class. But both definitions must be the same. 1377b89a7cc2SEnji Cooper typedef typename internal::Function<F>::Result Result; 1378b89a7cc2SEnji Cooper 1379b89a7cc2SEnji Cooper // Asserts at compile time that F returns void. 138028f6c2f2SEnji Cooper static_assert(std::is_void<Result>::value, "Result type should be void."); 1381b89a7cc2SEnji Cooper 1382b89a7cc2SEnji Cooper return Action<F>(new Impl<F>(action_)); 1383b89a7cc2SEnji Cooper } 1384b89a7cc2SEnji Cooper 1385b89a7cc2SEnji Cooper private: 1386b89a7cc2SEnji Cooper template <typename F> 1387b89a7cc2SEnji Cooper class Impl : public ActionInterface<F> { 1388b89a7cc2SEnji Cooper public: 1389b89a7cc2SEnji Cooper typedef typename internal::Function<F>::Result Result; 1390b89a7cc2SEnji Cooper typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; 1391b89a7cc2SEnji Cooper 1392b89a7cc2SEnji Cooper explicit Impl(const A& action) : action_(action) {} 1393b89a7cc2SEnji Cooper 139428f6c2f2SEnji Cooper void Perform(const ArgumentTuple& args) override { 1395b89a7cc2SEnji Cooper // Performs the action and ignores its result. 1396b89a7cc2SEnji Cooper action_.Perform(args); 1397b89a7cc2SEnji Cooper } 1398b89a7cc2SEnji Cooper 1399b89a7cc2SEnji Cooper private: 1400b89a7cc2SEnji Cooper // Type OriginalFunction is the same as F except that its return 1401b89a7cc2SEnji Cooper // type is IgnoredValue. 140228f6c2f2SEnji Cooper typedef 140328f6c2f2SEnji Cooper typename internal::Function<F>::MakeResultIgnoredValue OriginalFunction; 1404b89a7cc2SEnji Cooper 1405b89a7cc2SEnji Cooper const Action<OriginalFunction> action_; 1406b89a7cc2SEnji Cooper }; 1407b89a7cc2SEnji Cooper 1408b89a7cc2SEnji Cooper const A action_; 1409b89a7cc2SEnji Cooper }; 1410b89a7cc2SEnji Cooper 141128f6c2f2SEnji Cooper template <typename InnerAction, size_t... I> 141228f6c2f2SEnji Cooper struct WithArgsAction { 141328f6c2f2SEnji Cooper InnerAction inner_action; 141428f6c2f2SEnji Cooper 141528f6c2f2SEnji Cooper // The signature of the function as seen by the inner action, given an out 141628f6c2f2SEnji Cooper // action with the given result and argument types. 141728f6c2f2SEnji Cooper template <typename R, typename... Args> 141828f6c2f2SEnji Cooper using InnerSignature = 141928f6c2f2SEnji Cooper R(typename std::tuple_element<I, std::tuple<Args...>>::type...); 142028f6c2f2SEnji Cooper 142128f6c2f2SEnji Cooper // Rather than a call operator, we must define conversion operators to 142228f6c2f2SEnji Cooper // particular action types. This is necessary for embedded actions like 142328f6c2f2SEnji Cooper // DoDefault(), which rely on an action conversion operators rather than 142428f6c2f2SEnji Cooper // providing a call operator because even with a particular set of arguments 142528f6c2f2SEnji Cooper // they don't have a fixed return type. 142628f6c2f2SEnji Cooper 142728f6c2f2SEnji Cooper template < 142828f6c2f2SEnji Cooper typename R, typename... Args, 142928f6c2f2SEnji Cooper typename std::enable_if< 143028f6c2f2SEnji Cooper std::is_convertible<InnerAction, 143128f6c2f2SEnji Cooper // Unfortunately we can't use the InnerSignature 143228f6c2f2SEnji Cooper // alias here; MSVC complains about the I 143328f6c2f2SEnji Cooper // parameter pack not being expanded (error C3520) 143428f6c2f2SEnji Cooper // despite it being expanded in the type alias. 143528f6c2f2SEnji Cooper // TupleElement is also an MSVC workaround. 143628f6c2f2SEnji Cooper // See its definition for details. 143728f6c2f2SEnji Cooper OnceAction<R(internal::TupleElement< 143828f6c2f2SEnji Cooper I, std::tuple<Args...>>...)>>::value, 143928f6c2f2SEnji Cooper int>::type = 0> 144028f6c2f2SEnji Cooper operator OnceAction<R(Args...)>() && { // NOLINT 144128f6c2f2SEnji Cooper struct OA { 144228f6c2f2SEnji Cooper OnceAction<InnerSignature<R, Args...>> inner_action; 144328f6c2f2SEnji Cooper 144428f6c2f2SEnji Cooper R operator()(Args&&... args) && { 144528f6c2f2SEnji Cooper return std::move(inner_action) 144628f6c2f2SEnji Cooper .Call(std::get<I>( 144728f6c2f2SEnji Cooper std::forward_as_tuple(std::forward<Args>(args)...))...); 144828f6c2f2SEnji Cooper } 144928f6c2f2SEnji Cooper }; 145028f6c2f2SEnji Cooper 145128f6c2f2SEnji Cooper return OA{std::move(inner_action)}; 145228f6c2f2SEnji Cooper } 145328f6c2f2SEnji Cooper 145428f6c2f2SEnji Cooper template < 145528f6c2f2SEnji Cooper typename R, typename... Args, 145628f6c2f2SEnji Cooper typename std::enable_if< 145728f6c2f2SEnji Cooper std::is_convertible<const InnerAction&, 145828f6c2f2SEnji Cooper // Unfortunately we can't use the InnerSignature 145928f6c2f2SEnji Cooper // alias here; MSVC complains about the I 146028f6c2f2SEnji Cooper // parameter pack not being expanded (error C3520) 146128f6c2f2SEnji Cooper // despite it being expanded in the type alias. 146228f6c2f2SEnji Cooper // TupleElement is also an MSVC workaround. 146328f6c2f2SEnji Cooper // See its definition for details. 146428f6c2f2SEnji Cooper Action<R(internal::TupleElement< 146528f6c2f2SEnji Cooper I, std::tuple<Args...>>...)>>::value, 146628f6c2f2SEnji Cooper int>::type = 0> 146728f6c2f2SEnji Cooper operator Action<R(Args...)>() const { // NOLINT 146828f6c2f2SEnji Cooper Action<InnerSignature<R, Args...>> converted(inner_action); 146928f6c2f2SEnji Cooper 147028f6c2f2SEnji Cooper return [converted](Args&&... args) -> R { 147128f6c2f2SEnji Cooper return converted.Perform(std::forward_as_tuple( 147228f6c2f2SEnji Cooper std::get<I>(std::forward_as_tuple(std::forward<Args>(args)...))...)); 147328f6c2f2SEnji Cooper }; 147428f6c2f2SEnji Cooper } 147528f6c2f2SEnji Cooper }; 147628f6c2f2SEnji Cooper 147728f6c2f2SEnji Cooper template <typename... Actions> 147828f6c2f2SEnji Cooper class DoAllAction; 147928f6c2f2SEnji Cooper 148028f6c2f2SEnji Cooper // Base case: only a single action. 148128f6c2f2SEnji Cooper template <typename FinalAction> 148228f6c2f2SEnji Cooper class DoAllAction<FinalAction> { 148328f6c2f2SEnji Cooper public: 148428f6c2f2SEnji Cooper struct UserConstructorTag {}; 148528f6c2f2SEnji Cooper 1486b89a7cc2SEnji Cooper template <typename T> 148728f6c2f2SEnji Cooper explicit DoAllAction(UserConstructorTag, T&& action) 148828f6c2f2SEnji Cooper : final_action_(std::forward<T>(action)) {} 1489b89a7cc2SEnji Cooper 149028f6c2f2SEnji Cooper // Rather than a call operator, we must define conversion operators to 149128f6c2f2SEnji Cooper // particular action types. This is necessary for embedded actions like 149228f6c2f2SEnji Cooper // DoDefault(), which rely on an action conversion operators rather than 149328f6c2f2SEnji Cooper // providing a call operator because even with a particular set of arguments 149428f6c2f2SEnji Cooper // they don't have a fixed return type. 149528f6c2f2SEnji Cooper 149628f6c2f2SEnji Cooper template <typename R, typename... Args, 149728f6c2f2SEnji Cooper typename std::enable_if< 149828f6c2f2SEnji Cooper std::is_convertible<FinalAction, OnceAction<R(Args...)>>::value, 149928f6c2f2SEnji Cooper int>::type = 0> 150028f6c2f2SEnji Cooper operator OnceAction<R(Args...)>() && { // NOLINT 150128f6c2f2SEnji Cooper return std::move(final_action_); 150228f6c2f2SEnji Cooper } 150328f6c2f2SEnji Cooper 150428f6c2f2SEnji Cooper template < 150528f6c2f2SEnji Cooper typename R, typename... Args, 150628f6c2f2SEnji Cooper typename std::enable_if< 150728f6c2f2SEnji Cooper std::is_convertible<const FinalAction&, Action<R(Args...)>>::value, 150828f6c2f2SEnji Cooper int>::type = 0> 150928f6c2f2SEnji Cooper operator Action<R(Args...)>() const { // NOLINT 151028f6c2f2SEnji Cooper return final_action_; 151128f6c2f2SEnji Cooper } 151228f6c2f2SEnji Cooper 1513b89a7cc2SEnji Cooper private: 151428f6c2f2SEnji Cooper FinalAction final_action_; 1515b89a7cc2SEnji Cooper }; 1516b89a7cc2SEnji Cooper 151728f6c2f2SEnji Cooper // Recursive case: support N actions by calling the initial action and then 151828f6c2f2SEnji Cooper // calling through to the base class containing N-1 actions. 151928f6c2f2SEnji Cooper template <typename InitialAction, typename... OtherActions> 152028f6c2f2SEnji Cooper class DoAllAction<InitialAction, OtherActions...> 152128f6c2f2SEnji Cooper : private DoAllAction<OtherActions...> { 152228f6c2f2SEnji Cooper private: 152328f6c2f2SEnji Cooper using Base = DoAllAction<OtherActions...>; 152428f6c2f2SEnji Cooper 152528f6c2f2SEnji Cooper // The type of reference that should be provided to an initial action for a 152628f6c2f2SEnji Cooper // mocked function parameter of type T. 152728f6c2f2SEnji Cooper // 152828f6c2f2SEnji Cooper // There are two quirks here: 152928f6c2f2SEnji Cooper // 153028f6c2f2SEnji Cooper // * Unlike most forwarding functions, we pass scalars through by value. 153128f6c2f2SEnji Cooper // This isn't strictly necessary because an lvalue reference would work 153228f6c2f2SEnji Cooper // fine too and be consistent with other non-reference types, but it's 153328f6c2f2SEnji Cooper // perhaps less surprising. 153428f6c2f2SEnji Cooper // 153528f6c2f2SEnji Cooper // For example if the mocked function has signature void(int), then it 153628f6c2f2SEnji Cooper // might seem surprising for the user's initial action to need to be 153728f6c2f2SEnji Cooper // convertible to Action<void(const int&)>. This is perhaps less 153828f6c2f2SEnji Cooper // surprising for a non-scalar type where there may be a performance 153928f6c2f2SEnji Cooper // impact, or it might even be impossible, to pass by value. 154028f6c2f2SEnji Cooper // 154128f6c2f2SEnji Cooper // * More surprisingly, `const T&` is often not a const reference type. 154228f6c2f2SEnji Cooper // By the reference collapsing rules in C++17 [dcl.ref]/6, if T refers to 154328f6c2f2SEnji Cooper // U& or U&& for some non-scalar type U, then InitialActionArgType<T> is 154428f6c2f2SEnji Cooper // U&. In other words, we may hand over a non-const reference. 154528f6c2f2SEnji Cooper // 154628f6c2f2SEnji Cooper // So for example, given some non-scalar type Obj we have the following 154728f6c2f2SEnji Cooper // mappings: 154828f6c2f2SEnji Cooper // 154928f6c2f2SEnji Cooper // T InitialActionArgType<T> 155028f6c2f2SEnji Cooper // ------- ----------------------- 155128f6c2f2SEnji Cooper // Obj const Obj& 155228f6c2f2SEnji Cooper // Obj& Obj& 155328f6c2f2SEnji Cooper // Obj&& Obj& 155428f6c2f2SEnji Cooper // const Obj const Obj& 155528f6c2f2SEnji Cooper // const Obj& const Obj& 155628f6c2f2SEnji Cooper // const Obj&& const Obj& 155728f6c2f2SEnji Cooper // 155828f6c2f2SEnji Cooper // In other words, the initial actions get a mutable view of an non-scalar 155928f6c2f2SEnji Cooper // argument if and only if the mock function itself accepts a non-const 156028f6c2f2SEnji Cooper // reference type. They are never given an rvalue reference to an 156128f6c2f2SEnji Cooper // non-scalar type. 156228f6c2f2SEnji Cooper // 156328f6c2f2SEnji Cooper // This situation makes sense if you imagine use with a matcher that is 156428f6c2f2SEnji Cooper // designed to write through a reference. For example, if the caller wants 156528f6c2f2SEnji Cooper // to fill in a reference argument and then return a canned value: 156628f6c2f2SEnji Cooper // 156728f6c2f2SEnji Cooper // EXPECT_CALL(mock, Call) 156828f6c2f2SEnji Cooper // .WillOnce(DoAll(SetArgReferee<0>(17), Return(19))); 156928f6c2f2SEnji Cooper // 1570b89a7cc2SEnji Cooper template <typename T> 157128f6c2f2SEnji Cooper using InitialActionArgType = 157228f6c2f2SEnji Cooper typename std::conditional<std::is_scalar<T>::value, T, const T&>::type; 157328f6c2f2SEnji Cooper 157428f6c2f2SEnji Cooper public: 157528f6c2f2SEnji Cooper struct UserConstructorTag {}; 157628f6c2f2SEnji Cooper 157728f6c2f2SEnji Cooper template <typename T, typename... U> 157828f6c2f2SEnji Cooper explicit DoAllAction(UserConstructorTag, T&& initial_action, 157928f6c2f2SEnji Cooper U&&... other_actions) 158028f6c2f2SEnji Cooper : Base({}, std::forward<U>(other_actions)...), 158128f6c2f2SEnji Cooper initial_action_(std::forward<T>(initial_action)) {} 158228f6c2f2SEnji Cooper 158328f6c2f2SEnji Cooper template <typename R, typename... Args, 158428f6c2f2SEnji Cooper typename std::enable_if< 158528f6c2f2SEnji Cooper conjunction< 158628f6c2f2SEnji Cooper // Both the initial action and the rest must support 158728f6c2f2SEnji Cooper // conversion to OnceAction. 158828f6c2f2SEnji Cooper std::is_convertible< 158928f6c2f2SEnji Cooper InitialAction, 159028f6c2f2SEnji Cooper OnceAction<void(InitialActionArgType<Args>...)>>, 159128f6c2f2SEnji Cooper std::is_convertible<Base, OnceAction<R(Args...)>>>::value, 159228f6c2f2SEnji Cooper int>::type = 0> 159328f6c2f2SEnji Cooper operator OnceAction<R(Args...)>() && { // NOLINT 159428f6c2f2SEnji Cooper // Return an action that first calls the initial action with arguments 159528f6c2f2SEnji Cooper // filtered through InitialActionArgType, then forwards arguments directly 159628f6c2f2SEnji Cooper // to the base class to deal with the remaining actions. 159728f6c2f2SEnji Cooper struct OA { 159828f6c2f2SEnji Cooper OnceAction<void(InitialActionArgType<Args>...)> initial_action; 159928f6c2f2SEnji Cooper OnceAction<R(Args...)> remaining_actions; 160028f6c2f2SEnji Cooper 160128f6c2f2SEnji Cooper R operator()(Args... args) && { 160228f6c2f2SEnji Cooper std::move(initial_action) 160328f6c2f2SEnji Cooper .Call(static_cast<InitialActionArgType<Args>>(args)...); 160428f6c2f2SEnji Cooper 160528f6c2f2SEnji Cooper return std::move(remaining_actions).Call(std::forward<Args>(args)...); 160628f6c2f2SEnji Cooper } 160728f6c2f2SEnji Cooper }; 160828f6c2f2SEnji Cooper 160928f6c2f2SEnji Cooper return OA{ 161028f6c2f2SEnji Cooper std::move(initial_action_), 161128f6c2f2SEnji Cooper std::move(static_cast<Base&>(*this)), 161228f6c2f2SEnji Cooper }; 1613b89a7cc2SEnji Cooper } 1614b89a7cc2SEnji Cooper 161528f6c2f2SEnji Cooper template < 161628f6c2f2SEnji Cooper typename R, typename... Args, 161728f6c2f2SEnji Cooper typename std::enable_if< 161828f6c2f2SEnji Cooper conjunction< 161928f6c2f2SEnji Cooper // Both the initial action and the rest must support conversion to 162028f6c2f2SEnji Cooper // Action. 162128f6c2f2SEnji Cooper std::is_convertible<const InitialAction&, 162228f6c2f2SEnji Cooper Action<void(InitialActionArgType<Args>...)>>, 162328f6c2f2SEnji Cooper std::is_convertible<const Base&, Action<R(Args...)>>>::value, 162428f6c2f2SEnji Cooper int>::type = 0> 162528f6c2f2SEnji Cooper operator Action<R(Args...)>() const { // NOLINT 162628f6c2f2SEnji Cooper // Return an action that first calls the initial action with arguments 162728f6c2f2SEnji Cooper // filtered through InitialActionArgType, then forwards arguments directly 162828f6c2f2SEnji Cooper // to the base class to deal with the remaining actions. 162928f6c2f2SEnji Cooper struct OA { 163028f6c2f2SEnji Cooper Action<void(InitialActionArgType<Args>...)> initial_action; 163128f6c2f2SEnji Cooper Action<R(Args...)> remaining_actions; 1632b89a7cc2SEnji Cooper 163328f6c2f2SEnji Cooper R operator()(Args... args) const { 163428f6c2f2SEnji Cooper initial_action.Perform(std::forward_as_tuple( 163528f6c2f2SEnji Cooper static_cast<InitialActionArgType<Args>>(args)...)); 163628f6c2f2SEnji Cooper 163728f6c2f2SEnji Cooper return remaining_actions.Perform( 163828f6c2f2SEnji Cooper std::forward_as_tuple(std::forward<Args>(args)...)); 163928f6c2f2SEnji Cooper } 164028f6c2f2SEnji Cooper }; 164128f6c2f2SEnji Cooper 164228f6c2f2SEnji Cooper return OA{ 164328f6c2f2SEnji Cooper initial_action_, 164428f6c2f2SEnji Cooper static_cast<const Base&>(*this), 164528f6c2f2SEnji Cooper }; 1646b89a7cc2SEnji Cooper } 1647b89a7cc2SEnji Cooper 1648b89a7cc2SEnji Cooper private: 164928f6c2f2SEnji Cooper InitialAction initial_action_; 165028f6c2f2SEnji Cooper }; 1651b89a7cc2SEnji Cooper 165228f6c2f2SEnji Cooper template <typename T, typename... Params> 165328f6c2f2SEnji Cooper struct ReturnNewAction { 165428f6c2f2SEnji Cooper T* operator()() const { 165528f6c2f2SEnji Cooper return internal::Apply( 165628f6c2f2SEnji Cooper [](const Params&... unpacked_params) { 165728f6c2f2SEnji Cooper return new T(unpacked_params...); 165828f6c2f2SEnji Cooper }, 165928f6c2f2SEnji Cooper params); 1660b89a7cc2SEnji Cooper } 166128f6c2f2SEnji Cooper std::tuple<Params...> params; 1662b89a7cc2SEnji Cooper }; 1663b89a7cc2SEnji Cooper 166428f6c2f2SEnji Cooper template <size_t k> 166528f6c2f2SEnji Cooper struct ReturnArgAction { 166628f6c2f2SEnji Cooper template <typename... Args, 166728f6c2f2SEnji Cooper typename = typename std::enable_if<(k < sizeof...(Args))>::type> 166828f6c2f2SEnji Cooper auto operator()(Args&&... args) const -> decltype(std::get<k>( 166928f6c2f2SEnji Cooper std::forward_as_tuple(std::forward<Args>(args)...))) { 167028f6c2f2SEnji Cooper return std::get<k>(std::forward_as_tuple(std::forward<Args>(args)...)); 167128f6c2f2SEnji Cooper } 1672b89a7cc2SEnji Cooper }; 1673b89a7cc2SEnji Cooper 167428f6c2f2SEnji Cooper template <size_t k, typename Ptr> 167528f6c2f2SEnji Cooper struct SaveArgAction { 167628f6c2f2SEnji Cooper Ptr pointer; 167728f6c2f2SEnji Cooper 167828f6c2f2SEnji Cooper template <typename... Args> 167928f6c2f2SEnji Cooper void operator()(const Args&... args) const { 168028f6c2f2SEnji Cooper *pointer = std::get<k>(std::tie(args...)); 168128f6c2f2SEnji Cooper } 168228f6c2f2SEnji Cooper }; 168328f6c2f2SEnji Cooper 168428f6c2f2SEnji Cooper template <size_t k, typename Ptr> 168528f6c2f2SEnji Cooper struct SaveArgPointeeAction { 168628f6c2f2SEnji Cooper Ptr pointer; 168728f6c2f2SEnji Cooper 168828f6c2f2SEnji Cooper template <typename... Args> 168928f6c2f2SEnji Cooper void operator()(const Args&... args) const { 169028f6c2f2SEnji Cooper *pointer = *std::get<k>(std::tie(args...)); 169128f6c2f2SEnji Cooper } 169228f6c2f2SEnji Cooper }; 169328f6c2f2SEnji Cooper 169428f6c2f2SEnji Cooper template <size_t k, typename T> 169528f6c2f2SEnji Cooper struct SetArgRefereeAction { 169628f6c2f2SEnji Cooper T value; 169728f6c2f2SEnji Cooper 169828f6c2f2SEnji Cooper template <typename... Args> 169928f6c2f2SEnji Cooper void operator()(Args&&... args) const { 170028f6c2f2SEnji Cooper using argk_type = 170128f6c2f2SEnji Cooper typename ::std::tuple_element<k, std::tuple<Args...>>::type; 170228f6c2f2SEnji Cooper static_assert(std::is_lvalue_reference<argk_type>::value, 170328f6c2f2SEnji Cooper "Argument must be a reference type."); 170428f6c2f2SEnji Cooper std::get<k>(std::tie(args...)) = value; 170528f6c2f2SEnji Cooper } 170628f6c2f2SEnji Cooper }; 170728f6c2f2SEnji Cooper 170828f6c2f2SEnji Cooper template <size_t k, typename I1, typename I2> 170928f6c2f2SEnji Cooper struct SetArrayArgumentAction { 171028f6c2f2SEnji Cooper I1 first; 171128f6c2f2SEnji Cooper I2 last; 171228f6c2f2SEnji Cooper 171328f6c2f2SEnji Cooper template <typename... Args> 171428f6c2f2SEnji Cooper void operator()(const Args&... args) const { 171528f6c2f2SEnji Cooper auto value = std::get<k>(std::tie(args...)); 171628f6c2f2SEnji Cooper for (auto it = first; it != last; ++it, (void)++value) { 171728f6c2f2SEnji Cooper *value = *it; 171828f6c2f2SEnji Cooper } 171928f6c2f2SEnji Cooper } 172028f6c2f2SEnji Cooper }; 172128f6c2f2SEnji Cooper 172228f6c2f2SEnji Cooper template <size_t k> 172328f6c2f2SEnji Cooper struct DeleteArgAction { 172428f6c2f2SEnji Cooper template <typename... Args> 172528f6c2f2SEnji Cooper void operator()(const Args&... args) const { 172628f6c2f2SEnji Cooper delete std::get<k>(std::tie(args...)); 172728f6c2f2SEnji Cooper } 172828f6c2f2SEnji Cooper }; 172928f6c2f2SEnji Cooper 173028f6c2f2SEnji Cooper template <typename Ptr> 173128f6c2f2SEnji Cooper struct ReturnPointeeAction { 173228f6c2f2SEnji Cooper Ptr pointer; 173328f6c2f2SEnji Cooper template <typename... Args> 173428f6c2f2SEnji Cooper auto operator()(const Args&...) const -> decltype(*pointer) { 173528f6c2f2SEnji Cooper return *pointer; 173628f6c2f2SEnji Cooper } 173728f6c2f2SEnji Cooper }; 173828f6c2f2SEnji Cooper 173928f6c2f2SEnji Cooper #if GTEST_HAS_EXCEPTIONS 174028f6c2f2SEnji Cooper template <typename T> 174128f6c2f2SEnji Cooper struct ThrowAction { 174228f6c2f2SEnji Cooper T exception; 174328f6c2f2SEnji Cooper // We use a conversion operator to adapt to any return type. 174428f6c2f2SEnji Cooper template <typename R, typename... Args> 174528f6c2f2SEnji Cooper operator Action<R(Args...)>() const { // NOLINT 174628f6c2f2SEnji Cooper T copy = exception; 174728f6c2f2SEnji Cooper return [copy](Args...) -> R { throw copy; }; 174828f6c2f2SEnji Cooper } 174928f6c2f2SEnji Cooper }; 1750*5ca8c28cSEnji Cooper struct RethrowAction { 1751*5ca8c28cSEnji Cooper std::exception_ptr exception; 1752*5ca8c28cSEnji Cooper template <typename R, typename... Args> 1753*5ca8c28cSEnji Cooper operator Action<R(Args...)>() const { // NOLINT 1754*5ca8c28cSEnji Cooper return [ex = exception](Args...) -> R { std::rethrow_exception(ex); }; 1755*5ca8c28cSEnji Cooper } 1756*5ca8c28cSEnji Cooper }; 175728f6c2f2SEnji Cooper #endif // GTEST_HAS_EXCEPTIONS 175828f6c2f2SEnji Cooper 1759b89a7cc2SEnji Cooper } // namespace internal 1760b89a7cc2SEnji Cooper 1761b89a7cc2SEnji Cooper // An Unused object can be implicitly constructed from ANY value. 1762b89a7cc2SEnji Cooper // This is handy when defining actions that ignore some or all of the 1763b89a7cc2SEnji Cooper // mock function arguments. For example, given 1764b89a7cc2SEnji Cooper // 1765b89a7cc2SEnji Cooper // MOCK_METHOD3(Foo, double(const string& label, double x, double y)); 1766b89a7cc2SEnji Cooper // MOCK_METHOD3(Bar, double(int index, double x, double y)); 1767b89a7cc2SEnji Cooper // 1768b89a7cc2SEnji Cooper // instead of 1769b89a7cc2SEnji Cooper // 1770b89a7cc2SEnji Cooper // double DistanceToOriginWithLabel(const string& label, double x, double y) { 1771b89a7cc2SEnji Cooper // return sqrt(x*x + y*y); 1772b89a7cc2SEnji Cooper // } 1773b89a7cc2SEnji Cooper // double DistanceToOriginWithIndex(int index, double x, double y) { 1774b89a7cc2SEnji Cooper // return sqrt(x*x + y*y); 1775b89a7cc2SEnji Cooper // } 1776b89a7cc2SEnji Cooper // ... 1777b89a7cc2SEnji Cooper // EXPECT_CALL(mock, Foo("abc", _, _)) 1778b89a7cc2SEnji Cooper // .WillOnce(Invoke(DistanceToOriginWithLabel)); 1779b89a7cc2SEnji Cooper // EXPECT_CALL(mock, Bar(5, _, _)) 1780b89a7cc2SEnji Cooper // .WillOnce(Invoke(DistanceToOriginWithIndex)); 1781b89a7cc2SEnji Cooper // 1782b89a7cc2SEnji Cooper // you could write 1783b89a7cc2SEnji Cooper // 1784b89a7cc2SEnji Cooper // // We can declare any uninteresting argument as Unused. 1785b89a7cc2SEnji Cooper // double DistanceToOrigin(Unused, double x, double y) { 1786b89a7cc2SEnji Cooper // return sqrt(x*x + y*y); 1787b89a7cc2SEnji Cooper // } 1788b89a7cc2SEnji Cooper // ... 1789b89a7cc2SEnji Cooper // EXPECT_CALL(mock, Foo("abc", _, _)).WillOnce(Invoke(DistanceToOrigin)); 1790b89a7cc2SEnji Cooper // EXPECT_CALL(mock, Bar(5, _, _)).WillOnce(Invoke(DistanceToOrigin)); 1791b89a7cc2SEnji Cooper typedef internal::IgnoredValue Unused; 1792b89a7cc2SEnji Cooper 179328f6c2f2SEnji Cooper // Creates an action that does actions a1, a2, ..., sequentially in 179428f6c2f2SEnji Cooper // each invocation. All but the last action will have a readonly view of the 179528f6c2f2SEnji Cooper // arguments. 179628f6c2f2SEnji Cooper template <typename... Action> 179728f6c2f2SEnji Cooper internal::DoAllAction<typename std::decay<Action>::type...> DoAll( 179828f6c2f2SEnji Cooper Action&&... action) { 179928f6c2f2SEnji Cooper return internal::DoAllAction<typename std::decay<Action>::type...>( 180028f6c2f2SEnji Cooper {}, std::forward<Action>(action)...); 1801b89a7cc2SEnji Cooper } 1802b89a7cc2SEnji Cooper 180328f6c2f2SEnji Cooper // WithArg<k>(an_action) creates an action that passes the k-th 180428f6c2f2SEnji Cooper // (0-based) argument of the mock function to an_action and performs 180528f6c2f2SEnji Cooper // it. It adapts an action accepting one argument to one that accepts 180628f6c2f2SEnji Cooper // multiple arguments. For convenience, we also provide 180728f6c2f2SEnji Cooper // WithArgs<k>(an_action) (defined below) as a synonym. 180828f6c2f2SEnji Cooper template <size_t k, typename InnerAction> 180928f6c2f2SEnji Cooper internal::WithArgsAction<typename std::decay<InnerAction>::type, k> WithArg( 181028f6c2f2SEnji Cooper InnerAction&& action) { 181128f6c2f2SEnji Cooper return {std::forward<InnerAction>(action)}; 181228f6c2f2SEnji Cooper } 181328f6c2f2SEnji Cooper 181428f6c2f2SEnji Cooper // WithArgs<N1, N2, ..., Nk>(an_action) creates an action that passes 181528f6c2f2SEnji Cooper // the selected arguments of the mock function to an_action and 181628f6c2f2SEnji Cooper // performs it. It serves as an adaptor between actions with 181728f6c2f2SEnji Cooper // different argument lists. 181828f6c2f2SEnji Cooper template <size_t k, size_t... ks, typename InnerAction> 181928f6c2f2SEnji Cooper internal::WithArgsAction<typename std::decay<InnerAction>::type, k, ks...> 182028f6c2f2SEnji Cooper WithArgs(InnerAction&& action) { 182128f6c2f2SEnji Cooper return {std::forward<InnerAction>(action)}; 182228f6c2f2SEnji Cooper } 182328f6c2f2SEnji Cooper 182428f6c2f2SEnji Cooper // WithoutArgs(inner_action) can be used in a mock function with a 182528f6c2f2SEnji Cooper // non-empty argument list to perform inner_action, which takes no 182628f6c2f2SEnji Cooper // argument. In other words, it adapts an action accepting no 182728f6c2f2SEnji Cooper // argument to one that accepts (and ignores) arguments. 182828f6c2f2SEnji Cooper template <typename InnerAction> 182928f6c2f2SEnji Cooper internal::WithArgsAction<typename std::decay<InnerAction>::type> WithoutArgs( 183028f6c2f2SEnji Cooper InnerAction&& action) { 183128f6c2f2SEnji Cooper return {std::forward<InnerAction>(action)}; 183228f6c2f2SEnji Cooper } 183328f6c2f2SEnji Cooper 183428f6c2f2SEnji Cooper // Creates an action that returns a value. 183528f6c2f2SEnji Cooper // 183628f6c2f2SEnji Cooper // The returned type can be used with a mock function returning a non-void, 183728f6c2f2SEnji Cooper // non-reference type U as follows: 183828f6c2f2SEnji Cooper // 183928f6c2f2SEnji Cooper // * If R is convertible to U and U is move-constructible, then the action can 184028f6c2f2SEnji Cooper // be used with WillOnce. 184128f6c2f2SEnji Cooper // 184228f6c2f2SEnji Cooper // * If const R& is convertible to U and U is copy-constructible, then the 184328f6c2f2SEnji Cooper // action can be used with both WillOnce and WillRepeatedly. 184428f6c2f2SEnji Cooper // 184528f6c2f2SEnji Cooper // The mock expectation contains the R value from which the U return value is 184628f6c2f2SEnji Cooper // constructed (a move/copy of the argument to Return). This means that the R 184728f6c2f2SEnji Cooper // value will survive at least until the mock object's expectations are cleared 184828f6c2f2SEnji Cooper // or the mock object is destroyed, meaning that U can safely be a 184928f6c2f2SEnji Cooper // reference-like type such as std::string_view: 185028f6c2f2SEnji Cooper // 185128f6c2f2SEnji Cooper // // The mock function returns a view of a copy of the string fed to 185228f6c2f2SEnji Cooper // // Return. The view is valid even after the action is performed. 185328f6c2f2SEnji Cooper // MockFunction<std::string_view()> mock; 185428f6c2f2SEnji Cooper // EXPECT_CALL(mock, Call).WillOnce(Return(std::string("taco"))); 185528f6c2f2SEnji Cooper // const std::string_view result = mock.AsStdFunction()(); 185628f6c2f2SEnji Cooper // EXPECT_EQ("taco", result); 185728f6c2f2SEnji Cooper // 1858b89a7cc2SEnji Cooper template <typename R> 1859b89a7cc2SEnji Cooper internal::ReturnAction<R> Return(R value) { 186028f6c2f2SEnji Cooper return internal::ReturnAction<R>(std::move(value)); 1861b89a7cc2SEnji Cooper } 1862b89a7cc2SEnji Cooper 1863b89a7cc2SEnji Cooper // Creates an action that returns NULL. 1864b89a7cc2SEnji Cooper inline PolymorphicAction<internal::ReturnNullAction> ReturnNull() { 1865b89a7cc2SEnji Cooper return MakePolymorphicAction(internal::ReturnNullAction()); 1866b89a7cc2SEnji Cooper } 1867b89a7cc2SEnji Cooper 1868b89a7cc2SEnji Cooper // Creates an action that returns from a void function. 1869b89a7cc2SEnji Cooper inline PolymorphicAction<internal::ReturnVoidAction> Return() { 1870b89a7cc2SEnji Cooper return MakePolymorphicAction(internal::ReturnVoidAction()); 1871b89a7cc2SEnji Cooper } 1872b89a7cc2SEnji Cooper 1873b89a7cc2SEnji Cooper // Creates an action that returns the reference to a variable. 1874b89a7cc2SEnji Cooper template <typename R> 1875b89a7cc2SEnji Cooper inline internal::ReturnRefAction<R> ReturnRef(R& x) { // NOLINT 1876b89a7cc2SEnji Cooper return internal::ReturnRefAction<R>(x); 1877b89a7cc2SEnji Cooper } 1878b89a7cc2SEnji Cooper 187928f6c2f2SEnji Cooper // Prevent using ReturnRef on reference to temporary. 188028f6c2f2SEnji Cooper template <typename R, R* = nullptr> 188128f6c2f2SEnji Cooper internal::ReturnRefAction<R> ReturnRef(R&&) = delete; 188228f6c2f2SEnji Cooper 1883b89a7cc2SEnji Cooper // Creates an action that returns the reference to a copy of the 1884b89a7cc2SEnji Cooper // argument. The copy is created when the action is constructed and 1885b89a7cc2SEnji Cooper // lives as long as the action. 1886b89a7cc2SEnji Cooper template <typename R> 1887b89a7cc2SEnji Cooper inline internal::ReturnRefOfCopyAction<R> ReturnRefOfCopy(const R& x) { 1888b89a7cc2SEnji Cooper return internal::ReturnRefOfCopyAction<R>(x); 1889b89a7cc2SEnji Cooper } 1890b89a7cc2SEnji Cooper 189128f6c2f2SEnji Cooper // DEPRECATED: use Return(x) directly with WillOnce. 189228f6c2f2SEnji Cooper // 1893b89a7cc2SEnji Cooper // Modifies the parent action (a Return() action) to perform a move of the 1894b89a7cc2SEnji Cooper // argument instead of a copy. 1895b89a7cc2SEnji Cooper // Return(ByMove()) actions can only be executed once and will assert this 1896b89a7cc2SEnji Cooper // invariant. 1897b89a7cc2SEnji Cooper template <typename R> 1898b89a7cc2SEnji Cooper internal::ByMoveWrapper<R> ByMove(R x) { 189928f6c2f2SEnji Cooper return internal::ByMoveWrapper<R>(std::move(x)); 190028f6c2f2SEnji Cooper } 190128f6c2f2SEnji Cooper 190228f6c2f2SEnji Cooper // Creates an action that returns an element of `vals`. Calling this action will 190328f6c2f2SEnji Cooper // repeatedly return the next value from `vals` until it reaches the end and 190428f6c2f2SEnji Cooper // will restart from the beginning. 190528f6c2f2SEnji Cooper template <typename T> 190628f6c2f2SEnji Cooper internal::ReturnRoundRobinAction<T> ReturnRoundRobin(std::vector<T> vals) { 190728f6c2f2SEnji Cooper return internal::ReturnRoundRobinAction<T>(std::move(vals)); 190828f6c2f2SEnji Cooper } 190928f6c2f2SEnji Cooper 191028f6c2f2SEnji Cooper // Creates an action that returns an element of `vals`. Calling this action will 191128f6c2f2SEnji Cooper // repeatedly return the next value from `vals` until it reaches the end and 191228f6c2f2SEnji Cooper // will restart from the beginning. 191328f6c2f2SEnji Cooper template <typename T> 191428f6c2f2SEnji Cooper internal::ReturnRoundRobinAction<T> ReturnRoundRobin( 191528f6c2f2SEnji Cooper std::initializer_list<T> vals) { 191628f6c2f2SEnji Cooper return internal::ReturnRoundRobinAction<T>(std::vector<T>(vals)); 1917b89a7cc2SEnji Cooper } 1918b89a7cc2SEnji Cooper 1919b89a7cc2SEnji Cooper // Creates an action that does the default action for the give mock function. 1920b89a7cc2SEnji Cooper inline internal::DoDefaultAction DoDefault() { 1921b89a7cc2SEnji Cooper return internal::DoDefaultAction(); 1922b89a7cc2SEnji Cooper } 1923b89a7cc2SEnji Cooper 1924b89a7cc2SEnji Cooper // Creates an action that sets the variable pointed by the N-th 1925b89a7cc2SEnji Cooper // (0-based) function argument to 'value'. 1926b89a7cc2SEnji Cooper template <size_t N, typename T> 192728f6c2f2SEnji Cooper internal::SetArgumentPointeeAction<N, T> SetArgPointee(T value) { 192828f6c2f2SEnji Cooper return {std::move(value)}; 1929b89a7cc2SEnji Cooper } 1930b89a7cc2SEnji Cooper 1931b89a7cc2SEnji Cooper // The following version is DEPRECATED. 1932b89a7cc2SEnji Cooper template <size_t N, typename T> 193328f6c2f2SEnji Cooper internal::SetArgumentPointeeAction<N, T> SetArgumentPointee(T value) { 193428f6c2f2SEnji Cooper return {std::move(value)}; 1935b89a7cc2SEnji Cooper } 1936b89a7cc2SEnji Cooper 1937b89a7cc2SEnji Cooper // Creates an action that sets a pointer referent to a given value. 1938b89a7cc2SEnji Cooper template <typename T1, typename T2> 1939b89a7cc2SEnji Cooper PolymorphicAction<internal::AssignAction<T1, T2>> Assign(T1* ptr, T2 val) { 1940b89a7cc2SEnji Cooper return MakePolymorphicAction(internal::AssignAction<T1, T2>(ptr, val)); 1941b89a7cc2SEnji Cooper } 1942b89a7cc2SEnji Cooper 194328f6c2f2SEnji Cooper #ifndef GTEST_OS_WINDOWS_MOBILE 1944b89a7cc2SEnji Cooper 1945b89a7cc2SEnji Cooper // Creates an action that sets errno and returns the appropriate error. 1946b89a7cc2SEnji Cooper template <typename T> 194728f6c2f2SEnji Cooper PolymorphicAction<internal::SetErrnoAndReturnAction<T>> SetErrnoAndReturn( 194828f6c2f2SEnji Cooper int errval, T result) { 1949b89a7cc2SEnji Cooper return MakePolymorphicAction( 1950b89a7cc2SEnji Cooper internal::SetErrnoAndReturnAction<T>(errval, result)); 1951b89a7cc2SEnji Cooper } 1952b89a7cc2SEnji Cooper 1953b89a7cc2SEnji Cooper #endif // !GTEST_OS_WINDOWS_MOBILE 1954b89a7cc2SEnji Cooper 195528f6c2f2SEnji Cooper // Various overloads for Invoke(). 195628f6c2f2SEnji Cooper 195728f6c2f2SEnji Cooper // Legacy function. 195828f6c2f2SEnji Cooper // Actions can now be implicitly constructed from callables. No need to create 195928f6c2f2SEnji Cooper // wrapper objects. 196028f6c2f2SEnji Cooper // This function exists for backwards compatibility. 196128f6c2f2SEnji Cooper template <typename FunctionImpl> 196228f6c2f2SEnji Cooper typename std::decay<FunctionImpl>::type Invoke(FunctionImpl&& function_impl) { 196328f6c2f2SEnji Cooper return std::forward<FunctionImpl>(function_impl); 196428f6c2f2SEnji Cooper } 196528f6c2f2SEnji Cooper 196628f6c2f2SEnji Cooper // Creates an action that invokes the given method on the given object 196728f6c2f2SEnji Cooper // with the mock function's arguments. 196828f6c2f2SEnji Cooper template <class Class, typename MethodPtr> 196928f6c2f2SEnji Cooper internal::InvokeMethodAction<Class, MethodPtr> Invoke(Class* obj_ptr, 197028f6c2f2SEnji Cooper MethodPtr method_ptr) { 197128f6c2f2SEnji Cooper return {obj_ptr, method_ptr}; 197228f6c2f2SEnji Cooper } 1973b89a7cc2SEnji Cooper 1974b89a7cc2SEnji Cooper // Creates an action that invokes 'function_impl' with no argument. 1975b89a7cc2SEnji Cooper template <typename FunctionImpl> 197628f6c2f2SEnji Cooper internal::InvokeWithoutArgsAction<typename std::decay<FunctionImpl>::type> 1977b89a7cc2SEnji Cooper InvokeWithoutArgs(FunctionImpl function_impl) { 197828f6c2f2SEnji Cooper return {std::move(function_impl)}; 1979b89a7cc2SEnji Cooper } 1980b89a7cc2SEnji Cooper 1981b89a7cc2SEnji Cooper // Creates an action that invokes the given method on the given object 1982b89a7cc2SEnji Cooper // with no argument. 1983b89a7cc2SEnji Cooper template <class Class, typename MethodPtr> 198428f6c2f2SEnji Cooper internal::InvokeMethodWithoutArgsAction<Class, MethodPtr> InvokeWithoutArgs( 198528f6c2f2SEnji Cooper Class* obj_ptr, MethodPtr method_ptr) { 198628f6c2f2SEnji Cooper return {obj_ptr, method_ptr}; 1987b89a7cc2SEnji Cooper } 1988b89a7cc2SEnji Cooper 1989b89a7cc2SEnji Cooper // Creates an action that performs an_action and throws away its 1990b89a7cc2SEnji Cooper // result. In other words, it changes the return type of an_action to 1991b89a7cc2SEnji Cooper // void. an_action MUST NOT return void, or the code won't compile. 1992b89a7cc2SEnji Cooper template <typename A> 1993b89a7cc2SEnji Cooper inline internal::IgnoreResultAction<A> IgnoreResult(const A& an_action) { 1994b89a7cc2SEnji Cooper return internal::IgnoreResultAction<A>(an_action); 1995b89a7cc2SEnji Cooper } 1996b89a7cc2SEnji Cooper 1997b89a7cc2SEnji Cooper // Creates a reference wrapper for the given L-value. If necessary, 1998b89a7cc2SEnji Cooper // you can explicitly specify the type of the reference. For example, 1999b89a7cc2SEnji Cooper // suppose 'derived' is an object of type Derived, ByRef(derived) 2000b89a7cc2SEnji Cooper // would wrap a Derived&. If you want to wrap a const Base& instead, 2001b89a7cc2SEnji Cooper // where Base is a base class of Derived, just write: 2002b89a7cc2SEnji Cooper // 2003b89a7cc2SEnji Cooper // ByRef<const Base>(derived) 200428f6c2f2SEnji Cooper // 200528f6c2f2SEnji Cooper // N.B. ByRef is redundant with std::ref, std::cref and std::reference_wrapper. 200628f6c2f2SEnji Cooper // However, it may still be used for consistency with ByMove(). 2007b89a7cc2SEnji Cooper template <typename T> 200828f6c2f2SEnji Cooper inline ::std::reference_wrapper<T> ByRef(T& l_value) { // NOLINT 200928f6c2f2SEnji Cooper return ::std::reference_wrapper<T>(l_value); 2010b89a7cc2SEnji Cooper } 2011b89a7cc2SEnji Cooper 201228f6c2f2SEnji Cooper // The ReturnNew<T>(a1, a2, ..., a_k) action returns a pointer to a new 201328f6c2f2SEnji Cooper // instance of type T, constructed on the heap with constructor arguments 201428f6c2f2SEnji Cooper // a1, a2, ..., and a_k. The caller assumes ownership of the returned value. 201528f6c2f2SEnji Cooper template <typename T, typename... Params> 201628f6c2f2SEnji Cooper internal::ReturnNewAction<T, typename std::decay<Params>::type...> ReturnNew( 201728f6c2f2SEnji Cooper Params&&... params) { 201828f6c2f2SEnji Cooper return {std::forward_as_tuple(std::forward<Params>(params)...)}; 201928f6c2f2SEnji Cooper } 202028f6c2f2SEnji Cooper 202128f6c2f2SEnji Cooper // Action ReturnArg<k>() returns the k-th argument of the mock function. 202228f6c2f2SEnji Cooper template <size_t k> 202328f6c2f2SEnji Cooper internal::ReturnArgAction<k> ReturnArg() { 202428f6c2f2SEnji Cooper return {}; 202528f6c2f2SEnji Cooper } 202628f6c2f2SEnji Cooper 202728f6c2f2SEnji Cooper // Action SaveArg<k>(pointer) saves the k-th (0-based) argument of the 202828f6c2f2SEnji Cooper // mock function to *pointer. 202928f6c2f2SEnji Cooper template <size_t k, typename Ptr> 203028f6c2f2SEnji Cooper internal::SaveArgAction<k, Ptr> SaveArg(Ptr pointer) { 203128f6c2f2SEnji Cooper return {pointer}; 203228f6c2f2SEnji Cooper } 203328f6c2f2SEnji Cooper 203428f6c2f2SEnji Cooper // Action SaveArgPointee<k>(pointer) saves the value pointed to 203528f6c2f2SEnji Cooper // by the k-th (0-based) argument of the mock function to *pointer. 203628f6c2f2SEnji Cooper template <size_t k, typename Ptr> 203728f6c2f2SEnji Cooper internal::SaveArgPointeeAction<k, Ptr> SaveArgPointee(Ptr pointer) { 203828f6c2f2SEnji Cooper return {pointer}; 203928f6c2f2SEnji Cooper } 204028f6c2f2SEnji Cooper 204128f6c2f2SEnji Cooper // Action SetArgReferee<k>(value) assigns 'value' to the variable 204228f6c2f2SEnji Cooper // referenced by the k-th (0-based) argument of the mock function. 204328f6c2f2SEnji Cooper template <size_t k, typename T> 204428f6c2f2SEnji Cooper internal::SetArgRefereeAction<k, typename std::decay<T>::type> SetArgReferee( 204528f6c2f2SEnji Cooper T&& value) { 204628f6c2f2SEnji Cooper return {std::forward<T>(value)}; 204728f6c2f2SEnji Cooper } 204828f6c2f2SEnji Cooper 204928f6c2f2SEnji Cooper // Action SetArrayArgument<k>(first, last) copies the elements in 205028f6c2f2SEnji Cooper // source range [first, last) to the array pointed to by the k-th 205128f6c2f2SEnji Cooper // (0-based) argument, which can be either a pointer or an 205228f6c2f2SEnji Cooper // iterator. The action does not take ownership of the elements in the 205328f6c2f2SEnji Cooper // source range. 205428f6c2f2SEnji Cooper template <size_t k, typename I1, typename I2> 205528f6c2f2SEnji Cooper internal::SetArrayArgumentAction<k, I1, I2> SetArrayArgument(I1 first, 205628f6c2f2SEnji Cooper I2 last) { 205728f6c2f2SEnji Cooper return {first, last}; 205828f6c2f2SEnji Cooper } 205928f6c2f2SEnji Cooper 206028f6c2f2SEnji Cooper // Action DeleteArg<k>() deletes the k-th (0-based) argument of the mock 206128f6c2f2SEnji Cooper // function. 206228f6c2f2SEnji Cooper template <size_t k> 206328f6c2f2SEnji Cooper internal::DeleteArgAction<k> DeleteArg() { 206428f6c2f2SEnji Cooper return {}; 206528f6c2f2SEnji Cooper } 206628f6c2f2SEnji Cooper 206728f6c2f2SEnji Cooper // This action returns the value pointed to by 'pointer'. 206828f6c2f2SEnji Cooper template <typename Ptr> 206928f6c2f2SEnji Cooper internal::ReturnPointeeAction<Ptr> ReturnPointee(Ptr pointer) { 207028f6c2f2SEnji Cooper return {pointer}; 207128f6c2f2SEnji Cooper } 207228f6c2f2SEnji Cooper 207328f6c2f2SEnji Cooper #if GTEST_HAS_EXCEPTIONS 2074*5ca8c28cSEnji Cooper // Action Throw(exception) can be used in a mock function of any type 2075*5ca8c28cSEnji Cooper // to throw the given exception. Any copyable value can be thrown, 2076*5ca8c28cSEnji Cooper // except for std::exception_ptr, which is likely a mistake if 2077*5ca8c28cSEnji Cooper // thrown directly. 207828f6c2f2SEnji Cooper template <typename T> 2079*5ca8c28cSEnji Cooper typename std::enable_if< 2080*5ca8c28cSEnji Cooper !std::is_base_of<std::exception_ptr, typename std::decay<T>::type>::value, 2081*5ca8c28cSEnji Cooper internal::ThrowAction<typename std::decay<T>::type>>::type 2082*5ca8c28cSEnji Cooper Throw(T&& exception) { 208328f6c2f2SEnji Cooper return {std::forward<T>(exception)}; 208428f6c2f2SEnji Cooper } 2085*5ca8c28cSEnji Cooper // Action Rethrow(exception_ptr) can be used in a mock function of any type 2086*5ca8c28cSEnji Cooper // to rethrow any exception_ptr. Note that the same object is thrown each time. 2087*5ca8c28cSEnji Cooper inline internal::RethrowAction Rethrow(std::exception_ptr exception) { 2088*5ca8c28cSEnji Cooper return {std::move(exception)}; 2089*5ca8c28cSEnji Cooper } 209028f6c2f2SEnji Cooper #endif // GTEST_HAS_EXCEPTIONS 209128f6c2f2SEnji Cooper 209228f6c2f2SEnji Cooper namespace internal { 209328f6c2f2SEnji Cooper 209428f6c2f2SEnji Cooper // A macro from the ACTION* family (defined later in gmock-generated-actions.h) 209528f6c2f2SEnji Cooper // defines an action that can be used in a mock function. Typically, 209628f6c2f2SEnji Cooper // these actions only care about a subset of the arguments of the mock 209728f6c2f2SEnji Cooper // function. For example, if such an action only uses the second 209828f6c2f2SEnji Cooper // argument, it can be used in any mock function that takes >= 2 209928f6c2f2SEnji Cooper // arguments where the type of the second argument is compatible. 210028f6c2f2SEnji Cooper // 210128f6c2f2SEnji Cooper // Therefore, the action implementation must be prepared to take more 210228f6c2f2SEnji Cooper // arguments than it needs. The ExcessiveArg type is used to 210328f6c2f2SEnji Cooper // represent those excessive arguments. In order to keep the compiler 210428f6c2f2SEnji Cooper // error messages tractable, we define it in the testing namespace 210528f6c2f2SEnji Cooper // instead of testing::internal. However, this is an INTERNAL TYPE 210628f6c2f2SEnji Cooper // and subject to change without notice, so a user MUST NOT USE THIS 210728f6c2f2SEnji Cooper // TYPE DIRECTLY. 210828f6c2f2SEnji Cooper struct ExcessiveArg {}; 210928f6c2f2SEnji Cooper 211028f6c2f2SEnji Cooper // Builds an implementation of an Action<> for some particular signature, using 211128f6c2f2SEnji Cooper // a class defined by an ACTION* macro. 211228f6c2f2SEnji Cooper template <typename F, typename Impl> 211328f6c2f2SEnji Cooper struct ActionImpl; 211428f6c2f2SEnji Cooper 211528f6c2f2SEnji Cooper template <typename Impl> 211628f6c2f2SEnji Cooper struct ImplBase { 211728f6c2f2SEnji Cooper struct Holder { 211828f6c2f2SEnji Cooper // Allows each copy of the Action<> to get to the Impl. 211928f6c2f2SEnji Cooper explicit operator const Impl&() const { return *ptr; } 212028f6c2f2SEnji Cooper std::shared_ptr<Impl> ptr; 212128f6c2f2SEnji Cooper }; 212228f6c2f2SEnji Cooper using type = typename std::conditional<std::is_constructible<Impl>::value, 212328f6c2f2SEnji Cooper Impl, Holder>::type; 212428f6c2f2SEnji Cooper }; 212528f6c2f2SEnji Cooper 212628f6c2f2SEnji Cooper template <typename R, typename... Args, typename Impl> 212728f6c2f2SEnji Cooper struct ActionImpl<R(Args...), Impl> : ImplBase<Impl>::type { 212828f6c2f2SEnji Cooper using Base = typename ImplBase<Impl>::type; 212928f6c2f2SEnji Cooper using function_type = R(Args...); 213028f6c2f2SEnji Cooper using args_type = std::tuple<Args...>; 213128f6c2f2SEnji Cooper 213228f6c2f2SEnji Cooper ActionImpl() = default; // Only defined if appropriate for Base. 213328f6c2f2SEnji Cooper explicit ActionImpl(std::shared_ptr<Impl> impl) : Base{std::move(impl)} {} 213428f6c2f2SEnji Cooper 213528f6c2f2SEnji Cooper R operator()(Args&&... arg) const { 213628f6c2f2SEnji Cooper static constexpr size_t kMaxArgs = 213728f6c2f2SEnji Cooper sizeof...(Args) <= 10 ? sizeof...(Args) : 10; 2138*5ca8c28cSEnji Cooper return Apply(std::make_index_sequence<kMaxArgs>{}, 2139*5ca8c28cSEnji Cooper std::make_index_sequence<10 - kMaxArgs>{}, 214028f6c2f2SEnji Cooper args_type{std::forward<Args>(arg)...}); 214128f6c2f2SEnji Cooper } 214228f6c2f2SEnji Cooper 214328f6c2f2SEnji Cooper template <std::size_t... arg_id, std::size_t... excess_id> 2144*5ca8c28cSEnji Cooper R Apply(std::index_sequence<arg_id...>, std::index_sequence<excess_id...>, 214528f6c2f2SEnji Cooper const args_type& args) const { 214628f6c2f2SEnji Cooper // Impl need not be specific to the signature of action being implemented; 214728f6c2f2SEnji Cooper // only the implementing function body needs to have all of the specific 214828f6c2f2SEnji Cooper // types instantiated. Up to 10 of the args that are provided by the 214928f6c2f2SEnji Cooper // args_type get passed, followed by a dummy of unspecified type for the 215028f6c2f2SEnji Cooper // remainder up to 10 explicit args. 215128f6c2f2SEnji Cooper static constexpr ExcessiveArg kExcessArg{}; 215228f6c2f2SEnji Cooper return static_cast<const Impl&>(*this) 215328f6c2f2SEnji Cooper .template gmock_PerformImpl< 215428f6c2f2SEnji Cooper /*function_type=*/function_type, /*return_type=*/R, 215528f6c2f2SEnji Cooper /*args_type=*/args_type, 215628f6c2f2SEnji Cooper /*argN_type=*/ 215728f6c2f2SEnji Cooper typename std::tuple_element<arg_id, args_type>::type...>( 215828f6c2f2SEnji Cooper /*args=*/args, std::get<arg_id>(args)..., 215928f6c2f2SEnji Cooper ((void)excess_id, kExcessArg)...); 216028f6c2f2SEnji Cooper } 216128f6c2f2SEnji Cooper }; 216228f6c2f2SEnji Cooper 216328f6c2f2SEnji Cooper // Stores a default-constructed Impl as part of the Action<>'s 216428f6c2f2SEnji Cooper // std::function<>. The Impl should be trivial to copy. 216528f6c2f2SEnji Cooper template <typename F, typename Impl> 216628f6c2f2SEnji Cooper ::testing::Action<F> MakeAction() { 216728f6c2f2SEnji Cooper return ::testing::Action<F>(ActionImpl<F, Impl>()); 216828f6c2f2SEnji Cooper } 216928f6c2f2SEnji Cooper 217028f6c2f2SEnji Cooper // Stores just the one given instance of Impl. 217128f6c2f2SEnji Cooper template <typename F, typename Impl> 217228f6c2f2SEnji Cooper ::testing::Action<F> MakeAction(std::shared_ptr<Impl> impl) { 217328f6c2f2SEnji Cooper return ::testing::Action<F>(ActionImpl<F, Impl>(std::move(impl))); 217428f6c2f2SEnji Cooper } 217528f6c2f2SEnji Cooper 217628f6c2f2SEnji Cooper #define GMOCK_INTERNAL_ARG_UNUSED(i, data, el) \ 2177*5ca8c28cSEnji Cooper , GTEST_INTERNAL_ATTRIBUTE_MAYBE_UNUSED const arg##i##_type& arg##i 217828f6c2f2SEnji Cooper #define GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_ \ 2179*5ca8c28cSEnji Cooper GTEST_INTERNAL_ATTRIBUTE_MAYBE_UNUSED const args_type& args GMOCK_PP_REPEAT( \ 218028f6c2f2SEnji Cooper GMOCK_INTERNAL_ARG_UNUSED, , 10) 218128f6c2f2SEnji Cooper 218228f6c2f2SEnji Cooper #define GMOCK_INTERNAL_ARG(i, data, el) , const arg##i##_type& arg##i 218328f6c2f2SEnji Cooper #define GMOCK_ACTION_ARG_TYPES_AND_NAMES_ \ 218428f6c2f2SEnji Cooper const args_type& args GMOCK_PP_REPEAT(GMOCK_INTERNAL_ARG, , 10) 218528f6c2f2SEnji Cooper 218628f6c2f2SEnji Cooper #define GMOCK_INTERNAL_TEMPLATE_ARG(i, data, el) , typename arg##i##_type 218728f6c2f2SEnji Cooper #define GMOCK_ACTION_TEMPLATE_ARGS_NAMES_ \ 218828f6c2f2SEnji Cooper GMOCK_PP_TAIL(GMOCK_PP_REPEAT(GMOCK_INTERNAL_TEMPLATE_ARG, , 10)) 218928f6c2f2SEnji Cooper 219028f6c2f2SEnji Cooper #define GMOCK_INTERNAL_TYPENAME_PARAM(i, data, param) , typename param##_type 219128f6c2f2SEnji Cooper #define GMOCK_ACTION_TYPENAME_PARAMS_(params) \ 219228f6c2f2SEnji Cooper GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPENAME_PARAM, , params)) 219328f6c2f2SEnji Cooper 219428f6c2f2SEnji Cooper #define GMOCK_INTERNAL_TYPE_PARAM(i, data, param) , param##_type 219528f6c2f2SEnji Cooper #define GMOCK_ACTION_TYPE_PARAMS_(params) \ 219628f6c2f2SEnji Cooper GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPE_PARAM, , params)) 219728f6c2f2SEnji Cooper 219828f6c2f2SEnji Cooper #define GMOCK_INTERNAL_TYPE_GVALUE_PARAM(i, data, param) \ 219928f6c2f2SEnji Cooper , param##_type gmock_p##i 220028f6c2f2SEnji Cooper #define GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params) \ 220128f6c2f2SEnji Cooper GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPE_GVALUE_PARAM, , params)) 220228f6c2f2SEnji Cooper 220328f6c2f2SEnji Cooper #define GMOCK_INTERNAL_GVALUE_PARAM(i, data, param) \ 220428f6c2f2SEnji Cooper , std::forward<param##_type>(gmock_p##i) 220528f6c2f2SEnji Cooper #define GMOCK_ACTION_GVALUE_PARAMS_(params) \ 220628f6c2f2SEnji Cooper GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_GVALUE_PARAM, , params)) 220728f6c2f2SEnji Cooper 220828f6c2f2SEnji Cooper #define GMOCK_INTERNAL_INIT_PARAM(i, data, param) \ 220928f6c2f2SEnji Cooper , param(::std::forward<param##_type>(gmock_p##i)) 221028f6c2f2SEnji Cooper #define GMOCK_ACTION_INIT_PARAMS_(params) \ 221128f6c2f2SEnji Cooper GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_INIT_PARAM, , params)) 221228f6c2f2SEnji Cooper 221328f6c2f2SEnji Cooper #define GMOCK_INTERNAL_FIELD_PARAM(i, data, param) param##_type param; 221428f6c2f2SEnji Cooper #define GMOCK_ACTION_FIELD_PARAMS_(params) \ 221528f6c2f2SEnji Cooper GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_FIELD_PARAM, , params) 221628f6c2f2SEnji Cooper 221728f6c2f2SEnji Cooper #define GMOCK_INTERNAL_ACTION(name, full_name, params) \ 221828f6c2f2SEnji Cooper template <GMOCK_ACTION_TYPENAME_PARAMS_(params)> \ 221928f6c2f2SEnji Cooper class full_name { \ 222028f6c2f2SEnji Cooper public: \ 222128f6c2f2SEnji Cooper explicit full_name(GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) \ 222228f6c2f2SEnji Cooper : impl_(std::make_shared<gmock_Impl>( \ 222328f6c2f2SEnji Cooper GMOCK_ACTION_GVALUE_PARAMS_(params))) {} \ 222428f6c2f2SEnji Cooper full_name(const full_name&) = default; \ 222528f6c2f2SEnji Cooper full_name(full_name&&) noexcept = default; \ 222628f6c2f2SEnji Cooper template <typename F> \ 222728f6c2f2SEnji Cooper operator ::testing::Action<F>() const { \ 222828f6c2f2SEnji Cooper return ::testing::internal::MakeAction<F>(impl_); \ 222928f6c2f2SEnji Cooper } \ 223028f6c2f2SEnji Cooper \ 223128f6c2f2SEnji Cooper private: \ 223228f6c2f2SEnji Cooper class gmock_Impl { \ 223328f6c2f2SEnji Cooper public: \ 223428f6c2f2SEnji Cooper explicit gmock_Impl(GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) \ 223528f6c2f2SEnji Cooper : GMOCK_ACTION_INIT_PARAMS_(params) {} \ 223628f6c2f2SEnji Cooper template <typename function_type, typename return_type, \ 223728f6c2f2SEnji Cooper typename args_type, GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \ 223828f6c2f2SEnji Cooper return_type gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_) const; \ 223928f6c2f2SEnji Cooper GMOCK_ACTION_FIELD_PARAMS_(params) \ 224028f6c2f2SEnji Cooper }; \ 224128f6c2f2SEnji Cooper std::shared_ptr<const gmock_Impl> impl_; \ 224228f6c2f2SEnji Cooper }; \ 224328f6c2f2SEnji Cooper template <GMOCK_ACTION_TYPENAME_PARAMS_(params)> \ 224428f6c2f2SEnji Cooper inline full_name<GMOCK_ACTION_TYPE_PARAMS_(params)> name( \ 224528f6c2f2SEnji Cooper GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) GTEST_MUST_USE_RESULT_; \ 224628f6c2f2SEnji Cooper template <GMOCK_ACTION_TYPENAME_PARAMS_(params)> \ 224728f6c2f2SEnji Cooper inline full_name<GMOCK_ACTION_TYPE_PARAMS_(params)> name( \ 224828f6c2f2SEnji Cooper GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) { \ 224928f6c2f2SEnji Cooper return full_name<GMOCK_ACTION_TYPE_PARAMS_(params)>( \ 225028f6c2f2SEnji Cooper GMOCK_ACTION_GVALUE_PARAMS_(params)); \ 225128f6c2f2SEnji Cooper } \ 225228f6c2f2SEnji Cooper template <GMOCK_ACTION_TYPENAME_PARAMS_(params)> \ 225328f6c2f2SEnji Cooper template <typename function_type, typename return_type, typename args_type, \ 225428f6c2f2SEnji Cooper GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \ 225528f6c2f2SEnji Cooper return_type \ 225628f6c2f2SEnji Cooper full_name<GMOCK_ACTION_TYPE_PARAMS_(params)>::gmock_Impl::gmock_PerformImpl( \ 225728f6c2f2SEnji Cooper GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const 225828f6c2f2SEnji Cooper 225928f6c2f2SEnji Cooper } // namespace internal 226028f6c2f2SEnji Cooper 226128f6c2f2SEnji Cooper // Similar to GMOCK_INTERNAL_ACTION, but no bound parameters are stored. 226228f6c2f2SEnji Cooper #define ACTION(name) \ 226328f6c2f2SEnji Cooper class name##Action { \ 226428f6c2f2SEnji Cooper public: \ 226528f6c2f2SEnji Cooper explicit name##Action() noexcept {} \ 226628f6c2f2SEnji Cooper name##Action(const name##Action&) noexcept {} \ 226728f6c2f2SEnji Cooper template <typename F> \ 226828f6c2f2SEnji Cooper operator ::testing::Action<F>() const { \ 226928f6c2f2SEnji Cooper return ::testing::internal::MakeAction<F, gmock_Impl>(); \ 227028f6c2f2SEnji Cooper } \ 227128f6c2f2SEnji Cooper \ 227228f6c2f2SEnji Cooper private: \ 227328f6c2f2SEnji Cooper class gmock_Impl { \ 227428f6c2f2SEnji Cooper public: \ 227528f6c2f2SEnji Cooper template <typename function_type, typename return_type, \ 227628f6c2f2SEnji Cooper typename args_type, GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \ 227728f6c2f2SEnji Cooper return_type gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_) const; \ 227828f6c2f2SEnji Cooper }; \ 227928f6c2f2SEnji Cooper }; \ 228028f6c2f2SEnji Cooper inline name##Action name() GTEST_MUST_USE_RESULT_; \ 228128f6c2f2SEnji Cooper inline name##Action name() { return name##Action(); } \ 228228f6c2f2SEnji Cooper template <typename function_type, typename return_type, typename args_type, \ 228328f6c2f2SEnji Cooper GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \ 228428f6c2f2SEnji Cooper return_type name##Action::gmock_Impl::gmock_PerformImpl( \ 228528f6c2f2SEnji Cooper GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const 228628f6c2f2SEnji Cooper 228728f6c2f2SEnji Cooper #define ACTION_P(name, ...) \ 228828f6c2f2SEnji Cooper GMOCK_INTERNAL_ACTION(name, name##ActionP, (__VA_ARGS__)) 228928f6c2f2SEnji Cooper 229028f6c2f2SEnji Cooper #define ACTION_P2(name, ...) \ 229128f6c2f2SEnji Cooper GMOCK_INTERNAL_ACTION(name, name##ActionP2, (__VA_ARGS__)) 229228f6c2f2SEnji Cooper 229328f6c2f2SEnji Cooper #define ACTION_P3(name, ...) \ 229428f6c2f2SEnji Cooper GMOCK_INTERNAL_ACTION(name, name##ActionP3, (__VA_ARGS__)) 229528f6c2f2SEnji Cooper 229628f6c2f2SEnji Cooper #define ACTION_P4(name, ...) \ 229728f6c2f2SEnji Cooper GMOCK_INTERNAL_ACTION(name, name##ActionP4, (__VA_ARGS__)) 229828f6c2f2SEnji Cooper 229928f6c2f2SEnji Cooper #define ACTION_P5(name, ...) \ 230028f6c2f2SEnji Cooper GMOCK_INTERNAL_ACTION(name, name##ActionP5, (__VA_ARGS__)) 230128f6c2f2SEnji Cooper 230228f6c2f2SEnji Cooper #define ACTION_P6(name, ...) \ 230328f6c2f2SEnji Cooper GMOCK_INTERNAL_ACTION(name, name##ActionP6, (__VA_ARGS__)) 230428f6c2f2SEnji Cooper 230528f6c2f2SEnji Cooper #define ACTION_P7(name, ...) \ 230628f6c2f2SEnji Cooper GMOCK_INTERNAL_ACTION(name, name##ActionP7, (__VA_ARGS__)) 230728f6c2f2SEnji Cooper 230828f6c2f2SEnji Cooper #define ACTION_P8(name, ...) \ 230928f6c2f2SEnji Cooper GMOCK_INTERNAL_ACTION(name, name##ActionP8, (__VA_ARGS__)) 231028f6c2f2SEnji Cooper 231128f6c2f2SEnji Cooper #define ACTION_P9(name, ...) \ 231228f6c2f2SEnji Cooper GMOCK_INTERNAL_ACTION(name, name##ActionP9, (__VA_ARGS__)) 231328f6c2f2SEnji Cooper 231428f6c2f2SEnji Cooper #define ACTION_P10(name, ...) \ 231528f6c2f2SEnji Cooper GMOCK_INTERNAL_ACTION(name, name##ActionP10, (__VA_ARGS__)) 231628f6c2f2SEnji Cooper 2317b89a7cc2SEnji Cooper } // namespace testing 2318b89a7cc2SEnji Cooper 231928f6c2f2SEnji Cooper GTEST_DISABLE_MSC_WARNINGS_POP_() // 4100 232028f6c2f2SEnji Cooper 232128f6c2f2SEnji Cooper #endif // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_ 2322