1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2010-2016 Intel Corporation. 3 * Copyright 2013-2014 6WIND S.A. 4 */ 5 6 #include <stdarg.h> 7 #include <errno.h> 8 #include <stdio.h> 9 #include <string.h> 10 #include <stdint.h> 11 #include <inttypes.h> 12 13 #include <sys/queue.h> 14 #include <sys/types.h> 15 #include <sys/stat.h> 16 #include <fcntl.h> 17 #include <unistd.h> 18 19 #include <rte_common.h> 20 #include <rte_byteorder.h> 21 #include <rte_debug.h> 22 #include <rte_log.h> 23 #include <rte_memory.h> 24 #include <rte_memcpy.h> 25 #include <rte_memzone.h> 26 #include <rte_launch.h> 27 #include <rte_eal.h> 28 #include <rte_per_lcore.h> 29 #include <rte_lcore.h> 30 #include <rte_atomic.h> 31 #include <rte_branch_prediction.h> 32 #include <rte_mempool.h> 33 #include <rte_mbuf.h> 34 #include <rte_interrupts.h> 35 #include <rte_pci.h> 36 #include <rte_ether.h> 37 #include <rte_ethdev.h> 38 #include <rte_string_fns.h> 39 #include <rte_cycles.h> 40 #include <rte_flow.h> 41 #include <rte_errno.h> 42 #ifdef RTE_LIBRTE_IXGBE_PMD 43 #include <rte_pmd_ixgbe.h> 44 #endif 45 #ifdef RTE_LIBRTE_I40E_PMD 46 #include <rte_pmd_i40e.h> 47 #endif 48 #ifdef RTE_LIBRTE_BNXT_PMD 49 #include <rte_pmd_bnxt.h> 50 #endif 51 #include <rte_gro.h> 52 #include <rte_config.h> 53 54 #include "testpmd.h" 55 56 static char *flowtype_to_str(uint16_t flow_type); 57 58 static const struct { 59 enum tx_pkt_split split; 60 const char *name; 61 } tx_split_name[] = { 62 { 63 .split = TX_PKT_SPLIT_OFF, 64 .name = "off", 65 }, 66 { 67 .split = TX_PKT_SPLIT_ON, 68 .name = "on", 69 }, 70 { 71 .split = TX_PKT_SPLIT_RND, 72 .name = "rand", 73 }, 74 }; 75 76 const struct rss_type_info rss_type_table[] = { 77 { "all", ETH_RSS_IP | ETH_RSS_TCP | 78 ETH_RSS_UDP | ETH_RSS_SCTP | 79 ETH_RSS_L2_PAYLOAD }, 80 { "none", 0 }, 81 { "ipv4", ETH_RSS_IPV4 }, 82 { "ipv4-frag", ETH_RSS_FRAG_IPV4 }, 83 { "ipv4-tcp", ETH_RSS_NONFRAG_IPV4_TCP }, 84 { "ipv4-udp", ETH_RSS_NONFRAG_IPV4_UDP }, 85 { "ipv4-sctp", ETH_RSS_NONFRAG_IPV4_SCTP }, 86 { "ipv4-other", ETH_RSS_NONFRAG_IPV4_OTHER }, 87 { "ipv6", ETH_RSS_IPV6 }, 88 { "ipv6-frag", ETH_RSS_FRAG_IPV6 }, 89 { "ipv6-tcp", ETH_RSS_NONFRAG_IPV6_TCP }, 90 { "ipv6-udp", ETH_RSS_NONFRAG_IPV6_UDP }, 91 { "ipv6-sctp", ETH_RSS_NONFRAG_IPV6_SCTP }, 92 { "ipv6-other", ETH_RSS_NONFRAG_IPV6_OTHER }, 93 { "l2-payload", ETH_RSS_L2_PAYLOAD }, 94 { "ipv6-ex", ETH_RSS_IPV6_EX }, 95 { "ipv6-tcp-ex", ETH_RSS_IPV6_TCP_EX }, 96 { "ipv6-udp-ex", ETH_RSS_IPV6_UDP_EX }, 97 { "port", ETH_RSS_PORT }, 98 { "vxlan", ETH_RSS_VXLAN }, 99 { "geneve", ETH_RSS_GENEVE }, 100 { "nvgre", ETH_RSS_NVGRE }, 101 { "ip", ETH_RSS_IP }, 102 { "udp", ETH_RSS_UDP }, 103 { "tcp", ETH_RSS_TCP }, 104 { "sctp", ETH_RSS_SCTP }, 105 { "tunnel", ETH_RSS_TUNNEL }, 106 { NULL, 0 }, 107 }; 108 109 static void 110 print_ethaddr(const char *name, struct rte_ether_addr *eth_addr) 111 { 112 char buf[RTE_ETHER_ADDR_FMT_SIZE]; 113 rte_ether_format_addr(buf, RTE_ETHER_ADDR_FMT_SIZE, eth_addr); 114 printf("%s%s", name, buf); 115 } 116 117 void 118 nic_stats_display(portid_t port_id) 119 { 120 static uint64_t prev_pkts_rx[RTE_MAX_ETHPORTS]; 121 static uint64_t prev_pkts_tx[RTE_MAX_ETHPORTS]; 122 static uint64_t prev_cycles[RTE_MAX_ETHPORTS]; 123 uint64_t diff_pkts_rx, diff_pkts_tx, diff_cycles; 124 uint64_t mpps_rx, mpps_tx; 125 struct rte_eth_stats stats; 126 struct rte_port *port = &ports[port_id]; 127 uint8_t i; 128 129 static const char *nic_stats_border = "########################"; 130 131 if (port_id_is_invalid(port_id, ENABLED_WARN)) { 132 print_valid_ports(); 133 return; 134 } 135 rte_eth_stats_get(port_id, &stats); 136 printf("\n %s NIC statistics for port %-2d %s\n", 137 nic_stats_border, port_id, nic_stats_border); 138 139 if ((!port->rx_queue_stats_mapping_enabled) && (!port->tx_queue_stats_mapping_enabled)) { 140 printf(" RX-packets: %-10"PRIu64" RX-missed: %-10"PRIu64" RX-bytes: " 141 "%-"PRIu64"\n", 142 stats.ipackets, stats.imissed, stats.ibytes); 143 printf(" RX-errors: %-"PRIu64"\n", stats.ierrors); 144 printf(" RX-nombuf: %-10"PRIu64"\n", 145 stats.rx_nombuf); 146 printf(" TX-packets: %-10"PRIu64" TX-errors: %-10"PRIu64" TX-bytes: " 147 "%-"PRIu64"\n", 148 stats.opackets, stats.oerrors, stats.obytes); 149 } 150 else { 151 printf(" RX-packets: %10"PRIu64" RX-errors: %10"PRIu64 152 " RX-bytes: %10"PRIu64"\n", 153 stats.ipackets, stats.ierrors, stats.ibytes); 154 printf(" RX-errors: %10"PRIu64"\n", stats.ierrors); 155 printf(" RX-nombuf: %10"PRIu64"\n", 156 stats.rx_nombuf); 157 printf(" TX-packets: %10"PRIu64" TX-errors: %10"PRIu64 158 " TX-bytes: %10"PRIu64"\n", 159 stats.opackets, stats.oerrors, stats.obytes); 160 } 161 162 if (port->rx_queue_stats_mapping_enabled) { 163 printf("\n"); 164 for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS; i++) { 165 printf(" Stats reg %2d RX-packets: %10"PRIu64 166 " RX-errors: %10"PRIu64 167 " RX-bytes: %10"PRIu64"\n", 168 i, stats.q_ipackets[i], stats.q_errors[i], stats.q_ibytes[i]); 169 } 170 } 171 if (port->tx_queue_stats_mapping_enabled) { 172 printf("\n"); 173 for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS; i++) { 174 printf(" Stats reg %2d TX-packets: %10"PRIu64 175 " TX-bytes: %10"PRIu64"\n", 176 i, stats.q_opackets[i], stats.q_obytes[i]); 177 } 178 } 179 180 diff_cycles = prev_cycles[port_id]; 181 prev_cycles[port_id] = rte_rdtsc(); 182 if (diff_cycles > 0) 183 diff_cycles = prev_cycles[port_id] - diff_cycles; 184 185 diff_pkts_rx = (stats.ipackets > prev_pkts_rx[port_id]) ? 186 (stats.ipackets - prev_pkts_rx[port_id]) : 0; 187 diff_pkts_tx = (stats.opackets > prev_pkts_tx[port_id]) ? 188 (stats.opackets - prev_pkts_tx[port_id]) : 0; 189 prev_pkts_rx[port_id] = stats.ipackets; 190 prev_pkts_tx[port_id] = stats.opackets; 191 mpps_rx = diff_cycles > 0 ? 192 diff_pkts_rx * rte_get_tsc_hz() / diff_cycles : 0; 193 mpps_tx = diff_cycles > 0 ? 194 diff_pkts_tx * rte_get_tsc_hz() / diff_cycles : 0; 195 printf("\n Throughput (since last show)\n"); 196 printf(" Rx-pps: %12"PRIu64"\n Tx-pps: %12"PRIu64"\n", 197 mpps_rx, mpps_tx); 198 199 printf(" %s############################%s\n", 200 nic_stats_border, nic_stats_border); 201 } 202 203 void 204 nic_stats_clear(portid_t port_id) 205 { 206 if (port_id_is_invalid(port_id, ENABLED_WARN)) { 207 print_valid_ports(); 208 return; 209 } 210 rte_eth_stats_reset(port_id); 211 printf("\n NIC statistics for port %d cleared\n", port_id); 212 } 213 214 void 215 nic_xstats_display(portid_t port_id) 216 { 217 struct rte_eth_xstat *xstats; 218 int cnt_xstats, idx_xstat; 219 struct rte_eth_xstat_name *xstats_names; 220 221 printf("###### NIC extended statistics for port %-2d\n", port_id); 222 if (!rte_eth_dev_is_valid_port(port_id)) { 223 printf("Error: Invalid port number %i\n", port_id); 224 return; 225 } 226 227 /* Get count */ 228 cnt_xstats = rte_eth_xstats_get_names(port_id, NULL, 0); 229 if (cnt_xstats < 0) { 230 printf("Error: Cannot get count of xstats\n"); 231 return; 232 } 233 234 /* Get id-name lookup table */ 235 xstats_names = malloc(sizeof(struct rte_eth_xstat_name) * cnt_xstats); 236 if (xstats_names == NULL) { 237 printf("Cannot allocate memory for xstats lookup\n"); 238 return; 239 } 240 if (cnt_xstats != rte_eth_xstats_get_names( 241 port_id, xstats_names, cnt_xstats)) { 242 printf("Error: Cannot get xstats lookup\n"); 243 free(xstats_names); 244 return; 245 } 246 247 /* Get stats themselves */ 248 xstats = malloc(sizeof(struct rte_eth_xstat) * cnt_xstats); 249 if (xstats == NULL) { 250 printf("Cannot allocate memory for xstats\n"); 251 free(xstats_names); 252 return; 253 } 254 if (cnt_xstats != rte_eth_xstats_get(port_id, xstats, cnt_xstats)) { 255 printf("Error: Unable to get xstats\n"); 256 free(xstats_names); 257 free(xstats); 258 return; 259 } 260 261 /* Display xstats */ 262 for (idx_xstat = 0; idx_xstat < cnt_xstats; idx_xstat++) { 263 if (xstats_hide_zero && !xstats[idx_xstat].value) 264 continue; 265 printf("%s: %"PRIu64"\n", 266 xstats_names[idx_xstat].name, 267 xstats[idx_xstat].value); 268 } 269 free(xstats_names); 270 free(xstats); 271 } 272 273 void 274 nic_xstats_clear(portid_t port_id) 275 { 276 rte_eth_xstats_reset(port_id); 277 } 278 279 void 280 nic_stats_mapping_display(portid_t port_id) 281 { 282 struct rte_port *port = &ports[port_id]; 283 uint16_t i; 284 285 static const char *nic_stats_mapping_border = "########################"; 286 287 if (port_id_is_invalid(port_id, ENABLED_WARN)) { 288 print_valid_ports(); 289 return; 290 } 291 292 if ((!port->rx_queue_stats_mapping_enabled) && (!port->tx_queue_stats_mapping_enabled)) { 293 printf("Port id %d - either does not support queue statistic mapping or" 294 " no queue statistic mapping set\n", port_id); 295 return; 296 } 297 298 printf("\n %s NIC statistics mapping for port %-2d %s\n", 299 nic_stats_mapping_border, port_id, nic_stats_mapping_border); 300 301 if (port->rx_queue_stats_mapping_enabled) { 302 for (i = 0; i < nb_rx_queue_stats_mappings; i++) { 303 if (rx_queue_stats_mappings[i].port_id == port_id) { 304 printf(" RX-queue %2d mapped to Stats Reg %2d\n", 305 rx_queue_stats_mappings[i].queue_id, 306 rx_queue_stats_mappings[i].stats_counter_id); 307 } 308 } 309 printf("\n"); 310 } 311 312 313 if (port->tx_queue_stats_mapping_enabled) { 314 for (i = 0; i < nb_tx_queue_stats_mappings; i++) { 315 if (tx_queue_stats_mappings[i].port_id == port_id) { 316 printf(" TX-queue %2d mapped to Stats Reg %2d\n", 317 tx_queue_stats_mappings[i].queue_id, 318 tx_queue_stats_mappings[i].stats_counter_id); 319 } 320 } 321 } 322 323 printf(" %s####################################%s\n", 324 nic_stats_mapping_border, nic_stats_mapping_border); 325 } 326 327 void 328 rx_queue_infos_display(portid_t port_id, uint16_t queue_id) 329 { 330 struct rte_eth_rxq_info qinfo; 331 int32_t rc; 332 static const char *info_border = "*********************"; 333 334 rc = rte_eth_rx_queue_info_get(port_id, queue_id, &qinfo); 335 if (rc != 0) { 336 printf("Failed to retrieve information for port: %u, " 337 "RX queue: %hu\nerror desc: %s(%d)\n", 338 port_id, queue_id, strerror(-rc), rc); 339 return; 340 } 341 342 printf("\n%s Infos for port %-2u, RX queue %-2u %s", 343 info_border, port_id, queue_id, info_border); 344 345 printf("\nMempool: %s", (qinfo.mp == NULL) ? "NULL" : qinfo.mp->name); 346 printf("\nRX prefetch threshold: %hhu", qinfo.conf.rx_thresh.pthresh); 347 printf("\nRX host threshold: %hhu", qinfo.conf.rx_thresh.hthresh); 348 printf("\nRX writeback threshold: %hhu", qinfo.conf.rx_thresh.wthresh); 349 printf("\nRX free threshold: %hu", qinfo.conf.rx_free_thresh); 350 printf("\nRX drop packets: %s", 351 (qinfo.conf.rx_drop_en != 0) ? "on" : "off"); 352 printf("\nRX deferred start: %s", 353 (qinfo.conf.rx_deferred_start != 0) ? "on" : "off"); 354 printf("\nRX scattered packets: %s", 355 (qinfo.scattered_rx != 0) ? "on" : "off"); 356 printf("\nNumber of RXDs: %hu", qinfo.nb_desc); 357 printf("\n"); 358 } 359 360 void 361 tx_queue_infos_display(portid_t port_id, uint16_t queue_id) 362 { 363 struct rte_eth_txq_info qinfo; 364 int32_t rc; 365 static const char *info_border = "*********************"; 366 367 rc = rte_eth_tx_queue_info_get(port_id, queue_id, &qinfo); 368 if (rc != 0) { 369 printf("Failed to retrieve information for port: %u, " 370 "TX queue: %hu\nerror desc: %s(%d)\n", 371 port_id, queue_id, strerror(-rc), rc); 372 return; 373 } 374 375 printf("\n%s Infos for port %-2u, TX queue %-2u %s", 376 info_border, port_id, queue_id, info_border); 377 378 printf("\nTX prefetch threshold: %hhu", qinfo.conf.tx_thresh.pthresh); 379 printf("\nTX host threshold: %hhu", qinfo.conf.tx_thresh.hthresh); 380 printf("\nTX writeback threshold: %hhu", qinfo.conf.tx_thresh.wthresh); 381 printf("\nTX RS threshold: %hu", qinfo.conf.tx_rs_thresh); 382 printf("\nTX free threshold: %hu", qinfo.conf.tx_free_thresh); 383 printf("\nTX deferred start: %s", 384 (qinfo.conf.tx_deferred_start != 0) ? "on" : "off"); 385 printf("\nNumber of TXDs: %hu", qinfo.nb_desc); 386 printf("\n"); 387 } 388 389 static int bus_match_all(const struct rte_bus *bus, const void *data) 390 { 391 RTE_SET_USED(bus); 392 RTE_SET_USED(data); 393 return 0; 394 } 395 396 void 397 device_infos_display(const char *identifier) 398 { 399 static const char *info_border = "*********************"; 400 struct rte_bus *start = NULL, *next; 401 struct rte_dev_iterator dev_iter; 402 char name[RTE_ETH_NAME_MAX_LEN]; 403 struct rte_ether_addr mac_addr; 404 struct rte_device *dev; 405 struct rte_devargs da; 406 portid_t port_id; 407 char devstr[128]; 408 409 memset(&da, 0, sizeof(da)); 410 if (!identifier) 411 goto skip_parse; 412 413 if (rte_devargs_parsef(&da, "%s", identifier)) { 414 printf("cannot parse identifier\n"); 415 if (da.args) 416 free(da.args); 417 return; 418 } 419 420 skip_parse: 421 while ((next = rte_bus_find(start, bus_match_all, NULL)) != NULL) { 422 423 start = next; 424 if (identifier && da.bus != next) 425 continue; 426 427 /* Skip buses that don't have iterate method */ 428 if (!next->dev_iterate) 429 continue; 430 431 snprintf(devstr, sizeof(devstr), "bus=%s", next->name); 432 RTE_DEV_FOREACH(dev, devstr, &dev_iter) { 433 434 if (!dev->driver) 435 continue; 436 /* Check for matching device if identifier is present */ 437 if (identifier && 438 strncmp(da.name, dev->name, strlen(dev->name))) 439 continue; 440 printf("\n%s Infos for device %s %s\n", 441 info_border, dev->name, info_border); 442 printf("Bus name: %s", dev->bus->name); 443 printf("\nDriver name: %s", dev->driver->name); 444 printf("\nDevargs: %s", 445 dev->devargs ? dev->devargs->args : ""); 446 printf("\nConnect to socket: %d", dev->numa_node); 447 printf("\n"); 448 449 /* List ports with matching device name */ 450 RTE_ETH_FOREACH_DEV_OF(port_id, dev) { 451 rte_eth_macaddr_get(port_id, &mac_addr); 452 printf("\n\tPort id: %-2d", port_id); 453 print_ethaddr("\n\tMAC address: ", &mac_addr); 454 rte_eth_dev_get_name_by_port(port_id, name); 455 printf("\n\tDevice name: %s", name); 456 printf("\n"); 457 } 458 } 459 }; 460 } 461 462 void 463 port_infos_display(portid_t port_id) 464 { 465 struct rte_port *port; 466 struct rte_ether_addr mac_addr; 467 struct rte_eth_link link; 468 struct rte_eth_dev_info dev_info; 469 int vlan_offload; 470 struct rte_mempool * mp; 471 static const char *info_border = "*********************"; 472 uint16_t mtu; 473 char name[RTE_ETH_NAME_MAX_LEN]; 474 int ret; 475 476 if (port_id_is_invalid(port_id, ENABLED_WARN)) { 477 print_valid_ports(); 478 return; 479 } 480 port = &ports[port_id]; 481 rte_eth_link_get_nowait(port_id, &link); 482 483 ret = eth_dev_info_get_print_err(port_id, &dev_info); 484 if (ret != 0) 485 return; 486 487 printf("\n%s Infos for port %-2d %s\n", 488 info_border, port_id, info_border); 489 rte_eth_macaddr_get(port_id, &mac_addr); 490 print_ethaddr("MAC address: ", &mac_addr); 491 rte_eth_dev_get_name_by_port(port_id, name); 492 printf("\nDevice name: %s", name); 493 printf("\nDriver name: %s", dev_info.driver_name); 494 if (dev_info.device->devargs && dev_info.device->devargs->args) 495 printf("\nDevargs: %s", dev_info.device->devargs->args); 496 printf("\nConnect to socket: %u", port->socket_id); 497 498 if (port_numa[port_id] != NUMA_NO_CONFIG) { 499 mp = mbuf_pool_find(port_numa[port_id]); 500 if (mp) 501 printf("\nmemory allocation on the socket: %d", 502 port_numa[port_id]); 503 } else 504 printf("\nmemory allocation on the socket: %u",port->socket_id); 505 506 printf("\nLink status: %s\n", (link.link_status) ? ("up") : ("down")); 507 printf("Link speed: %u Mbps\n", (unsigned) link.link_speed); 508 printf("Link duplex: %s\n", (link.link_duplex == ETH_LINK_FULL_DUPLEX) ? 509 ("full-duplex") : ("half-duplex")); 510 511 if (!rte_eth_dev_get_mtu(port_id, &mtu)) 512 printf("MTU: %u\n", mtu); 513 514 printf("Promiscuous mode: %s\n", 515 rte_eth_promiscuous_get(port_id) ? "enabled" : "disabled"); 516 printf("Allmulticast mode: %s\n", 517 rte_eth_allmulticast_get(port_id) ? "enabled" : "disabled"); 518 printf("Maximum number of MAC addresses: %u\n", 519 (unsigned int)(port->dev_info.max_mac_addrs)); 520 printf("Maximum number of MAC addresses of hash filtering: %u\n", 521 (unsigned int)(port->dev_info.max_hash_mac_addrs)); 522 523 vlan_offload = rte_eth_dev_get_vlan_offload(port_id); 524 if (vlan_offload >= 0){ 525 printf("VLAN offload: \n"); 526 if (vlan_offload & ETH_VLAN_STRIP_OFFLOAD) 527 printf(" strip on \n"); 528 else 529 printf(" strip off \n"); 530 531 if (vlan_offload & ETH_VLAN_FILTER_OFFLOAD) 532 printf(" filter on \n"); 533 else 534 printf(" filter off \n"); 535 536 if (vlan_offload & ETH_VLAN_EXTEND_OFFLOAD) 537 printf(" qinq(extend) on \n"); 538 else 539 printf(" qinq(extend) off \n"); 540 } 541 542 if (dev_info.hash_key_size > 0) 543 printf("Hash key size in bytes: %u\n", dev_info.hash_key_size); 544 if (dev_info.reta_size > 0) 545 printf("Redirection table size: %u\n", dev_info.reta_size); 546 if (!dev_info.flow_type_rss_offloads) 547 printf("No RSS offload flow type is supported.\n"); 548 else { 549 uint16_t i; 550 char *p; 551 552 printf("Supported RSS offload flow types:\n"); 553 for (i = RTE_ETH_FLOW_UNKNOWN + 1; 554 i < sizeof(dev_info.flow_type_rss_offloads) * CHAR_BIT; i++) { 555 if (!(dev_info.flow_type_rss_offloads & (1ULL << i))) 556 continue; 557 p = flowtype_to_str(i); 558 if (p) 559 printf(" %s\n", p); 560 else 561 printf(" user defined %d\n", i); 562 } 563 } 564 565 printf("Minimum size of RX buffer: %u\n", dev_info.min_rx_bufsize); 566 printf("Maximum configurable length of RX packet: %u\n", 567 dev_info.max_rx_pktlen); 568 if (dev_info.max_vfs) 569 printf("Maximum number of VFs: %u\n", dev_info.max_vfs); 570 if (dev_info.max_vmdq_pools) 571 printf("Maximum number of VMDq pools: %u\n", 572 dev_info.max_vmdq_pools); 573 574 printf("Current number of RX queues: %u\n", dev_info.nb_rx_queues); 575 printf("Max possible RX queues: %u\n", dev_info.max_rx_queues); 576 printf("Max possible number of RXDs per queue: %hu\n", 577 dev_info.rx_desc_lim.nb_max); 578 printf("Min possible number of RXDs per queue: %hu\n", 579 dev_info.rx_desc_lim.nb_min); 580 printf("RXDs number alignment: %hu\n", dev_info.rx_desc_lim.nb_align); 581 582 printf("Current number of TX queues: %u\n", dev_info.nb_tx_queues); 583 printf("Max possible TX queues: %u\n", dev_info.max_tx_queues); 584 printf("Max possible number of TXDs per queue: %hu\n", 585 dev_info.tx_desc_lim.nb_max); 586 printf("Min possible number of TXDs per queue: %hu\n", 587 dev_info.tx_desc_lim.nb_min); 588 printf("TXDs number alignment: %hu\n", dev_info.tx_desc_lim.nb_align); 589 printf("Max segment number per packet: %hu\n", 590 dev_info.tx_desc_lim.nb_seg_max); 591 printf("Max segment number per MTU/TSO: %hu\n", 592 dev_info.tx_desc_lim.nb_mtu_seg_max); 593 594 /* Show switch info only if valid switch domain and port id is set */ 595 if (dev_info.switch_info.domain_id != 596 RTE_ETH_DEV_SWITCH_DOMAIN_ID_INVALID) { 597 if (dev_info.switch_info.name) 598 printf("Switch name: %s\n", dev_info.switch_info.name); 599 600 printf("Switch domain Id: %u\n", 601 dev_info.switch_info.domain_id); 602 printf("Switch Port Id: %u\n", 603 dev_info.switch_info.port_id); 604 } 605 } 606 607 void 608 port_summary_header_display(void) 609 { 610 uint16_t port_number; 611 612 port_number = rte_eth_dev_count_avail(); 613 printf("Number of available ports: %i\n", port_number); 614 printf("%-4s %-17s %-12s %-14s %-8s %s\n", "Port", "MAC Address", "Name", 615 "Driver", "Status", "Link"); 616 } 617 618 void 619 port_summary_display(portid_t port_id) 620 { 621 struct rte_ether_addr mac_addr; 622 struct rte_eth_link link; 623 struct rte_eth_dev_info dev_info; 624 char name[RTE_ETH_NAME_MAX_LEN]; 625 int ret; 626 627 if (port_id_is_invalid(port_id, ENABLED_WARN)) { 628 print_valid_ports(); 629 return; 630 } 631 632 rte_eth_link_get_nowait(port_id, &link); 633 634 ret = eth_dev_info_get_print_err(port_id, &dev_info); 635 if (ret != 0) 636 return; 637 638 rte_eth_dev_get_name_by_port(port_id, name); 639 rte_eth_macaddr_get(port_id, &mac_addr); 640 641 printf("%-4d %02X:%02X:%02X:%02X:%02X:%02X %-12s %-14s %-8s %uMbps\n", 642 port_id, mac_addr.addr_bytes[0], mac_addr.addr_bytes[1], 643 mac_addr.addr_bytes[2], mac_addr.addr_bytes[3], 644 mac_addr.addr_bytes[4], mac_addr.addr_bytes[5], name, 645 dev_info.driver_name, (link.link_status) ? ("up") : ("down"), 646 (unsigned int) link.link_speed); 647 } 648 649 void 650 port_offload_cap_display(portid_t port_id) 651 { 652 struct rte_eth_dev_info dev_info; 653 static const char *info_border = "************"; 654 int ret; 655 656 if (port_id_is_invalid(port_id, ENABLED_WARN)) 657 return; 658 659 ret = eth_dev_info_get_print_err(port_id, &dev_info); 660 if (ret != 0) 661 return; 662 663 printf("\n%s Port %d supported offload features: %s\n", 664 info_border, port_id, info_border); 665 666 if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_VLAN_STRIP) { 667 printf("VLAN stripped: "); 668 if (ports[port_id].dev_conf.rxmode.offloads & 669 DEV_RX_OFFLOAD_VLAN_STRIP) 670 printf("on\n"); 671 else 672 printf("off\n"); 673 } 674 675 if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_QINQ_STRIP) { 676 printf("Double VLANs stripped: "); 677 if (ports[port_id].dev_conf.rxmode.offloads & 678 DEV_RX_OFFLOAD_QINQ_STRIP) 679 printf("on\n"); 680 else 681 printf("off\n"); 682 } 683 684 if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_IPV4_CKSUM) { 685 printf("RX IPv4 checksum: "); 686 if (ports[port_id].dev_conf.rxmode.offloads & 687 DEV_RX_OFFLOAD_IPV4_CKSUM) 688 printf("on\n"); 689 else 690 printf("off\n"); 691 } 692 693 if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_UDP_CKSUM) { 694 printf("RX UDP checksum: "); 695 if (ports[port_id].dev_conf.rxmode.offloads & 696 DEV_RX_OFFLOAD_UDP_CKSUM) 697 printf("on\n"); 698 else 699 printf("off\n"); 700 } 701 702 if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_TCP_CKSUM) { 703 printf("RX TCP checksum: "); 704 if (ports[port_id].dev_conf.rxmode.offloads & 705 DEV_RX_OFFLOAD_TCP_CKSUM) 706 printf("on\n"); 707 else 708 printf("off\n"); 709 } 710 711 if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_SCTP_CKSUM) { 712 printf("RX SCTP checksum: "); 713 if (ports[port_id].dev_conf.rxmode.offloads & 714 DEV_RX_OFFLOAD_SCTP_CKSUM) 715 printf("on\n"); 716 else 717 printf("off\n"); 718 } 719 720 if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM) { 721 printf("RX Outer IPv4 checksum: "); 722 if (ports[port_id].dev_conf.rxmode.offloads & 723 DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM) 724 printf("on\n"); 725 else 726 printf("off\n"); 727 } 728 729 if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_OUTER_UDP_CKSUM) { 730 printf("RX Outer UDP checksum: "); 731 if (ports[port_id].dev_conf.rxmode.offloads & 732 DEV_RX_OFFLOAD_OUTER_UDP_CKSUM) 733 printf("on\n"); 734 else 735 printf("off\n"); 736 } 737 738 if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_TCP_LRO) { 739 printf("Large receive offload: "); 740 if (ports[port_id].dev_conf.rxmode.offloads & 741 DEV_RX_OFFLOAD_TCP_LRO) 742 printf("on\n"); 743 else 744 printf("off\n"); 745 } 746 747 if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_TIMESTAMP) { 748 printf("HW timestamp: "); 749 if (ports[port_id].dev_conf.rxmode.offloads & 750 DEV_RX_OFFLOAD_TIMESTAMP) 751 printf("on\n"); 752 else 753 printf("off\n"); 754 } 755 756 if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_KEEP_CRC) { 757 printf("Rx Keep CRC: "); 758 if (ports[port_id].dev_conf.rxmode.offloads & 759 DEV_RX_OFFLOAD_KEEP_CRC) 760 printf("on\n"); 761 else 762 printf("off\n"); 763 } 764 765 if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_SECURITY) { 766 printf("RX offload security: "); 767 if (ports[port_id].dev_conf.rxmode.offloads & 768 DEV_RX_OFFLOAD_SECURITY) 769 printf("on\n"); 770 else 771 printf("off\n"); 772 } 773 774 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_VLAN_INSERT) { 775 printf("VLAN insert: "); 776 if (ports[port_id].dev_conf.txmode.offloads & 777 DEV_TX_OFFLOAD_VLAN_INSERT) 778 printf("on\n"); 779 else 780 printf("off\n"); 781 } 782 783 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_QINQ_INSERT) { 784 printf("Double VLANs insert: "); 785 if (ports[port_id].dev_conf.txmode.offloads & 786 DEV_TX_OFFLOAD_QINQ_INSERT) 787 printf("on\n"); 788 else 789 printf("off\n"); 790 } 791 792 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_IPV4_CKSUM) { 793 printf("TX IPv4 checksum: "); 794 if (ports[port_id].dev_conf.txmode.offloads & 795 DEV_TX_OFFLOAD_IPV4_CKSUM) 796 printf("on\n"); 797 else 798 printf("off\n"); 799 } 800 801 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_UDP_CKSUM) { 802 printf("TX UDP checksum: "); 803 if (ports[port_id].dev_conf.txmode.offloads & 804 DEV_TX_OFFLOAD_UDP_CKSUM) 805 printf("on\n"); 806 else 807 printf("off\n"); 808 } 809 810 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_TCP_CKSUM) { 811 printf("TX TCP checksum: "); 812 if (ports[port_id].dev_conf.txmode.offloads & 813 DEV_TX_OFFLOAD_TCP_CKSUM) 814 printf("on\n"); 815 else 816 printf("off\n"); 817 } 818 819 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_SCTP_CKSUM) { 820 printf("TX SCTP checksum: "); 821 if (ports[port_id].dev_conf.txmode.offloads & 822 DEV_TX_OFFLOAD_SCTP_CKSUM) 823 printf("on\n"); 824 else 825 printf("off\n"); 826 } 827 828 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM) { 829 printf("TX Outer IPv4 checksum: "); 830 if (ports[port_id].dev_conf.txmode.offloads & 831 DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM) 832 printf("on\n"); 833 else 834 printf("off\n"); 835 } 836 837 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_TCP_TSO) { 838 printf("TX TCP segmentation: "); 839 if (ports[port_id].dev_conf.txmode.offloads & 840 DEV_TX_OFFLOAD_TCP_TSO) 841 printf("on\n"); 842 else 843 printf("off\n"); 844 } 845 846 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_UDP_TSO) { 847 printf("TX UDP segmentation: "); 848 if (ports[port_id].dev_conf.txmode.offloads & 849 DEV_TX_OFFLOAD_UDP_TSO) 850 printf("on\n"); 851 else 852 printf("off\n"); 853 } 854 855 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_VXLAN_TNL_TSO) { 856 printf("TSO for VXLAN tunnel packet: "); 857 if (ports[port_id].dev_conf.txmode.offloads & 858 DEV_TX_OFFLOAD_VXLAN_TNL_TSO) 859 printf("on\n"); 860 else 861 printf("off\n"); 862 } 863 864 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_GRE_TNL_TSO) { 865 printf("TSO for GRE tunnel packet: "); 866 if (ports[port_id].dev_conf.txmode.offloads & 867 DEV_TX_OFFLOAD_GRE_TNL_TSO) 868 printf("on\n"); 869 else 870 printf("off\n"); 871 } 872 873 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_IPIP_TNL_TSO) { 874 printf("TSO for IPIP tunnel packet: "); 875 if (ports[port_id].dev_conf.txmode.offloads & 876 DEV_TX_OFFLOAD_IPIP_TNL_TSO) 877 printf("on\n"); 878 else 879 printf("off\n"); 880 } 881 882 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_GENEVE_TNL_TSO) { 883 printf("TSO for GENEVE tunnel packet: "); 884 if (ports[port_id].dev_conf.txmode.offloads & 885 DEV_TX_OFFLOAD_GENEVE_TNL_TSO) 886 printf("on\n"); 887 else 888 printf("off\n"); 889 } 890 891 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_IP_TNL_TSO) { 892 printf("IP tunnel TSO: "); 893 if (ports[port_id].dev_conf.txmode.offloads & 894 DEV_TX_OFFLOAD_IP_TNL_TSO) 895 printf("on\n"); 896 else 897 printf("off\n"); 898 } 899 900 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_UDP_TNL_TSO) { 901 printf("UDP tunnel TSO: "); 902 if (ports[port_id].dev_conf.txmode.offloads & 903 DEV_TX_OFFLOAD_UDP_TNL_TSO) 904 printf("on\n"); 905 else 906 printf("off\n"); 907 } 908 909 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_OUTER_UDP_CKSUM) { 910 printf("TX Outer UDP checksum: "); 911 if (ports[port_id].dev_conf.txmode.offloads & 912 DEV_TX_OFFLOAD_OUTER_UDP_CKSUM) 913 printf("on\n"); 914 else 915 printf("off\n"); 916 } 917 918 } 919 920 int 921 port_id_is_invalid(portid_t port_id, enum print_warning warning) 922 { 923 uint16_t pid; 924 925 if (port_id == (portid_t)RTE_PORT_ALL) 926 return 0; 927 928 RTE_ETH_FOREACH_DEV(pid) 929 if (port_id == pid) 930 return 0; 931 932 if (warning == ENABLED_WARN) 933 printf("Invalid port %d\n", port_id); 934 935 return 1; 936 } 937 938 void print_valid_ports(void) 939 { 940 portid_t pid; 941 942 printf("The valid ports array is ["); 943 RTE_ETH_FOREACH_DEV(pid) { 944 printf(" %d", pid); 945 } 946 printf(" ]\n"); 947 } 948 949 static int 950 vlan_id_is_invalid(uint16_t vlan_id) 951 { 952 if (vlan_id < 4096) 953 return 0; 954 printf("Invalid vlan_id %d (must be < 4096)\n", vlan_id); 955 return 1; 956 } 957 958 static int 959 port_reg_off_is_invalid(portid_t port_id, uint32_t reg_off) 960 { 961 const struct rte_pci_device *pci_dev; 962 const struct rte_bus *bus; 963 uint64_t pci_len; 964 965 if (reg_off & 0x3) { 966 printf("Port register offset 0x%X not aligned on a 4-byte " 967 "boundary\n", 968 (unsigned)reg_off); 969 return 1; 970 } 971 972 if (!ports[port_id].dev_info.device) { 973 printf("Invalid device\n"); 974 return 0; 975 } 976 977 bus = rte_bus_find_by_device(ports[port_id].dev_info.device); 978 if (bus && !strcmp(bus->name, "pci")) { 979 pci_dev = RTE_DEV_TO_PCI(ports[port_id].dev_info.device); 980 } else { 981 printf("Not a PCI device\n"); 982 return 1; 983 } 984 985 pci_len = pci_dev->mem_resource[0].len; 986 if (reg_off >= pci_len) { 987 printf("Port %d: register offset %u (0x%X) out of port PCI " 988 "resource (length=%"PRIu64")\n", 989 port_id, (unsigned)reg_off, (unsigned)reg_off, pci_len); 990 return 1; 991 } 992 return 0; 993 } 994 995 static int 996 reg_bit_pos_is_invalid(uint8_t bit_pos) 997 { 998 if (bit_pos <= 31) 999 return 0; 1000 printf("Invalid bit position %d (must be <= 31)\n", bit_pos); 1001 return 1; 1002 } 1003 1004 #define display_port_and_reg_off(port_id, reg_off) \ 1005 printf("port %d PCI register at offset 0x%X: ", (port_id), (reg_off)) 1006 1007 static inline void 1008 display_port_reg_value(portid_t port_id, uint32_t reg_off, uint32_t reg_v) 1009 { 1010 display_port_and_reg_off(port_id, (unsigned)reg_off); 1011 printf("0x%08X (%u)\n", (unsigned)reg_v, (unsigned)reg_v); 1012 } 1013 1014 void 1015 port_reg_bit_display(portid_t port_id, uint32_t reg_off, uint8_t bit_x) 1016 { 1017 uint32_t reg_v; 1018 1019 1020 if (port_id_is_invalid(port_id, ENABLED_WARN)) 1021 return; 1022 if (port_reg_off_is_invalid(port_id, reg_off)) 1023 return; 1024 if (reg_bit_pos_is_invalid(bit_x)) 1025 return; 1026 reg_v = port_id_pci_reg_read(port_id, reg_off); 1027 display_port_and_reg_off(port_id, (unsigned)reg_off); 1028 printf("bit %d=%d\n", bit_x, (int) ((reg_v & (1 << bit_x)) >> bit_x)); 1029 } 1030 1031 void 1032 port_reg_bit_field_display(portid_t port_id, uint32_t reg_off, 1033 uint8_t bit1_pos, uint8_t bit2_pos) 1034 { 1035 uint32_t reg_v; 1036 uint8_t l_bit; 1037 uint8_t h_bit; 1038 1039 if (port_id_is_invalid(port_id, ENABLED_WARN)) 1040 return; 1041 if (port_reg_off_is_invalid(port_id, reg_off)) 1042 return; 1043 if (reg_bit_pos_is_invalid(bit1_pos)) 1044 return; 1045 if (reg_bit_pos_is_invalid(bit2_pos)) 1046 return; 1047 if (bit1_pos > bit2_pos) 1048 l_bit = bit2_pos, h_bit = bit1_pos; 1049 else 1050 l_bit = bit1_pos, h_bit = bit2_pos; 1051 1052 reg_v = port_id_pci_reg_read(port_id, reg_off); 1053 reg_v >>= l_bit; 1054 if (h_bit < 31) 1055 reg_v &= ((1 << (h_bit - l_bit + 1)) - 1); 1056 display_port_and_reg_off(port_id, (unsigned)reg_off); 1057 printf("bits[%d, %d]=0x%0*X (%u)\n", l_bit, h_bit, 1058 ((h_bit - l_bit) / 4) + 1, (unsigned)reg_v, (unsigned)reg_v); 1059 } 1060 1061 void 1062 port_reg_display(portid_t port_id, uint32_t reg_off) 1063 { 1064 uint32_t reg_v; 1065 1066 if (port_id_is_invalid(port_id, ENABLED_WARN)) 1067 return; 1068 if (port_reg_off_is_invalid(port_id, reg_off)) 1069 return; 1070 reg_v = port_id_pci_reg_read(port_id, reg_off); 1071 display_port_reg_value(port_id, reg_off, reg_v); 1072 } 1073 1074 void 1075 port_reg_bit_set(portid_t port_id, uint32_t reg_off, uint8_t bit_pos, 1076 uint8_t bit_v) 1077 { 1078 uint32_t reg_v; 1079 1080 if (port_id_is_invalid(port_id, ENABLED_WARN)) 1081 return; 1082 if (port_reg_off_is_invalid(port_id, reg_off)) 1083 return; 1084 if (reg_bit_pos_is_invalid(bit_pos)) 1085 return; 1086 if (bit_v > 1) { 1087 printf("Invalid bit value %d (must be 0 or 1)\n", (int) bit_v); 1088 return; 1089 } 1090 reg_v = port_id_pci_reg_read(port_id, reg_off); 1091 if (bit_v == 0) 1092 reg_v &= ~(1 << bit_pos); 1093 else 1094 reg_v |= (1 << bit_pos); 1095 port_id_pci_reg_write(port_id, reg_off, reg_v); 1096 display_port_reg_value(port_id, reg_off, reg_v); 1097 } 1098 1099 void 1100 port_reg_bit_field_set(portid_t port_id, uint32_t reg_off, 1101 uint8_t bit1_pos, uint8_t bit2_pos, uint32_t value) 1102 { 1103 uint32_t max_v; 1104 uint32_t reg_v; 1105 uint8_t l_bit; 1106 uint8_t h_bit; 1107 1108 if (port_id_is_invalid(port_id, ENABLED_WARN)) 1109 return; 1110 if (port_reg_off_is_invalid(port_id, reg_off)) 1111 return; 1112 if (reg_bit_pos_is_invalid(bit1_pos)) 1113 return; 1114 if (reg_bit_pos_is_invalid(bit2_pos)) 1115 return; 1116 if (bit1_pos > bit2_pos) 1117 l_bit = bit2_pos, h_bit = bit1_pos; 1118 else 1119 l_bit = bit1_pos, h_bit = bit2_pos; 1120 1121 if ((h_bit - l_bit) < 31) 1122 max_v = (1 << (h_bit - l_bit + 1)) - 1; 1123 else 1124 max_v = 0xFFFFFFFF; 1125 1126 if (value > max_v) { 1127 printf("Invalid value %u (0x%x) must be < %u (0x%x)\n", 1128 (unsigned)value, (unsigned)value, 1129 (unsigned)max_v, (unsigned)max_v); 1130 return; 1131 } 1132 reg_v = port_id_pci_reg_read(port_id, reg_off); 1133 reg_v &= ~(max_v << l_bit); /* Keep unchanged bits */ 1134 reg_v |= (value << l_bit); /* Set changed bits */ 1135 port_id_pci_reg_write(port_id, reg_off, reg_v); 1136 display_port_reg_value(port_id, reg_off, reg_v); 1137 } 1138 1139 void 1140 port_reg_set(portid_t port_id, uint32_t reg_off, uint32_t reg_v) 1141 { 1142 if (port_id_is_invalid(port_id, ENABLED_WARN)) 1143 return; 1144 if (port_reg_off_is_invalid(port_id, reg_off)) 1145 return; 1146 port_id_pci_reg_write(port_id, reg_off, reg_v); 1147 display_port_reg_value(port_id, reg_off, reg_v); 1148 } 1149 1150 void 1151 port_mtu_set(portid_t port_id, uint16_t mtu) 1152 { 1153 int diag; 1154 struct rte_eth_dev_info dev_info; 1155 int ret; 1156 1157 if (port_id_is_invalid(port_id, ENABLED_WARN)) 1158 return; 1159 1160 ret = eth_dev_info_get_print_err(port_id, &dev_info); 1161 if (ret != 0) 1162 return; 1163 1164 if (mtu > dev_info.max_mtu || mtu < dev_info.min_mtu) { 1165 printf("Set MTU failed. MTU:%u is not in valid range, min:%u - max:%u\n", 1166 mtu, dev_info.min_mtu, dev_info.max_mtu); 1167 return; 1168 } 1169 diag = rte_eth_dev_set_mtu(port_id, mtu); 1170 if (diag == 0) 1171 return; 1172 printf("Set MTU failed. diag=%d\n", diag); 1173 } 1174 1175 /* Generic flow management functions. */ 1176 1177 /** Generate a port_flow entry from attributes/pattern/actions. */ 1178 static struct port_flow * 1179 port_flow_new(const struct rte_flow_attr *attr, 1180 const struct rte_flow_item *pattern, 1181 const struct rte_flow_action *actions, 1182 struct rte_flow_error *error) 1183 { 1184 const struct rte_flow_conv_rule rule = { 1185 .attr_ro = attr, 1186 .pattern_ro = pattern, 1187 .actions_ro = actions, 1188 }; 1189 struct port_flow *pf; 1190 int ret; 1191 1192 ret = rte_flow_conv(RTE_FLOW_CONV_OP_RULE, NULL, 0, &rule, error); 1193 if (ret < 0) 1194 return NULL; 1195 pf = calloc(1, offsetof(struct port_flow, rule) + ret); 1196 if (!pf) { 1197 rte_flow_error_set 1198 (error, errno, RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, 1199 "calloc() failed"); 1200 return NULL; 1201 } 1202 if (rte_flow_conv(RTE_FLOW_CONV_OP_RULE, &pf->rule, ret, &rule, 1203 error) >= 0) 1204 return pf; 1205 free(pf); 1206 return NULL; 1207 } 1208 1209 /** Print a message out of a flow error. */ 1210 static int 1211 port_flow_complain(struct rte_flow_error *error) 1212 { 1213 static const char *const errstrlist[] = { 1214 [RTE_FLOW_ERROR_TYPE_NONE] = "no error", 1215 [RTE_FLOW_ERROR_TYPE_UNSPECIFIED] = "cause unspecified", 1216 [RTE_FLOW_ERROR_TYPE_HANDLE] = "flow rule (handle)", 1217 [RTE_FLOW_ERROR_TYPE_ATTR_GROUP] = "group field", 1218 [RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY] = "priority field", 1219 [RTE_FLOW_ERROR_TYPE_ATTR_INGRESS] = "ingress field", 1220 [RTE_FLOW_ERROR_TYPE_ATTR_EGRESS] = "egress field", 1221 [RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER] = "transfer field", 1222 [RTE_FLOW_ERROR_TYPE_ATTR] = "attributes structure", 1223 [RTE_FLOW_ERROR_TYPE_ITEM_NUM] = "pattern length", 1224 [RTE_FLOW_ERROR_TYPE_ITEM_SPEC] = "item specification", 1225 [RTE_FLOW_ERROR_TYPE_ITEM_LAST] = "item specification range", 1226 [RTE_FLOW_ERROR_TYPE_ITEM_MASK] = "item specification mask", 1227 [RTE_FLOW_ERROR_TYPE_ITEM] = "specific pattern item", 1228 [RTE_FLOW_ERROR_TYPE_ACTION_NUM] = "number of actions", 1229 [RTE_FLOW_ERROR_TYPE_ACTION_CONF] = "action configuration", 1230 [RTE_FLOW_ERROR_TYPE_ACTION] = "specific action", 1231 }; 1232 const char *errstr; 1233 char buf[32]; 1234 int err = rte_errno; 1235 1236 if ((unsigned int)error->type >= RTE_DIM(errstrlist) || 1237 !errstrlist[error->type]) 1238 errstr = "unknown type"; 1239 else 1240 errstr = errstrlist[error->type]; 1241 printf("Caught error type %d (%s): %s%s: %s\n", 1242 error->type, errstr, 1243 error->cause ? (snprintf(buf, sizeof(buf), "cause: %p, ", 1244 error->cause), buf) : "", 1245 error->message ? error->message : "(no stated reason)", 1246 rte_strerror(err)); 1247 return -err; 1248 } 1249 1250 /** Validate flow rule. */ 1251 int 1252 port_flow_validate(portid_t port_id, 1253 const struct rte_flow_attr *attr, 1254 const struct rte_flow_item *pattern, 1255 const struct rte_flow_action *actions) 1256 { 1257 struct rte_flow_error error; 1258 1259 /* Poisoning to make sure PMDs update it in case of error. */ 1260 memset(&error, 0x11, sizeof(error)); 1261 if (rte_flow_validate(port_id, attr, pattern, actions, &error)) 1262 return port_flow_complain(&error); 1263 printf("Flow rule validated\n"); 1264 return 0; 1265 } 1266 1267 /** Create flow rule. */ 1268 int 1269 port_flow_create(portid_t port_id, 1270 const struct rte_flow_attr *attr, 1271 const struct rte_flow_item *pattern, 1272 const struct rte_flow_action *actions) 1273 { 1274 struct rte_flow *flow; 1275 struct rte_port *port; 1276 struct port_flow *pf; 1277 uint32_t id; 1278 struct rte_flow_error error; 1279 1280 /* Poisoning to make sure PMDs update it in case of error. */ 1281 memset(&error, 0x22, sizeof(error)); 1282 flow = rte_flow_create(port_id, attr, pattern, actions, &error); 1283 if (!flow) 1284 return port_flow_complain(&error); 1285 port = &ports[port_id]; 1286 if (port->flow_list) { 1287 if (port->flow_list->id == UINT32_MAX) { 1288 printf("Highest rule ID is already assigned, delete" 1289 " it first"); 1290 rte_flow_destroy(port_id, flow, NULL); 1291 return -ENOMEM; 1292 } 1293 id = port->flow_list->id + 1; 1294 } else 1295 id = 0; 1296 pf = port_flow_new(attr, pattern, actions, &error); 1297 if (!pf) { 1298 rte_flow_destroy(port_id, flow, NULL); 1299 return port_flow_complain(&error); 1300 } 1301 pf->next = port->flow_list; 1302 pf->id = id; 1303 pf->flow = flow; 1304 port->flow_list = pf; 1305 printf("Flow rule #%u created\n", pf->id); 1306 return 0; 1307 } 1308 1309 /** Destroy a number of flow rules. */ 1310 int 1311 port_flow_destroy(portid_t port_id, uint32_t n, const uint32_t *rule) 1312 { 1313 struct rte_port *port; 1314 struct port_flow **tmp; 1315 uint32_t c = 0; 1316 int ret = 0; 1317 1318 if (port_id_is_invalid(port_id, ENABLED_WARN) || 1319 port_id == (portid_t)RTE_PORT_ALL) 1320 return -EINVAL; 1321 port = &ports[port_id]; 1322 tmp = &port->flow_list; 1323 while (*tmp) { 1324 uint32_t i; 1325 1326 for (i = 0; i != n; ++i) { 1327 struct rte_flow_error error; 1328 struct port_flow *pf = *tmp; 1329 1330 if (rule[i] != pf->id) 1331 continue; 1332 /* 1333 * Poisoning to make sure PMDs update it in case 1334 * of error. 1335 */ 1336 memset(&error, 0x33, sizeof(error)); 1337 if (rte_flow_destroy(port_id, pf->flow, &error)) { 1338 ret = port_flow_complain(&error); 1339 continue; 1340 } 1341 printf("Flow rule #%u destroyed\n", pf->id); 1342 *tmp = pf->next; 1343 free(pf); 1344 break; 1345 } 1346 if (i == n) 1347 tmp = &(*tmp)->next; 1348 ++c; 1349 } 1350 return ret; 1351 } 1352 1353 /** Remove all flow rules. */ 1354 int 1355 port_flow_flush(portid_t port_id) 1356 { 1357 struct rte_flow_error error; 1358 struct rte_port *port; 1359 int ret = 0; 1360 1361 /* Poisoning to make sure PMDs update it in case of error. */ 1362 memset(&error, 0x44, sizeof(error)); 1363 if (rte_flow_flush(port_id, &error)) { 1364 ret = port_flow_complain(&error); 1365 if (port_id_is_invalid(port_id, DISABLED_WARN) || 1366 port_id == (portid_t)RTE_PORT_ALL) 1367 return ret; 1368 } 1369 port = &ports[port_id]; 1370 while (port->flow_list) { 1371 struct port_flow *pf = port->flow_list->next; 1372 1373 free(port->flow_list); 1374 port->flow_list = pf; 1375 } 1376 return ret; 1377 } 1378 1379 /** Query a flow rule. */ 1380 int 1381 port_flow_query(portid_t port_id, uint32_t rule, 1382 const struct rte_flow_action *action) 1383 { 1384 struct rte_flow_error error; 1385 struct rte_port *port; 1386 struct port_flow *pf; 1387 const char *name; 1388 union { 1389 struct rte_flow_query_count count; 1390 } query; 1391 int ret; 1392 1393 if (port_id_is_invalid(port_id, ENABLED_WARN) || 1394 port_id == (portid_t)RTE_PORT_ALL) 1395 return -EINVAL; 1396 port = &ports[port_id]; 1397 for (pf = port->flow_list; pf; pf = pf->next) 1398 if (pf->id == rule) 1399 break; 1400 if (!pf) { 1401 printf("Flow rule #%u not found\n", rule); 1402 return -ENOENT; 1403 } 1404 ret = rte_flow_conv(RTE_FLOW_CONV_OP_ACTION_NAME_PTR, 1405 &name, sizeof(name), 1406 (void *)(uintptr_t)action->type, &error); 1407 if (ret < 0) 1408 return port_flow_complain(&error); 1409 switch (action->type) { 1410 case RTE_FLOW_ACTION_TYPE_COUNT: 1411 break; 1412 default: 1413 printf("Cannot query action type %d (%s)\n", 1414 action->type, name); 1415 return -ENOTSUP; 1416 } 1417 /* Poisoning to make sure PMDs update it in case of error. */ 1418 memset(&error, 0x55, sizeof(error)); 1419 memset(&query, 0, sizeof(query)); 1420 if (rte_flow_query(port_id, pf->flow, action, &query, &error)) 1421 return port_flow_complain(&error); 1422 switch (action->type) { 1423 case RTE_FLOW_ACTION_TYPE_COUNT: 1424 printf("%s:\n" 1425 " hits_set: %u\n" 1426 " bytes_set: %u\n" 1427 " hits: %" PRIu64 "\n" 1428 " bytes: %" PRIu64 "\n", 1429 name, 1430 query.count.hits_set, 1431 query.count.bytes_set, 1432 query.count.hits, 1433 query.count.bytes); 1434 break; 1435 default: 1436 printf("Cannot display result for action type %d (%s)\n", 1437 action->type, name); 1438 break; 1439 } 1440 return 0; 1441 } 1442 1443 /** List flow rules. */ 1444 void 1445 port_flow_list(portid_t port_id, uint32_t n, const uint32_t group[n]) 1446 { 1447 struct rte_port *port; 1448 struct port_flow *pf; 1449 struct port_flow *list = NULL; 1450 uint32_t i; 1451 1452 if (port_id_is_invalid(port_id, ENABLED_WARN) || 1453 port_id == (portid_t)RTE_PORT_ALL) 1454 return; 1455 port = &ports[port_id]; 1456 if (!port->flow_list) 1457 return; 1458 /* Sort flows by group, priority and ID. */ 1459 for (pf = port->flow_list; pf != NULL; pf = pf->next) { 1460 struct port_flow **tmp; 1461 const struct rte_flow_attr *curr = pf->rule.attr; 1462 1463 if (n) { 1464 /* Filter out unwanted groups. */ 1465 for (i = 0; i != n; ++i) 1466 if (curr->group == group[i]) 1467 break; 1468 if (i == n) 1469 continue; 1470 } 1471 for (tmp = &list; *tmp; tmp = &(*tmp)->tmp) { 1472 const struct rte_flow_attr *comp = (*tmp)->rule.attr; 1473 1474 if (curr->group > comp->group || 1475 (curr->group == comp->group && 1476 curr->priority > comp->priority) || 1477 (curr->group == comp->group && 1478 curr->priority == comp->priority && 1479 pf->id > (*tmp)->id)) 1480 continue; 1481 break; 1482 } 1483 pf->tmp = *tmp; 1484 *tmp = pf; 1485 } 1486 printf("ID\tGroup\tPrio\tAttr\tRule\n"); 1487 for (pf = list; pf != NULL; pf = pf->tmp) { 1488 const struct rte_flow_item *item = pf->rule.pattern; 1489 const struct rte_flow_action *action = pf->rule.actions; 1490 const char *name; 1491 1492 printf("%" PRIu32 "\t%" PRIu32 "\t%" PRIu32 "\t%c%c%c\t", 1493 pf->id, 1494 pf->rule.attr->group, 1495 pf->rule.attr->priority, 1496 pf->rule.attr->ingress ? 'i' : '-', 1497 pf->rule.attr->egress ? 'e' : '-', 1498 pf->rule.attr->transfer ? 't' : '-'); 1499 while (item->type != RTE_FLOW_ITEM_TYPE_END) { 1500 if (rte_flow_conv(RTE_FLOW_CONV_OP_ITEM_NAME_PTR, 1501 &name, sizeof(name), 1502 (void *)(uintptr_t)item->type, 1503 NULL) <= 0) 1504 name = "[UNKNOWN]"; 1505 if (item->type != RTE_FLOW_ITEM_TYPE_VOID) 1506 printf("%s ", name); 1507 ++item; 1508 } 1509 printf("=>"); 1510 while (action->type != RTE_FLOW_ACTION_TYPE_END) { 1511 if (rte_flow_conv(RTE_FLOW_CONV_OP_ACTION_NAME_PTR, 1512 &name, sizeof(name), 1513 (void *)(uintptr_t)action->type, 1514 NULL) <= 0) 1515 name = "[UNKNOWN]"; 1516 if (action->type != RTE_FLOW_ACTION_TYPE_VOID) 1517 printf(" %s", name); 1518 ++action; 1519 } 1520 printf("\n"); 1521 } 1522 } 1523 1524 /** Restrict ingress traffic to the defined flow rules. */ 1525 int 1526 port_flow_isolate(portid_t port_id, int set) 1527 { 1528 struct rte_flow_error error; 1529 1530 /* Poisoning to make sure PMDs update it in case of error. */ 1531 memset(&error, 0x66, sizeof(error)); 1532 if (rte_flow_isolate(port_id, set, &error)) 1533 return port_flow_complain(&error); 1534 printf("Ingress traffic on port %u is %s to the defined flow rules\n", 1535 port_id, 1536 set ? "now restricted" : "not restricted anymore"); 1537 return 0; 1538 } 1539 1540 /* 1541 * RX/TX ring descriptors display functions. 1542 */ 1543 int 1544 rx_queue_id_is_invalid(queueid_t rxq_id) 1545 { 1546 if (rxq_id < nb_rxq) 1547 return 0; 1548 printf("Invalid RX queue %d (must be < nb_rxq=%d)\n", rxq_id, nb_rxq); 1549 return 1; 1550 } 1551 1552 int 1553 tx_queue_id_is_invalid(queueid_t txq_id) 1554 { 1555 if (txq_id < nb_txq) 1556 return 0; 1557 printf("Invalid TX queue %d (must be < nb_rxq=%d)\n", txq_id, nb_txq); 1558 return 1; 1559 } 1560 1561 static int 1562 rx_desc_id_is_invalid(uint16_t rxdesc_id) 1563 { 1564 if (rxdesc_id < nb_rxd) 1565 return 0; 1566 printf("Invalid RX descriptor %d (must be < nb_rxd=%d)\n", 1567 rxdesc_id, nb_rxd); 1568 return 1; 1569 } 1570 1571 static int 1572 tx_desc_id_is_invalid(uint16_t txdesc_id) 1573 { 1574 if (txdesc_id < nb_txd) 1575 return 0; 1576 printf("Invalid TX descriptor %d (must be < nb_txd=%d)\n", 1577 txdesc_id, nb_txd); 1578 return 1; 1579 } 1580 1581 static const struct rte_memzone * 1582 ring_dma_zone_lookup(const char *ring_name, portid_t port_id, uint16_t q_id) 1583 { 1584 char mz_name[RTE_MEMZONE_NAMESIZE]; 1585 const struct rte_memzone *mz; 1586 1587 snprintf(mz_name, sizeof(mz_name), "eth_p%d_q%d_%s", 1588 port_id, q_id, ring_name); 1589 mz = rte_memzone_lookup(mz_name); 1590 if (mz == NULL) 1591 printf("%s ring memory zoneof (port %d, queue %d) not" 1592 "found (zone name = %s\n", 1593 ring_name, port_id, q_id, mz_name); 1594 return mz; 1595 } 1596 1597 union igb_ring_dword { 1598 uint64_t dword; 1599 struct { 1600 #if RTE_BYTE_ORDER == RTE_BIG_ENDIAN 1601 uint32_t lo; 1602 uint32_t hi; 1603 #else 1604 uint32_t hi; 1605 uint32_t lo; 1606 #endif 1607 } words; 1608 }; 1609 1610 struct igb_ring_desc_32_bytes { 1611 union igb_ring_dword lo_dword; 1612 union igb_ring_dword hi_dword; 1613 union igb_ring_dword resv1; 1614 union igb_ring_dword resv2; 1615 }; 1616 1617 struct igb_ring_desc_16_bytes { 1618 union igb_ring_dword lo_dword; 1619 union igb_ring_dword hi_dword; 1620 }; 1621 1622 static void 1623 ring_rxd_display_dword(union igb_ring_dword dword) 1624 { 1625 printf(" 0x%08X - 0x%08X\n", (unsigned)dword.words.lo, 1626 (unsigned)dword.words.hi); 1627 } 1628 1629 static void 1630 ring_rx_descriptor_display(const struct rte_memzone *ring_mz, 1631 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC 1632 portid_t port_id, 1633 #else 1634 __rte_unused portid_t port_id, 1635 #endif 1636 uint16_t desc_id) 1637 { 1638 int ret; 1639 struct igb_ring_desc_16_bytes *ring = 1640 (struct igb_ring_desc_16_bytes *)ring_mz->addr; 1641 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC 1642 struct rte_eth_dev_info dev_info; 1643 1644 ret = eth_dev_info_get_print_err(port_id, &dev_info); 1645 if (ret != 0) 1646 return; 1647 1648 if (strstr(dev_info.driver_name, "i40e") != NULL) { 1649 /* 32 bytes RX descriptor, i40e only */ 1650 struct igb_ring_desc_32_bytes *ring = 1651 (struct igb_ring_desc_32_bytes *)ring_mz->addr; 1652 ring[desc_id].lo_dword.dword = 1653 rte_le_to_cpu_64(ring[desc_id].lo_dword.dword); 1654 ring_rxd_display_dword(ring[desc_id].lo_dword); 1655 ring[desc_id].hi_dword.dword = 1656 rte_le_to_cpu_64(ring[desc_id].hi_dword.dword); 1657 ring_rxd_display_dword(ring[desc_id].hi_dword); 1658 ring[desc_id].resv1.dword = 1659 rte_le_to_cpu_64(ring[desc_id].resv1.dword); 1660 ring_rxd_display_dword(ring[desc_id].resv1); 1661 ring[desc_id].resv2.dword = 1662 rte_le_to_cpu_64(ring[desc_id].resv2.dword); 1663 ring_rxd_display_dword(ring[desc_id].resv2); 1664 1665 return; 1666 } 1667 #endif 1668 /* 16 bytes RX descriptor */ 1669 ring[desc_id].lo_dword.dword = 1670 rte_le_to_cpu_64(ring[desc_id].lo_dword.dword); 1671 ring_rxd_display_dword(ring[desc_id].lo_dword); 1672 ring[desc_id].hi_dword.dword = 1673 rte_le_to_cpu_64(ring[desc_id].hi_dword.dword); 1674 ring_rxd_display_dword(ring[desc_id].hi_dword); 1675 } 1676 1677 static void 1678 ring_tx_descriptor_display(const struct rte_memzone *ring_mz, uint16_t desc_id) 1679 { 1680 struct igb_ring_desc_16_bytes *ring; 1681 struct igb_ring_desc_16_bytes txd; 1682 1683 ring = (struct igb_ring_desc_16_bytes *)ring_mz->addr; 1684 txd.lo_dword.dword = rte_le_to_cpu_64(ring[desc_id].lo_dword.dword); 1685 txd.hi_dword.dword = rte_le_to_cpu_64(ring[desc_id].hi_dword.dword); 1686 printf(" 0x%08X - 0x%08X / 0x%08X - 0x%08X\n", 1687 (unsigned)txd.lo_dword.words.lo, 1688 (unsigned)txd.lo_dword.words.hi, 1689 (unsigned)txd.hi_dword.words.lo, 1690 (unsigned)txd.hi_dword.words.hi); 1691 } 1692 1693 void 1694 rx_ring_desc_display(portid_t port_id, queueid_t rxq_id, uint16_t rxd_id) 1695 { 1696 const struct rte_memzone *rx_mz; 1697 1698 if (port_id_is_invalid(port_id, ENABLED_WARN)) 1699 return; 1700 if (rx_queue_id_is_invalid(rxq_id)) 1701 return; 1702 if (rx_desc_id_is_invalid(rxd_id)) 1703 return; 1704 rx_mz = ring_dma_zone_lookup("rx_ring", port_id, rxq_id); 1705 if (rx_mz == NULL) 1706 return; 1707 ring_rx_descriptor_display(rx_mz, port_id, rxd_id); 1708 } 1709 1710 void 1711 tx_ring_desc_display(portid_t port_id, queueid_t txq_id, uint16_t txd_id) 1712 { 1713 const struct rte_memzone *tx_mz; 1714 1715 if (port_id_is_invalid(port_id, ENABLED_WARN)) 1716 return; 1717 if (tx_queue_id_is_invalid(txq_id)) 1718 return; 1719 if (tx_desc_id_is_invalid(txd_id)) 1720 return; 1721 tx_mz = ring_dma_zone_lookup("tx_ring", port_id, txq_id); 1722 if (tx_mz == NULL) 1723 return; 1724 ring_tx_descriptor_display(tx_mz, txd_id); 1725 } 1726 1727 void 1728 fwd_lcores_config_display(void) 1729 { 1730 lcoreid_t lc_id; 1731 1732 printf("List of forwarding lcores:"); 1733 for (lc_id = 0; lc_id < nb_cfg_lcores; lc_id++) 1734 printf(" %2u", fwd_lcores_cpuids[lc_id]); 1735 printf("\n"); 1736 } 1737 void 1738 rxtx_config_display(void) 1739 { 1740 portid_t pid; 1741 queueid_t qid; 1742 1743 printf(" %s packet forwarding%s packets/burst=%d\n", 1744 cur_fwd_eng->fwd_mode_name, 1745 retry_enabled == 0 ? "" : " with retry", 1746 nb_pkt_per_burst); 1747 1748 if (cur_fwd_eng == &tx_only_engine || cur_fwd_eng == &flow_gen_engine) 1749 printf(" packet len=%u - nb packet segments=%d\n", 1750 (unsigned)tx_pkt_length, (int) tx_pkt_nb_segs); 1751 1752 printf(" nb forwarding cores=%d - nb forwarding ports=%d\n", 1753 nb_fwd_lcores, nb_fwd_ports); 1754 1755 RTE_ETH_FOREACH_DEV(pid) { 1756 struct rte_eth_rxconf *rx_conf = &ports[pid].rx_conf[0]; 1757 struct rte_eth_txconf *tx_conf = &ports[pid].tx_conf[0]; 1758 uint16_t *nb_rx_desc = &ports[pid].nb_rx_desc[0]; 1759 uint16_t *nb_tx_desc = &ports[pid].nb_tx_desc[0]; 1760 uint16_t nb_rx_desc_tmp; 1761 uint16_t nb_tx_desc_tmp; 1762 struct rte_eth_rxq_info rx_qinfo; 1763 struct rte_eth_txq_info tx_qinfo; 1764 int32_t rc; 1765 1766 /* per port config */ 1767 printf(" port %d: RX queue number: %d Tx queue number: %d\n", 1768 (unsigned int)pid, nb_rxq, nb_txq); 1769 1770 printf(" Rx offloads=0x%"PRIx64" Tx offloads=0x%"PRIx64"\n", 1771 ports[pid].dev_conf.rxmode.offloads, 1772 ports[pid].dev_conf.txmode.offloads); 1773 1774 /* per rx queue config only for first queue to be less verbose */ 1775 for (qid = 0; qid < 1; qid++) { 1776 rc = rte_eth_rx_queue_info_get(pid, qid, &rx_qinfo); 1777 if (rc) 1778 nb_rx_desc_tmp = nb_rx_desc[qid]; 1779 else 1780 nb_rx_desc_tmp = rx_qinfo.nb_desc; 1781 1782 printf(" RX queue: %d\n", qid); 1783 printf(" RX desc=%d - RX free threshold=%d\n", 1784 nb_rx_desc_tmp, rx_conf[qid].rx_free_thresh); 1785 printf(" RX threshold registers: pthresh=%d hthresh=%d " 1786 " wthresh=%d\n", 1787 rx_conf[qid].rx_thresh.pthresh, 1788 rx_conf[qid].rx_thresh.hthresh, 1789 rx_conf[qid].rx_thresh.wthresh); 1790 printf(" RX Offloads=0x%"PRIx64"\n", 1791 rx_conf[qid].offloads); 1792 } 1793 1794 /* per tx queue config only for first queue to be less verbose */ 1795 for (qid = 0; qid < 1; qid++) { 1796 rc = rte_eth_tx_queue_info_get(pid, qid, &tx_qinfo); 1797 if (rc) 1798 nb_tx_desc_tmp = nb_tx_desc[qid]; 1799 else 1800 nb_tx_desc_tmp = tx_qinfo.nb_desc; 1801 1802 printf(" TX queue: %d\n", qid); 1803 printf(" TX desc=%d - TX free threshold=%d\n", 1804 nb_tx_desc_tmp, tx_conf[qid].tx_free_thresh); 1805 printf(" TX threshold registers: pthresh=%d hthresh=%d " 1806 " wthresh=%d\n", 1807 tx_conf[qid].tx_thresh.pthresh, 1808 tx_conf[qid].tx_thresh.hthresh, 1809 tx_conf[qid].tx_thresh.wthresh); 1810 printf(" TX offloads=0x%"PRIx64" - TX RS bit threshold=%d\n", 1811 tx_conf[qid].offloads, tx_conf->tx_rs_thresh); 1812 } 1813 } 1814 } 1815 1816 void 1817 port_rss_reta_info(portid_t port_id, 1818 struct rte_eth_rss_reta_entry64 *reta_conf, 1819 uint16_t nb_entries) 1820 { 1821 uint16_t i, idx, shift; 1822 int ret; 1823 1824 if (port_id_is_invalid(port_id, ENABLED_WARN)) 1825 return; 1826 1827 ret = rte_eth_dev_rss_reta_query(port_id, reta_conf, nb_entries); 1828 if (ret != 0) { 1829 printf("Failed to get RSS RETA info, return code = %d\n", ret); 1830 return; 1831 } 1832 1833 for (i = 0; i < nb_entries; i++) { 1834 idx = i / RTE_RETA_GROUP_SIZE; 1835 shift = i % RTE_RETA_GROUP_SIZE; 1836 if (!(reta_conf[idx].mask & (1ULL << shift))) 1837 continue; 1838 printf("RSS RETA configuration: hash index=%u, queue=%u\n", 1839 i, reta_conf[idx].reta[shift]); 1840 } 1841 } 1842 1843 /* 1844 * Displays the RSS hash functions of a port, and, optionaly, the RSS hash 1845 * key of the port. 1846 */ 1847 void 1848 port_rss_hash_conf_show(portid_t port_id, int show_rss_key) 1849 { 1850 struct rte_eth_rss_conf rss_conf = {0}; 1851 uint8_t rss_key[RSS_HASH_KEY_LENGTH]; 1852 uint64_t rss_hf; 1853 uint8_t i; 1854 int diag; 1855 struct rte_eth_dev_info dev_info; 1856 uint8_t hash_key_size; 1857 int ret; 1858 1859 if (port_id_is_invalid(port_id, ENABLED_WARN)) 1860 return; 1861 1862 ret = eth_dev_info_get_print_err(port_id, &dev_info); 1863 if (ret != 0) 1864 return; 1865 1866 if (dev_info.hash_key_size > 0 && 1867 dev_info.hash_key_size <= sizeof(rss_key)) 1868 hash_key_size = dev_info.hash_key_size; 1869 else { 1870 printf("dev_info did not provide a valid hash key size\n"); 1871 return; 1872 } 1873 1874 /* Get RSS hash key if asked to display it */ 1875 rss_conf.rss_key = (show_rss_key) ? rss_key : NULL; 1876 rss_conf.rss_key_len = hash_key_size; 1877 diag = rte_eth_dev_rss_hash_conf_get(port_id, &rss_conf); 1878 if (diag != 0) { 1879 switch (diag) { 1880 case -ENODEV: 1881 printf("port index %d invalid\n", port_id); 1882 break; 1883 case -ENOTSUP: 1884 printf("operation not supported by device\n"); 1885 break; 1886 default: 1887 printf("operation failed - diag=%d\n", diag); 1888 break; 1889 } 1890 return; 1891 } 1892 rss_hf = rss_conf.rss_hf; 1893 if (rss_hf == 0) { 1894 printf("RSS disabled\n"); 1895 return; 1896 } 1897 printf("RSS functions:\n "); 1898 for (i = 0; rss_type_table[i].str; i++) { 1899 if (rss_hf & rss_type_table[i].rss_type) 1900 printf("%s ", rss_type_table[i].str); 1901 } 1902 printf("\n"); 1903 if (!show_rss_key) 1904 return; 1905 printf("RSS key:\n"); 1906 for (i = 0; i < hash_key_size; i++) 1907 printf("%02X", rss_key[i]); 1908 printf("\n"); 1909 } 1910 1911 void 1912 port_rss_hash_key_update(portid_t port_id, char rss_type[], uint8_t *hash_key, 1913 uint hash_key_len) 1914 { 1915 struct rte_eth_rss_conf rss_conf; 1916 int diag; 1917 unsigned int i; 1918 1919 rss_conf.rss_key = NULL; 1920 rss_conf.rss_key_len = hash_key_len; 1921 rss_conf.rss_hf = 0; 1922 for (i = 0; rss_type_table[i].str; i++) { 1923 if (!strcmp(rss_type_table[i].str, rss_type)) 1924 rss_conf.rss_hf = rss_type_table[i].rss_type; 1925 } 1926 diag = rte_eth_dev_rss_hash_conf_get(port_id, &rss_conf); 1927 if (diag == 0) { 1928 rss_conf.rss_key = hash_key; 1929 diag = rte_eth_dev_rss_hash_update(port_id, &rss_conf); 1930 } 1931 if (diag == 0) 1932 return; 1933 1934 switch (diag) { 1935 case -ENODEV: 1936 printf("port index %d invalid\n", port_id); 1937 break; 1938 case -ENOTSUP: 1939 printf("operation not supported by device\n"); 1940 break; 1941 default: 1942 printf("operation failed - diag=%d\n", diag); 1943 break; 1944 } 1945 } 1946 1947 /* 1948 * Setup forwarding configuration for each logical core. 1949 */ 1950 static void 1951 setup_fwd_config_of_each_lcore(struct fwd_config *cfg) 1952 { 1953 streamid_t nb_fs_per_lcore; 1954 streamid_t nb_fs; 1955 streamid_t sm_id; 1956 lcoreid_t nb_extra; 1957 lcoreid_t nb_fc; 1958 lcoreid_t nb_lc; 1959 lcoreid_t lc_id; 1960 1961 nb_fs = cfg->nb_fwd_streams; 1962 nb_fc = cfg->nb_fwd_lcores; 1963 if (nb_fs <= nb_fc) { 1964 nb_fs_per_lcore = 1; 1965 nb_extra = 0; 1966 } else { 1967 nb_fs_per_lcore = (streamid_t) (nb_fs / nb_fc); 1968 nb_extra = (lcoreid_t) (nb_fs % nb_fc); 1969 } 1970 1971 nb_lc = (lcoreid_t) (nb_fc - nb_extra); 1972 sm_id = 0; 1973 for (lc_id = 0; lc_id < nb_lc; lc_id++) { 1974 fwd_lcores[lc_id]->stream_idx = sm_id; 1975 fwd_lcores[lc_id]->stream_nb = nb_fs_per_lcore; 1976 sm_id = (streamid_t) (sm_id + nb_fs_per_lcore); 1977 } 1978 1979 /* 1980 * Assign extra remaining streams, if any. 1981 */ 1982 nb_fs_per_lcore = (streamid_t) (nb_fs_per_lcore + 1); 1983 for (lc_id = 0; lc_id < nb_extra; lc_id++) { 1984 fwd_lcores[nb_lc + lc_id]->stream_idx = sm_id; 1985 fwd_lcores[nb_lc + lc_id]->stream_nb = nb_fs_per_lcore; 1986 sm_id = (streamid_t) (sm_id + nb_fs_per_lcore); 1987 } 1988 } 1989 1990 static portid_t 1991 fwd_topology_tx_port_get(portid_t rxp) 1992 { 1993 static int warning_once = 1; 1994 1995 RTE_ASSERT(rxp < cur_fwd_config.nb_fwd_ports); 1996 1997 switch (port_topology) { 1998 default: 1999 case PORT_TOPOLOGY_PAIRED: 2000 if ((rxp & 0x1) == 0) { 2001 if (rxp + 1 < cur_fwd_config.nb_fwd_ports) 2002 return rxp + 1; 2003 if (warning_once) { 2004 printf("\nWarning! port-topology=paired" 2005 " and odd forward ports number," 2006 " the last port will pair with" 2007 " itself.\n\n"); 2008 warning_once = 0; 2009 } 2010 return rxp; 2011 } 2012 return rxp - 1; 2013 case PORT_TOPOLOGY_CHAINED: 2014 return (rxp + 1) % cur_fwd_config.nb_fwd_ports; 2015 case PORT_TOPOLOGY_LOOP: 2016 return rxp; 2017 } 2018 } 2019 2020 static void 2021 simple_fwd_config_setup(void) 2022 { 2023 portid_t i; 2024 2025 cur_fwd_config.nb_fwd_ports = (portid_t) nb_fwd_ports; 2026 cur_fwd_config.nb_fwd_streams = 2027 (streamid_t) cur_fwd_config.nb_fwd_ports; 2028 2029 /* reinitialize forwarding streams */ 2030 init_fwd_streams(); 2031 2032 /* 2033 * In the simple forwarding test, the number of forwarding cores 2034 * must be lower or equal to the number of forwarding ports. 2035 */ 2036 cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores; 2037 if (cur_fwd_config.nb_fwd_lcores > cur_fwd_config.nb_fwd_ports) 2038 cur_fwd_config.nb_fwd_lcores = 2039 (lcoreid_t) cur_fwd_config.nb_fwd_ports; 2040 setup_fwd_config_of_each_lcore(&cur_fwd_config); 2041 2042 for (i = 0; i < cur_fwd_config.nb_fwd_ports; i++) { 2043 fwd_streams[i]->rx_port = fwd_ports_ids[i]; 2044 fwd_streams[i]->rx_queue = 0; 2045 fwd_streams[i]->tx_port = 2046 fwd_ports_ids[fwd_topology_tx_port_get(i)]; 2047 fwd_streams[i]->tx_queue = 0; 2048 fwd_streams[i]->peer_addr = fwd_streams[i]->tx_port; 2049 fwd_streams[i]->retry_enabled = retry_enabled; 2050 } 2051 } 2052 2053 /** 2054 * For the RSS forwarding test all streams distributed over lcores. Each stream 2055 * being composed of a RX queue to poll on a RX port for input messages, 2056 * associated with a TX queue of a TX port where to send forwarded packets. 2057 */ 2058 static void 2059 rss_fwd_config_setup(void) 2060 { 2061 portid_t rxp; 2062 portid_t txp; 2063 queueid_t rxq; 2064 queueid_t nb_q; 2065 streamid_t sm_id; 2066 2067 nb_q = nb_rxq; 2068 if (nb_q > nb_txq) 2069 nb_q = nb_txq; 2070 cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores; 2071 cur_fwd_config.nb_fwd_ports = nb_fwd_ports; 2072 cur_fwd_config.nb_fwd_streams = 2073 (streamid_t) (nb_q * cur_fwd_config.nb_fwd_ports); 2074 2075 if (cur_fwd_config.nb_fwd_streams < cur_fwd_config.nb_fwd_lcores) 2076 cur_fwd_config.nb_fwd_lcores = 2077 (lcoreid_t)cur_fwd_config.nb_fwd_streams; 2078 2079 /* reinitialize forwarding streams */ 2080 init_fwd_streams(); 2081 2082 setup_fwd_config_of_each_lcore(&cur_fwd_config); 2083 rxp = 0; rxq = 0; 2084 for (sm_id = 0; sm_id < cur_fwd_config.nb_fwd_streams; sm_id++) { 2085 struct fwd_stream *fs; 2086 2087 fs = fwd_streams[sm_id]; 2088 txp = fwd_topology_tx_port_get(rxp); 2089 fs->rx_port = fwd_ports_ids[rxp]; 2090 fs->rx_queue = rxq; 2091 fs->tx_port = fwd_ports_ids[txp]; 2092 fs->tx_queue = rxq; 2093 fs->peer_addr = fs->tx_port; 2094 fs->retry_enabled = retry_enabled; 2095 rxp++; 2096 if (rxp < nb_fwd_ports) 2097 continue; 2098 rxp = 0; 2099 rxq++; 2100 } 2101 } 2102 2103 /** 2104 * For the DCB forwarding test, each core is assigned on each traffic class. 2105 * 2106 * Each core is assigned a multi-stream, each stream being composed of 2107 * a RX queue to poll on a RX port for input messages, associated with 2108 * a TX queue of a TX port where to send forwarded packets. All RX and 2109 * TX queues are mapping to the same traffic class. 2110 * If VMDQ and DCB co-exist, each traffic class on different POOLs share 2111 * the same core 2112 */ 2113 static void 2114 dcb_fwd_config_setup(void) 2115 { 2116 struct rte_eth_dcb_info rxp_dcb_info, txp_dcb_info; 2117 portid_t txp, rxp = 0; 2118 queueid_t txq, rxq = 0; 2119 lcoreid_t lc_id; 2120 uint16_t nb_rx_queue, nb_tx_queue; 2121 uint16_t i, j, k, sm_id = 0; 2122 uint8_t tc = 0; 2123 2124 cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores; 2125 cur_fwd_config.nb_fwd_ports = nb_fwd_ports; 2126 cur_fwd_config.nb_fwd_streams = 2127 (streamid_t) (nb_rxq * cur_fwd_config.nb_fwd_ports); 2128 2129 /* reinitialize forwarding streams */ 2130 init_fwd_streams(); 2131 sm_id = 0; 2132 txp = 1; 2133 /* get the dcb info on the first RX and TX ports */ 2134 (void)rte_eth_dev_get_dcb_info(fwd_ports_ids[rxp], &rxp_dcb_info); 2135 (void)rte_eth_dev_get_dcb_info(fwd_ports_ids[txp], &txp_dcb_info); 2136 2137 for (lc_id = 0; lc_id < cur_fwd_config.nb_fwd_lcores; lc_id++) { 2138 fwd_lcores[lc_id]->stream_nb = 0; 2139 fwd_lcores[lc_id]->stream_idx = sm_id; 2140 for (i = 0; i < ETH_MAX_VMDQ_POOL; i++) { 2141 /* if the nb_queue is zero, means this tc is 2142 * not enabled on the POOL 2143 */ 2144 if (rxp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue == 0) 2145 break; 2146 k = fwd_lcores[lc_id]->stream_nb + 2147 fwd_lcores[lc_id]->stream_idx; 2148 rxq = rxp_dcb_info.tc_queue.tc_rxq[i][tc].base; 2149 txq = txp_dcb_info.tc_queue.tc_txq[i][tc].base; 2150 nb_rx_queue = txp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue; 2151 nb_tx_queue = txp_dcb_info.tc_queue.tc_txq[i][tc].nb_queue; 2152 for (j = 0; j < nb_rx_queue; j++) { 2153 struct fwd_stream *fs; 2154 2155 fs = fwd_streams[k + j]; 2156 fs->rx_port = fwd_ports_ids[rxp]; 2157 fs->rx_queue = rxq + j; 2158 fs->tx_port = fwd_ports_ids[txp]; 2159 fs->tx_queue = txq + j % nb_tx_queue; 2160 fs->peer_addr = fs->tx_port; 2161 fs->retry_enabled = retry_enabled; 2162 } 2163 fwd_lcores[lc_id]->stream_nb += 2164 rxp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue; 2165 } 2166 sm_id = (streamid_t) (sm_id + fwd_lcores[lc_id]->stream_nb); 2167 2168 tc++; 2169 if (tc < rxp_dcb_info.nb_tcs) 2170 continue; 2171 /* Restart from TC 0 on next RX port */ 2172 tc = 0; 2173 if (numa_support && (nb_fwd_ports <= (nb_ports >> 1))) 2174 rxp = (portid_t) 2175 (rxp + ((nb_ports >> 1) / nb_fwd_ports)); 2176 else 2177 rxp++; 2178 if (rxp >= nb_fwd_ports) 2179 return; 2180 /* get the dcb information on next RX and TX ports */ 2181 if ((rxp & 0x1) == 0) 2182 txp = (portid_t) (rxp + 1); 2183 else 2184 txp = (portid_t) (rxp - 1); 2185 rte_eth_dev_get_dcb_info(fwd_ports_ids[rxp], &rxp_dcb_info); 2186 rte_eth_dev_get_dcb_info(fwd_ports_ids[txp], &txp_dcb_info); 2187 } 2188 } 2189 2190 static void 2191 icmp_echo_config_setup(void) 2192 { 2193 portid_t rxp; 2194 queueid_t rxq; 2195 lcoreid_t lc_id; 2196 uint16_t sm_id; 2197 2198 if ((nb_txq * nb_fwd_ports) < nb_fwd_lcores) 2199 cur_fwd_config.nb_fwd_lcores = (lcoreid_t) 2200 (nb_txq * nb_fwd_ports); 2201 else 2202 cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores; 2203 cur_fwd_config.nb_fwd_ports = nb_fwd_ports; 2204 cur_fwd_config.nb_fwd_streams = 2205 (streamid_t) (nb_rxq * cur_fwd_config.nb_fwd_ports); 2206 if (cur_fwd_config.nb_fwd_streams < cur_fwd_config.nb_fwd_lcores) 2207 cur_fwd_config.nb_fwd_lcores = 2208 (lcoreid_t)cur_fwd_config.nb_fwd_streams; 2209 if (verbose_level > 0) { 2210 printf("%s fwd_cores=%d fwd_ports=%d fwd_streams=%d\n", 2211 __FUNCTION__, 2212 cur_fwd_config.nb_fwd_lcores, 2213 cur_fwd_config.nb_fwd_ports, 2214 cur_fwd_config.nb_fwd_streams); 2215 } 2216 2217 /* reinitialize forwarding streams */ 2218 init_fwd_streams(); 2219 setup_fwd_config_of_each_lcore(&cur_fwd_config); 2220 rxp = 0; rxq = 0; 2221 for (lc_id = 0; lc_id < cur_fwd_config.nb_fwd_lcores; lc_id++) { 2222 if (verbose_level > 0) 2223 printf(" core=%d: \n", lc_id); 2224 for (sm_id = 0; sm_id < fwd_lcores[lc_id]->stream_nb; sm_id++) { 2225 struct fwd_stream *fs; 2226 fs = fwd_streams[fwd_lcores[lc_id]->stream_idx + sm_id]; 2227 fs->rx_port = fwd_ports_ids[rxp]; 2228 fs->rx_queue = rxq; 2229 fs->tx_port = fs->rx_port; 2230 fs->tx_queue = rxq; 2231 fs->peer_addr = fs->tx_port; 2232 fs->retry_enabled = retry_enabled; 2233 if (verbose_level > 0) 2234 printf(" stream=%d port=%d rxq=%d txq=%d\n", 2235 sm_id, fs->rx_port, fs->rx_queue, 2236 fs->tx_queue); 2237 rxq = (queueid_t) (rxq + 1); 2238 if (rxq == nb_rxq) { 2239 rxq = 0; 2240 rxp = (portid_t) (rxp + 1); 2241 } 2242 } 2243 } 2244 } 2245 2246 #if defined RTE_LIBRTE_PMD_SOFTNIC 2247 static void 2248 softnic_fwd_config_setup(void) 2249 { 2250 struct rte_port *port; 2251 portid_t pid, softnic_portid; 2252 queueid_t i; 2253 uint8_t softnic_enable = 0; 2254 2255 RTE_ETH_FOREACH_DEV(pid) { 2256 port = &ports[pid]; 2257 const char *driver = port->dev_info.driver_name; 2258 2259 if (strcmp(driver, "net_softnic") == 0) { 2260 softnic_portid = pid; 2261 softnic_enable = 1; 2262 break; 2263 } 2264 } 2265 2266 if (softnic_enable == 0) { 2267 printf("Softnic mode not configured(%s)!\n", __func__); 2268 return; 2269 } 2270 2271 cur_fwd_config.nb_fwd_ports = 1; 2272 cur_fwd_config.nb_fwd_streams = (streamid_t) nb_rxq; 2273 2274 /* Re-initialize forwarding streams */ 2275 init_fwd_streams(); 2276 2277 /* 2278 * In the softnic forwarding test, the number of forwarding cores 2279 * is set to one and remaining are used for softnic packet processing. 2280 */ 2281 cur_fwd_config.nb_fwd_lcores = 1; 2282 setup_fwd_config_of_each_lcore(&cur_fwd_config); 2283 2284 for (i = 0; i < cur_fwd_config.nb_fwd_streams; i++) { 2285 fwd_streams[i]->rx_port = softnic_portid; 2286 fwd_streams[i]->rx_queue = i; 2287 fwd_streams[i]->tx_port = softnic_portid; 2288 fwd_streams[i]->tx_queue = i; 2289 fwd_streams[i]->peer_addr = fwd_streams[i]->tx_port; 2290 fwd_streams[i]->retry_enabled = retry_enabled; 2291 } 2292 } 2293 #endif 2294 2295 void 2296 fwd_config_setup(void) 2297 { 2298 cur_fwd_config.fwd_eng = cur_fwd_eng; 2299 if (strcmp(cur_fwd_eng->fwd_mode_name, "icmpecho") == 0) { 2300 icmp_echo_config_setup(); 2301 return; 2302 } 2303 2304 #if defined RTE_LIBRTE_PMD_SOFTNIC 2305 if (strcmp(cur_fwd_eng->fwd_mode_name, "softnic") == 0) { 2306 softnic_fwd_config_setup(); 2307 return; 2308 } 2309 #endif 2310 2311 if ((nb_rxq > 1) && (nb_txq > 1)){ 2312 if (dcb_config) 2313 dcb_fwd_config_setup(); 2314 else 2315 rss_fwd_config_setup(); 2316 } 2317 else 2318 simple_fwd_config_setup(); 2319 } 2320 2321 static const char * 2322 mp_alloc_to_str(uint8_t mode) 2323 { 2324 switch (mode) { 2325 case MP_ALLOC_NATIVE: 2326 return "native"; 2327 case MP_ALLOC_ANON: 2328 return "anon"; 2329 case MP_ALLOC_XMEM: 2330 return "xmem"; 2331 case MP_ALLOC_XMEM_HUGE: 2332 return "xmemhuge"; 2333 default: 2334 return "invalid"; 2335 } 2336 } 2337 2338 void 2339 pkt_fwd_config_display(struct fwd_config *cfg) 2340 { 2341 struct fwd_stream *fs; 2342 lcoreid_t lc_id; 2343 streamid_t sm_id; 2344 2345 printf("%s packet forwarding%s - ports=%d - cores=%d - streams=%d - " 2346 "NUMA support %s, MP allocation mode: %s\n", 2347 cfg->fwd_eng->fwd_mode_name, 2348 retry_enabled == 0 ? "" : " with retry", 2349 cfg->nb_fwd_ports, cfg->nb_fwd_lcores, cfg->nb_fwd_streams, 2350 numa_support == 1 ? "enabled" : "disabled", 2351 mp_alloc_to_str(mp_alloc_type)); 2352 2353 if (retry_enabled) 2354 printf("TX retry num: %u, delay between TX retries: %uus\n", 2355 burst_tx_retry_num, burst_tx_delay_time); 2356 for (lc_id = 0; lc_id < cfg->nb_fwd_lcores; lc_id++) { 2357 printf("Logical Core %u (socket %u) forwards packets on " 2358 "%d streams:", 2359 fwd_lcores_cpuids[lc_id], 2360 rte_lcore_to_socket_id(fwd_lcores_cpuids[lc_id]), 2361 fwd_lcores[lc_id]->stream_nb); 2362 for (sm_id = 0; sm_id < fwd_lcores[lc_id]->stream_nb; sm_id++) { 2363 fs = fwd_streams[fwd_lcores[lc_id]->stream_idx + sm_id]; 2364 printf("\n RX P=%d/Q=%d (socket %u) -> TX " 2365 "P=%d/Q=%d (socket %u) ", 2366 fs->rx_port, fs->rx_queue, 2367 ports[fs->rx_port].socket_id, 2368 fs->tx_port, fs->tx_queue, 2369 ports[fs->tx_port].socket_id); 2370 print_ethaddr("peer=", 2371 &peer_eth_addrs[fs->peer_addr]); 2372 } 2373 printf("\n"); 2374 } 2375 printf("\n"); 2376 } 2377 2378 void 2379 set_fwd_eth_peer(portid_t port_id, char *peer_addr) 2380 { 2381 struct rte_ether_addr new_peer_addr; 2382 if (!rte_eth_dev_is_valid_port(port_id)) { 2383 printf("Error: Invalid port number %i\n", port_id); 2384 return; 2385 } 2386 if (rte_ether_unformat_addr(peer_addr, &new_peer_addr) < 0) { 2387 printf("Error: Invalid ethernet address: %s\n", peer_addr); 2388 return; 2389 } 2390 peer_eth_addrs[port_id] = new_peer_addr; 2391 } 2392 2393 int 2394 set_fwd_lcores_list(unsigned int *lcorelist, unsigned int nb_lc) 2395 { 2396 unsigned int i; 2397 unsigned int lcore_cpuid; 2398 int record_now; 2399 2400 record_now = 0; 2401 again: 2402 for (i = 0; i < nb_lc; i++) { 2403 lcore_cpuid = lcorelist[i]; 2404 if (! rte_lcore_is_enabled(lcore_cpuid)) { 2405 printf("lcore %u not enabled\n", lcore_cpuid); 2406 return -1; 2407 } 2408 if (lcore_cpuid == rte_get_master_lcore()) { 2409 printf("lcore %u cannot be masked on for running " 2410 "packet forwarding, which is the master lcore " 2411 "and reserved for command line parsing only\n", 2412 lcore_cpuid); 2413 return -1; 2414 } 2415 if (record_now) 2416 fwd_lcores_cpuids[i] = lcore_cpuid; 2417 } 2418 if (record_now == 0) { 2419 record_now = 1; 2420 goto again; 2421 } 2422 nb_cfg_lcores = (lcoreid_t) nb_lc; 2423 if (nb_fwd_lcores != (lcoreid_t) nb_lc) { 2424 printf("previous number of forwarding cores %u - changed to " 2425 "number of configured cores %u\n", 2426 (unsigned int) nb_fwd_lcores, nb_lc); 2427 nb_fwd_lcores = (lcoreid_t) nb_lc; 2428 } 2429 2430 return 0; 2431 } 2432 2433 int 2434 set_fwd_lcores_mask(uint64_t lcoremask) 2435 { 2436 unsigned int lcorelist[64]; 2437 unsigned int nb_lc; 2438 unsigned int i; 2439 2440 if (lcoremask == 0) { 2441 printf("Invalid NULL mask of cores\n"); 2442 return -1; 2443 } 2444 nb_lc = 0; 2445 for (i = 0; i < 64; i++) { 2446 if (! ((uint64_t)(1ULL << i) & lcoremask)) 2447 continue; 2448 lcorelist[nb_lc++] = i; 2449 } 2450 return set_fwd_lcores_list(lcorelist, nb_lc); 2451 } 2452 2453 void 2454 set_fwd_lcores_number(uint16_t nb_lc) 2455 { 2456 if (nb_lc > nb_cfg_lcores) { 2457 printf("nb fwd cores %u > %u (max. number of configured " 2458 "lcores) - ignored\n", 2459 (unsigned int) nb_lc, (unsigned int) nb_cfg_lcores); 2460 return; 2461 } 2462 nb_fwd_lcores = (lcoreid_t) nb_lc; 2463 printf("Number of forwarding cores set to %u\n", 2464 (unsigned int) nb_fwd_lcores); 2465 } 2466 2467 void 2468 set_fwd_ports_list(unsigned int *portlist, unsigned int nb_pt) 2469 { 2470 unsigned int i; 2471 portid_t port_id; 2472 int record_now; 2473 2474 record_now = 0; 2475 again: 2476 for (i = 0; i < nb_pt; i++) { 2477 port_id = (portid_t) portlist[i]; 2478 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2479 return; 2480 if (record_now) 2481 fwd_ports_ids[i] = port_id; 2482 } 2483 if (record_now == 0) { 2484 record_now = 1; 2485 goto again; 2486 } 2487 nb_cfg_ports = (portid_t) nb_pt; 2488 if (nb_fwd_ports != (portid_t) nb_pt) { 2489 printf("previous number of forwarding ports %u - changed to " 2490 "number of configured ports %u\n", 2491 (unsigned int) nb_fwd_ports, nb_pt); 2492 nb_fwd_ports = (portid_t) nb_pt; 2493 } 2494 } 2495 2496 void 2497 set_fwd_ports_mask(uint64_t portmask) 2498 { 2499 unsigned int portlist[64]; 2500 unsigned int nb_pt; 2501 unsigned int i; 2502 2503 if (portmask == 0) { 2504 printf("Invalid NULL mask of ports\n"); 2505 return; 2506 } 2507 nb_pt = 0; 2508 RTE_ETH_FOREACH_DEV(i) { 2509 if (! ((uint64_t)(1ULL << i) & portmask)) 2510 continue; 2511 portlist[nb_pt++] = i; 2512 } 2513 set_fwd_ports_list(portlist, nb_pt); 2514 } 2515 2516 void 2517 set_fwd_ports_number(uint16_t nb_pt) 2518 { 2519 if (nb_pt > nb_cfg_ports) { 2520 printf("nb fwd ports %u > %u (number of configured " 2521 "ports) - ignored\n", 2522 (unsigned int) nb_pt, (unsigned int) nb_cfg_ports); 2523 return; 2524 } 2525 nb_fwd_ports = (portid_t) nb_pt; 2526 printf("Number of forwarding ports set to %u\n", 2527 (unsigned int) nb_fwd_ports); 2528 } 2529 2530 int 2531 port_is_forwarding(portid_t port_id) 2532 { 2533 unsigned int i; 2534 2535 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2536 return -1; 2537 2538 for (i = 0; i < nb_fwd_ports; i++) { 2539 if (fwd_ports_ids[i] == port_id) 2540 return 1; 2541 } 2542 2543 return 0; 2544 } 2545 2546 void 2547 set_nb_pkt_per_burst(uint16_t nb) 2548 { 2549 if (nb > MAX_PKT_BURST) { 2550 printf("nb pkt per burst: %u > %u (maximum packet per burst) " 2551 " ignored\n", 2552 (unsigned int) nb, (unsigned int) MAX_PKT_BURST); 2553 return; 2554 } 2555 nb_pkt_per_burst = nb; 2556 printf("Number of packets per burst set to %u\n", 2557 (unsigned int) nb_pkt_per_burst); 2558 } 2559 2560 static const char * 2561 tx_split_get_name(enum tx_pkt_split split) 2562 { 2563 uint32_t i; 2564 2565 for (i = 0; i != RTE_DIM(tx_split_name); i++) { 2566 if (tx_split_name[i].split == split) 2567 return tx_split_name[i].name; 2568 } 2569 return NULL; 2570 } 2571 2572 void 2573 set_tx_pkt_split(const char *name) 2574 { 2575 uint32_t i; 2576 2577 for (i = 0; i != RTE_DIM(tx_split_name); i++) { 2578 if (strcmp(tx_split_name[i].name, name) == 0) { 2579 tx_pkt_split = tx_split_name[i].split; 2580 return; 2581 } 2582 } 2583 printf("unknown value: \"%s\"\n", name); 2584 } 2585 2586 void 2587 show_tx_pkt_segments(void) 2588 { 2589 uint32_t i, n; 2590 const char *split; 2591 2592 n = tx_pkt_nb_segs; 2593 split = tx_split_get_name(tx_pkt_split); 2594 2595 printf("Number of segments: %u\n", n); 2596 printf("Segment sizes: "); 2597 for (i = 0; i != n - 1; i++) 2598 printf("%hu,", tx_pkt_seg_lengths[i]); 2599 printf("%hu\n", tx_pkt_seg_lengths[i]); 2600 printf("Split packet: %s\n", split); 2601 } 2602 2603 void 2604 set_tx_pkt_segments(unsigned *seg_lengths, unsigned nb_segs) 2605 { 2606 uint16_t tx_pkt_len; 2607 unsigned i; 2608 2609 if (nb_segs >= (unsigned) nb_txd) { 2610 printf("nb segments per TX packets=%u >= nb_txd=%u - ignored\n", 2611 nb_segs, (unsigned int) nb_txd); 2612 return; 2613 } 2614 2615 /* 2616 * Check that each segment length is greater or equal than 2617 * the mbuf data sise. 2618 * Check also that the total packet length is greater or equal than the 2619 * size of an empty UDP/IP packet (sizeof(struct rte_ether_hdr) + 2620 * 20 + 8). 2621 */ 2622 tx_pkt_len = 0; 2623 for (i = 0; i < nb_segs; i++) { 2624 if (seg_lengths[i] > (unsigned) mbuf_data_size) { 2625 printf("length[%u]=%u > mbuf_data_size=%u - give up\n", 2626 i, seg_lengths[i], (unsigned) mbuf_data_size); 2627 return; 2628 } 2629 tx_pkt_len = (uint16_t)(tx_pkt_len + seg_lengths[i]); 2630 } 2631 if (tx_pkt_len < (sizeof(struct rte_ether_hdr) + 20 + 8)) { 2632 printf("total packet length=%u < %d - give up\n", 2633 (unsigned) tx_pkt_len, 2634 (int)(sizeof(struct rte_ether_hdr) + 20 + 8)); 2635 return; 2636 } 2637 2638 for (i = 0; i < nb_segs; i++) 2639 tx_pkt_seg_lengths[i] = (uint16_t) seg_lengths[i]; 2640 2641 tx_pkt_length = tx_pkt_len; 2642 tx_pkt_nb_segs = (uint8_t) nb_segs; 2643 } 2644 2645 void 2646 setup_gro(const char *onoff, portid_t port_id) 2647 { 2648 if (!rte_eth_dev_is_valid_port(port_id)) { 2649 printf("invalid port id %u\n", port_id); 2650 return; 2651 } 2652 if (test_done == 0) { 2653 printf("Before enable/disable GRO," 2654 " please stop forwarding first\n"); 2655 return; 2656 } 2657 if (strcmp(onoff, "on") == 0) { 2658 if (gro_ports[port_id].enable != 0) { 2659 printf("Port %u has enabled GRO. Please" 2660 " disable GRO first\n", port_id); 2661 return; 2662 } 2663 if (gro_flush_cycles == GRO_DEFAULT_FLUSH_CYCLES) { 2664 gro_ports[port_id].param.gro_types = RTE_GRO_TCP_IPV4; 2665 gro_ports[port_id].param.max_flow_num = 2666 GRO_DEFAULT_FLOW_NUM; 2667 gro_ports[port_id].param.max_item_per_flow = 2668 GRO_DEFAULT_ITEM_NUM_PER_FLOW; 2669 } 2670 gro_ports[port_id].enable = 1; 2671 } else { 2672 if (gro_ports[port_id].enable == 0) { 2673 printf("Port %u has disabled GRO\n", port_id); 2674 return; 2675 } 2676 gro_ports[port_id].enable = 0; 2677 } 2678 } 2679 2680 void 2681 setup_gro_flush_cycles(uint8_t cycles) 2682 { 2683 if (test_done == 0) { 2684 printf("Before change flush interval for GRO," 2685 " please stop forwarding first.\n"); 2686 return; 2687 } 2688 2689 if (cycles > GRO_MAX_FLUSH_CYCLES || cycles < 2690 GRO_DEFAULT_FLUSH_CYCLES) { 2691 printf("The flushing cycle be in the range" 2692 " of 1 to %u. Revert to the default" 2693 " value %u.\n", 2694 GRO_MAX_FLUSH_CYCLES, 2695 GRO_DEFAULT_FLUSH_CYCLES); 2696 cycles = GRO_DEFAULT_FLUSH_CYCLES; 2697 } 2698 2699 gro_flush_cycles = cycles; 2700 } 2701 2702 void 2703 show_gro(portid_t port_id) 2704 { 2705 struct rte_gro_param *param; 2706 uint32_t max_pkts_num; 2707 2708 param = &gro_ports[port_id].param; 2709 2710 if (!rte_eth_dev_is_valid_port(port_id)) { 2711 printf("Invalid port id %u.\n", port_id); 2712 return; 2713 } 2714 if (gro_ports[port_id].enable) { 2715 printf("GRO type: TCP/IPv4\n"); 2716 if (gro_flush_cycles == GRO_DEFAULT_FLUSH_CYCLES) { 2717 max_pkts_num = param->max_flow_num * 2718 param->max_item_per_flow; 2719 } else 2720 max_pkts_num = MAX_PKT_BURST * GRO_MAX_FLUSH_CYCLES; 2721 printf("Max number of packets to perform GRO: %u\n", 2722 max_pkts_num); 2723 printf("Flushing cycles: %u\n", gro_flush_cycles); 2724 } else 2725 printf("Port %u doesn't enable GRO.\n", port_id); 2726 } 2727 2728 void 2729 setup_gso(const char *mode, portid_t port_id) 2730 { 2731 if (!rte_eth_dev_is_valid_port(port_id)) { 2732 printf("invalid port id %u\n", port_id); 2733 return; 2734 } 2735 if (strcmp(mode, "on") == 0) { 2736 if (test_done == 0) { 2737 printf("before enabling GSO," 2738 " please stop forwarding first\n"); 2739 return; 2740 } 2741 gso_ports[port_id].enable = 1; 2742 } else if (strcmp(mode, "off") == 0) { 2743 if (test_done == 0) { 2744 printf("before disabling GSO," 2745 " please stop forwarding first\n"); 2746 return; 2747 } 2748 gso_ports[port_id].enable = 0; 2749 } 2750 } 2751 2752 char* 2753 list_pkt_forwarding_modes(void) 2754 { 2755 static char fwd_modes[128] = ""; 2756 const char *separator = "|"; 2757 struct fwd_engine *fwd_eng; 2758 unsigned i = 0; 2759 2760 if (strlen (fwd_modes) == 0) { 2761 while ((fwd_eng = fwd_engines[i++]) != NULL) { 2762 strncat(fwd_modes, fwd_eng->fwd_mode_name, 2763 sizeof(fwd_modes) - strlen(fwd_modes) - 1); 2764 strncat(fwd_modes, separator, 2765 sizeof(fwd_modes) - strlen(fwd_modes) - 1); 2766 } 2767 fwd_modes[strlen(fwd_modes) - strlen(separator)] = '\0'; 2768 } 2769 2770 return fwd_modes; 2771 } 2772 2773 char* 2774 list_pkt_forwarding_retry_modes(void) 2775 { 2776 static char fwd_modes[128] = ""; 2777 const char *separator = "|"; 2778 struct fwd_engine *fwd_eng; 2779 unsigned i = 0; 2780 2781 if (strlen(fwd_modes) == 0) { 2782 while ((fwd_eng = fwd_engines[i++]) != NULL) { 2783 if (fwd_eng == &rx_only_engine) 2784 continue; 2785 strncat(fwd_modes, fwd_eng->fwd_mode_name, 2786 sizeof(fwd_modes) - 2787 strlen(fwd_modes) - 1); 2788 strncat(fwd_modes, separator, 2789 sizeof(fwd_modes) - 2790 strlen(fwd_modes) - 1); 2791 } 2792 fwd_modes[strlen(fwd_modes) - strlen(separator)] = '\0'; 2793 } 2794 2795 return fwd_modes; 2796 } 2797 2798 void 2799 set_pkt_forwarding_mode(const char *fwd_mode_name) 2800 { 2801 struct fwd_engine *fwd_eng; 2802 unsigned i; 2803 2804 i = 0; 2805 while ((fwd_eng = fwd_engines[i]) != NULL) { 2806 if (! strcmp(fwd_eng->fwd_mode_name, fwd_mode_name)) { 2807 printf("Set %s packet forwarding mode%s\n", 2808 fwd_mode_name, 2809 retry_enabled == 0 ? "" : " with retry"); 2810 cur_fwd_eng = fwd_eng; 2811 return; 2812 } 2813 i++; 2814 } 2815 printf("Invalid %s packet forwarding mode\n", fwd_mode_name); 2816 } 2817 2818 void 2819 add_rx_dump_callbacks(portid_t portid) 2820 { 2821 struct rte_eth_dev_info dev_info; 2822 uint16_t queue; 2823 int ret; 2824 2825 if (port_id_is_invalid(portid, ENABLED_WARN)) 2826 return; 2827 2828 ret = eth_dev_info_get_print_err(portid, &dev_info); 2829 if (ret != 0) 2830 return; 2831 2832 for (queue = 0; queue < dev_info.nb_rx_queues; queue++) 2833 if (!ports[portid].rx_dump_cb[queue]) 2834 ports[portid].rx_dump_cb[queue] = 2835 rte_eth_add_rx_callback(portid, queue, 2836 dump_rx_pkts, NULL); 2837 } 2838 2839 void 2840 add_tx_dump_callbacks(portid_t portid) 2841 { 2842 struct rte_eth_dev_info dev_info; 2843 uint16_t queue; 2844 int ret; 2845 2846 if (port_id_is_invalid(portid, ENABLED_WARN)) 2847 return; 2848 2849 ret = eth_dev_info_get_print_err(portid, &dev_info); 2850 if (ret != 0) 2851 return; 2852 2853 for (queue = 0; queue < dev_info.nb_tx_queues; queue++) 2854 if (!ports[portid].tx_dump_cb[queue]) 2855 ports[portid].tx_dump_cb[queue] = 2856 rte_eth_add_tx_callback(portid, queue, 2857 dump_tx_pkts, NULL); 2858 } 2859 2860 void 2861 remove_rx_dump_callbacks(portid_t portid) 2862 { 2863 struct rte_eth_dev_info dev_info; 2864 uint16_t queue; 2865 int ret; 2866 2867 if (port_id_is_invalid(portid, ENABLED_WARN)) 2868 return; 2869 2870 ret = eth_dev_info_get_print_err(portid, &dev_info); 2871 if (ret != 0) 2872 return; 2873 2874 for (queue = 0; queue < dev_info.nb_rx_queues; queue++) 2875 if (ports[portid].rx_dump_cb[queue]) { 2876 rte_eth_remove_rx_callback(portid, queue, 2877 ports[portid].rx_dump_cb[queue]); 2878 ports[portid].rx_dump_cb[queue] = NULL; 2879 } 2880 } 2881 2882 void 2883 remove_tx_dump_callbacks(portid_t portid) 2884 { 2885 struct rte_eth_dev_info dev_info; 2886 uint16_t queue; 2887 int ret; 2888 2889 if (port_id_is_invalid(portid, ENABLED_WARN)) 2890 return; 2891 2892 ret = eth_dev_info_get_print_err(portid, &dev_info); 2893 if (ret != 0) 2894 return; 2895 2896 for (queue = 0; queue < dev_info.nb_tx_queues; queue++) 2897 if (ports[portid].tx_dump_cb[queue]) { 2898 rte_eth_remove_tx_callback(portid, queue, 2899 ports[portid].tx_dump_cb[queue]); 2900 ports[portid].tx_dump_cb[queue] = NULL; 2901 } 2902 } 2903 2904 void 2905 configure_rxtx_dump_callbacks(uint16_t verbose) 2906 { 2907 portid_t portid; 2908 2909 #ifndef RTE_ETHDEV_RXTX_CALLBACKS 2910 TESTPMD_LOG(ERR, "setting rxtx callbacks is not enabled\n"); 2911 return; 2912 #endif 2913 2914 RTE_ETH_FOREACH_DEV(portid) 2915 { 2916 if (verbose == 1 || verbose > 2) 2917 add_rx_dump_callbacks(portid); 2918 else 2919 remove_rx_dump_callbacks(portid); 2920 if (verbose >= 2) 2921 add_tx_dump_callbacks(portid); 2922 else 2923 remove_tx_dump_callbacks(portid); 2924 } 2925 } 2926 2927 void 2928 set_verbose_level(uint16_t vb_level) 2929 { 2930 printf("Change verbose level from %u to %u\n", 2931 (unsigned int) verbose_level, (unsigned int) vb_level); 2932 verbose_level = vb_level; 2933 configure_rxtx_dump_callbacks(verbose_level); 2934 } 2935 2936 void 2937 vlan_extend_set(portid_t port_id, int on) 2938 { 2939 int diag; 2940 int vlan_offload; 2941 uint64_t port_rx_offloads = ports[port_id].dev_conf.rxmode.offloads; 2942 2943 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2944 return; 2945 2946 vlan_offload = rte_eth_dev_get_vlan_offload(port_id); 2947 2948 if (on) { 2949 vlan_offload |= ETH_VLAN_EXTEND_OFFLOAD; 2950 port_rx_offloads |= DEV_RX_OFFLOAD_VLAN_EXTEND; 2951 } else { 2952 vlan_offload &= ~ETH_VLAN_EXTEND_OFFLOAD; 2953 port_rx_offloads &= ~DEV_RX_OFFLOAD_VLAN_EXTEND; 2954 } 2955 2956 diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload); 2957 if (diag < 0) 2958 printf("rx_vlan_extend_set(port_pi=%d, on=%d) failed " 2959 "diag=%d\n", port_id, on, diag); 2960 ports[port_id].dev_conf.rxmode.offloads = port_rx_offloads; 2961 } 2962 2963 void 2964 rx_vlan_strip_set(portid_t port_id, int on) 2965 { 2966 int diag; 2967 int vlan_offload; 2968 uint64_t port_rx_offloads = ports[port_id].dev_conf.rxmode.offloads; 2969 2970 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2971 return; 2972 2973 vlan_offload = rte_eth_dev_get_vlan_offload(port_id); 2974 2975 if (on) { 2976 vlan_offload |= ETH_VLAN_STRIP_OFFLOAD; 2977 port_rx_offloads |= DEV_RX_OFFLOAD_VLAN_STRIP; 2978 } else { 2979 vlan_offload &= ~ETH_VLAN_STRIP_OFFLOAD; 2980 port_rx_offloads &= ~DEV_RX_OFFLOAD_VLAN_STRIP; 2981 } 2982 2983 diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload); 2984 if (diag < 0) 2985 printf("rx_vlan_strip_set(port_pi=%d, on=%d) failed " 2986 "diag=%d\n", port_id, on, diag); 2987 ports[port_id].dev_conf.rxmode.offloads = port_rx_offloads; 2988 } 2989 2990 void 2991 rx_vlan_strip_set_on_queue(portid_t port_id, uint16_t queue_id, int on) 2992 { 2993 int diag; 2994 2995 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2996 return; 2997 2998 diag = rte_eth_dev_set_vlan_strip_on_queue(port_id, queue_id, on); 2999 if (diag < 0) 3000 printf("rx_vlan_strip_set_on_queue(port_pi=%d, queue_id=%d, on=%d) failed " 3001 "diag=%d\n", port_id, queue_id, on, diag); 3002 } 3003 3004 void 3005 rx_vlan_filter_set(portid_t port_id, int on) 3006 { 3007 int diag; 3008 int vlan_offload; 3009 uint64_t port_rx_offloads = ports[port_id].dev_conf.rxmode.offloads; 3010 3011 if (port_id_is_invalid(port_id, ENABLED_WARN)) 3012 return; 3013 3014 vlan_offload = rte_eth_dev_get_vlan_offload(port_id); 3015 3016 if (on) { 3017 vlan_offload |= ETH_VLAN_FILTER_OFFLOAD; 3018 port_rx_offloads |= DEV_RX_OFFLOAD_VLAN_FILTER; 3019 } else { 3020 vlan_offload &= ~ETH_VLAN_FILTER_OFFLOAD; 3021 port_rx_offloads &= ~DEV_RX_OFFLOAD_VLAN_FILTER; 3022 } 3023 3024 diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload); 3025 if (diag < 0) 3026 printf("rx_vlan_filter_set(port_pi=%d, on=%d) failed " 3027 "diag=%d\n", port_id, on, diag); 3028 ports[port_id].dev_conf.rxmode.offloads = port_rx_offloads; 3029 } 3030 3031 int 3032 rx_vft_set(portid_t port_id, uint16_t vlan_id, int on) 3033 { 3034 int diag; 3035 3036 if (port_id_is_invalid(port_id, ENABLED_WARN)) 3037 return 1; 3038 if (vlan_id_is_invalid(vlan_id)) 3039 return 1; 3040 diag = rte_eth_dev_vlan_filter(port_id, vlan_id, on); 3041 if (diag == 0) 3042 return 0; 3043 printf("rte_eth_dev_vlan_filter(port_pi=%d, vlan_id=%d, on=%d) failed " 3044 "diag=%d\n", 3045 port_id, vlan_id, on, diag); 3046 return -1; 3047 } 3048 3049 void 3050 rx_vlan_all_filter_set(portid_t port_id, int on) 3051 { 3052 uint16_t vlan_id; 3053 3054 if (port_id_is_invalid(port_id, ENABLED_WARN)) 3055 return; 3056 for (vlan_id = 0; vlan_id < 4096; vlan_id++) { 3057 if (rx_vft_set(port_id, vlan_id, on)) 3058 break; 3059 } 3060 } 3061 3062 void 3063 vlan_tpid_set(portid_t port_id, enum rte_vlan_type vlan_type, uint16_t tp_id) 3064 { 3065 int diag; 3066 3067 if (port_id_is_invalid(port_id, ENABLED_WARN)) 3068 return; 3069 3070 diag = rte_eth_dev_set_vlan_ether_type(port_id, vlan_type, tp_id); 3071 if (diag == 0) 3072 return; 3073 3074 printf("tx_vlan_tpid_set(port_pi=%d, vlan_type=%d, tpid=%d) failed " 3075 "diag=%d\n", 3076 port_id, vlan_type, tp_id, diag); 3077 } 3078 3079 void 3080 tx_vlan_set(portid_t port_id, uint16_t vlan_id) 3081 { 3082 struct rte_eth_dev_info dev_info; 3083 int ret; 3084 3085 if (port_id_is_invalid(port_id, ENABLED_WARN)) 3086 return; 3087 if (vlan_id_is_invalid(vlan_id)) 3088 return; 3089 3090 if (ports[port_id].dev_conf.txmode.offloads & 3091 DEV_TX_OFFLOAD_QINQ_INSERT) { 3092 printf("Error, as QinQ has been enabled.\n"); 3093 return; 3094 } 3095 3096 ret = eth_dev_info_get_print_err(port_id, &dev_info); 3097 if (ret != 0) 3098 return; 3099 3100 if ((dev_info.tx_offload_capa & DEV_TX_OFFLOAD_VLAN_INSERT) == 0) { 3101 printf("Error: vlan insert is not supported by port %d\n", 3102 port_id); 3103 return; 3104 } 3105 3106 tx_vlan_reset(port_id); 3107 ports[port_id].dev_conf.txmode.offloads |= DEV_TX_OFFLOAD_VLAN_INSERT; 3108 ports[port_id].tx_vlan_id = vlan_id; 3109 } 3110 3111 void 3112 tx_qinq_set(portid_t port_id, uint16_t vlan_id, uint16_t vlan_id_outer) 3113 { 3114 struct rte_eth_dev_info dev_info; 3115 int ret; 3116 3117 if (port_id_is_invalid(port_id, ENABLED_WARN)) 3118 return; 3119 if (vlan_id_is_invalid(vlan_id)) 3120 return; 3121 if (vlan_id_is_invalid(vlan_id_outer)) 3122 return; 3123 3124 ret = eth_dev_info_get_print_err(port_id, &dev_info); 3125 if (ret != 0) 3126 return; 3127 3128 if ((dev_info.tx_offload_capa & DEV_TX_OFFLOAD_QINQ_INSERT) == 0) { 3129 printf("Error: qinq insert not supported by port %d\n", 3130 port_id); 3131 return; 3132 } 3133 3134 tx_vlan_reset(port_id); 3135 ports[port_id].dev_conf.txmode.offloads |= (DEV_TX_OFFLOAD_VLAN_INSERT | 3136 DEV_TX_OFFLOAD_QINQ_INSERT); 3137 ports[port_id].tx_vlan_id = vlan_id; 3138 ports[port_id].tx_vlan_id_outer = vlan_id_outer; 3139 } 3140 3141 void 3142 tx_vlan_reset(portid_t port_id) 3143 { 3144 if (port_id_is_invalid(port_id, ENABLED_WARN)) 3145 return; 3146 ports[port_id].dev_conf.txmode.offloads &= 3147 ~(DEV_TX_OFFLOAD_VLAN_INSERT | 3148 DEV_TX_OFFLOAD_QINQ_INSERT); 3149 ports[port_id].tx_vlan_id = 0; 3150 ports[port_id].tx_vlan_id_outer = 0; 3151 } 3152 3153 void 3154 tx_vlan_pvid_set(portid_t port_id, uint16_t vlan_id, int on) 3155 { 3156 if (port_id_is_invalid(port_id, ENABLED_WARN)) 3157 return; 3158 3159 rte_eth_dev_set_vlan_pvid(port_id, vlan_id, on); 3160 } 3161 3162 void 3163 set_qmap(portid_t port_id, uint8_t is_rx, uint16_t queue_id, uint8_t map_value) 3164 { 3165 uint16_t i; 3166 uint8_t existing_mapping_found = 0; 3167 3168 if (port_id_is_invalid(port_id, ENABLED_WARN)) 3169 return; 3170 3171 if (is_rx ? (rx_queue_id_is_invalid(queue_id)) : (tx_queue_id_is_invalid(queue_id))) 3172 return; 3173 3174 if (map_value >= RTE_ETHDEV_QUEUE_STAT_CNTRS) { 3175 printf("map_value not in required range 0..%d\n", 3176 RTE_ETHDEV_QUEUE_STAT_CNTRS - 1); 3177 return; 3178 } 3179 3180 if (!is_rx) { /*then tx*/ 3181 for (i = 0; i < nb_tx_queue_stats_mappings; i++) { 3182 if ((tx_queue_stats_mappings[i].port_id == port_id) && 3183 (tx_queue_stats_mappings[i].queue_id == queue_id)) { 3184 tx_queue_stats_mappings[i].stats_counter_id = map_value; 3185 existing_mapping_found = 1; 3186 break; 3187 } 3188 } 3189 if (!existing_mapping_found) { /* A new additional mapping... */ 3190 tx_queue_stats_mappings[nb_tx_queue_stats_mappings].port_id = port_id; 3191 tx_queue_stats_mappings[nb_tx_queue_stats_mappings].queue_id = queue_id; 3192 tx_queue_stats_mappings[nb_tx_queue_stats_mappings].stats_counter_id = map_value; 3193 nb_tx_queue_stats_mappings++; 3194 } 3195 } 3196 else { /*rx*/ 3197 for (i = 0; i < nb_rx_queue_stats_mappings; i++) { 3198 if ((rx_queue_stats_mappings[i].port_id == port_id) && 3199 (rx_queue_stats_mappings[i].queue_id == queue_id)) { 3200 rx_queue_stats_mappings[i].stats_counter_id = map_value; 3201 existing_mapping_found = 1; 3202 break; 3203 } 3204 } 3205 if (!existing_mapping_found) { /* A new additional mapping... */ 3206 rx_queue_stats_mappings[nb_rx_queue_stats_mappings].port_id = port_id; 3207 rx_queue_stats_mappings[nb_rx_queue_stats_mappings].queue_id = queue_id; 3208 rx_queue_stats_mappings[nb_rx_queue_stats_mappings].stats_counter_id = map_value; 3209 nb_rx_queue_stats_mappings++; 3210 } 3211 } 3212 } 3213 3214 void 3215 set_xstats_hide_zero(uint8_t on_off) 3216 { 3217 xstats_hide_zero = on_off; 3218 } 3219 3220 static inline void 3221 print_fdir_mask(struct rte_eth_fdir_masks *mask) 3222 { 3223 printf("\n vlan_tci: 0x%04x", rte_be_to_cpu_16(mask->vlan_tci_mask)); 3224 3225 if (fdir_conf.mode == RTE_FDIR_MODE_PERFECT_TUNNEL) 3226 printf(", mac_addr: 0x%02x, tunnel_type: 0x%01x," 3227 " tunnel_id: 0x%08x", 3228 mask->mac_addr_byte_mask, mask->tunnel_type_mask, 3229 rte_be_to_cpu_32(mask->tunnel_id_mask)); 3230 else if (fdir_conf.mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN) { 3231 printf(", src_ipv4: 0x%08x, dst_ipv4: 0x%08x", 3232 rte_be_to_cpu_32(mask->ipv4_mask.src_ip), 3233 rte_be_to_cpu_32(mask->ipv4_mask.dst_ip)); 3234 3235 printf("\n src_port: 0x%04x, dst_port: 0x%04x", 3236 rte_be_to_cpu_16(mask->src_port_mask), 3237 rte_be_to_cpu_16(mask->dst_port_mask)); 3238 3239 printf("\n src_ipv6: 0x%08x,0x%08x,0x%08x,0x%08x", 3240 rte_be_to_cpu_32(mask->ipv6_mask.src_ip[0]), 3241 rte_be_to_cpu_32(mask->ipv6_mask.src_ip[1]), 3242 rte_be_to_cpu_32(mask->ipv6_mask.src_ip[2]), 3243 rte_be_to_cpu_32(mask->ipv6_mask.src_ip[3])); 3244 3245 printf("\n dst_ipv6: 0x%08x,0x%08x,0x%08x,0x%08x", 3246 rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[0]), 3247 rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[1]), 3248 rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[2]), 3249 rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[3])); 3250 } 3251 3252 printf("\n"); 3253 } 3254 3255 static inline void 3256 print_fdir_flex_payload(struct rte_eth_fdir_flex_conf *flex_conf, uint32_t num) 3257 { 3258 struct rte_eth_flex_payload_cfg *cfg; 3259 uint32_t i, j; 3260 3261 for (i = 0; i < flex_conf->nb_payloads; i++) { 3262 cfg = &flex_conf->flex_set[i]; 3263 if (cfg->type == RTE_ETH_RAW_PAYLOAD) 3264 printf("\n RAW: "); 3265 else if (cfg->type == RTE_ETH_L2_PAYLOAD) 3266 printf("\n L2_PAYLOAD: "); 3267 else if (cfg->type == RTE_ETH_L3_PAYLOAD) 3268 printf("\n L3_PAYLOAD: "); 3269 else if (cfg->type == RTE_ETH_L4_PAYLOAD) 3270 printf("\n L4_PAYLOAD: "); 3271 else 3272 printf("\n UNKNOWN PAYLOAD(%u): ", cfg->type); 3273 for (j = 0; j < num; j++) 3274 printf(" %-5u", cfg->src_offset[j]); 3275 } 3276 printf("\n"); 3277 } 3278 3279 static char * 3280 flowtype_to_str(uint16_t flow_type) 3281 { 3282 struct flow_type_info { 3283 char str[32]; 3284 uint16_t ftype; 3285 }; 3286 3287 uint8_t i; 3288 static struct flow_type_info flowtype_str_table[] = { 3289 {"raw", RTE_ETH_FLOW_RAW}, 3290 {"ipv4", RTE_ETH_FLOW_IPV4}, 3291 {"ipv4-frag", RTE_ETH_FLOW_FRAG_IPV4}, 3292 {"ipv4-tcp", RTE_ETH_FLOW_NONFRAG_IPV4_TCP}, 3293 {"ipv4-udp", RTE_ETH_FLOW_NONFRAG_IPV4_UDP}, 3294 {"ipv4-sctp", RTE_ETH_FLOW_NONFRAG_IPV4_SCTP}, 3295 {"ipv4-other", RTE_ETH_FLOW_NONFRAG_IPV4_OTHER}, 3296 {"ipv6", RTE_ETH_FLOW_IPV6}, 3297 {"ipv6-frag", RTE_ETH_FLOW_FRAG_IPV6}, 3298 {"ipv6-tcp", RTE_ETH_FLOW_NONFRAG_IPV6_TCP}, 3299 {"ipv6-udp", RTE_ETH_FLOW_NONFRAG_IPV6_UDP}, 3300 {"ipv6-sctp", RTE_ETH_FLOW_NONFRAG_IPV6_SCTP}, 3301 {"ipv6-other", RTE_ETH_FLOW_NONFRAG_IPV6_OTHER}, 3302 {"l2_payload", RTE_ETH_FLOW_L2_PAYLOAD}, 3303 {"port", RTE_ETH_FLOW_PORT}, 3304 {"vxlan", RTE_ETH_FLOW_VXLAN}, 3305 {"geneve", RTE_ETH_FLOW_GENEVE}, 3306 {"nvgre", RTE_ETH_FLOW_NVGRE}, 3307 {"vxlan-gpe", RTE_ETH_FLOW_VXLAN_GPE}, 3308 }; 3309 3310 for (i = 0; i < RTE_DIM(flowtype_str_table); i++) { 3311 if (flowtype_str_table[i].ftype == flow_type) 3312 return flowtype_str_table[i].str; 3313 } 3314 3315 return NULL; 3316 } 3317 3318 static inline void 3319 print_fdir_flex_mask(struct rte_eth_fdir_flex_conf *flex_conf, uint32_t num) 3320 { 3321 struct rte_eth_fdir_flex_mask *mask; 3322 uint32_t i, j; 3323 char *p; 3324 3325 for (i = 0; i < flex_conf->nb_flexmasks; i++) { 3326 mask = &flex_conf->flex_mask[i]; 3327 p = flowtype_to_str(mask->flow_type); 3328 printf("\n %s:\t", p ? p : "unknown"); 3329 for (j = 0; j < num; j++) 3330 printf(" %02x", mask->mask[j]); 3331 } 3332 printf("\n"); 3333 } 3334 3335 static inline void 3336 print_fdir_flow_type(uint32_t flow_types_mask) 3337 { 3338 int i; 3339 char *p; 3340 3341 for (i = RTE_ETH_FLOW_UNKNOWN; i < RTE_ETH_FLOW_MAX; i++) { 3342 if (!(flow_types_mask & (1 << i))) 3343 continue; 3344 p = flowtype_to_str(i); 3345 if (p) 3346 printf(" %s", p); 3347 else 3348 printf(" unknown"); 3349 } 3350 printf("\n"); 3351 } 3352 3353 void 3354 fdir_get_infos(portid_t port_id) 3355 { 3356 struct rte_eth_fdir_stats fdir_stat; 3357 struct rte_eth_fdir_info fdir_info; 3358 int ret; 3359 3360 static const char *fdir_stats_border = "########################"; 3361 3362 if (port_id_is_invalid(port_id, ENABLED_WARN)) 3363 return; 3364 ret = rte_eth_dev_filter_supported(port_id, RTE_ETH_FILTER_FDIR); 3365 if (ret < 0) { 3366 printf("\n FDIR is not supported on port %-2d\n", 3367 port_id); 3368 return; 3369 } 3370 3371 memset(&fdir_info, 0, sizeof(fdir_info)); 3372 rte_eth_dev_filter_ctrl(port_id, RTE_ETH_FILTER_FDIR, 3373 RTE_ETH_FILTER_INFO, &fdir_info); 3374 memset(&fdir_stat, 0, sizeof(fdir_stat)); 3375 rte_eth_dev_filter_ctrl(port_id, RTE_ETH_FILTER_FDIR, 3376 RTE_ETH_FILTER_STATS, &fdir_stat); 3377 printf("\n %s FDIR infos for port %-2d %s\n", 3378 fdir_stats_border, port_id, fdir_stats_border); 3379 printf(" MODE: "); 3380 if (fdir_info.mode == RTE_FDIR_MODE_PERFECT) 3381 printf(" PERFECT\n"); 3382 else if (fdir_info.mode == RTE_FDIR_MODE_PERFECT_MAC_VLAN) 3383 printf(" PERFECT-MAC-VLAN\n"); 3384 else if (fdir_info.mode == RTE_FDIR_MODE_PERFECT_TUNNEL) 3385 printf(" PERFECT-TUNNEL\n"); 3386 else if (fdir_info.mode == RTE_FDIR_MODE_SIGNATURE) 3387 printf(" SIGNATURE\n"); 3388 else 3389 printf(" DISABLE\n"); 3390 if (fdir_info.mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN 3391 && fdir_info.mode != RTE_FDIR_MODE_PERFECT_TUNNEL) { 3392 printf(" SUPPORTED FLOW TYPE: "); 3393 print_fdir_flow_type(fdir_info.flow_types_mask[0]); 3394 } 3395 printf(" FLEX PAYLOAD INFO:\n"); 3396 printf(" max_len: %-10"PRIu32" payload_limit: %-10"PRIu32"\n" 3397 " payload_unit: %-10"PRIu32" payload_seg: %-10"PRIu32"\n" 3398 " bitmask_unit: %-10"PRIu32" bitmask_num: %-10"PRIu32"\n", 3399 fdir_info.max_flexpayload, fdir_info.flex_payload_limit, 3400 fdir_info.flex_payload_unit, 3401 fdir_info.max_flex_payload_segment_num, 3402 fdir_info.flex_bitmask_unit, fdir_info.max_flex_bitmask_num); 3403 printf(" MASK: "); 3404 print_fdir_mask(&fdir_info.mask); 3405 if (fdir_info.flex_conf.nb_payloads > 0) { 3406 printf(" FLEX PAYLOAD SRC OFFSET:"); 3407 print_fdir_flex_payload(&fdir_info.flex_conf, fdir_info.max_flexpayload); 3408 } 3409 if (fdir_info.flex_conf.nb_flexmasks > 0) { 3410 printf(" FLEX MASK CFG:"); 3411 print_fdir_flex_mask(&fdir_info.flex_conf, fdir_info.max_flexpayload); 3412 } 3413 printf(" guarant_count: %-10"PRIu32" best_count: %"PRIu32"\n", 3414 fdir_stat.guarant_cnt, fdir_stat.best_cnt); 3415 printf(" guarant_space: %-10"PRIu32" best_space: %"PRIu32"\n", 3416 fdir_info.guarant_spc, fdir_info.best_spc); 3417 printf(" collision: %-10"PRIu32" free: %"PRIu32"\n" 3418 " maxhash: %-10"PRIu32" maxlen: %"PRIu32"\n" 3419 " add: %-10"PRIu64" remove: %"PRIu64"\n" 3420 " f_add: %-10"PRIu64" f_remove: %"PRIu64"\n", 3421 fdir_stat.collision, fdir_stat.free, 3422 fdir_stat.maxhash, fdir_stat.maxlen, 3423 fdir_stat.add, fdir_stat.remove, 3424 fdir_stat.f_add, fdir_stat.f_remove); 3425 printf(" %s############################%s\n", 3426 fdir_stats_border, fdir_stats_border); 3427 } 3428 3429 void 3430 fdir_set_flex_mask(portid_t port_id, struct rte_eth_fdir_flex_mask *cfg) 3431 { 3432 struct rte_port *port; 3433 struct rte_eth_fdir_flex_conf *flex_conf; 3434 int i, idx = 0; 3435 3436 port = &ports[port_id]; 3437 flex_conf = &port->dev_conf.fdir_conf.flex_conf; 3438 for (i = 0; i < RTE_ETH_FLOW_MAX; i++) { 3439 if (cfg->flow_type == flex_conf->flex_mask[i].flow_type) { 3440 idx = i; 3441 break; 3442 } 3443 } 3444 if (i >= RTE_ETH_FLOW_MAX) { 3445 if (flex_conf->nb_flexmasks < RTE_DIM(flex_conf->flex_mask)) { 3446 idx = flex_conf->nb_flexmasks; 3447 flex_conf->nb_flexmasks++; 3448 } else { 3449 printf("The flex mask table is full. Can not set flex" 3450 " mask for flow_type(%u).", cfg->flow_type); 3451 return; 3452 } 3453 } 3454 rte_memcpy(&flex_conf->flex_mask[idx], 3455 cfg, 3456 sizeof(struct rte_eth_fdir_flex_mask)); 3457 } 3458 3459 void 3460 fdir_set_flex_payload(portid_t port_id, struct rte_eth_flex_payload_cfg *cfg) 3461 { 3462 struct rte_port *port; 3463 struct rte_eth_fdir_flex_conf *flex_conf; 3464 int i, idx = 0; 3465 3466 port = &ports[port_id]; 3467 flex_conf = &port->dev_conf.fdir_conf.flex_conf; 3468 for (i = 0; i < RTE_ETH_PAYLOAD_MAX; i++) { 3469 if (cfg->type == flex_conf->flex_set[i].type) { 3470 idx = i; 3471 break; 3472 } 3473 } 3474 if (i >= RTE_ETH_PAYLOAD_MAX) { 3475 if (flex_conf->nb_payloads < RTE_DIM(flex_conf->flex_set)) { 3476 idx = flex_conf->nb_payloads; 3477 flex_conf->nb_payloads++; 3478 } else { 3479 printf("The flex payload table is full. Can not set" 3480 " flex payload for type(%u).", cfg->type); 3481 return; 3482 } 3483 } 3484 rte_memcpy(&flex_conf->flex_set[idx], 3485 cfg, 3486 sizeof(struct rte_eth_flex_payload_cfg)); 3487 3488 } 3489 3490 void 3491 set_vf_traffic(portid_t port_id, uint8_t is_rx, uint16_t vf, uint8_t on) 3492 { 3493 #ifdef RTE_LIBRTE_IXGBE_PMD 3494 int diag; 3495 3496 if (is_rx) 3497 diag = rte_pmd_ixgbe_set_vf_rx(port_id, vf, on); 3498 else 3499 diag = rte_pmd_ixgbe_set_vf_tx(port_id, vf, on); 3500 3501 if (diag == 0) 3502 return; 3503 printf("rte_pmd_ixgbe_set_vf_%s for port_id=%d failed diag=%d\n", 3504 is_rx ? "rx" : "tx", port_id, diag); 3505 return; 3506 #endif 3507 printf("VF %s setting not supported for port %d\n", 3508 is_rx ? "Rx" : "Tx", port_id); 3509 RTE_SET_USED(vf); 3510 RTE_SET_USED(on); 3511 } 3512 3513 int 3514 set_queue_rate_limit(portid_t port_id, uint16_t queue_idx, uint16_t rate) 3515 { 3516 int diag; 3517 struct rte_eth_link link; 3518 3519 if (port_id_is_invalid(port_id, ENABLED_WARN)) 3520 return 1; 3521 rte_eth_link_get_nowait(port_id, &link); 3522 if (rate > link.link_speed) { 3523 printf("Invalid rate value:%u bigger than link speed: %u\n", 3524 rate, link.link_speed); 3525 return 1; 3526 } 3527 diag = rte_eth_set_queue_rate_limit(port_id, queue_idx, rate); 3528 if (diag == 0) 3529 return diag; 3530 printf("rte_eth_set_queue_rate_limit for port_id=%d failed diag=%d\n", 3531 port_id, diag); 3532 return diag; 3533 } 3534 3535 int 3536 set_vf_rate_limit(portid_t port_id, uint16_t vf, uint16_t rate, uint64_t q_msk) 3537 { 3538 int diag = -ENOTSUP; 3539 3540 RTE_SET_USED(vf); 3541 RTE_SET_USED(rate); 3542 RTE_SET_USED(q_msk); 3543 3544 #ifdef RTE_LIBRTE_IXGBE_PMD 3545 if (diag == -ENOTSUP) 3546 diag = rte_pmd_ixgbe_set_vf_rate_limit(port_id, vf, rate, 3547 q_msk); 3548 #endif 3549 #ifdef RTE_LIBRTE_BNXT_PMD 3550 if (diag == -ENOTSUP) 3551 diag = rte_pmd_bnxt_set_vf_rate_limit(port_id, vf, rate, q_msk); 3552 #endif 3553 if (diag == 0) 3554 return diag; 3555 3556 printf("set_vf_rate_limit for port_id=%d failed diag=%d\n", 3557 port_id, diag); 3558 return diag; 3559 } 3560 3561 /* 3562 * Functions to manage the set of filtered Multicast MAC addresses. 3563 * 3564 * A pool of filtered multicast MAC addresses is associated with each port. 3565 * The pool is allocated in chunks of MCAST_POOL_INC multicast addresses. 3566 * The address of the pool and the number of valid multicast MAC addresses 3567 * recorded in the pool are stored in the fields "mc_addr_pool" and 3568 * "mc_addr_nb" of the "rte_port" data structure. 3569 * 3570 * The function "rte_eth_dev_set_mc_addr_list" of the PMDs API imposes 3571 * to be supplied a contiguous array of multicast MAC addresses. 3572 * To comply with this constraint, the set of multicast addresses recorded 3573 * into the pool are systematically compacted at the beginning of the pool. 3574 * Hence, when a multicast address is removed from the pool, all following 3575 * addresses, if any, are copied back to keep the set contiguous. 3576 */ 3577 #define MCAST_POOL_INC 32 3578 3579 static int 3580 mcast_addr_pool_extend(struct rte_port *port) 3581 { 3582 struct rte_ether_addr *mc_pool; 3583 size_t mc_pool_size; 3584 3585 /* 3586 * If a free entry is available at the end of the pool, just 3587 * increment the number of recorded multicast addresses. 3588 */ 3589 if ((port->mc_addr_nb % MCAST_POOL_INC) != 0) { 3590 port->mc_addr_nb++; 3591 return 0; 3592 } 3593 3594 /* 3595 * [re]allocate a pool with MCAST_POOL_INC more entries. 3596 * The previous test guarantees that port->mc_addr_nb is a multiple 3597 * of MCAST_POOL_INC. 3598 */ 3599 mc_pool_size = sizeof(struct rte_ether_addr) * (port->mc_addr_nb + 3600 MCAST_POOL_INC); 3601 mc_pool = (struct rte_ether_addr *) realloc(port->mc_addr_pool, 3602 mc_pool_size); 3603 if (mc_pool == NULL) { 3604 printf("allocation of pool of %u multicast addresses failed\n", 3605 port->mc_addr_nb + MCAST_POOL_INC); 3606 return -ENOMEM; 3607 } 3608 3609 port->mc_addr_pool = mc_pool; 3610 port->mc_addr_nb++; 3611 return 0; 3612 3613 } 3614 3615 static void 3616 mcast_addr_pool_remove(struct rte_port *port, uint32_t addr_idx) 3617 { 3618 port->mc_addr_nb--; 3619 if (addr_idx == port->mc_addr_nb) { 3620 /* No need to recompact the set of multicast addressses. */ 3621 if (port->mc_addr_nb == 0) { 3622 /* free the pool of multicast addresses. */ 3623 free(port->mc_addr_pool); 3624 port->mc_addr_pool = NULL; 3625 } 3626 return; 3627 } 3628 memmove(&port->mc_addr_pool[addr_idx], 3629 &port->mc_addr_pool[addr_idx + 1], 3630 sizeof(struct rte_ether_addr) * (port->mc_addr_nb - addr_idx)); 3631 } 3632 3633 static void 3634 eth_port_multicast_addr_list_set(portid_t port_id) 3635 { 3636 struct rte_port *port; 3637 int diag; 3638 3639 port = &ports[port_id]; 3640 diag = rte_eth_dev_set_mc_addr_list(port_id, port->mc_addr_pool, 3641 port->mc_addr_nb); 3642 if (diag == 0) 3643 return; 3644 printf("rte_eth_dev_set_mc_addr_list(port=%d, nb=%u) failed. diag=%d\n", 3645 port->mc_addr_nb, port_id, -diag); 3646 } 3647 3648 void 3649 mcast_addr_add(portid_t port_id, struct rte_ether_addr *mc_addr) 3650 { 3651 struct rte_port *port; 3652 uint32_t i; 3653 3654 if (port_id_is_invalid(port_id, ENABLED_WARN)) 3655 return; 3656 3657 port = &ports[port_id]; 3658 3659 /* 3660 * Check that the added multicast MAC address is not already recorded 3661 * in the pool of multicast addresses. 3662 */ 3663 for (i = 0; i < port->mc_addr_nb; i++) { 3664 if (rte_is_same_ether_addr(mc_addr, &port->mc_addr_pool[i])) { 3665 printf("multicast address already filtered by port\n"); 3666 return; 3667 } 3668 } 3669 3670 if (mcast_addr_pool_extend(port) != 0) 3671 return; 3672 rte_ether_addr_copy(mc_addr, &port->mc_addr_pool[i]); 3673 eth_port_multicast_addr_list_set(port_id); 3674 } 3675 3676 void 3677 mcast_addr_remove(portid_t port_id, struct rte_ether_addr *mc_addr) 3678 { 3679 struct rte_port *port; 3680 uint32_t i; 3681 3682 if (port_id_is_invalid(port_id, ENABLED_WARN)) 3683 return; 3684 3685 port = &ports[port_id]; 3686 3687 /* 3688 * Search the pool of multicast MAC addresses for the removed address. 3689 */ 3690 for (i = 0; i < port->mc_addr_nb; i++) { 3691 if (rte_is_same_ether_addr(mc_addr, &port->mc_addr_pool[i])) 3692 break; 3693 } 3694 if (i == port->mc_addr_nb) { 3695 printf("multicast address not filtered by port %d\n", port_id); 3696 return; 3697 } 3698 3699 mcast_addr_pool_remove(port, i); 3700 eth_port_multicast_addr_list_set(port_id); 3701 } 3702 3703 void 3704 port_dcb_info_display(portid_t port_id) 3705 { 3706 struct rte_eth_dcb_info dcb_info; 3707 uint16_t i; 3708 int ret; 3709 static const char *border = "================"; 3710 3711 if (port_id_is_invalid(port_id, ENABLED_WARN)) 3712 return; 3713 3714 ret = rte_eth_dev_get_dcb_info(port_id, &dcb_info); 3715 if (ret) { 3716 printf("\n Failed to get dcb infos on port %-2d\n", 3717 port_id); 3718 return; 3719 } 3720 printf("\n %s DCB infos for port %-2d %s\n", border, port_id, border); 3721 printf(" TC NUMBER: %d\n", dcb_info.nb_tcs); 3722 printf("\n TC : "); 3723 for (i = 0; i < dcb_info.nb_tcs; i++) 3724 printf("\t%4d", i); 3725 printf("\n Priority : "); 3726 for (i = 0; i < dcb_info.nb_tcs; i++) 3727 printf("\t%4d", dcb_info.prio_tc[i]); 3728 printf("\n BW percent :"); 3729 for (i = 0; i < dcb_info.nb_tcs; i++) 3730 printf("\t%4d%%", dcb_info.tc_bws[i]); 3731 printf("\n RXQ base : "); 3732 for (i = 0; i < dcb_info.nb_tcs; i++) 3733 printf("\t%4d", dcb_info.tc_queue.tc_rxq[0][i].base); 3734 printf("\n RXQ number :"); 3735 for (i = 0; i < dcb_info.nb_tcs; i++) 3736 printf("\t%4d", dcb_info.tc_queue.tc_rxq[0][i].nb_queue); 3737 printf("\n TXQ base : "); 3738 for (i = 0; i < dcb_info.nb_tcs; i++) 3739 printf("\t%4d", dcb_info.tc_queue.tc_txq[0][i].base); 3740 printf("\n TXQ number :"); 3741 for (i = 0; i < dcb_info.nb_tcs; i++) 3742 printf("\t%4d", dcb_info.tc_queue.tc_txq[0][i].nb_queue); 3743 printf("\n"); 3744 } 3745 3746 uint8_t * 3747 open_file(const char *file_path, uint32_t *size) 3748 { 3749 int fd = open(file_path, O_RDONLY); 3750 off_t pkg_size; 3751 uint8_t *buf = NULL; 3752 int ret = 0; 3753 struct stat st_buf; 3754 3755 if (size) 3756 *size = 0; 3757 3758 if (fd == -1) { 3759 printf("%s: Failed to open %s\n", __func__, file_path); 3760 return buf; 3761 } 3762 3763 if ((fstat(fd, &st_buf) != 0) || (!S_ISREG(st_buf.st_mode))) { 3764 close(fd); 3765 printf("%s: File operations failed\n", __func__); 3766 return buf; 3767 } 3768 3769 pkg_size = st_buf.st_size; 3770 if (pkg_size < 0) { 3771 close(fd); 3772 printf("%s: File operations failed\n", __func__); 3773 return buf; 3774 } 3775 3776 buf = (uint8_t *)malloc(pkg_size); 3777 if (!buf) { 3778 close(fd); 3779 printf("%s: Failed to malloc memory\n", __func__); 3780 return buf; 3781 } 3782 3783 ret = read(fd, buf, pkg_size); 3784 if (ret < 0) { 3785 close(fd); 3786 printf("%s: File read operation failed\n", __func__); 3787 close_file(buf); 3788 return NULL; 3789 } 3790 3791 if (size) 3792 *size = pkg_size; 3793 3794 close(fd); 3795 3796 return buf; 3797 } 3798 3799 int 3800 save_file(const char *file_path, uint8_t *buf, uint32_t size) 3801 { 3802 FILE *fh = fopen(file_path, "wb"); 3803 3804 if (fh == NULL) { 3805 printf("%s: Failed to open %s\n", __func__, file_path); 3806 return -1; 3807 } 3808 3809 if (fwrite(buf, 1, size, fh) != size) { 3810 fclose(fh); 3811 printf("%s: File write operation failed\n", __func__); 3812 return -1; 3813 } 3814 3815 fclose(fh); 3816 3817 return 0; 3818 } 3819 3820 int 3821 close_file(uint8_t *buf) 3822 { 3823 if (buf) { 3824 free((void *)buf); 3825 return 0; 3826 } 3827 3828 return -1; 3829 } 3830 3831 void 3832 port_queue_region_info_display(portid_t port_id, void *buf) 3833 { 3834 #ifdef RTE_LIBRTE_I40E_PMD 3835 uint16_t i, j; 3836 struct rte_pmd_i40e_queue_regions *info = 3837 (struct rte_pmd_i40e_queue_regions *)buf; 3838 static const char *queue_region_info_stats_border = "-------"; 3839 3840 if (!info->queue_region_number) 3841 printf("there is no region has been set before"); 3842 3843 printf("\n %s All queue region info for port=%2d %s", 3844 queue_region_info_stats_border, port_id, 3845 queue_region_info_stats_border); 3846 printf("\n queue_region_number: %-14u \n", 3847 info->queue_region_number); 3848 3849 for (i = 0; i < info->queue_region_number; i++) { 3850 printf("\n region_id: %-14u queue_number: %-14u " 3851 "queue_start_index: %-14u \n", 3852 info->region[i].region_id, 3853 info->region[i].queue_num, 3854 info->region[i].queue_start_index); 3855 3856 printf(" user_priority_num is %-14u :", 3857 info->region[i].user_priority_num); 3858 for (j = 0; j < info->region[i].user_priority_num; j++) 3859 printf(" %-14u ", info->region[i].user_priority[j]); 3860 3861 printf("\n flowtype_num is %-14u :", 3862 info->region[i].flowtype_num); 3863 for (j = 0; j < info->region[i].flowtype_num; j++) 3864 printf(" %-14u ", info->region[i].hw_flowtype[j]); 3865 } 3866 #else 3867 RTE_SET_USED(port_id); 3868 RTE_SET_USED(buf); 3869 #endif 3870 3871 printf("\n\n"); 3872 } 3873