xref: /dpdk/drivers/net/sfc/sfc_ethdev.c (revision 089e5ed727a15da2729cfee9b63533dd120bd04c)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  *
3  * Copyright (c) 2016-2018 Solarflare Communications Inc.
4  * All rights reserved.
5  *
6  * This software was jointly developed between OKTET Labs (under contract
7  * for Solarflare) and Solarflare Communications, Inc.
8  */
9 
10 #include <rte_dev.h>
11 #include <rte_ethdev_driver.h>
12 #include <rte_ethdev_pci.h>
13 #include <rte_pci.h>
14 #include <rte_bus_pci.h>
15 #include <rte_errno.h>
16 #include <rte_string_fns.h>
17 #include <rte_ether.h>
18 
19 #include "efx.h"
20 
21 #include "sfc.h"
22 #include "sfc_debug.h"
23 #include "sfc_log.h"
24 #include "sfc_kvargs.h"
25 #include "sfc_ev.h"
26 #include "sfc_rx.h"
27 #include "sfc_tx.h"
28 #include "sfc_flow.h"
29 #include "sfc_dp.h"
30 #include "sfc_dp_rx.h"
31 
32 uint32_t sfc_logtype_driver;
33 
34 static struct sfc_dp_list sfc_dp_head =
35 	TAILQ_HEAD_INITIALIZER(sfc_dp_head);
36 
37 
38 static void sfc_eth_dev_clear_ops(struct rte_eth_dev *dev);
39 
40 
41 static int
42 sfc_fw_version_get(struct rte_eth_dev *dev, char *fw_version, size_t fw_size)
43 {
44 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
45 	efx_nic_fw_info_t enfi;
46 	int ret;
47 	int rc;
48 
49 	/*
50 	 * Return value of the callback is likely supposed to be
51 	 * equal to or greater than 0, nevertheless, if an error
52 	 * occurs, it will be desirable to pass it to the caller
53 	 */
54 	if ((fw_version == NULL) || (fw_size == 0))
55 		return -EINVAL;
56 
57 	rc = efx_nic_get_fw_version(sa->nic, &enfi);
58 	if (rc != 0)
59 		return -rc;
60 
61 	ret = snprintf(fw_version, fw_size,
62 		       "%" PRIu16 ".%" PRIu16 ".%" PRIu16 ".%" PRIu16,
63 		       enfi.enfi_mc_fw_version[0], enfi.enfi_mc_fw_version[1],
64 		       enfi.enfi_mc_fw_version[2], enfi.enfi_mc_fw_version[3]);
65 	if (ret < 0)
66 		return ret;
67 
68 	if (enfi.enfi_dpcpu_fw_ids_valid) {
69 		size_t dpcpu_fw_ids_offset = MIN(fw_size - 1, (size_t)ret);
70 		int ret_extra;
71 
72 		ret_extra = snprintf(fw_version + dpcpu_fw_ids_offset,
73 				     fw_size - dpcpu_fw_ids_offset,
74 				     " rx%" PRIx16 " tx%" PRIx16,
75 				     enfi.enfi_rx_dpcpu_fw_id,
76 				     enfi.enfi_tx_dpcpu_fw_id);
77 		if (ret_extra < 0)
78 			return ret_extra;
79 
80 		ret += ret_extra;
81 	}
82 
83 	if (fw_size < (size_t)(++ret))
84 		return ret;
85 	else
86 		return 0;
87 }
88 
89 static int
90 sfc_dev_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
91 {
92 	const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
93 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
94 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
95 	struct sfc_rss *rss = &sas->rss;
96 	uint64_t txq_offloads_def = 0;
97 
98 	sfc_log_init(sa, "entry");
99 
100 	dev_info->min_mtu = RTE_ETHER_MIN_MTU;
101 	dev_info->max_mtu = EFX_MAC_SDU_MAX;
102 
103 	dev_info->max_rx_pktlen = EFX_MAC_PDU_MAX;
104 
105 	/* Autonegotiation may be disabled */
106 	dev_info->speed_capa = ETH_LINK_SPEED_FIXED;
107 	if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_1000FDX))
108 		dev_info->speed_capa |= ETH_LINK_SPEED_1G;
109 	if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_10000FDX))
110 		dev_info->speed_capa |= ETH_LINK_SPEED_10G;
111 	if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_25000FDX))
112 		dev_info->speed_capa |= ETH_LINK_SPEED_25G;
113 	if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_40000FDX))
114 		dev_info->speed_capa |= ETH_LINK_SPEED_40G;
115 	if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_50000FDX))
116 		dev_info->speed_capa |= ETH_LINK_SPEED_50G;
117 	if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_100000FDX))
118 		dev_info->speed_capa |= ETH_LINK_SPEED_100G;
119 
120 	dev_info->max_rx_queues = sa->rxq_max;
121 	dev_info->max_tx_queues = sa->txq_max;
122 
123 	/* By default packets are dropped if no descriptors are available */
124 	dev_info->default_rxconf.rx_drop_en = 1;
125 
126 	dev_info->rx_queue_offload_capa = sfc_rx_get_queue_offload_caps(sa);
127 
128 	/*
129 	 * rx_offload_capa includes both device and queue offloads since
130 	 * the latter may be requested on a per device basis which makes
131 	 * sense when some offloads are needed to be set on all queues.
132 	 */
133 	dev_info->rx_offload_capa = sfc_rx_get_dev_offload_caps(sa) |
134 				    dev_info->rx_queue_offload_capa;
135 
136 	dev_info->tx_queue_offload_capa = sfc_tx_get_queue_offload_caps(sa);
137 
138 	/*
139 	 * tx_offload_capa includes both device and queue offloads since
140 	 * the latter may be requested on a per device basis which makes
141 	 * sense when some offloads are needed to be set on all queues.
142 	 */
143 	dev_info->tx_offload_capa = sfc_tx_get_dev_offload_caps(sa) |
144 				    dev_info->tx_queue_offload_capa;
145 
146 	if (dev_info->tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE)
147 		txq_offloads_def |= DEV_TX_OFFLOAD_MBUF_FAST_FREE;
148 
149 	dev_info->default_txconf.offloads |= txq_offloads_def;
150 
151 	if (rss->context_type != EFX_RX_SCALE_UNAVAILABLE) {
152 		uint64_t rte_hf = 0;
153 		unsigned int i;
154 
155 		for (i = 0; i < rss->hf_map_nb_entries; ++i)
156 			rte_hf |= rss->hf_map[i].rte;
157 
158 		dev_info->reta_size = EFX_RSS_TBL_SIZE;
159 		dev_info->hash_key_size = EFX_RSS_KEY_SIZE;
160 		dev_info->flow_type_rss_offloads = rte_hf;
161 	}
162 
163 	/* Initialize to hardware limits */
164 	dev_info->rx_desc_lim.nb_max = sa->rxq_max_entries;
165 	dev_info->rx_desc_lim.nb_min = sa->rxq_min_entries;
166 	/* The RXQ hardware requires that the descriptor count is a power
167 	 * of 2, but rx_desc_lim cannot properly describe that constraint.
168 	 */
169 	dev_info->rx_desc_lim.nb_align = sa->rxq_min_entries;
170 
171 	/* Initialize to hardware limits */
172 	dev_info->tx_desc_lim.nb_max = sa->txq_max_entries;
173 	dev_info->tx_desc_lim.nb_min = sa->txq_min_entries;
174 	/*
175 	 * The TXQ hardware requires that the descriptor count is a power
176 	 * of 2, but tx_desc_lim cannot properly describe that constraint
177 	 */
178 	dev_info->tx_desc_lim.nb_align = sa->txq_min_entries;
179 
180 	if (sap->dp_rx->get_dev_info != NULL)
181 		sap->dp_rx->get_dev_info(dev_info);
182 	if (sap->dp_tx->get_dev_info != NULL)
183 		sap->dp_tx->get_dev_info(dev_info);
184 
185 	dev_info->dev_capa = RTE_ETH_DEV_CAPA_RUNTIME_RX_QUEUE_SETUP |
186 			     RTE_ETH_DEV_CAPA_RUNTIME_TX_QUEUE_SETUP;
187 
188 	return 0;
189 }
190 
191 static const uint32_t *
192 sfc_dev_supported_ptypes_get(struct rte_eth_dev *dev)
193 {
194 	const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
195 
196 	return sap->dp_rx->supported_ptypes_get(sap->shared->tunnel_encaps);
197 }
198 
199 static int
200 sfc_dev_configure(struct rte_eth_dev *dev)
201 {
202 	struct rte_eth_dev_data *dev_data = dev->data;
203 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
204 	int rc;
205 
206 	sfc_log_init(sa, "entry n_rxq=%u n_txq=%u",
207 		     dev_data->nb_rx_queues, dev_data->nb_tx_queues);
208 
209 	sfc_adapter_lock(sa);
210 	switch (sa->state) {
211 	case SFC_ADAPTER_CONFIGURED:
212 		/* FALLTHROUGH */
213 	case SFC_ADAPTER_INITIALIZED:
214 		rc = sfc_configure(sa);
215 		break;
216 	default:
217 		sfc_err(sa, "unexpected adapter state %u to configure",
218 			sa->state);
219 		rc = EINVAL;
220 		break;
221 	}
222 	sfc_adapter_unlock(sa);
223 
224 	sfc_log_init(sa, "done %d", rc);
225 	SFC_ASSERT(rc >= 0);
226 	return -rc;
227 }
228 
229 static int
230 sfc_dev_start(struct rte_eth_dev *dev)
231 {
232 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
233 	int rc;
234 
235 	sfc_log_init(sa, "entry");
236 
237 	sfc_adapter_lock(sa);
238 	rc = sfc_start(sa);
239 	sfc_adapter_unlock(sa);
240 
241 	sfc_log_init(sa, "done %d", rc);
242 	SFC_ASSERT(rc >= 0);
243 	return -rc;
244 }
245 
246 static int
247 sfc_dev_link_update(struct rte_eth_dev *dev, int wait_to_complete)
248 {
249 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
250 	struct rte_eth_link current_link;
251 	int ret;
252 
253 	sfc_log_init(sa, "entry");
254 
255 	if (sa->state != SFC_ADAPTER_STARTED) {
256 		sfc_port_link_mode_to_info(EFX_LINK_UNKNOWN, &current_link);
257 	} else if (wait_to_complete) {
258 		efx_link_mode_t link_mode;
259 
260 		if (efx_port_poll(sa->nic, &link_mode) != 0)
261 			link_mode = EFX_LINK_UNKNOWN;
262 		sfc_port_link_mode_to_info(link_mode, &current_link);
263 
264 	} else {
265 		sfc_ev_mgmt_qpoll(sa);
266 		rte_eth_linkstatus_get(dev, &current_link);
267 	}
268 
269 	ret = rte_eth_linkstatus_set(dev, &current_link);
270 	if (ret == 0)
271 		sfc_notice(sa, "Link status is %s",
272 			   current_link.link_status ? "UP" : "DOWN");
273 
274 	return ret;
275 }
276 
277 static void
278 sfc_dev_stop(struct rte_eth_dev *dev)
279 {
280 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
281 
282 	sfc_log_init(sa, "entry");
283 
284 	sfc_adapter_lock(sa);
285 	sfc_stop(sa);
286 	sfc_adapter_unlock(sa);
287 
288 	sfc_log_init(sa, "done");
289 }
290 
291 static int
292 sfc_dev_set_link_up(struct rte_eth_dev *dev)
293 {
294 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
295 	int rc;
296 
297 	sfc_log_init(sa, "entry");
298 
299 	sfc_adapter_lock(sa);
300 	rc = sfc_start(sa);
301 	sfc_adapter_unlock(sa);
302 
303 	SFC_ASSERT(rc >= 0);
304 	return -rc;
305 }
306 
307 static int
308 sfc_dev_set_link_down(struct rte_eth_dev *dev)
309 {
310 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
311 
312 	sfc_log_init(sa, "entry");
313 
314 	sfc_adapter_lock(sa);
315 	sfc_stop(sa);
316 	sfc_adapter_unlock(sa);
317 
318 	return 0;
319 }
320 
321 static void
322 sfc_dev_close(struct rte_eth_dev *dev)
323 {
324 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
325 
326 	sfc_log_init(sa, "entry");
327 
328 	sfc_adapter_lock(sa);
329 	switch (sa->state) {
330 	case SFC_ADAPTER_STARTED:
331 		sfc_stop(sa);
332 		SFC_ASSERT(sa->state == SFC_ADAPTER_CONFIGURED);
333 		/* FALLTHROUGH */
334 	case SFC_ADAPTER_CONFIGURED:
335 		sfc_close(sa);
336 		SFC_ASSERT(sa->state == SFC_ADAPTER_INITIALIZED);
337 		/* FALLTHROUGH */
338 	case SFC_ADAPTER_INITIALIZED:
339 		break;
340 	default:
341 		sfc_err(sa, "unexpected adapter state %u on close", sa->state);
342 		break;
343 	}
344 
345 	/*
346 	 * Cleanup all resources in accordance with RTE_ETH_DEV_CLOSE_REMOVE.
347 	 * Rollback primary process sfc_eth_dev_init() below.
348 	 */
349 
350 	sfc_eth_dev_clear_ops(dev);
351 
352 	sfc_detach(sa);
353 	sfc_unprobe(sa);
354 
355 	sfc_kvargs_cleanup(sa);
356 
357 	sfc_adapter_unlock(sa);
358 	sfc_adapter_lock_fini(sa);
359 
360 	sfc_log_init(sa, "done");
361 
362 	/* Required for logging, so cleanup last */
363 	sa->eth_dev = NULL;
364 
365 	dev->process_private = NULL;
366 	free(sa);
367 }
368 
369 static void
370 sfc_dev_filter_set(struct rte_eth_dev *dev, enum sfc_dev_filter_mode mode,
371 		   boolean_t enabled)
372 {
373 	struct sfc_port *port;
374 	boolean_t *toggle;
375 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
376 	boolean_t allmulti = (mode == SFC_DEV_FILTER_MODE_ALLMULTI);
377 	const char *desc = (allmulti) ? "all-multi" : "promiscuous";
378 
379 	sfc_adapter_lock(sa);
380 
381 	port = &sa->port;
382 	toggle = (allmulti) ? (&port->allmulti) : (&port->promisc);
383 
384 	if (*toggle != enabled) {
385 		*toggle = enabled;
386 
387 		if (sfc_sa2shared(sa)->isolated) {
388 			sfc_warn(sa, "isolated mode is active on the port");
389 			sfc_warn(sa, "the change is to be applied on the next "
390 				     "start provided that isolated mode is "
391 				     "disabled prior the next start");
392 		} else if ((sa->state == SFC_ADAPTER_STARTED) &&
393 			   (sfc_set_rx_mode(sa) != 0)) {
394 			*toggle = !(enabled);
395 			sfc_warn(sa, "Failed to %s %s mode",
396 				 ((enabled) ? "enable" : "disable"), desc);
397 		}
398 	}
399 
400 	sfc_adapter_unlock(sa);
401 }
402 
403 static void
404 sfc_dev_promisc_enable(struct rte_eth_dev *dev)
405 {
406 	sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_TRUE);
407 }
408 
409 static void
410 sfc_dev_promisc_disable(struct rte_eth_dev *dev)
411 {
412 	sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_FALSE);
413 }
414 
415 static void
416 sfc_dev_allmulti_enable(struct rte_eth_dev *dev)
417 {
418 	sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_TRUE);
419 }
420 
421 static void
422 sfc_dev_allmulti_disable(struct rte_eth_dev *dev)
423 {
424 	sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_FALSE);
425 }
426 
427 static int
428 sfc_rx_queue_setup(struct rte_eth_dev *dev, uint16_t rx_queue_id,
429 		   uint16_t nb_rx_desc, unsigned int socket_id,
430 		   const struct rte_eth_rxconf *rx_conf,
431 		   struct rte_mempool *mb_pool)
432 {
433 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
434 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
435 	int rc;
436 
437 	sfc_log_init(sa, "RxQ=%u nb_rx_desc=%u socket_id=%u",
438 		     rx_queue_id, nb_rx_desc, socket_id);
439 
440 	sfc_adapter_lock(sa);
441 
442 	rc = sfc_rx_qinit(sa, rx_queue_id, nb_rx_desc, socket_id,
443 			  rx_conf, mb_pool);
444 	if (rc != 0)
445 		goto fail_rx_qinit;
446 
447 	dev->data->rx_queues[rx_queue_id] = sas->rxq_info[rx_queue_id].dp;
448 
449 	sfc_adapter_unlock(sa);
450 
451 	return 0;
452 
453 fail_rx_qinit:
454 	sfc_adapter_unlock(sa);
455 	SFC_ASSERT(rc > 0);
456 	return -rc;
457 }
458 
459 static void
460 sfc_rx_queue_release(void *queue)
461 {
462 	struct sfc_dp_rxq *dp_rxq = queue;
463 	struct sfc_rxq *rxq;
464 	struct sfc_adapter *sa;
465 	unsigned int sw_index;
466 
467 	if (dp_rxq == NULL)
468 		return;
469 
470 	rxq = sfc_rxq_by_dp_rxq(dp_rxq);
471 	sa = rxq->evq->sa;
472 	sfc_adapter_lock(sa);
473 
474 	sw_index = dp_rxq->dpq.queue_id;
475 
476 	sfc_log_init(sa, "RxQ=%u", sw_index);
477 
478 	sfc_rx_qfini(sa, sw_index);
479 
480 	sfc_adapter_unlock(sa);
481 }
482 
483 static int
484 sfc_tx_queue_setup(struct rte_eth_dev *dev, uint16_t tx_queue_id,
485 		   uint16_t nb_tx_desc, unsigned int socket_id,
486 		   const struct rte_eth_txconf *tx_conf)
487 {
488 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
489 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
490 	int rc;
491 
492 	sfc_log_init(sa, "TxQ = %u, nb_tx_desc = %u, socket_id = %u",
493 		     tx_queue_id, nb_tx_desc, socket_id);
494 
495 	sfc_adapter_lock(sa);
496 
497 	rc = sfc_tx_qinit(sa, tx_queue_id, nb_tx_desc, socket_id, tx_conf);
498 	if (rc != 0)
499 		goto fail_tx_qinit;
500 
501 	dev->data->tx_queues[tx_queue_id] = sas->txq_info[tx_queue_id].dp;
502 
503 	sfc_adapter_unlock(sa);
504 	return 0;
505 
506 fail_tx_qinit:
507 	sfc_adapter_unlock(sa);
508 	SFC_ASSERT(rc > 0);
509 	return -rc;
510 }
511 
512 static void
513 sfc_tx_queue_release(void *queue)
514 {
515 	struct sfc_dp_txq *dp_txq = queue;
516 	struct sfc_txq *txq;
517 	unsigned int sw_index;
518 	struct sfc_adapter *sa;
519 
520 	if (dp_txq == NULL)
521 		return;
522 
523 	txq = sfc_txq_by_dp_txq(dp_txq);
524 	sw_index = dp_txq->dpq.queue_id;
525 
526 	SFC_ASSERT(txq->evq != NULL);
527 	sa = txq->evq->sa;
528 
529 	sfc_log_init(sa, "TxQ = %u", sw_index);
530 
531 	sfc_adapter_lock(sa);
532 
533 	sfc_tx_qfini(sa, sw_index);
534 
535 	sfc_adapter_unlock(sa);
536 }
537 
538 /*
539  * Some statistics are computed as A - B where A and B each increase
540  * monotonically with some hardware counter(s) and the counters are read
541  * asynchronously.
542  *
543  * If packet X is counted in A, but not counted in B yet, computed value is
544  * greater than real.
545  *
546  * If packet X is not counted in A at the moment of reading the counter,
547  * but counted in B at the moment of reading the counter, computed value
548  * is less than real.
549  *
550  * However, counter which grows backward is worse evil than slightly wrong
551  * value. So, let's try to guarantee that it never happens except may be
552  * the case when the MAC stats are zeroed as a result of a NIC reset.
553  */
554 static void
555 sfc_update_diff_stat(uint64_t *stat, uint64_t newval)
556 {
557 	if ((int64_t)(newval - *stat) > 0 || newval == 0)
558 		*stat = newval;
559 }
560 
561 static int
562 sfc_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats)
563 {
564 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
565 	struct sfc_port *port = &sa->port;
566 	uint64_t *mac_stats;
567 	int ret;
568 
569 	rte_spinlock_lock(&port->mac_stats_lock);
570 
571 	ret = sfc_port_update_mac_stats(sa);
572 	if (ret != 0)
573 		goto unlock;
574 
575 	mac_stats = port->mac_stats_buf;
576 
577 	if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask,
578 				   EFX_MAC_VADAPTER_RX_UNICAST_PACKETS)) {
579 		stats->ipackets =
580 			mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_PACKETS] +
581 			mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_PACKETS] +
582 			mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_PACKETS];
583 		stats->opackets =
584 			mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_PACKETS] +
585 			mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_PACKETS] +
586 			mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_PACKETS];
587 		stats->ibytes =
588 			mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_BYTES] +
589 			mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_BYTES] +
590 			mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_BYTES];
591 		stats->obytes =
592 			mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_BYTES] +
593 			mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_BYTES] +
594 			mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_BYTES];
595 		stats->imissed = mac_stats[EFX_MAC_VADAPTER_RX_BAD_PACKETS];
596 		stats->oerrors = mac_stats[EFX_MAC_VADAPTER_TX_BAD_PACKETS];
597 	} else {
598 		stats->opackets = mac_stats[EFX_MAC_TX_PKTS];
599 		stats->ibytes = mac_stats[EFX_MAC_RX_OCTETS];
600 		stats->obytes = mac_stats[EFX_MAC_TX_OCTETS];
601 		/*
602 		 * Take into account stats which are whenever supported
603 		 * on EF10. If some stat is not supported by current
604 		 * firmware variant or HW revision, it is guaranteed
605 		 * to be zero in mac_stats.
606 		 */
607 		stats->imissed =
608 			mac_stats[EFX_MAC_RX_NODESC_DROP_CNT] +
609 			mac_stats[EFX_MAC_PM_TRUNC_BB_OVERFLOW] +
610 			mac_stats[EFX_MAC_PM_DISCARD_BB_OVERFLOW] +
611 			mac_stats[EFX_MAC_PM_TRUNC_VFIFO_FULL] +
612 			mac_stats[EFX_MAC_PM_DISCARD_VFIFO_FULL] +
613 			mac_stats[EFX_MAC_PM_TRUNC_QBB] +
614 			mac_stats[EFX_MAC_PM_DISCARD_QBB] +
615 			mac_stats[EFX_MAC_PM_DISCARD_MAPPING] +
616 			mac_stats[EFX_MAC_RXDP_Q_DISABLED_PKTS] +
617 			mac_stats[EFX_MAC_RXDP_DI_DROPPED_PKTS];
618 		stats->ierrors =
619 			mac_stats[EFX_MAC_RX_FCS_ERRORS] +
620 			mac_stats[EFX_MAC_RX_ALIGN_ERRORS] +
621 			mac_stats[EFX_MAC_RX_JABBER_PKTS];
622 		/* no oerrors counters supported on EF10 */
623 
624 		/* Exclude missed, errors and pauses from Rx packets */
625 		sfc_update_diff_stat(&port->ipackets,
626 			mac_stats[EFX_MAC_RX_PKTS] -
627 			mac_stats[EFX_MAC_RX_PAUSE_PKTS] -
628 			stats->imissed - stats->ierrors);
629 		stats->ipackets = port->ipackets;
630 	}
631 
632 unlock:
633 	rte_spinlock_unlock(&port->mac_stats_lock);
634 	SFC_ASSERT(ret >= 0);
635 	return -ret;
636 }
637 
638 static void
639 sfc_stats_reset(struct rte_eth_dev *dev)
640 {
641 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
642 	struct sfc_port *port = &sa->port;
643 	int rc;
644 
645 	if (sa->state != SFC_ADAPTER_STARTED) {
646 		/*
647 		 * The operation cannot be done if port is not started; it
648 		 * will be scheduled to be done during the next port start
649 		 */
650 		port->mac_stats_reset_pending = B_TRUE;
651 		return;
652 	}
653 
654 	rc = sfc_port_reset_mac_stats(sa);
655 	if (rc != 0)
656 		sfc_err(sa, "failed to reset statistics (rc = %d)", rc);
657 }
658 
659 static int
660 sfc_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats,
661 	       unsigned int xstats_count)
662 {
663 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
664 	struct sfc_port *port = &sa->port;
665 	uint64_t *mac_stats;
666 	int rc;
667 	unsigned int i;
668 	int nstats = 0;
669 
670 	rte_spinlock_lock(&port->mac_stats_lock);
671 
672 	rc = sfc_port_update_mac_stats(sa);
673 	if (rc != 0) {
674 		SFC_ASSERT(rc > 0);
675 		nstats = -rc;
676 		goto unlock;
677 	}
678 
679 	mac_stats = port->mac_stats_buf;
680 
681 	for (i = 0; i < EFX_MAC_NSTATS; ++i) {
682 		if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) {
683 			if (xstats != NULL && nstats < (int)xstats_count) {
684 				xstats[nstats].id = nstats;
685 				xstats[nstats].value = mac_stats[i];
686 			}
687 			nstats++;
688 		}
689 	}
690 
691 unlock:
692 	rte_spinlock_unlock(&port->mac_stats_lock);
693 
694 	return nstats;
695 }
696 
697 static int
698 sfc_xstats_get_names(struct rte_eth_dev *dev,
699 		     struct rte_eth_xstat_name *xstats_names,
700 		     unsigned int xstats_count)
701 {
702 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
703 	struct sfc_port *port = &sa->port;
704 	unsigned int i;
705 	unsigned int nstats = 0;
706 
707 	for (i = 0; i < EFX_MAC_NSTATS; ++i) {
708 		if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) {
709 			if (xstats_names != NULL && nstats < xstats_count)
710 				strlcpy(xstats_names[nstats].name,
711 					efx_mac_stat_name(sa->nic, i),
712 					sizeof(xstats_names[0].name));
713 			nstats++;
714 		}
715 	}
716 
717 	return nstats;
718 }
719 
720 static int
721 sfc_xstats_get_by_id(struct rte_eth_dev *dev, const uint64_t *ids,
722 		     uint64_t *values, unsigned int n)
723 {
724 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
725 	struct sfc_port *port = &sa->port;
726 	uint64_t *mac_stats;
727 	unsigned int nb_supported = 0;
728 	unsigned int nb_written = 0;
729 	unsigned int i;
730 	int ret;
731 	int rc;
732 
733 	if (unlikely(values == NULL) ||
734 	    unlikely((ids == NULL) && (n < port->mac_stats_nb_supported)))
735 		return port->mac_stats_nb_supported;
736 
737 	rte_spinlock_lock(&port->mac_stats_lock);
738 
739 	rc = sfc_port_update_mac_stats(sa);
740 	if (rc != 0) {
741 		SFC_ASSERT(rc > 0);
742 		ret = -rc;
743 		goto unlock;
744 	}
745 
746 	mac_stats = port->mac_stats_buf;
747 
748 	for (i = 0; (i < EFX_MAC_NSTATS) && (nb_written < n); ++i) {
749 		if (!EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i))
750 			continue;
751 
752 		if ((ids == NULL) || (ids[nb_written] == nb_supported))
753 			values[nb_written++] = mac_stats[i];
754 
755 		++nb_supported;
756 	}
757 
758 	ret = nb_written;
759 
760 unlock:
761 	rte_spinlock_unlock(&port->mac_stats_lock);
762 
763 	return ret;
764 }
765 
766 static int
767 sfc_xstats_get_names_by_id(struct rte_eth_dev *dev,
768 			   struct rte_eth_xstat_name *xstats_names,
769 			   const uint64_t *ids, unsigned int size)
770 {
771 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
772 	struct sfc_port *port = &sa->port;
773 	unsigned int nb_supported = 0;
774 	unsigned int nb_written = 0;
775 	unsigned int i;
776 
777 	if (unlikely(xstats_names == NULL) ||
778 	    unlikely((ids == NULL) && (size < port->mac_stats_nb_supported)))
779 		return port->mac_stats_nb_supported;
780 
781 	for (i = 0; (i < EFX_MAC_NSTATS) && (nb_written < size); ++i) {
782 		if (!EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i))
783 			continue;
784 
785 		if ((ids == NULL) || (ids[nb_written] == nb_supported)) {
786 			char *name = xstats_names[nb_written++].name;
787 
788 			strlcpy(name, efx_mac_stat_name(sa->nic, i),
789 				sizeof(xstats_names[0].name));
790 		}
791 
792 		++nb_supported;
793 	}
794 
795 	return nb_written;
796 }
797 
798 static int
799 sfc_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
800 {
801 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
802 	unsigned int wanted_fc, link_fc;
803 
804 	memset(fc_conf, 0, sizeof(*fc_conf));
805 
806 	sfc_adapter_lock(sa);
807 
808 	if (sa->state == SFC_ADAPTER_STARTED)
809 		efx_mac_fcntl_get(sa->nic, &wanted_fc, &link_fc);
810 	else
811 		link_fc = sa->port.flow_ctrl;
812 
813 	switch (link_fc) {
814 	case 0:
815 		fc_conf->mode = RTE_FC_NONE;
816 		break;
817 	case EFX_FCNTL_RESPOND:
818 		fc_conf->mode = RTE_FC_RX_PAUSE;
819 		break;
820 	case EFX_FCNTL_GENERATE:
821 		fc_conf->mode = RTE_FC_TX_PAUSE;
822 		break;
823 	case (EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE):
824 		fc_conf->mode = RTE_FC_FULL;
825 		break;
826 	default:
827 		sfc_err(sa, "%s: unexpected flow control value %#x",
828 			__func__, link_fc);
829 	}
830 
831 	fc_conf->autoneg = sa->port.flow_ctrl_autoneg;
832 
833 	sfc_adapter_unlock(sa);
834 
835 	return 0;
836 }
837 
838 static int
839 sfc_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
840 {
841 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
842 	struct sfc_port *port = &sa->port;
843 	unsigned int fcntl;
844 	int rc;
845 
846 	if (fc_conf->high_water != 0 || fc_conf->low_water != 0 ||
847 	    fc_conf->pause_time != 0 || fc_conf->send_xon != 0 ||
848 	    fc_conf->mac_ctrl_frame_fwd != 0) {
849 		sfc_err(sa, "unsupported flow control settings specified");
850 		rc = EINVAL;
851 		goto fail_inval;
852 	}
853 
854 	switch (fc_conf->mode) {
855 	case RTE_FC_NONE:
856 		fcntl = 0;
857 		break;
858 	case RTE_FC_RX_PAUSE:
859 		fcntl = EFX_FCNTL_RESPOND;
860 		break;
861 	case RTE_FC_TX_PAUSE:
862 		fcntl = EFX_FCNTL_GENERATE;
863 		break;
864 	case RTE_FC_FULL:
865 		fcntl = EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE;
866 		break;
867 	default:
868 		rc = EINVAL;
869 		goto fail_inval;
870 	}
871 
872 	sfc_adapter_lock(sa);
873 
874 	if (sa->state == SFC_ADAPTER_STARTED) {
875 		rc = efx_mac_fcntl_set(sa->nic, fcntl, fc_conf->autoneg);
876 		if (rc != 0)
877 			goto fail_mac_fcntl_set;
878 	}
879 
880 	port->flow_ctrl = fcntl;
881 	port->flow_ctrl_autoneg = fc_conf->autoneg;
882 
883 	sfc_adapter_unlock(sa);
884 
885 	return 0;
886 
887 fail_mac_fcntl_set:
888 	sfc_adapter_unlock(sa);
889 fail_inval:
890 	SFC_ASSERT(rc > 0);
891 	return -rc;
892 }
893 
894 static int
895 sfc_check_scatter_on_all_rx_queues(struct sfc_adapter *sa, size_t pdu)
896 {
897 	struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
898 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
899 	boolean_t scatter_enabled;
900 	const char *error;
901 	unsigned int i;
902 
903 	for (i = 0; i < sas->rxq_count; i++) {
904 		if ((sas->rxq_info[i].state & SFC_RXQ_INITIALIZED) == 0)
905 			continue;
906 
907 		scatter_enabled = (sas->rxq_info[i].type_flags &
908 				   EFX_RXQ_FLAG_SCATTER);
909 
910 		if (!sfc_rx_check_scatter(pdu, sa->rxq_ctrl[i].buf_size,
911 					  encp->enc_rx_prefix_size,
912 					  scatter_enabled, &error)) {
913 			sfc_err(sa, "MTU check for RxQ %u failed: %s", i,
914 				error);
915 			return EINVAL;
916 		}
917 	}
918 
919 	return 0;
920 }
921 
922 static int
923 sfc_dev_set_mtu(struct rte_eth_dev *dev, uint16_t mtu)
924 {
925 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
926 	size_t pdu = EFX_MAC_PDU(mtu);
927 	size_t old_pdu;
928 	int rc;
929 
930 	sfc_log_init(sa, "mtu=%u", mtu);
931 
932 	rc = EINVAL;
933 	if (pdu < EFX_MAC_PDU_MIN) {
934 		sfc_err(sa, "too small MTU %u (PDU size %u less than min %u)",
935 			(unsigned int)mtu, (unsigned int)pdu,
936 			EFX_MAC_PDU_MIN);
937 		goto fail_inval;
938 	}
939 	if (pdu > EFX_MAC_PDU_MAX) {
940 		sfc_err(sa, "too big MTU %u (PDU size %u greater than max %u)",
941 			(unsigned int)mtu, (unsigned int)pdu,
942 			(unsigned int)EFX_MAC_PDU_MAX);
943 		goto fail_inval;
944 	}
945 
946 	sfc_adapter_lock(sa);
947 
948 	rc = sfc_check_scatter_on_all_rx_queues(sa, pdu);
949 	if (rc != 0)
950 		goto fail_check_scatter;
951 
952 	if (pdu != sa->port.pdu) {
953 		if (sa->state == SFC_ADAPTER_STARTED) {
954 			sfc_stop(sa);
955 
956 			old_pdu = sa->port.pdu;
957 			sa->port.pdu = pdu;
958 			rc = sfc_start(sa);
959 			if (rc != 0)
960 				goto fail_start;
961 		} else {
962 			sa->port.pdu = pdu;
963 		}
964 	}
965 
966 	/*
967 	 * The driver does not use it, but other PMDs update jumbo frame
968 	 * flag and max_rx_pkt_len when MTU is set.
969 	 */
970 	if (mtu > RTE_ETHER_MAX_LEN) {
971 		struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode;
972 		rxmode->offloads |= DEV_RX_OFFLOAD_JUMBO_FRAME;
973 	}
974 
975 	dev->data->dev_conf.rxmode.max_rx_pkt_len = sa->port.pdu;
976 
977 	sfc_adapter_unlock(sa);
978 
979 	sfc_log_init(sa, "done");
980 	return 0;
981 
982 fail_start:
983 	sa->port.pdu = old_pdu;
984 	if (sfc_start(sa) != 0)
985 		sfc_err(sa, "cannot start with neither new (%u) nor old (%u) "
986 			"PDU max size - port is stopped",
987 			(unsigned int)pdu, (unsigned int)old_pdu);
988 
989 fail_check_scatter:
990 	sfc_adapter_unlock(sa);
991 
992 fail_inval:
993 	sfc_log_init(sa, "failed %d", rc);
994 	SFC_ASSERT(rc > 0);
995 	return -rc;
996 }
997 static int
998 sfc_mac_addr_set(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr)
999 {
1000 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1001 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
1002 	struct sfc_port *port = &sa->port;
1003 	struct rte_ether_addr *old_addr = &dev->data->mac_addrs[0];
1004 	int rc = 0;
1005 
1006 	sfc_adapter_lock(sa);
1007 
1008 	/*
1009 	 * Copy the address to the device private data so that
1010 	 * it could be recalled in the case of adapter restart.
1011 	 */
1012 	rte_ether_addr_copy(mac_addr, &port->default_mac_addr);
1013 
1014 	/*
1015 	 * Neither of the two following checks can return
1016 	 * an error. The new MAC address is preserved in
1017 	 * the device private data and can be activated
1018 	 * on the next port start if the user prevents
1019 	 * isolated mode from being enabled.
1020 	 */
1021 	if (sfc_sa2shared(sa)->isolated) {
1022 		sfc_warn(sa, "isolated mode is active on the port");
1023 		sfc_warn(sa, "will not set MAC address");
1024 		goto unlock;
1025 	}
1026 
1027 	if (sa->state != SFC_ADAPTER_STARTED) {
1028 		sfc_notice(sa, "the port is not started");
1029 		sfc_notice(sa, "the new MAC address will be set on port start");
1030 
1031 		goto unlock;
1032 	}
1033 
1034 	if (encp->enc_allow_set_mac_with_installed_filters) {
1035 		rc = efx_mac_addr_set(sa->nic, mac_addr->addr_bytes);
1036 		if (rc != 0) {
1037 			sfc_err(sa, "cannot set MAC address (rc = %u)", rc);
1038 			goto unlock;
1039 		}
1040 
1041 		/*
1042 		 * Changing the MAC address by means of MCDI request
1043 		 * has no effect on received traffic, therefore
1044 		 * we also need to update unicast filters
1045 		 */
1046 		rc = sfc_set_rx_mode(sa);
1047 		if (rc != 0) {
1048 			sfc_err(sa, "cannot set filter (rc = %u)", rc);
1049 			/* Rollback the old address */
1050 			(void)efx_mac_addr_set(sa->nic, old_addr->addr_bytes);
1051 			(void)sfc_set_rx_mode(sa);
1052 		}
1053 	} else {
1054 		sfc_warn(sa, "cannot set MAC address with filters installed");
1055 		sfc_warn(sa, "adapter will be restarted to pick the new MAC");
1056 		sfc_warn(sa, "(some traffic may be dropped)");
1057 
1058 		/*
1059 		 * Since setting MAC address with filters installed is not
1060 		 * allowed on the adapter, the new MAC address will be set
1061 		 * by means of adapter restart. sfc_start() shall retrieve
1062 		 * the new address from the device private data and set it.
1063 		 */
1064 		sfc_stop(sa);
1065 		rc = sfc_start(sa);
1066 		if (rc != 0)
1067 			sfc_err(sa, "cannot restart adapter (rc = %u)", rc);
1068 	}
1069 
1070 unlock:
1071 	if (rc != 0)
1072 		rte_ether_addr_copy(old_addr, &port->default_mac_addr);
1073 
1074 	sfc_adapter_unlock(sa);
1075 
1076 	SFC_ASSERT(rc >= 0);
1077 	return -rc;
1078 }
1079 
1080 
1081 static int
1082 sfc_set_mc_addr_list(struct rte_eth_dev *dev,
1083 		struct rte_ether_addr *mc_addr_set, uint32_t nb_mc_addr)
1084 {
1085 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1086 	struct sfc_port *port = &sa->port;
1087 	uint8_t *mc_addrs = port->mcast_addrs;
1088 	int rc;
1089 	unsigned int i;
1090 
1091 	if (sfc_sa2shared(sa)->isolated) {
1092 		sfc_err(sa, "isolated mode is active on the port");
1093 		sfc_err(sa, "will not set multicast address list");
1094 		return -ENOTSUP;
1095 	}
1096 
1097 	if (mc_addrs == NULL)
1098 		return -ENOBUFS;
1099 
1100 	if (nb_mc_addr > port->max_mcast_addrs) {
1101 		sfc_err(sa, "too many multicast addresses: %u > %u",
1102 			 nb_mc_addr, port->max_mcast_addrs);
1103 		return -EINVAL;
1104 	}
1105 
1106 	for (i = 0; i < nb_mc_addr; ++i) {
1107 		rte_memcpy(mc_addrs, mc_addr_set[i].addr_bytes,
1108 				 EFX_MAC_ADDR_LEN);
1109 		mc_addrs += EFX_MAC_ADDR_LEN;
1110 	}
1111 
1112 	port->nb_mcast_addrs = nb_mc_addr;
1113 
1114 	if (sa->state != SFC_ADAPTER_STARTED)
1115 		return 0;
1116 
1117 	rc = efx_mac_multicast_list_set(sa->nic, port->mcast_addrs,
1118 					port->nb_mcast_addrs);
1119 	if (rc != 0)
1120 		sfc_err(sa, "cannot set multicast address list (rc = %u)", rc);
1121 
1122 	SFC_ASSERT(rc >= 0);
1123 	return -rc;
1124 }
1125 
1126 /*
1127  * The function is used by the secondary process as well. It must not
1128  * use any process-local pointers from the adapter data.
1129  */
1130 static void
1131 sfc_rx_queue_info_get(struct rte_eth_dev *dev, uint16_t rx_queue_id,
1132 		      struct rte_eth_rxq_info *qinfo)
1133 {
1134 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1135 	struct sfc_rxq_info *rxq_info;
1136 
1137 	SFC_ASSERT(rx_queue_id < sas->rxq_count);
1138 
1139 	rxq_info = &sas->rxq_info[rx_queue_id];
1140 
1141 	qinfo->mp = rxq_info->refill_mb_pool;
1142 	qinfo->conf.rx_free_thresh = rxq_info->refill_threshold;
1143 	qinfo->conf.rx_drop_en = 1;
1144 	qinfo->conf.rx_deferred_start = rxq_info->deferred_start;
1145 	qinfo->conf.offloads = dev->data->dev_conf.rxmode.offloads;
1146 	if (rxq_info->type_flags & EFX_RXQ_FLAG_SCATTER) {
1147 		qinfo->conf.offloads |= DEV_RX_OFFLOAD_SCATTER;
1148 		qinfo->scattered_rx = 1;
1149 	}
1150 	qinfo->nb_desc = rxq_info->entries;
1151 }
1152 
1153 /*
1154  * The function is used by the secondary process as well. It must not
1155  * use any process-local pointers from the adapter data.
1156  */
1157 static void
1158 sfc_tx_queue_info_get(struct rte_eth_dev *dev, uint16_t tx_queue_id,
1159 		      struct rte_eth_txq_info *qinfo)
1160 {
1161 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1162 	struct sfc_txq_info *txq_info;
1163 
1164 	SFC_ASSERT(tx_queue_id < sas->txq_count);
1165 
1166 	txq_info = &sas->txq_info[tx_queue_id];
1167 
1168 	memset(qinfo, 0, sizeof(*qinfo));
1169 
1170 	qinfo->conf.offloads = txq_info->offloads;
1171 	qinfo->conf.tx_free_thresh = txq_info->free_thresh;
1172 	qinfo->conf.tx_deferred_start = txq_info->deferred_start;
1173 	qinfo->nb_desc = txq_info->entries;
1174 }
1175 
1176 /*
1177  * The function is used by the secondary process as well. It must not
1178  * use any process-local pointers from the adapter data.
1179  */
1180 static uint32_t
1181 sfc_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1182 {
1183 	const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
1184 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1185 	struct sfc_rxq_info *rxq_info;
1186 
1187 	SFC_ASSERT(rx_queue_id < sas->rxq_count);
1188 	rxq_info = &sas->rxq_info[rx_queue_id];
1189 
1190 	if ((rxq_info->state & SFC_RXQ_STARTED) == 0)
1191 		return 0;
1192 
1193 	return sap->dp_rx->qdesc_npending(rxq_info->dp);
1194 }
1195 
1196 /*
1197  * The function is used by the secondary process as well. It must not
1198  * use any process-local pointers from the adapter data.
1199  */
1200 static int
1201 sfc_rx_descriptor_done(void *queue, uint16_t offset)
1202 {
1203 	struct sfc_dp_rxq *dp_rxq = queue;
1204 	const struct sfc_dp_rx *dp_rx;
1205 
1206 	dp_rx = sfc_dp_rx_by_dp_rxq(dp_rxq);
1207 
1208 	return offset < dp_rx->qdesc_npending(dp_rxq);
1209 }
1210 
1211 /*
1212  * The function is used by the secondary process as well. It must not
1213  * use any process-local pointers from the adapter data.
1214  */
1215 static int
1216 sfc_rx_descriptor_status(void *queue, uint16_t offset)
1217 {
1218 	struct sfc_dp_rxq *dp_rxq = queue;
1219 	const struct sfc_dp_rx *dp_rx;
1220 
1221 	dp_rx = sfc_dp_rx_by_dp_rxq(dp_rxq);
1222 
1223 	return dp_rx->qdesc_status(dp_rxq, offset);
1224 }
1225 
1226 /*
1227  * The function is used by the secondary process as well. It must not
1228  * use any process-local pointers from the adapter data.
1229  */
1230 static int
1231 sfc_tx_descriptor_status(void *queue, uint16_t offset)
1232 {
1233 	struct sfc_dp_txq *dp_txq = queue;
1234 	const struct sfc_dp_tx *dp_tx;
1235 
1236 	dp_tx = sfc_dp_tx_by_dp_txq(dp_txq);
1237 
1238 	return dp_tx->qdesc_status(dp_txq, offset);
1239 }
1240 
1241 static int
1242 sfc_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1243 {
1244 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1245 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1246 	int rc;
1247 
1248 	sfc_log_init(sa, "RxQ=%u", rx_queue_id);
1249 
1250 	sfc_adapter_lock(sa);
1251 
1252 	rc = EINVAL;
1253 	if (sa->state != SFC_ADAPTER_STARTED)
1254 		goto fail_not_started;
1255 
1256 	if (sas->rxq_info[rx_queue_id].state != SFC_RXQ_INITIALIZED)
1257 		goto fail_not_setup;
1258 
1259 	rc = sfc_rx_qstart(sa, rx_queue_id);
1260 	if (rc != 0)
1261 		goto fail_rx_qstart;
1262 
1263 	sas->rxq_info[rx_queue_id].deferred_started = B_TRUE;
1264 
1265 	sfc_adapter_unlock(sa);
1266 
1267 	return 0;
1268 
1269 fail_rx_qstart:
1270 fail_not_setup:
1271 fail_not_started:
1272 	sfc_adapter_unlock(sa);
1273 	SFC_ASSERT(rc > 0);
1274 	return -rc;
1275 }
1276 
1277 static int
1278 sfc_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1279 {
1280 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1281 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1282 
1283 	sfc_log_init(sa, "RxQ=%u", rx_queue_id);
1284 
1285 	sfc_adapter_lock(sa);
1286 	sfc_rx_qstop(sa, rx_queue_id);
1287 
1288 	sas->rxq_info[rx_queue_id].deferred_started = B_FALSE;
1289 
1290 	sfc_adapter_unlock(sa);
1291 
1292 	return 0;
1293 }
1294 
1295 static int
1296 sfc_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
1297 {
1298 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1299 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1300 	int rc;
1301 
1302 	sfc_log_init(sa, "TxQ = %u", tx_queue_id);
1303 
1304 	sfc_adapter_lock(sa);
1305 
1306 	rc = EINVAL;
1307 	if (sa->state != SFC_ADAPTER_STARTED)
1308 		goto fail_not_started;
1309 
1310 	if (sas->txq_info[tx_queue_id].state != SFC_TXQ_INITIALIZED)
1311 		goto fail_not_setup;
1312 
1313 	rc = sfc_tx_qstart(sa, tx_queue_id);
1314 	if (rc != 0)
1315 		goto fail_tx_qstart;
1316 
1317 	sas->txq_info[tx_queue_id].deferred_started = B_TRUE;
1318 
1319 	sfc_adapter_unlock(sa);
1320 	return 0;
1321 
1322 fail_tx_qstart:
1323 
1324 fail_not_setup:
1325 fail_not_started:
1326 	sfc_adapter_unlock(sa);
1327 	SFC_ASSERT(rc > 0);
1328 	return -rc;
1329 }
1330 
1331 static int
1332 sfc_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
1333 {
1334 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1335 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1336 
1337 	sfc_log_init(sa, "TxQ = %u", tx_queue_id);
1338 
1339 	sfc_adapter_lock(sa);
1340 
1341 	sfc_tx_qstop(sa, tx_queue_id);
1342 
1343 	sas->txq_info[tx_queue_id].deferred_started = B_FALSE;
1344 
1345 	sfc_adapter_unlock(sa);
1346 	return 0;
1347 }
1348 
1349 static efx_tunnel_protocol_t
1350 sfc_tunnel_rte_type_to_efx_udp_proto(enum rte_eth_tunnel_type rte_type)
1351 {
1352 	switch (rte_type) {
1353 	case RTE_TUNNEL_TYPE_VXLAN:
1354 		return EFX_TUNNEL_PROTOCOL_VXLAN;
1355 	case RTE_TUNNEL_TYPE_GENEVE:
1356 		return EFX_TUNNEL_PROTOCOL_GENEVE;
1357 	default:
1358 		return EFX_TUNNEL_NPROTOS;
1359 	}
1360 }
1361 
1362 enum sfc_udp_tunnel_op_e {
1363 	SFC_UDP_TUNNEL_ADD_PORT,
1364 	SFC_UDP_TUNNEL_DEL_PORT,
1365 };
1366 
1367 static int
1368 sfc_dev_udp_tunnel_op(struct rte_eth_dev *dev,
1369 		      struct rte_eth_udp_tunnel *tunnel_udp,
1370 		      enum sfc_udp_tunnel_op_e op)
1371 {
1372 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1373 	efx_tunnel_protocol_t tunnel_proto;
1374 	int rc;
1375 
1376 	sfc_log_init(sa, "%s udp_port=%u prot_type=%u",
1377 		     (op == SFC_UDP_TUNNEL_ADD_PORT) ? "add" :
1378 		     (op == SFC_UDP_TUNNEL_DEL_PORT) ? "delete" : "unknown",
1379 		     tunnel_udp->udp_port, tunnel_udp->prot_type);
1380 
1381 	tunnel_proto =
1382 		sfc_tunnel_rte_type_to_efx_udp_proto(tunnel_udp->prot_type);
1383 	if (tunnel_proto >= EFX_TUNNEL_NPROTOS) {
1384 		rc = ENOTSUP;
1385 		goto fail_bad_proto;
1386 	}
1387 
1388 	sfc_adapter_lock(sa);
1389 
1390 	switch (op) {
1391 	case SFC_UDP_TUNNEL_ADD_PORT:
1392 		rc = efx_tunnel_config_udp_add(sa->nic,
1393 					       tunnel_udp->udp_port,
1394 					       tunnel_proto);
1395 		break;
1396 	case SFC_UDP_TUNNEL_DEL_PORT:
1397 		rc = efx_tunnel_config_udp_remove(sa->nic,
1398 						  tunnel_udp->udp_port,
1399 						  tunnel_proto);
1400 		break;
1401 	default:
1402 		rc = EINVAL;
1403 		goto fail_bad_op;
1404 	}
1405 
1406 	if (rc != 0)
1407 		goto fail_op;
1408 
1409 	if (sa->state == SFC_ADAPTER_STARTED) {
1410 		rc = efx_tunnel_reconfigure(sa->nic);
1411 		if (rc == EAGAIN) {
1412 			/*
1413 			 * Configuration is accepted by FW and MC reboot
1414 			 * is initiated to apply the changes. MC reboot
1415 			 * will be handled in a usual way (MC reboot
1416 			 * event on management event queue and adapter
1417 			 * restart).
1418 			 */
1419 			rc = 0;
1420 		} else if (rc != 0) {
1421 			goto fail_reconfigure;
1422 		}
1423 	}
1424 
1425 	sfc_adapter_unlock(sa);
1426 	return 0;
1427 
1428 fail_reconfigure:
1429 	/* Remove/restore entry since the change makes the trouble */
1430 	switch (op) {
1431 	case SFC_UDP_TUNNEL_ADD_PORT:
1432 		(void)efx_tunnel_config_udp_remove(sa->nic,
1433 						   tunnel_udp->udp_port,
1434 						   tunnel_proto);
1435 		break;
1436 	case SFC_UDP_TUNNEL_DEL_PORT:
1437 		(void)efx_tunnel_config_udp_add(sa->nic,
1438 						tunnel_udp->udp_port,
1439 						tunnel_proto);
1440 		break;
1441 	}
1442 
1443 fail_op:
1444 fail_bad_op:
1445 	sfc_adapter_unlock(sa);
1446 
1447 fail_bad_proto:
1448 	SFC_ASSERT(rc > 0);
1449 	return -rc;
1450 }
1451 
1452 static int
1453 sfc_dev_udp_tunnel_port_add(struct rte_eth_dev *dev,
1454 			    struct rte_eth_udp_tunnel *tunnel_udp)
1455 {
1456 	return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_ADD_PORT);
1457 }
1458 
1459 static int
1460 sfc_dev_udp_tunnel_port_del(struct rte_eth_dev *dev,
1461 			    struct rte_eth_udp_tunnel *tunnel_udp)
1462 {
1463 	return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_DEL_PORT);
1464 }
1465 
1466 /*
1467  * The function is used by the secondary process as well. It must not
1468  * use any process-local pointers from the adapter data.
1469  */
1470 static int
1471 sfc_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
1472 			  struct rte_eth_rss_conf *rss_conf)
1473 {
1474 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1475 	struct sfc_rss *rss = &sas->rss;
1476 
1477 	if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE)
1478 		return -ENOTSUP;
1479 
1480 	/*
1481 	 * Mapping of hash configuration between RTE and EFX is not one-to-one,
1482 	 * hence, conversion is done here to derive a correct set of ETH_RSS
1483 	 * flags which corresponds to the active EFX configuration stored
1484 	 * locally in 'sfc_adapter' and kept up-to-date
1485 	 */
1486 	rss_conf->rss_hf = sfc_rx_hf_efx_to_rte(rss, rss->hash_types);
1487 	rss_conf->rss_key_len = EFX_RSS_KEY_SIZE;
1488 	if (rss_conf->rss_key != NULL)
1489 		rte_memcpy(rss_conf->rss_key, rss->key, EFX_RSS_KEY_SIZE);
1490 
1491 	return 0;
1492 }
1493 
1494 static int
1495 sfc_dev_rss_hash_update(struct rte_eth_dev *dev,
1496 			struct rte_eth_rss_conf *rss_conf)
1497 {
1498 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1499 	struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1500 	unsigned int efx_hash_types;
1501 	int rc = 0;
1502 
1503 	if (sfc_sa2shared(sa)->isolated)
1504 		return -ENOTSUP;
1505 
1506 	if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) {
1507 		sfc_err(sa, "RSS is not available");
1508 		return -ENOTSUP;
1509 	}
1510 
1511 	if (rss->channels == 0) {
1512 		sfc_err(sa, "RSS is not configured");
1513 		return -EINVAL;
1514 	}
1515 
1516 	if ((rss_conf->rss_key != NULL) &&
1517 	    (rss_conf->rss_key_len != sizeof(rss->key))) {
1518 		sfc_err(sa, "RSS key size is wrong (should be %lu)",
1519 			sizeof(rss->key));
1520 		return -EINVAL;
1521 	}
1522 
1523 	sfc_adapter_lock(sa);
1524 
1525 	rc = sfc_rx_hf_rte_to_efx(sa, rss_conf->rss_hf, &efx_hash_types);
1526 	if (rc != 0)
1527 		goto fail_rx_hf_rte_to_efx;
1528 
1529 	rc = efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1530 				   rss->hash_alg, efx_hash_types, B_TRUE);
1531 	if (rc != 0)
1532 		goto fail_scale_mode_set;
1533 
1534 	if (rss_conf->rss_key != NULL) {
1535 		if (sa->state == SFC_ADAPTER_STARTED) {
1536 			rc = efx_rx_scale_key_set(sa->nic,
1537 						  EFX_RSS_CONTEXT_DEFAULT,
1538 						  rss_conf->rss_key,
1539 						  sizeof(rss->key));
1540 			if (rc != 0)
1541 				goto fail_scale_key_set;
1542 		}
1543 
1544 		rte_memcpy(rss->key, rss_conf->rss_key, sizeof(rss->key));
1545 	}
1546 
1547 	rss->hash_types = efx_hash_types;
1548 
1549 	sfc_adapter_unlock(sa);
1550 
1551 	return 0;
1552 
1553 fail_scale_key_set:
1554 	if (efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1555 				  EFX_RX_HASHALG_TOEPLITZ,
1556 				  rss->hash_types, B_TRUE) != 0)
1557 		sfc_err(sa, "failed to restore RSS mode");
1558 
1559 fail_scale_mode_set:
1560 fail_rx_hf_rte_to_efx:
1561 	sfc_adapter_unlock(sa);
1562 	return -rc;
1563 }
1564 
1565 /*
1566  * The function is used by the secondary process as well. It must not
1567  * use any process-local pointers from the adapter data.
1568  */
1569 static int
1570 sfc_dev_rss_reta_query(struct rte_eth_dev *dev,
1571 		       struct rte_eth_rss_reta_entry64 *reta_conf,
1572 		       uint16_t reta_size)
1573 {
1574 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1575 	struct sfc_rss *rss = &sas->rss;
1576 	int entry;
1577 
1578 	if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE || sas->isolated)
1579 		return -ENOTSUP;
1580 
1581 	if (rss->channels == 0)
1582 		return -EINVAL;
1583 
1584 	if (reta_size != EFX_RSS_TBL_SIZE)
1585 		return -EINVAL;
1586 
1587 	for (entry = 0; entry < reta_size; entry++) {
1588 		int grp = entry / RTE_RETA_GROUP_SIZE;
1589 		int grp_idx = entry % RTE_RETA_GROUP_SIZE;
1590 
1591 		if ((reta_conf[grp].mask >> grp_idx) & 1)
1592 			reta_conf[grp].reta[grp_idx] = rss->tbl[entry];
1593 	}
1594 
1595 	return 0;
1596 }
1597 
1598 static int
1599 sfc_dev_rss_reta_update(struct rte_eth_dev *dev,
1600 			struct rte_eth_rss_reta_entry64 *reta_conf,
1601 			uint16_t reta_size)
1602 {
1603 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1604 	struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1605 	unsigned int *rss_tbl_new;
1606 	uint16_t entry;
1607 	int rc = 0;
1608 
1609 
1610 	if (sfc_sa2shared(sa)->isolated)
1611 		return -ENOTSUP;
1612 
1613 	if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) {
1614 		sfc_err(sa, "RSS is not available");
1615 		return -ENOTSUP;
1616 	}
1617 
1618 	if (rss->channels == 0) {
1619 		sfc_err(sa, "RSS is not configured");
1620 		return -EINVAL;
1621 	}
1622 
1623 	if (reta_size != EFX_RSS_TBL_SIZE) {
1624 		sfc_err(sa, "RETA size is wrong (should be %u)",
1625 			EFX_RSS_TBL_SIZE);
1626 		return -EINVAL;
1627 	}
1628 
1629 	rss_tbl_new = rte_zmalloc("rss_tbl_new", sizeof(rss->tbl), 0);
1630 	if (rss_tbl_new == NULL)
1631 		return -ENOMEM;
1632 
1633 	sfc_adapter_lock(sa);
1634 
1635 	rte_memcpy(rss_tbl_new, rss->tbl, sizeof(rss->tbl));
1636 
1637 	for (entry = 0; entry < reta_size; entry++) {
1638 		int grp_idx = entry % RTE_RETA_GROUP_SIZE;
1639 		struct rte_eth_rss_reta_entry64 *grp;
1640 
1641 		grp = &reta_conf[entry / RTE_RETA_GROUP_SIZE];
1642 
1643 		if (grp->mask & (1ull << grp_idx)) {
1644 			if (grp->reta[grp_idx] >= rss->channels) {
1645 				rc = EINVAL;
1646 				goto bad_reta_entry;
1647 			}
1648 			rss_tbl_new[entry] = grp->reta[grp_idx];
1649 		}
1650 	}
1651 
1652 	if (sa->state == SFC_ADAPTER_STARTED) {
1653 		rc = efx_rx_scale_tbl_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1654 					  rss_tbl_new, EFX_RSS_TBL_SIZE);
1655 		if (rc != 0)
1656 			goto fail_scale_tbl_set;
1657 	}
1658 
1659 	rte_memcpy(rss->tbl, rss_tbl_new, sizeof(rss->tbl));
1660 
1661 fail_scale_tbl_set:
1662 bad_reta_entry:
1663 	sfc_adapter_unlock(sa);
1664 
1665 	rte_free(rss_tbl_new);
1666 
1667 	SFC_ASSERT(rc >= 0);
1668 	return -rc;
1669 }
1670 
1671 static int
1672 sfc_dev_filter_ctrl(struct rte_eth_dev *dev, enum rte_filter_type filter_type,
1673 		    enum rte_filter_op filter_op,
1674 		    void *arg)
1675 {
1676 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1677 	int rc = ENOTSUP;
1678 
1679 	sfc_log_init(sa, "entry");
1680 
1681 	switch (filter_type) {
1682 	case RTE_ETH_FILTER_NONE:
1683 		sfc_err(sa, "Global filters configuration not supported");
1684 		break;
1685 	case RTE_ETH_FILTER_MACVLAN:
1686 		sfc_err(sa, "MACVLAN filters not supported");
1687 		break;
1688 	case RTE_ETH_FILTER_ETHERTYPE:
1689 		sfc_err(sa, "EtherType filters not supported");
1690 		break;
1691 	case RTE_ETH_FILTER_FLEXIBLE:
1692 		sfc_err(sa, "Flexible filters not supported");
1693 		break;
1694 	case RTE_ETH_FILTER_SYN:
1695 		sfc_err(sa, "SYN filters not supported");
1696 		break;
1697 	case RTE_ETH_FILTER_NTUPLE:
1698 		sfc_err(sa, "NTUPLE filters not supported");
1699 		break;
1700 	case RTE_ETH_FILTER_TUNNEL:
1701 		sfc_err(sa, "Tunnel filters not supported");
1702 		break;
1703 	case RTE_ETH_FILTER_FDIR:
1704 		sfc_err(sa, "Flow Director filters not supported");
1705 		break;
1706 	case RTE_ETH_FILTER_HASH:
1707 		sfc_err(sa, "Hash filters not supported");
1708 		break;
1709 	case RTE_ETH_FILTER_GENERIC:
1710 		if (filter_op != RTE_ETH_FILTER_GET) {
1711 			rc = EINVAL;
1712 		} else {
1713 			*(const void **)arg = &sfc_flow_ops;
1714 			rc = 0;
1715 		}
1716 		break;
1717 	default:
1718 		sfc_err(sa, "Unknown filter type %u", filter_type);
1719 		break;
1720 	}
1721 
1722 	sfc_log_init(sa, "exit: %d", -rc);
1723 	SFC_ASSERT(rc >= 0);
1724 	return -rc;
1725 }
1726 
1727 static int
1728 sfc_pool_ops_supported(struct rte_eth_dev *dev, const char *pool)
1729 {
1730 	const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
1731 
1732 	/*
1733 	 * If Rx datapath does not provide callback to check mempool,
1734 	 * all pools are supported.
1735 	 */
1736 	if (sap->dp_rx->pool_ops_supported == NULL)
1737 		return 1;
1738 
1739 	return sap->dp_rx->pool_ops_supported(pool);
1740 }
1741 
1742 static int
1743 sfc_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id)
1744 {
1745 	const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
1746 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1747 	struct sfc_rxq_info *rxq_info;
1748 
1749 	SFC_ASSERT(queue_id < sas->rxq_count);
1750 	rxq_info = &sas->rxq_info[queue_id];
1751 
1752 	return sap->dp_rx->intr_enable(rxq_info->dp);
1753 }
1754 
1755 static int
1756 sfc_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id)
1757 {
1758 	const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
1759 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1760 	struct sfc_rxq_info *rxq_info;
1761 
1762 	SFC_ASSERT(queue_id < sas->rxq_count);
1763 	rxq_info = &sas->rxq_info[queue_id];
1764 
1765 	return sap->dp_rx->intr_disable(rxq_info->dp);
1766 }
1767 
1768 static const struct eth_dev_ops sfc_eth_dev_ops = {
1769 	.dev_configure			= sfc_dev_configure,
1770 	.dev_start			= sfc_dev_start,
1771 	.dev_stop			= sfc_dev_stop,
1772 	.dev_set_link_up		= sfc_dev_set_link_up,
1773 	.dev_set_link_down		= sfc_dev_set_link_down,
1774 	.dev_close			= sfc_dev_close,
1775 	.promiscuous_enable		= sfc_dev_promisc_enable,
1776 	.promiscuous_disable		= sfc_dev_promisc_disable,
1777 	.allmulticast_enable		= sfc_dev_allmulti_enable,
1778 	.allmulticast_disable		= sfc_dev_allmulti_disable,
1779 	.link_update			= sfc_dev_link_update,
1780 	.stats_get			= sfc_stats_get,
1781 	.stats_reset			= sfc_stats_reset,
1782 	.xstats_get			= sfc_xstats_get,
1783 	.xstats_reset			= sfc_stats_reset,
1784 	.xstats_get_names		= sfc_xstats_get_names,
1785 	.dev_infos_get			= sfc_dev_infos_get,
1786 	.dev_supported_ptypes_get	= sfc_dev_supported_ptypes_get,
1787 	.mtu_set			= sfc_dev_set_mtu,
1788 	.rx_queue_start			= sfc_rx_queue_start,
1789 	.rx_queue_stop			= sfc_rx_queue_stop,
1790 	.tx_queue_start			= sfc_tx_queue_start,
1791 	.tx_queue_stop			= sfc_tx_queue_stop,
1792 	.rx_queue_setup			= sfc_rx_queue_setup,
1793 	.rx_queue_release		= sfc_rx_queue_release,
1794 	.rx_queue_count			= sfc_rx_queue_count,
1795 	.rx_descriptor_done		= sfc_rx_descriptor_done,
1796 	.rx_descriptor_status		= sfc_rx_descriptor_status,
1797 	.tx_descriptor_status		= sfc_tx_descriptor_status,
1798 	.rx_queue_intr_enable		= sfc_rx_queue_intr_enable,
1799 	.rx_queue_intr_disable		= sfc_rx_queue_intr_disable,
1800 	.tx_queue_setup			= sfc_tx_queue_setup,
1801 	.tx_queue_release		= sfc_tx_queue_release,
1802 	.flow_ctrl_get			= sfc_flow_ctrl_get,
1803 	.flow_ctrl_set			= sfc_flow_ctrl_set,
1804 	.mac_addr_set			= sfc_mac_addr_set,
1805 	.udp_tunnel_port_add		= sfc_dev_udp_tunnel_port_add,
1806 	.udp_tunnel_port_del		= sfc_dev_udp_tunnel_port_del,
1807 	.reta_update			= sfc_dev_rss_reta_update,
1808 	.reta_query			= sfc_dev_rss_reta_query,
1809 	.rss_hash_update		= sfc_dev_rss_hash_update,
1810 	.rss_hash_conf_get		= sfc_dev_rss_hash_conf_get,
1811 	.filter_ctrl			= sfc_dev_filter_ctrl,
1812 	.set_mc_addr_list		= sfc_set_mc_addr_list,
1813 	.rxq_info_get			= sfc_rx_queue_info_get,
1814 	.txq_info_get			= sfc_tx_queue_info_get,
1815 	.fw_version_get			= sfc_fw_version_get,
1816 	.xstats_get_by_id		= sfc_xstats_get_by_id,
1817 	.xstats_get_names_by_id		= sfc_xstats_get_names_by_id,
1818 	.pool_ops_supported		= sfc_pool_ops_supported,
1819 };
1820 
1821 /**
1822  * Duplicate a string in potentially shared memory required for
1823  * multi-process support.
1824  *
1825  * strdup() allocates from process-local heap/memory.
1826  */
1827 static char *
1828 sfc_strdup(const char *str)
1829 {
1830 	size_t size;
1831 	char *copy;
1832 
1833 	if (str == NULL)
1834 		return NULL;
1835 
1836 	size = strlen(str) + 1;
1837 	copy = rte_malloc(__func__, size, 0);
1838 	if (copy != NULL)
1839 		rte_memcpy(copy, str, size);
1840 
1841 	return copy;
1842 }
1843 
1844 static int
1845 sfc_eth_dev_set_ops(struct rte_eth_dev *dev)
1846 {
1847 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1848 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1849 	const struct sfc_dp_rx *dp_rx;
1850 	const struct sfc_dp_tx *dp_tx;
1851 	const efx_nic_cfg_t *encp;
1852 	unsigned int avail_caps = 0;
1853 	const char *rx_name = NULL;
1854 	const char *tx_name = NULL;
1855 	int rc;
1856 
1857 	switch (sa->family) {
1858 	case EFX_FAMILY_HUNTINGTON:
1859 	case EFX_FAMILY_MEDFORD:
1860 	case EFX_FAMILY_MEDFORD2:
1861 		avail_caps |= SFC_DP_HW_FW_CAP_EF10;
1862 		break;
1863 	default:
1864 		break;
1865 	}
1866 
1867 	encp = efx_nic_cfg_get(sa->nic);
1868 	if (encp->enc_rx_es_super_buffer_supported)
1869 		avail_caps |= SFC_DP_HW_FW_CAP_RX_ES_SUPER_BUFFER;
1870 
1871 	rc = sfc_kvargs_process(sa, SFC_KVARG_RX_DATAPATH,
1872 				sfc_kvarg_string_handler, &rx_name);
1873 	if (rc != 0)
1874 		goto fail_kvarg_rx_datapath;
1875 
1876 	if (rx_name != NULL) {
1877 		dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, rx_name);
1878 		if (dp_rx == NULL) {
1879 			sfc_err(sa, "Rx datapath %s not found", rx_name);
1880 			rc = ENOENT;
1881 			goto fail_dp_rx;
1882 		}
1883 		if (!sfc_dp_match_hw_fw_caps(&dp_rx->dp, avail_caps)) {
1884 			sfc_err(sa,
1885 				"Insufficient Hw/FW capabilities to use Rx datapath %s",
1886 				rx_name);
1887 			rc = EINVAL;
1888 			goto fail_dp_rx_caps;
1889 		}
1890 	} else {
1891 		dp_rx = sfc_dp_find_rx_by_caps(&sfc_dp_head, avail_caps);
1892 		if (dp_rx == NULL) {
1893 			sfc_err(sa, "Rx datapath by caps %#x not found",
1894 				avail_caps);
1895 			rc = ENOENT;
1896 			goto fail_dp_rx;
1897 		}
1898 	}
1899 
1900 	sas->dp_rx_name = sfc_strdup(dp_rx->dp.name);
1901 	if (sas->dp_rx_name == NULL) {
1902 		rc = ENOMEM;
1903 		goto fail_dp_rx_name;
1904 	}
1905 
1906 	sfc_notice(sa, "use %s Rx datapath", sas->dp_rx_name);
1907 
1908 	rc = sfc_kvargs_process(sa, SFC_KVARG_TX_DATAPATH,
1909 				sfc_kvarg_string_handler, &tx_name);
1910 	if (rc != 0)
1911 		goto fail_kvarg_tx_datapath;
1912 
1913 	if (tx_name != NULL) {
1914 		dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, tx_name);
1915 		if (dp_tx == NULL) {
1916 			sfc_err(sa, "Tx datapath %s not found", tx_name);
1917 			rc = ENOENT;
1918 			goto fail_dp_tx;
1919 		}
1920 		if (!sfc_dp_match_hw_fw_caps(&dp_tx->dp, avail_caps)) {
1921 			sfc_err(sa,
1922 				"Insufficient Hw/FW capabilities to use Tx datapath %s",
1923 				tx_name);
1924 			rc = EINVAL;
1925 			goto fail_dp_tx_caps;
1926 		}
1927 	} else {
1928 		dp_tx = sfc_dp_find_tx_by_caps(&sfc_dp_head, avail_caps);
1929 		if (dp_tx == NULL) {
1930 			sfc_err(sa, "Tx datapath by caps %#x not found",
1931 				avail_caps);
1932 			rc = ENOENT;
1933 			goto fail_dp_tx;
1934 		}
1935 	}
1936 
1937 	sas->dp_tx_name = sfc_strdup(dp_tx->dp.name);
1938 	if (sas->dp_tx_name == NULL) {
1939 		rc = ENOMEM;
1940 		goto fail_dp_tx_name;
1941 	}
1942 
1943 	sfc_notice(sa, "use %s Tx datapath", sas->dp_tx_name);
1944 
1945 	sa->priv.dp_rx = dp_rx;
1946 	sa->priv.dp_tx = dp_tx;
1947 
1948 	dev->rx_pkt_burst = dp_rx->pkt_burst;
1949 	dev->tx_pkt_prepare = dp_tx->pkt_prepare;
1950 	dev->tx_pkt_burst = dp_tx->pkt_burst;
1951 
1952 	dev->dev_ops = &sfc_eth_dev_ops;
1953 
1954 	return 0;
1955 
1956 fail_dp_tx_name:
1957 fail_dp_tx_caps:
1958 fail_dp_tx:
1959 fail_kvarg_tx_datapath:
1960 	rte_free(sas->dp_rx_name);
1961 	sas->dp_rx_name = NULL;
1962 
1963 fail_dp_rx_name:
1964 fail_dp_rx_caps:
1965 fail_dp_rx:
1966 fail_kvarg_rx_datapath:
1967 	return rc;
1968 }
1969 
1970 static void
1971 sfc_eth_dev_clear_ops(struct rte_eth_dev *dev)
1972 {
1973 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1974 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1975 
1976 	dev->dev_ops = NULL;
1977 	dev->tx_pkt_prepare = NULL;
1978 	dev->rx_pkt_burst = NULL;
1979 	dev->tx_pkt_burst = NULL;
1980 
1981 	rte_free(sas->dp_tx_name);
1982 	sas->dp_tx_name = NULL;
1983 	sa->priv.dp_tx = NULL;
1984 
1985 	rte_free(sas->dp_rx_name);
1986 	sas->dp_rx_name = NULL;
1987 	sa->priv.dp_rx = NULL;
1988 }
1989 
1990 static const struct eth_dev_ops sfc_eth_dev_secondary_ops = {
1991 	.dev_supported_ptypes_get	= sfc_dev_supported_ptypes_get,
1992 	.rx_queue_count			= sfc_rx_queue_count,
1993 	.rx_descriptor_done		= sfc_rx_descriptor_done,
1994 	.rx_descriptor_status		= sfc_rx_descriptor_status,
1995 	.tx_descriptor_status		= sfc_tx_descriptor_status,
1996 	.reta_query			= sfc_dev_rss_reta_query,
1997 	.rss_hash_conf_get		= sfc_dev_rss_hash_conf_get,
1998 	.rxq_info_get			= sfc_rx_queue_info_get,
1999 	.txq_info_get			= sfc_tx_queue_info_get,
2000 };
2001 
2002 static int
2003 sfc_eth_dev_secondary_init(struct rte_eth_dev *dev, uint32_t logtype_main)
2004 {
2005 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
2006 	struct sfc_adapter_priv *sap;
2007 	const struct sfc_dp_rx *dp_rx;
2008 	const struct sfc_dp_tx *dp_tx;
2009 	int rc;
2010 
2011 	/*
2012 	 * Allocate process private data from heap, since it should not
2013 	 * be located in shared memory allocated using rte_malloc() API.
2014 	 */
2015 	sap = calloc(1, sizeof(*sap));
2016 	if (sap == NULL) {
2017 		rc = ENOMEM;
2018 		goto fail_alloc_priv;
2019 	}
2020 
2021 	sap->logtype_main = logtype_main;
2022 
2023 	dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, sas->dp_rx_name);
2024 	if (dp_rx == NULL) {
2025 		SFC_LOG(sas, RTE_LOG_ERR, logtype_main,
2026 			"cannot find %s Rx datapath", sas->dp_rx_name);
2027 		rc = ENOENT;
2028 		goto fail_dp_rx;
2029 	}
2030 	if (~dp_rx->features & SFC_DP_RX_FEAT_MULTI_PROCESS) {
2031 		SFC_LOG(sas, RTE_LOG_ERR, logtype_main,
2032 			"%s Rx datapath does not support multi-process",
2033 			sas->dp_rx_name);
2034 		rc = EINVAL;
2035 		goto fail_dp_rx_multi_process;
2036 	}
2037 
2038 	dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, sas->dp_tx_name);
2039 	if (dp_tx == NULL) {
2040 		SFC_LOG(sas, RTE_LOG_ERR, logtype_main,
2041 			"cannot find %s Tx datapath", sas->dp_tx_name);
2042 		rc = ENOENT;
2043 		goto fail_dp_tx;
2044 	}
2045 	if (~dp_tx->features & SFC_DP_TX_FEAT_MULTI_PROCESS) {
2046 		SFC_LOG(sas, RTE_LOG_ERR, logtype_main,
2047 			"%s Tx datapath does not support multi-process",
2048 			sas->dp_tx_name);
2049 		rc = EINVAL;
2050 		goto fail_dp_tx_multi_process;
2051 	}
2052 
2053 	sap->dp_rx = dp_rx;
2054 	sap->dp_tx = dp_tx;
2055 
2056 	dev->process_private = sap;
2057 	dev->rx_pkt_burst = dp_rx->pkt_burst;
2058 	dev->tx_pkt_prepare = dp_tx->pkt_prepare;
2059 	dev->tx_pkt_burst = dp_tx->pkt_burst;
2060 	dev->dev_ops = &sfc_eth_dev_secondary_ops;
2061 
2062 	return 0;
2063 
2064 fail_dp_tx_multi_process:
2065 fail_dp_tx:
2066 fail_dp_rx_multi_process:
2067 fail_dp_rx:
2068 	free(sap);
2069 
2070 fail_alloc_priv:
2071 	return rc;
2072 }
2073 
2074 static void
2075 sfc_eth_dev_secondary_clear_ops(struct rte_eth_dev *dev)
2076 {
2077 	free(dev->process_private);
2078 	dev->process_private = NULL;
2079 	dev->dev_ops = NULL;
2080 	dev->tx_pkt_prepare = NULL;
2081 	dev->tx_pkt_burst = NULL;
2082 	dev->rx_pkt_burst = NULL;
2083 }
2084 
2085 static void
2086 sfc_register_dp(void)
2087 {
2088 	/* Register once */
2089 	if (TAILQ_EMPTY(&sfc_dp_head)) {
2090 		/* Prefer EF10 datapath */
2091 		sfc_dp_register(&sfc_dp_head, &sfc_ef10_essb_rx.dp);
2092 		sfc_dp_register(&sfc_dp_head, &sfc_ef10_rx.dp);
2093 		sfc_dp_register(&sfc_dp_head, &sfc_efx_rx.dp);
2094 
2095 		sfc_dp_register(&sfc_dp_head, &sfc_ef10_tx.dp);
2096 		sfc_dp_register(&sfc_dp_head, &sfc_efx_tx.dp);
2097 		sfc_dp_register(&sfc_dp_head, &sfc_ef10_simple_tx.dp);
2098 	}
2099 }
2100 
2101 static int
2102 sfc_eth_dev_init(struct rte_eth_dev *dev)
2103 {
2104 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
2105 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2106 	uint32_t logtype_main;
2107 	struct sfc_adapter *sa;
2108 	int rc;
2109 	const efx_nic_cfg_t *encp;
2110 	const struct rte_ether_addr *from;
2111 
2112 	sfc_register_dp();
2113 
2114 	logtype_main = sfc_register_logtype(&pci_dev->addr,
2115 					    SFC_LOGTYPE_MAIN_STR,
2116 					    RTE_LOG_NOTICE);
2117 
2118 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2119 		return -sfc_eth_dev_secondary_init(dev, logtype_main);
2120 
2121 	/* Required for logging */
2122 	sas->pci_addr = pci_dev->addr;
2123 	sas->port_id = dev->data->port_id;
2124 
2125 	/*
2126 	 * Allocate process private data from heap, since it should not
2127 	 * be located in shared memory allocated using rte_malloc() API.
2128 	 */
2129 	sa = calloc(1, sizeof(*sa));
2130 	if (sa == NULL) {
2131 		rc = ENOMEM;
2132 		goto fail_alloc_sa;
2133 	}
2134 
2135 	dev->process_private = sa;
2136 
2137 	/* Required for logging */
2138 	sa->priv.shared = sas;
2139 	sa->priv.logtype_main = logtype_main;
2140 
2141 	sa->eth_dev = dev;
2142 
2143 	/* Copy PCI device info to the dev->data */
2144 	rte_eth_copy_pci_info(dev, pci_dev);
2145 
2146 	rc = sfc_kvargs_parse(sa);
2147 	if (rc != 0)
2148 		goto fail_kvargs_parse;
2149 
2150 	sfc_log_init(sa, "entry");
2151 
2152 	dev->data->dev_flags |= RTE_ETH_DEV_CLOSE_REMOVE;
2153 
2154 	dev->data->mac_addrs = rte_zmalloc("sfc", RTE_ETHER_ADDR_LEN, 0);
2155 	if (dev->data->mac_addrs == NULL) {
2156 		rc = ENOMEM;
2157 		goto fail_mac_addrs;
2158 	}
2159 
2160 	sfc_adapter_lock_init(sa);
2161 	sfc_adapter_lock(sa);
2162 
2163 	sfc_log_init(sa, "probing");
2164 	rc = sfc_probe(sa);
2165 	if (rc != 0)
2166 		goto fail_probe;
2167 
2168 	sfc_log_init(sa, "set device ops");
2169 	rc = sfc_eth_dev_set_ops(dev);
2170 	if (rc != 0)
2171 		goto fail_set_ops;
2172 
2173 	sfc_log_init(sa, "attaching");
2174 	rc = sfc_attach(sa);
2175 	if (rc != 0)
2176 		goto fail_attach;
2177 
2178 	encp = efx_nic_cfg_get(sa->nic);
2179 
2180 	/*
2181 	 * The arguments are really reverse order in comparison to
2182 	 * Linux kernel. Copy from NIC config to Ethernet device data.
2183 	 */
2184 	from = (const struct rte_ether_addr *)(encp->enc_mac_addr);
2185 	rte_ether_addr_copy(from, &dev->data->mac_addrs[0]);
2186 
2187 	sfc_adapter_unlock(sa);
2188 
2189 	sfc_log_init(sa, "done");
2190 	return 0;
2191 
2192 fail_attach:
2193 	sfc_eth_dev_clear_ops(dev);
2194 
2195 fail_set_ops:
2196 	sfc_unprobe(sa);
2197 
2198 fail_probe:
2199 	sfc_adapter_unlock(sa);
2200 	sfc_adapter_lock_fini(sa);
2201 	rte_free(dev->data->mac_addrs);
2202 	dev->data->mac_addrs = NULL;
2203 
2204 fail_mac_addrs:
2205 	sfc_kvargs_cleanup(sa);
2206 
2207 fail_kvargs_parse:
2208 	sfc_log_init(sa, "failed %d", rc);
2209 	dev->process_private = NULL;
2210 	free(sa);
2211 
2212 fail_alloc_sa:
2213 	SFC_ASSERT(rc > 0);
2214 	return -rc;
2215 }
2216 
2217 static int
2218 sfc_eth_dev_uninit(struct rte_eth_dev *dev)
2219 {
2220 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
2221 		sfc_eth_dev_secondary_clear_ops(dev);
2222 		return 0;
2223 	}
2224 
2225 	sfc_dev_close(dev);
2226 
2227 	return 0;
2228 }
2229 
2230 static const struct rte_pci_id pci_id_sfc_efx_map[] = {
2231 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE) },
2232 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE_VF) },
2233 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT) },
2234 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT_VF) },
2235 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD) },
2236 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD_VF) },
2237 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2) },
2238 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2_VF) },
2239 	{ .vendor_id = 0 /* sentinel */ }
2240 };
2241 
2242 static int sfc_eth_dev_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
2243 	struct rte_pci_device *pci_dev)
2244 {
2245 	return rte_eth_dev_pci_generic_probe(pci_dev,
2246 		sizeof(struct sfc_adapter_shared), sfc_eth_dev_init);
2247 }
2248 
2249 static int sfc_eth_dev_pci_remove(struct rte_pci_device *pci_dev)
2250 {
2251 	return rte_eth_dev_pci_generic_remove(pci_dev, sfc_eth_dev_uninit);
2252 }
2253 
2254 static struct rte_pci_driver sfc_efx_pmd = {
2255 	.id_table = pci_id_sfc_efx_map,
2256 	.drv_flags =
2257 		RTE_PCI_DRV_INTR_LSC |
2258 		RTE_PCI_DRV_NEED_MAPPING,
2259 	.probe = sfc_eth_dev_pci_probe,
2260 	.remove = sfc_eth_dev_pci_remove,
2261 };
2262 
2263 RTE_PMD_REGISTER_PCI(net_sfc_efx, sfc_efx_pmd);
2264 RTE_PMD_REGISTER_PCI_TABLE(net_sfc_efx, pci_id_sfc_efx_map);
2265 RTE_PMD_REGISTER_KMOD_DEP(net_sfc_efx, "* igb_uio | uio_pci_generic | vfio-pci");
2266 RTE_PMD_REGISTER_PARAM_STRING(net_sfc_efx,
2267 	SFC_KVARG_RX_DATAPATH "=" SFC_KVARG_VALUES_RX_DATAPATH " "
2268 	SFC_KVARG_TX_DATAPATH "=" SFC_KVARG_VALUES_TX_DATAPATH " "
2269 	SFC_KVARG_PERF_PROFILE "=" SFC_KVARG_VALUES_PERF_PROFILE " "
2270 	SFC_KVARG_FW_VARIANT "=" SFC_KVARG_VALUES_FW_VARIANT " "
2271 	SFC_KVARG_RXD_WAIT_TIMEOUT_NS "=<long> "
2272 	SFC_KVARG_STATS_UPDATE_PERIOD_MS "=<long>");
2273 
2274 RTE_INIT(sfc_driver_register_logtype)
2275 {
2276 	int ret;
2277 
2278 	ret = rte_log_register_type_and_pick_level(SFC_LOGTYPE_PREFIX "driver",
2279 						   RTE_LOG_NOTICE);
2280 	sfc_logtype_driver = (ret < 0) ? RTE_LOGTYPE_PMD : ret;
2281 }
2282