xref: /dpdk/drivers/net/ena/ena_ethdev.c (revision 089e5ed727a15da2729cfee9b63533dd120bd04c)
1 /*-
2 * BSD LICENSE
3 *
4 * Copyright (c) 2015-2016 Amazon.com, Inc. or its affiliates.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * * Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * * Neither the name of copyright holder nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 */
33 
34 #include <rte_string_fns.h>
35 #include <rte_ether.h>
36 #include <rte_ethdev_driver.h>
37 #include <rte_ethdev_pci.h>
38 #include <rte_tcp.h>
39 #include <rte_atomic.h>
40 #include <rte_dev.h>
41 #include <rte_errno.h>
42 #include <rte_version.h>
43 #include <rte_net.h>
44 
45 #include "ena_ethdev.h"
46 #include "ena_logs.h"
47 #include "ena_platform.h"
48 #include "ena_com.h"
49 #include "ena_eth_com.h"
50 
51 #include <ena_common_defs.h>
52 #include <ena_regs_defs.h>
53 #include <ena_admin_defs.h>
54 #include <ena_eth_io_defs.h>
55 
56 #define DRV_MODULE_VER_MAJOR	2
57 #define DRV_MODULE_VER_MINOR	0
58 #define DRV_MODULE_VER_SUBMINOR	1
59 
60 #define ENA_IO_TXQ_IDX(q)	(2 * (q))
61 #define ENA_IO_RXQ_IDX(q)	(2 * (q) + 1)
62 /*reverse version of ENA_IO_RXQ_IDX*/
63 #define ENA_IO_RXQ_IDX_REV(q)	((q - 1) / 2)
64 
65 /* While processing submitted and completed descriptors (rx and tx path
66  * respectively) in a loop it is desired to:
67  *  - perform batch submissions while populating sumbissmion queue
68  *  - avoid blocking transmission of other packets during cleanup phase
69  * Hence the utilization ratio of 1/8 of a queue size.
70  */
71 #define ENA_RING_DESCS_RATIO(ring_size)	(ring_size / 8)
72 
73 #define __MERGE_64B_H_L(h, l) (((uint64_t)h << 32) | l)
74 #define TEST_BIT(val, bit_shift) (val & (1UL << bit_shift))
75 
76 #define GET_L4_HDR_LEN(mbuf)					\
77 	((rte_pktmbuf_mtod_offset(mbuf,	struct rte_tcp_hdr *,	\
78 		mbuf->l3_len + mbuf->l2_len)->data_off) >> 4)
79 
80 #define ENA_RX_RSS_TABLE_LOG_SIZE  7
81 #define ENA_RX_RSS_TABLE_SIZE	(1 << ENA_RX_RSS_TABLE_LOG_SIZE)
82 #define ENA_HASH_KEY_SIZE	40
83 #define ETH_GSTRING_LEN	32
84 
85 #define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))
86 
87 #define ENA_MIN_RING_DESC	128
88 
89 enum ethtool_stringset {
90 	ETH_SS_TEST             = 0,
91 	ETH_SS_STATS,
92 };
93 
94 struct ena_stats {
95 	char name[ETH_GSTRING_LEN];
96 	int stat_offset;
97 };
98 
99 #define ENA_STAT_ENTRY(stat, stat_type) { \
100 	.name = #stat, \
101 	.stat_offset = offsetof(struct ena_stats_##stat_type, stat) \
102 }
103 
104 #define ENA_STAT_RX_ENTRY(stat) \
105 	ENA_STAT_ENTRY(stat, rx)
106 
107 #define ENA_STAT_TX_ENTRY(stat) \
108 	ENA_STAT_ENTRY(stat, tx)
109 
110 #define ENA_STAT_GLOBAL_ENTRY(stat) \
111 	ENA_STAT_ENTRY(stat, dev)
112 
113 #define ENA_MAX_RING_SIZE_RX 8192
114 #define ENA_MAX_RING_SIZE_TX 1024
115 
116 /*
117  * Each rte_memzone should have unique name.
118  * To satisfy it, count number of allocation and add it to name.
119  */
120 uint32_t ena_alloc_cnt;
121 
122 static const struct ena_stats ena_stats_global_strings[] = {
123 	ENA_STAT_GLOBAL_ENTRY(wd_expired),
124 	ENA_STAT_GLOBAL_ENTRY(dev_start),
125 	ENA_STAT_GLOBAL_ENTRY(dev_stop),
126 };
127 
128 static const struct ena_stats ena_stats_tx_strings[] = {
129 	ENA_STAT_TX_ENTRY(cnt),
130 	ENA_STAT_TX_ENTRY(bytes),
131 	ENA_STAT_TX_ENTRY(prepare_ctx_err),
132 	ENA_STAT_TX_ENTRY(linearize),
133 	ENA_STAT_TX_ENTRY(linearize_failed),
134 	ENA_STAT_TX_ENTRY(tx_poll),
135 	ENA_STAT_TX_ENTRY(doorbells),
136 	ENA_STAT_TX_ENTRY(bad_req_id),
137 	ENA_STAT_TX_ENTRY(available_desc),
138 };
139 
140 static const struct ena_stats ena_stats_rx_strings[] = {
141 	ENA_STAT_RX_ENTRY(cnt),
142 	ENA_STAT_RX_ENTRY(bytes),
143 	ENA_STAT_RX_ENTRY(refill_partial),
144 	ENA_STAT_RX_ENTRY(bad_csum),
145 	ENA_STAT_RX_ENTRY(mbuf_alloc_fail),
146 	ENA_STAT_RX_ENTRY(bad_desc_num),
147 	ENA_STAT_RX_ENTRY(bad_req_id),
148 };
149 
150 #define ENA_STATS_ARRAY_GLOBAL	ARRAY_SIZE(ena_stats_global_strings)
151 #define ENA_STATS_ARRAY_TX	ARRAY_SIZE(ena_stats_tx_strings)
152 #define ENA_STATS_ARRAY_RX	ARRAY_SIZE(ena_stats_rx_strings)
153 
154 #define QUEUE_OFFLOADS (DEV_TX_OFFLOAD_TCP_CKSUM |\
155 			DEV_TX_OFFLOAD_UDP_CKSUM |\
156 			DEV_TX_OFFLOAD_IPV4_CKSUM |\
157 			DEV_TX_OFFLOAD_TCP_TSO)
158 #define MBUF_OFFLOADS (PKT_TX_L4_MASK |\
159 		       PKT_TX_IP_CKSUM |\
160 		       PKT_TX_TCP_SEG)
161 
162 /** Vendor ID used by Amazon devices */
163 #define PCI_VENDOR_ID_AMAZON 0x1D0F
164 /** Amazon devices */
165 #define PCI_DEVICE_ID_ENA_VF	0xEC20
166 #define PCI_DEVICE_ID_ENA_LLQ_VF	0xEC21
167 
168 #define	ENA_TX_OFFLOAD_MASK	(\
169 	PKT_TX_L4_MASK |         \
170 	PKT_TX_IPV6 |            \
171 	PKT_TX_IPV4 |            \
172 	PKT_TX_IP_CKSUM |        \
173 	PKT_TX_TCP_SEG)
174 
175 #define	ENA_TX_OFFLOAD_NOTSUP_MASK	\
176 	(PKT_TX_OFFLOAD_MASK ^ ENA_TX_OFFLOAD_MASK)
177 
178 int ena_logtype_init;
179 int ena_logtype_driver;
180 
181 static const struct rte_pci_id pci_id_ena_map[] = {
182 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_VF) },
183 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_LLQ_VF) },
184 	{ .device_id = 0 },
185 };
186 
187 static struct ena_aenq_handlers aenq_handlers;
188 
189 static int ena_device_init(struct ena_com_dev *ena_dev,
190 			   struct ena_com_dev_get_features_ctx *get_feat_ctx,
191 			   bool *wd_state);
192 static int ena_dev_configure(struct rte_eth_dev *dev);
193 static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
194 				  uint16_t nb_pkts);
195 static uint16_t eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
196 		uint16_t nb_pkts);
197 static int ena_tx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
198 			      uint16_t nb_desc, unsigned int socket_id,
199 			      const struct rte_eth_txconf *tx_conf);
200 static int ena_rx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
201 			      uint16_t nb_desc, unsigned int socket_id,
202 			      const struct rte_eth_rxconf *rx_conf,
203 			      struct rte_mempool *mp);
204 static uint16_t eth_ena_recv_pkts(void *rx_queue,
205 				  struct rte_mbuf **rx_pkts, uint16_t nb_pkts);
206 static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count);
207 static void ena_init_rings(struct ena_adapter *adapter);
208 static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
209 static int ena_start(struct rte_eth_dev *dev);
210 static void ena_stop(struct rte_eth_dev *dev);
211 static void ena_close(struct rte_eth_dev *dev);
212 static int ena_dev_reset(struct rte_eth_dev *dev);
213 static int ena_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats);
214 static void ena_rx_queue_release_all(struct rte_eth_dev *dev);
215 static void ena_tx_queue_release_all(struct rte_eth_dev *dev);
216 static void ena_rx_queue_release(void *queue);
217 static void ena_tx_queue_release(void *queue);
218 static void ena_rx_queue_release_bufs(struct ena_ring *ring);
219 static void ena_tx_queue_release_bufs(struct ena_ring *ring);
220 static int ena_link_update(struct rte_eth_dev *dev,
221 			   int wait_to_complete);
222 static int ena_create_io_queue(struct ena_ring *ring);
223 static void ena_queue_stop(struct ena_ring *ring);
224 static void ena_queue_stop_all(struct rte_eth_dev *dev,
225 			      enum ena_ring_type ring_type);
226 static int ena_queue_start(struct ena_ring *ring);
227 static int ena_queue_start_all(struct rte_eth_dev *dev,
228 			       enum ena_ring_type ring_type);
229 static void ena_stats_restart(struct rte_eth_dev *dev);
230 static int ena_infos_get(struct rte_eth_dev *dev,
231 			 struct rte_eth_dev_info *dev_info);
232 static int ena_rss_reta_update(struct rte_eth_dev *dev,
233 			       struct rte_eth_rss_reta_entry64 *reta_conf,
234 			       uint16_t reta_size);
235 static int ena_rss_reta_query(struct rte_eth_dev *dev,
236 			      struct rte_eth_rss_reta_entry64 *reta_conf,
237 			      uint16_t reta_size);
238 static void ena_interrupt_handler_rte(void *cb_arg);
239 static void ena_timer_wd_callback(struct rte_timer *timer, void *arg);
240 static void ena_destroy_device(struct rte_eth_dev *eth_dev);
241 static int eth_ena_dev_init(struct rte_eth_dev *eth_dev);
242 static int ena_xstats_get_names(struct rte_eth_dev *dev,
243 				struct rte_eth_xstat_name *xstats_names,
244 				unsigned int n);
245 static int ena_xstats_get(struct rte_eth_dev *dev,
246 			  struct rte_eth_xstat *stats,
247 			  unsigned int n);
248 static int ena_xstats_get_by_id(struct rte_eth_dev *dev,
249 				const uint64_t *ids,
250 				uint64_t *values,
251 				unsigned int n);
252 
253 static const struct eth_dev_ops ena_dev_ops = {
254 	.dev_configure        = ena_dev_configure,
255 	.dev_infos_get        = ena_infos_get,
256 	.rx_queue_setup       = ena_rx_queue_setup,
257 	.tx_queue_setup       = ena_tx_queue_setup,
258 	.dev_start            = ena_start,
259 	.dev_stop             = ena_stop,
260 	.link_update          = ena_link_update,
261 	.stats_get            = ena_stats_get,
262 	.xstats_get_names     = ena_xstats_get_names,
263 	.xstats_get	      = ena_xstats_get,
264 	.xstats_get_by_id     = ena_xstats_get_by_id,
265 	.mtu_set              = ena_mtu_set,
266 	.rx_queue_release     = ena_rx_queue_release,
267 	.tx_queue_release     = ena_tx_queue_release,
268 	.dev_close            = ena_close,
269 	.dev_reset            = ena_dev_reset,
270 	.reta_update          = ena_rss_reta_update,
271 	.reta_query           = ena_rss_reta_query,
272 };
273 
274 static inline void ena_rx_mbuf_prepare(struct rte_mbuf *mbuf,
275 				       struct ena_com_rx_ctx *ena_rx_ctx)
276 {
277 	uint64_t ol_flags = 0;
278 	uint32_t packet_type = 0;
279 
280 	if (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP)
281 		packet_type |= RTE_PTYPE_L4_TCP;
282 	else if (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)
283 		packet_type |= RTE_PTYPE_L4_UDP;
284 
285 	if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4)
286 		packet_type |= RTE_PTYPE_L3_IPV4;
287 	else if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV6)
288 		packet_type |= RTE_PTYPE_L3_IPV6;
289 
290 	if (unlikely(ena_rx_ctx->l4_csum_err))
291 		ol_flags |= PKT_RX_L4_CKSUM_BAD;
292 	if (unlikely(ena_rx_ctx->l3_csum_err))
293 		ol_flags |= PKT_RX_IP_CKSUM_BAD;
294 
295 	mbuf->ol_flags = ol_flags;
296 	mbuf->packet_type = packet_type;
297 }
298 
299 static inline void ena_tx_mbuf_prepare(struct rte_mbuf *mbuf,
300 				       struct ena_com_tx_ctx *ena_tx_ctx,
301 				       uint64_t queue_offloads)
302 {
303 	struct ena_com_tx_meta *ena_meta = &ena_tx_ctx->ena_meta;
304 
305 	if ((mbuf->ol_flags & MBUF_OFFLOADS) &&
306 	    (queue_offloads & QUEUE_OFFLOADS)) {
307 		/* check if TSO is required */
308 		if ((mbuf->ol_flags & PKT_TX_TCP_SEG) &&
309 		    (queue_offloads & DEV_TX_OFFLOAD_TCP_TSO)) {
310 			ena_tx_ctx->tso_enable = true;
311 
312 			ena_meta->l4_hdr_len = GET_L4_HDR_LEN(mbuf);
313 		}
314 
315 		/* check if L3 checksum is needed */
316 		if ((mbuf->ol_flags & PKT_TX_IP_CKSUM) &&
317 		    (queue_offloads & DEV_TX_OFFLOAD_IPV4_CKSUM))
318 			ena_tx_ctx->l3_csum_enable = true;
319 
320 		if (mbuf->ol_flags & PKT_TX_IPV6) {
321 			ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6;
322 		} else {
323 			ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4;
324 
325 			/* set don't fragment (DF) flag */
326 			if (mbuf->packet_type &
327 				(RTE_PTYPE_L4_NONFRAG
328 				 | RTE_PTYPE_INNER_L4_NONFRAG))
329 				ena_tx_ctx->df = true;
330 		}
331 
332 		/* check if L4 checksum is needed */
333 		if (((mbuf->ol_flags & PKT_TX_L4_MASK) == PKT_TX_TCP_CKSUM) &&
334 		    (queue_offloads & DEV_TX_OFFLOAD_TCP_CKSUM)) {
335 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP;
336 			ena_tx_ctx->l4_csum_enable = true;
337 		} else if (((mbuf->ol_flags & PKT_TX_L4_MASK) ==
338 				PKT_TX_UDP_CKSUM) &&
339 				(queue_offloads & DEV_TX_OFFLOAD_UDP_CKSUM)) {
340 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP;
341 			ena_tx_ctx->l4_csum_enable = true;
342 		} else {
343 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UNKNOWN;
344 			ena_tx_ctx->l4_csum_enable = false;
345 		}
346 
347 		ena_meta->mss = mbuf->tso_segsz;
348 		ena_meta->l3_hdr_len = mbuf->l3_len;
349 		ena_meta->l3_hdr_offset = mbuf->l2_len;
350 
351 		ena_tx_ctx->meta_valid = true;
352 	} else {
353 		ena_tx_ctx->meta_valid = false;
354 	}
355 }
356 
357 static inline int validate_rx_req_id(struct ena_ring *rx_ring, uint16_t req_id)
358 {
359 	if (likely(req_id < rx_ring->ring_size))
360 		return 0;
361 
362 	RTE_LOG(ERR, PMD, "Invalid rx req_id: %hu\n", req_id);
363 
364 	rx_ring->adapter->reset_reason = ENA_REGS_RESET_INV_RX_REQ_ID;
365 	rx_ring->adapter->trigger_reset = true;
366 	++rx_ring->rx_stats.bad_req_id;
367 
368 	return -EFAULT;
369 }
370 
371 static int validate_tx_req_id(struct ena_ring *tx_ring, u16 req_id)
372 {
373 	struct ena_tx_buffer *tx_info = NULL;
374 
375 	if (likely(req_id < tx_ring->ring_size)) {
376 		tx_info = &tx_ring->tx_buffer_info[req_id];
377 		if (likely(tx_info->mbuf))
378 			return 0;
379 	}
380 
381 	if (tx_info)
382 		RTE_LOG(ERR, PMD, "tx_info doesn't have valid mbuf\n");
383 	else
384 		RTE_LOG(ERR, PMD, "Invalid req_id: %hu\n", req_id);
385 
386 	/* Trigger device reset */
387 	++tx_ring->tx_stats.bad_req_id;
388 	tx_ring->adapter->reset_reason = ENA_REGS_RESET_INV_TX_REQ_ID;
389 	tx_ring->adapter->trigger_reset	= true;
390 	return -EFAULT;
391 }
392 
393 static void ena_config_host_info(struct ena_com_dev *ena_dev)
394 {
395 	struct ena_admin_host_info *host_info;
396 	int rc;
397 
398 	/* Allocate only the host info */
399 	rc = ena_com_allocate_host_info(ena_dev);
400 	if (rc) {
401 		RTE_LOG(ERR, PMD, "Cannot allocate host info\n");
402 		return;
403 	}
404 
405 	host_info = ena_dev->host_attr.host_info;
406 
407 	host_info->os_type = ENA_ADMIN_OS_DPDK;
408 	host_info->kernel_ver = RTE_VERSION;
409 	strlcpy((char *)host_info->kernel_ver_str, rte_version(),
410 		sizeof(host_info->kernel_ver_str));
411 	host_info->os_dist = RTE_VERSION;
412 	strlcpy((char *)host_info->os_dist_str, rte_version(),
413 		sizeof(host_info->os_dist_str));
414 	host_info->driver_version =
415 		(DRV_MODULE_VER_MAJOR) |
416 		(DRV_MODULE_VER_MINOR << ENA_ADMIN_HOST_INFO_MINOR_SHIFT) |
417 		(DRV_MODULE_VER_SUBMINOR <<
418 			ENA_ADMIN_HOST_INFO_SUB_MINOR_SHIFT);
419 	host_info->num_cpus = rte_lcore_count();
420 
421 	rc = ena_com_set_host_attributes(ena_dev);
422 	if (rc) {
423 		if (rc == -ENA_COM_UNSUPPORTED)
424 			RTE_LOG(WARNING, PMD, "Cannot set host attributes\n");
425 		else
426 			RTE_LOG(ERR, PMD, "Cannot set host attributes\n");
427 
428 		goto err;
429 	}
430 
431 	return;
432 
433 err:
434 	ena_com_delete_host_info(ena_dev);
435 }
436 
437 /* This function calculates the number of xstats based on the current config */
438 static unsigned int ena_xstats_calc_num(struct rte_eth_dev *dev)
439 {
440 	return ENA_STATS_ARRAY_GLOBAL +
441 		(dev->data->nb_tx_queues * ENA_STATS_ARRAY_TX) +
442 		(dev->data->nb_rx_queues * ENA_STATS_ARRAY_RX);
443 }
444 
445 static void ena_config_debug_area(struct ena_adapter *adapter)
446 {
447 	u32 debug_area_size;
448 	int rc, ss_count;
449 
450 	ss_count = ena_xstats_calc_num(adapter->rte_dev);
451 
452 	/* allocate 32 bytes for each string and 64bit for the value */
453 	debug_area_size = ss_count * ETH_GSTRING_LEN + sizeof(u64) * ss_count;
454 
455 	rc = ena_com_allocate_debug_area(&adapter->ena_dev, debug_area_size);
456 	if (rc) {
457 		RTE_LOG(ERR, PMD, "Cannot allocate debug area\n");
458 		return;
459 	}
460 
461 	rc = ena_com_set_host_attributes(&adapter->ena_dev);
462 	if (rc) {
463 		if (rc == -ENA_COM_UNSUPPORTED)
464 			RTE_LOG(WARNING, PMD, "Cannot set host attributes\n");
465 		else
466 			RTE_LOG(ERR, PMD, "Cannot set host attributes\n");
467 
468 		goto err;
469 	}
470 
471 	return;
472 err:
473 	ena_com_delete_debug_area(&adapter->ena_dev);
474 }
475 
476 static void ena_close(struct rte_eth_dev *dev)
477 {
478 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
479 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
480 	struct ena_adapter *adapter = dev->data->dev_private;
481 
482 	if (adapter->state == ENA_ADAPTER_STATE_RUNNING)
483 		ena_stop(dev);
484 	adapter->state = ENA_ADAPTER_STATE_CLOSED;
485 
486 	ena_rx_queue_release_all(dev);
487 	ena_tx_queue_release_all(dev);
488 
489 	rte_free(adapter->drv_stats);
490 	adapter->drv_stats = NULL;
491 
492 	rte_intr_disable(intr_handle);
493 	rte_intr_callback_unregister(intr_handle,
494 				     ena_interrupt_handler_rte,
495 				     adapter);
496 
497 	/*
498 	 * MAC is not allocated dynamically. Setting NULL should prevent from
499 	 * release of the resource in the rte_eth_dev_release_port().
500 	 */
501 	dev->data->mac_addrs = NULL;
502 }
503 
504 static int
505 ena_dev_reset(struct rte_eth_dev *dev)
506 {
507 	int rc = 0;
508 
509 	ena_destroy_device(dev);
510 	rc = eth_ena_dev_init(dev);
511 	if (rc)
512 		PMD_INIT_LOG(CRIT, "Cannot initialize device");
513 
514 	return rc;
515 }
516 
517 static int ena_rss_reta_update(struct rte_eth_dev *dev,
518 			       struct rte_eth_rss_reta_entry64 *reta_conf,
519 			       uint16_t reta_size)
520 {
521 	struct ena_adapter *adapter = dev->data->dev_private;
522 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
523 	int rc, i;
524 	u16 entry_value;
525 	int conf_idx;
526 	int idx;
527 
528 	if ((reta_size == 0) || (reta_conf == NULL))
529 		return -EINVAL;
530 
531 	if (reta_size > ENA_RX_RSS_TABLE_SIZE) {
532 		RTE_LOG(WARNING, PMD,
533 			"indirection table %d is bigger than supported (%d)\n",
534 			reta_size, ENA_RX_RSS_TABLE_SIZE);
535 		return -EINVAL;
536 	}
537 
538 	for (i = 0 ; i < reta_size ; i++) {
539 		/* each reta_conf is for 64 entries.
540 		 * to support 128 we use 2 conf of 64
541 		 */
542 		conf_idx = i / RTE_RETA_GROUP_SIZE;
543 		idx = i % RTE_RETA_GROUP_SIZE;
544 		if (TEST_BIT(reta_conf[conf_idx].mask, idx)) {
545 			entry_value =
546 				ENA_IO_RXQ_IDX(reta_conf[conf_idx].reta[idx]);
547 
548 			rc = ena_com_indirect_table_fill_entry(ena_dev,
549 							       i,
550 							       entry_value);
551 			if (unlikely(rc && rc != ENA_COM_UNSUPPORTED)) {
552 				RTE_LOG(ERR, PMD,
553 					"Cannot fill indirect table\n");
554 				return rc;
555 			}
556 		}
557 	}
558 
559 	rc = ena_com_indirect_table_set(ena_dev);
560 	if (unlikely(rc && rc != ENA_COM_UNSUPPORTED)) {
561 		RTE_LOG(ERR, PMD, "Cannot flush the indirect table\n");
562 		return rc;
563 	}
564 
565 	RTE_LOG(DEBUG, PMD, "%s(): RSS configured %d entries  for port %d\n",
566 		__func__, reta_size, adapter->rte_dev->data->port_id);
567 
568 	return 0;
569 }
570 
571 /* Query redirection table. */
572 static int ena_rss_reta_query(struct rte_eth_dev *dev,
573 			      struct rte_eth_rss_reta_entry64 *reta_conf,
574 			      uint16_t reta_size)
575 {
576 	struct ena_adapter *adapter = dev->data->dev_private;
577 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
578 	int rc;
579 	int i;
580 	u32 indirect_table[ENA_RX_RSS_TABLE_SIZE] = {0};
581 	int reta_conf_idx;
582 	int reta_idx;
583 
584 	if (reta_size == 0 || reta_conf == NULL ||
585 	    (reta_size > RTE_RETA_GROUP_SIZE && ((reta_conf + 1) == NULL)))
586 		return -EINVAL;
587 
588 	rc = ena_com_indirect_table_get(ena_dev, indirect_table);
589 	if (unlikely(rc && rc != ENA_COM_UNSUPPORTED)) {
590 		RTE_LOG(ERR, PMD, "cannot get indirect table\n");
591 		return -ENOTSUP;
592 	}
593 
594 	for (i = 0 ; i < reta_size ; i++) {
595 		reta_conf_idx = i / RTE_RETA_GROUP_SIZE;
596 		reta_idx = i % RTE_RETA_GROUP_SIZE;
597 		if (TEST_BIT(reta_conf[reta_conf_idx].mask, reta_idx))
598 			reta_conf[reta_conf_idx].reta[reta_idx] =
599 				ENA_IO_RXQ_IDX_REV(indirect_table[i]);
600 	}
601 
602 	return 0;
603 }
604 
605 static int ena_rss_init_default(struct ena_adapter *adapter)
606 {
607 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
608 	uint16_t nb_rx_queues = adapter->rte_dev->data->nb_rx_queues;
609 	int rc, i;
610 	u32 val;
611 
612 	rc = ena_com_rss_init(ena_dev, ENA_RX_RSS_TABLE_LOG_SIZE);
613 	if (unlikely(rc)) {
614 		RTE_LOG(ERR, PMD, "Cannot init indirect table\n");
615 		goto err_rss_init;
616 	}
617 
618 	for (i = 0; i < ENA_RX_RSS_TABLE_SIZE; i++) {
619 		val = i % nb_rx_queues;
620 		rc = ena_com_indirect_table_fill_entry(ena_dev, i,
621 						       ENA_IO_RXQ_IDX(val));
622 		if (unlikely(rc && (rc != ENA_COM_UNSUPPORTED))) {
623 			RTE_LOG(ERR, PMD, "Cannot fill indirect table\n");
624 			goto err_fill_indir;
625 		}
626 	}
627 
628 	rc = ena_com_fill_hash_function(ena_dev, ENA_ADMIN_CRC32, NULL,
629 					ENA_HASH_KEY_SIZE, 0xFFFFFFFF);
630 	if (unlikely(rc && (rc != ENA_COM_UNSUPPORTED))) {
631 		RTE_LOG(INFO, PMD, "Cannot fill hash function\n");
632 		goto err_fill_indir;
633 	}
634 
635 	rc = ena_com_set_default_hash_ctrl(ena_dev);
636 	if (unlikely(rc && (rc != ENA_COM_UNSUPPORTED))) {
637 		RTE_LOG(INFO, PMD, "Cannot fill hash control\n");
638 		goto err_fill_indir;
639 	}
640 
641 	rc = ena_com_indirect_table_set(ena_dev);
642 	if (unlikely(rc && (rc != ENA_COM_UNSUPPORTED))) {
643 		RTE_LOG(ERR, PMD, "Cannot flush the indirect table\n");
644 		goto err_fill_indir;
645 	}
646 	RTE_LOG(DEBUG, PMD, "RSS configured for port %d\n",
647 		adapter->rte_dev->data->port_id);
648 
649 	return 0;
650 
651 err_fill_indir:
652 	ena_com_rss_destroy(ena_dev);
653 err_rss_init:
654 
655 	return rc;
656 }
657 
658 static void ena_rx_queue_release_all(struct rte_eth_dev *dev)
659 {
660 	struct ena_ring **queues = (struct ena_ring **)dev->data->rx_queues;
661 	int nb_queues = dev->data->nb_rx_queues;
662 	int i;
663 
664 	for (i = 0; i < nb_queues; i++)
665 		ena_rx_queue_release(queues[i]);
666 }
667 
668 static void ena_tx_queue_release_all(struct rte_eth_dev *dev)
669 {
670 	struct ena_ring **queues = (struct ena_ring **)dev->data->tx_queues;
671 	int nb_queues = dev->data->nb_tx_queues;
672 	int i;
673 
674 	for (i = 0; i < nb_queues; i++)
675 		ena_tx_queue_release(queues[i]);
676 }
677 
678 static void ena_rx_queue_release(void *queue)
679 {
680 	struct ena_ring *ring = (struct ena_ring *)queue;
681 
682 	/* Free ring resources */
683 	if (ring->rx_buffer_info)
684 		rte_free(ring->rx_buffer_info);
685 	ring->rx_buffer_info = NULL;
686 
687 	if (ring->rx_refill_buffer)
688 		rte_free(ring->rx_refill_buffer);
689 	ring->rx_refill_buffer = NULL;
690 
691 	if (ring->empty_rx_reqs)
692 		rte_free(ring->empty_rx_reqs);
693 	ring->empty_rx_reqs = NULL;
694 
695 	ring->configured = 0;
696 
697 	RTE_LOG(NOTICE, PMD, "RX Queue %d:%d released\n",
698 		ring->port_id, ring->id);
699 }
700 
701 static void ena_tx_queue_release(void *queue)
702 {
703 	struct ena_ring *ring = (struct ena_ring *)queue;
704 
705 	/* Free ring resources */
706 	if (ring->push_buf_intermediate_buf)
707 		rte_free(ring->push_buf_intermediate_buf);
708 
709 	if (ring->tx_buffer_info)
710 		rte_free(ring->tx_buffer_info);
711 
712 	if (ring->empty_tx_reqs)
713 		rte_free(ring->empty_tx_reqs);
714 
715 	ring->empty_tx_reqs = NULL;
716 	ring->tx_buffer_info = NULL;
717 	ring->push_buf_intermediate_buf = NULL;
718 
719 	ring->configured = 0;
720 
721 	RTE_LOG(NOTICE, PMD, "TX Queue %d:%d released\n",
722 		ring->port_id, ring->id);
723 }
724 
725 static void ena_rx_queue_release_bufs(struct ena_ring *ring)
726 {
727 	unsigned int i;
728 
729 	for (i = 0; i < ring->ring_size; ++i)
730 		if (ring->rx_buffer_info[i]) {
731 			rte_mbuf_raw_free(ring->rx_buffer_info[i]);
732 			ring->rx_buffer_info[i] = NULL;
733 		}
734 }
735 
736 static void ena_tx_queue_release_bufs(struct ena_ring *ring)
737 {
738 	unsigned int i;
739 
740 	for (i = 0; i < ring->ring_size; ++i) {
741 		struct ena_tx_buffer *tx_buf = &ring->tx_buffer_info[i];
742 
743 		if (tx_buf->mbuf)
744 			rte_pktmbuf_free(tx_buf->mbuf);
745 	}
746 }
747 
748 static int ena_link_update(struct rte_eth_dev *dev,
749 			   __rte_unused int wait_to_complete)
750 {
751 	struct rte_eth_link *link = &dev->data->dev_link;
752 	struct ena_adapter *adapter = dev->data->dev_private;
753 
754 	link->link_status = adapter->link_status ? ETH_LINK_UP : ETH_LINK_DOWN;
755 	link->link_speed = ETH_SPEED_NUM_NONE;
756 	link->link_duplex = ETH_LINK_FULL_DUPLEX;
757 
758 	return 0;
759 }
760 
761 static int ena_queue_start_all(struct rte_eth_dev *dev,
762 			       enum ena_ring_type ring_type)
763 {
764 	struct ena_adapter *adapter = dev->data->dev_private;
765 	struct ena_ring *queues = NULL;
766 	int nb_queues;
767 	int i = 0;
768 	int rc = 0;
769 
770 	if (ring_type == ENA_RING_TYPE_RX) {
771 		queues = adapter->rx_ring;
772 		nb_queues = dev->data->nb_rx_queues;
773 	} else {
774 		queues = adapter->tx_ring;
775 		nb_queues = dev->data->nb_tx_queues;
776 	}
777 	for (i = 0; i < nb_queues; i++) {
778 		if (queues[i].configured) {
779 			if (ring_type == ENA_RING_TYPE_RX) {
780 				ena_assert_msg(
781 					dev->data->rx_queues[i] == &queues[i],
782 					"Inconsistent state of rx queues\n");
783 			} else {
784 				ena_assert_msg(
785 					dev->data->tx_queues[i] == &queues[i],
786 					"Inconsistent state of tx queues\n");
787 			}
788 
789 			rc = ena_queue_start(&queues[i]);
790 
791 			if (rc) {
792 				PMD_INIT_LOG(ERR,
793 					     "failed to start queue %d type(%d)",
794 					     i, ring_type);
795 				goto err;
796 			}
797 		}
798 	}
799 
800 	return 0;
801 
802 err:
803 	while (i--)
804 		if (queues[i].configured)
805 			ena_queue_stop(&queues[i]);
806 
807 	return rc;
808 }
809 
810 static uint32_t ena_get_mtu_conf(struct ena_adapter *adapter)
811 {
812 	uint32_t max_frame_len = adapter->max_mtu;
813 
814 	if (adapter->rte_eth_dev_data->dev_conf.rxmode.offloads &
815 	    DEV_RX_OFFLOAD_JUMBO_FRAME)
816 		max_frame_len =
817 			adapter->rte_eth_dev_data->dev_conf.rxmode.max_rx_pkt_len;
818 
819 	return max_frame_len;
820 }
821 
822 static int ena_check_valid_conf(struct ena_adapter *adapter)
823 {
824 	uint32_t max_frame_len = ena_get_mtu_conf(adapter);
825 
826 	if (max_frame_len > adapter->max_mtu || max_frame_len < ENA_MIN_MTU) {
827 		PMD_INIT_LOG(ERR, "Unsupported MTU of %d. "
828 				  "max mtu: %d, min mtu: %d",
829 			     max_frame_len, adapter->max_mtu, ENA_MIN_MTU);
830 		return ENA_COM_UNSUPPORTED;
831 	}
832 
833 	return 0;
834 }
835 
836 static int
837 ena_calc_queue_size(struct ena_calc_queue_size_ctx *ctx)
838 {
839 	struct ena_admin_feature_llq_desc *llq = &ctx->get_feat_ctx->llq;
840 	struct ena_com_dev *ena_dev = ctx->ena_dev;
841 	uint32_t tx_queue_size = ENA_MAX_RING_SIZE_TX;
842 	uint32_t rx_queue_size = ENA_MAX_RING_SIZE_RX;
843 
844 	if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
845 		struct ena_admin_queue_ext_feature_fields *max_queue_ext =
846 			&ctx->get_feat_ctx->max_queue_ext.max_queue_ext;
847 		rx_queue_size = RTE_MIN(rx_queue_size,
848 			max_queue_ext->max_rx_cq_depth);
849 		rx_queue_size = RTE_MIN(rx_queue_size,
850 			max_queue_ext->max_rx_sq_depth);
851 		tx_queue_size = RTE_MIN(tx_queue_size,
852 			max_queue_ext->max_tx_cq_depth);
853 
854 		if (ena_dev->tx_mem_queue_type ==
855 		    ENA_ADMIN_PLACEMENT_POLICY_DEV) {
856 			tx_queue_size = RTE_MIN(tx_queue_size,
857 				llq->max_llq_depth);
858 		} else {
859 			tx_queue_size = RTE_MIN(tx_queue_size,
860 				max_queue_ext->max_tx_sq_depth);
861 		}
862 
863 		ctx->max_rx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
864 			max_queue_ext->max_per_packet_rx_descs);
865 		ctx->max_tx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
866 			max_queue_ext->max_per_packet_tx_descs);
867 	} else {
868 		struct ena_admin_queue_feature_desc *max_queues =
869 			&ctx->get_feat_ctx->max_queues;
870 		rx_queue_size = RTE_MIN(rx_queue_size,
871 			max_queues->max_cq_depth);
872 		rx_queue_size = RTE_MIN(rx_queue_size,
873 			max_queues->max_sq_depth);
874 		tx_queue_size = RTE_MIN(tx_queue_size,
875 			max_queues->max_cq_depth);
876 
877 		if (ena_dev->tx_mem_queue_type ==
878 		    ENA_ADMIN_PLACEMENT_POLICY_DEV) {
879 			tx_queue_size = RTE_MIN(tx_queue_size,
880 				llq->max_llq_depth);
881 		} else {
882 			tx_queue_size = RTE_MIN(tx_queue_size,
883 				max_queues->max_sq_depth);
884 		}
885 
886 		ctx->max_rx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
887 			max_queues->max_packet_tx_descs);
888 		ctx->max_tx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
889 			max_queues->max_packet_rx_descs);
890 	}
891 
892 	/* Round down to the nearest power of 2 */
893 	rx_queue_size = rte_align32prevpow2(rx_queue_size);
894 	tx_queue_size = rte_align32prevpow2(tx_queue_size);
895 
896 	if (unlikely(rx_queue_size == 0 || tx_queue_size == 0)) {
897 		PMD_INIT_LOG(ERR, "Invalid queue size");
898 		return -EFAULT;
899 	}
900 
901 	ctx->rx_queue_size = rx_queue_size;
902 	ctx->tx_queue_size = tx_queue_size;
903 
904 	return 0;
905 }
906 
907 static void ena_stats_restart(struct rte_eth_dev *dev)
908 {
909 	struct ena_adapter *adapter = dev->data->dev_private;
910 
911 	rte_atomic64_init(&adapter->drv_stats->ierrors);
912 	rte_atomic64_init(&adapter->drv_stats->oerrors);
913 	rte_atomic64_init(&adapter->drv_stats->rx_nombuf);
914 	rte_atomic64_init(&adapter->drv_stats->rx_drops);
915 }
916 
917 static int ena_stats_get(struct rte_eth_dev *dev,
918 			  struct rte_eth_stats *stats)
919 {
920 	struct ena_admin_basic_stats ena_stats;
921 	struct ena_adapter *adapter = dev->data->dev_private;
922 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
923 	int rc;
924 	int i;
925 	int max_rings_stats;
926 
927 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
928 		return -ENOTSUP;
929 
930 	memset(&ena_stats, 0, sizeof(ena_stats));
931 	rc = ena_com_get_dev_basic_stats(ena_dev, &ena_stats);
932 	if (unlikely(rc)) {
933 		RTE_LOG(ERR, PMD, "Could not retrieve statistics from ENA\n");
934 		return rc;
935 	}
936 
937 	/* Set of basic statistics from ENA */
938 	stats->ipackets = __MERGE_64B_H_L(ena_stats.rx_pkts_high,
939 					  ena_stats.rx_pkts_low);
940 	stats->opackets = __MERGE_64B_H_L(ena_stats.tx_pkts_high,
941 					  ena_stats.tx_pkts_low);
942 	stats->ibytes = __MERGE_64B_H_L(ena_stats.rx_bytes_high,
943 					ena_stats.rx_bytes_low);
944 	stats->obytes = __MERGE_64B_H_L(ena_stats.tx_bytes_high,
945 					ena_stats.tx_bytes_low);
946 
947 	/* Driver related stats */
948 	stats->imissed = rte_atomic64_read(&adapter->drv_stats->rx_drops);
949 	stats->ierrors = rte_atomic64_read(&adapter->drv_stats->ierrors);
950 	stats->oerrors = rte_atomic64_read(&adapter->drv_stats->oerrors);
951 	stats->rx_nombuf = rte_atomic64_read(&adapter->drv_stats->rx_nombuf);
952 
953 	max_rings_stats = RTE_MIN(dev->data->nb_rx_queues,
954 		RTE_ETHDEV_QUEUE_STAT_CNTRS);
955 	for (i = 0; i < max_rings_stats; ++i) {
956 		struct ena_stats_rx *rx_stats = &adapter->rx_ring[i].rx_stats;
957 
958 		stats->q_ibytes[i] = rx_stats->bytes;
959 		stats->q_ipackets[i] = rx_stats->cnt;
960 		stats->q_errors[i] = rx_stats->bad_desc_num +
961 			rx_stats->bad_req_id;
962 	}
963 
964 	max_rings_stats = RTE_MIN(dev->data->nb_tx_queues,
965 		RTE_ETHDEV_QUEUE_STAT_CNTRS);
966 	for (i = 0; i < max_rings_stats; ++i) {
967 		struct ena_stats_tx *tx_stats = &adapter->tx_ring[i].tx_stats;
968 
969 		stats->q_obytes[i] = tx_stats->bytes;
970 		stats->q_opackets[i] = tx_stats->cnt;
971 	}
972 
973 	return 0;
974 }
975 
976 static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
977 {
978 	struct ena_adapter *adapter;
979 	struct ena_com_dev *ena_dev;
980 	int rc = 0;
981 
982 	ena_assert_msg(dev->data != NULL, "Uninitialized device\n");
983 	ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device\n");
984 	adapter = dev->data->dev_private;
985 
986 	ena_dev = &adapter->ena_dev;
987 	ena_assert_msg(ena_dev != NULL, "Uninitialized device\n");
988 
989 	if (mtu > ena_get_mtu_conf(adapter) || mtu < ENA_MIN_MTU) {
990 		RTE_LOG(ERR, PMD,
991 			"Invalid MTU setting. new_mtu: %d "
992 			"max mtu: %d min mtu: %d\n",
993 			mtu, ena_get_mtu_conf(adapter), ENA_MIN_MTU);
994 		return -EINVAL;
995 	}
996 
997 	rc = ena_com_set_dev_mtu(ena_dev, mtu);
998 	if (rc)
999 		RTE_LOG(ERR, PMD, "Could not set MTU: %d\n", mtu);
1000 	else
1001 		RTE_LOG(NOTICE, PMD, "Set MTU: %d\n", mtu);
1002 
1003 	return rc;
1004 }
1005 
1006 static int ena_start(struct rte_eth_dev *dev)
1007 {
1008 	struct ena_adapter *adapter = dev->data->dev_private;
1009 	uint64_t ticks;
1010 	int rc = 0;
1011 
1012 	rc = ena_check_valid_conf(adapter);
1013 	if (rc)
1014 		return rc;
1015 
1016 	rc = ena_queue_start_all(dev, ENA_RING_TYPE_RX);
1017 	if (rc)
1018 		return rc;
1019 
1020 	rc = ena_queue_start_all(dev, ENA_RING_TYPE_TX);
1021 	if (rc)
1022 		goto err_start_tx;
1023 
1024 	if (adapter->rte_dev->data->dev_conf.rxmode.mq_mode &
1025 	    ETH_MQ_RX_RSS_FLAG && adapter->rte_dev->data->nb_rx_queues > 0) {
1026 		rc = ena_rss_init_default(adapter);
1027 		if (rc)
1028 			goto err_rss_init;
1029 	}
1030 
1031 	ena_stats_restart(dev);
1032 
1033 	adapter->timestamp_wd = rte_get_timer_cycles();
1034 	adapter->keep_alive_timeout = ENA_DEVICE_KALIVE_TIMEOUT;
1035 
1036 	ticks = rte_get_timer_hz();
1037 	rte_timer_reset(&adapter->timer_wd, ticks, PERIODICAL, rte_lcore_id(),
1038 			ena_timer_wd_callback, adapter);
1039 
1040 	++adapter->dev_stats.dev_start;
1041 	adapter->state = ENA_ADAPTER_STATE_RUNNING;
1042 
1043 	return 0;
1044 
1045 err_rss_init:
1046 	ena_queue_stop_all(dev, ENA_RING_TYPE_TX);
1047 err_start_tx:
1048 	ena_queue_stop_all(dev, ENA_RING_TYPE_RX);
1049 	return rc;
1050 }
1051 
1052 static void ena_stop(struct rte_eth_dev *dev)
1053 {
1054 	struct ena_adapter *adapter = dev->data->dev_private;
1055 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1056 	int rc;
1057 
1058 	rte_timer_stop_sync(&adapter->timer_wd);
1059 	ena_queue_stop_all(dev, ENA_RING_TYPE_TX);
1060 	ena_queue_stop_all(dev, ENA_RING_TYPE_RX);
1061 
1062 	if (adapter->trigger_reset) {
1063 		rc = ena_com_dev_reset(ena_dev, adapter->reset_reason);
1064 		if (rc)
1065 			RTE_LOG(ERR, PMD, "Device reset failed rc=%d\n", rc);
1066 	}
1067 
1068 	++adapter->dev_stats.dev_stop;
1069 	adapter->state = ENA_ADAPTER_STATE_STOPPED;
1070 }
1071 
1072 static int ena_create_io_queue(struct ena_ring *ring)
1073 {
1074 	struct ena_adapter *adapter;
1075 	struct ena_com_dev *ena_dev;
1076 	struct ena_com_create_io_ctx ctx =
1077 		/* policy set to _HOST just to satisfy icc compiler */
1078 		{ ENA_ADMIN_PLACEMENT_POLICY_HOST,
1079 		  0, 0, 0, 0, 0 };
1080 	uint16_t ena_qid;
1081 	unsigned int i;
1082 	int rc;
1083 
1084 	adapter = ring->adapter;
1085 	ena_dev = &adapter->ena_dev;
1086 
1087 	if (ring->type == ENA_RING_TYPE_TX) {
1088 		ena_qid = ENA_IO_TXQ_IDX(ring->id);
1089 		ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_TX;
1090 		ctx.mem_queue_type = ena_dev->tx_mem_queue_type;
1091 		ctx.queue_size = adapter->tx_ring_size;
1092 		for (i = 0; i < ring->ring_size; i++)
1093 			ring->empty_tx_reqs[i] = i;
1094 	} else {
1095 		ena_qid = ENA_IO_RXQ_IDX(ring->id);
1096 		ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_RX;
1097 		ctx.queue_size = adapter->rx_ring_size;
1098 		for (i = 0; i < ring->ring_size; i++)
1099 			ring->empty_rx_reqs[i] = i;
1100 	}
1101 	ctx.qid = ena_qid;
1102 	ctx.msix_vector = -1; /* interrupts not used */
1103 	ctx.numa_node = ring->numa_socket_id;
1104 
1105 	rc = ena_com_create_io_queue(ena_dev, &ctx);
1106 	if (rc) {
1107 		RTE_LOG(ERR, PMD,
1108 			"failed to create io queue #%d (qid:%d) rc: %d\n",
1109 			ring->id, ena_qid, rc);
1110 		return rc;
1111 	}
1112 
1113 	rc = ena_com_get_io_handlers(ena_dev, ena_qid,
1114 				     &ring->ena_com_io_sq,
1115 				     &ring->ena_com_io_cq);
1116 	if (rc) {
1117 		RTE_LOG(ERR, PMD,
1118 			"Failed to get io queue handlers. queue num %d rc: %d\n",
1119 			ring->id, rc);
1120 		ena_com_destroy_io_queue(ena_dev, ena_qid);
1121 		return rc;
1122 	}
1123 
1124 	if (ring->type == ENA_RING_TYPE_TX)
1125 		ena_com_update_numa_node(ring->ena_com_io_cq, ctx.numa_node);
1126 
1127 	return 0;
1128 }
1129 
1130 static void ena_queue_stop(struct ena_ring *ring)
1131 {
1132 	struct ena_com_dev *ena_dev = &ring->adapter->ena_dev;
1133 
1134 	if (ring->type == ENA_RING_TYPE_RX) {
1135 		ena_com_destroy_io_queue(ena_dev, ENA_IO_RXQ_IDX(ring->id));
1136 		ena_rx_queue_release_bufs(ring);
1137 	} else {
1138 		ena_com_destroy_io_queue(ena_dev, ENA_IO_TXQ_IDX(ring->id));
1139 		ena_tx_queue_release_bufs(ring);
1140 	}
1141 }
1142 
1143 static void ena_queue_stop_all(struct rte_eth_dev *dev,
1144 			      enum ena_ring_type ring_type)
1145 {
1146 	struct ena_adapter *adapter = dev->data->dev_private;
1147 	struct ena_ring *queues = NULL;
1148 	uint16_t nb_queues, i;
1149 
1150 	if (ring_type == ENA_RING_TYPE_RX) {
1151 		queues = adapter->rx_ring;
1152 		nb_queues = dev->data->nb_rx_queues;
1153 	} else {
1154 		queues = adapter->tx_ring;
1155 		nb_queues = dev->data->nb_tx_queues;
1156 	}
1157 
1158 	for (i = 0; i < nb_queues; ++i)
1159 		if (queues[i].configured)
1160 			ena_queue_stop(&queues[i]);
1161 }
1162 
1163 static int ena_queue_start(struct ena_ring *ring)
1164 {
1165 	int rc, bufs_num;
1166 
1167 	ena_assert_msg(ring->configured == 1,
1168 		       "Trying to start unconfigured queue\n");
1169 
1170 	rc = ena_create_io_queue(ring);
1171 	if (rc) {
1172 		PMD_INIT_LOG(ERR, "Failed to create IO queue!");
1173 		return rc;
1174 	}
1175 
1176 	ring->next_to_clean = 0;
1177 	ring->next_to_use = 0;
1178 
1179 	if (ring->type == ENA_RING_TYPE_TX) {
1180 		ring->tx_stats.available_desc =
1181 			ena_com_free_desc(ring->ena_com_io_sq);
1182 		return 0;
1183 	}
1184 
1185 	bufs_num = ring->ring_size - 1;
1186 	rc = ena_populate_rx_queue(ring, bufs_num);
1187 	if (rc != bufs_num) {
1188 		ena_com_destroy_io_queue(&ring->adapter->ena_dev,
1189 					 ENA_IO_RXQ_IDX(ring->id));
1190 		PMD_INIT_LOG(ERR, "Failed to populate rx ring !");
1191 		return ENA_COM_FAULT;
1192 	}
1193 
1194 	return 0;
1195 }
1196 
1197 static int ena_tx_queue_setup(struct rte_eth_dev *dev,
1198 			      uint16_t queue_idx,
1199 			      uint16_t nb_desc,
1200 			      unsigned int socket_id,
1201 			      const struct rte_eth_txconf *tx_conf)
1202 {
1203 	struct ena_ring *txq = NULL;
1204 	struct ena_adapter *adapter = dev->data->dev_private;
1205 	unsigned int i;
1206 
1207 	txq = &adapter->tx_ring[queue_idx];
1208 
1209 	if (txq->configured) {
1210 		RTE_LOG(CRIT, PMD,
1211 			"API violation. Queue %d is already configured\n",
1212 			queue_idx);
1213 		return ENA_COM_FAULT;
1214 	}
1215 
1216 	if (!rte_is_power_of_2(nb_desc)) {
1217 		RTE_LOG(ERR, PMD,
1218 			"Unsupported size of TX queue: %d is not a power of 2.\n",
1219 			nb_desc);
1220 		return -EINVAL;
1221 	}
1222 
1223 	if (nb_desc > adapter->tx_ring_size) {
1224 		RTE_LOG(ERR, PMD,
1225 			"Unsupported size of TX queue (max size: %d)\n",
1226 			adapter->tx_ring_size);
1227 		return -EINVAL;
1228 	}
1229 
1230 	if (nb_desc == RTE_ETH_DEV_FALLBACK_TX_RINGSIZE)
1231 		nb_desc = adapter->tx_ring_size;
1232 
1233 	txq->port_id = dev->data->port_id;
1234 	txq->next_to_clean = 0;
1235 	txq->next_to_use = 0;
1236 	txq->ring_size = nb_desc;
1237 	txq->numa_socket_id = socket_id;
1238 
1239 	txq->tx_buffer_info = rte_zmalloc("txq->tx_buffer_info",
1240 					  sizeof(struct ena_tx_buffer) *
1241 					  txq->ring_size,
1242 					  RTE_CACHE_LINE_SIZE);
1243 	if (!txq->tx_buffer_info) {
1244 		RTE_LOG(ERR, PMD, "failed to alloc mem for tx buffer info\n");
1245 		return -ENOMEM;
1246 	}
1247 
1248 	txq->empty_tx_reqs = rte_zmalloc("txq->empty_tx_reqs",
1249 					 sizeof(u16) * txq->ring_size,
1250 					 RTE_CACHE_LINE_SIZE);
1251 	if (!txq->empty_tx_reqs) {
1252 		RTE_LOG(ERR, PMD, "failed to alloc mem for tx reqs\n");
1253 		rte_free(txq->tx_buffer_info);
1254 		return -ENOMEM;
1255 	}
1256 
1257 	txq->push_buf_intermediate_buf =
1258 		rte_zmalloc("txq->push_buf_intermediate_buf",
1259 			    txq->tx_max_header_size,
1260 			    RTE_CACHE_LINE_SIZE);
1261 	if (!txq->push_buf_intermediate_buf) {
1262 		RTE_LOG(ERR, PMD, "failed to alloc push buff for LLQ\n");
1263 		rte_free(txq->tx_buffer_info);
1264 		rte_free(txq->empty_tx_reqs);
1265 		return -ENOMEM;
1266 	}
1267 
1268 	for (i = 0; i < txq->ring_size; i++)
1269 		txq->empty_tx_reqs[i] = i;
1270 
1271 	if (tx_conf != NULL) {
1272 		txq->offloads =
1273 			tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
1274 	}
1275 	/* Store pointer to this queue in upper layer */
1276 	txq->configured = 1;
1277 	dev->data->tx_queues[queue_idx] = txq;
1278 
1279 	return 0;
1280 }
1281 
1282 static int ena_rx_queue_setup(struct rte_eth_dev *dev,
1283 			      uint16_t queue_idx,
1284 			      uint16_t nb_desc,
1285 			      unsigned int socket_id,
1286 			      __rte_unused const struct rte_eth_rxconf *rx_conf,
1287 			      struct rte_mempool *mp)
1288 {
1289 	struct ena_adapter *adapter = dev->data->dev_private;
1290 	struct ena_ring *rxq = NULL;
1291 	int i;
1292 
1293 	rxq = &adapter->rx_ring[queue_idx];
1294 	if (rxq->configured) {
1295 		RTE_LOG(CRIT, PMD,
1296 			"API violation. Queue %d is already configured\n",
1297 			queue_idx);
1298 		return ENA_COM_FAULT;
1299 	}
1300 
1301 	if (nb_desc == RTE_ETH_DEV_FALLBACK_RX_RINGSIZE)
1302 		nb_desc = adapter->rx_ring_size;
1303 
1304 	if (!rte_is_power_of_2(nb_desc)) {
1305 		RTE_LOG(ERR, PMD,
1306 			"Unsupported size of RX queue: %d is not a power of 2.\n",
1307 			nb_desc);
1308 		return -EINVAL;
1309 	}
1310 
1311 	if (nb_desc > adapter->rx_ring_size) {
1312 		RTE_LOG(ERR, PMD,
1313 			"Unsupported size of RX queue (max size: %d)\n",
1314 			adapter->rx_ring_size);
1315 		return -EINVAL;
1316 	}
1317 
1318 	rxq->port_id = dev->data->port_id;
1319 	rxq->next_to_clean = 0;
1320 	rxq->next_to_use = 0;
1321 	rxq->ring_size = nb_desc;
1322 	rxq->numa_socket_id = socket_id;
1323 	rxq->mb_pool = mp;
1324 
1325 	rxq->rx_buffer_info = rte_zmalloc("rxq->buffer_info",
1326 					  sizeof(struct rte_mbuf *) * nb_desc,
1327 					  RTE_CACHE_LINE_SIZE);
1328 	if (!rxq->rx_buffer_info) {
1329 		RTE_LOG(ERR, PMD, "failed to alloc mem for rx buffer info\n");
1330 		return -ENOMEM;
1331 	}
1332 
1333 	rxq->rx_refill_buffer = rte_zmalloc("rxq->rx_refill_buffer",
1334 					    sizeof(struct rte_mbuf *) * nb_desc,
1335 					    RTE_CACHE_LINE_SIZE);
1336 
1337 	if (!rxq->rx_refill_buffer) {
1338 		RTE_LOG(ERR, PMD, "failed to alloc mem for rx refill buffer\n");
1339 		rte_free(rxq->rx_buffer_info);
1340 		rxq->rx_buffer_info = NULL;
1341 		return -ENOMEM;
1342 	}
1343 
1344 	rxq->empty_rx_reqs = rte_zmalloc("rxq->empty_rx_reqs",
1345 					 sizeof(uint16_t) * nb_desc,
1346 					 RTE_CACHE_LINE_SIZE);
1347 	if (!rxq->empty_rx_reqs) {
1348 		RTE_LOG(ERR, PMD, "failed to alloc mem for empty rx reqs\n");
1349 		rte_free(rxq->rx_buffer_info);
1350 		rxq->rx_buffer_info = NULL;
1351 		rte_free(rxq->rx_refill_buffer);
1352 		rxq->rx_refill_buffer = NULL;
1353 		return -ENOMEM;
1354 	}
1355 
1356 	for (i = 0; i < nb_desc; i++)
1357 		rxq->empty_rx_reqs[i] = i;
1358 
1359 	/* Store pointer to this queue in upper layer */
1360 	rxq->configured = 1;
1361 	dev->data->rx_queues[queue_idx] = rxq;
1362 
1363 	return 0;
1364 }
1365 
1366 static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count)
1367 {
1368 	unsigned int i;
1369 	int rc;
1370 	uint16_t ring_size = rxq->ring_size;
1371 	uint16_t ring_mask = ring_size - 1;
1372 	uint16_t next_to_use = rxq->next_to_use;
1373 	uint16_t in_use, req_id;
1374 	struct rte_mbuf **mbufs = rxq->rx_refill_buffer;
1375 
1376 	if (unlikely(!count))
1377 		return 0;
1378 
1379 	in_use = rxq->next_to_use - rxq->next_to_clean;
1380 	ena_assert_msg(((in_use + count) < ring_size), "bad ring state\n");
1381 
1382 	/* get resources for incoming packets */
1383 	rc = rte_mempool_get_bulk(rxq->mb_pool, (void **)mbufs, count);
1384 	if (unlikely(rc < 0)) {
1385 		rte_atomic64_inc(&rxq->adapter->drv_stats->rx_nombuf);
1386 		++rxq->rx_stats.mbuf_alloc_fail;
1387 		PMD_RX_LOG(DEBUG, "there are no enough free buffers");
1388 		return 0;
1389 	}
1390 
1391 	for (i = 0; i < count; i++) {
1392 		uint16_t next_to_use_masked = next_to_use & ring_mask;
1393 		struct rte_mbuf *mbuf = mbufs[i];
1394 		struct ena_com_buf ebuf;
1395 
1396 		if (likely((i + 4) < count))
1397 			rte_prefetch0(mbufs[i + 4]);
1398 
1399 		req_id = rxq->empty_rx_reqs[next_to_use_masked];
1400 		rc = validate_rx_req_id(rxq, req_id);
1401 		if (unlikely(rc < 0))
1402 			break;
1403 		rxq->rx_buffer_info[req_id] = mbuf;
1404 
1405 		/* prepare physical address for DMA transaction */
1406 		ebuf.paddr = mbuf->buf_iova + RTE_PKTMBUF_HEADROOM;
1407 		ebuf.len = mbuf->buf_len - RTE_PKTMBUF_HEADROOM;
1408 		/* pass resource to device */
1409 		rc = ena_com_add_single_rx_desc(rxq->ena_com_io_sq,
1410 						&ebuf, req_id);
1411 		if (unlikely(rc)) {
1412 			RTE_LOG(WARNING, PMD, "failed adding rx desc\n");
1413 			rxq->rx_buffer_info[req_id] = NULL;
1414 			break;
1415 		}
1416 		next_to_use++;
1417 	}
1418 
1419 	if (unlikely(i < count)) {
1420 		RTE_LOG(WARNING, PMD, "refilled rx qid %d with only %d "
1421 			"buffers (from %d)\n", rxq->id, i, count);
1422 		rte_mempool_put_bulk(rxq->mb_pool, (void **)(&mbufs[i]),
1423 				     count - i);
1424 		++rxq->rx_stats.refill_partial;
1425 	}
1426 
1427 	/* When we submitted free recources to device... */
1428 	if (likely(i > 0)) {
1429 		/* ...let HW know that it can fill buffers with data
1430 		 *
1431 		 * Add memory barrier to make sure the desc were written before
1432 		 * issue a doorbell
1433 		 */
1434 		rte_wmb();
1435 		ena_com_write_sq_doorbell(rxq->ena_com_io_sq);
1436 
1437 		rxq->next_to_use = next_to_use;
1438 	}
1439 
1440 	return i;
1441 }
1442 
1443 static int ena_device_init(struct ena_com_dev *ena_dev,
1444 			   struct ena_com_dev_get_features_ctx *get_feat_ctx,
1445 			   bool *wd_state)
1446 {
1447 	uint32_t aenq_groups;
1448 	int rc;
1449 	bool readless_supported;
1450 
1451 	/* Initialize mmio registers */
1452 	rc = ena_com_mmio_reg_read_request_init(ena_dev);
1453 	if (rc) {
1454 		RTE_LOG(ERR, PMD, "failed to init mmio read less\n");
1455 		return rc;
1456 	}
1457 
1458 	/* The PCIe configuration space revision id indicate if mmio reg
1459 	 * read is disabled.
1460 	 */
1461 	readless_supported =
1462 		!(((struct rte_pci_device *)ena_dev->dmadev)->id.class_id
1463 			       & ENA_MMIO_DISABLE_REG_READ);
1464 	ena_com_set_mmio_read_mode(ena_dev, readless_supported);
1465 
1466 	/* reset device */
1467 	rc = ena_com_dev_reset(ena_dev, ENA_REGS_RESET_NORMAL);
1468 	if (rc) {
1469 		RTE_LOG(ERR, PMD, "cannot reset device\n");
1470 		goto err_mmio_read_less;
1471 	}
1472 
1473 	/* check FW version */
1474 	rc = ena_com_validate_version(ena_dev);
1475 	if (rc) {
1476 		RTE_LOG(ERR, PMD, "device version is too low\n");
1477 		goto err_mmio_read_less;
1478 	}
1479 
1480 	ena_dev->dma_addr_bits = ena_com_get_dma_width(ena_dev);
1481 
1482 	/* ENA device administration layer init */
1483 	rc = ena_com_admin_init(ena_dev, &aenq_handlers);
1484 	if (rc) {
1485 		RTE_LOG(ERR, PMD,
1486 			"cannot initialize ena admin queue with device\n");
1487 		goto err_mmio_read_less;
1488 	}
1489 
1490 	/* To enable the msix interrupts the driver needs to know the number
1491 	 * of queues. So the driver uses polling mode to retrieve this
1492 	 * information.
1493 	 */
1494 	ena_com_set_admin_polling_mode(ena_dev, true);
1495 
1496 	ena_config_host_info(ena_dev);
1497 
1498 	/* Get Device Attributes and features */
1499 	rc = ena_com_get_dev_attr_feat(ena_dev, get_feat_ctx);
1500 	if (rc) {
1501 		RTE_LOG(ERR, PMD,
1502 			"cannot get attribute for ena device rc= %d\n", rc);
1503 		goto err_admin_init;
1504 	}
1505 
1506 	aenq_groups = BIT(ENA_ADMIN_LINK_CHANGE) |
1507 		      BIT(ENA_ADMIN_NOTIFICATION) |
1508 		      BIT(ENA_ADMIN_KEEP_ALIVE) |
1509 		      BIT(ENA_ADMIN_FATAL_ERROR) |
1510 		      BIT(ENA_ADMIN_WARNING);
1511 
1512 	aenq_groups &= get_feat_ctx->aenq.supported_groups;
1513 	rc = ena_com_set_aenq_config(ena_dev, aenq_groups);
1514 	if (rc) {
1515 		RTE_LOG(ERR, PMD, "Cannot configure aenq groups rc: %d\n", rc);
1516 		goto err_admin_init;
1517 	}
1518 
1519 	*wd_state = !!(aenq_groups & BIT(ENA_ADMIN_KEEP_ALIVE));
1520 
1521 	return 0;
1522 
1523 err_admin_init:
1524 	ena_com_admin_destroy(ena_dev);
1525 
1526 err_mmio_read_less:
1527 	ena_com_mmio_reg_read_request_destroy(ena_dev);
1528 
1529 	return rc;
1530 }
1531 
1532 static void ena_interrupt_handler_rte(void *cb_arg)
1533 {
1534 	struct ena_adapter *adapter = cb_arg;
1535 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1536 
1537 	ena_com_admin_q_comp_intr_handler(ena_dev);
1538 	if (likely(adapter->state != ENA_ADAPTER_STATE_CLOSED))
1539 		ena_com_aenq_intr_handler(ena_dev, adapter);
1540 }
1541 
1542 static void check_for_missing_keep_alive(struct ena_adapter *adapter)
1543 {
1544 	if (!adapter->wd_state)
1545 		return;
1546 
1547 	if (adapter->keep_alive_timeout == ENA_HW_HINTS_NO_TIMEOUT)
1548 		return;
1549 
1550 	if (unlikely((rte_get_timer_cycles() - adapter->timestamp_wd) >=
1551 	    adapter->keep_alive_timeout)) {
1552 		RTE_LOG(ERR, PMD, "Keep alive timeout\n");
1553 		adapter->reset_reason = ENA_REGS_RESET_KEEP_ALIVE_TO;
1554 		adapter->trigger_reset = true;
1555 		++adapter->dev_stats.wd_expired;
1556 	}
1557 }
1558 
1559 /* Check if admin queue is enabled */
1560 static void check_for_admin_com_state(struct ena_adapter *adapter)
1561 {
1562 	if (unlikely(!ena_com_get_admin_running_state(&adapter->ena_dev))) {
1563 		RTE_LOG(ERR, PMD, "ENA admin queue is not in running state!\n");
1564 		adapter->reset_reason = ENA_REGS_RESET_ADMIN_TO;
1565 		adapter->trigger_reset = true;
1566 	}
1567 }
1568 
1569 static void ena_timer_wd_callback(__rte_unused struct rte_timer *timer,
1570 				  void *arg)
1571 {
1572 	struct ena_adapter *adapter = arg;
1573 	struct rte_eth_dev *dev = adapter->rte_dev;
1574 
1575 	check_for_missing_keep_alive(adapter);
1576 	check_for_admin_com_state(adapter);
1577 
1578 	if (unlikely(adapter->trigger_reset)) {
1579 		RTE_LOG(ERR, PMD, "Trigger reset is on\n");
1580 		_rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_RESET,
1581 			NULL);
1582 	}
1583 }
1584 
1585 static inline void
1586 set_default_llq_configurations(struct ena_llq_configurations *llq_config)
1587 {
1588 	llq_config->llq_header_location = ENA_ADMIN_INLINE_HEADER;
1589 	llq_config->llq_ring_entry_size = ENA_ADMIN_LIST_ENTRY_SIZE_128B;
1590 	llq_config->llq_stride_ctrl = ENA_ADMIN_MULTIPLE_DESCS_PER_ENTRY;
1591 	llq_config->llq_num_decs_before_header =
1592 		ENA_ADMIN_LLQ_NUM_DESCS_BEFORE_HEADER_2;
1593 	llq_config->llq_ring_entry_size_value = 128;
1594 }
1595 
1596 static int
1597 ena_set_queues_placement_policy(struct ena_adapter *adapter,
1598 				struct ena_com_dev *ena_dev,
1599 				struct ena_admin_feature_llq_desc *llq,
1600 				struct ena_llq_configurations *llq_default_configurations)
1601 {
1602 	int rc;
1603 	u32 llq_feature_mask;
1604 
1605 	llq_feature_mask = 1 << ENA_ADMIN_LLQ;
1606 	if (!(ena_dev->supported_features & llq_feature_mask)) {
1607 		RTE_LOG(INFO, PMD,
1608 			"LLQ is not supported. Fallback to host mode policy.\n");
1609 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1610 		return 0;
1611 	}
1612 
1613 	rc = ena_com_config_dev_mode(ena_dev, llq, llq_default_configurations);
1614 	if (unlikely(rc)) {
1615 		PMD_INIT_LOG(WARNING, "Failed to config dev mode. "
1616 			"Fallback to host mode policy.");
1617 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1618 		return 0;
1619 	}
1620 
1621 	/* Nothing to config, exit */
1622 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST)
1623 		return 0;
1624 
1625 	if (!adapter->dev_mem_base) {
1626 		RTE_LOG(ERR, PMD, "Unable to access LLQ bar resource. "
1627 			"Fallback to host mode policy.\n.");
1628 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1629 		return 0;
1630 	}
1631 
1632 	ena_dev->mem_bar = adapter->dev_mem_base;
1633 
1634 	return 0;
1635 }
1636 
1637 static int ena_calc_io_queue_num(struct ena_com_dev *ena_dev,
1638 				 struct ena_com_dev_get_features_ctx *get_feat_ctx)
1639 {
1640 	uint32_t io_tx_sq_num, io_tx_cq_num, io_rx_num, io_queue_num;
1641 
1642 	/* Regular queues capabilities */
1643 	if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
1644 		struct ena_admin_queue_ext_feature_fields *max_queue_ext =
1645 			&get_feat_ctx->max_queue_ext.max_queue_ext;
1646 		io_rx_num = RTE_MIN(max_queue_ext->max_rx_sq_num,
1647 				    max_queue_ext->max_rx_cq_num);
1648 		io_tx_sq_num = max_queue_ext->max_tx_sq_num;
1649 		io_tx_cq_num = max_queue_ext->max_tx_cq_num;
1650 	} else {
1651 		struct ena_admin_queue_feature_desc *max_queues =
1652 			&get_feat_ctx->max_queues;
1653 		io_tx_sq_num = max_queues->max_sq_num;
1654 		io_tx_cq_num = max_queues->max_cq_num;
1655 		io_rx_num = RTE_MIN(io_tx_sq_num, io_tx_cq_num);
1656 	}
1657 
1658 	/* In case of LLQ use the llq number in the get feature cmd */
1659 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV)
1660 		io_tx_sq_num = get_feat_ctx->llq.max_llq_num;
1661 
1662 	io_queue_num = RTE_MIN(ENA_MAX_NUM_IO_QUEUES, io_rx_num);
1663 	io_queue_num = RTE_MIN(io_queue_num, io_tx_sq_num);
1664 	io_queue_num = RTE_MIN(io_queue_num, io_tx_cq_num);
1665 
1666 	if (unlikely(io_queue_num == 0)) {
1667 		RTE_LOG(ERR, PMD, "Number of IO queues should not be 0\n");
1668 		return -EFAULT;
1669 	}
1670 
1671 	return io_queue_num;
1672 }
1673 
1674 static int eth_ena_dev_init(struct rte_eth_dev *eth_dev)
1675 {
1676 	struct ena_calc_queue_size_ctx calc_queue_ctx = { 0 };
1677 	struct rte_pci_device *pci_dev;
1678 	struct rte_intr_handle *intr_handle;
1679 	struct ena_adapter *adapter = eth_dev->data->dev_private;
1680 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1681 	struct ena_com_dev_get_features_ctx get_feat_ctx;
1682 	struct ena_llq_configurations llq_config;
1683 	const char *queue_type_str;
1684 	int rc;
1685 
1686 	static int adapters_found;
1687 	bool wd_state;
1688 
1689 	eth_dev->dev_ops = &ena_dev_ops;
1690 	eth_dev->rx_pkt_burst = &eth_ena_recv_pkts;
1691 	eth_dev->tx_pkt_burst = &eth_ena_xmit_pkts;
1692 	eth_dev->tx_pkt_prepare = &eth_ena_prep_pkts;
1693 
1694 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1695 		return 0;
1696 
1697 	memset(adapter, 0, sizeof(struct ena_adapter));
1698 	ena_dev = &adapter->ena_dev;
1699 
1700 	adapter->rte_eth_dev_data = eth_dev->data;
1701 	adapter->rte_dev = eth_dev;
1702 
1703 	pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1704 	adapter->pdev = pci_dev;
1705 
1706 	PMD_INIT_LOG(INFO, "Initializing %x:%x:%x.%d",
1707 		     pci_dev->addr.domain,
1708 		     pci_dev->addr.bus,
1709 		     pci_dev->addr.devid,
1710 		     pci_dev->addr.function);
1711 
1712 	intr_handle = &pci_dev->intr_handle;
1713 
1714 	adapter->regs = pci_dev->mem_resource[ENA_REGS_BAR].addr;
1715 	adapter->dev_mem_base = pci_dev->mem_resource[ENA_MEM_BAR].addr;
1716 
1717 	if (!adapter->regs) {
1718 		PMD_INIT_LOG(CRIT, "Failed to access registers BAR(%d)",
1719 			     ENA_REGS_BAR);
1720 		return -ENXIO;
1721 	}
1722 
1723 	ena_dev->reg_bar = adapter->regs;
1724 	ena_dev->dmadev = adapter->pdev;
1725 
1726 	adapter->id_number = adapters_found;
1727 
1728 	snprintf(adapter->name, ENA_NAME_MAX_LEN, "ena_%d",
1729 		 adapter->id_number);
1730 
1731 	/* device specific initialization routine */
1732 	rc = ena_device_init(ena_dev, &get_feat_ctx, &wd_state);
1733 	if (rc) {
1734 		PMD_INIT_LOG(CRIT, "Failed to init ENA device");
1735 		goto err;
1736 	}
1737 	adapter->wd_state = wd_state;
1738 
1739 	set_default_llq_configurations(&llq_config);
1740 	rc = ena_set_queues_placement_policy(adapter, ena_dev,
1741 					     &get_feat_ctx.llq, &llq_config);
1742 	if (unlikely(rc)) {
1743 		PMD_INIT_LOG(CRIT, "Failed to set placement policy");
1744 		return rc;
1745 	}
1746 
1747 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST)
1748 		queue_type_str = "Regular";
1749 	else
1750 		queue_type_str = "Low latency";
1751 	RTE_LOG(INFO, PMD, "Placement policy: %s\n", queue_type_str);
1752 
1753 	calc_queue_ctx.ena_dev = ena_dev;
1754 	calc_queue_ctx.get_feat_ctx = &get_feat_ctx;
1755 	adapter->num_queues = ena_calc_io_queue_num(ena_dev,
1756 						    &get_feat_ctx);
1757 
1758 	rc = ena_calc_queue_size(&calc_queue_ctx);
1759 	if (unlikely((rc != 0) || (adapter->num_queues <= 0))) {
1760 		rc = -EFAULT;
1761 		goto err_device_destroy;
1762 	}
1763 
1764 	adapter->tx_ring_size = calc_queue_ctx.tx_queue_size;
1765 	adapter->rx_ring_size = calc_queue_ctx.rx_queue_size;
1766 
1767 	adapter->max_tx_sgl_size = calc_queue_ctx.max_tx_sgl_size;
1768 	adapter->max_rx_sgl_size = calc_queue_ctx.max_rx_sgl_size;
1769 
1770 	/* prepare ring structures */
1771 	ena_init_rings(adapter);
1772 
1773 	ena_config_debug_area(adapter);
1774 
1775 	/* Set max MTU for this device */
1776 	adapter->max_mtu = get_feat_ctx.dev_attr.max_mtu;
1777 
1778 	/* set device support for offloads */
1779 	adapter->offloads.tso4_supported = (get_feat_ctx.offload.tx &
1780 		ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK) != 0;
1781 	adapter->offloads.tx_csum_supported = (get_feat_ctx.offload.tx &
1782 		ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK) != 0;
1783 	adapter->offloads.rx_csum_supported =
1784 		(get_feat_ctx.offload.rx_supported &
1785 		ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV4_CSUM_MASK) != 0;
1786 
1787 	/* Copy MAC address and point DPDK to it */
1788 	eth_dev->data->mac_addrs = (struct rte_ether_addr *)adapter->mac_addr;
1789 	rte_ether_addr_copy((struct rte_ether_addr *)
1790 			get_feat_ctx.dev_attr.mac_addr,
1791 			(struct rte_ether_addr *)adapter->mac_addr);
1792 
1793 	/*
1794 	 * Pass the information to the rte_eth_dev_close() that it should also
1795 	 * release the private port resources.
1796 	 */
1797 	eth_dev->data->dev_flags |= RTE_ETH_DEV_CLOSE_REMOVE;
1798 
1799 	adapter->drv_stats = rte_zmalloc("adapter stats",
1800 					 sizeof(*adapter->drv_stats),
1801 					 RTE_CACHE_LINE_SIZE);
1802 	if (!adapter->drv_stats) {
1803 		RTE_LOG(ERR, PMD, "failed to alloc mem for adapter stats\n");
1804 		rc = -ENOMEM;
1805 		goto err_delete_debug_area;
1806 	}
1807 
1808 	rte_intr_callback_register(intr_handle,
1809 				   ena_interrupt_handler_rte,
1810 				   adapter);
1811 	rte_intr_enable(intr_handle);
1812 	ena_com_set_admin_polling_mode(ena_dev, false);
1813 	ena_com_admin_aenq_enable(ena_dev);
1814 
1815 	if (adapters_found == 0)
1816 		rte_timer_subsystem_init();
1817 	rte_timer_init(&adapter->timer_wd);
1818 
1819 	adapters_found++;
1820 	adapter->state = ENA_ADAPTER_STATE_INIT;
1821 
1822 	return 0;
1823 
1824 err_delete_debug_area:
1825 	ena_com_delete_debug_area(ena_dev);
1826 
1827 err_device_destroy:
1828 	ena_com_delete_host_info(ena_dev);
1829 	ena_com_admin_destroy(ena_dev);
1830 
1831 err:
1832 	return rc;
1833 }
1834 
1835 static void ena_destroy_device(struct rte_eth_dev *eth_dev)
1836 {
1837 	struct ena_adapter *adapter = eth_dev->data->dev_private;
1838 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1839 
1840 	if (adapter->state == ENA_ADAPTER_STATE_FREE)
1841 		return;
1842 
1843 	ena_com_set_admin_running_state(ena_dev, false);
1844 
1845 	if (adapter->state != ENA_ADAPTER_STATE_CLOSED)
1846 		ena_close(eth_dev);
1847 
1848 	ena_com_delete_debug_area(ena_dev);
1849 	ena_com_delete_host_info(ena_dev);
1850 
1851 	ena_com_abort_admin_commands(ena_dev);
1852 	ena_com_wait_for_abort_completion(ena_dev);
1853 	ena_com_admin_destroy(ena_dev);
1854 	ena_com_mmio_reg_read_request_destroy(ena_dev);
1855 
1856 	adapter->state = ENA_ADAPTER_STATE_FREE;
1857 }
1858 
1859 static int eth_ena_dev_uninit(struct rte_eth_dev *eth_dev)
1860 {
1861 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1862 		return 0;
1863 
1864 	ena_destroy_device(eth_dev);
1865 
1866 	eth_dev->dev_ops = NULL;
1867 	eth_dev->rx_pkt_burst = NULL;
1868 	eth_dev->tx_pkt_burst = NULL;
1869 	eth_dev->tx_pkt_prepare = NULL;
1870 
1871 	return 0;
1872 }
1873 
1874 static int ena_dev_configure(struct rte_eth_dev *dev)
1875 {
1876 	struct ena_adapter *adapter = dev->data->dev_private;
1877 
1878 	adapter->state = ENA_ADAPTER_STATE_CONFIG;
1879 
1880 	adapter->tx_selected_offloads = dev->data->dev_conf.txmode.offloads;
1881 	adapter->rx_selected_offloads = dev->data->dev_conf.rxmode.offloads;
1882 	return 0;
1883 }
1884 
1885 static void ena_init_rings(struct ena_adapter *adapter)
1886 {
1887 	int i;
1888 
1889 	for (i = 0; i < adapter->num_queues; i++) {
1890 		struct ena_ring *ring = &adapter->tx_ring[i];
1891 
1892 		ring->configured = 0;
1893 		ring->type = ENA_RING_TYPE_TX;
1894 		ring->adapter = adapter;
1895 		ring->id = i;
1896 		ring->tx_mem_queue_type = adapter->ena_dev.tx_mem_queue_type;
1897 		ring->tx_max_header_size = adapter->ena_dev.tx_max_header_size;
1898 		ring->sgl_size = adapter->max_tx_sgl_size;
1899 	}
1900 
1901 	for (i = 0; i < adapter->num_queues; i++) {
1902 		struct ena_ring *ring = &adapter->rx_ring[i];
1903 
1904 		ring->configured = 0;
1905 		ring->type = ENA_RING_TYPE_RX;
1906 		ring->adapter = adapter;
1907 		ring->id = i;
1908 		ring->sgl_size = adapter->max_rx_sgl_size;
1909 	}
1910 }
1911 
1912 static int ena_infos_get(struct rte_eth_dev *dev,
1913 			  struct rte_eth_dev_info *dev_info)
1914 {
1915 	struct ena_adapter *adapter;
1916 	struct ena_com_dev *ena_dev;
1917 	uint64_t rx_feat = 0, tx_feat = 0;
1918 
1919 	ena_assert_msg(dev->data != NULL, "Uninitialized device\n");
1920 	ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device\n");
1921 	adapter = dev->data->dev_private;
1922 
1923 	ena_dev = &adapter->ena_dev;
1924 	ena_assert_msg(ena_dev != NULL, "Uninitialized device\n");
1925 
1926 	dev_info->speed_capa =
1927 			ETH_LINK_SPEED_1G   |
1928 			ETH_LINK_SPEED_2_5G |
1929 			ETH_LINK_SPEED_5G   |
1930 			ETH_LINK_SPEED_10G  |
1931 			ETH_LINK_SPEED_25G  |
1932 			ETH_LINK_SPEED_40G  |
1933 			ETH_LINK_SPEED_50G  |
1934 			ETH_LINK_SPEED_100G;
1935 
1936 	/* Set Tx & Rx features available for device */
1937 	if (adapter->offloads.tso4_supported)
1938 		tx_feat	|= DEV_TX_OFFLOAD_TCP_TSO;
1939 
1940 	if (adapter->offloads.tx_csum_supported)
1941 		tx_feat |= DEV_TX_OFFLOAD_IPV4_CKSUM |
1942 			DEV_TX_OFFLOAD_UDP_CKSUM |
1943 			DEV_TX_OFFLOAD_TCP_CKSUM;
1944 
1945 	if (adapter->offloads.rx_csum_supported)
1946 		rx_feat |= DEV_RX_OFFLOAD_IPV4_CKSUM |
1947 			DEV_RX_OFFLOAD_UDP_CKSUM  |
1948 			DEV_RX_OFFLOAD_TCP_CKSUM;
1949 
1950 	rx_feat |= DEV_RX_OFFLOAD_JUMBO_FRAME;
1951 
1952 	/* Inform framework about available features */
1953 	dev_info->rx_offload_capa = rx_feat;
1954 	dev_info->rx_queue_offload_capa = rx_feat;
1955 	dev_info->tx_offload_capa = tx_feat;
1956 	dev_info->tx_queue_offload_capa = tx_feat;
1957 
1958 	dev_info->flow_type_rss_offloads = ETH_RSS_IP | ETH_RSS_TCP |
1959 					   ETH_RSS_UDP;
1960 
1961 	dev_info->min_rx_bufsize = ENA_MIN_FRAME_LEN;
1962 	dev_info->max_rx_pktlen  = adapter->max_mtu;
1963 	dev_info->max_mac_addrs = 1;
1964 
1965 	dev_info->max_rx_queues = adapter->num_queues;
1966 	dev_info->max_tx_queues = adapter->num_queues;
1967 	dev_info->reta_size = ENA_RX_RSS_TABLE_SIZE;
1968 
1969 	adapter->tx_supported_offloads = tx_feat;
1970 	adapter->rx_supported_offloads = rx_feat;
1971 
1972 	dev_info->rx_desc_lim.nb_max = adapter->rx_ring_size;
1973 	dev_info->rx_desc_lim.nb_min = ENA_MIN_RING_DESC;
1974 	dev_info->rx_desc_lim.nb_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
1975 					adapter->max_rx_sgl_size);
1976 	dev_info->rx_desc_lim.nb_mtu_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
1977 					adapter->max_rx_sgl_size);
1978 
1979 	dev_info->tx_desc_lim.nb_max = adapter->tx_ring_size;
1980 	dev_info->tx_desc_lim.nb_min = ENA_MIN_RING_DESC;
1981 	dev_info->tx_desc_lim.nb_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
1982 					adapter->max_tx_sgl_size);
1983 	dev_info->tx_desc_lim.nb_mtu_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
1984 					adapter->max_tx_sgl_size);
1985 
1986 	return 0;
1987 }
1988 
1989 static uint16_t eth_ena_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
1990 				  uint16_t nb_pkts)
1991 {
1992 	struct ena_ring *rx_ring = (struct ena_ring *)(rx_queue);
1993 	unsigned int ring_size = rx_ring->ring_size;
1994 	unsigned int ring_mask = ring_size - 1;
1995 	uint16_t next_to_clean = rx_ring->next_to_clean;
1996 	uint16_t desc_in_use = 0;
1997 	uint16_t req_id;
1998 	unsigned int recv_idx = 0;
1999 	struct rte_mbuf *mbuf = NULL;
2000 	struct rte_mbuf *mbuf_head = NULL;
2001 	struct rte_mbuf *mbuf_prev = NULL;
2002 	struct rte_mbuf **rx_buff_info = rx_ring->rx_buffer_info;
2003 	unsigned int completed;
2004 
2005 	struct ena_com_rx_ctx ena_rx_ctx;
2006 	int rc = 0;
2007 
2008 	/* Check adapter state */
2009 	if (unlikely(rx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) {
2010 		RTE_LOG(ALERT, PMD,
2011 			"Trying to receive pkts while device is NOT running\n");
2012 		return 0;
2013 	}
2014 
2015 	desc_in_use = rx_ring->next_to_use - next_to_clean;
2016 	if (unlikely(nb_pkts > desc_in_use))
2017 		nb_pkts = desc_in_use;
2018 
2019 	for (completed = 0; completed < nb_pkts; completed++) {
2020 		int segments = 0;
2021 
2022 		ena_rx_ctx.max_bufs = rx_ring->sgl_size;
2023 		ena_rx_ctx.ena_bufs = rx_ring->ena_bufs;
2024 		ena_rx_ctx.descs = 0;
2025 		/* receive packet context */
2026 		rc = ena_com_rx_pkt(rx_ring->ena_com_io_cq,
2027 				    rx_ring->ena_com_io_sq,
2028 				    &ena_rx_ctx);
2029 		if (unlikely(rc)) {
2030 			RTE_LOG(ERR, PMD, "ena_com_rx_pkt error %d\n", rc);
2031 			rx_ring->adapter->reset_reason =
2032 				ENA_REGS_RESET_TOO_MANY_RX_DESCS;
2033 			rx_ring->adapter->trigger_reset = true;
2034 			++rx_ring->rx_stats.bad_desc_num;
2035 			return 0;
2036 		}
2037 
2038 		if (unlikely(ena_rx_ctx.descs == 0))
2039 			break;
2040 
2041 		while (segments < ena_rx_ctx.descs) {
2042 			req_id = ena_rx_ctx.ena_bufs[segments].req_id;
2043 			rc = validate_rx_req_id(rx_ring, req_id);
2044 			if (unlikely(rc)) {
2045 				if (segments != 0)
2046 					rte_mbuf_raw_free(mbuf_head);
2047 				break;
2048 			}
2049 
2050 			mbuf = rx_buff_info[req_id];
2051 			rx_buff_info[req_id] = NULL;
2052 			mbuf->data_len = ena_rx_ctx.ena_bufs[segments].len;
2053 			mbuf->data_off = RTE_PKTMBUF_HEADROOM;
2054 			mbuf->refcnt = 1;
2055 			mbuf->next = NULL;
2056 			if (unlikely(segments == 0)) {
2057 				mbuf->nb_segs = ena_rx_ctx.descs;
2058 				mbuf->port = rx_ring->port_id;
2059 				mbuf->pkt_len = 0;
2060 				mbuf_head = mbuf;
2061 			} else {
2062 				/* for multi-segment pkts create mbuf chain */
2063 				mbuf_prev->next = mbuf;
2064 			}
2065 			mbuf_head->pkt_len += mbuf->data_len;
2066 
2067 			mbuf_prev = mbuf;
2068 			rx_ring->empty_rx_reqs[next_to_clean & ring_mask] =
2069 				req_id;
2070 			segments++;
2071 			next_to_clean++;
2072 		}
2073 		if (unlikely(rc))
2074 			break;
2075 
2076 		/* fill mbuf attributes if any */
2077 		ena_rx_mbuf_prepare(mbuf_head, &ena_rx_ctx);
2078 
2079 		if (unlikely(mbuf_head->ol_flags &
2080 				(PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD))) {
2081 			rte_atomic64_inc(&rx_ring->adapter->drv_stats->ierrors);
2082 			++rx_ring->rx_stats.bad_csum;
2083 		}
2084 
2085 		mbuf_head->hash.rss = ena_rx_ctx.hash;
2086 
2087 		/* pass to DPDK application head mbuf */
2088 		rx_pkts[recv_idx] = mbuf_head;
2089 		recv_idx++;
2090 		rx_ring->rx_stats.bytes += mbuf_head->pkt_len;
2091 	}
2092 
2093 	rx_ring->rx_stats.cnt += recv_idx;
2094 	rx_ring->next_to_clean = next_to_clean;
2095 
2096 	desc_in_use = desc_in_use - completed + 1;
2097 	/* Burst refill to save doorbells, memory barriers, const interval */
2098 	if (ring_size - desc_in_use > ENA_RING_DESCS_RATIO(ring_size)) {
2099 		ena_com_update_dev_comp_head(rx_ring->ena_com_io_cq);
2100 		ena_populate_rx_queue(rx_ring, ring_size - desc_in_use);
2101 	}
2102 
2103 	return recv_idx;
2104 }
2105 
2106 static uint16_t
2107 eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
2108 		uint16_t nb_pkts)
2109 {
2110 	int32_t ret;
2111 	uint32_t i;
2112 	struct rte_mbuf *m;
2113 	struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue);
2114 	struct rte_ipv4_hdr *ip_hdr;
2115 	uint64_t ol_flags;
2116 	uint16_t frag_field;
2117 
2118 	for (i = 0; i != nb_pkts; i++) {
2119 		m = tx_pkts[i];
2120 		ol_flags = m->ol_flags;
2121 
2122 		if (!(ol_flags & PKT_TX_IPV4))
2123 			continue;
2124 
2125 		/* If there was not L2 header length specified, assume it is
2126 		 * length of the ethernet header.
2127 		 */
2128 		if (unlikely(m->l2_len == 0))
2129 			m->l2_len = sizeof(struct rte_ether_hdr);
2130 
2131 		ip_hdr = rte_pktmbuf_mtod_offset(m, struct rte_ipv4_hdr *,
2132 						 m->l2_len);
2133 		frag_field = rte_be_to_cpu_16(ip_hdr->fragment_offset);
2134 
2135 		if ((frag_field & RTE_IPV4_HDR_DF_FLAG) != 0) {
2136 			m->packet_type |= RTE_PTYPE_L4_NONFRAG;
2137 
2138 			/* If IPv4 header has DF flag enabled and TSO support is
2139 			 * disabled, partial chcecksum should not be calculated.
2140 			 */
2141 			if (!tx_ring->adapter->offloads.tso4_supported)
2142 				continue;
2143 		}
2144 
2145 		if ((ol_flags & ENA_TX_OFFLOAD_NOTSUP_MASK) != 0 ||
2146 				(ol_flags & PKT_TX_L4_MASK) ==
2147 				PKT_TX_SCTP_CKSUM) {
2148 			rte_errno = ENOTSUP;
2149 			return i;
2150 		}
2151 
2152 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
2153 		ret = rte_validate_tx_offload(m);
2154 		if (ret != 0) {
2155 			rte_errno = -ret;
2156 			return i;
2157 		}
2158 #endif
2159 
2160 		/* In case we are supposed to TSO and have DF not set (DF=0)
2161 		 * hardware must be provided with partial checksum, otherwise
2162 		 * it will take care of necessary calculations.
2163 		 */
2164 
2165 		ret = rte_net_intel_cksum_flags_prepare(m,
2166 			ol_flags & ~PKT_TX_TCP_SEG);
2167 		if (ret != 0) {
2168 			rte_errno = -ret;
2169 			return i;
2170 		}
2171 	}
2172 
2173 	return i;
2174 }
2175 
2176 static void ena_update_hints(struct ena_adapter *adapter,
2177 			     struct ena_admin_ena_hw_hints *hints)
2178 {
2179 	if (hints->admin_completion_tx_timeout)
2180 		adapter->ena_dev.admin_queue.completion_timeout =
2181 			hints->admin_completion_tx_timeout * 1000;
2182 
2183 	if (hints->mmio_read_timeout)
2184 		/* convert to usec */
2185 		adapter->ena_dev.mmio_read.reg_read_to =
2186 			hints->mmio_read_timeout * 1000;
2187 
2188 	if (hints->driver_watchdog_timeout) {
2189 		if (hints->driver_watchdog_timeout == ENA_HW_HINTS_NO_TIMEOUT)
2190 			adapter->keep_alive_timeout = ENA_HW_HINTS_NO_TIMEOUT;
2191 		else
2192 			// Convert msecs to ticks
2193 			adapter->keep_alive_timeout =
2194 				(hints->driver_watchdog_timeout *
2195 				rte_get_timer_hz()) / 1000;
2196 	}
2197 }
2198 
2199 static int ena_check_and_linearize_mbuf(struct ena_ring *tx_ring,
2200 					struct rte_mbuf *mbuf)
2201 {
2202 	struct ena_com_dev *ena_dev;
2203 	int num_segments, header_len, rc;
2204 
2205 	ena_dev = &tx_ring->adapter->ena_dev;
2206 	num_segments = mbuf->nb_segs;
2207 	header_len = mbuf->data_len;
2208 
2209 	if (likely(num_segments < tx_ring->sgl_size))
2210 		return 0;
2211 
2212 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV &&
2213 	    (num_segments == tx_ring->sgl_size) &&
2214 	    (header_len < tx_ring->tx_max_header_size))
2215 		return 0;
2216 
2217 	++tx_ring->tx_stats.linearize;
2218 	rc = rte_pktmbuf_linearize(mbuf);
2219 	if (unlikely(rc)) {
2220 		RTE_LOG(WARNING, PMD, "Mbuf linearize failed\n");
2221 		rte_atomic64_inc(&tx_ring->adapter->drv_stats->ierrors);
2222 		++tx_ring->tx_stats.linearize_failed;
2223 		return rc;
2224 	}
2225 
2226 	return rc;
2227 }
2228 
2229 static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
2230 				  uint16_t nb_pkts)
2231 {
2232 	struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue);
2233 	uint16_t next_to_use = tx_ring->next_to_use;
2234 	uint16_t next_to_clean = tx_ring->next_to_clean;
2235 	struct rte_mbuf *mbuf;
2236 	uint16_t seg_len;
2237 	unsigned int ring_size = tx_ring->ring_size;
2238 	unsigned int ring_mask = ring_size - 1;
2239 	struct ena_com_tx_ctx ena_tx_ctx;
2240 	struct ena_tx_buffer *tx_info;
2241 	struct ena_com_buf *ebuf;
2242 	uint16_t rc, req_id, total_tx_descs = 0;
2243 	uint16_t sent_idx = 0, empty_tx_reqs;
2244 	uint16_t push_len = 0;
2245 	uint16_t delta = 0;
2246 	int nb_hw_desc;
2247 	uint32_t total_length;
2248 
2249 	/* Check adapter state */
2250 	if (unlikely(tx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) {
2251 		RTE_LOG(ALERT, PMD,
2252 			"Trying to xmit pkts while device is NOT running\n");
2253 		return 0;
2254 	}
2255 
2256 	empty_tx_reqs = ring_size - (next_to_use - next_to_clean);
2257 	if (nb_pkts > empty_tx_reqs)
2258 		nb_pkts = empty_tx_reqs;
2259 
2260 	for (sent_idx = 0; sent_idx < nb_pkts; sent_idx++) {
2261 		mbuf = tx_pkts[sent_idx];
2262 		total_length = 0;
2263 
2264 		rc = ena_check_and_linearize_mbuf(tx_ring, mbuf);
2265 		if (unlikely(rc))
2266 			break;
2267 
2268 		req_id = tx_ring->empty_tx_reqs[next_to_use & ring_mask];
2269 		tx_info = &tx_ring->tx_buffer_info[req_id];
2270 		tx_info->mbuf = mbuf;
2271 		tx_info->num_of_bufs = 0;
2272 		ebuf = tx_info->bufs;
2273 
2274 		/* Prepare TX context */
2275 		memset(&ena_tx_ctx, 0x0, sizeof(struct ena_com_tx_ctx));
2276 		memset(&ena_tx_ctx.ena_meta, 0x0,
2277 		       sizeof(struct ena_com_tx_meta));
2278 		ena_tx_ctx.ena_bufs = ebuf;
2279 		ena_tx_ctx.req_id = req_id;
2280 
2281 		delta = 0;
2282 		seg_len = mbuf->data_len;
2283 
2284 		if (tx_ring->tx_mem_queue_type ==
2285 				ENA_ADMIN_PLACEMENT_POLICY_DEV) {
2286 			push_len = RTE_MIN(mbuf->pkt_len,
2287 					   tx_ring->tx_max_header_size);
2288 			ena_tx_ctx.header_len = push_len;
2289 
2290 			if (likely(push_len <= seg_len)) {
2291 				/* If the push header is in the single segment,
2292 				 * then just point it to the 1st mbuf data.
2293 				 */
2294 				ena_tx_ctx.push_header =
2295 					rte_pktmbuf_mtod(mbuf, uint8_t *);
2296 			} else {
2297 				/* If the push header lays in the several
2298 				 * segments, copy it to the intermediate buffer.
2299 				 */
2300 				rte_pktmbuf_read(mbuf, 0, push_len,
2301 					tx_ring->push_buf_intermediate_buf);
2302 				ena_tx_ctx.push_header =
2303 					tx_ring->push_buf_intermediate_buf;
2304 				delta = push_len - seg_len;
2305 			}
2306 		} /* there's no else as we take advantage of memset zeroing */
2307 
2308 		/* Set TX offloads flags, if applicable */
2309 		ena_tx_mbuf_prepare(mbuf, &ena_tx_ctx, tx_ring->offloads);
2310 
2311 		rte_prefetch0(tx_pkts[(sent_idx + 4) & ring_mask]);
2312 
2313 		/* Process first segment taking into
2314 		 * consideration pushed header
2315 		 */
2316 		if (seg_len > push_len) {
2317 			ebuf->paddr = mbuf->buf_iova +
2318 				      mbuf->data_off +
2319 				      push_len;
2320 			ebuf->len = seg_len - push_len;
2321 			ebuf++;
2322 			tx_info->num_of_bufs++;
2323 		}
2324 		total_length += mbuf->data_len;
2325 
2326 		while ((mbuf = mbuf->next) != NULL) {
2327 			seg_len = mbuf->data_len;
2328 
2329 			/* Skip mbufs if whole data is pushed as a header */
2330 			if (unlikely(delta > seg_len)) {
2331 				delta -= seg_len;
2332 				continue;
2333 			}
2334 
2335 			ebuf->paddr = mbuf->buf_iova + mbuf->data_off + delta;
2336 			ebuf->len = seg_len - delta;
2337 			total_length += ebuf->len;
2338 			ebuf++;
2339 			tx_info->num_of_bufs++;
2340 
2341 			delta = 0;
2342 		}
2343 
2344 		ena_tx_ctx.num_bufs = tx_info->num_of_bufs;
2345 
2346 		if (ena_com_is_doorbell_needed(tx_ring->ena_com_io_sq,
2347 					       &ena_tx_ctx)) {
2348 			RTE_LOG(DEBUG, PMD, "llq tx max burst size of queue %d"
2349 				" achieved, writing doorbell to send burst\n",
2350 				tx_ring->id);
2351 			rte_wmb();
2352 			ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
2353 		}
2354 
2355 		/* prepare the packet's descriptors to dma engine */
2356 		rc = ena_com_prepare_tx(tx_ring->ena_com_io_sq,
2357 					&ena_tx_ctx, &nb_hw_desc);
2358 		if (unlikely(rc)) {
2359 			++tx_ring->tx_stats.prepare_ctx_err;
2360 			break;
2361 		}
2362 		tx_info->tx_descs = nb_hw_desc;
2363 
2364 		next_to_use++;
2365 		tx_ring->tx_stats.cnt++;
2366 		tx_ring->tx_stats.bytes += total_length;
2367 	}
2368 	tx_ring->tx_stats.available_desc =
2369 		ena_com_free_desc(tx_ring->ena_com_io_sq);
2370 
2371 	/* If there are ready packets to be xmitted... */
2372 	if (sent_idx > 0) {
2373 		/* ...let HW do its best :-) */
2374 		rte_wmb();
2375 		ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
2376 		tx_ring->tx_stats.doorbells++;
2377 		tx_ring->next_to_use = next_to_use;
2378 	}
2379 
2380 	/* Clear complete packets  */
2381 	while (ena_com_tx_comp_req_id_get(tx_ring->ena_com_io_cq, &req_id) >= 0) {
2382 		rc = validate_tx_req_id(tx_ring, req_id);
2383 		if (rc)
2384 			break;
2385 
2386 		/* Get Tx info & store how many descs were processed  */
2387 		tx_info = &tx_ring->tx_buffer_info[req_id];
2388 		total_tx_descs += tx_info->tx_descs;
2389 
2390 		/* Free whole mbuf chain  */
2391 		mbuf = tx_info->mbuf;
2392 		rte_pktmbuf_free(mbuf);
2393 		tx_info->mbuf = NULL;
2394 
2395 		/* Put back descriptor to the ring for reuse */
2396 		tx_ring->empty_tx_reqs[next_to_clean & ring_mask] = req_id;
2397 		next_to_clean++;
2398 
2399 		/* If too many descs to clean, leave it for another run */
2400 		if (unlikely(total_tx_descs > ENA_RING_DESCS_RATIO(ring_size)))
2401 			break;
2402 	}
2403 	tx_ring->tx_stats.available_desc =
2404 		ena_com_free_desc(tx_ring->ena_com_io_sq);
2405 
2406 	if (total_tx_descs > 0) {
2407 		/* acknowledge completion of sent packets */
2408 		tx_ring->next_to_clean = next_to_clean;
2409 		ena_com_comp_ack(tx_ring->ena_com_io_sq, total_tx_descs);
2410 		ena_com_update_dev_comp_head(tx_ring->ena_com_io_cq);
2411 	}
2412 
2413 	tx_ring->tx_stats.tx_poll++;
2414 
2415 	return sent_idx;
2416 }
2417 
2418 /**
2419  * DPDK callback to retrieve names of extended device statistics
2420  *
2421  * @param dev
2422  *   Pointer to Ethernet device structure.
2423  * @param[out] xstats_names
2424  *   Buffer to insert names into.
2425  * @param n
2426  *   Number of names.
2427  *
2428  * @return
2429  *   Number of xstats names.
2430  */
2431 static int ena_xstats_get_names(struct rte_eth_dev *dev,
2432 				struct rte_eth_xstat_name *xstats_names,
2433 				unsigned int n)
2434 {
2435 	unsigned int xstats_count = ena_xstats_calc_num(dev);
2436 	unsigned int stat, i, count = 0;
2437 
2438 	if (n < xstats_count || !xstats_names)
2439 		return xstats_count;
2440 
2441 	for (stat = 0; stat < ENA_STATS_ARRAY_GLOBAL; stat++, count++)
2442 		strcpy(xstats_names[count].name,
2443 			ena_stats_global_strings[stat].name);
2444 
2445 	for (stat = 0; stat < ENA_STATS_ARRAY_RX; stat++)
2446 		for (i = 0; i < dev->data->nb_rx_queues; i++, count++)
2447 			snprintf(xstats_names[count].name,
2448 				sizeof(xstats_names[count].name),
2449 				"rx_q%d_%s", i,
2450 				ena_stats_rx_strings[stat].name);
2451 
2452 	for (stat = 0; stat < ENA_STATS_ARRAY_TX; stat++)
2453 		for (i = 0; i < dev->data->nb_tx_queues; i++, count++)
2454 			snprintf(xstats_names[count].name,
2455 				sizeof(xstats_names[count].name),
2456 				"tx_q%d_%s", i,
2457 				ena_stats_tx_strings[stat].name);
2458 
2459 	return xstats_count;
2460 }
2461 
2462 /**
2463  * DPDK callback to get extended device statistics.
2464  *
2465  * @param dev
2466  *   Pointer to Ethernet device structure.
2467  * @param[out] stats
2468  *   Stats table output buffer.
2469  * @param n
2470  *   The size of the stats table.
2471  *
2472  * @return
2473  *   Number of xstats on success, negative on failure.
2474  */
2475 static int ena_xstats_get(struct rte_eth_dev *dev,
2476 			  struct rte_eth_xstat *xstats,
2477 			  unsigned int n)
2478 {
2479 	struct ena_adapter *adapter = dev->data->dev_private;
2480 	unsigned int xstats_count = ena_xstats_calc_num(dev);
2481 	unsigned int stat, i, count = 0;
2482 	int stat_offset;
2483 	void *stats_begin;
2484 
2485 	if (n < xstats_count)
2486 		return xstats_count;
2487 
2488 	if (!xstats)
2489 		return 0;
2490 
2491 	for (stat = 0; stat < ENA_STATS_ARRAY_GLOBAL; stat++, count++) {
2492 		stat_offset = ena_stats_rx_strings[stat].stat_offset;
2493 		stats_begin = &adapter->dev_stats;
2494 
2495 		xstats[count].id = count;
2496 		xstats[count].value = *((uint64_t *)
2497 			((char *)stats_begin + stat_offset));
2498 	}
2499 
2500 	for (stat = 0; stat < ENA_STATS_ARRAY_RX; stat++) {
2501 		for (i = 0; i < dev->data->nb_rx_queues; i++, count++) {
2502 			stat_offset = ena_stats_rx_strings[stat].stat_offset;
2503 			stats_begin = &adapter->rx_ring[i].rx_stats;
2504 
2505 			xstats[count].id = count;
2506 			xstats[count].value = *((uint64_t *)
2507 				((char *)stats_begin + stat_offset));
2508 		}
2509 	}
2510 
2511 	for (stat = 0; stat < ENA_STATS_ARRAY_TX; stat++) {
2512 		for (i = 0; i < dev->data->nb_tx_queues; i++, count++) {
2513 			stat_offset = ena_stats_tx_strings[stat].stat_offset;
2514 			stats_begin = &adapter->tx_ring[i].rx_stats;
2515 
2516 			xstats[count].id = count;
2517 			xstats[count].value = *((uint64_t *)
2518 				((char *)stats_begin + stat_offset));
2519 		}
2520 	}
2521 
2522 	return count;
2523 }
2524 
2525 static int ena_xstats_get_by_id(struct rte_eth_dev *dev,
2526 				const uint64_t *ids,
2527 				uint64_t *values,
2528 				unsigned int n)
2529 {
2530 	struct ena_adapter *adapter = dev->data->dev_private;
2531 	uint64_t id;
2532 	uint64_t rx_entries, tx_entries;
2533 	unsigned int i;
2534 	int qid;
2535 	int valid = 0;
2536 	for (i = 0; i < n; ++i) {
2537 		id = ids[i];
2538 		/* Check if id belongs to global statistics */
2539 		if (id < ENA_STATS_ARRAY_GLOBAL) {
2540 			values[i] = *((uint64_t *)&adapter->dev_stats + id);
2541 			++valid;
2542 			continue;
2543 		}
2544 
2545 		/* Check if id belongs to rx queue statistics */
2546 		id -= ENA_STATS_ARRAY_GLOBAL;
2547 		rx_entries = ENA_STATS_ARRAY_RX * dev->data->nb_rx_queues;
2548 		if (id < rx_entries) {
2549 			qid = id % dev->data->nb_rx_queues;
2550 			id /= dev->data->nb_rx_queues;
2551 			values[i] = *((uint64_t *)
2552 				&adapter->rx_ring[qid].rx_stats + id);
2553 			++valid;
2554 			continue;
2555 		}
2556 				/* Check if id belongs to rx queue statistics */
2557 		id -= rx_entries;
2558 		tx_entries = ENA_STATS_ARRAY_TX * dev->data->nb_tx_queues;
2559 		if (id < tx_entries) {
2560 			qid = id % dev->data->nb_tx_queues;
2561 			id /= dev->data->nb_tx_queues;
2562 			values[i] = *((uint64_t *)
2563 				&adapter->tx_ring[qid].tx_stats + id);
2564 			++valid;
2565 			continue;
2566 		}
2567 	}
2568 
2569 	return valid;
2570 }
2571 
2572 /*********************************************************************
2573  *  PMD configuration
2574  *********************************************************************/
2575 static int eth_ena_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
2576 	struct rte_pci_device *pci_dev)
2577 {
2578 	return rte_eth_dev_pci_generic_probe(pci_dev,
2579 		sizeof(struct ena_adapter), eth_ena_dev_init);
2580 }
2581 
2582 static int eth_ena_pci_remove(struct rte_pci_device *pci_dev)
2583 {
2584 	return rte_eth_dev_pci_generic_remove(pci_dev, eth_ena_dev_uninit);
2585 }
2586 
2587 static struct rte_pci_driver rte_ena_pmd = {
2588 	.id_table = pci_id_ena_map,
2589 	.drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC |
2590 		     RTE_PCI_DRV_WC_ACTIVATE,
2591 	.probe = eth_ena_pci_probe,
2592 	.remove = eth_ena_pci_remove,
2593 };
2594 
2595 RTE_PMD_REGISTER_PCI(net_ena, rte_ena_pmd);
2596 RTE_PMD_REGISTER_PCI_TABLE(net_ena, pci_id_ena_map);
2597 RTE_PMD_REGISTER_KMOD_DEP(net_ena, "* igb_uio | uio_pci_generic | vfio-pci");
2598 
2599 RTE_INIT(ena_init_log)
2600 {
2601 	ena_logtype_init = rte_log_register("pmd.net.ena.init");
2602 	if (ena_logtype_init >= 0)
2603 		rte_log_set_level(ena_logtype_init, RTE_LOG_NOTICE);
2604 	ena_logtype_driver = rte_log_register("pmd.net.ena.driver");
2605 	if (ena_logtype_driver >= 0)
2606 		rte_log_set_level(ena_logtype_driver, RTE_LOG_NOTICE);
2607 }
2608 
2609 /******************************************************************************
2610  ******************************** AENQ Handlers *******************************
2611  *****************************************************************************/
2612 static void ena_update_on_link_change(void *adapter_data,
2613 				      struct ena_admin_aenq_entry *aenq_e)
2614 {
2615 	struct rte_eth_dev *eth_dev;
2616 	struct ena_adapter *adapter;
2617 	struct ena_admin_aenq_link_change_desc *aenq_link_desc;
2618 	uint32_t status;
2619 
2620 	adapter = adapter_data;
2621 	aenq_link_desc = (struct ena_admin_aenq_link_change_desc *)aenq_e;
2622 	eth_dev = adapter->rte_dev;
2623 
2624 	status = get_ena_admin_aenq_link_change_desc_link_status(aenq_link_desc);
2625 	adapter->link_status = status;
2626 
2627 	ena_link_update(eth_dev, 0);
2628 	_rte_eth_dev_callback_process(eth_dev, RTE_ETH_EVENT_INTR_LSC, NULL);
2629 }
2630 
2631 static void ena_notification(void *data,
2632 			     struct ena_admin_aenq_entry *aenq_e)
2633 {
2634 	struct ena_adapter *adapter = data;
2635 	struct ena_admin_ena_hw_hints *hints;
2636 
2637 	if (aenq_e->aenq_common_desc.group != ENA_ADMIN_NOTIFICATION)
2638 		RTE_LOG(WARNING, PMD, "Invalid group(%x) expected %x\n",
2639 			aenq_e->aenq_common_desc.group,
2640 			ENA_ADMIN_NOTIFICATION);
2641 
2642 	switch (aenq_e->aenq_common_desc.syndrom) {
2643 	case ENA_ADMIN_UPDATE_HINTS:
2644 		hints = (struct ena_admin_ena_hw_hints *)
2645 			(&aenq_e->inline_data_w4);
2646 		ena_update_hints(adapter, hints);
2647 		break;
2648 	default:
2649 		RTE_LOG(ERR, PMD, "Invalid aenq notification link state %d\n",
2650 			aenq_e->aenq_common_desc.syndrom);
2651 	}
2652 }
2653 
2654 static void ena_keep_alive(void *adapter_data,
2655 			   __rte_unused struct ena_admin_aenq_entry *aenq_e)
2656 {
2657 	struct ena_adapter *adapter = adapter_data;
2658 	struct ena_admin_aenq_keep_alive_desc *desc;
2659 	uint64_t rx_drops;
2660 
2661 	adapter->timestamp_wd = rte_get_timer_cycles();
2662 
2663 	desc = (struct ena_admin_aenq_keep_alive_desc *)aenq_e;
2664 	rx_drops = ((uint64_t)desc->rx_drops_high << 32) | desc->rx_drops_low;
2665 	rte_atomic64_set(&adapter->drv_stats->rx_drops, rx_drops);
2666 }
2667 
2668 /**
2669  * This handler will called for unknown event group or unimplemented handlers
2670  **/
2671 static void unimplemented_aenq_handler(__rte_unused void *data,
2672 				       __rte_unused struct ena_admin_aenq_entry *aenq_e)
2673 {
2674 	RTE_LOG(ERR, PMD, "Unknown event was received or event with "
2675 			  "unimplemented handler\n");
2676 }
2677 
2678 static struct ena_aenq_handlers aenq_handlers = {
2679 	.handlers = {
2680 		[ENA_ADMIN_LINK_CHANGE] = ena_update_on_link_change,
2681 		[ENA_ADMIN_NOTIFICATION] = ena_notification,
2682 		[ENA_ADMIN_KEEP_ALIVE] = ena_keep_alive
2683 	},
2684 	.unimplemented_handler = unimplemented_aenq_handler
2685 };
2686