1 /* SPDX-License-Identifier: BSD-3-Clause 2 * 3 * Copyright (c) 2016-2018 Solarflare Communications Inc. 4 * All rights reserved. 5 * 6 * This software was jointly developed between OKTET Labs (under contract 7 * for Solarflare) and Solarflare Communications, Inc. 8 */ 9 10 #include <rte_dev.h> 11 #include <rte_ethdev_driver.h> 12 #include <rte_ethdev_pci.h> 13 #include <rte_pci.h> 14 #include <rte_bus_pci.h> 15 #include <rte_errno.h> 16 #include <rte_string_fns.h> 17 #include <rte_ether.h> 18 19 #include "efx.h" 20 21 #include "sfc.h" 22 #include "sfc_debug.h" 23 #include "sfc_log.h" 24 #include "sfc_kvargs.h" 25 #include "sfc_ev.h" 26 #include "sfc_rx.h" 27 #include "sfc_tx.h" 28 #include "sfc_flow.h" 29 #include "sfc_dp.h" 30 #include "sfc_dp_rx.h" 31 32 uint32_t sfc_logtype_driver; 33 34 static struct sfc_dp_list sfc_dp_head = 35 TAILQ_HEAD_INITIALIZER(sfc_dp_head); 36 37 38 static void sfc_eth_dev_clear_ops(struct rte_eth_dev *dev); 39 40 41 static int 42 sfc_fw_version_get(struct rte_eth_dev *dev, char *fw_version, size_t fw_size) 43 { 44 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 45 efx_nic_fw_info_t enfi; 46 int ret; 47 int rc; 48 49 /* 50 * Return value of the callback is likely supposed to be 51 * equal to or greater than 0, nevertheless, if an error 52 * occurs, it will be desirable to pass it to the caller 53 */ 54 if ((fw_version == NULL) || (fw_size == 0)) 55 return -EINVAL; 56 57 rc = efx_nic_get_fw_version(sa->nic, &enfi); 58 if (rc != 0) 59 return -rc; 60 61 ret = snprintf(fw_version, fw_size, 62 "%" PRIu16 ".%" PRIu16 ".%" PRIu16 ".%" PRIu16, 63 enfi.enfi_mc_fw_version[0], enfi.enfi_mc_fw_version[1], 64 enfi.enfi_mc_fw_version[2], enfi.enfi_mc_fw_version[3]); 65 if (ret < 0) 66 return ret; 67 68 if (enfi.enfi_dpcpu_fw_ids_valid) { 69 size_t dpcpu_fw_ids_offset = MIN(fw_size - 1, (size_t)ret); 70 int ret_extra; 71 72 ret_extra = snprintf(fw_version + dpcpu_fw_ids_offset, 73 fw_size - dpcpu_fw_ids_offset, 74 " rx%" PRIx16 " tx%" PRIx16, 75 enfi.enfi_rx_dpcpu_fw_id, 76 enfi.enfi_tx_dpcpu_fw_id); 77 if (ret_extra < 0) 78 return ret_extra; 79 80 ret += ret_extra; 81 } 82 83 if (fw_size < (size_t)(++ret)) 84 return ret; 85 else 86 return 0; 87 } 88 89 static int 90 sfc_dev_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info) 91 { 92 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev); 93 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 94 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 95 struct sfc_rss *rss = &sas->rss; 96 uint64_t txq_offloads_def = 0; 97 98 sfc_log_init(sa, "entry"); 99 100 dev_info->min_mtu = RTE_ETHER_MIN_MTU; 101 dev_info->max_mtu = EFX_MAC_SDU_MAX; 102 103 dev_info->max_rx_pktlen = EFX_MAC_PDU_MAX; 104 105 /* Autonegotiation may be disabled */ 106 dev_info->speed_capa = ETH_LINK_SPEED_FIXED; 107 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_1000FDX)) 108 dev_info->speed_capa |= ETH_LINK_SPEED_1G; 109 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_10000FDX)) 110 dev_info->speed_capa |= ETH_LINK_SPEED_10G; 111 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_25000FDX)) 112 dev_info->speed_capa |= ETH_LINK_SPEED_25G; 113 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_40000FDX)) 114 dev_info->speed_capa |= ETH_LINK_SPEED_40G; 115 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_50000FDX)) 116 dev_info->speed_capa |= ETH_LINK_SPEED_50G; 117 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_100000FDX)) 118 dev_info->speed_capa |= ETH_LINK_SPEED_100G; 119 120 dev_info->max_rx_queues = sa->rxq_max; 121 dev_info->max_tx_queues = sa->txq_max; 122 123 /* By default packets are dropped if no descriptors are available */ 124 dev_info->default_rxconf.rx_drop_en = 1; 125 126 dev_info->rx_queue_offload_capa = sfc_rx_get_queue_offload_caps(sa); 127 128 /* 129 * rx_offload_capa includes both device and queue offloads since 130 * the latter may be requested on a per device basis which makes 131 * sense when some offloads are needed to be set on all queues. 132 */ 133 dev_info->rx_offload_capa = sfc_rx_get_dev_offload_caps(sa) | 134 dev_info->rx_queue_offload_capa; 135 136 dev_info->tx_queue_offload_capa = sfc_tx_get_queue_offload_caps(sa); 137 138 /* 139 * tx_offload_capa includes both device and queue offloads since 140 * the latter may be requested on a per device basis which makes 141 * sense when some offloads are needed to be set on all queues. 142 */ 143 dev_info->tx_offload_capa = sfc_tx_get_dev_offload_caps(sa) | 144 dev_info->tx_queue_offload_capa; 145 146 if (dev_info->tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE) 147 txq_offloads_def |= DEV_TX_OFFLOAD_MBUF_FAST_FREE; 148 149 dev_info->default_txconf.offloads |= txq_offloads_def; 150 151 if (rss->context_type != EFX_RX_SCALE_UNAVAILABLE) { 152 uint64_t rte_hf = 0; 153 unsigned int i; 154 155 for (i = 0; i < rss->hf_map_nb_entries; ++i) 156 rte_hf |= rss->hf_map[i].rte; 157 158 dev_info->reta_size = EFX_RSS_TBL_SIZE; 159 dev_info->hash_key_size = EFX_RSS_KEY_SIZE; 160 dev_info->flow_type_rss_offloads = rte_hf; 161 } 162 163 /* Initialize to hardware limits */ 164 dev_info->rx_desc_lim.nb_max = sa->rxq_max_entries; 165 dev_info->rx_desc_lim.nb_min = sa->rxq_min_entries; 166 /* The RXQ hardware requires that the descriptor count is a power 167 * of 2, but rx_desc_lim cannot properly describe that constraint. 168 */ 169 dev_info->rx_desc_lim.nb_align = sa->rxq_min_entries; 170 171 /* Initialize to hardware limits */ 172 dev_info->tx_desc_lim.nb_max = sa->txq_max_entries; 173 dev_info->tx_desc_lim.nb_min = sa->txq_min_entries; 174 /* 175 * The TXQ hardware requires that the descriptor count is a power 176 * of 2, but tx_desc_lim cannot properly describe that constraint 177 */ 178 dev_info->tx_desc_lim.nb_align = sa->txq_min_entries; 179 180 if (sap->dp_rx->get_dev_info != NULL) 181 sap->dp_rx->get_dev_info(dev_info); 182 if (sap->dp_tx->get_dev_info != NULL) 183 sap->dp_tx->get_dev_info(dev_info); 184 185 dev_info->dev_capa = RTE_ETH_DEV_CAPA_RUNTIME_RX_QUEUE_SETUP | 186 RTE_ETH_DEV_CAPA_RUNTIME_TX_QUEUE_SETUP; 187 188 return 0; 189 } 190 191 static const uint32_t * 192 sfc_dev_supported_ptypes_get(struct rte_eth_dev *dev) 193 { 194 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev); 195 196 return sap->dp_rx->supported_ptypes_get(sap->shared->tunnel_encaps); 197 } 198 199 static int 200 sfc_dev_configure(struct rte_eth_dev *dev) 201 { 202 struct rte_eth_dev_data *dev_data = dev->data; 203 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 204 int rc; 205 206 sfc_log_init(sa, "entry n_rxq=%u n_txq=%u", 207 dev_data->nb_rx_queues, dev_data->nb_tx_queues); 208 209 sfc_adapter_lock(sa); 210 switch (sa->state) { 211 case SFC_ADAPTER_CONFIGURED: 212 /* FALLTHROUGH */ 213 case SFC_ADAPTER_INITIALIZED: 214 rc = sfc_configure(sa); 215 break; 216 default: 217 sfc_err(sa, "unexpected adapter state %u to configure", 218 sa->state); 219 rc = EINVAL; 220 break; 221 } 222 sfc_adapter_unlock(sa); 223 224 sfc_log_init(sa, "done %d", rc); 225 SFC_ASSERT(rc >= 0); 226 return -rc; 227 } 228 229 static int 230 sfc_dev_start(struct rte_eth_dev *dev) 231 { 232 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 233 int rc; 234 235 sfc_log_init(sa, "entry"); 236 237 sfc_adapter_lock(sa); 238 rc = sfc_start(sa); 239 sfc_adapter_unlock(sa); 240 241 sfc_log_init(sa, "done %d", rc); 242 SFC_ASSERT(rc >= 0); 243 return -rc; 244 } 245 246 static int 247 sfc_dev_link_update(struct rte_eth_dev *dev, int wait_to_complete) 248 { 249 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 250 struct rte_eth_link current_link; 251 int ret; 252 253 sfc_log_init(sa, "entry"); 254 255 if (sa->state != SFC_ADAPTER_STARTED) { 256 sfc_port_link_mode_to_info(EFX_LINK_UNKNOWN, ¤t_link); 257 } else if (wait_to_complete) { 258 efx_link_mode_t link_mode; 259 260 if (efx_port_poll(sa->nic, &link_mode) != 0) 261 link_mode = EFX_LINK_UNKNOWN; 262 sfc_port_link_mode_to_info(link_mode, ¤t_link); 263 264 } else { 265 sfc_ev_mgmt_qpoll(sa); 266 rte_eth_linkstatus_get(dev, ¤t_link); 267 } 268 269 ret = rte_eth_linkstatus_set(dev, ¤t_link); 270 if (ret == 0) 271 sfc_notice(sa, "Link status is %s", 272 current_link.link_status ? "UP" : "DOWN"); 273 274 return ret; 275 } 276 277 static void 278 sfc_dev_stop(struct rte_eth_dev *dev) 279 { 280 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 281 282 sfc_log_init(sa, "entry"); 283 284 sfc_adapter_lock(sa); 285 sfc_stop(sa); 286 sfc_adapter_unlock(sa); 287 288 sfc_log_init(sa, "done"); 289 } 290 291 static int 292 sfc_dev_set_link_up(struct rte_eth_dev *dev) 293 { 294 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 295 int rc; 296 297 sfc_log_init(sa, "entry"); 298 299 sfc_adapter_lock(sa); 300 rc = sfc_start(sa); 301 sfc_adapter_unlock(sa); 302 303 SFC_ASSERT(rc >= 0); 304 return -rc; 305 } 306 307 static int 308 sfc_dev_set_link_down(struct rte_eth_dev *dev) 309 { 310 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 311 312 sfc_log_init(sa, "entry"); 313 314 sfc_adapter_lock(sa); 315 sfc_stop(sa); 316 sfc_adapter_unlock(sa); 317 318 return 0; 319 } 320 321 static void 322 sfc_dev_close(struct rte_eth_dev *dev) 323 { 324 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 325 326 sfc_log_init(sa, "entry"); 327 328 sfc_adapter_lock(sa); 329 switch (sa->state) { 330 case SFC_ADAPTER_STARTED: 331 sfc_stop(sa); 332 SFC_ASSERT(sa->state == SFC_ADAPTER_CONFIGURED); 333 /* FALLTHROUGH */ 334 case SFC_ADAPTER_CONFIGURED: 335 sfc_close(sa); 336 SFC_ASSERT(sa->state == SFC_ADAPTER_INITIALIZED); 337 /* FALLTHROUGH */ 338 case SFC_ADAPTER_INITIALIZED: 339 break; 340 default: 341 sfc_err(sa, "unexpected adapter state %u on close", sa->state); 342 break; 343 } 344 345 /* 346 * Cleanup all resources in accordance with RTE_ETH_DEV_CLOSE_REMOVE. 347 * Rollback primary process sfc_eth_dev_init() below. 348 */ 349 350 sfc_eth_dev_clear_ops(dev); 351 352 sfc_detach(sa); 353 sfc_unprobe(sa); 354 355 sfc_kvargs_cleanup(sa); 356 357 sfc_adapter_unlock(sa); 358 sfc_adapter_lock_fini(sa); 359 360 sfc_log_init(sa, "done"); 361 362 /* Required for logging, so cleanup last */ 363 sa->eth_dev = NULL; 364 365 dev->process_private = NULL; 366 free(sa); 367 } 368 369 static void 370 sfc_dev_filter_set(struct rte_eth_dev *dev, enum sfc_dev_filter_mode mode, 371 boolean_t enabled) 372 { 373 struct sfc_port *port; 374 boolean_t *toggle; 375 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 376 boolean_t allmulti = (mode == SFC_DEV_FILTER_MODE_ALLMULTI); 377 const char *desc = (allmulti) ? "all-multi" : "promiscuous"; 378 379 sfc_adapter_lock(sa); 380 381 port = &sa->port; 382 toggle = (allmulti) ? (&port->allmulti) : (&port->promisc); 383 384 if (*toggle != enabled) { 385 *toggle = enabled; 386 387 if (sfc_sa2shared(sa)->isolated) { 388 sfc_warn(sa, "isolated mode is active on the port"); 389 sfc_warn(sa, "the change is to be applied on the next " 390 "start provided that isolated mode is " 391 "disabled prior the next start"); 392 } else if ((sa->state == SFC_ADAPTER_STARTED) && 393 (sfc_set_rx_mode(sa) != 0)) { 394 *toggle = !(enabled); 395 sfc_warn(sa, "Failed to %s %s mode", 396 ((enabled) ? "enable" : "disable"), desc); 397 } 398 } 399 400 sfc_adapter_unlock(sa); 401 } 402 403 static void 404 sfc_dev_promisc_enable(struct rte_eth_dev *dev) 405 { 406 sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_TRUE); 407 } 408 409 static void 410 sfc_dev_promisc_disable(struct rte_eth_dev *dev) 411 { 412 sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_FALSE); 413 } 414 415 static void 416 sfc_dev_allmulti_enable(struct rte_eth_dev *dev) 417 { 418 sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_TRUE); 419 } 420 421 static void 422 sfc_dev_allmulti_disable(struct rte_eth_dev *dev) 423 { 424 sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_FALSE); 425 } 426 427 static int 428 sfc_rx_queue_setup(struct rte_eth_dev *dev, uint16_t rx_queue_id, 429 uint16_t nb_rx_desc, unsigned int socket_id, 430 const struct rte_eth_rxconf *rx_conf, 431 struct rte_mempool *mb_pool) 432 { 433 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 434 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 435 int rc; 436 437 sfc_log_init(sa, "RxQ=%u nb_rx_desc=%u socket_id=%u", 438 rx_queue_id, nb_rx_desc, socket_id); 439 440 sfc_adapter_lock(sa); 441 442 rc = sfc_rx_qinit(sa, rx_queue_id, nb_rx_desc, socket_id, 443 rx_conf, mb_pool); 444 if (rc != 0) 445 goto fail_rx_qinit; 446 447 dev->data->rx_queues[rx_queue_id] = sas->rxq_info[rx_queue_id].dp; 448 449 sfc_adapter_unlock(sa); 450 451 return 0; 452 453 fail_rx_qinit: 454 sfc_adapter_unlock(sa); 455 SFC_ASSERT(rc > 0); 456 return -rc; 457 } 458 459 static void 460 sfc_rx_queue_release(void *queue) 461 { 462 struct sfc_dp_rxq *dp_rxq = queue; 463 struct sfc_rxq *rxq; 464 struct sfc_adapter *sa; 465 unsigned int sw_index; 466 467 if (dp_rxq == NULL) 468 return; 469 470 rxq = sfc_rxq_by_dp_rxq(dp_rxq); 471 sa = rxq->evq->sa; 472 sfc_adapter_lock(sa); 473 474 sw_index = dp_rxq->dpq.queue_id; 475 476 sfc_log_init(sa, "RxQ=%u", sw_index); 477 478 sfc_rx_qfini(sa, sw_index); 479 480 sfc_adapter_unlock(sa); 481 } 482 483 static int 484 sfc_tx_queue_setup(struct rte_eth_dev *dev, uint16_t tx_queue_id, 485 uint16_t nb_tx_desc, unsigned int socket_id, 486 const struct rte_eth_txconf *tx_conf) 487 { 488 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 489 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 490 int rc; 491 492 sfc_log_init(sa, "TxQ = %u, nb_tx_desc = %u, socket_id = %u", 493 tx_queue_id, nb_tx_desc, socket_id); 494 495 sfc_adapter_lock(sa); 496 497 rc = sfc_tx_qinit(sa, tx_queue_id, nb_tx_desc, socket_id, tx_conf); 498 if (rc != 0) 499 goto fail_tx_qinit; 500 501 dev->data->tx_queues[tx_queue_id] = sas->txq_info[tx_queue_id].dp; 502 503 sfc_adapter_unlock(sa); 504 return 0; 505 506 fail_tx_qinit: 507 sfc_adapter_unlock(sa); 508 SFC_ASSERT(rc > 0); 509 return -rc; 510 } 511 512 static void 513 sfc_tx_queue_release(void *queue) 514 { 515 struct sfc_dp_txq *dp_txq = queue; 516 struct sfc_txq *txq; 517 unsigned int sw_index; 518 struct sfc_adapter *sa; 519 520 if (dp_txq == NULL) 521 return; 522 523 txq = sfc_txq_by_dp_txq(dp_txq); 524 sw_index = dp_txq->dpq.queue_id; 525 526 SFC_ASSERT(txq->evq != NULL); 527 sa = txq->evq->sa; 528 529 sfc_log_init(sa, "TxQ = %u", sw_index); 530 531 sfc_adapter_lock(sa); 532 533 sfc_tx_qfini(sa, sw_index); 534 535 sfc_adapter_unlock(sa); 536 } 537 538 /* 539 * Some statistics are computed as A - B where A and B each increase 540 * monotonically with some hardware counter(s) and the counters are read 541 * asynchronously. 542 * 543 * If packet X is counted in A, but not counted in B yet, computed value is 544 * greater than real. 545 * 546 * If packet X is not counted in A at the moment of reading the counter, 547 * but counted in B at the moment of reading the counter, computed value 548 * is less than real. 549 * 550 * However, counter which grows backward is worse evil than slightly wrong 551 * value. So, let's try to guarantee that it never happens except may be 552 * the case when the MAC stats are zeroed as a result of a NIC reset. 553 */ 554 static void 555 sfc_update_diff_stat(uint64_t *stat, uint64_t newval) 556 { 557 if ((int64_t)(newval - *stat) > 0 || newval == 0) 558 *stat = newval; 559 } 560 561 static int 562 sfc_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats) 563 { 564 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 565 struct sfc_port *port = &sa->port; 566 uint64_t *mac_stats; 567 int ret; 568 569 rte_spinlock_lock(&port->mac_stats_lock); 570 571 ret = sfc_port_update_mac_stats(sa); 572 if (ret != 0) 573 goto unlock; 574 575 mac_stats = port->mac_stats_buf; 576 577 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, 578 EFX_MAC_VADAPTER_RX_UNICAST_PACKETS)) { 579 stats->ipackets = 580 mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_PACKETS] + 581 mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_PACKETS] + 582 mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_PACKETS]; 583 stats->opackets = 584 mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_PACKETS] + 585 mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_PACKETS] + 586 mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_PACKETS]; 587 stats->ibytes = 588 mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_BYTES] + 589 mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_BYTES] + 590 mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_BYTES]; 591 stats->obytes = 592 mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_BYTES] + 593 mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_BYTES] + 594 mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_BYTES]; 595 stats->imissed = mac_stats[EFX_MAC_VADAPTER_RX_BAD_PACKETS]; 596 stats->oerrors = mac_stats[EFX_MAC_VADAPTER_TX_BAD_PACKETS]; 597 } else { 598 stats->opackets = mac_stats[EFX_MAC_TX_PKTS]; 599 stats->ibytes = mac_stats[EFX_MAC_RX_OCTETS]; 600 stats->obytes = mac_stats[EFX_MAC_TX_OCTETS]; 601 /* 602 * Take into account stats which are whenever supported 603 * on EF10. If some stat is not supported by current 604 * firmware variant or HW revision, it is guaranteed 605 * to be zero in mac_stats. 606 */ 607 stats->imissed = 608 mac_stats[EFX_MAC_RX_NODESC_DROP_CNT] + 609 mac_stats[EFX_MAC_PM_TRUNC_BB_OVERFLOW] + 610 mac_stats[EFX_MAC_PM_DISCARD_BB_OVERFLOW] + 611 mac_stats[EFX_MAC_PM_TRUNC_VFIFO_FULL] + 612 mac_stats[EFX_MAC_PM_DISCARD_VFIFO_FULL] + 613 mac_stats[EFX_MAC_PM_TRUNC_QBB] + 614 mac_stats[EFX_MAC_PM_DISCARD_QBB] + 615 mac_stats[EFX_MAC_PM_DISCARD_MAPPING] + 616 mac_stats[EFX_MAC_RXDP_Q_DISABLED_PKTS] + 617 mac_stats[EFX_MAC_RXDP_DI_DROPPED_PKTS]; 618 stats->ierrors = 619 mac_stats[EFX_MAC_RX_FCS_ERRORS] + 620 mac_stats[EFX_MAC_RX_ALIGN_ERRORS] + 621 mac_stats[EFX_MAC_RX_JABBER_PKTS]; 622 /* no oerrors counters supported on EF10 */ 623 624 /* Exclude missed, errors and pauses from Rx packets */ 625 sfc_update_diff_stat(&port->ipackets, 626 mac_stats[EFX_MAC_RX_PKTS] - 627 mac_stats[EFX_MAC_RX_PAUSE_PKTS] - 628 stats->imissed - stats->ierrors); 629 stats->ipackets = port->ipackets; 630 } 631 632 unlock: 633 rte_spinlock_unlock(&port->mac_stats_lock); 634 SFC_ASSERT(ret >= 0); 635 return -ret; 636 } 637 638 static void 639 sfc_stats_reset(struct rte_eth_dev *dev) 640 { 641 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 642 struct sfc_port *port = &sa->port; 643 int rc; 644 645 if (sa->state != SFC_ADAPTER_STARTED) { 646 /* 647 * The operation cannot be done if port is not started; it 648 * will be scheduled to be done during the next port start 649 */ 650 port->mac_stats_reset_pending = B_TRUE; 651 return; 652 } 653 654 rc = sfc_port_reset_mac_stats(sa); 655 if (rc != 0) 656 sfc_err(sa, "failed to reset statistics (rc = %d)", rc); 657 } 658 659 static int 660 sfc_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats, 661 unsigned int xstats_count) 662 { 663 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 664 struct sfc_port *port = &sa->port; 665 uint64_t *mac_stats; 666 int rc; 667 unsigned int i; 668 int nstats = 0; 669 670 rte_spinlock_lock(&port->mac_stats_lock); 671 672 rc = sfc_port_update_mac_stats(sa); 673 if (rc != 0) { 674 SFC_ASSERT(rc > 0); 675 nstats = -rc; 676 goto unlock; 677 } 678 679 mac_stats = port->mac_stats_buf; 680 681 for (i = 0; i < EFX_MAC_NSTATS; ++i) { 682 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) { 683 if (xstats != NULL && nstats < (int)xstats_count) { 684 xstats[nstats].id = nstats; 685 xstats[nstats].value = mac_stats[i]; 686 } 687 nstats++; 688 } 689 } 690 691 unlock: 692 rte_spinlock_unlock(&port->mac_stats_lock); 693 694 return nstats; 695 } 696 697 static int 698 sfc_xstats_get_names(struct rte_eth_dev *dev, 699 struct rte_eth_xstat_name *xstats_names, 700 unsigned int xstats_count) 701 { 702 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 703 struct sfc_port *port = &sa->port; 704 unsigned int i; 705 unsigned int nstats = 0; 706 707 for (i = 0; i < EFX_MAC_NSTATS; ++i) { 708 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) { 709 if (xstats_names != NULL && nstats < xstats_count) 710 strlcpy(xstats_names[nstats].name, 711 efx_mac_stat_name(sa->nic, i), 712 sizeof(xstats_names[0].name)); 713 nstats++; 714 } 715 } 716 717 return nstats; 718 } 719 720 static int 721 sfc_xstats_get_by_id(struct rte_eth_dev *dev, const uint64_t *ids, 722 uint64_t *values, unsigned int n) 723 { 724 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 725 struct sfc_port *port = &sa->port; 726 uint64_t *mac_stats; 727 unsigned int nb_supported = 0; 728 unsigned int nb_written = 0; 729 unsigned int i; 730 int ret; 731 int rc; 732 733 if (unlikely(values == NULL) || 734 unlikely((ids == NULL) && (n < port->mac_stats_nb_supported))) 735 return port->mac_stats_nb_supported; 736 737 rte_spinlock_lock(&port->mac_stats_lock); 738 739 rc = sfc_port_update_mac_stats(sa); 740 if (rc != 0) { 741 SFC_ASSERT(rc > 0); 742 ret = -rc; 743 goto unlock; 744 } 745 746 mac_stats = port->mac_stats_buf; 747 748 for (i = 0; (i < EFX_MAC_NSTATS) && (nb_written < n); ++i) { 749 if (!EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) 750 continue; 751 752 if ((ids == NULL) || (ids[nb_written] == nb_supported)) 753 values[nb_written++] = mac_stats[i]; 754 755 ++nb_supported; 756 } 757 758 ret = nb_written; 759 760 unlock: 761 rte_spinlock_unlock(&port->mac_stats_lock); 762 763 return ret; 764 } 765 766 static int 767 sfc_xstats_get_names_by_id(struct rte_eth_dev *dev, 768 struct rte_eth_xstat_name *xstats_names, 769 const uint64_t *ids, unsigned int size) 770 { 771 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 772 struct sfc_port *port = &sa->port; 773 unsigned int nb_supported = 0; 774 unsigned int nb_written = 0; 775 unsigned int i; 776 777 if (unlikely(xstats_names == NULL) || 778 unlikely((ids == NULL) && (size < port->mac_stats_nb_supported))) 779 return port->mac_stats_nb_supported; 780 781 for (i = 0; (i < EFX_MAC_NSTATS) && (nb_written < size); ++i) { 782 if (!EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) 783 continue; 784 785 if ((ids == NULL) || (ids[nb_written] == nb_supported)) { 786 char *name = xstats_names[nb_written++].name; 787 788 strlcpy(name, efx_mac_stat_name(sa->nic, i), 789 sizeof(xstats_names[0].name)); 790 } 791 792 ++nb_supported; 793 } 794 795 return nb_written; 796 } 797 798 static int 799 sfc_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf) 800 { 801 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 802 unsigned int wanted_fc, link_fc; 803 804 memset(fc_conf, 0, sizeof(*fc_conf)); 805 806 sfc_adapter_lock(sa); 807 808 if (sa->state == SFC_ADAPTER_STARTED) 809 efx_mac_fcntl_get(sa->nic, &wanted_fc, &link_fc); 810 else 811 link_fc = sa->port.flow_ctrl; 812 813 switch (link_fc) { 814 case 0: 815 fc_conf->mode = RTE_FC_NONE; 816 break; 817 case EFX_FCNTL_RESPOND: 818 fc_conf->mode = RTE_FC_RX_PAUSE; 819 break; 820 case EFX_FCNTL_GENERATE: 821 fc_conf->mode = RTE_FC_TX_PAUSE; 822 break; 823 case (EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE): 824 fc_conf->mode = RTE_FC_FULL; 825 break; 826 default: 827 sfc_err(sa, "%s: unexpected flow control value %#x", 828 __func__, link_fc); 829 } 830 831 fc_conf->autoneg = sa->port.flow_ctrl_autoneg; 832 833 sfc_adapter_unlock(sa); 834 835 return 0; 836 } 837 838 static int 839 sfc_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf) 840 { 841 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 842 struct sfc_port *port = &sa->port; 843 unsigned int fcntl; 844 int rc; 845 846 if (fc_conf->high_water != 0 || fc_conf->low_water != 0 || 847 fc_conf->pause_time != 0 || fc_conf->send_xon != 0 || 848 fc_conf->mac_ctrl_frame_fwd != 0) { 849 sfc_err(sa, "unsupported flow control settings specified"); 850 rc = EINVAL; 851 goto fail_inval; 852 } 853 854 switch (fc_conf->mode) { 855 case RTE_FC_NONE: 856 fcntl = 0; 857 break; 858 case RTE_FC_RX_PAUSE: 859 fcntl = EFX_FCNTL_RESPOND; 860 break; 861 case RTE_FC_TX_PAUSE: 862 fcntl = EFX_FCNTL_GENERATE; 863 break; 864 case RTE_FC_FULL: 865 fcntl = EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE; 866 break; 867 default: 868 rc = EINVAL; 869 goto fail_inval; 870 } 871 872 sfc_adapter_lock(sa); 873 874 if (sa->state == SFC_ADAPTER_STARTED) { 875 rc = efx_mac_fcntl_set(sa->nic, fcntl, fc_conf->autoneg); 876 if (rc != 0) 877 goto fail_mac_fcntl_set; 878 } 879 880 port->flow_ctrl = fcntl; 881 port->flow_ctrl_autoneg = fc_conf->autoneg; 882 883 sfc_adapter_unlock(sa); 884 885 return 0; 886 887 fail_mac_fcntl_set: 888 sfc_adapter_unlock(sa); 889 fail_inval: 890 SFC_ASSERT(rc > 0); 891 return -rc; 892 } 893 894 static int 895 sfc_check_scatter_on_all_rx_queues(struct sfc_adapter *sa, size_t pdu) 896 { 897 struct sfc_adapter_shared * const sas = sfc_sa2shared(sa); 898 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic); 899 boolean_t scatter_enabled; 900 const char *error; 901 unsigned int i; 902 903 for (i = 0; i < sas->rxq_count; i++) { 904 if ((sas->rxq_info[i].state & SFC_RXQ_INITIALIZED) == 0) 905 continue; 906 907 scatter_enabled = (sas->rxq_info[i].type_flags & 908 EFX_RXQ_FLAG_SCATTER); 909 910 if (!sfc_rx_check_scatter(pdu, sa->rxq_ctrl[i].buf_size, 911 encp->enc_rx_prefix_size, 912 scatter_enabled, &error)) { 913 sfc_err(sa, "MTU check for RxQ %u failed: %s", i, 914 error); 915 return EINVAL; 916 } 917 } 918 919 return 0; 920 } 921 922 static int 923 sfc_dev_set_mtu(struct rte_eth_dev *dev, uint16_t mtu) 924 { 925 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 926 size_t pdu = EFX_MAC_PDU(mtu); 927 size_t old_pdu; 928 int rc; 929 930 sfc_log_init(sa, "mtu=%u", mtu); 931 932 rc = EINVAL; 933 if (pdu < EFX_MAC_PDU_MIN) { 934 sfc_err(sa, "too small MTU %u (PDU size %u less than min %u)", 935 (unsigned int)mtu, (unsigned int)pdu, 936 EFX_MAC_PDU_MIN); 937 goto fail_inval; 938 } 939 if (pdu > EFX_MAC_PDU_MAX) { 940 sfc_err(sa, "too big MTU %u (PDU size %u greater than max %u)", 941 (unsigned int)mtu, (unsigned int)pdu, 942 (unsigned int)EFX_MAC_PDU_MAX); 943 goto fail_inval; 944 } 945 946 sfc_adapter_lock(sa); 947 948 rc = sfc_check_scatter_on_all_rx_queues(sa, pdu); 949 if (rc != 0) 950 goto fail_check_scatter; 951 952 if (pdu != sa->port.pdu) { 953 if (sa->state == SFC_ADAPTER_STARTED) { 954 sfc_stop(sa); 955 956 old_pdu = sa->port.pdu; 957 sa->port.pdu = pdu; 958 rc = sfc_start(sa); 959 if (rc != 0) 960 goto fail_start; 961 } else { 962 sa->port.pdu = pdu; 963 } 964 } 965 966 /* 967 * The driver does not use it, but other PMDs update jumbo frame 968 * flag and max_rx_pkt_len when MTU is set. 969 */ 970 if (mtu > RTE_ETHER_MAX_LEN) { 971 struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode; 972 rxmode->offloads |= DEV_RX_OFFLOAD_JUMBO_FRAME; 973 } 974 975 dev->data->dev_conf.rxmode.max_rx_pkt_len = sa->port.pdu; 976 977 sfc_adapter_unlock(sa); 978 979 sfc_log_init(sa, "done"); 980 return 0; 981 982 fail_start: 983 sa->port.pdu = old_pdu; 984 if (sfc_start(sa) != 0) 985 sfc_err(sa, "cannot start with neither new (%u) nor old (%u) " 986 "PDU max size - port is stopped", 987 (unsigned int)pdu, (unsigned int)old_pdu); 988 989 fail_check_scatter: 990 sfc_adapter_unlock(sa); 991 992 fail_inval: 993 sfc_log_init(sa, "failed %d", rc); 994 SFC_ASSERT(rc > 0); 995 return -rc; 996 } 997 static int 998 sfc_mac_addr_set(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr) 999 { 1000 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1001 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic); 1002 struct sfc_port *port = &sa->port; 1003 struct rte_ether_addr *old_addr = &dev->data->mac_addrs[0]; 1004 int rc = 0; 1005 1006 sfc_adapter_lock(sa); 1007 1008 /* 1009 * Copy the address to the device private data so that 1010 * it could be recalled in the case of adapter restart. 1011 */ 1012 rte_ether_addr_copy(mac_addr, &port->default_mac_addr); 1013 1014 /* 1015 * Neither of the two following checks can return 1016 * an error. The new MAC address is preserved in 1017 * the device private data and can be activated 1018 * on the next port start if the user prevents 1019 * isolated mode from being enabled. 1020 */ 1021 if (sfc_sa2shared(sa)->isolated) { 1022 sfc_warn(sa, "isolated mode is active on the port"); 1023 sfc_warn(sa, "will not set MAC address"); 1024 goto unlock; 1025 } 1026 1027 if (sa->state != SFC_ADAPTER_STARTED) { 1028 sfc_notice(sa, "the port is not started"); 1029 sfc_notice(sa, "the new MAC address will be set on port start"); 1030 1031 goto unlock; 1032 } 1033 1034 if (encp->enc_allow_set_mac_with_installed_filters) { 1035 rc = efx_mac_addr_set(sa->nic, mac_addr->addr_bytes); 1036 if (rc != 0) { 1037 sfc_err(sa, "cannot set MAC address (rc = %u)", rc); 1038 goto unlock; 1039 } 1040 1041 /* 1042 * Changing the MAC address by means of MCDI request 1043 * has no effect on received traffic, therefore 1044 * we also need to update unicast filters 1045 */ 1046 rc = sfc_set_rx_mode(sa); 1047 if (rc != 0) { 1048 sfc_err(sa, "cannot set filter (rc = %u)", rc); 1049 /* Rollback the old address */ 1050 (void)efx_mac_addr_set(sa->nic, old_addr->addr_bytes); 1051 (void)sfc_set_rx_mode(sa); 1052 } 1053 } else { 1054 sfc_warn(sa, "cannot set MAC address with filters installed"); 1055 sfc_warn(sa, "adapter will be restarted to pick the new MAC"); 1056 sfc_warn(sa, "(some traffic may be dropped)"); 1057 1058 /* 1059 * Since setting MAC address with filters installed is not 1060 * allowed on the adapter, the new MAC address will be set 1061 * by means of adapter restart. sfc_start() shall retrieve 1062 * the new address from the device private data and set it. 1063 */ 1064 sfc_stop(sa); 1065 rc = sfc_start(sa); 1066 if (rc != 0) 1067 sfc_err(sa, "cannot restart adapter (rc = %u)", rc); 1068 } 1069 1070 unlock: 1071 if (rc != 0) 1072 rte_ether_addr_copy(old_addr, &port->default_mac_addr); 1073 1074 sfc_adapter_unlock(sa); 1075 1076 SFC_ASSERT(rc >= 0); 1077 return -rc; 1078 } 1079 1080 1081 static int 1082 sfc_set_mc_addr_list(struct rte_eth_dev *dev, 1083 struct rte_ether_addr *mc_addr_set, uint32_t nb_mc_addr) 1084 { 1085 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1086 struct sfc_port *port = &sa->port; 1087 uint8_t *mc_addrs = port->mcast_addrs; 1088 int rc; 1089 unsigned int i; 1090 1091 if (sfc_sa2shared(sa)->isolated) { 1092 sfc_err(sa, "isolated mode is active on the port"); 1093 sfc_err(sa, "will not set multicast address list"); 1094 return -ENOTSUP; 1095 } 1096 1097 if (mc_addrs == NULL) 1098 return -ENOBUFS; 1099 1100 if (nb_mc_addr > port->max_mcast_addrs) { 1101 sfc_err(sa, "too many multicast addresses: %u > %u", 1102 nb_mc_addr, port->max_mcast_addrs); 1103 return -EINVAL; 1104 } 1105 1106 for (i = 0; i < nb_mc_addr; ++i) { 1107 rte_memcpy(mc_addrs, mc_addr_set[i].addr_bytes, 1108 EFX_MAC_ADDR_LEN); 1109 mc_addrs += EFX_MAC_ADDR_LEN; 1110 } 1111 1112 port->nb_mcast_addrs = nb_mc_addr; 1113 1114 if (sa->state != SFC_ADAPTER_STARTED) 1115 return 0; 1116 1117 rc = efx_mac_multicast_list_set(sa->nic, port->mcast_addrs, 1118 port->nb_mcast_addrs); 1119 if (rc != 0) 1120 sfc_err(sa, "cannot set multicast address list (rc = %u)", rc); 1121 1122 SFC_ASSERT(rc >= 0); 1123 return -rc; 1124 } 1125 1126 /* 1127 * The function is used by the secondary process as well. It must not 1128 * use any process-local pointers from the adapter data. 1129 */ 1130 static void 1131 sfc_rx_queue_info_get(struct rte_eth_dev *dev, uint16_t rx_queue_id, 1132 struct rte_eth_rxq_info *qinfo) 1133 { 1134 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1135 struct sfc_rxq_info *rxq_info; 1136 1137 SFC_ASSERT(rx_queue_id < sas->rxq_count); 1138 1139 rxq_info = &sas->rxq_info[rx_queue_id]; 1140 1141 qinfo->mp = rxq_info->refill_mb_pool; 1142 qinfo->conf.rx_free_thresh = rxq_info->refill_threshold; 1143 qinfo->conf.rx_drop_en = 1; 1144 qinfo->conf.rx_deferred_start = rxq_info->deferred_start; 1145 qinfo->conf.offloads = dev->data->dev_conf.rxmode.offloads; 1146 if (rxq_info->type_flags & EFX_RXQ_FLAG_SCATTER) { 1147 qinfo->conf.offloads |= DEV_RX_OFFLOAD_SCATTER; 1148 qinfo->scattered_rx = 1; 1149 } 1150 qinfo->nb_desc = rxq_info->entries; 1151 } 1152 1153 /* 1154 * The function is used by the secondary process as well. It must not 1155 * use any process-local pointers from the adapter data. 1156 */ 1157 static void 1158 sfc_tx_queue_info_get(struct rte_eth_dev *dev, uint16_t tx_queue_id, 1159 struct rte_eth_txq_info *qinfo) 1160 { 1161 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1162 struct sfc_txq_info *txq_info; 1163 1164 SFC_ASSERT(tx_queue_id < sas->txq_count); 1165 1166 txq_info = &sas->txq_info[tx_queue_id]; 1167 1168 memset(qinfo, 0, sizeof(*qinfo)); 1169 1170 qinfo->conf.offloads = txq_info->offloads; 1171 qinfo->conf.tx_free_thresh = txq_info->free_thresh; 1172 qinfo->conf.tx_deferred_start = txq_info->deferred_start; 1173 qinfo->nb_desc = txq_info->entries; 1174 } 1175 1176 /* 1177 * The function is used by the secondary process as well. It must not 1178 * use any process-local pointers from the adapter data. 1179 */ 1180 static uint32_t 1181 sfc_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id) 1182 { 1183 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev); 1184 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1185 struct sfc_rxq_info *rxq_info; 1186 1187 SFC_ASSERT(rx_queue_id < sas->rxq_count); 1188 rxq_info = &sas->rxq_info[rx_queue_id]; 1189 1190 if ((rxq_info->state & SFC_RXQ_STARTED) == 0) 1191 return 0; 1192 1193 return sap->dp_rx->qdesc_npending(rxq_info->dp); 1194 } 1195 1196 /* 1197 * The function is used by the secondary process as well. It must not 1198 * use any process-local pointers from the adapter data. 1199 */ 1200 static int 1201 sfc_rx_descriptor_done(void *queue, uint16_t offset) 1202 { 1203 struct sfc_dp_rxq *dp_rxq = queue; 1204 const struct sfc_dp_rx *dp_rx; 1205 1206 dp_rx = sfc_dp_rx_by_dp_rxq(dp_rxq); 1207 1208 return offset < dp_rx->qdesc_npending(dp_rxq); 1209 } 1210 1211 /* 1212 * The function is used by the secondary process as well. It must not 1213 * use any process-local pointers from the adapter data. 1214 */ 1215 static int 1216 sfc_rx_descriptor_status(void *queue, uint16_t offset) 1217 { 1218 struct sfc_dp_rxq *dp_rxq = queue; 1219 const struct sfc_dp_rx *dp_rx; 1220 1221 dp_rx = sfc_dp_rx_by_dp_rxq(dp_rxq); 1222 1223 return dp_rx->qdesc_status(dp_rxq, offset); 1224 } 1225 1226 /* 1227 * The function is used by the secondary process as well. It must not 1228 * use any process-local pointers from the adapter data. 1229 */ 1230 static int 1231 sfc_tx_descriptor_status(void *queue, uint16_t offset) 1232 { 1233 struct sfc_dp_txq *dp_txq = queue; 1234 const struct sfc_dp_tx *dp_tx; 1235 1236 dp_tx = sfc_dp_tx_by_dp_txq(dp_txq); 1237 1238 return dp_tx->qdesc_status(dp_txq, offset); 1239 } 1240 1241 static int 1242 sfc_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id) 1243 { 1244 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1245 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1246 int rc; 1247 1248 sfc_log_init(sa, "RxQ=%u", rx_queue_id); 1249 1250 sfc_adapter_lock(sa); 1251 1252 rc = EINVAL; 1253 if (sa->state != SFC_ADAPTER_STARTED) 1254 goto fail_not_started; 1255 1256 if (sas->rxq_info[rx_queue_id].state != SFC_RXQ_INITIALIZED) 1257 goto fail_not_setup; 1258 1259 rc = sfc_rx_qstart(sa, rx_queue_id); 1260 if (rc != 0) 1261 goto fail_rx_qstart; 1262 1263 sas->rxq_info[rx_queue_id].deferred_started = B_TRUE; 1264 1265 sfc_adapter_unlock(sa); 1266 1267 return 0; 1268 1269 fail_rx_qstart: 1270 fail_not_setup: 1271 fail_not_started: 1272 sfc_adapter_unlock(sa); 1273 SFC_ASSERT(rc > 0); 1274 return -rc; 1275 } 1276 1277 static int 1278 sfc_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id) 1279 { 1280 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1281 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1282 1283 sfc_log_init(sa, "RxQ=%u", rx_queue_id); 1284 1285 sfc_adapter_lock(sa); 1286 sfc_rx_qstop(sa, rx_queue_id); 1287 1288 sas->rxq_info[rx_queue_id].deferred_started = B_FALSE; 1289 1290 sfc_adapter_unlock(sa); 1291 1292 return 0; 1293 } 1294 1295 static int 1296 sfc_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id) 1297 { 1298 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1299 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1300 int rc; 1301 1302 sfc_log_init(sa, "TxQ = %u", tx_queue_id); 1303 1304 sfc_adapter_lock(sa); 1305 1306 rc = EINVAL; 1307 if (sa->state != SFC_ADAPTER_STARTED) 1308 goto fail_not_started; 1309 1310 if (sas->txq_info[tx_queue_id].state != SFC_TXQ_INITIALIZED) 1311 goto fail_not_setup; 1312 1313 rc = sfc_tx_qstart(sa, tx_queue_id); 1314 if (rc != 0) 1315 goto fail_tx_qstart; 1316 1317 sas->txq_info[tx_queue_id].deferred_started = B_TRUE; 1318 1319 sfc_adapter_unlock(sa); 1320 return 0; 1321 1322 fail_tx_qstart: 1323 1324 fail_not_setup: 1325 fail_not_started: 1326 sfc_adapter_unlock(sa); 1327 SFC_ASSERT(rc > 0); 1328 return -rc; 1329 } 1330 1331 static int 1332 sfc_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id) 1333 { 1334 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1335 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1336 1337 sfc_log_init(sa, "TxQ = %u", tx_queue_id); 1338 1339 sfc_adapter_lock(sa); 1340 1341 sfc_tx_qstop(sa, tx_queue_id); 1342 1343 sas->txq_info[tx_queue_id].deferred_started = B_FALSE; 1344 1345 sfc_adapter_unlock(sa); 1346 return 0; 1347 } 1348 1349 static efx_tunnel_protocol_t 1350 sfc_tunnel_rte_type_to_efx_udp_proto(enum rte_eth_tunnel_type rte_type) 1351 { 1352 switch (rte_type) { 1353 case RTE_TUNNEL_TYPE_VXLAN: 1354 return EFX_TUNNEL_PROTOCOL_VXLAN; 1355 case RTE_TUNNEL_TYPE_GENEVE: 1356 return EFX_TUNNEL_PROTOCOL_GENEVE; 1357 default: 1358 return EFX_TUNNEL_NPROTOS; 1359 } 1360 } 1361 1362 enum sfc_udp_tunnel_op_e { 1363 SFC_UDP_TUNNEL_ADD_PORT, 1364 SFC_UDP_TUNNEL_DEL_PORT, 1365 }; 1366 1367 static int 1368 sfc_dev_udp_tunnel_op(struct rte_eth_dev *dev, 1369 struct rte_eth_udp_tunnel *tunnel_udp, 1370 enum sfc_udp_tunnel_op_e op) 1371 { 1372 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1373 efx_tunnel_protocol_t tunnel_proto; 1374 int rc; 1375 1376 sfc_log_init(sa, "%s udp_port=%u prot_type=%u", 1377 (op == SFC_UDP_TUNNEL_ADD_PORT) ? "add" : 1378 (op == SFC_UDP_TUNNEL_DEL_PORT) ? "delete" : "unknown", 1379 tunnel_udp->udp_port, tunnel_udp->prot_type); 1380 1381 tunnel_proto = 1382 sfc_tunnel_rte_type_to_efx_udp_proto(tunnel_udp->prot_type); 1383 if (tunnel_proto >= EFX_TUNNEL_NPROTOS) { 1384 rc = ENOTSUP; 1385 goto fail_bad_proto; 1386 } 1387 1388 sfc_adapter_lock(sa); 1389 1390 switch (op) { 1391 case SFC_UDP_TUNNEL_ADD_PORT: 1392 rc = efx_tunnel_config_udp_add(sa->nic, 1393 tunnel_udp->udp_port, 1394 tunnel_proto); 1395 break; 1396 case SFC_UDP_TUNNEL_DEL_PORT: 1397 rc = efx_tunnel_config_udp_remove(sa->nic, 1398 tunnel_udp->udp_port, 1399 tunnel_proto); 1400 break; 1401 default: 1402 rc = EINVAL; 1403 goto fail_bad_op; 1404 } 1405 1406 if (rc != 0) 1407 goto fail_op; 1408 1409 if (sa->state == SFC_ADAPTER_STARTED) { 1410 rc = efx_tunnel_reconfigure(sa->nic); 1411 if (rc == EAGAIN) { 1412 /* 1413 * Configuration is accepted by FW and MC reboot 1414 * is initiated to apply the changes. MC reboot 1415 * will be handled in a usual way (MC reboot 1416 * event on management event queue and adapter 1417 * restart). 1418 */ 1419 rc = 0; 1420 } else if (rc != 0) { 1421 goto fail_reconfigure; 1422 } 1423 } 1424 1425 sfc_adapter_unlock(sa); 1426 return 0; 1427 1428 fail_reconfigure: 1429 /* Remove/restore entry since the change makes the trouble */ 1430 switch (op) { 1431 case SFC_UDP_TUNNEL_ADD_PORT: 1432 (void)efx_tunnel_config_udp_remove(sa->nic, 1433 tunnel_udp->udp_port, 1434 tunnel_proto); 1435 break; 1436 case SFC_UDP_TUNNEL_DEL_PORT: 1437 (void)efx_tunnel_config_udp_add(sa->nic, 1438 tunnel_udp->udp_port, 1439 tunnel_proto); 1440 break; 1441 } 1442 1443 fail_op: 1444 fail_bad_op: 1445 sfc_adapter_unlock(sa); 1446 1447 fail_bad_proto: 1448 SFC_ASSERT(rc > 0); 1449 return -rc; 1450 } 1451 1452 static int 1453 sfc_dev_udp_tunnel_port_add(struct rte_eth_dev *dev, 1454 struct rte_eth_udp_tunnel *tunnel_udp) 1455 { 1456 return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_ADD_PORT); 1457 } 1458 1459 static int 1460 sfc_dev_udp_tunnel_port_del(struct rte_eth_dev *dev, 1461 struct rte_eth_udp_tunnel *tunnel_udp) 1462 { 1463 return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_DEL_PORT); 1464 } 1465 1466 /* 1467 * The function is used by the secondary process as well. It must not 1468 * use any process-local pointers from the adapter data. 1469 */ 1470 static int 1471 sfc_dev_rss_hash_conf_get(struct rte_eth_dev *dev, 1472 struct rte_eth_rss_conf *rss_conf) 1473 { 1474 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1475 struct sfc_rss *rss = &sas->rss; 1476 1477 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) 1478 return -ENOTSUP; 1479 1480 /* 1481 * Mapping of hash configuration between RTE and EFX is not one-to-one, 1482 * hence, conversion is done here to derive a correct set of ETH_RSS 1483 * flags which corresponds to the active EFX configuration stored 1484 * locally in 'sfc_adapter' and kept up-to-date 1485 */ 1486 rss_conf->rss_hf = sfc_rx_hf_efx_to_rte(rss, rss->hash_types); 1487 rss_conf->rss_key_len = EFX_RSS_KEY_SIZE; 1488 if (rss_conf->rss_key != NULL) 1489 rte_memcpy(rss_conf->rss_key, rss->key, EFX_RSS_KEY_SIZE); 1490 1491 return 0; 1492 } 1493 1494 static int 1495 sfc_dev_rss_hash_update(struct rte_eth_dev *dev, 1496 struct rte_eth_rss_conf *rss_conf) 1497 { 1498 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1499 struct sfc_rss *rss = &sfc_sa2shared(sa)->rss; 1500 unsigned int efx_hash_types; 1501 int rc = 0; 1502 1503 if (sfc_sa2shared(sa)->isolated) 1504 return -ENOTSUP; 1505 1506 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) { 1507 sfc_err(sa, "RSS is not available"); 1508 return -ENOTSUP; 1509 } 1510 1511 if (rss->channels == 0) { 1512 sfc_err(sa, "RSS is not configured"); 1513 return -EINVAL; 1514 } 1515 1516 if ((rss_conf->rss_key != NULL) && 1517 (rss_conf->rss_key_len != sizeof(rss->key))) { 1518 sfc_err(sa, "RSS key size is wrong (should be %lu)", 1519 sizeof(rss->key)); 1520 return -EINVAL; 1521 } 1522 1523 sfc_adapter_lock(sa); 1524 1525 rc = sfc_rx_hf_rte_to_efx(sa, rss_conf->rss_hf, &efx_hash_types); 1526 if (rc != 0) 1527 goto fail_rx_hf_rte_to_efx; 1528 1529 rc = efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT, 1530 rss->hash_alg, efx_hash_types, B_TRUE); 1531 if (rc != 0) 1532 goto fail_scale_mode_set; 1533 1534 if (rss_conf->rss_key != NULL) { 1535 if (sa->state == SFC_ADAPTER_STARTED) { 1536 rc = efx_rx_scale_key_set(sa->nic, 1537 EFX_RSS_CONTEXT_DEFAULT, 1538 rss_conf->rss_key, 1539 sizeof(rss->key)); 1540 if (rc != 0) 1541 goto fail_scale_key_set; 1542 } 1543 1544 rte_memcpy(rss->key, rss_conf->rss_key, sizeof(rss->key)); 1545 } 1546 1547 rss->hash_types = efx_hash_types; 1548 1549 sfc_adapter_unlock(sa); 1550 1551 return 0; 1552 1553 fail_scale_key_set: 1554 if (efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT, 1555 EFX_RX_HASHALG_TOEPLITZ, 1556 rss->hash_types, B_TRUE) != 0) 1557 sfc_err(sa, "failed to restore RSS mode"); 1558 1559 fail_scale_mode_set: 1560 fail_rx_hf_rte_to_efx: 1561 sfc_adapter_unlock(sa); 1562 return -rc; 1563 } 1564 1565 /* 1566 * The function is used by the secondary process as well. It must not 1567 * use any process-local pointers from the adapter data. 1568 */ 1569 static int 1570 sfc_dev_rss_reta_query(struct rte_eth_dev *dev, 1571 struct rte_eth_rss_reta_entry64 *reta_conf, 1572 uint16_t reta_size) 1573 { 1574 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1575 struct sfc_rss *rss = &sas->rss; 1576 int entry; 1577 1578 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE || sas->isolated) 1579 return -ENOTSUP; 1580 1581 if (rss->channels == 0) 1582 return -EINVAL; 1583 1584 if (reta_size != EFX_RSS_TBL_SIZE) 1585 return -EINVAL; 1586 1587 for (entry = 0; entry < reta_size; entry++) { 1588 int grp = entry / RTE_RETA_GROUP_SIZE; 1589 int grp_idx = entry % RTE_RETA_GROUP_SIZE; 1590 1591 if ((reta_conf[grp].mask >> grp_idx) & 1) 1592 reta_conf[grp].reta[grp_idx] = rss->tbl[entry]; 1593 } 1594 1595 return 0; 1596 } 1597 1598 static int 1599 sfc_dev_rss_reta_update(struct rte_eth_dev *dev, 1600 struct rte_eth_rss_reta_entry64 *reta_conf, 1601 uint16_t reta_size) 1602 { 1603 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1604 struct sfc_rss *rss = &sfc_sa2shared(sa)->rss; 1605 unsigned int *rss_tbl_new; 1606 uint16_t entry; 1607 int rc = 0; 1608 1609 1610 if (sfc_sa2shared(sa)->isolated) 1611 return -ENOTSUP; 1612 1613 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) { 1614 sfc_err(sa, "RSS is not available"); 1615 return -ENOTSUP; 1616 } 1617 1618 if (rss->channels == 0) { 1619 sfc_err(sa, "RSS is not configured"); 1620 return -EINVAL; 1621 } 1622 1623 if (reta_size != EFX_RSS_TBL_SIZE) { 1624 sfc_err(sa, "RETA size is wrong (should be %u)", 1625 EFX_RSS_TBL_SIZE); 1626 return -EINVAL; 1627 } 1628 1629 rss_tbl_new = rte_zmalloc("rss_tbl_new", sizeof(rss->tbl), 0); 1630 if (rss_tbl_new == NULL) 1631 return -ENOMEM; 1632 1633 sfc_adapter_lock(sa); 1634 1635 rte_memcpy(rss_tbl_new, rss->tbl, sizeof(rss->tbl)); 1636 1637 for (entry = 0; entry < reta_size; entry++) { 1638 int grp_idx = entry % RTE_RETA_GROUP_SIZE; 1639 struct rte_eth_rss_reta_entry64 *grp; 1640 1641 grp = &reta_conf[entry / RTE_RETA_GROUP_SIZE]; 1642 1643 if (grp->mask & (1ull << grp_idx)) { 1644 if (grp->reta[grp_idx] >= rss->channels) { 1645 rc = EINVAL; 1646 goto bad_reta_entry; 1647 } 1648 rss_tbl_new[entry] = grp->reta[grp_idx]; 1649 } 1650 } 1651 1652 if (sa->state == SFC_ADAPTER_STARTED) { 1653 rc = efx_rx_scale_tbl_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT, 1654 rss_tbl_new, EFX_RSS_TBL_SIZE); 1655 if (rc != 0) 1656 goto fail_scale_tbl_set; 1657 } 1658 1659 rte_memcpy(rss->tbl, rss_tbl_new, sizeof(rss->tbl)); 1660 1661 fail_scale_tbl_set: 1662 bad_reta_entry: 1663 sfc_adapter_unlock(sa); 1664 1665 rte_free(rss_tbl_new); 1666 1667 SFC_ASSERT(rc >= 0); 1668 return -rc; 1669 } 1670 1671 static int 1672 sfc_dev_filter_ctrl(struct rte_eth_dev *dev, enum rte_filter_type filter_type, 1673 enum rte_filter_op filter_op, 1674 void *arg) 1675 { 1676 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1677 int rc = ENOTSUP; 1678 1679 sfc_log_init(sa, "entry"); 1680 1681 switch (filter_type) { 1682 case RTE_ETH_FILTER_NONE: 1683 sfc_err(sa, "Global filters configuration not supported"); 1684 break; 1685 case RTE_ETH_FILTER_MACVLAN: 1686 sfc_err(sa, "MACVLAN filters not supported"); 1687 break; 1688 case RTE_ETH_FILTER_ETHERTYPE: 1689 sfc_err(sa, "EtherType filters not supported"); 1690 break; 1691 case RTE_ETH_FILTER_FLEXIBLE: 1692 sfc_err(sa, "Flexible filters not supported"); 1693 break; 1694 case RTE_ETH_FILTER_SYN: 1695 sfc_err(sa, "SYN filters not supported"); 1696 break; 1697 case RTE_ETH_FILTER_NTUPLE: 1698 sfc_err(sa, "NTUPLE filters not supported"); 1699 break; 1700 case RTE_ETH_FILTER_TUNNEL: 1701 sfc_err(sa, "Tunnel filters not supported"); 1702 break; 1703 case RTE_ETH_FILTER_FDIR: 1704 sfc_err(sa, "Flow Director filters not supported"); 1705 break; 1706 case RTE_ETH_FILTER_HASH: 1707 sfc_err(sa, "Hash filters not supported"); 1708 break; 1709 case RTE_ETH_FILTER_GENERIC: 1710 if (filter_op != RTE_ETH_FILTER_GET) { 1711 rc = EINVAL; 1712 } else { 1713 *(const void **)arg = &sfc_flow_ops; 1714 rc = 0; 1715 } 1716 break; 1717 default: 1718 sfc_err(sa, "Unknown filter type %u", filter_type); 1719 break; 1720 } 1721 1722 sfc_log_init(sa, "exit: %d", -rc); 1723 SFC_ASSERT(rc >= 0); 1724 return -rc; 1725 } 1726 1727 static int 1728 sfc_pool_ops_supported(struct rte_eth_dev *dev, const char *pool) 1729 { 1730 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev); 1731 1732 /* 1733 * If Rx datapath does not provide callback to check mempool, 1734 * all pools are supported. 1735 */ 1736 if (sap->dp_rx->pool_ops_supported == NULL) 1737 return 1; 1738 1739 return sap->dp_rx->pool_ops_supported(pool); 1740 } 1741 1742 static int 1743 sfc_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id) 1744 { 1745 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev); 1746 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1747 struct sfc_rxq_info *rxq_info; 1748 1749 SFC_ASSERT(queue_id < sas->rxq_count); 1750 rxq_info = &sas->rxq_info[queue_id]; 1751 1752 return sap->dp_rx->intr_enable(rxq_info->dp); 1753 } 1754 1755 static int 1756 sfc_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id) 1757 { 1758 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev); 1759 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1760 struct sfc_rxq_info *rxq_info; 1761 1762 SFC_ASSERT(queue_id < sas->rxq_count); 1763 rxq_info = &sas->rxq_info[queue_id]; 1764 1765 return sap->dp_rx->intr_disable(rxq_info->dp); 1766 } 1767 1768 static const struct eth_dev_ops sfc_eth_dev_ops = { 1769 .dev_configure = sfc_dev_configure, 1770 .dev_start = sfc_dev_start, 1771 .dev_stop = sfc_dev_stop, 1772 .dev_set_link_up = sfc_dev_set_link_up, 1773 .dev_set_link_down = sfc_dev_set_link_down, 1774 .dev_close = sfc_dev_close, 1775 .promiscuous_enable = sfc_dev_promisc_enable, 1776 .promiscuous_disable = sfc_dev_promisc_disable, 1777 .allmulticast_enable = sfc_dev_allmulti_enable, 1778 .allmulticast_disable = sfc_dev_allmulti_disable, 1779 .link_update = sfc_dev_link_update, 1780 .stats_get = sfc_stats_get, 1781 .stats_reset = sfc_stats_reset, 1782 .xstats_get = sfc_xstats_get, 1783 .xstats_reset = sfc_stats_reset, 1784 .xstats_get_names = sfc_xstats_get_names, 1785 .dev_infos_get = sfc_dev_infos_get, 1786 .dev_supported_ptypes_get = sfc_dev_supported_ptypes_get, 1787 .mtu_set = sfc_dev_set_mtu, 1788 .rx_queue_start = sfc_rx_queue_start, 1789 .rx_queue_stop = sfc_rx_queue_stop, 1790 .tx_queue_start = sfc_tx_queue_start, 1791 .tx_queue_stop = sfc_tx_queue_stop, 1792 .rx_queue_setup = sfc_rx_queue_setup, 1793 .rx_queue_release = sfc_rx_queue_release, 1794 .rx_queue_count = sfc_rx_queue_count, 1795 .rx_descriptor_done = sfc_rx_descriptor_done, 1796 .rx_descriptor_status = sfc_rx_descriptor_status, 1797 .tx_descriptor_status = sfc_tx_descriptor_status, 1798 .rx_queue_intr_enable = sfc_rx_queue_intr_enable, 1799 .rx_queue_intr_disable = sfc_rx_queue_intr_disable, 1800 .tx_queue_setup = sfc_tx_queue_setup, 1801 .tx_queue_release = sfc_tx_queue_release, 1802 .flow_ctrl_get = sfc_flow_ctrl_get, 1803 .flow_ctrl_set = sfc_flow_ctrl_set, 1804 .mac_addr_set = sfc_mac_addr_set, 1805 .udp_tunnel_port_add = sfc_dev_udp_tunnel_port_add, 1806 .udp_tunnel_port_del = sfc_dev_udp_tunnel_port_del, 1807 .reta_update = sfc_dev_rss_reta_update, 1808 .reta_query = sfc_dev_rss_reta_query, 1809 .rss_hash_update = sfc_dev_rss_hash_update, 1810 .rss_hash_conf_get = sfc_dev_rss_hash_conf_get, 1811 .filter_ctrl = sfc_dev_filter_ctrl, 1812 .set_mc_addr_list = sfc_set_mc_addr_list, 1813 .rxq_info_get = sfc_rx_queue_info_get, 1814 .txq_info_get = sfc_tx_queue_info_get, 1815 .fw_version_get = sfc_fw_version_get, 1816 .xstats_get_by_id = sfc_xstats_get_by_id, 1817 .xstats_get_names_by_id = sfc_xstats_get_names_by_id, 1818 .pool_ops_supported = sfc_pool_ops_supported, 1819 }; 1820 1821 /** 1822 * Duplicate a string in potentially shared memory required for 1823 * multi-process support. 1824 * 1825 * strdup() allocates from process-local heap/memory. 1826 */ 1827 static char * 1828 sfc_strdup(const char *str) 1829 { 1830 size_t size; 1831 char *copy; 1832 1833 if (str == NULL) 1834 return NULL; 1835 1836 size = strlen(str) + 1; 1837 copy = rte_malloc(__func__, size, 0); 1838 if (copy != NULL) 1839 rte_memcpy(copy, str, size); 1840 1841 return copy; 1842 } 1843 1844 static int 1845 sfc_eth_dev_set_ops(struct rte_eth_dev *dev) 1846 { 1847 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1848 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1849 const struct sfc_dp_rx *dp_rx; 1850 const struct sfc_dp_tx *dp_tx; 1851 const efx_nic_cfg_t *encp; 1852 unsigned int avail_caps = 0; 1853 const char *rx_name = NULL; 1854 const char *tx_name = NULL; 1855 int rc; 1856 1857 switch (sa->family) { 1858 case EFX_FAMILY_HUNTINGTON: 1859 case EFX_FAMILY_MEDFORD: 1860 case EFX_FAMILY_MEDFORD2: 1861 avail_caps |= SFC_DP_HW_FW_CAP_EF10; 1862 break; 1863 default: 1864 break; 1865 } 1866 1867 encp = efx_nic_cfg_get(sa->nic); 1868 if (encp->enc_rx_es_super_buffer_supported) 1869 avail_caps |= SFC_DP_HW_FW_CAP_RX_ES_SUPER_BUFFER; 1870 1871 rc = sfc_kvargs_process(sa, SFC_KVARG_RX_DATAPATH, 1872 sfc_kvarg_string_handler, &rx_name); 1873 if (rc != 0) 1874 goto fail_kvarg_rx_datapath; 1875 1876 if (rx_name != NULL) { 1877 dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, rx_name); 1878 if (dp_rx == NULL) { 1879 sfc_err(sa, "Rx datapath %s not found", rx_name); 1880 rc = ENOENT; 1881 goto fail_dp_rx; 1882 } 1883 if (!sfc_dp_match_hw_fw_caps(&dp_rx->dp, avail_caps)) { 1884 sfc_err(sa, 1885 "Insufficient Hw/FW capabilities to use Rx datapath %s", 1886 rx_name); 1887 rc = EINVAL; 1888 goto fail_dp_rx_caps; 1889 } 1890 } else { 1891 dp_rx = sfc_dp_find_rx_by_caps(&sfc_dp_head, avail_caps); 1892 if (dp_rx == NULL) { 1893 sfc_err(sa, "Rx datapath by caps %#x not found", 1894 avail_caps); 1895 rc = ENOENT; 1896 goto fail_dp_rx; 1897 } 1898 } 1899 1900 sas->dp_rx_name = sfc_strdup(dp_rx->dp.name); 1901 if (sas->dp_rx_name == NULL) { 1902 rc = ENOMEM; 1903 goto fail_dp_rx_name; 1904 } 1905 1906 sfc_notice(sa, "use %s Rx datapath", sas->dp_rx_name); 1907 1908 rc = sfc_kvargs_process(sa, SFC_KVARG_TX_DATAPATH, 1909 sfc_kvarg_string_handler, &tx_name); 1910 if (rc != 0) 1911 goto fail_kvarg_tx_datapath; 1912 1913 if (tx_name != NULL) { 1914 dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, tx_name); 1915 if (dp_tx == NULL) { 1916 sfc_err(sa, "Tx datapath %s not found", tx_name); 1917 rc = ENOENT; 1918 goto fail_dp_tx; 1919 } 1920 if (!sfc_dp_match_hw_fw_caps(&dp_tx->dp, avail_caps)) { 1921 sfc_err(sa, 1922 "Insufficient Hw/FW capabilities to use Tx datapath %s", 1923 tx_name); 1924 rc = EINVAL; 1925 goto fail_dp_tx_caps; 1926 } 1927 } else { 1928 dp_tx = sfc_dp_find_tx_by_caps(&sfc_dp_head, avail_caps); 1929 if (dp_tx == NULL) { 1930 sfc_err(sa, "Tx datapath by caps %#x not found", 1931 avail_caps); 1932 rc = ENOENT; 1933 goto fail_dp_tx; 1934 } 1935 } 1936 1937 sas->dp_tx_name = sfc_strdup(dp_tx->dp.name); 1938 if (sas->dp_tx_name == NULL) { 1939 rc = ENOMEM; 1940 goto fail_dp_tx_name; 1941 } 1942 1943 sfc_notice(sa, "use %s Tx datapath", sas->dp_tx_name); 1944 1945 sa->priv.dp_rx = dp_rx; 1946 sa->priv.dp_tx = dp_tx; 1947 1948 dev->rx_pkt_burst = dp_rx->pkt_burst; 1949 dev->tx_pkt_prepare = dp_tx->pkt_prepare; 1950 dev->tx_pkt_burst = dp_tx->pkt_burst; 1951 1952 dev->dev_ops = &sfc_eth_dev_ops; 1953 1954 return 0; 1955 1956 fail_dp_tx_name: 1957 fail_dp_tx_caps: 1958 fail_dp_tx: 1959 fail_kvarg_tx_datapath: 1960 rte_free(sas->dp_rx_name); 1961 sas->dp_rx_name = NULL; 1962 1963 fail_dp_rx_name: 1964 fail_dp_rx_caps: 1965 fail_dp_rx: 1966 fail_kvarg_rx_datapath: 1967 return rc; 1968 } 1969 1970 static void 1971 sfc_eth_dev_clear_ops(struct rte_eth_dev *dev) 1972 { 1973 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1974 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1975 1976 dev->dev_ops = NULL; 1977 dev->tx_pkt_prepare = NULL; 1978 dev->rx_pkt_burst = NULL; 1979 dev->tx_pkt_burst = NULL; 1980 1981 rte_free(sas->dp_tx_name); 1982 sas->dp_tx_name = NULL; 1983 sa->priv.dp_tx = NULL; 1984 1985 rte_free(sas->dp_rx_name); 1986 sas->dp_rx_name = NULL; 1987 sa->priv.dp_rx = NULL; 1988 } 1989 1990 static const struct eth_dev_ops sfc_eth_dev_secondary_ops = { 1991 .dev_supported_ptypes_get = sfc_dev_supported_ptypes_get, 1992 .rx_queue_count = sfc_rx_queue_count, 1993 .rx_descriptor_done = sfc_rx_descriptor_done, 1994 .rx_descriptor_status = sfc_rx_descriptor_status, 1995 .tx_descriptor_status = sfc_tx_descriptor_status, 1996 .reta_query = sfc_dev_rss_reta_query, 1997 .rss_hash_conf_get = sfc_dev_rss_hash_conf_get, 1998 .rxq_info_get = sfc_rx_queue_info_get, 1999 .txq_info_get = sfc_tx_queue_info_get, 2000 }; 2001 2002 static int 2003 sfc_eth_dev_secondary_init(struct rte_eth_dev *dev, uint32_t logtype_main) 2004 { 2005 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 2006 struct sfc_adapter_priv *sap; 2007 const struct sfc_dp_rx *dp_rx; 2008 const struct sfc_dp_tx *dp_tx; 2009 int rc; 2010 2011 /* 2012 * Allocate process private data from heap, since it should not 2013 * be located in shared memory allocated using rte_malloc() API. 2014 */ 2015 sap = calloc(1, sizeof(*sap)); 2016 if (sap == NULL) { 2017 rc = ENOMEM; 2018 goto fail_alloc_priv; 2019 } 2020 2021 sap->logtype_main = logtype_main; 2022 2023 dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, sas->dp_rx_name); 2024 if (dp_rx == NULL) { 2025 SFC_LOG(sas, RTE_LOG_ERR, logtype_main, 2026 "cannot find %s Rx datapath", sas->dp_rx_name); 2027 rc = ENOENT; 2028 goto fail_dp_rx; 2029 } 2030 if (~dp_rx->features & SFC_DP_RX_FEAT_MULTI_PROCESS) { 2031 SFC_LOG(sas, RTE_LOG_ERR, logtype_main, 2032 "%s Rx datapath does not support multi-process", 2033 sas->dp_rx_name); 2034 rc = EINVAL; 2035 goto fail_dp_rx_multi_process; 2036 } 2037 2038 dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, sas->dp_tx_name); 2039 if (dp_tx == NULL) { 2040 SFC_LOG(sas, RTE_LOG_ERR, logtype_main, 2041 "cannot find %s Tx datapath", sas->dp_tx_name); 2042 rc = ENOENT; 2043 goto fail_dp_tx; 2044 } 2045 if (~dp_tx->features & SFC_DP_TX_FEAT_MULTI_PROCESS) { 2046 SFC_LOG(sas, RTE_LOG_ERR, logtype_main, 2047 "%s Tx datapath does not support multi-process", 2048 sas->dp_tx_name); 2049 rc = EINVAL; 2050 goto fail_dp_tx_multi_process; 2051 } 2052 2053 sap->dp_rx = dp_rx; 2054 sap->dp_tx = dp_tx; 2055 2056 dev->process_private = sap; 2057 dev->rx_pkt_burst = dp_rx->pkt_burst; 2058 dev->tx_pkt_prepare = dp_tx->pkt_prepare; 2059 dev->tx_pkt_burst = dp_tx->pkt_burst; 2060 dev->dev_ops = &sfc_eth_dev_secondary_ops; 2061 2062 return 0; 2063 2064 fail_dp_tx_multi_process: 2065 fail_dp_tx: 2066 fail_dp_rx_multi_process: 2067 fail_dp_rx: 2068 free(sap); 2069 2070 fail_alloc_priv: 2071 return rc; 2072 } 2073 2074 static void 2075 sfc_eth_dev_secondary_clear_ops(struct rte_eth_dev *dev) 2076 { 2077 free(dev->process_private); 2078 dev->process_private = NULL; 2079 dev->dev_ops = NULL; 2080 dev->tx_pkt_prepare = NULL; 2081 dev->tx_pkt_burst = NULL; 2082 dev->rx_pkt_burst = NULL; 2083 } 2084 2085 static void 2086 sfc_register_dp(void) 2087 { 2088 /* Register once */ 2089 if (TAILQ_EMPTY(&sfc_dp_head)) { 2090 /* Prefer EF10 datapath */ 2091 sfc_dp_register(&sfc_dp_head, &sfc_ef10_essb_rx.dp); 2092 sfc_dp_register(&sfc_dp_head, &sfc_ef10_rx.dp); 2093 sfc_dp_register(&sfc_dp_head, &sfc_efx_rx.dp); 2094 2095 sfc_dp_register(&sfc_dp_head, &sfc_ef10_tx.dp); 2096 sfc_dp_register(&sfc_dp_head, &sfc_efx_tx.dp); 2097 sfc_dp_register(&sfc_dp_head, &sfc_ef10_simple_tx.dp); 2098 } 2099 } 2100 2101 static int 2102 sfc_eth_dev_init(struct rte_eth_dev *dev) 2103 { 2104 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 2105 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev); 2106 uint32_t logtype_main; 2107 struct sfc_adapter *sa; 2108 int rc; 2109 const efx_nic_cfg_t *encp; 2110 const struct rte_ether_addr *from; 2111 2112 sfc_register_dp(); 2113 2114 logtype_main = sfc_register_logtype(&pci_dev->addr, 2115 SFC_LOGTYPE_MAIN_STR, 2116 RTE_LOG_NOTICE); 2117 2118 if (rte_eal_process_type() != RTE_PROC_PRIMARY) 2119 return -sfc_eth_dev_secondary_init(dev, logtype_main); 2120 2121 /* Required for logging */ 2122 sas->pci_addr = pci_dev->addr; 2123 sas->port_id = dev->data->port_id; 2124 2125 /* 2126 * Allocate process private data from heap, since it should not 2127 * be located in shared memory allocated using rte_malloc() API. 2128 */ 2129 sa = calloc(1, sizeof(*sa)); 2130 if (sa == NULL) { 2131 rc = ENOMEM; 2132 goto fail_alloc_sa; 2133 } 2134 2135 dev->process_private = sa; 2136 2137 /* Required for logging */ 2138 sa->priv.shared = sas; 2139 sa->priv.logtype_main = logtype_main; 2140 2141 sa->eth_dev = dev; 2142 2143 /* Copy PCI device info to the dev->data */ 2144 rte_eth_copy_pci_info(dev, pci_dev); 2145 2146 rc = sfc_kvargs_parse(sa); 2147 if (rc != 0) 2148 goto fail_kvargs_parse; 2149 2150 sfc_log_init(sa, "entry"); 2151 2152 dev->data->dev_flags |= RTE_ETH_DEV_CLOSE_REMOVE; 2153 2154 dev->data->mac_addrs = rte_zmalloc("sfc", RTE_ETHER_ADDR_LEN, 0); 2155 if (dev->data->mac_addrs == NULL) { 2156 rc = ENOMEM; 2157 goto fail_mac_addrs; 2158 } 2159 2160 sfc_adapter_lock_init(sa); 2161 sfc_adapter_lock(sa); 2162 2163 sfc_log_init(sa, "probing"); 2164 rc = sfc_probe(sa); 2165 if (rc != 0) 2166 goto fail_probe; 2167 2168 sfc_log_init(sa, "set device ops"); 2169 rc = sfc_eth_dev_set_ops(dev); 2170 if (rc != 0) 2171 goto fail_set_ops; 2172 2173 sfc_log_init(sa, "attaching"); 2174 rc = sfc_attach(sa); 2175 if (rc != 0) 2176 goto fail_attach; 2177 2178 encp = efx_nic_cfg_get(sa->nic); 2179 2180 /* 2181 * The arguments are really reverse order in comparison to 2182 * Linux kernel. Copy from NIC config to Ethernet device data. 2183 */ 2184 from = (const struct rte_ether_addr *)(encp->enc_mac_addr); 2185 rte_ether_addr_copy(from, &dev->data->mac_addrs[0]); 2186 2187 sfc_adapter_unlock(sa); 2188 2189 sfc_log_init(sa, "done"); 2190 return 0; 2191 2192 fail_attach: 2193 sfc_eth_dev_clear_ops(dev); 2194 2195 fail_set_ops: 2196 sfc_unprobe(sa); 2197 2198 fail_probe: 2199 sfc_adapter_unlock(sa); 2200 sfc_adapter_lock_fini(sa); 2201 rte_free(dev->data->mac_addrs); 2202 dev->data->mac_addrs = NULL; 2203 2204 fail_mac_addrs: 2205 sfc_kvargs_cleanup(sa); 2206 2207 fail_kvargs_parse: 2208 sfc_log_init(sa, "failed %d", rc); 2209 dev->process_private = NULL; 2210 free(sa); 2211 2212 fail_alloc_sa: 2213 SFC_ASSERT(rc > 0); 2214 return -rc; 2215 } 2216 2217 static int 2218 sfc_eth_dev_uninit(struct rte_eth_dev *dev) 2219 { 2220 if (rte_eal_process_type() != RTE_PROC_PRIMARY) { 2221 sfc_eth_dev_secondary_clear_ops(dev); 2222 return 0; 2223 } 2224 2225 sfc_dev_close(dev); 2226 2227 return 0; 2228 } 2229 2230 static const struct rte_pci_id pci_id_sfc_efx_map[] = { 2231 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE) }, 2232 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE_VF) }, 2233 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT) }, 2234 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT_VF) }, 2235 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD) }, 2236 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD_VF) }, 2237 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2) }, 2238 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2_VF) }, 2239 { .vendor_id = 0 /* sentinel */ } 2240 }; 2241 2242 static int sfc_eth_dev_pci_probe(struct rte_pci_driver *pci_drv __rte_unused, 2243 struct rte_pci_device *pci_dev) 2244 { 2245 return rte_eth_dev_pci_generic_probe(pci_dev, 2246 sizeof(struct sfc_adapter_shared), sfc_eth_dev_init); 2247 } 2248 2249 static int sfc_eth_dev_pci_remove(struct rte_pci_device *pci_dev) 2250 { 2251 return rte_eth_dev_pci_generic_remove(pci_dev, sfc_eth_dev_uninit); 2252 } 2253 2254 static struct rte_pci_driver sfc_efx_pmd = { 2255 .id_table = pci_id_sfc_efx_map, 2256 .drv_flags = 2257 RTE_PCI_DRV_INTR_LSC | 2258 RTE_PCI_DRV_NEED_MAPPING, 2259 .probe = sfc_eth_dev_pci_probe, 2260 .remove = sfc_eth_dev_pci_remove, 2261 }; 2262 2263 RTE_PMD_REGISTER_PCI(net_sfc_efx, sfc_efx_pmd); 2264 RTE_PMD_REGISTER_PCI_TABLE(net_sfc_efx, pci_id_sfc_efx_map); 2265 RTE_PMD_REGISTER_KMOD_DEP(net_sfc_efx, "* igb_uio | uio_pci_generic | vfio-pci"); 2266 RTE_PMD_REGISTER_PARAM_STRING(net_sfc_efx, 2267 SFC_KVARG_RX_DATAPATH "=" SFC_KVARG_VALUES_RX_DATAPATH " " 2268 SFC_KVARG_TX_DATAPATH "=" SFC_KVARG_VALUES_TX_DATAPATH " " 2269 SFC_KVARG_PERF_PROFILE "=" SFC_KVARG_VALUES_PERF_PROFILE " " 2270 SFC_KVARG_FW_VARIANT "=" SFC_KVARG_VALUES_FW_VARIANT " " 2271 SFC_KVARG_RXD_WAIT_TIMEOUT_NS "=<long> " 2272 SFC_KVARG_STATS_UPDATE_PERIOD_MS "=<long>"); 2273 2274 RTE_INIT(sfc_driver_register_logtype) 2275 { 2276 int ret; 2277 2278 ret = rte_log_register_type_and_pick_level(SFC_LOGTYPE_PREFIX "driver", 2279 RTE_LOG_NOTICE); 2280 sfc_logtype_driver = (ret < 0) ? RTE_LOGTYPE_PMD : ret; 2281 } 2282