xref: /dpdk/app/test-pmd/cmdline_flow.c (revision 221e7026d521c97c58fcee867f003e414dba2eea)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2016 6WIND S.A.
3  * Copyright 2016 Mellanox Technologies, Ltd
4  */
5 
6 #include <stddef.h>
7 #include <stdint.h>
8 #include <stdio.h>
9 #include <inttypes.h>
10 #include <errno.h>
11 #include <ctype.h>
12 #include <string.h>
13 #include <arpa/inet.h>
14 #include <sys/socket.h>
15 
16 #include <rte_string_fns.h>
17 #include <rte_common.h>
18 #include <rte_ethdev.h>
19 #include <rte_byteorder.h>
20 #include <cmdline_parse.h>
21 #include <rte_flow.h>
22 
23 #include "testpmd.h"
24 
25 /** Parser token indices. */
26 enum index {
27 	/* Special tokens. */
28 	ZERO = 0,
29 	END,
30 
31 	/* Common tokens. */
32 	INTEGER,
33 	UNSIGNED,
34 	PREFIX,
35 	BOOLEAN,
36 	STRING,
37 	HEX,
38 	MAC_ADDR,
39 	IPV4_ADDR,
40 	IPV6_ADDR,
41 	RULE_ID,
42 	PORT_ID,
43 	GROUP_ID,
44 	PRIORITY_LEVEL,
45 
46 	/* Top-level command. */
47 	FLOW,
48 
49 	/* Sub-level commands. */
50 	VALIDATE,
51 	CREATE,
52 	DESTROY,
53 	FLUSH,
54 	QUERY,
55 	LIST,
56 	ISOLATE,
57 
58 	/* Destroy arguments. */
59 	DESTROY_RULE,
60 
61 	/* Query arguments. */
62 	QUERY_ACTION,
63 
64 	/* List arguments. */
65 	LIST_GROUP,
66 
67 	/* Validate/create arguments. */
68 	GROUP,
69 	PRIORITY,
70 	INGRESS,
71 	EGRESS,
72 	TRANSFER,
73 
74 	/* Validate/create pattern. */
75 	PATTERN,
76 	ITEM_PARAM_IS,
77 	ITEM_PARAM_SPEC,
78 	ITEM_PARAM_LAST,
79 	ITEM_PARAM_MASK,
80 	ITEM_PARAM_PREFIX,
81 	ITEM_NEXT,
82 	ITEM_END,
83 	ITEM_VOID,
84 	ITEM_INVERT,
85 	ITEM_ANY,
86 	ITEM_ANY_NUM,
87 	ITEM_PF,
88 	ITEM_VF,
89 	ITEM_VF_ID,
90 	ITEM_PHY_PORT,
91 	ITEM_PHY_PORT_INDEX,
92 	ITEM_PORT_ID,
93 	ITEM_PORT_ID_ID,
94 	ITEM_MARK,
95 	ITEM_MARK_ID,
96 	ITEM_RAW,
97 	ITEM_RAW_RELATIVE,
98 	ITEM_RAW_SEARCH,
99 	ITEM_RAW_OFFSET,
100 	ITEM_RAW_LIMIT,
101 	ITEM_RAW_PATTERN,
102 	ITEM_ETH,
103 	ITEM_ETH_DST,
104 	ITEM_ETH_SRC,
105 	ITEM_ETH_TYPE,
106 	ITEM_VLAN,
107 	ITEM_VLAN_TCI,
108 	ITEM_VLAN_PCP,
109 	ITEM_VLAN_DEI,
110 	ITEM_VLAN_VID,
111 	ITEM_VLAN_INNER_TYPE,
112 	ITEM_IPV4,
113 	ITEM_IPV4_TOS,
114 	ITEM_IPV4_TTL,
115 	ITEM_IPV4_PROTO,
116 	ITEM_IPV4_SRC,
117 	ITEM_IPV4_DST,
118 	ITEM_IPV6,
119 	ITEM_IPV6_TC,
120 	ITEM_IPV6_FLOW,
121 	ITEM_IPV6_PROTO,
122 	ITEM_IPV6_HOP,
123 	ITEM_IPV6_SRC,
124 	ITEM_IPV6_DST,
125 	ITEM_ICMP,
126 	ITEM_ICMP_TYPE,
127 	ITEM_ICMP_CODE,
128 	ITEM_UDP,
129 	ITEM_UDP_SRC,
130 	ITEM_UDP_DST,
131 	ITEM_TCP,
132 	ITEM_TCP_SRC,
133 	ITEM_TCP_DST,
134 	ITEM_TCP_FLAGS,
135 	ITEM_SCTP,
136 	ITEM_SCTP_SRC,
137 	ITEM_SCTP_DST,
138 	ITEM_SCTP_TAG,
139 	ITEM_SCTP_CKSUM,
140 	ITEM_VXLAN,
141 	ITEM_VXLAN_VNI,
142 	ITEM_E_TAG,
143 	ITEM_E_TAG_GRP_ECID_B,
144 	ITEM_NVGRE,
145 	ITEM_NVGRE_TNI,
146 	ITEM_MPLS,
147 	ITEM_MPLS_LABEL,
148 	ITEM_GRE,
149 	ITEM_GRE_PROTO,
150 	ITEM_GRE_C_RSVD0_VER,
151 	ITEM_GRE_C_BIT,
152 	ITEM_GRE_K_BIT,
153 	ITEM_GRE_S_BIT,
154 	ITEM_FUZZY,
155 	ITEM_FUZZY_THRESH,
156 	ITEM_GTP,
157 	ITEM_GTP_TEID,
158 	ITEM_GTPC,
159 	ITEM_GTPU,
160 	ITEM_GENEVE,
161 	ITEM_GENEVE_VNI,
162 	ITEM_GENEVE_PROTO,
163 	ITEM_VXLAN_GPE,
164 	ITEM_VXLAN_GPE_VNI,
165 	ITEM_ARP_ETH_IPV4,
166 	ITEM_ARP_ETH_IPV4_SHA,
167 	ITEM_ARP_ETH_IPV4_SPA,
168 	ITEM_ARP_ETH_IPV4_THA,
169 	ITEM_ARP_ETH_IPV4_TPA,
170 	ITEM_IPV6_EXT,
171 	ITEM_IPV6_EXT_NEXT_HDR,
172 	ITEM_ICMP6,
173 	ITEM_ICMP6_TYPE,
174 	ITEM_ICMP6_CODE,
175 	ITEM_ICMP6_ND_NS,
176 	ITEM_ICMP6_ND_NS_TARGET_ADDR,
177 	ITEM_ICMP6_ND_NA,
178 	ITEM_ICMP6_ND_NA_TARGET_ADDR,
179 	ITEM_ICMP6_ND_OPT,
180 	ITEM_ICMP6_ND_OPT_TYPE,
181 	ITEM_ICMP6_ND_OPT_SLA_ETH,
182 	ITEM_ICMP6_ND_OPT_SLA_ETH_SLA,
183 	ITEM_ICMP6_ND_OPT_TLA_ETH,
184 	ITEM_ICMP6_ND_OPT_TLA_ETH_TLA,
185 	ITEM_META,
186 	ITEM_META_DATA,
187 	ITEM_GRE_KEY,
188 	ITEM_GRE_KEY_VALUE,
189 
190 	/* Validate/create actions. */
191 	ACTIONS,
192 	ACTION_NEXT,
193 	ACTION_END,
194 	ACTION_VOID,
195 	ACTION_PASSTHRU,
196 	ACTION_JUMP,
197 	ACTION_JUMP_GROUP,
198 	ACTION_MARK,
199 	ACTION_MARK_ID,
200 	ACTION_FLAG,
201 	ACTION_QUEUE,
202 	ACTION_QUEUE_INDEX,
203 	ACTION_DROP,
204 	ACTION_COUNT,
205 	ACTION_COUNT_SHARED,
206 	ACTION_COUNT_ID,
207 	ACTION_RSS,
208 	ACTION_RSS_FUNC,
209 	ACTION_RSS_LEVEL,
210 	ACTION_RSS_FUNC_DEFAULT,
211 	ACTION_RSS_FUNC_TOEPLITZ,
212 	ACTION_RSS_FUNC_SIMPLE_XOR,
213 	ACTION_RSS_TYPES,
214 	ACTION_RSS_TYPE,
215 	ACTION_RSS_KEY,
216 	ACTION_RSS_KEY_LEN,
217 	ACTION_RSS_QUEUES,
218 	ACTION_RSS_QUEUE,
219 	ACTION_PF,
220 	ACTION_VF,
221 	ACTION_VF_ORIGINAL,
222 	ACTION_VF_ID,
223 	ACTION_PHY_PORT,
224 	ACTION_PHY_PORT_ORIGINAL,
225 	ACTION_PHY_PORT_INDEX,
226 	ACTION_PORT_ID,
227 	ACTION_PORT_ID_ORIGINAL,
228 	ACTION_PORT_ID_ID,
229 	ACTION_METER,
230 	ACTION_METER_ID,
231 	ACTION_OF_SET_MPLS_TTL,
232 	ACTION_OF_SET_MPLS_TTL_MPLS_TTL,
233 	ACTION_OF_DEC_MPLS_TTL,
234 	ACTION_OF_SET_NW_TTL,
235 	ACTION_OF_SET_NW_TTL_NW_TTL,
236 	ACTION_OF_DEC_NW_TTL,
237 	ACTION_OF_COPY_TTL_OUT,
238 	ACTION_OF_COPY_TTL_IN,
239 	ACTION_OF_POP_VLAN,
240 	ACTION_OF_PUSH_VLAN,
241 	ACTION_OF_PUSH_VLAN_ETHERTYPE,
242 	ACTION_OF_SET_VLAN_VID,
243 	ACTION_OF_SET_VLAN_VID_VLAN_VID,
244 	ACTION_OF_SET_VLAN_PCP,
245 	ACTION_OF_SET_VLAN_PCP_VLAN_PCP,
246 	ACTION_OF_POP_MPLS,
247 	ACTION_OF_POP_MPLS_ETHERTYPE,
248 	ACTION_OF_PUSH_MPLS,
249 	ACTION_OF_PUSH_MPLS_ETHERTYPE,
250 	ACTION_VXLAN_ENCAP,
251 	ACTION_VXLAN_DECAP,
252 	ACTION_NVGRE_ENCAP,
253 	ACTION_NVGRE_DECAP,
254 	ACTION_L2_ENCAP,
255 	ACTION_L2_DECAP,
256 	ACTION_MPLSOGRE_ENCAP,
257 	ACTION_MPLSOGRE_DECAP,
258 	ACTION_MPLSOUDP_ENCAP,
259 	ACTION_MPLSOUDP_DECAP,
260 	ACTION_SET_IPV4_SRC,
261 	ACTION_SET_IPV4_SRC_IPV4_SRC,
262 	ACTION_SET_IPV4_DST,
263 	ACTION_SET_IPV4_DST_IPV4_DST,
264 	ACTION_SET_IPV6_SRC,
265 	ACTION_SET_IPV6_SRC_IPV6_SRC,
266 	ACTION_SET_IPV6_DST,
267 	ACTION_SET_IPV6_DST_IPV6_DST,
268 	ACTION_SET_TP_SRC,
269 	ACTION_SET_TP_SRC_TP_SRC,
270 	ACTION_SET_TP_DST,
271 	ACTION_SET_TP_DST_TP_DST,
272 	ACTION_MAC_SWAP,
273 	ACTION_DEC_TTL,
274 	ACTION_SET_TTL,
275 	ACTION_SET_TTL_TTL,
276 	ACTION_SET_MAC_SRC,
277 	ACTION_SET_MAC_SRC_MAC_SRC,
278 	ACTION_SET_MAC_DST,
279 	ACTION_SET_MAC_DST_MAC_DST,
280 	ACTION_INC_TCP_SEQ,
281 	ACTION_INC_TCP_SEQ_VALUE,
282 	ACTION_DEC_TCP_SEQ,
283 	ACTION_DEC_TCP_SEQ_VALUE,
284 	ACTION_INC_TCP_ACK,
285 	ACTION_INC_TCP_ACK_VALUE,
286 	ACTION_DEC_TCP_ACK,
287 	ACTION_DEC_TCP_ACK_VALUE,
288 };
289 
290 /** Maximum size for pattern in struct rte_flow_item_raw. */
291 #define ITEM_RAW_PATTERN_SIZE 40
292 
293 /** Storage size for struct rte_flow_item_raw including pattern. */
294 #define ITEM_RAW_SIZE \
295 	(sizeof(struct rte_flow_item_raw) + ITEM_RAW_PATTERN_SIZE)
296 
297 /** Maximum number of queue indices in struct rte_flow_action_rss. */
298 #define ACTION_RSS_QUEUE_NUM 32
299 
300 /** Storage for struct rte_flow_action_rss including external data. */
301 struct action_rss_data {
302 	struct rte_flow_action_rss conf;
303 	uint8_t key[RSS_HASH_KEY_LENGTH];
304 	uint16_t queue[ACTION_RSS_QUEUE_NUM];
305 };
306 
307 /** Maximum number of items in struct rte_flow_action_vxlan_encap. */
308 #define ACTION_VXLAN_ENCAP_ITEMS_NUM 6
309 
310 /** Storage for struct rte_flow_action_vxlan_encap including external data. */
311 struct action_vxlan_encap_data {
312 	struct rte_flow_action_vxlan_encap conf;
313 	struct rte_flow_item items[ACTION_VXLAN_ENCAP_ITEMS_NUM];
314 	struct rte_flow_item_eth item_eth;
315 	struct rte_flow_item_vlan item_vlan;
316 	union {
317 		struct rte_flow_item_ipv4 item_ipv4;
318 		struct rte_flow_item_ipv6 item_ipv6;
319 	};
320 	struct rte_flow_item_udp item_udp;
321 	struct rte_flow_item_vxlan item_vxlan;
322 };
323 
324 /** Maximum number of items in struct rte_flow_action_nvgre_encap. */
325 #define ACTION_NVGRE_ENCAP_ITEMS_NUM 5
326 
327 /** Storage for struct rte_flow_action_nvgre_encap including external data. */
328 struct action_nvgre_encap_data {
329 	struct rte_flow_action_nvgre_encap conf;
330 	struct rte_flow_item items[ACTION_NVGRE_ENCAP_ITEMS_NUM];
331 	struct rte_flow_item_eth item_eth;
332 	struct rte_flow_item_vlan item_vlan;
333 	union {
334 		struct rte_flow_item_ipv4 item_ipv4;
335 		struct rte_flow_item_ipv6 item_ipv6;
336 	};
337 	struct rte_flow_item_nvgre item_nvgre;
338 };
339 
340 /** Maximum data size in struct rte_flow_action_raw_encap. */
341 #define ACTION_RAW_ENCAP_MAX_DATA 128
342 
343 /** Storage for struct rte_flow_action_raw_encap including external data. */
344 struct action_raw_encap_data {
345 	struct rte_flow_action_raw_encap conf;
346 	uint8_t data[ACTION_RAW_ENCAP_MAX_DATA];
347 	uint8_t preserve[ACTION_RAW_ENCAP_MAX_DATA];
348 };
349 
350 /** Storage for struct rte_flow_action_raw_decap including external data. */
351 struct action_raw_decap_data {
352 	struct rte_flow_action_raw_decap conf;
353 	uint8_t data[ACTION_RAW_ENCAP_MAX_DATA];
354 };
355 
356 /** Maximum number of subsequent tokens and arguments on the stack. */
357 #define CTX_STACK_SIZE 16
358 
359 /** Parser context. */
360 struct context {
361 	/** Stack of subsequent token lists to process. */
362 	const enum index *next[CTX_STACK_SIZE];
363 	/** Arguments for stacked tokens. */
364 	const void *args[CTX_STACK_SIZE];
365 	enum index curr; /**< Current token index. */
366 	enum index prev; /**< Index of the last token seen. */
367 	int next_num; /**< Number of entries in next[]. */
368 	int args_num; /**< Number of entries in args[]. */
369 	uint32_t eol:1; /**< EOL has been detected. */
370 	uint32_t last:1; /**< No more arguments. */
371 	portid_t port; /**< Current port ID (for completions). */
372 	uint32_t objdata; /**< Object-specific data. */
373 	void *object; /**< Address of current object for relative offsets. */
374 	void *objmask; /**< Object a full mask must be written to. */
375 };
376 
377 /** Token argument. */
378 struct arg {
379 	uint32_t hton:1; /**< Use network byte ordering. */
380 	uint32_t sign:1; /**< Value is signed. */
381 	uint32_t bounded:1; /**< Value is bounded. */
382 	uintmax_t min; /**< Minimum value if bounded. */
383 	uintmax_t max; /**< Maximum value if bounded. */
384 	uint32_t offset; /**< Relative offset from ctx->object. */
385 	uint32_t size; /**< Field size. */
386 	const uint8_t *mask; /**< Bit-mask to use instead of offset/size. */
387 };
388 
389 /** Parser token definition. */
390 struct token {
391 	/** Type displayed during completion (defaults to "TOKEN"). */
392 	const char *type;
393 	/** Help displayed during completion (defaults to token name). */
394 	const char *help;
395 	/** Private data used by parser functions. */
396 	const void *priv;
397 	/**
398 	 * Lists of subsequent tokens to push on the stack. Each call to the
399 	 * parser consumes the last entry of that stack.
400 	 */
401 	const enum index *const *next;
402 	/** Arguments stack for subsequent tokens that need them. */
403 	const struct arg *const *args;
404 	/**
405 	 * Token-processing callback, returns -1 in case of error, the
406 	 * length of the matched string otherwise. If NULL, attempts to
407 	 * match the token name.
408 	 *
409 	 * If buf is not NULL, the result should be stored in it according
410 	 * to context. An error is returned if not large enough.
411 	 */
412 	int (*call)(struct context *ctx, const struct token *token,
413 		    const char *str, unsigned int len,
414 		    void *buf, unsigned int size);
415 	/**
416 	 * Callback that provides possible values for this token, used for
417 	 * completion. Returns -1 in case of error, the number of possible
418 	 * values otherwise. If NULL, the token name is used.
419 	 *
420 	 * If buf is not NULL, entry index ent is written to buf and the
421 	 * full length of the entry is returned (same behavior as
422 	 * snprintf()).
423 	 */
424 	int (*comp)(struct context *ctx, const struct token *token,
425 		    unsigned int ent, char *buf, unsigned int size);
426 	/** Mandatory token name, no default value. */
427 	const char *name;
428 };
429 
430 /** Static initializer for the next field. */
431 #define NEXT(...) (const enum index *const []){ __VA_ARGS__, NULL, }
432 
433 /** Static initializer for a NEXT() entry. */
434 #define NEXT_ENTRY(...) (const enum index []){ __VA_ARGS__, ZERO, }
435 
436 /** Static initializer for the args field. */
437 #define ARGS(...) (const struct arg *const []){ __VA_ARGS__, NULL, }
438 
439 /** Static initializer for ARGS() to target a field. */
440 #define ARGS_ENTRY(s, f) \
441 	(&(const struct arg){ \
442 		.offset = offsetof(s, f), \
443 		.size = sizeof(((s *)0)->f), \
444 	})
445 
446 /** Static initializer for ARGS() to target a bit-field. */
447 #define ARGS_ENTRY_BF(s, f, b) \
448 	(&(const struct arg){ \
449 		.size = sizeof(s), \
450 		.mask = (const void *)&(const s){ .f = (1 << (b)) - 1 }, \
451 	})
452 
453 /** Static initializer for ARGS() to target an arbitrary bit-mask. */
454 #define ARGS_ENTRY_MASK(s, f, m) \
455 	(&(const struct arg){ \
456 		.offset = offsetof(s, f), \
457 		.size = sizeof(((s *)0)->f), \
458 		.mask = (const void *)(m), \
459 	})
460 
461 /** Same as ARGS_ENTRY_MASK() using network byte ordering for the value. */
462 #define ARGS_ENTRY_MASK_HTON(s, f, m) \
463 	(&(const struct arg){ \
464 		.hton = 1, \
465 		.offset = offsetof(s, f), \
466 		.size = sizeof(((s *)0)->f), \
467 		.mask = (const void *)(m), \
468 	})
469 
470 /** Static initializer for ARGS() to target a pointer. */
471 #define ARGS_ENTRY_PTR(s, f) \
472 	(&(const struct arg){ \
473 		.size = sizeof(*((s *)0)->f), \
474 	})
475 
476 /** Static initializer for ARGS() with arbitrary offset and size. */
477 #define ARGS_ENTRY_ARB(o, s) \
478 	(&(const struct arg){ \
479 		.offset = (o), \
480 		.size = (s), \
481 	})
482 
483 /** Same as ARGS_ENTRY_ARB() with bounded values. */
484 #define ARGS_ENTRY_ARB_BOUNDED(o, s, i, a) \
485 	(&(const struct arg){ \
486 		.bounded = 1, \
487 		.min = (i), \
488 		.max = (a), \
489 		.offset = (o), \
490 		.size = (s), \
491 	})
492 
493 /** Same as ARGS_ENTRY() using network byte ordering. */
494 #define ARGS_ENTRY_HTON(s, f) \
495 	(&(const struct arg){ \
496 		.hton = 1, \
497 		.offset = offsetof(s, f), \
498 		.size = sizeof(((s *)0)->f), \
499 	})
500 
501 /** Same as ARGS_ENTRY_HTON() for a single argument, without structure. */
502 #define ARG_ENTRY_HTON(s) \
503 	(&(const struct arg){ \
504 		.hton = 1, \
505 		.offset = 0, \
506 		.size = sizeof(s), \
507 	})
508 
509 /** Parser output buffer layout expected by cmd_flow_parsed(). */
510 struct buffer {
511 	enum index command; /**< Flow command. */
512 	portid_t port; /**< Affected port ID. */
513 	union {
514 		struct {
515 			struct rte_flow_attr attr;
516 			struct rte_flow_item *pattern;
517 			struct rte_flow_action *actions;
518 			uint32_t pattern_n;
519 			uint32_t actions_n;
520 			uint8_t *data;
521 		} vc; /**< Validate/create arguments. */
522 		struct {
523 			uint32_t *rule;
524 			uint32_t rule_n;
525 		} destroy; /**< Destroy arguments. */
526 		struct {
527 			uint32_t rule;
528 			struct rte_flow_action action;
529 		} query; /**< Query arguments. */
530 		struct {
531 			uint32_t *group;
532 			uint32_t group_n;
533 		} list; /**< List arguments. */
534 		struct {
535 			int set;
536 		} isolate; /**< Isolated mode arguments. */
537 	} args; /**< Command arguments. */
538 };
539 
540 /** Private data for pattern items. */
541 struct parse_item_priv {
542 	enum rte_flow_item_type type; /**< Item type. */
543 	uint32_t size; /**< Size of item specification structure. */
544 };
545 
546 #define PRIV_ITEM(t, s) \
547 	(&(const struct parse_item_priv){ \
548 		.type = RTE_FLOW_ITEM_TYPE_ ## t, \
549 		.size = s, \
550 	})
551 
552 /** Private data for actions. */
553 struct parse_action_priv {
554 	enum rte_flow_action_type type; /**< Action type. */
555 	uint32_t size; /**< Size of action configuration structure. */
556 };
557 
558 #define PRIV_ACTION(t, s) \
559 	(&(const struct parse_action_priv){ \
560 		.type = RTE_FLOW_ACTION_TYPE_ ## t, \
561 		.size = s, \
562 	})
563 
564 static const enum index next_vc_attr[] = {
565 	GROUP,
566 	PRIORITY,
567 	INGRESS,
568 	EGRESS,
569 	TRANSFER,
570 	PATTERN,
571 	ZERO,
572 };
573 
574 static const enum index next_destroy_attr[] = {
575 	DESTROY_RULE,
576 	END,
577 	ZERO,
578 };
579 
580 static const enum index next_list_attr[] = {
581 	LIST_GROUP,
582 	END,
583 	ZERO,
584 };
585 
586 static const enum index item_param[] = {
587 	ITEM_PARAM_IS,
588 	ITEM_PARAM_SPEC,
589 	ITEM_PARAM_LAST,
590 	ITEM_PARAM_MASK,
591 	ITEM_PARAM_PREFIX,
592 	ZERO,
593 };
594 
595 static const enum index next_item[] = {
596 	ITEM_END,
597 	ITEM_VOID,
598 	ITEM_INVERT,
599 	ITEM_ANY,
600 	ITEM_PF,
601 	ITEM_VF,
602 	ITEM_PHY_PORT,
603 	ITEM_PORT_ID,
604 	ITEM_MARK,
605 	ITEM_RAW,
606 	ITEM_ETH,
607 	ITEM_VLAN,
608 	ITEM_IPV4,
609 	ITEM_IPV6,
610 	ITEM_ICMP,
611 	ITEM_UDP,
612 	ITEM_TCP,
613 	ITEM_SCTP,
614 	ITEM_VXLAN,
615 	ITEM_E_TAG,
616 	ITEM_NVGRE,
617 	ITEM_MPLS,
618 	ITEM_GRE,
619 	ITEM_FUZZY,
620 	ITEM_GTP,
621 	ITEM_GTPC,
622 	ITEM_GTPU,
623 	ITEM_GENEVE,
624 	ITEM_VXLAN_GPE,
625 	ITEM_ARP_ETH_IPV4,
626 	ITEM_IPV6_EXT,
627 	ITEM_ICMP6,
628 	ITEM_ICMP6_ND_NS,
629 	ITEM_ICMP6_ND_NA,
630 	ITEM_ICMP6_ND_OPT,
631 	ITEM_ICMP6_ND_OPT_SLA_ETH,
632 	ITEM_ICMP6_ND_OPT_TLA_ETH,
633 	ITEM_META,
634 	ITEM_GRE_KEY,
635 	ZERO,
636 };
637 
638 static const enum index item_fuzzy[] = {
639 	ITEM_FUZZY_THRESH,
640 	ITEM_NEXT,
641 	ZERO,
642 };
643 
644 static const enum index item_any[] = {
645 	ITEM_ANY_NUM,
646 	ITEM_NEXT,
647 	ZERO,
648 };
649 
650 static const enum index item_vf[] = {
651 	ITEM_VF_ID,
652 	ITEM_NEXT,
653 	ZERO,
654 };
655 
656 static const enum index item_phy_port[] = {
657 	ITEM_PHY_PORT_INDEX,
658 	ITEM_NEXT,
659 	ZERO,
660 };
661 
662 static const enum index item_port_id[] = {
663 	ITEM_PORT_ID_ID,
664 	ITEM_NEXT,
665 	ZERO,
666 };
667 
668 static const enum index item_mark[] = {
669 	ITEM_MARK_ID,
670 	ITEM_NEXT,
671 	ZERO,
672 };
673 
674 static const enum index item_raw[] = {
675 	ITEM_RAW_RELATIVE,
676 	ITEM_RAW_SEARCH,
677 	ITEM_RAW_OFFSET,
678 	ITEM_RAW_LIMIT,
679 	ITEM_RAW_PATTERN,
680 	ITEM_NEXT,
681 	ZERO,
682 };
683 
684 static const enum index item_eth[] = {
685 	ITEM_ETH_DST,
686 	ITEM_ETH_SRC,
687 	ITEM_ETH_TYPE,
688 	ITEM_NEXT,
689 	ZERO,
690 };
691 
692 static const enum index item_vlan[] = {
693 	ITEM_VLAN_TCI,
694 	ITEM_VLAN_PCP,
695 	ITEM_VLAN_DEI,
696 	ITEM_VLAN_VID,
697 	ITEM_VLAN_INNER_TYPE,
698 	ITEM_NEXT,
699 	ZERO,
700 };
701 
702 static const enum index item_ipv4[] = {
703 	ITEM_IPV4_TOS,
704 	ITEM_IPV4_TTL,
705 	ITEM_IPV4_PROTO,
706 	ITEM_IPV4_SRC,
707 	ITEM_IPV4_DST,
708 	ITEM_NEXT,
709 	ZERO,
710 };
711 
712 static const enum index item_ipv6[] = {
713 	ITEM_IPV6_TC,
714 	ITEM_IPV6_FLOW,
715 	ITEM_IPV6_PROTO,
716 	ITEM_IPV6_HOP,
717 	ITEM_IPV6_SRC,
718 	ITEM_IPV6_DST,
719 	ITEM_NEXT,
720 	ZERO,
721 };
722 
723 static const enum index item_icmp[] = {
724 	ITEM_ICMP_TYPE,
725 	ITEM_ICMP_CODE,
726 	ITEM_NEXT,
727 	ZERO,
728 };
729 
730 static const enum index item_udp[] = {
731 	ITEM_UDP_SRC,
732 	ITEM_UDP_DST,
733 	ITEM_NEXT,
734 	ZERO,
735 };
736 
737 static const enum index item_tcp[] = {
738 	ITEM_TCP_SRC,
739 	ITEM_TCP_DST,
740 	ITEM_TCP_FLAGS,
741 	ITEM_NEXT,
742 	ZERO,
743 };
744 
745 static const enum index item_sctp[] = {
746 	ITEM_SCTP_SRC,
747 	ITEM_SCTP_DST,
748 	ITEM_SCTP_TAG,
749 	ITEM_SCTP_CKSUM,
750 	ITEM_NEXT,
751 	ZERO,
752 };
753 
754 static const enum index item_vxlan[] = {
755 	ITEM_VXLAN_VNI,
756 	ITEM_NEXT,
757 	ZERO,
758 };
759 
760 static const enum index item_e_tag[] = {
761 	ITEM_E_TAG_GRP_ECID_B,
762 	ITEM_NEXT,
763 	ZERO,
764 };
765 
766 static const enum index item_nvgre[] = {
767 	ITEM_NVGRE_TNI,
768 	ITEM_NEXT,
769 	ZERO,
770 };
771 
772 static const enum index item_mpls[] = {
773 	ITEM_MPLS_LABEL,
774 	ITEM_NEXT,
775 	ZERO,
776 };
777 
778 static const enum index item_gre[] = {
779 	ITEM_GRE_PROTO,
780 	ITEM_GRE_C_RSVD0_VER,
781 	ITEM_GRE_C_BIT,
782 	ITEM_GRE_K_BIT,
783 	ITEM_GRE_S_BIT,
784 	ITEM_NEXT,
785 	ZERO,
786 };
787 
788 static const enum index item_gre_key[] = {
789 	ITEM_GRE_KEY_VALUE,
790 	ITEM_NEXT,
791 	ZERO,
792 };
793 
794 static const enum index item_gtp[] = {
795 	ITEM_GTP_TEID,
796 	ITEM_NEXT,
797 	ZERO,
798 };
799 
800 static const enum index item_geneve[] = {
801 	ITEM_GENEVE_VNI,
802 	ITEM_GENEVE_PROTO,
803 	ITEM_NEXT,
804 	ZERO,
805 };
806 
807 static const enum index item_vxlan_gpe[] = {
808 	ITEM_VXLAN_GPE_VNI,
809 	ITEM_NEXT,
810 	ZERO,
811 };
812 
813 static const enum index item_arp_eth_ipv4[] = {
814 	ITEM_ARP_ETH_IPV4_SHA,
815 	ITEM_ARP_ETH_IPV4_SPA,
816 	ITEM_ARP_ETH_IPV4_THA,
817 	ITEM_ARP_ETH_IPV4_TPA,
818 	ITEM_NEXT,
819 	ZERO,
820 };
821 
822 static const enum index item_ipv6_ext[] = {
823 	ITEM_IPV6_EXT_NEXT_HDR,
824 	ITEM_NEXT,
825 	ZERO,
826 };
827 
828 static const enum index item_icmp6[] = {
829 	ITEM_ICMP6_TYPE,
830 	ITEM_ICMP6_CODE,
831 	ITEM_NEXT,
832 	ZERO,
833 };
834 
835 static const enum index item_icmp6_nd_ns[] = {
836 	ITEM_ICMP6_ND_NS_TARGET_ADDR,
837 	ITEM_NEXT,
838 	ZERO,
839 };
840 
841 static const enum index item_icmp6_nd_na[] = {
842 	ITEM_ICMP6_ND_NA_TARGET_ADDR,
843 	ITEM_NEXT,
844 	ZERO,
845 };
846 
847 static const enum index item_icmp6_nd_opt[] = {
848 	ITEM_ICMP6_ND_OPT_TYPE,
849 	ITEM_NEXT,
850 	ZERO,
851 };
852 
853 static const enum index item_icmp6_nd_opt_sla_eth[] = {
854 	ITEM_ICMP6_ND_OPT_SLA_ETH_SLA,
855 	ITEM_NEXT,
856 	ZERO,
857 };
858 
859 static const enum index item_icmp6_nd_opt_tla_eth[] = {
860 	ITEM_ICMP6_ND_OPT_TLA_ETH_TLA,
861 	ITEM_NEXT,
862 	ZERO,
863 };
864 
865 static const enum index item_meta[] = {
866 	ITEM_META_DATA,
867 	ITEM_NEXT,
868 	ZERO,
869 };
870 
871 static const enum index next_action[] = {
872 	ACTION_END,
873 	ACTION_VOID,
874 	ACTION_PASSTHRU,
875 	ACTION_JUMP,
876 	ACTION_MARK,
877 	ACTION_FLAG,
878 	ACTION_QUEUE,
879 	ACTION_DROP,
880 	ACTION_COUNT,
881 	ACTION_RSS,
882 	ACTION_PF,
883 	ACTION_VF,
884 	ACTION_PHY_PORT,
885 	ACTION_PORT_ID,
886 	ACTION_METER,
887 	ACTION_OF_SET_MPLS_TTL,
888 	ACTION_OF_DEC_MPLS_TTL,
889 	ACTION_OF_SET_NW_TTL,
890 	ACTION_OF_DEC_NW_TTL,
891 	ACTION_OF_COPY_TTL_OUT,
892 	ACTION_OF_COPY_TTL_IN,
893 	ACTION_OF_POP_VLAN,
894 	ACTION_OF_PUSH_VLAN,
895 	ACTION_OF_SET_VLAN_VID,
896 	ACTION_OF_SET_VLAN_PCP,
897 	ACTION_OF_POP_MPLS,
898 	ACTION_OF_PUSH_MPLS,
899 	ACTION_VXLAN_ENCAP,
900 	ACTION_VXLAN_DECAP,
901 	ACTION_NVGRE_ENCAP,
902 	ACTION_NVGRE_DECAP,
903 	ACTION_L2_ENCAP,
904 	ACTION_L2_DECAP,
905 	ACTION_MPLSOGRE_ENCAP,
906 	ACTION_MPLSOGRE_DECAP,
907 	ACTION_MPLSOUDP_ENCAP,
908 	ACTION_MPLSOUDP_DECAP,
909 	ACTION_SET_IPV4_SRC,
910 	ACTION_SET_IPV4_DST,
911 	ACTION_SET_IPV6_SRC,
912 	ACTION_SET_IPV6_DST,
913 	ACTION_SET_TP_SRC,
914 	ACTION_SET_TP_DST,
915 	ACTION_MAC_SWAP,
916 	ACTION_DEC_TTL,
917 	ACTION_SET_TTL,
918 	ACTION_SET_MAC_SRC,
919 	ACTION_SET_MAC_DST,
920 	ACTION_INC_TCP_SEQ,
921 	ACTION_DEC_TCP_SEQ,
922 	ACTION_INC_TCP_ACK,
923 	ACTION_DEC_TCP_ACK,
924 	ZERO,
925 };
926 
927 static const enum index action_mark[] = {
928 	ACTION_MARK_ID,
929 	ACTION_NEXT,
930 	ZERO,
931 };
932 
933 static const enum index action_queue[] = {
934 	ACTION_QUEUE_INDEX,
935 	ACTION_NEXT,
936 	ZERO,
937 };
938 
939 static const enum index action_count[] = {
940 	ACTION_COUNT_ID,
941 	ACTION_COUNT_SHARED,
942 	ACTION_NEXT,
943 	ZERO,
944 };
945 
946 static const enum index action_rss[] = {
947 	ACTION_RSS_FUNC,
948 	ACTION_RSS_LEVEL,
949 	ACTION_RSS_TYPES,
950 	ACTION_RSS_KEY,
951 	ACTION_RSS_KEY_LEN,
952 	ACTION_RSS_QUEUES,
953 	ACTION_NEXT,
954 	ZERO,
955 };
956 
957 static const enum index action_vf[] = {
958 	ACTION_VF_ORIGINAL,
959 	ACTION_VF_ID,
960 	ACTION_NEXT,
961 	ZERO,
962 };
963 
964 static const enum index action_phy_port[] = {
965 	ACTION_PHY_PORT_ORIGINAL,
966 	ACTION_PHY_PORT_INDEX,
967 	ACTION_NEXT,
968 	ZERO,
969 };
970 
971 static const enum index action_port_id[] = {
972 	ACTION_PORT_ID_ORIGINAL,
973 	ACTION_PORT_ID_ID,
974 	ACTION_NEXT,
975 	ZERO,
976 };
977 
978 static const enum index action_meter[] = {
979 	ACTION_METER_ID,
980 	ACTION_NEXT,
981 	ZERO,
982 };
983 
984 static const enum index action_of_set_mpls_ttl[] = {
985 	ACTION_OF_SET_MPLS_TTL_MPLS_TTL,
986 	ACTION_NEXT,
987 	ZERO,
988 };
989 
990 static const enum index action_of_set_nw_ttl[] = {
991 	ACTION_OF_SET_NW_TTL_NW_TTL,
992 	ACTION_NEXT,
993 	ZERO,
994 };
995 
996 static const enum index action_of_push_vlan[] = {
997 	ACTION_OF_PUSH_VLAN_ETHERTYPE,
998 	ACTION_NEXT,
999 	ZERO,
1000 };
1001 
1002 static const enum index action_of_set_vlan_vid[] = {
1003 	ACTION_OF_SET_VLAN_VID_VLAN_VID,
1004 	ACTION_NEXT,
1005 	ZERO,
1006 };
1007 
1008 static const enum index action_of_set_vlan_pcp[] = {
1009 	ACTION_OF_SET_VLAN_PCP_VLAN_PCP,
1010 	ACTION_NEXT,
1011 	ZERO,
1012 };
1013 
1014 static const enum index action_of_pop_mpls[] = {
1015 	ACTION_OF_POP_MPLS_ETHERTYPE,
1016 	ACTION_NEXT,
1017 	ZERO,
1018 };
1019 
1020 static const enum index action_of_push_mpls[] = {
1021 	ACTION_OF_PUSH_MPLS_ETHERTYPE,
1022 	ACTION_NEXT,
1023 	ZERO,
1024 };
1025 
1026 static const enum index action_set_ipv4_src[] = {
1027 	ACTION_SET_IPV4_SRC_IPV4_SRC,
1028 	ACTION_NEXT,
1029 	ZERO,
1030 };
1031 
1032 static const enum index action_set_mac_src[] = {
1033 	ACTION_SET_MAC_SRC_MAC_SRC,
1034 	ACTION_NEXT,
1035 	ZERO,
1036 };
1037 
1038 static const enum index action_set_ipv4_dst[] = {
1039 	ACTION_SET_IPV4_DST_IPV4_DST,
1040 	ACTION_NEXT,
1041 	ZERO,
1042 };
1043 
1044 static const enum index action_set_ipv6_src[] = {
1045 	ACTION_SET_IPV6_SRC_IPV6_SRC,
1046 	ACTION_NEXT,
1047 	ZERO,
1048 };
1049 
1050 static const enum index action_set_ipv6_dst[] = {
1051 	ACTION_SET_IPV6_DST_IPV6_DST,
1052 	ACTION_NEXT,
1053 	ZERO,
1054 };
1055 
1056 static const enum index action_set_tp_src[] = {
1057 	ACTION_SET_TP_SRC_TP_SRC,
1058 	ACTION_NEXT,
1059 	ZERO,
1060 };
1061 
1062 static const enum index action_set_tp_dst[] = {
1063 	ACTION_SET_TP_DST_TP_DST,
1064 	ACTION_NEXT,
1065 	ZERO,
1066 };
1067 
1068 static const enum index action_set_ttl[] = {
1069 	ACTION_SET_TTL_TTL,
1070 	ACTION_NEXT,
1071 	ZERO,
1072 };
1073 
1074 static const enum index action_jump[] = {
1075 	ACTION_JUMP_GROUP,
1076 	ACTION_NEXT,
1077 	ZERO,
1078 };
1079 
1080 static const enum index action_set_mac_dst[] = {
1081 	ACTION_SET_MAC_DST_MAC_DST,
1082 	ACTION_NEXT,
1083 	ZERO,
1084 };
1085 
1086 static const enum index action_inc_tcp_seq[] = {
1087 	ACTION_INC_TCP_SEQ_VALUE,
1088 	ACTION_NEXT,
1089 	ZERO,
1090 };
1091 
1092 static const enum index action_dec_tcp_seq[] = {
1093 	ACTION_DEC_TCP_SEQ_VALUE,
1094 	ACTION_NEXT,
1095 	ZERO,
1096 };
1097 
1098 static const enum index action_inc_tcp_ack[] = {
1099 	ACTION_INC_TCP_ACK_VALUE,
1100 	ACTION_NEXT,
1101 	ZERO,
1102 };
1103 
1104 static const enum index action_dec_tcp_ack[] = {
1105 	ACTION_DEC_TCP_ACK_VALUE,
1106 	ACTION_NEXT,
1107 	ZERO,
1108 };
1109 
1110 static int parse_init(struct context *, const struct token *,
1111 		      const char *, unsigned int,
1112 		      void *, unsigned int);
1113 static int parse_vc(struct context *, const struct token *,
1114 		    const char *, unsigned int,
1115 		    void *, unsigned int);
1116 static int parse_vc_spec(struct context *, const struct token *,
1117 			 const char *, unsigned int, void *, unsigned int);
1118 static int parse_vc_conf(struct context *, const struct token *,
1119 			 const char *, unsigned int, void *, unsigned int);
1120 static int parse_vc_action_rss(struct context *, const struct token *,
1121 			       const char *, unsigned int, void *,
1122 			       unsigned int);
1123 static int parse_vc_action_rss_func(struct context *, const struct token *,
1124 				    const char *, unsigned int, void *,
1125 				    unsigned int);
1126 static int parse_vc_action_rss_type(struct context *, const struct token *,
1127 				    const char *, unsigned int, void *,
1128 				    unsigned int);
1129 static int parse_vc_action_rss_queue(struct context *, const struct token *,
1130 				     const char *, unsigned int, void *,
1131 				     unsigned int);
1132 static int parse_vc_action_vxlan_encap(struct context *, const struct token *,
1133 				       const char *, unsigned int, void *,
1134 				       unsigned int);
1135 static int parse_vc_action_nvgre_encap(struct context *, const struct token *,
1136 				       const char *, unsigned int, void *,
1137 				       unsigned int);
1138 static int parse_vc_action_l2_encap(struct context *, const struct token *,
1139 				    const char *, unsigned int, void *,
1140 				    unsigned int);
1141 static int parse_vc_action_l2_decap(struct context *, const struct token *,
1142 				    const char *, unsigned int, void *,
1143 				    unsigned int);
1144 static int parse_vc_action_mplsogre_encap(struct context *,
1145 					  const struct token *, const char *,
1146 					  unsigned int, void *, unsigned int);
1147 static int parse_vc_action_mplsogre_decap(struct context *,
1148 					  const struct token *, const char *,
1149 					  unsigned int, void *, unsigned int);
1150 static int parse_vc_action_mplsoudp_encap(struct context *,
1151 					  const struct token *, const char *,
1152 					  unsigned int, void *, unsigned int);
1153 static int parse_vc_action_mplsoudp_decap(struct context *,
1154 					  const struct token *, const char *,
1155 					  unsigned int, void *, unsigned int);
1156 static int parse_destroy(struct context *, const struct token *,
1157 			 const char *, unsigned int,
1158 			 void *, unsigned int);
1159 static int parse_flush(struct context *, const struct token *,
1160 		       const char *, unsigned int,
1161 		       void *, unsigned int);
1162 static int parse_query(struct context *, const struct token *,
1163 		       const char *, unsigned int,
1164 		       void *, unsigned int);
1165 static int parse_action(struct context *, const struct token *,
1166 			const char *, unsigned int,
1167 			void *, unsigned int);
1168 static int parse_list(struct context *, const struct token *,
1169 		      const char *, unsigned int,
1170 		      void *, unsigned int);
1171 static int parse_isolate(struct context *, const struct token *,
1172 			 const char *, unsigned int,
1173 			 void *, unsigned int);
1174 static int parse_int(struct context *, const struct token *,
1175 		     const char *, unsigned int,
1176 		     void *, unsigned int);
1177 static int parse_prefix(struct context *, const struct token *,
1178 			const char *, unsigned int,
1179 			void *, unsigned int);
1180 static int parse_boolean(struct context *, const struct token *,
1181 			 const char *, unsigned int,
1182 			 void *, unsigned int);
1183 static int parse_string(struct context *, const struct token *,
1184 			const char *, unsigned int,
1185 			void *, unsigned int);
1186 static int parse_hex(struct context *ctx, const struct token *token,
1187 			const char *str, unsigned int len,
1188 			void *buf, unsigned int size);
1189 static int parse_mac_addr(struct context *, const struct token *,
1190 			  const char *, unsigned int,
1191 			  void *, unsigned int);
1192 static int parse_ipv4_addr(struct context *, const struct token *,
1193 			   const char *, unsigned int,
1194 			   void *, unsigned int);
1195 static int parse_ipv6_addr(struct context *, const struct token *,
1196 			   const char *, unsigned int,
1197 			   void *, unsigned int);
1198 static int parse_port(struct context *, const struct token *,
1199 		      const char *, unsigned int,
1200 		      void *, unsigned int);
1201 static int comp_none(struct context *, const struct token *,
1202 		     unsigned int, char *, unsigned int);
1203 static int comp_boolean(struct context *, const struct token *,
1204 			unsigned int, char *, unsigned int);
1205 static int comp_action(struct context *, const struct token *,
1206 		       unsigned int, char *, unsigned int);
1207 static int comp_port(struct context *, const struct token *,
1208 		     unsigned int, char *, unsigned int);
1209 static int comp_rule_id(struct context *, const struct token *,
1210 			unsigned int, char *, unsigned int);
1211 static int comp_vc_action_rss_type(struct context *, const struct token *,
1212 				   unsigned int, char *, unsigned int);
1213 static int comp_vc_action_rss_queue(struct context *, const struct token *,
1214 				    unsigned int, char *, unsigned int);
1215 
1216 /** Token definitions. */
1217 static const struct token token_list[] = {
1218 	/* Special tokens. */
1219 	[ZERO] = {
1220 		.name = "ZERO",
1221 		.help = "null entry, abused as the entry point",
1222 		.next = NEXT(NEXT_ENTRY(FLOW)),
1223 	},
1224 	[END] = {
1225 		.name = "",
1226 		.type = "RETURN",
1227 		.help = "command may end here",
1228 	},
1229 	/* Common tokens. */
1230 	[INTEGER] = {
1231 		.name = "{int}",
1232 		.type = "INTEGER",
1233 		.help = "integer value",
1234 		.call = parse_int,
1235 		.comp = comp_none,
1236 	},
1237 	[UNSIGNED] = {
1238 		.name = "{unsigned}",
1239 		.type = "UNSIGNED",
1240 		.help = "unsigned integer value",
1241 		.call = parse_int,
1242 		.comp = comp_none,
1243 	},
1244 	[PREFIX] = {
1245 		.name = "{prefix}",
1246 		.type = "PREFIX",
1247 		.help = "prefix length for bit-mask",
1248 		.call = parse_prefix,
1249 		.comp = comp_none,
1250 	},
1251 	[BOOLEAN] = {
1252 		.name = "{boolean}",
1253 		.type = "BOOLEAN",
1254 		.help = "any boolean value",
1255 		.call = parse_boolean,
1256 		.comp = comp_boolean,
1257 	},
1258 	[STRING] = {
1259 		.name = "{string}",
1260 		.type = "STRING",
1261 		.help = "fixed string",
1262 		.call = parse_string,
1263 		.comp = comp_none,
1264 	},
1265 	[HEX] = {
1266 		.name = "{hex}",
1267 		.type = "HEX",
1268 		.help = "fixed string",
1269 		.call = parse_hex,
1270 		.comp = comp_none,
1271 	},
1272 	[MAC_ADDR] = {
1273 		.name = "{MAC address}",
1274 		.type = "MAC-48",
1275 		.help = "standard MAC address notation",
1276 		.call = parse_mac_addr,
1277 		.comp = comp_none,
1278 	},
1279 	[IPV4_ADDR] = {
1280 		.name = "{IPv4 address}",
1281 		.type = "IPV4 ADDRESS",
1282 		.help = "standard IPv4 address notation",
1283 		.call = parse_ipv4_addr,
1284 		.comp = comp_none,
1285 	},
1286 	[IPV6_ADDR] = {
1287 		.name = "{IPv6 address}",
1288 		.type = "IPV6 ADDRESS",
1289 		.help = "standard IPv6 address notation",
1290 		.call = parse_ipv6_addr,
1291 		.comp = comp_none,
1292 	},
1293 	[RULE_ID] = {
1294 		.name = "{rule id}",
1295 		.type = "RULE ID",
1296 		.help = "rule identifier",
1297 		.call = parse_int,
1298 		.comp = comp_rule_id,
1299 	},
1300 	[PORT_ID] = {
1301 		.name = "{port_id}",
1302 		.type = "PORT ID",
1303 		.help = "port identifier",
1304 		.call = parse_port,
1305 		.comp = comp_port,
1306 	},
1307 	[GROUP_ID] = {
1308 		.name = "{group_id}",
1309 		.type = "GROUP ID",
1310 		.help = "group identifier",
1311 		.call = parse_int,
1312 		.comp = comp_none,
1313 	},
1314 	[PRIORITY_LEVEL] = {
1315 		.name = "{level}",
1316 		.type = "PRIORITY",
1317 		.help = "priority level",
1318 		.call = parse_int,
1319 		.comp = comp_none,
1320 	},
1321 	/* Top-level command. */
1322 	[FLOW] = {
1323 		.name = "flow",
1324 		.type = "{command} {port_id} [{arg} [...]]",
1325 		.help = "manage ingress/egress flow rules",
1326 		.next = NEXT(NEXT_ENTRY
1327 			     (VALIDATE,
1328 			      CREATE,
1329 			      DESTROY,
1330 			      FLUSH,
1331 			      LIST,
1332 			      QUERY,
1333 			      ISOLATE)),
1334 		.call = parse_init,
1335 	},
1336 	/* Sub-level commands. */
1337 	[VALIDATE] = {
1338 		.name = "validate",
1339 		.help = "check whether a flow rule can be created",
1340 		.next = NEXT(next_vc_attr, NEXT_ENTRY(PORT_ID)),
1341 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
1342 		.call = parse_vc,
1343 	},
1344 	[CREATE] = {
1345 		.name = "create",
1346 		.help = "create a flow rule",
1347 		.next = NEXT(next_vc_attr, NEXT_ENTRY(PORT_ID)),
1348 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
1349 		.call = parse_vc,
1350 	},
1351 	[DESTROY] = {
1352 		.name = "destroy",
1353 		.help = "destroy specific flow rules",
1354 		.next = NEXT(NEXT_ENTRY(DESTROY_RULE), NEXT_ENTRY(PORT_ID)),
1355 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
1356 		.call = parse_destroy,
1357 	},
1358 	[FLUSH] = {
1359 		.name = "flush",
1360 		.help = "destroy all flow rules",
1361 		.next = NEXT(NEXT_ENTRY(PORT_ID)),
1362 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
1363 		.call = parse_flush,
1364 	},
1365 	[QUERY] = {
1366 		.name = "query",
1367 		.help = "query an existing flow rule",
1368 		.next = NEXT(NEXT_ENTRY(QUERY_ACTION),
1369 			     NEXT_ENTRY(RULE_ID),
1370 			     NEXT_ENTRY(PORT_ID)),
1371 		.args = ARGS(ARGS_ENTRY(struct buffer, args.query.action.type),
1372 			     ARGS_ENTRY(struct buffer, args.query.rule),
1373 			     ARGS_ENTRY(struct buffer, port)),
1374 		.call = parse_query,
1375 	},
1376 	[LIST] = {
1377 		.name = "list",
1378 		.help = "list existing flow rules",
1379 		.next = NEXT(next_list_attr, NEXT_ENTRY(PORT_ID)),
1380 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
1381 		.call = parse_list,
1382 	},
1383 	[ISOLATE] = {
1384 		.name = "isolate",
1385 		.help = "restrict ingress traffic to the defined flow rules",
1386 		.next = NEXT(NEXT_ENTRY(BOOLEAN),
1387 			     NEXT_ENTRY(PORT_ID)),
1388 		.args = ARGS(ARGS_ENTRY(struct buffer, args.isolate.set),
1389 			     ARGS_ENTRY(struct buffer, port)),
1390 		.call = parse_isolate,
1391 	},
1392 	/* Destroy arguments. */
1393 	[DESTROY_RULE] = {
1394 		.name = "rule",
1395 		.help = "specify a rule identifier",
1396 		.next = NEXT(next_destroy_attr, NEXT_ENTRY(RULE_ID)),
1397 		.args = ARGS(ARGS_ENTRY_PTR(struct buffer, args.destroy.rule)),
1398 		.call = parse_destroy,
1399 	},
1400 	/* Query arguments. */
1401 	[QUERY_ACTION] = {
1402 		.name = "{action}",
1403 		.type = "ACTION",
1404 		.help = "action to query, must be part of the rule",
1405 		.call = parse_action,
1406 		.comp = comp_action,
1407 	},
1408 	/* List arguments. */
1409 	[LIST_GROUP] = {
1410 		.name = "group",
1411 		.help = "specify a group",
1412 		.next = NEXT(next_list_attr, NEXT_ENTRY(GROUP_ID)),
1413 		.args = ARGS(ARGS_ENTRY_PTR(struct buffer, args.list.group)),
1414 		.call = parse_list,
1415 	},
1416 	/* Validate/create attributes. */
1417 	[GROUP] = {
1418 		.name = "group",
1419 		.help = "specify a group",
1420 		.next = NEXT(next_vc_attr, NEXT_ENTRY(GROUP_ID)),
1421 		.args = ARGS(ARGS_ENTRY(struct rte_flow_attr, group)),
1422 		.call = parse_vc,
1423 	},
1424 	[PRIORITY] = {
1425 		.name = "priority",
1426 		.help = "specify a priority level",
1427 		.next = NEXT(next_vc_attr, NEXT_ENTRY(PRIORITY_LEVEL)),
1428 		.args = ARGS(ARGS_ENTRY(struct rte_flow_attr, priority)),
1429 		.call = parse_vc,
1430 	},
1431 	[INGRESS] = {
1432 		.name = "ingress",
1433 		.help = "affect rule to ingress",
1434 		.next = NEXT(next_vc_attr),
1435 		.call = parse_vc,
1436 	},
1437 	[EGRESS] = {
1438 		.name = "egress",
1439 		.help = "affect rule to egress",
1440 		.next = NEXT(next_vc_attr),
1441 		.call = parse_vc,
1442 	},
1443 	[TRANSFER] = {
1444 		.name = "transfer",
1445 		.help = "apply rule directly to endpoints found in pattern",
1446 		.next = NEXT(next_vc_attr),
1447 		.call = parse_vc,
1448 	},
1449 	/* Validate/create pattern. */
1450 	[PATTERN] = {
1451 		.name = "pattern",
1452 		.help = "submit a list of pattern items",
1453 		.next = NEXT(next_item),
1454 		.call = parse_vc,
1455 	},
1456 	[ITEM_PARAM_IS] = {
1457 		.name = "is",
1458 		.help = "match value perfectly (with full bit-mask)",
1459 		.call = parse_vc_spec,
1460 	},
1461 	[ITEM_PARAM_SPEC] = {
1462 		.name = "spec",
1463 		.help = "match value according to configured bit-mask",
1464 		.call = parse_vc_spec,
1465 	},
1466 	[ITEM_PARAM_LAST] = {
1467 		.name = "last",
1468 		.help = "specify upper bound to establish a range",
1469 		.call = parse_vc_spec,
1470 	},
1471 	[ITEM_PARAM_MASK] = {
1472 		.name = "mask",
1473 		.help = "specify bit-mask with relevant bits set to one",
1474 		.call = parse_vc_spec,
1475 	},
1476 	[ITEM_PARAM_PREFIX] = {
1477 		.name = "prefix",
1478 		.help = "generate bit-mask from a prefix length",
1479 		.call = parse_vc_spec,
1480 	},
1481 	[ITEM_NEXT] = {
1482 		.name = "/",
1483 		.help = "specify next pattern item",
1484 		.next = NEXT(next_item),
1485 	},
1486 	[ITEM_END] = {
1487 		.name = "end",
1488 		.help = "end list of pattern items",
1489 		.priv = PRIV_ITEM(END, 0),
1490 		.next = NEXT(NEXT_ENTRY(ACTIONS)),
1491 		.call = parse_vc,
1492 	},
1493 	[ITEM_VOID] = {
1494 		.name = "void",
1495 		.help = "no-op pattern item",
1496 		.priv = PRIV_ITEM(VOID, 0),
1497 		.next = NEXT(NEXT_ENTRY(ITEM_NEXT)),
1498 		.call = parse_vc,
1499 	},
1500 	[ITEM_INVERT] = {
1501 		.name = "invert",
1502 		.help = "perform actions when pattern does not match",
1503 		.priv = PRIV_ITEM(INVERT, 0),
1504 		.next = NEXT(NEXT_ENTRY(ITEM_NEXT)),
1505 		.call = parse_vc,
1506 	},
1507 	[ITEM_ANY] = {
1508 		.name = "any",
1509 		.help = "match any protocol for the current layer",
1510 		.priv = PRIV_ITEM(ANY, sizeof(struct rte_flow_item_any)),
1511 		.next = NEXT(item_any),
1512 		.call = parse_vc,
1513 	},
1514 	[ITEM_ANY_NUM] = {
1515 		.name = "num",
1516 		.help = "number of layers covered",
1517 		.next = NEXT(item_any, NEXT_ENTRY(UNSIGNED), item_param),
1518 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_any, num)),
1519 	},
1520 	[ITEM_PF] = {
1521 		.name = "pf",
1522 		.help = "match traffic from/to the physical function",
1523 		.priv = PRIV_ITEM(PF, 0),
1524 		.next = NEXT(NEXT_ENTRY(ITEM_NEXT)),
1525 		.call = parse_vc,
1526 	},
1527 	[ITEM_VF] = {
1528 		.name = "vf",
1529 		.help = "match traffic from/to a virtual function ID",
1530 		.priv = PRIV_ITEM(VF, sizeof(struct rte_flow_item_vf)),
1531 		.next = NEXT(item_vf),
1532 		.call = parse_vc,
1533 	},
1534 	[ITEM_VF_ID] = {
1535 		.name = "id",
1536 		.help = "VF ID",
1537 		.next = NEXT(item_vf, NEXT_ENTRY(UNSIGNED), item_param),
1538 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_vf, id)),
1539 	},
1540 	[ITEM_PHY_PORT] = {
1541 		.name = "phy_port",
1542 		.help = "match traffic from/to a specific physical port",
1543 		.priv = PRIV_ITEM(PHY_PORT,
1544 				  sizeof(struct rte_flow_item_phy_port)),
1545 		.next = NEXT(item_phy_port),
1546 		.call = parse_vc,
1547 	},
1548 	[ITEM_PHY_PORT_INDEX] = {
1549 		.name = "index",
1550 		.help = "physical port index",
1551 		.next = NEXT(item_phy_port, NEXT_ENTRY(UNSIGNED), item_param),
1552 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_phy_port, index)),
1553 	},
1554 	[ITEM_PORT_ID] = {
1555 		.name = "port_id",
1556 		.help = "match traffic from/to a given DPDK port ID",
1557 		.priv = PRIV_ITEM(PORT_ID,
1558 				  sizeof(struct rte_flow_item_port_id)),
1559 		.next = NEXT(item_port_id),
1560 		.call = parse_vc,
1561 	},
1562 	[ITEM_PORT_ID_ID] = {
1563 		.name = "id",
1564 		.help = "DPDK port ID",
1565 		.next = NEXT(item_port_id, NEXT_ENTRY(UNSIGNED), item_param),
1566 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_port_id, id)),
1567 	},
1568 	[ITEM_MARK] = {
1569 		.name = "mark",
1570 		.help = "match traffic against value set in previously matched rule",
1571 		.priv = PRIV_ITEM(MARK, sizeof(struct rte_flow_item_mark)),
1572 		.next = NEXT(item_mark),
1573 		.call = parse_vc,
1574 	},
1575 	[ITEM_MARK_ID] = {
1576 		.name = "id",
1577 		.help = "Integer value to match against",
1578 		.next = NEXT(item_mark, NEXT_ENTRY(UNSIGNED), item_param),
1579 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_mark, id)),
1580 	},
1581 	[ITEM_RAW] = {
1582 		.name = "raw",
1583 		.help = "match an arbitrary byte string",
1584 		.priv = PRIV_ITEM(RAW, ITEM_RAW_SIZE),
1585 		.next = NEXT(item_raw),
1586 		.call = parse_vc,
1587 	},
1588 	[ITEM_RAW_RELATIVE] = {
1589 		.name = "relative",
1590 		.help = "look for pattern after the previous item",
1591 		.next = NEXT(item_raw, NEXT_ENTRY(BOOLEAN), item_param),
1592 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_item_raw,
1593 					   relative, 1)),
1594 	},
1595 	[ITEM_RAW_SEARCH] = {
1596 		.name = "search",
1597 		.help = "search pattern from offset (see also limit)",
1598 		.next = NEXT(item_raw, NEXT_ENTRY(BOOLEAN), item_param),
1599 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_item_raw,
1600 					   search, 1)),
1601 	},
1602 	[ITEM_RAW_OFFSET] = {
1603 		.name = "offset",
1604 		.help = "absolute or relative offset for pattern",
1605 		.next = NEXT(item_raw, NEXT_ENTRY(INTEGER), item_param),
1606 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_raw, offset)),
1607 	},
1608 	[ITEM_RAW_LIMIT] = {
1609 		.name = "limit",
1610 		.help = "search area limit for start of pattern",
1611 		.next = NEXT(item_raw, NEXT_ENTRY(UNSIGNED), item_param),
1612 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_raw, limit)),
1613 	},
1614 	[ITEM_RAW_PATTERN] = {
1615 		.name = "pattern",
1616 		.help = "byte string to look for",
1617 		.next = NEXT(item_raw,
1618 			     NEXT_ENTRY(STRING),
1619 			     NEXT_ENTRY(ITEM_PARAM_IS,
1620 					ITEM_PARAM_SPEC,
1621 					ITEM_PARAM_MASK)),
1622 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_raw, pattern),
1623 			     ARGS_ENTRY(struct rte_flow_item_raw, length),
1624 			     ARGS_ENTRY_ARB(sizeof(struct rte_flow_item_raw),
1625 					    ITEM_RAW_PATTERN_SIZE)),
1626 	},
1627 	[ITEM_ETH] = {
1628 		.name = "eth",
1629 		.help = "match Ethernet header",
1630 		.priv = PRIV_ITEM(ETH, sizeof(struct rte_flow_item_eth)),
1631 		.next = NEXT(item_eth),
1632 		.call = parse_vc,
1633 	},
1634 	[ITEM_ETH_DST] = {
1635 		.name = "dst",
1636 		.help = "destination MAC",
1637 		.next = NEXT(item_eth, NEXT_ENTRY(MAC_ADDR), item_param),
1638 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_eth, dst)),
1639 	},
1640 	[ITEM_ETH_SRC] = {
1641 		.name = "src",
1642 		.help = "source MAC",
1643 		.next = NEXT(item_eth, NEXT_ENTRY(MAC_ADDR), item_param),
1644 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_eth, src)),
1645 	},
1646 	[ITEM_ETH_TYPE] = {
1647 		.name = "type",
1648 		.help = "EtherType",
1649 		.next = NEXT(item_eth, NEXT_ENTRY(UNSIGNED), item_param),
1650 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_eth, type)),
1651 	},
1652 	[ITEM_VLAN] = {
1653 		.name = "vlan",
1654 		.help = "match 802.1Q/ad VLAN tag",
1655 		.priv = PRIV_ITEM(VLAN, sizeof(struct rte_flow_item_vlan)),
1656 		.next = NEXT(item_vlan),
1657 		.call = parse_vc,
1658 	},
1659 	[ITEM_VLAN_TCI] = {
1660 		.name = "tci",
1661 		.help = "tag control information",
1662 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1663 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vlan, tci)),
1664 	},
1665 	[ITEM_VLAN_PCP] = {
1666 		.name = "pcp",
1667 		.help = "priority code point",
1668 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1669 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_vlan,
1670 						  tci, "\xe0\x00")),
1671 	},
1672 	[ITEM_VLAN_DEI] = {
1673 		.name = "dei",
1674 		.help = "drop eligible indicator",
1675 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1676 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_vlan,
1677 						  tci, "\x10\x00")),
1678 	},
1679 	[ITEM_VLAN_VID] = {
1680 		.name = "vid",
1681 		.help = "VLAN identifier",
1682 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1683 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_vlan,
1684 						  tci, "\x0f\xff")),
1685 	},
1686 	[ITEM_VLAN_INNER_TYPE] = {
1687 		.name = "inner_type",
1688 		.help = "inner EtherType",
1689 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1690 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vlan,
1691 					     inner_type)),
1692 	},
1693 	[ITEM_IPV4] = {
1694 		.name = "ipv4",
1695 		.help = "match IPv4 header",
1696 		.priv = PRIV_ITEM(IPV4, sizeof(struct rte_flow_item_ipv4)),
1697 		.next = NEXT(item_ipv4),
1698 		.call = parse_vc,
1699 	},
1700 	[ITEM_IPV4_TOS] = {
1701 		.name = "tos",
1702 		.help = "type of service",
1703 		.next = NEXT(item_ipv4, NEXT_ENTRY(UNSIGNED), item_param),
1704 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1705 					     hdr.type_of_service)),
1706 	},
1707 	[ITEM_IPV4_TTL] = {
1708 		.name = "ttl",
1709 		.help = "time to live",
1710 		.next = NEXT(item_ipv4, NEXT_ENTRY(UNSIGNED), item_param),
1711 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1712 					     hdr.time_to_live)),
1713 	},
1714 	[ITEM_IPV4_PROTO] = {
1715 		.name = "proto",
1716 		.help = "next protocol ID",
1717 		.next = NEXT(item_ipv4, NEXT_ENTRY(UNSIGNED), item_param),
1718 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1719 					     hdr.next_proto_id)),
1720 	},
1721 	[ITEM_IPV4_SRC] = {
1722 		.name = "src",
1723 		.help = "source address",
1724 		.next = NEXT(item_ipv4, NEXT_ENTRY(IPV4_ADDR), item_param),
1725 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1726 					     hdr.src_addr)),
1727 	},
1728 	[ITEM_IPV4_DST] = {
1729 		.name = "dst",
1730 		.help = "destination address",
1731 		.next = NEXT(item_ipv4, NEXT_ENTRY(IPV4_ADDR), item_param),
1732 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1733 					     hdr.dst_addr)),
1734 	},
1735 	[ITEM_IPV6] = {
1736 		.name = "ipv6",
1737 		.help = "match IPv6 header",
1738 		.priv = PRIV_ITEM(IPV6, sizeof(struct rte_flow_item_ipv6)),
1739 		.next = NEXT(item_ipv6),
1740 		.call = parse_vc,
1741 	},
1742 	[ITEM_IPV6_TC] = {
1743 		.name = "tc",
1744 		.help = "traffic class",
1745 		.next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
1746 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_ipv6,
1747 						  hdr.vtc_flow,
1748 						  "\x0f\xf0\x00\x00")),
1749 	},
1750 	[ITEM_IPV6_FLOW] = {
1751 		.name = "flow",
1752 		.help = "flow label",
1753 		.next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
1754 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_ipv6,
1755 						  hdr.vtc_flow,
1756 						  "\x00\x0f\xff\xff")),
1757 	},
1758 	[ITEM_IPV6_PROTO] = {
1759 		.name = "proto",
1760 		.help = "protocol (next header)",
1761 		.next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
1762 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
1763 					     hdr.proto)),
1764 	},
1765 	[ITEM_IPV6_HOP] = {
1766 		.name = "hop",
1767 		.help = "hop limit",
1768 		.next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
1769 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
1770 					     hdr.hop_limits)),
1771 	},
1772 	[ITEM_IPV6_SRC] = {
1773 		.name = "src",
1774 		.help = "source address",
1775 		.next = NEXT(item_ipv6, NEXT_ENTRY(IPV6_ADDR), item_param),
1776 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
1777 					     hdr.src_addr)),
1778 	},
1779 	[ITEM_IPV6_DST] = {
1780 		.name = "dst",
1781 		.help = "destination address",
1782 		.next = NEXT(item_ipv6, NEXT_ENTRY(IPV6_ADDR), item_param),
1783 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
1784 					     hdr.dst_addr)),
1785 	},
1786 	[ITEM_ICMP] = {
1787 		.name = "icmp",
1788 		.help = "match ICMP header",
1789 		.priv = PRIV_ITEM(ICMP, sizeof(struct rte_flow_item_icmp)),
1790 		.next = NEXT(item_icmp),
1791 		.call = parse_vc,
1792 	},
1793 	[ITEM_ICMP_TYPE] = {
1794 		.name = "type",
1795 		.help = "ICMP packet type",
1796 		.next = NEXT(item_icmp, NEXT_ENTRY(UNSIGNED), item_param),
1797 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp,
1798 					     hdr.icmp_type)),
1799 	},
1800 	[ITEM_ICMP_CODE] = {
1801 		.name = "code",
1802 		.help = "ICMP packet code",
1803 		.next = NEXT(item_icmp, NEXT_ENTRY(UNSIGNED), item_param),
1804 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp,
1805 					     hdr.icmp_code)),
1806 	},
1807 	[ITEM_UDP] = {
1808 		.name = "udp",
1809 		.help = "match UDP header",
1810 		.priv = PRIV_ITEM(UDP, sizeof(struct rte_flow_item_udp)),
1811 		.next = NEXT(item_udp),
1812 		.call = parse_vc,
1813 	},
1814 	[ITEM_UDP_SRC] = {
1815 		.name = "src",
1816 		.help = "UDP source port",
1817 		.next = NEXT(item_udp, NEXT_ENTRY(UNSIGNED), item_param),
1818 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_udp,
1819 					     hdr.src_port)),
1820 	},
1821 	[ITEM_UDP_DST] = {
1822 		.name = "dst",
1823 		.help = "UDP destination port",
1824 		.next = NEXT(item_udp, NEXT_ENTRY(UNSIGNED), item_param),
1825 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_udp,
1826 					     hdr.dst_port)),
1827 	},
1828 	[ITEM_TCP] = {
1829 		.name = "tcp",
1830 		.help = "match TCP header",
1831 		.priv = PRIV_ITEM(TCP, sizeof(struct rte_flow_item_tcp)),
1832 		.next = NEXT(item_tcp),
1833 		.call = parse_vc,
1834 	},
1835 	[ITEM_TCP_SRC] = {
1836 		.name = "src",
1837 		.help = "TCP source port",
1838 		.next = NEXT(item_tcp, NEXT_ENTRY(UNSIGNED), item_param),
1839 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_tcp,
1840 					     hdr.src_port)),
1841 	},
1842 	[ITEM_TCP_DST] = {
1843 		.name = "dst",
1844 		.help = "TCP destination port",
1845 		.next = NEXT(item_tcp, NEXT_ENTRY(UNSIGNED), item_param),
1846 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_tcp,
1847 					     hdr.dst_port)),
1848 	},
1849 	[ITEM_TCP_FLAGS] = {
1850 		.name = "flags",
1851 		.help = "TCP flags",
1852 		.next = NEXT(item_tcp, NEXT_ENTRY(UNSIGNED), item_param),
1853 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_tcp,
1854 					     hdr.tcp_flags)),
1855 	},
1856 	[ITEM_SCTP] = {
1857 		.name = "sctp",
1858 		.help = "match SCTP header",
1859 		.priv = PRIV_ITEM(SCTP, sizeof(struct rte_flow_item_sctp)),
1860 		.next = NEXT(item_sctp),
1861 		.call = parse_vc,
1862 	},
1863 	[ITEM_SCTP_SRC] = {
1864 		.name = "src",
1865 		.help = "SCTP source port",
1866 		.next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
1867 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
1868 					     hdr.src_port)),
1869 	},
1870 	[ITEM_SCTP_DST] = {
1871 		.name = "dst",
1872 		.help = "SCTP destination port",
1873 		.next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
1874 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
1875 					     hdr.dst_port)),
1876 	},
1877 	[ITEM_SCTP_TAG] = {
1878 		.name = "tag",
1879 		.help = "validation tag",
1880 		.next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
1881 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
1882 					     hdr.tag)),
1883 	},
1884 	[ITEM_SCTP_CKSUM] = {
1885 		.name = "cksum",
1886 		.help = "checksum",
1887 		.next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
1888 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
1889 					     hdr.cksum)),
1890 	},
1891 	[ITEM_VXLAN] = {
1892 		.name = "vxlan",
1893 		.help = "match VXLAN header",
1894 		.priv = PRIV_ITEM(VXLAN, sizeof(struct rte_flow_item_vxlan)),
1895 		.next = NEXT(item_vxlan),
1896 		.call = parse_vc,
1897 	},
1898 	[ITEM_VXLAN_VNI] = {
1899 		.name = "vni",
1900 		.help = "VXLAN identifier",
1901 		.next = NEXT(item_vxlan, NEXT_ENTRY(UNSIGNED), item_param),
1902 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vxlan, vni)),
1903 	},
1904 	[ITEM_E_TAG] = {
1905 		.name = "e_tag",
1906 		.help = "match E-Tag header",
1907 		.priv = PRIV_ITEM(E_TAG, sizeof(struct rte_flow_item_e_tag)),
1908 		.next = NEXT(item_e_tag),
1909 		.call = parse_vc,
1910 	},
1911 	[ITEM_E_TAG_GRP_ECID_B] = {
1912 		.name = "grp_ecid_b",
1913 		.help = "GRP and E-CID base",
1914 		.next = NEXT(item_e_tag, NEXT_ENTRY(UNSIGNED), item_param),
1915 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_e_tag,
1916 						  rsvd_grp_ecid_b,
1917 						  "\x3f\xff")),
1918 	},
1919 	[ITEM_NVGRE] = {
1920 		.name = "nvgre",
1921 		.help = "match NVGRE header",
1922 		.priv = PRIV_ITEM(NVGRE, sizeof(struct rte_flow_item_nvgre)),
1923 		.next = NEXT(item_nvgre),
1924 		.call = parse_vc,
1925 	},
1926 	[ITEM_NVGRE_TNI] = {
1927 		.name = "tni",
1928 		.help = "virtual subnet ID",
1929 		.next = NEXT(item_nvgre, NEXT_ENTRY(UNSIGNED), item_param),
1930 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_nvgre, tni)),
1931 	},
1932 	[ITEM_MPLS] = {
1933 		.name = "mpls",
1934 		.help = "match MPLS header",
1935 		.priv = PRIV_ITEM(MPLS, sizeof(struct rte_flow_item_mpls)),
1936 		.next = NEXT(item_mpls),
1937 		.call = parse_vc,
1938 	},
1939 	[ITEM_MPLS_LABEL] = {
1940 		.name = "label",
1941 		.help = "MPLS label",
1942 		.next = NEXT(item_mpls, NEXT_ENTRY(UNSIGNED), item_param),
1943 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_mpls,
1944 						  label_tc_s,
1945 						  "\xff\xff\xf0")),
1946 	},
1947 	[ITEM_GRE] = {
1948 		.name = "gre",
1949 		.help = "match GRE header",
1950 		.priv = PRIV_ITEM(GRE, sizeof(struct rte_flow_item_gre)),
1951 		.next = NEXT(item_gre),
1952 		.call = parse_vc,
1953 	},
1954 	[ITEM_GRE_PROTO] = {
1955 		.name = "protocol",
1956 		.help = "GRE protocol type",
1957 		.next = NEXT(item_gre, NEXT_ENTRY(UNSIGNED), item_param),
1958 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_gre,
1959 					     protocol)),
1960 	},
1961 	[ITEM_GRE_C_RSVD0_VER] = {
1962 		.name = "c_rsvd0_ver",
1963 		.help =
1964 			"checksum (1b), undefined (1b), key bit (1b),"
1965 			" sequence number (1b), reserved 0 (9b),"
1966 			" version (3b)",
1967 		.next = NEXT(item_gre, NEXT_ENTRY(UNSIGNED), item_param),
1968 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_gre,
1969 					     c_rsvd0_ver)),
1970 	},
1971 	[ITEM_GRE_C_BIT] = {
1972 		.name = "c_bit",
1973 		.help = "checksum bit (C)",
1974 		.next = NEXT(item_gre, NEXT_ENTRY(BOOLEAN), item_param),
1975 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_gre,
1976 						  c_rsvd0_ver,
1977 						  "\x80\x00\x00\x00")),
1978 	},
1979 	[ITEM_GRE_S_BIT] = {
1980 		.name = "s_bit",
1981 		.help = "sequence number bit (S)",
1982 		.next = NEXT(item_gre, NEXT_ENTRY(BOOLEAN), item_param),
1983 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_gre,
1984 						  c_rsvd0_ver,
1985 						  "\x10\x00\x00\x00")),
1986 	},
1987 	[ITEM_GRE_K_BIT] = {
1988 		.name = "k_bit",
1989 		.help = "key bit (K)",
1990 		.next = NEXT(item_gre, NEXT_ENTRY(BOOLEAN), item_param),
1991 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_gre,
1992 						  c_rsvd0_ver,
1993 						  "\x20\x00\x00\x00")),
1994 	},
1995 	[ITEM_FUZZY] = {
1996 		.name = "fuzzy",
1997 		.help = "fuzzy pattern match, expect faster than default",
1998 		.priv = PRIV_ITEM(FUZZY,
1999 				sizeof(struct rte_flow_item_fuzzy)),
2000 		.next = NEXT(item_fuzzy),
2001 		.call = parse_vc,
2002 	},
2003 	[ITEM_FUZZY_THRESH] = {
2004 		.name = "thresh",
2005 		.help = "match accuracy threshold",
2006 		.next = NEXT(item_fuzzy, NEXT_ENTRY(UNSIGNED), item_param),
2007 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_fuzzy,
2008 					thresh)),
2009 	},
2010 	[ITEM_GTP] = {
2011 		.name = "gtp",
2012 		.help = "match GTP header",
2013 		.priv = PRIV_ITEM(GTP, sizeof(struct rte_flow_item_gtp)),
2014 		.next = NEXT(item_gtp),
2015 		.call = parse_vc,
2016 	},
2017 	[ITEM_GTP_TEID] = {
2018 		.name = "teid",
2019 		.help = "tunnel endpoint identifier",
2020 		.next = NEXT(item_gtp, NEXT_ENTRY(UNSIGNED), item_param),
2021 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_gtp, teid)),
2022 	},
2023 	[ITEM_GTPC] = {
2024 		.name = "gtpc",
2025 		.help = "match GTP header",
2026 		.priv = PRIV_ITEM(GTPC, sizeof(struct rte_flow_item_gtp)),
2027 		.next = NEXT(item_gtp),
2028 		.call = parse_vc,
2029 	},
2030 	[ITEM_GTPU] = {
2031 		.name = "gtpu",
2032 		.help = "match GTP header",
2033 		.priv = PRIV_ITEM(GTPU, sizeof(struct rte_flow_item_gtp)),
2034 		.next = NEXT(item_gtp),
2035 		.call = parse_vc,
2036 	},
2037 	[ITEM_GENEVE] = {
2038 		.name = "geneve",
2039 		.help = "match GENEVE header",
2040 		.priv = PRIV_ITEM(GENEVE, sizeof(struct rte_flow_item_geneve)),
2041 		.next = NEXT(item_geneve),
2042 		.call = parse_vc,
2043 	},
2044 	[ITEM_GENEVE_VNI] = {
2045 		.name = "vni",
2046 		.help = "virtual network identifier",
2047 		.next = NEXT(item_geneve, NEXT_ENTRY(UNSIGNED), item_param),
2048 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_geneve, vni)),
2049 	},
2050 	[ITEM_GENEVE_PROTO] = {
2051 		.name = "protocol",
2052 		.help = "GENEVE protocol type",
2053 		.next = NEXT(item_geneve, NEXT_ENTRY(UNSIGNED), item_param),
2054 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_geneve,
2055 					     protocol)),
2056 	},
2057 	[ITEM_VXLAN_GPE] = {
2058 		.name = "vxlan-gpe",
2059 		.help = "match VXLAN-GPE header",
2060 		.priv = PRIV_ITEM(VXLAN_GPE,
2061 				  sizeof(struct rte_flow_item_vxlan_gpe)),
2062 		.next = NEXT(item_vxlan_gpe),
2063 		.call = parse_vc,
2064 	},
2065 	[ITEM_VXLAN_GPE_VNI] = {
2066 		.name = "vni",
2067 		.help = "VXLAN-GPE identifier",
2068 		.next = NEXT(item_vxlan_gpe, NEXT_ENTRY(UNSIGNED), item_param),
2069 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vxlan_gpe,
2070 					     vni)),
2071 	},
2072 	[ITEM_ARP_ETH_IPV4] = {
2073 		.name = "arp_eth_ipv4",
2074 		.help = "match ARP header for Ethernet/IPv4",
2075 		.priv = PRIV_ITEM(ARP_ETH_IPV4,
2076 				  sizeof(struct rte_flow_item_arp_eth_ipv4)),
2077 		.next = NEXT(item_arp_eth_ipv4),
2078 		.call = parse_vc,
2079 	},
2080 	[ITEM_ARP_ETH_IPV4_SHA] = {
2081 		.name = "sha",
2082 		.help = "sender hardware address",
2083 		.next = NEXT(item_arp_eth_ipv4, NEXT_ENTRY(MAC_ADDR),
2084 			     item_param),
2085 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_arp_eth_ipv4,
2086 					     sha)),
2087 	},
2088 	[ITEM_ARP_ETH_IPV4_SPA] = {
2089 		.name = "spa",
2090 		.help = "sender IPv4 address",
2091 		.next = NEXT(item_arp_eth_ipv4, NEXT_ENTRY(IPV4_ADDR),
2092 			     item_param),
2093 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_arp_eth_ipv4,
2094 					     spa)),
2095 	},
2096 	[ITEM_ARP_ETH_IPV4_THA] = {
2097 		.name = "tha",
2098 		.help = "target hardware address",
2099 		.next = NEXT(item_arp_eth_ipv4, NEXT_ENTRY(MAC_ADDR),
2100 			     item_param),
2101 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_arp_eth_ipv4,
2102 					     tha)),
2103 	},
2104 	[ITEM_ARP_ETH_IPV4_TPA] = {
2105 		.name = "tpa",
2106 		.help = "target IPv4 address",
2107 		.next = NEXT(item_arp_eth_ipv4, NEXT_ENTRY(IPV4_ADDR),
2108 			     item_param),
2109 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_arp_eth_ipv4,
2110 					     tpa)),
2111 	},
2112 	[ITEM_IPV6_EXT] = {
2113 		.name = "ipv6_ext",
2114 		.help = "match presence of any IPv6 extension header",
2115 		.priv = PRIV_ITEM(IPV6_EXT,
2116 				  sizeof(struct rte_flow_item_ipv6_ext)),
2117 		.next = NEXT(item_ipv6_ext),
2118 		.call = parse_vc,
2119 	},
2120 	[ITEM_IPV6_EXT_NEXT_HDR] = {
2121 		.name = "next_hdr",
2122 		.help = "next header",
2123 		.next = NEXT(item_ipv6_ext, NEXT_ENTRY(UNSIGNED), item_param),
2124 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6_ext,
2125 					     next_hdr)),
2126 	},
2127 	[ITEM_ICMP6] = {
2128 		.name = "icmp6",
2129 		.help = "match any ICMPv6 header",
2130 		.priv = PRIV_ITEM(ICMP6, sizeof(struct rte_flow_item_icmp6)),
2131 		.next = NEXT(item_icmp6),
2132 		.call = parse_vc,
2133 	},
2134 	[ITEM_ICMP6_TYPE] = {
2135 		.name = "type",
2136 		.help = "ICMPv6 type",
2137 		.next = NEXT(item_icmp6, NEXT_ENTRY(UNSIGNED), item_param),
2138 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6,
2139 					     type)),
2140 	},
2141 	[ITEM_ICMP6_CODE] = {
2142 		.name = "code",
2143 		.help = "ICMPv6 code",
2144 		.next = NEXT(item_icmp6, NEXT_ENTRY(UNSIGNED), item_param),
2145 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6,
2146 					     code)),
2147 	},
2148 	[ITEM_ICMP6_ND_NS] = {
2149 		.name = "icmp6_nd_ns",
2150 		.help = "match ICMPv6 neighbor discovery solicitation",
2151 		.priv = PRIV_ITEM(ICMP6_ND_NS,
2152 				  sizeof(struct rte_flow_item_icmp6_nd_ns)),
2153 		.next = NEXT(item_icmp6_nd_ns),
2154 		.call = parse_vc,
2155 	},
2156 	[ITEM_ICMP6_ND_NS_TARGET_ADDR] = {
2157 		.name = "target_addr",
2158 		.help = "target address",
2159 		.next = NEXT(item_icmp6_nd_ns, NEXT_ENTRY(IPV6_ADDR),
2160 			     item_param),
2161 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6_nd_ns,
2162 					     target_addr)),
2163 	},
2164 	[ITEM_ICMP6_ND_NA] = {
2165 		.name = "icmp6_nd_na",
2166 		.help = "match ICMPv6 neighbor discovery advertisement",
2167 		.priv = PRIV_ITEM(ICMP6_ND_NA,
2168 				  sizeof(struct rte_flow_item_icmp6_nd_na)),
2169 		.next = NEXT(item_icmp6_nd_na),
2170 		.call = parse_vc,
2171 	},
2172 	[ITEM_ICMP6_ND_NA_TARGET_ADDR] = {
2173 		.name = "target_addr",
2174 		.help = "target address",
2175 		.next = NEXT(item_icmp6_nd_na, NEXT_ENTRY(IPV6_ADDR),
2176 			     item_param),
2177 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6_nd_na,
2178 					     target_addr)),
2179 	},
2180 	[ITEM_ICMP6_ND_OPT] = {
2181 		.name = "icmp6_nd_opt",
2182 		.help = "match presence of any ICMPv6 neighbor discovery"
2183 			" option",
2184 		.priv = PRIV_ITEM(ICMP6_ND_OPT,
2185 				  sizeof(struct rte_flow_item_icmp6_nd_opt)),
2186 		.next = NEXT(item_icmp6_nd_opt),
2187 		.call = parse_vc,
2188 	},
2189 	[ITEM_ICMP6_ND_OPT_TYPE] = {
2190 		.name = "type",
2191 		.help = "ND option type",
2192 		.next = NEXT(item_icmp6_nd_opt, NEXT_ENTRY(UNSIGNED),
2193 			     item_param),
2194 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6_nd_opt,
2195 					     type)),
2196 	},
2197 	[ITEM_ICMP6_ND_OPT_SLA_ETH] = {
2198 		.name = "icmp6_nd_opt_sla_eth",
2199 		.help = "match ICMPv6 neighbor discovery source Ethernet"
2200 			" link-layer address option",
2201 		.priv = PRIV_ITEM
2202 			(ICMP6_ND_OPT_SLA_ETH,
2203 			 sizeof(struct rte_flow_item_icmp6_nd_opt_sla_eth)),
2204 		.next = NEXT(item_icmp6_nd_opt_sla_eth),
2205 		.call = parse_vc,
2206 	},
2207 	[ITEM_ICMP6_ND_OPT_SLA_ETH_SLA] = {
2208 		.name = "sla",
2209 		.help = "source Ethernet LLA",
2210 		.next = NEXT(item_icmp6_nd_opt_sla_eth, NEXT_ENTRY(MAC_ADDR),
2211 			     item_param),
2212 		.args = ARGS(ARGS_ENTRY_HTON
2213 			     (struct rte_flow_item_icmp6_nd_opt_sla_eth, sla)),
2214 	},
2215 	[ITEM_ICMP6_ND_OPT_TLA_ETH] = {
2216 		.name = "icmp6_nd_opt_tla_eth",
2217 		.help = "match ICMPv6 neighbor discovery target Ethernet"
2218 			" link-layer address option",
2219 		.priv = PRIV_ITEM
2220 			(ICMP6_ND_OPT_TLA_ETH,
2221 			 sizeof(struct rte_flow_item_icmp6_nd_opt_tla_eth)),
2222 		.next = NEXT(item_icmp6_nd_opt_tla_eth),
2223 		.call = parse_vc,
2224 	},
2225 	[ITEM_ICMP6_ND_OPT_TLA_ETH_TLA] = {
2226 		.name = "tla",
2227 		.help = "target Ethernet LLA",
2228 		.next = NEXT(item_icmp6_nd_opt_tla_eth, NEXT_ENTRY(MAC_ADDR),
2229 			     item_param),
2230 		.args = ARGS(ARGS_ENTRY_HTON
2231 			     (struct rte_flow_item_icmp6_nd_opt_tla_eth, tla)),
2232 	},
2233 	[ITEM_META] = {
2234 		.name = "meta",
2235 		.help = "match metadata header",
2236 		.priv = PRIV_ITEM(META, sizeof(struct rte_flow_item_meta)),
2237 		.next = NEXT(item_meta),
2238 		.call = parse_vc,
2239 	},
2240 	[ITEM_META_DATA] = {
2241 		.name = "data",
2242 		.help = "metadata value",
2243 		.next = NEXT(item_meta, NEXT_ENTRY(UNSIGNED), item_param),
2244 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_meta,
2245 						  data, "\xff\xff\xff\xff")),
2246 	},
2247 	[ITEM_GRE_KEY] = {
2248 		.name = "gre_key",
2249 		.help = "match GRE key",
2250 		.priv = PRIV_ITEM(GRE_KEY, sizeof(rte_be32_t)),
2251 		.next = NEXT(item_gre_key),
2252 		.call = parse_vc,
2253 	},
2254 	[ITEM_GRE_KEY_VALUE] = {
2255 		.name = "value",
2256 		.help = "key value",
2257 		.next = NEXT(item_gre_key, NEXT_ENTRY(UNSIGNED), item_param),
2258 		.args = ARGS(ARG_ENTRY_HTON(rte_be32_t)),
2259 	},
2260 
2261 	/* Validate/create actions. */
2262 	[ACTIONS] = {
2263 		.name = "actions",
2264 		.help = "submit a list of associated actions",
2265 		.next = NEXT(next_action),
2266 		.call = parse_vc,
2267 	},
2268 	[ACTION_NEXT] = {
2269 		.name = "/",
2270 		.help = "specify next action",
2271 		.next = NEXT(next_action),
2272 	},
2273 	[ACTION_END] = {
2274 		.name = "end",
2275 		.help = "end list of actions",
2276 		.priv = PRIV_ACTION(END, 0),
2277 		.call = parse_vc,
2278 	},
2279 	[ACTION_VOID] = {
2280 		.name = "void",
2281 		.help = "no-op action",
2282 		.priv = PRIV_ACTION(VOID, 0),
2283 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2284 		.call = parse_vc,
2285 	},
2286 	[ACTION_PASSTHRU] = {
2287 		.name = "passthru",
2288 		.help = "let subsequent rule process matched packets",
2289 		.priv = PRIV_ACTION(PASSTHRU, 0),
2290 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2291 		.call = parse_vc,
2292 	},
2293 	[ACTION_JUMP] = {
2294 		.name = "jump",
2295 		.help = "redirect traffic to a given group",
2296 		.priv = PRIV_ACTION(JUMP, sizeof(struct rte_flow_action_jump)),
2297 		.next = NEXT(action_jump),
2298 		.call = parse_vc,
2299 	},
2300 	[ACTION_JUMP_GROUP] = {
2301 		.name = "group",
2302 		.help = "group to redirect traffic to",
2303 		.next = NEXT(action_jump, NEXT_ENTRY(UNSIGNED)),
2304 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_jump, group)),
2305 		.call = parse_vc_conf,
2306 	},
2307 	[ACTION_MARK] = {
2308 		.name = "mark",
2309 		.help = "attach 32 bit value to packets",
2310 		.priv = PRIV_ACTION(MARK, sizeof(struct rte_flow_action_mark)),
2311 		.next = NEXT(action_mark),
2312 		.call = parse_vc,
2313 	},
2314 	[ACTION_MARK_ID] = {
2315 		.name = "id",
2316 		.help = "32 bit value to return with packets",
2317 		.next = NEXT(action_mark, NEXT_ENTRY(UNSIGNED)),
2318 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_mark, id)),
2319 		.call = parse_vc_conf,
2320 	},
2321 	[ACTION_FLAG] = {
2322 		.name = "flag",
2323 		.help = "flag packets",
2324 		.priv = PRIV_ACTION(FLAG, 0),
2325 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2326 		.call = parse_vc,
2327 	},
2328 	[ACTION_QUEUE] = {
2329 		.name = "queue",
2330 		.help = "assign packets to a given queue index",
2331 		.priv = PRIV_ACTION(QUEUE,
2332 				    sizeof(struct rte_flow_action_queue)),
2333 		.next = NEXT(action_queue),
2334 		.call = parse_vc,
2335 	},
2336 	[ACTION_QUEUE_INDEX] = {
2337 		.name = "index",
2338 		.help = "queue index to use",
2339 		.next = NEXT(action_queue, NEXT_ENTRY(UNSIGNED)),
2340 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_queue, index)),
2341 		.call = parse_vc_conf,
2342 	},
2343 	[ACTION_DROP] = {
2344 		.name = "drop",
2345 		.help = "drop packets (note: passthru has priority)",
2346 		.priv = PRIV_ACTION(DROP, 0),
2347 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2348 		.call = parse_vc,
2349 	},
2350 	[ACTION_COUNT] = {
2351 		.name = "count",
2352 		.help = "enable counters for this rule",
2353 		.priv = PRIV_ACTION(COUNT,
2354 				    sizeof(struct rte_flow_action_count)),
2355 		.next = NEXT(action_count),
2356 		.call = parse_vc,
2357 	},
2358 	[ACTION_COUNT_ID] = {
2359 		.name = "identifier",
2360 		.help = "counter identifier to use",
2361 		.next = NEXT(action_count, NEXT_ENTRY(UNSIGNED)),
2362 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_count, id)),
2363 		.call = parse_vc_conf,
2364 	},
2365 	[ACTION_COUNT_SHARED] = {
2366 		.name = "shared",
2367 		.help = "shared counter",
2368 		.next = NEXT(action_count, NEXT_ENTRY(BOOLEAN)),
2369 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_count,
2370 					   shared, 1)),
2371 		.call = parse_vc_conf,
2372 	},
2373 	[ACTION_RSS] = {
2374 		.name = "rss",
2375 		.help = "spread packets among several queues",
2376 		.priv = PRIV_ACTION(RSS, sizeof(struct action_rss_data)),
2377 		.next = NEXT(action_rss),
2378 		.call = parse_vc_action_rss,
2379 	},
2380 	[ACTION_RSS_FUNC] = {
2381 		.name = "func",
2382 		.help = "RSS hash function to apply",
2383 		.next = NEXT(action_rss,
2384 			     NEXT_ENTRY(ACTION_RSS_FUNC_DEFAULT,
2385 					ACTION_RSS_FUNC_TOEPLITZ,
2386 					ACTION_RSS_FUNC_SIMPLE_XOR)),
2387 	},
2388 	[ACTION_RSS_FUNC_DEFAULT] = {
2389 		.name = "default",
2390 		.help = "default hash function",
2391 		.call = parse_vc_action_rss_func,
2392 	},
2393 	[ACTION_RSS_FUNC_TOEPLITZ] = {
2394 		.name = "toeplitz",
2395 		.help = "Toeplitz hash function",
2396 		.call = parse_vc_action_rss_func,
2397 	},
2398 	[ACTION_RSS_FUNC_SIMPLE_XOR] = {
2399 		.name = "simple_xor",
2400 		.help = "simple XOR hash function",
2401 		.call = parse_vc_action_rss_func,
2402 	},
2403 	[ACTION_RSS_LEVEL] = {
2404 		.name = "level",
2405 		.help = "encapsulation level for \"types\"",
2406 		.next = NEXT(action_rss, NEXT_ENTRY(UNSIGNED)),
2407 		.args = ARGS(ARGS_ENTRY_ARB
2408 			     (offsetof(struct action_rss_data, conf) +
2409 			      offsetof(struct rte_flow_action_rss, level),
2410 			      sizeof(((struct rte_flow_action_rss *)0)->
2411 				     level))),
2412 	},
2413 	[ACTION_RSS_TYPES] = {
2414 		.name = "types",
2415 		.help = "specific RSS hash types",
2416 		.next = NEXT(action_rss, NEXT_ENTRY(ACTION_RSS_TYPE)),
2417 	},
2418 	[ACTION_RSS_TYPE] = {
2419 		.name = "{type}",
2420 		.help = "RSS hash type",
2421 		.call = parse_vc_action_rss_type,
2422 		.comp = comp_vc_action_rss_type,
2423 	},
2424 	[ACTION_RSS_KEY] = {
2425 		.name = "key",
2426 		.help = "RSS hash key",
2427 		.next = NEXT(action_rss, NEXT_ENTRY(HEX)),
2428 		.args = ARGS(ARGS_ENTRY_ARB(0, 0),
2429 			     ARGS_ENTRY_ARB
2430 			     (offsetof(struct action_rss_data, conf) +
2431 			      offsetof(struct rte_flow_action_rss, key_len),
2432 			      sizeof(((struct rte_flow_action_rss *)0)->
2433 				     key_len)),
2434 			     ARGS_ENTRY(struct action_rss_data, key)),
2435 	},
2436 	[ACTION_RSS_KEY_LEN] = {
2437 		.name = "key_len",
2438 		.help = "RSS hash key length in bytes",
2439 		.next = NEXT(action_rss, NEXT_ENTRY(UNSIGNED)),
2440 		.args = ARGS(ARGS_ENTRY_ARB_BOUNDED
2441 			     (offsetof(struct action_rss_data, conf) +
2442 			      offsetof(struct rte_flow_action_rss, key_len),
2443 			      sizeof(((struct rte_flow_action_rss *)0)->
2444 				     key_len),
2445 			      0,
2446 			      RSS_HASH_KEY_LENGTH)),
2447 	},
2448 	[ACTION_RSS_QUEUES] = {
2449 		.name = "queues",
2450 		.help = "queue indices to use",
2451 		.next = NEXT(action_rss, NEXT_ENTRY(ACTION_RSS_QUEUE)),
2452 		.call = parse_vc_conf,
2453 	},
2454 	[ACTION_RSS_QUEUE] = {
2455 		.name = "{queue}",
2456 		.help = "queue index",
2457 		.call = parse_vc_action_rss_queue,
2458 		.comp = comp_vc_action_rss_queue,
2459 	},
2460 	[ACTION_PF] = {
2461 		.name = "pf",
2462 		.help = "direct traffic to physical function",
2463 		.priv = PRIV_ACTION(PF, 0),
2464 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2465 		.call = parse_vc,
2466 	},
2467 	[ACTION_VF] = {
2468 		.name = "vf",
2469 		.help = "direct traffic to a virtual function ID",
2470 		.priv = PRIV_ACTION(VF, sizeof(struct rte_flow_action_vf)),
2471 		.next = NEXT(action_vf),
2472 		.call = parse_vc,
2473 	},
2474 	[ACTION_VF_ORIGINAL] = {
2475 		.name = "original",
2476 		.help = "use original VF ID if possible",
2477 		.next = NEXT(action_vf, NEXT_ENTRY(BOOLEAN)),
2478 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_vf,
2479 					   original, 1)),
2480 		.call = parse_vc_conf,
2481 	},
2482 	[ACTION_VF_ID] = {
2483 		.name = "id",
2484 		.help = "VF ID",
2485 		.next = NEXT(action_vf, NEXT_ENTRY(UNSIGNED)),
2486 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_vf, id)),
2487 		.call = parse_vc_conf,
2488 	},
2489 	[ACTION_PHY_PORT] = {
2490 		.name = "phy_port",
2491 		.help = "direct packets to physical port index",
2492 		.priv = PRIV_ACTION(PHY_PORT,
2493 				    sizeof(struct rte_flow_action_phy_port)),
2494 		.next = NEXT(action_phy_port),
2495 		.call = parse_vc,
2496 	},
2497 	[ACTION_PHY_PORT_ORIGINAL] = {
2498 		.name = "original",
2499 		.help = "use original port index if possible",
2500 		.next = NEXT(action_phy_port, NEXT_ENTRY(BOOLEAN)),
2501 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_phy_port,
2502 					   original, 1)),
2503 		.call = parse_vc_conf,
2504 	},
2505 	[ACTION_PHY_PORT_INDEX] = {
2506 		.name = "index",
2507 		.help = "physical port index",
2508 		.next = NEXT(action_phy_port, NEXT_ENTRY(UNSIGNED)),
2509 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_phy_port,
2510 					index)),
2511 		.call = parse_vc_conf,
2512 	},
2513 	[ACTION_PORT_ID] = {
2514 		.name = "port_id",
2515 		.help = "direct matching traffic to a given DPDK port ID",
2516 		.priv = PRIV_ACTION(PORT_ID,
2517 				    sizeof(struct rte_flow_action_port_id)),
2518 		.next = NEXT(action_port_id),
2519 		.call = parse_vc,
2520 	},
2521 	[ACTION_PORT_ID_ORIGINAL] = {
2522 		.name = "original",
2523 		.help = "use original DPDK port ID if possible",
2524 		.next = NEXT(action_port_id, NEXT_ENTRY(BOOLEAN)),
2525 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_port_id,
2526 					   original, 1)),
2527 		.call = parse_vc_conf,
2528 	},
2529 	[ACTION_PORT_ID_ID] = {
2530 		.name = "id",
2531 		.help = "DPDK port ID",
2532 		.next = NEXT(action_port_id, NEXT_ENTRY(UNSIGNED)),
2533 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_port_id, id)),
2534 		.call = parse_vc_conf,
2535 	},
2536 	[ACTION_METER] = {
2537 		.name = "meter",
2538 		.help = "meter the directed packets at given id",
2539 		.priv = PRIV_ACTION(METER,
2540 				    sizeof(struct rte_flow_action_meter)),
2541 		.next = NEXT(action_meter),
2542 		.call = parse_vc,
2543 	},
2544 	[ACTION_METER_ID] = {
2545 		.name = "mtr_id",
2546 		.help = "meter id to use",
2547 		.next = NEXT(action_meter, NEXT_ENTRY(UNSIGNED)),
2548 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_meter, mtr_id)),
2549 		.call = parse_vc_conf,
2550 	},
2551 	[ACTION_OF_SET_MPLS_TTL] = {
2552 		.name = "of_set_mpls_ttl",
2553 		.help = "OpenFlow's OFPAT_SET_MPLS_TTL",
2554 		.priv = PRIV_ACTION
2555 			(OF_SET_MPLS_TTL,
2556 			 sizeof(struct rte_flow_action_of_set_mpls_ttl)),
2557 		.next = NEXT(action_of_set_mpls_ttl),
2558 		.call = parse_vc,
2559 	},
2560 	[ACTION_OF_SET_MPLS_TTL_MPLS_TTL] = {
2561 		.name = "mpls_ttl",
2562 		.help = "MPLS TTL",
2563 		.next = NEXT(action_of_set_mpls_ttl, NEXT_ENTRY(UNSIGNED)),
2564 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_of_set_mpls_ttl,
2565 					mpls_ttl)),
2566 		.call = parse_vc_conf,
2567 	},
2568 	[ACTION_OF_DEC_MPLS_TTL] = {
2569 		.name = "of_dec_mpls_ttl",
2570 		.help = "OpenFlow's OFPAT_DEC_MPLS_TTL",
2571 		.priv = PRIV_ACTION(OF_DEC_MPLS_TTL, 0),
2572 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2573 		.call = parse_vc,
2574 	},
2575 	[ACTION_OF_SET_NW_TTL] = {
2576 		.name = "of_set_nw_ttl",
2577 		.help = "OpenFlow's OFPAT_SET_NW_TTL",
2578 		.priv = PRIV_ACTION
2579 			(OF_SET_NW_TTL,
2580 			 sizeof(struct rte_flow_action_of_set_nw_ttl)),
2581 		.next = NEXT(action_of_set_nw_ttl),
2582 		.call = parse_vc,
2583 	},
2584 	[ACTION_OF_SET_NW_TTL_NW_TTL] = {
2585 		.name = "nw_ttl",
2586 		.help = "IP TTL",
2587 		.next = NEXT(action_of_set_nw_ttl, NEXT_ENTRY(UNSIGNED)),
2588 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_of_set_nw_ttl,
2589 					nw_ttl)),
2590 		.call = parse_vc_conf,
2591 	},
2592 	[ACTION_OF_DEC_NW_TTL] = {
2593 		.name = "of_dec_nw_ttl",
2594 		.help = "OpenFlow's OFPAT_DEC_NW_TTL",
2595 		.priv = PRIV_ACTION(OF_DEC_NW_TTL, 0),
2596 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2597 		.call = parse_vc,
2598 	},
2599 	[ACTION_OF_COPY_TTL_OUT] = {
2600 		.name = "of_copy_ttl_out",
2601 		.help = "OpenFlow's OFPAT_COPY_TTL_OUT",
2602 		.priv = PRIV_ACTION(OF_COPY_TTL_OUT, 0),
2603 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2604 		.call = parse_vc,
2605 	},
2606 	[ACTION_OF_COPY_TTL_IN] = {
2607 		.name = "of_copy_ttl_in",
2608 		.help = "OpenFlow's OFPAT_COPY_TTL_IN",
2609 		.priv = PRIV_ACTION(OF_COPY_TTL_IN, 0),
2610 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2611 		.call = parse_vc,
2612 	},
2613 	[ACTION_OF_POP_VLAN] = {
2614 		.name = "of_pop_vlan",
2615 		.help = "OpenFlow's OFPAT_POP_VLAN",
2616 		.priv = PRIV_ACTION(OF_POP_VLAN, 0),
2617 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2618 		.call = parse_vc,
2619 	},
2620 	[ACTION_OF_PUSH_VLAN] = {
2621 		.name = "of_push_vlan",
2622 		.help = "OpenFlow's OFPAT_PUSH_VLAN",
2623 		.priv = PRIV_ACTION
2624 			(OF_PUSH_VLAN,
2625 			 sizeof(struct rte_flow_action_of_push_vlan)),
2626 		.next = NEXT(action_of_push_vlan),
2627 		.call = parse_vc,
2628 	},
2629 	[ACTION_OF_PUSH_VLAN_ETHERTYPE] = {
2630 		.name = "ethertype",
2631 		.help = "EtherType",
2632 		.next = NEXT(action_of_push_vlan, NEXT_ENTRY(UNSIGNED)),
2633 		.args = ARGS(ARGS_ENTRY_HTON
2634 			     (struct rte_flow_action_of_push_vlan,
2635 			      ethertype)),
2636 		.call = parse_vc_conf,
2637 	},
2638 	[ACTION_OF_SET_VLAN_VID] = {
2639 		.name = "of_set_vlan_vid",
2640 		.help = "OpenFlow's OFPAT_SET_VLAN_VID",
2641 		.priv = PRIV_ACTION
2642 			(OF_SET_VLAN_VID,
2643 			 sizeof(struct rte_flow_action_of_set_vlan_vid)),
2644 		.next = NEXT(action_of_set_vlan_vid),
2645 		.call = parse_vc,
2646 	},
2647 	[ACTION_OF_SET_VLAN_VID_VLAN_VID] = {
2648 		.name = "vlan_vid",
2649 		.help = "VLAN id",
2650 		.next = NEXT(action_of_set_vlan_vid, NEXT_ENTRY(UNSIGNED)),
2651 		.args = ARGS(ARGS_ENTRY_HTON
2652 			     (struct rte_flow_action_of_set_vlan_vid,
2653 			      vlan_vid)),
2654 		.call = parse_vc_conf,
2655 	},
2656 	[ACTION_OF_SET_VLAN_PCP] = {
2657 		.name = "of_set_vlan_pcp",
2658 		.help = "OpenFlow's OFPAT_SET_VLAN_PCP",
2659 		.priv = PRIV_ACTION
2660 			(OF_SET_VLAN_PCP,
2661 			 sizeof(struct rte_flow_action_of_set_vlan_pcp)),
2662 		.next = NEXT(action_of_set_vlan_pcp),
2663 		.call = parse_vc,
2664 	},
2665 	[ACTION_OF_SET_VLAN_PCP_VLAN_PCP] = {
2666 		.name = "vlan_pcp",
2667 		.help = "VLAN priority",
2668 		.next = NEXT(action_of_set_vlan_pcp, NEXT_ENTRY(UNSIGNED)),
2669 		.args = ARGS(ARGS_ENTRY_HTON
2670 			     (struct rte_flow_action_of_set_vlan_pcp,
2671 			      vlan_pcp)),
2672 		.call = parse_vc_conf,
2673 	},
2674 	[ACTION_OF_POP_MPLS] = {
2675 		.name = "of_pop_mpls",
2676 		.help = "OpenFlow's OFPAT_POP_MPLS",
2677 		.priv = PRIV_ACTION(OF_POP_MPLS,
2678 				    sizeof(struct rte_flow_action_of_pop_mpls)),
2679 		.next = NEXT(action_of_pop_mpls),
2680 		.call = parse_vc,
2681 	},
2682 	[ACTION_OF_POP_MPLS_ETHERTYPE] = {
2683 		.name = "ethertype",
2684 		.help = "EtherType",
2685 		.next = NEXT(action_of_pop_mpls, NEXT_ENTRY(UNSIGNED)),
2686 		.args = ARGS(ARGS_ENTRY_HTON
2687 			     (struct rte_flow_action_of_pop_mpls,
2688 			      ethertype)),
2689 		.call = parse_vc_conf,
2690 	},
2691 	[ACTION_OF_PUSH_MPLS] = {
2692 		.name = "of_push_mpls",
2693 		.help = "OpenFlow's OFPAT_PUSH_MPLS",
2694 		.priv = PRIV_ACTION
2695 			(OF_PUSH_MPLS,
2696 			 sizeof(struct rte_flow_action_of_push_mpls)),
2697 		.next = NEXT(action_of_push_mpls),
2698 		.call = parse_vc,
2699 	},
2700 	[ACTION_OF_PUSH_MPLS_ETHERTYPE] = {
2701 		.name = "ethertype",
2702 		.help = "EtherType",
2703 		.next = NEXT(action_of_push_mpls, NEXT_ENTRY(UNSIGNED)),
2704 		.args = ARGS(ARGS_ENTRY_HTON
2705 			     (struct rte_flow_action_of_push_mpls,
2706 			      ethertype)),
2707 		.call = parse_vc_conf,
2708 	},
2709 	[ACTION_VXLAN_ENCAP] = {
2710 		.name = "vxlan_encap",
2711 		.help = "VXLAN encapsulation, uses configuration set by \"set"
2712 			" vxlan\"",
2713 		.priv = PRIV_ACTION(VXLAN_ENCAP,
2714 				    sizeof(struct action_vxlan_encap_data)),
2715 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2716 		.call = parse_vc_action_vxlan_encap,
2717 	},
2718 	[ACTION_VXLAN_DECAP] = {
2719 		.name = "vxlan_decap",
2720 		.help = "Performs a decapsulation action by stripping all"
2721 			" headers of the VXLAN tunnel network overlay from the"
2722 			" matched flow.",
2723 		.priv = PRIV_ACTION(VXLAN_DECAP, 0),
2724 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2725 		.call = parse_vc,
2726 	},
2727 	[ACTION_NVGRE_ENCAP] = {
2728 		.name = "nvgre_encap",
2729 		.help = "NVGRE encapsulation, uses configuration set by \"set"
2730 			" nvgre\"",
2731 		.priv = PRIV_ACTION(NVGRE_ENCAP,
2732 				    sizeof(struct action_nvgre_encap_data)),
2733 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2734 		.call = parse_vc_action_nvgre_encap,
2735 	},
2736 	[ACTION_NVGRE_DECAP] = {
2737 		.name = "nvgre_decap",
2738 		.help = "Performs a decapsulation action by stripping all"
2739 			" headers of the NVGRE tunnel network overlay from the"
2740 			" matched flow.",
2741 		.priv = PRIV_ACTION(NVGRE_DECAP, 0),
2742 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2743 		.call = parse_vc,
2744 	},
2745 	[ACTION_L2_ENCAP] = {
2746 		.name = "l2_encap",
2747 		.help = "l2 encap, uses configuration set by"
2748 			" \"set l2_encap\"",
2749 		.priv = PRIV_ACTION(RAW_ENCAP,
2750 				    sizeof(struct action_raw_encap_data)),
2751 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2752 		.call = parse_vc_action_l2_encap,
2753 	},
2754 	[ACTION_L2_DECAP] = {
2755 		.name = "l2_decap",
2756 		.help = "l2 decap, uses configuration set by"
2757 			" \"set l2_decap\"",
2758 		.priv = PRIV_ACTION(RAW_DECAP,
2759 				    sizeof(struct action_raw_decap_data)),
2760 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2761 		.call = parse_vc_action_l2_decap,
2762 	},
2763 	[ACTION_MPLSOGRE_ENCAP] = {
2764 		.name = "mplsogre_encap",
2765 		.help = "mplsogre encapsulation, uses configuration set by"
2766 			" \"set mplsogre_encap\"",
2767 		.priv = PRIV_ACTION(RAW_ENCAP,
2768 				    sizeof(struct action_raw_encap_data)),
2769 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2770 		.call = parse_vc_action_mplsogre_encap,
2771 	},
2772 	[ACTION_MPLSOGRE_DECAP] = {
2773 		.name = "mplsogre_decap",
2774 		.help = "mplsogre decapsulation, uses configuration set by"
2775 			" \"set mplsogre_decap\"",
2776 		.priv = PRIV_ACTION(RAW_DECAP,
2777 				    sizeof(struct action_raw_decap_data)),
2778 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2779 		.call = parse_vc_action_mplsogre_decap,
2780 	},
2781 	[ACTION_MPLSOUDP_ENCAP] = {
2782 		.name = "mplsoudp_encap",
2783 		.help = "mplsoudp encapsulation, uses configuration set by"
2784 			" \"set mplsoudp_encap\"",
2785 		.priv = PRIV_ACTION(RAW_ENCAP,
2786 				    sizeof(struct action_raw_encap_data)),
2787 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2788 		.call = parse_vc_action_mplsoudp_encap,
2789 	},
2790 	[ACTION_MPLSOUDP_DECAP] = {
2791 		.name = "mplsoudp_decap",
2792 		.help = "mplsoudp decapsulation, uses configuration set by"
2793 			" \"set mplsoudp_decap\"",
2794 		.priv = PRIV_ACTION(RAW_DECAP,
2795 				    sizeof(struct action_raw_decap_data)),
2796 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2797 		.call = parse_vc_action_mplsoudp_decap,
2798 	},
2799 	[ACTION_SET_IPV4_SRC] = {
2800 		.name = "set_ipv4_src",
2801 		.help = "Set a new IPv4 source address in the outermost"
2802 			" IPv4 header",
2803 		.priv = PRIV_ACTION(SET_IPV4_SRC,
2804 			sizeof(struct rte_flow_action_set_ipv4)),
2805 		.next = NEXT(action_set_ipv4_src),
2806 		.call = parse_vc,
2807 	},
2808 	[ACTION_SET_IPV4_SRC_IPV4_SRC] = {
2809 		.name = "ipv4_addr",
2810 		.help = "new IPv4 source address to set",
2811 		.next = NEXT(action_set_ipv4_src, NEXT_ENTRY(IPV4_ADDR)),
2812 		.args = ARGS(ARGS_ENTRY_HTON
2813 			(struct rte_flow_action_set_ipv4, ipv4_addr)),
2814 		.call = parse_vc_conf,
2815 	},
2816 	[ACTION_SET_IPV4_DST] = {
2817 		.name = "set_ipv4_dst",
2818 		.help = "Set a new IPv4 destination address in the outermost"
2819 			" IPv4 header",
2820 		.priv = PRIV_ACTION(SET_IPV4_DST,
2821 			sizeof(struct rte_flow_action_set_ipv4)),
2822 		.next = NEXT(action_set_ipv4_dst),
2823 		.call = parse_vc,
2824 	},
2825 	[ACTION_SET_IPV4_DST_IPV4_DST] = {
2826 		.name = "ipv4_addr",
2827 		.help = "new IPv4 destination address to set",
2828 		.next = NEXT(action_set_ipv4_dst, NEXT_ENTRY(IPV4_ADDR)),
2829 		.args = ARGS(ARGS_ENTRY_HTON
2830 			(struct rte_flow_action_set_ipv4, ipv4_addr)),
2831 		.call = parse_vc_conf,
2832 	},
2833 	[ACTION_SET_IPV6_SRC] = {
2834 		.name = "set_ipv6_src",
2835 		.help = "Set a new IPv6 source address in the outermost"
2836 			" IPv6 header",
2837 		.priv = PRIV_ACTION(SET_IPV6_SRC,
2838 			sizeof(struct rte_flow_action_set_ipv6)),
2839 		.next = NEXT(action_set_ipv6_src),
2840 		.call = parse_vc,
2841 	},
2842 	[ACTION_SET_IPV6_SRC_IPV6_SRC] = {
2843 		.name = "ipv6_addr",
2844 		.help = "new IPv6 source address to set",
2845 		.next = NEXT(action_set_ipv6_src, NEXT_ENTRY(IPV6_ADDR)),
2846 		.args = ARGS(ARGS_ENTRY_HTON
2847 			(struct rte_flow_action_set_ipv6, ipv6_addr)),
2848 		.call = parse_vc_conf,
2849 	},
2850 	[ACTION_SET_IPV6_DST] = {
2851 		.name = "set_ipv6_dst",
2852 		.help = "Set a new IPv6 destination address in the outermost"
2853 			" IPv6 header",
2854 		.priv = PRIV_ACTION(SET_IPV6_DST,
2855 			sizeof(struct rte_flow_action_set_ipv6)),
2856 		.next = NEXT(action_set_ipv6_dst),
2857 		.call = parse_vc,
2858 	},
2859 	[ACTION_SET_IPV6_DST_IPV6_DST] = {
2860 		.name = "ipv6_addr",
2861 		.help = "new IPv6 destination address to set",
2862 		.next = NEXT(action_set_ipv6_dst, NEXT_ENTRY(IPV6_ADDR)),
2863 		.args = ARGS(ARGS_ENTRY_HTON
2864 			(struct rte_flow_action_set_ipv6, ipv6_addr)),
2865 		.call = parse_vc_conf,
2866 	},
2867 	[ACTION_SET_TP_SRC] = {
2868 		.name = "set_tp_src",
2869 		.help = "set a new source port number in the outermost"
2870 			" TCP/UDP header",
2871 		.priv = PRIV_ACTION(SET_TP_SRC,
2872 			sizeof(struct rte_flow_action_set_tp)),
2873 		.next = NEXT(action_set_tp_src),
2874 		.call = parse_vc,
2875 	},
2876 	[ACTION_SET_TP_SRC_TP_SRC] = {
2877 		.name = "port",
2878 		.help = "new source port number to set",
2879 		.next = NEXT(action_set_tp_src, NEXT_ENTRY(UNSIGNED)),
2880 		.args = ARGS(ARGS_ENTRY_HTON
2881 			     (struct rte_flow_action_set_tp, port)),
2882 		.call = parse_vc_conf,
2883 	},
2884 	[ACTION_SET_TP_DST] = {
2885 		.name = "set_tp_dst",
2886 		.help = "set a new destination port number in the outermost"
2887 			" TCP/UDP header",
2888 		.priv = PRIV_ACTION(SET_TP_DST,
2889 			sizeof(struct rte_flow_action_set_tp)),
2890 		.next = NEXT(action_set_tp_dst),
2891 		.call = parse_vc,
2892 	},
2893 	[ACTION_SET_TP_DST_TP_DST] = {
2894 		.name = "port",
2895 		.help = "new destination port number to set",
2896 		.next = NEXT(action_set_tp_dst, NEXT_ENTRY(UNSIGNED)),
2897 		.args = ARGS(ARGS_ENTRY_HTON
2898 			     (struct rte_flow_action_set_tp, port)),
2899 		.call = parse_vc_conf,
2900 	},
2901 	[ACTION_MAC_SWAP] = {
2902 		.name = "mac_swap",
2903 		.help = "Swap the source and destination MAC addresses"
2904 			" in the outermost Ethernet header",
2905 		.priv = PRIV_ACTION(MAC_SWAP, 0),
2906 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2907 		.call = parse_vc,
2908 	},
2909 	[ACTION_DEC_TTL] = {
2910 		.name = "dec_ttl",
2911 		.help = "decrease network TTL if available",
2912 		.priv = PRIV_ACTION(DEC_TTL, 0),
2913 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2914 		.call = parse_vc,
2915 	},
2916 	[ACTION_SET_TTL] = {
2917 		.name = "set_ttl",
2918 		.help = "set ttl value",
2919 		.priv = PRIV_ACTION(SET_TTL,
2920 			sizeof(struct rte_flow_action_set_ttl)),
2921 		.next = NEXT(action_set_ttl),
2922 		.call = parse_vc,
2923 	},
2924 	[ACTION_SET_TTL_TTL] = {
2925 		.name = "ttl_value",
2926 		.help = "new ttl value to set",
2927 		.next = NEXT(action_set_ttl, NEXT_ENTRY(UNSIGNED)),
2928 		.args = ARGS(ARGS_ENTRY_HTON
2929 			     (struct rte_flow_action_set_ttl, ttl_value)),
2930 		.call = parse_vc_conf,
2931 	},
2932 	[ACTION_SET_MAC_SRC] = {
2933 		.name = "set_mac_src",
2934 		.help = "set source mac address",
2935 		.priv = PRIV_ACTION(SET_MAC_SRC,
2936 			sizeof(struct rte_flow_action_set_mac)),
2937 		.next = NEXT(action_set_mac_src),
2938 		.call = parse_vc,
2939 	},
2940 	[ACTION_SET_MAC_SRC_MAC_SRC] = {
2941 		.name = "mac_addr",
2942 		.help = "new source mac address",
2943 		.next = NEXT(action_set_mac_src, NEXT_ENTRY(MAC_ADDR)),
2944 		.args = ARGS(ARGS_ENTRY_HTON
2945 			     (struct rte_flow_action_set_mac, mac_addr)),
2946 		.call = parse_vc_conf,
2947 	},
2948 	[ACTION_SET_MAC_DST] = {
2949 		.name = "set_mac_dst",
2950 		.help = "set destination mac address",
2951 		.priv = PRIV_ACTION(SET_MAC_DST,
2952 			sizeof(struct rte_flow_action_set_mac)),
2953 		.next = NEXT(action_set_mac_dst),
2954 		.call = parse_vc,
2955 	},
2956 	[ACTION_SET_MAC_DST_MAC_DST] = {
2957 		.name = "mac_addr",
2958 		.help = "new destination mac address to set",
2959 		.next = NEXT(action_set_mac_dst, NEXT_ENTRY(MAC_ADDR)),
2960 		.args = ARGS(ARGS_ENTRY_HTON
2961 			     (struct rte_flow_action_set_mac, mac_addr)),
2962 		.call = parse_vc_conf,
2963 	},
2964 	[ACTION_INC_TCP_SEQ] = {
2965 		.name = "inc_tcp_seq",
2966 		.help = "increase TCP sequence number",
2967 		.priv = PRIV_ACTION(INC_TCP_SEQ, sizeof(rte_be32_t)),
2968 		.next = NEXT(action_inc_tcp_seq),
2969 		.call = parse_vc,
2970 	},
2971 	[ACTION_INC_TCP_SEQ_VALUE] = {
2972 		.name = "value",
2973 		.help = "the value to increase TCP sequence number by",
2974 		.next = NEXT(action_inc_tcp_seq, NEXT_ENTRY(UNSIGNED)),
2975 		.args = ARGS(ARG_ENTRY_HTON(rte_be32_t)),
2976 		.call = parse_vc_conf,
2977 	},
2978 	[ACTION_DEC_TCP_SEQ] = {
2979 		.name = "dec_tcp_seq",
2980 		.help = "decrease TCP sequence number",
2981 		.priv = PRIV_ACTION(DEC_TCP_SEQ, sizeof(rte_be32_t)),
2982 		.next = NEXT(action_dec_tcp_seq),
2983 		.call = parse_vc,
2984 	},
2985 	[ACTION_DEC_TCP_SEQ_VALUE] = {
2986 		.name = "value",
2987 		.help = "the value to decrease TCP sequence number by",
2988 		.next = NEXT(action_dec_tcp_seq, NEXT_ENTRY(UNSIGNED)),
2989 		.args = ARGS(ARG_ENTRY_HTON(rte_be32_t)),
2990 		.call = parse_vc_conf,
2991 	},
2992 	[ACTION_INC_TCP_ACK] = {
2993 		.name = "inc_tcp_ack",
2994 		.help = "increase TCP acknowledgment number",
2995 		.priv = PRIV_ACTION(INC_TCP_ACK, sizeof(rte_be32_t)),
2996 		.next = NEXT(action_inc_tcp_ack),
2997 		.call = parse_vc,
2998 	},
2999 	[ACTION_INC_TCP_ACK_VALUE] = {
3000 		.name = "value",
3001 		.help = "the value to increase TCP acknowledgment number by",
3002 		.next = NEXT(action_inc_tcp_ack, NEXT_ENTRY(UNSIGNED)),
3003 		.args = ARGS(ARG_ENTRY_HTON(rte_be32_t)),
3004 		.call = parse_vc_conf,
3005 	},
3006 	[ACTION_DEC_TCP_ACK] = {
3007 		.name = "dec_tcp_ack",
3008 		.help = "decrease TCP acknowledgment number",
3009 		.priv = PRIV_ACTION(DEC_TCP_ACK, sizeof(rte_be32_t)),
3010 		.next = NEXT(action_dec_tcp_ack),
3011 		.call = parse_vc,
3012 	},
3013 	[ACTION_DEC_TCP_ACK_VALUE] = {
3014 		.name = "value",
3015 		.help = "the value to decrease TCP acknowledgment number by",
3016 		.next = NEXT(action_dec_tcp_ack, NEXT_ENTRY(UNSIGNED)),
3017 		.args = ARGS(ARG_ENTRY_HTON(rte_be32_t)),
3018 		.call = parse_vc_conf,
3019 	},
3020 };
3021 
3022 /** Remove and return last entry from argument stack. */
3023 static const struct arg *
3024 pop_args(struct context *ctx)
3025 {
3026 	return ctx->args_num ? ctx->args[--ctx->args_num] : NULL;
3027 }
3028 
3029 /** Add entry on top of the argument stack. */
3030 static int
3031 push_args(struct context *ctx, const struct arg *arg)
3032 {
3033 	if (ctx->args_num == CTX_STACK_SIZE)
3034 		return -1;
3035 	ctx->args[ctx->args_num++] = arg;
3036 	return 0;
3037 }
3038 
3039 /** Spread value into buffer according to bit-mask. */
3040 static size_t
3041 arg_entry_bf_fill(void *dst, uintmax_t val, const struct arg *arg)
3042 {
3043 	uint32_t i = arg->size;
3044 	uint32_t end = 0;
3045 	int sub = 1;
3046 	int add = 0;
3047 	size_t len = 0;
3048 
3049 	if (!arg->mask)
3050 		return 0;
3051 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
3052 	if (!arg->hton) {
3053 		i = 0;
3054 		end = arg->size;
3055 		sub = 0;
3056 		add = 1;
3057 	}
3058 #endif
3059 	while (i != end) {
3060 		unsigned int shift = 0;
3061 		uint8_t *buf = (uint8_t *)dst + arg->offset + (i -= sub);
3062 
3063 		for (shift = 0; arg->mask[i] >> shift; ++shift) {
3064 			if (!(arg->mask[i] & (1 << shift)))
3065 				continue;
3066 			++len;
3067 			if (!dst)
3068 				continue;
3069 			*buf &= ~(1 << shift);
3070 			*buf |= (val & 1) << shift;
3071 			val >>= 1;
3072 		}
3073 		i += add;
3074 	}
3075 	return len;
3076 }
3077 
3078 /** Compare a string with a partial one of a given length. */
3079 static int
3080 strcmp_partial(const char *full, const char *partial, size_t partial_len)
3081 {
3082 	int r = strncmp(full, partial, partial_len);
3083 
3084 	if (r)
3085 		return r;
3086 	if (strlen(full) <= partial_len)
3087 		return 0;
3088 	return full[partial_len];
3089 }
3090 
3091 /**
3092  * Parse a prefix length and generate a bit-mask.
3093  *
3094  * Last argument (ctx->args) is retrieved to determine mask size, storage
3095  * location and whether the result must use network byte ordering.
3096  */
3097 static int
3098 parse_prefix(struct context *ctx, const struct token *token,
3099 	     const char *str, unsigned int len,
3100 	     void *buf, unsigned int size)
3101 {
3102 	const struct arg *arg = pop_args(ctx);
3103 	static const uint8_t conv[] = "\x00\x80\xc0\xe0\xf0\xf8\xfc\xfe\xff";
3104 	char *end;
3105 	uintmax_t u;
3106 	unsigned int bytes;
3107 	unsigned int extra;
3108 
3109 	(void)token;
3110 	/* Argument is expected. */
3111 	if (!arg)
3112 		return -1;
3113 	errno = 0;
3114 	u = strtoumax(str, &end, 0);
3115 	if (errno || (size_t)(end - str) != len)
3116 		goto error;
3117 	if (arg->mask) {
3118 		uintmax_t v = 0;
3119 
3120 		extra = arg_entry_bf_fill(NULL, 0, arg);
3121 		if (u > extra)
3122 			goto error;
3123 		if (!ctx->object)
3124 			return len;
3125 		extra -= u;
3126 		while (u--)
3127 			(v <<= 1, v |= 1);
3128 		v <<= extra;
3129 		if (!arg_entry_bf_fill(ctx->object, v, arg) ||
3130 		    !arg_entry_bf_fill(ctx->objmask, -1, arg))
3131 			goto error;
3132 		return len;
3133 	}
3134 	bytes = u / 8;
3135 	extra = u % 8;
3136 	size = arg->size;
3137 	if (bytes > size || bytes + !!extra > size)
3138 		goto error;
3139 	if (!ctx->object)
3140 		return len;
3141 	buf = (uint8_t *)ctx->object + arg->offset;
3142 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
3143 	if (!arg->hton) {
3144 		memset((uint8_t *)buf + size - bytes, 0xff, bytes);
3145 		memset(buf, 0x00, size - bytes);
3146 		if (extra)
3147 			((uint8_t *)buf)[size - bytes - 1] = conv[extra];
3148 	} else
3149 #endif
3150 	{
3151 		memset(buf, 0xff, bytes);
3152 		memset((uint8_t *)buf + bytes, 0x00, size - bytes);
3153 		if (extra)
3154 			((uint8_t *)buf)[bytes] = conv[extra];
3155 	}
3156 	if (ctx->objmask)
3157 		memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
3158 	return len;
3159 error:
3160 	push_args(ctx, arg);
3161 	return -1;
3162 }
3163 
3164 /** Default parsing function for token name matching. */
3165 static int
3166 parse_default(struct context *ctx, const struct token *token,
3167 	      const char *str, unsigned int len,
3168 	      void *buf, unsigned int size)
3169 {
3170 	(void)ctx;
3171 	(void)buf;
3172 	(void)size;
3173 	if (strcmp_partial(token->name, str, len))
3174 		return -1;
3175 	return len;
3176 }
3177 
3178 /** Parse flow command, initialize output buffer for subsequent tokens. */
3179 static int
3180 parse_init(struct context *ctx, const struct token *token,
3181 	   const char *str, unsigned int len,
3182 	   void *buf, unsigned int size)
3183 {
3184 	struct buffer *out = buf;
3185 
3186 	/* Token name must match. */
3187 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
3188 		return -1;
3189 	/* Nothing else to do if there is no buffer. */
3190 	if (!out)
3191 		return len;
3192 	/* Make sure buffer is large enough. */
3193 	if (size < sizeof(*out))
3194 		return -1;
3195 	/* Initialize buffer. */
3196 	memset(out, 0x00, sizeof(*out));
3197 	memset((uint8_t *)out + sizeof(*out), 0x22, size - sizeof(*out));
3198 	ctx->objdata = 0;
3199 	ctx->object = out;
3200 	ctx->objmask = NULL;
3201 	return len;
3202 }
3203 
3204 /** Parse tokens for validate/create commands. */
3205 static int
3206 parse_vc(struct context *ctx, const struct token *token,
3207 	 const char *str, unsigned int len,
3208 	 void *buf, unsigned int size)
3209 {
3210 	struct buffer *out = buf;
3211 	uint8_t *data;
3212 	uint32_t data_size;
3213 
3214 	/* Token name must match. */
3215 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
3216 		return -1;
3217 	/* Nothing else to do if there is no buffer. */
3218 	if (!out)
3219 		return len;
3220 	if (!out->command) {
3221 		if (ctx->curr != VALIDATE && ctx->curr != CREATE)
3222 			return -1;
3223 		if (sizeof(*out) > size)
3224 			return -1;
3225 		out->command = ctx->curr;
3226 		ctx->objdata = 0;
3227 		ctx->object = out;
3228 		ctx->objmask = NULL;
3229 		out->args.vc.data = (uint8_t *)out + size;
3230 		return len;
3231 	}
3232 	ctx->objdata = 0;
3233 	ctx->object = &out->args.vc.attr;
3234 	ctx->objmask = NULL;
3235 	switch (ctx->curr) {
3236 	case GROUP:
3237 	case PRIORITY:
3238 		return len;
3239 	case INGRESS:
3240 		out->args.vc.attr.ingress = 1;
3241 		return len;
3242 	case EGRESS:
3243 		out->args.vc.attr.egress = 1;
3244 		return len;
3245 	case TRANSFER:
3246 		out->args.vc.attr.transfer = 1;
3247 		return len;
3248 	case PATTERN:
3249 		out->args.vc.pattern =
3250 			(void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
3251 					       sizeof(double));
3252 		ctx->object = out->args.vc.pattern;
3253 		ctx->objmask = NULL;
3254 		return len;
3255 	case ACTIONS:
3256 		out->args.vc.actions =
3257 			(void *)RTE_ALIGN_CEIL((uintptr_t)
3258 					       (out->args.vc.pattern +
3259 						out->args.vc.pattern_n),
3260 					       sizeof(double));
3261 		ctx->object = out->args.vc.actions;
3262 		ctx->objmask = NULL;
3263 		return len;
3264 	default:
3265 		if (!token->priv)
3266 			return -1;
3267 		break;
3268 	}
3269 	if (!out->args.vc.actions) {
3270 		const struct parse_item_priv *priv = token->priv;
3271 		struct rte_flow_item *item =
3272 			out->args.vc.pattern + out->args.vc.pattern_n;
3273 
3274 		data_size = priv->size * 3; /* spec, last, mask */
3275 		data = (void *)RTE_ALIGN_FLOOR((uintptr_t)
3276 					       (out->args.vc.data - data_size),
3277 					       sizeof(double));
3278 		if ((uint8_t *)item + sizeof(*item) > data)
3279 			return -1;
3280 		*item = (struct rte_flow_item){
3281 			.type = priv->type,
3282 		};
3283 		++out->args.vc.pattern_n;
3284 		ctx->object = item;
3285 		ctx->objmask = NULL;
3286 	} else {
3287 		const struct parse_action_priv *priv = token->priv;
3288 		struct rte_flow_action *action =
3289 			out->args.vc.actions + out->args.vc.actions_n;
3290 
3291 		data_size = priv->size; /* configuration */
3292 		data = (void *)RTE_ALIGN_FLOOR((uintptr_t)
3293 					       (out->args.vc.data - data_size),
3294 					       sizeof(double));
3295 		if ((uint8_t *)action + sizeof(*action) > data)
3296 			return -1;
3297 		*action = (struct rte_flow_action){
3298 			.type = priv->type,
3299 			.conf = data_size ? data : NULL,
3300 		};
3301 		++out->args.vc.actions_n;
3302 		ctx->object = action;
3303 		ctx->objmask = NULL;
3304 	}
3305 	memset(data, 0, data_size);
3306 	out->args.vc.data = data;
3307 	ctx->objdata = data_size;
3308 	return len;
3309 }
3310 
3311 /** Parse pattern item parameter type. */
3312 static int
3313 parse_vc_spec(struct context *ctx, const struct token *token,
3314 	      const char *str, unsigned int len,
3315 	      void *buf, unsigned int size)
3316 {
3317 	struct buffer *out = buf;
3318 	struct rte_flow_item *item;
3319 	uint32_t data_size;
3320 	int index;
3321 	int objmask = 0;
3322 
3323 	(void)size;
3324 	/* Token name must match. */
3325 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
3326 		return -1;
3327 	/* Parse parameter types. */
3328 	switch (ctx->curr) {
3329 		static const enum index prefix[] = NEXT_ENTRY(PREFIX);
3330 
3331 	case ITEM_PARAM_IS:
3332 		index = 0;
3333 		objmask = 1;
3334 		break;
3335 	case ITEM_PARAM_SPEC:
3336 		index = 0;
3337 		break;
3338 	case ITEM_PARAM_LAST:
3339 		index = 1;
3340 		break;
3341 	case ITEM_PARAM_PREFIX:
3342 		/* Modify next token to expect a prefix. */
3343 		if (ctx->next_num < 2)
3344 			return -1;
3345 		ctx->next[ctx->next_num - 2] = prefix;
3346 		/* Fall through. */
3347 	case ITEM_PARAM_MASK:
3348 		index = 2;
3349 		break;
3350 	default:
3351 		return -1;
3352 	}
3353 	/* Nothing else to do if there is no buffer. */
3354 	if (!out)
3355 		return len;
3356 	if (!out->args.vc.pattern_n)
3357 		return -1;
3358 	item = &out->args.vc.pattern[out->args.vc.pattern_n - 1];
3359 	data_size = ctx->objdata / 3; /* spec, last, mask */
3360 	/* Point to selected object. */
3361 	ctx->object = out->args.vc.data + (data_size * index);
3362 	if (objmask) {
3363 		ctx->objmask = out->args.vc.data + (data_size * 2); /* mask */
3364 		item->mask = ctx->objmask;
3365 	} else
3366 		ctx->objmask = NULL;
3367 	/* Update relevant item pointer. */
3368 	*((const void **[]){ &item->spec, &item->last, &item->mask })[index] =
3369 		ctx->object;
3370 	return len;
3371 }
3372 
3373 /** Parse action configuration field. */
3374 static int
3375 parse_vc_conf(struct context *ctx, const struct token *token,
3376 	      const char *str, unsigned int len,
3377 	      void *buf, unsigned int size)
3378 {
3379 	struct buffer *out = buf;
3380 
3381 	(void)size;
3382 	/* Token name must match. */
3383 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
3384 		return -1;
3385 	/* Nothing else to do if there is no buffer. */
3386 	if (!out)
3387 		return len;
3388 	/* Point to selected object. */
3389 	ctx->object = out->args.vc.data;
3390 	ctx->objmask = NULL;
3391 	return len;
3392 }
3393 
3394 /** Parse RSS action. */
3395 static int
3396 parse_vc_action_rss(struct context *ctx, const struct token *token,
3397 		    const char *str, unsigned int len,
3398 		    void *buf, unsigned int size)
3399 {
3400 	struct buffer *out = buf;
3401 	struct rte_flow_action *action;
3402 	struct action_rss_data *action_rss_data;
3403 	unsigned int i;
3404 	int ret;
3405 
3406 	ret = parse_vc(ctx, token, str, len, buf, size);
3407 	if (ret < 0)
3408 		return ret;
3409 	/* Nothing else to do if there is no buffer. */
3410 	if (!out)
3411 		return ret;
3412 	if (!out->args.vc.actions_n)
3413 		return -1;
3414 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
3415 	/* Point to selected object. */
3416 	ctx->object = out->args.vc.data;
3417 	ctx->objmask = NULL;
3418 	/* Set up default configuration. */
3419 	action_rss_data = ctx->object;
3420 	*action_rss_data = (struct action_rss_data){
3421 		.conf = (struct rte_flow_action_rss){
3422 			.func = RTE_ETH_HASH_FUNCTION_DEFAULT,
3423 			.level = 0,
3424 			.types = rss_hf,
3425 			.key_len = sizeof(action_rss_data->key),
3426 			.queue_num = RTE_MIN(nb_rxq, ACTION_RSS_QUEUE_NUM),
3427 			.key = action_rss_data->key,
3428 			.queue = action_rss_data->queue,
3429 		},
3430 		.key = "testpmd's default RSS hash key, "
3431 			"override it for better balancing",
3432 		.queue = { 0 },
3433 	};
3434 	for (i = 0; i < action_rss_data->conf.queue_num; ++i)
3435 		action_rss_data->queue[i] = i;
3436 	if (!port_id_is_invalid(ctx->port, DISABLED_WARN) &&
3437 	    ctx->port != (portid_t)RTE_PORT_ALL) {
3438 		struct rte_eth_dev_info info;
3439 
3440 		rte_eth_dev_info_get(ctx->port, &info);
3441 		action_rss_data->conf.key_len =
3442 			RTE_MIN(sizeof(action_rss_data->key),
3443 				info.hash_key_size);
3444 	}
3445 	action->conf = &action_rss_data->conf;
3446 	return ret;
3447 }
3448 
3449 /**
3450  * Parse func field for RSS action.
3451  *
3452  * The RTE_ETH_HASH_FUNCTION_* value to assign is derived from the
3453  * ACTION_RSS_FUNC_* index that called this function.
3454  */
3455 static int
3456 parse_vc_action_rss_func(struct context *ctx, const struct token *token,
3457 			 const char *str, unsigned int len,
3458 			 void *buf, unsigned int size)
3459 {
3460 	struct action_rss_data *action_rss_data;
3461 	enum rte_eth_hash_function func;
3462 
3463 	(void)buf;
3464 	(void)size;
3465 	/* Token name must match. */
3466 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
3467 		return -1;
3468 	switch (ctx->curr) {
3469 	case ACTION_RSS_FUNC_DEFAULT:
3470 		func = RTE_ETH_HASH_FUNCTION_DEFAULT;
3471 		break;
3472 	case ACTION_RSS_FUNC_TOEPLITZ:
3473 		func = RTE_ETH_HASH_FUNCTION_TOEPLITZ;
3474 		break;
3475 	case ACTION_RSS_FUNC_SIMPLE_XOR:
3476 		func = RTE_ETH_HASH_FUNCTION_SIMPLE_XOR;
3477 		break;
3478 	default:
3479 		return -1;
3480 	}
3481 	if (!ctx->object)
3482 		return len;
3483 	action_rss_data = ctx->object;
3484 	action_rss_data->conf.func = func;
3485 	return len;
3486 }
3487 
3488 /**
3489  * Parse type field for RSS action.
3490  *
3491  * Valid tokens are type field names and the "end" token.
3492  */
3493 static int
3494 parse_vc_action_rss_type(struct context *ctx, const struct token *token,
3495 			  const char *str, unsigned int len,
3496 			  void *buf, unsigned int size)
3497 {
3498 	static const enum index next[] = NEXT_ENTRY(ACTION_RSS_TYPE);
3499 	struct action_rss_data *action_rss_data;
3500 	unsigned int i;
3501 
3502 	(void)token;
3503 	(void)buf;
3504 	(void)size;
3505 	if (ctx->curr != ACTION_RSS_TYPE)
3506 		return -1;
3507 	if (!(ctx->objdata >> 16) && ctx->object) {
3508 		action_rss_data = ctx->object;
3509 		action_rss_data->conf.types = 0;
3510 	}
3511 	if (!strcmp_partial("end", str, len)) {
3512 		ctx->objdata &= 0xffff;
3513 		return len;
3514 	}
3515 	for (i = 0; rss_type_table[i].str; ++i)
3516 		if (!strcmp_partial(rss_type_table[i].str, str, len))
3517 			break;
3518 	if (!rss_type_table[i].str)
3519 		return -1;
3520 	ctx->objdata = 1 << 16 | (ctx->objdata & 0xffff);
3521 	/* Repeat token. */
3522 	if (ctx->next_num == RTE_DIM(ctx->next))
3523 		return -1;
3524 	ctx->next[ctx->next_num++] = next;
3525 	if (!ctx->object)
3526 		return len;
3527 	action_rss_data = ctx->object;
3528 	action_rss_data->conf.types |= rss_type_table[i].rss_type;
3529 	return len;
3530 }
3531 
3532 /**
3533  * Parse queue field for RSS action.
3534  *
3535  * Valid tokens are queue indices and the "end" token.
3536  */
3537 static int
3538 parse_vc_action_rss_queue(struct context *ctx, const struct token *token,
3539 			  const char *str, unsigned int len,
3540 			  void *buf, unsigned int size)
3541 {
3542 	static const enum index next[] = NEXT_ENTRY(ACTION_RSS_QUEUE);
3543 	struct action_rss_data *action_rss_data;
3544 	const struct arg *arg;
3545 	int ret;
3546 	int i;
3547 
3548 	(void)token;
3549 	(void)buf;
3550 	(void)size;
3551 	if (ctx->curr != ACTION_RSS_QUEUE)
3552 		return -1;
3553 	i = ctx->objdata >> 16;
3554 	if (!strcmp_partial("end", str, len)) {
3555 		ctx->objdata &= 0xffff;
3556 		goto end;
3557 	}
3558 	if (i >= ACTION_RSS_QUEUE_NUM)
3559 		return -1;
3560 	arg = ARGS_ENTRY_ARB(offsetof(struct action_rss_data, queue) +
3561 			     i * sizeof(action_rss_data->queue[i]),
3562 			     sizeof(action_rss_data->queue[i]));
3563 	if (push_args(ctx, arg))
3564 		return -1;
3565 	ret = parse_int(ctx, token, str, len, NULL, 0);
3566 	if (ret < 0) {
3567 		pop_args(ctx);
3568 		return -1;
3569 	}
3570 	++i;
3571 	ctx->objdata = i << 16 | (ctx->objdata & 0xffff);
3572 	/* Repeat token. */
3573 	if (ctx->next_num == RTE_DIM(ctx->next))
3574 		return -1;
3575 	ctx->next[ctx->next_num++] = next;
3576 end:
3577 	if (!ctx->object)
3578 		return len;
3579 	action_rss_data = ctx->object;
3580 	action_rss_data->conf.queue_num = i;
3581 	action_rss_data->conf.queue = i ? action_rss_data->queue : NULL;
3582 	return len;
3583 }
3584 
3585 /** Parse VXLAN encap action. */
3586 static int
3587 parse_vc_action_vxlan_encap(struct context *ctx, const struct token *token,
3588 			    const char *str, unsigned int len,
3589 			    void *buf, unsigned int size)
3590 {
3591 	struct buffer *out = buf;
3592 	struct rte_flow_action *action;
3593 	struct action_vxlan_encap_data *action_vxlan_encap_data;
3594 	int ret;
3595 
3596 	ret = parse_vc(ctx, token, str, len, buf, size);
3597 	if (ret < 0)
3598 		return ret;
3599 	/* Nothing else to do if there is no buffer. */
3600 	if (!out)
3601 		return ret;
3602 	if (!out->args.vc.actions_n)
3603 		return -1;
3604 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
3605 	/* Point to selected object. */
3606 	ctx->object = out->args.vc.data;
3607 	ctx->objmask = NULL;
3608 	/* Set up default configuration. */
3609 	action_vxlan_encap_data = ctx->object;
3610 	*action_vxlan_encap_data = (struct action_vxlan_encap_data){
3611 		.conf = (struct rte_flow_action_vxlan_encap){
3612 			.definition = action_vxlan_encap_data->items,
3613 		},
3614 		.items = {
3615 			{
3616 				.type = RTE_FLOW_ITEM_TYPE_ETH,
3617 				.spec = &action_vxlan_encap_data->item_eth,
3618 				.mask = &rte_flow_item_eth_mask,
3619 			},
3620 			{
3621 				.type = RTE_FLOW_ITEM_TYPE_VLAN,
3622 				.spec = &action_vxlan_encap_data->item_vlan,
3623 				.mask = &rte_flow_item_vlan_mask,
3624 			},
3625 			{
3626 				.type = RTE_FLOW_ITEM_TYPE_IPV4,
3627 				.spec = &action_vxlan_encap_data->item_ipv4,
3628 				.mask = &rte_flow_item_ipv4_mask,
3629 			},
3630 			{
3631 				.type = RTE_FLOW_ITEM_TYPE_UDP,
3632 				.spec = &action_vxlan_encap_data->item_udp,
3633 				.mask = &rte_flow_item_udp_mask,
3634 			},
3635 			{
3636 				.type = RTE_FLOW_ITEM_TYPE_VXLAN,
3637 				.spec = &action_vxlan_encap_data->item_vxlan,
3638 				.mask = &rte_flow_item_vxlan_mask,
3639 			},
3640 			{
3641 				.type = RTE_FLOW_ITEM_TYPE_END,
3642 			},
3643 		},
3644 		.item_eth.type = 0,
3645 		.item_vlan = {
3646 			.tci = vxlan_encap_conf.vlan_tci,
3647 			.inner_type = 0,
3648 		},
3649 		.item_ipv4.hdr = {
3650 			.src_addr = vxlan_encap_conf.ipv4_src,
3651 			.dst_addr = vxlan_encap_conf.ipv4_dst,
3652 		},
3653 		.item_udp.hdr = {
3654 			.src_port = vxlan_encap_conf.udp_src,
3655 			.dst_port = vxlan_encap_conf.udp_dst,
3656 		},
3657 		.item_vxlan.flags = 0,
3658 	};
3659 	memcpy(action_vxlan_encap_data->item_eth.dst.addr_bytes,
3660 	       vxlan_encap_conf.eth_dst, RTE_ETHER_ADDR_LEN);
3661 	memcpy(action_vxlan_encap_data->item_eth.src.addr_bytes,
3662 	       vxlan_encap_conf.eth_src, RTE_ETHER_ADDR_LEN);
3663 	if (!vxlan_encap_conf.select_ipv4) {
3664 		memcpy(&action_vxlan_encap_data->item_ipv6.hdr.src_addr,
3665 		       &vxlan_encap_conf.ipv6_src,
3666 		       sizeof(vxlan_encap_conf.ipv6_src));
3667 		memcpy(&action_vxlan_encap_data->item_ipv6.hdr.dst_addr,
3668 		       &vxlan_encap_conf.ipv6_dst,
3669 		       sizeof(vxlan_encap_conf.ipv6_dst));
3670 		action_vxlan_encap_data->items[2] = (struct rte_flow_item){
3671 			.type = RTE_FLOW_ITEM_TYPE_IPV6,
3672 			.spec = &action_vxlan_encap_data->item_ipv6,
3673 			.mask = &rte_flow_item_ipv6_mask,
3674 		};
3675 	}
3676 	if (!vxlan_encap_conf.select_vlan)
3677 		action_vxlan_encap_data->items[1].type =
3678 			RTE_FLOW_ITEM_TYPE_VOID;
3679 	if (vxlan_encap_conf.select_tos_ttl) {
3680 		if (vxlan_encap_conf.select_ipv4) {
3681 			static struct rte_flow_item_ipv4 ipv4_mask_tos;
3682 
3683 			memcpy(&ipv4_mask_tos, &rte_flow_item_ipv4_mask,
3684 			       sizeof(ipv4_mask_tos));
3685 			ipv4_mask_tos.hdr.type_of_service = 0xff;
3686 			ipv4_mask_tos.hdr.time_to_live = 0xff;
3687 			action_vxlan_encap_data->item_ipv4.hdr.type_of_service =
3688 					vxlan_encap_conf.ip_tos;
3689 			action_vxlan_encap_data->item_ipv4.hdr.time_to_live =
3690 					vxlan_encap_conf.ip_ttl;
3691 			action_vxlan_encap_data->items[2].mask =
3692 							&ipv4_mask_tos;
3693 		} else {
3694 			static struct rte_flow_item_ipv6 ipv6_mask_tos;
3695 
3696 			memcpy(&ipv6_mask_tos, &rte_flow_item_ipv6_mask,
3697 			       sizeof(ipv6_mask_tos));
3698 			ipv6_mask_tos.hdr.vtc_flow |=
3699 				RTE_BE32(0xfful << RTE_IPV6_HDR_TC_SHIFT);
3700 			ipv6_mask_tos.hdr.hop_limits = 0xff;
3701 			action_vxlan_encap_data->item_ipv6.hdr.vtc_flow |=
3702 				rte_cpu_to_be_32
3703 					((uint32_t)vxlan_encap_conf.ip_tos <<
3704 					 RTE_IPV6_HDR_TC_SHIFT);
3705 			action_vxlan_encap_data->item_ipv6.hdr.hop_limits =
3706 					vxlan_encap_conf.ip_ttl;
3707 			action_vxlan_encap_data->items[2].mask =
3708 							&ipv6_mask_tos;
3709 		}
3710 	}
3711 	memcpy(action_vxlan_encap_data->item_vxlan.vni, vxlan_encap_conf.vni,
3712 	       RTE_DIM(vxlan_encap_conf.vni));
3713 	action->conf = &action_vxlan_encap_data->conf;
3714 	return ret;
3715 }
3716 
3717 /** Parse NVGRE encap action. */
3718 static int
3719 parse_vc_action_nvgre_encap(struct context *ctx, const struct token *token,
3720 			    const char *str, unsigned int len,
3721 			    void *buf, unsigned int size)
3722 {
3723 	struct buffer *out = buf;
3724 	struct rte_flow_action *action;
3725 	struct action_nvgre_encap_data *action_nvgre_encap_data;
3726 	int ret;
3727 
3728 	ret = parse_vc(ctx, token, str, len, buf, size);
3729 	if (ret < 0)
3730 		return ret;
3731 	/* Nothing else to do if there is no buffer. */
3732 	if (!out)
3733 		return ret;
3734 	if (!out->args.vc.actions_n)
3735 		return -1;
3736 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
3737 	/* Point to selected object. */
3738 	ctx->object = out->args.vc.data;
3739 	ctx->objmask = NULL;
3740 	/* Set up default configuration. */
3741 	action_nvgre_encap_data = ctx->object;
3742 	*action_nvgre_encap_data = (struct action_nvgre_encap_data){
3743 		.conf = (struct rte_flow_action_nvgre_encap){
3744 			.definition = action_nvgre_encap_data->items,
3745 		},
3746 		.items = {
3747 			{
3748 				.type = RTE_FLOW_ITEM_TYPE_ETH,
3749 				.spec = &action_nvgre_encap_data->item_eth,
3750 				.mask = &rte_flow_item_eth_mask,
3751 			},
3752 			{
3753 				.type = RTE_FLOW_ITEM_TYPE_VLAN,
3754 				.spec = &action_nvgre_encap_data->item_vlan,
3755 				.mask = &rte_flow_item_vlan_mask,
3756 			},
3757 			{
3758 				.type = RTE_FLOW_ITEM_TYPE_IPV4,
3759 				.spec = &action_nvgre_encap_data->item_ipv4,
3760 				.mask = &rte_flow_item_ipv4_mask,
3761 			},
3762 			{
3763 				.type = RTE_FLOW_ITEM_TYPE_NVGRE,
3764 				.spec = &action_nvgre_encap_data->item_nvgre,
3765 				.mask = &rte_flow_item_nvgre_mask,
3766 			},
3767 			{
3768 				.type = RTE_FLOW_ITEM_TYPE_END,
3769 			},
3770 		},
3771 		.item_eth.type = 0,
3772 		.item_vlan = {
3773 			.tci = nvgre_encap_conf.vlan_tci,
3774 			.inner_type = 0,
3775 		},
3776 		.item_ipv4.hdr = {
3777 		       .src_addr = nvgre_encap_conf.ipv4_src,
3778 		       .dst_addr = nvgre_encap_conf.ipv4_dst,
3779 		},
3780 		.item_nvgre.flow_id = 0,
3781 	};
3782 	memcpy(action_nvgre_encap_data->item_eth.dst.addr_bytes,
3783 	       nvgre_encap_conf.eth_dst, RTE_ETHER_ADDR_LEN);
3784 	memcpy(action_nvgre_encap_data->item_eth.src.addr_bytes,
3785 	       nvgre_encap_conf.eth_src, RTE_ETHER_ADDR_LEN);
3786 	if (!nvgre_encap_conf.select_ipv4) {
3787 		memcpy(&action_nvgre_encap_data->item_ipv6.hdr.src_addr,
3788 		       &nvgre_encap_conf.ipv6_src,
3789 		       sizeof(nvgre_encap_conf.ipv6_src));
3790 		memcpy(&action_nvgre_encap_data->item_ipv6.hdr.dst_addr,
3791 		       &nvgre_encap_conf.ipv6_dst,
3792 		       sizeof(nvgre_encap_conf.ipv6_dst));
3793 		action_nvgre_encap_data->items[2] = (struct rte_flow_item){
3794 			.type = RTE_FLOW_ITEM_TYPE_IPV6,
3795 			.spec = &action_nvgre_encap_data->item_ipv6,
3796 			.mask = &rte_flow_item_ipv6_mask,
3797 		};
3798 	}
3799 	if (!nvgre_encap_conf.select_vlan)
3800 		action_nvgre_encap_data->items[1].type =
3801 			RTE_FLOW_ITEM_TYPE_VOID;
3802 	memcpy(action_nvgre_encap_data->item_nvgre.tni, nvgre_encap_conf.tni,
3803 	       RTE_DIM(nvgre_encap_conf.tni));
3804 	action->conf = &action_nvgre_encap_data->conf;
3805 	return ret;
3806 }
3807 
3808 /** Parse l2 encap action. */
3809 static int
3810 parse_vc_action_l2_encap(struct context *ctx, const struct token *token,
3811 			 const char *str, unsigned int len,
3812 			 void *buf, unsigned int size)
3813 {
3814 	struct buffer *out = buf;
3815 	struct rte_flow_action *action;
3816 	struct action_raw_encap_data *action_encap_data;
3817 	struct rte_flow_item_eth eth = { .type = 0, };
3818 	struct rte_flow_item_vlan vlan = {
3819 		.tci = mplsoudp_encap_conf.vlan_tci,
3820 		.inner_type = 0,
3821 	};
3822 	uint8_t *header;
3823 	int ret;
3824 
3825 	ret = parse_vc(ctx, token, str, len, buf, size);
3826 	if (ret < 0)
3827 		return ret;
3828 	/* Nothing else to do if there is no buffer. */
3829 	if (!out)
3830 		return ret;
3831 	if (!out->args.vc.actions_n)
3832 		return -1;
3833 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
3834 	/* Point to selected object. */
3835 	ctx->object = out->args.vc.data;
3836 	ctx->objmask = NULL;
3837 	/* Copy the headers to the buffer. */
3838 	action_encap_data = ctx->object;
3839 	*action_encap_data = (struct action_raw_encap_data) {
3840 		.conf = (struct rte_flow_action_raw_encap){
3841 			.data = action_encap_data->data,
3842 		},
3843 		.data = {},
3844 	};
3845 	header = action_encap_data->data;
3846 	if (l2_encap_conf.select_vlan)
3847 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN);
3848 	else if (l2_encap_conf.select_ipv4)
3849 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
3850 	else
3851 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
3852 	memcpy(eth.dst.addr_bytes,
3853 	       l2_encap_conf.eth_dst, RTE_ETHER_ADDR_LEN);
3854 	memcpy(eth.src.addr_bytes,
3855 	       l2_encap_conf.eth_src, RTE_ETHER_ADDR_LEN);
3856 	memcpy(header, &eth, sizeof(eth));
3857 	header += sizeof(eth);
3858 	if (l2_encap_conf.select_vlan) {
3859 		if (l2_encap_conf.select_ipv4)
3860 			vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
3861 		else
3862 			vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
3863 		memcpy(header, &vlan, sizeof(vlan));
3864 		header += sizeof(vlan);
3865 	}
3866 	action_encap_data->conf.size = header -
3867 		action_encap_data->data;
3868 	action->conf = &action_encap_data->conf;
3869 	return ret;
3870 }
3871 
3872 /** Parse l2 decap action. */
3873 static int
3874 parse_vc_action_l2_decap(struct context *ctx, const struct token *token,
3875 			 const char *str, unsigned int len,
3876 			 void *buf, unsigned int size)
3877 {
3878 	struct buffer *out = buf;
3879 	struct rte_flow_action *action;
3880 	struct action_raw_decap_data *action_decap_data;
3881 	struct rte_flow_item_eth eth = { .type = 0, };
3882 	struct rte_flow_item_vlan vlan = {
3883 		.tci = mplsoudp_encap_conf.vlan_tci,
3884 		.inner_type = 0,
3885 	};
3886 	uint8_t *header;
3887 	int ret;
3888 
3889 	ret = parse_vc(ctx, token, str, len, buf, size);
3890 	if (ret < 0)
3891 		return ret;
3892 	/* Nothing else to do if there is no buffer. */
3893 	if (!out)
3894 		return ret;
3895 	if (!out->args.vc.actions_n)
3896 		return -1;
3897 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
3898 	/* Point to selected object. */
3899 	ctx->object = out->args.vc.data;
3900 	ctx->objmask = NULL;
3901 	/* Copy the headers to the buffer. */
3902 	action_decap_data = ctx->object;
3903 	*action_decap_data = (struct action_raw_decap_data) {
3904 		.conf = (struct rte_flow_action_raw_decap){
3905 			.data = action_decap_data->data,
3906 		},
3907 		.data = {},
3908 	};
3909 	header = action_decap_data->data;
3910 	if (l2_decap_conf.select_vlan)
3911 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN);
3912 	memcpy(header, &eth, sizeof(eth));
3913 	header += sizeof(eth);
3914 	if (l2_decap_conf.select_vlan) {
3915 		memcpy(header, &vlan, sizeof(vlan));
3916 		header += sizeof(vlan);
3917 	}
3918 	action_decap_data->conf.size = header -
3919 		action_decap_data->data;
3920 	action->conf = &action_decap_data->conf;
3921 	return ret;
3922 }
3923 
3924 #define ETHER_TYPE_MPLS_UNICAST 0x8847
3925 
3926 /** Parse MPLSOGRE encap action. */
3927 static int
3928 parse_vc_action_mplsogre_encap(struct context *ctx, const struct token *token,
3929 			       const char *str, unsigned int len,
3930 			       void *buf, unsigned int size)
3931 {
3932 	struct buffer *out = buf;
3933 	struct rte_flow_action *action;
3934 	struct action_raw_encap_data *action_encap_data;
3935 	struct rte_flow_item_eth eth = { .type = 0, };
3936 	struct rte_flow_item_vlan vlan = {
3937 		.tci = mplsogre_encap_conf.vlan_tci,
3938 		.inner_type = 0,
3939 	};
3940 	struct rte_flow_item_ipv4 ipv4 = {
3941 		.hdr =  {
3942 			.src_addr = mplsogre_encap_conf.ipv4_src,
3943 			.dst_addr = mplsogre_encap_conf.ipv4_dst,
3944 			.next_proto_id = IPPROTO_GRE,
3945 			.version_ihl = RTE_IPV4_VHL_DEF,
3946 			.time_to_live = IPDEFTTL,
3947 		},
3948 	};
3949 	struct rte_flow_item_ipv6 ipv6 = {
3950 		.hdr =  {
3951 			.proto = IPPROTO_GRE,
3952 			.hop_limits = IPDEFTTL,
3953 		},
3954 	};
3955 	struct rte_flow_item_gre gre = {
3956 		.protocol = rte_cpu_to_be_16(ETHER_TYPE_MPLS_UNICAST),
3957 	};
3958 	struct rte_flow_item_mpls mpls;
3959 	uint8_t *header;
3960 	int ret;
3961 
3962 	ret = parse_vc(ctx, token, str, len, buf, size);
3963 	if (ret < 0)
3964 		return ret;
3965 	/* Nothing else to do if there is no buffer. */
3966 	if (!out)
3967 		return ret;
3968 	if (!out->args.vc.actions_n)
3969 		return -1;
3970 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
3971 	/* Point to selected object. */
3972 	ctx->object = out->args.vc.data;
3973 	ctx->objmask = NULL;
3974 	/* Copy the headers to the buffer. */
3975 	action_encap_data = ctx->object;
3976 	*action_encap_data = (struct action_raw_encap_data) {
3977 		.conf = (struct rte_flow_action_raw_encap){
3978 			.data = action_encap_data->data,
3979 		},
3980 		.data = {},
3981 		.preserve = {},
3982 	};
3983 	header = action_encap_data->data;
3984 	if (mplsogre_encap_conf.select_vlan)
3985 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN);
3986 	else if (mplsogre_encap_conf.select_ipv4)
3987 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
3988 	else
3989 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
3990 	memcpy(eth.dst.addr_bytes,
3991 	       mplsogre_encap_conf.eth_dst, RTE_ETHER_ADDR_LEN);
3992 	memcpy(eth.src.addr_bytes,
3993 	       mplsogre_encap_conf.eth_src, RTE_ETHER_ADDR_LEN);
3994 	memcpy(header, &eth, sizeof(eth));
3995 	header += sizeof(eth);
3996 	if (mplsogre_encap_conf.select_vlan) {
3997 		if (mplsogre_encap_conf.select_ipv4)
3998 			vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
3999 		else
4000 			vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
4001 		memcpy(header, &vlan, sizeof(vlan));
4002 		header += sizeof(vlan);
4003 	}
4004 	if (mplsogre_encap_conf.select_ipv4) {
4005 		memcpy(header, &ipv4, sizeof(ipv4));
4006 		header += sizeof(ipv4);
4007 	} else {
4008 		memcpy(&ipv6.hdr.src_addr,
4009 		       &mplsogre_encap_conf.ipv6_src,
4010 		       sizeof(mplsogre_encap_conf.ipv6_src));
4011 		memcpy(&ipv6.hdr.dst_addr,
4012 		       &mplsogre_encap_conf.ipv6_dst,
4013 		       sizeof(mplsogre_encap_conf.ipv6_dst));
4014 		memcpy(header, &ipv6, sizeof(ipv6));
4015 		header += sizeof(ipv6);
4016 	}
4017 	memcpy(header, &gre, sizeof(gre));
4018 	header += sizeof(gre);
4019 	memcpy(mpls.label_tc_s, mplsogre_encap_conf.label,
4020 	       RTE_DIM(mplsogre_encap_conf.label));
4021 	mpls.label_tc_s[2] |= 0x1;
4022 	memcpy(header, &mpls, sizeof(mpls));
4023 	header += sizeof(mpls);
4024 	action_encap_data->conf.size = header -
4025 		action_encap_data->data;
4026 	action->conf = &action_encap_data->conf;
4027 	return ret;
4028 }
4029 
4030 /** Parse MPLSOGRE decap action. */
4031 static int
4032 parse_vc_action_mplsogre_decap(struct context *ctx, const struct token *token,
4033 			       const char *str, unsigned int len,
4034 			       void *buf, unsigned int size)
4035 {
4036 	struct buffer *out = buf;
4037 	struct rte_flow_action *action;
4038 	struct action_raw_decap_data *action_decap_data;
4039 	struct rte_flow_item_eth eth = { .type = 0, };
4040 	struct rte_flow_item_vlan vlan = {.tci = 0};
4041 	struct rte_flow_item_ipv4 ipv4 = {
4042 		.hdr =  {
4043 			.next_proto_id = IPPROTO_GRE,
4044 		},
4045 	};
4046 	struct rte_flow_item_ipv6 ipv6 = {
4047 		.hdr =  {
4048 			.proto = IPPROTO_GRE,
4049 		},
4050 	};
4051 	struct rte_flow_item_gre gre = {
4052 		.protocol = rte_cpu_to_be_16(ETHER_TYPE_MPLS_UNICAST),
4053 	};
4054 	struct rte_flow_item_mpls mpls;
4055 	uint8_t *header;
4056 	int ret;
4057 
4058 	ret = parse_vc(ctx, token, str, len, buf, size);
4059 	if (ret < 0)
4060 		return ret;
4061 	/* Nothing else to do if there is no buffer. */
4062 	if (!out)
4063 		return ret;
4064 	if (!out->args.vc.actions_n)
4065 		return -1;
4066 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
4067 	/* Point to selected object. */
4068 	ctx->object = out->args.vc.data;
4069 	ctx->objmask = NULL;
4070 	/* Copy the headers to the buffer. */
4071 	action_decap_data = ctx->object;
4072 	*action_decap_data = (struct action_raw_decap_data) {
4073 		.conf = (struct rte_flow_action_raw_decap){
4074 			.data = action_decap_data->data,
4075 		},
4076 		.data = {},
4077 	};
4078 	header = action_decap_data->data;
4079 	if (mplsogre_decap_conf.select_vlan)
4080 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN);
4081 	else if (mplsogre_encap_conf.select_ipv4)
4082 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
4083 	else
4084 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
4085 	memcpy(eth.dst.addr_bytes,
4086 	       mplsogre_encap_conf.eth_dst, RTE_ETHER_ADDR_LEN);
4087 	memcpy(eth.src.addr_bytes,
4088 	       mplsogre_encap_conf.eth_src, RTE_ETHER_ADDR_LEN);
4089 	memcpy(header, &eth, sizeof(eth));
4090 	header += sizeof(eth);
4091 	if (mplsogre_encap_conf.select_vlan) {
4092 		if (mplsogre_encap_conf.select_ipv4)
4093 			vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
4094 		else
4095 			vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
4096 		memcpy(header, &vlan, sizeof(vlan));
4097 		header += sizeof(vlan);
4098 	}
4099 	if (mplsogre_encap_conf.select_ipv4) {
4100 		memcpy(header, &ipv4, sizeof(ipv4));
4101 		header += sizeof(ipv4);
4102 	} else {
4103 		memcpy(header, &ipv6, sizeof(ipv6));
4104 		header += sizeof(ipv6);
4105 	}
4106 	memcpy(header, &gre, sizeof(gre));
4107 	header += sizeof(gre);
4108 	memset(&mpls, 0, sizeof(mpls));
4109 	memcpy(header, &mpls, sizeof(mpls));
4110 	header += sizeof(mpls);
4111 	action_decap_data->conf.size = header -
4112 		action_decap_data->data;
4113 	action->conf = &action_decap_data->conf;
4114 	return ret;
4115 }
4116 
4117 /** Parse MPLSOUDP encap action. */
4118 static int
4119 parse_vc_action_mplsoudp_encap(struct context *ctx, const struct token *token,
4120 			       const char *str, unsigned int len,
4121 			       void *buf, unsigned int size)
4122 {
4123 	struct buffer *out = buf;
4124 	struct rte_flow_action *action;
4125 	struct action_raw_encap_data *action_encap_data;
4126 	struct rte_flow_item_eth eth = { .type = 0, };
4127 	struct rte_flow_item_vlan vlan = {
4128 		.tci = mplsoudp_encap_conf.vlan_tci,
4129 		.inner_type = 0,
4130 	};
4131 	struct rte_flow_item_ipv4 ipv4 = {
4132 		.hdr =  {
4133 			.src_addr = mplsoudp_encap_conf.ipv4_src,
4134 			.dst_addr = mplsoudp_encap_conf.ipv4_dst,
4135 			.next_proto_id = IPPROTO_UDP,
4136 			.version_ihl = RTE_IPV4_VHL_DEF,
4137 			.time_to_live = IPDEFTTL,
4138 		},
4139 	};
4140 	struct rte_flow_item_ipv6 ipv6 = {
4141 		.hdr =  {
4142 			.proto = IPPROTO_UDP,
4143 			.hop_limits = IPDEFTTL,
4144 		},
4145 	};
4146 	struct rte_flow_item_udp udp = {
4147 		.hdr = {
4148 			.src_port = mplsoudp_encap_conf.udp_src,
4149 			.dst_port = mplsoudp_encap_conf.udp_dst,
4150 		},
4151 	};
4152 	struct rte_flow_item_mpls mpls;
4153 	uint8_t *header;
4154 	int ret;
4155 
4156 	ret = parse_vc(ctx, token, str, len, buf, size);
4157 	if (ret < 0)
4158 		return ret;
4159 	/* Nothing else to do if there is no buffer. */
4160 	if (!out)
4161 		return ret;
4162 	if (!out->args.vc.actions_n)
4163 		return -1;
4164 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
4165 	/* Point to selected object. */
4166 	ctx->object = out->args.vc.data;
4167 	ctx->objmask = NULL;
4168 	/* Copy the headers to the buffer. */
4169 	action_encap_data = ctx->object;
4170 	*action_encap_data = (struct action_raw_encap_data) {
4171 		.conf = (struct rte_flow_action_raw_encap){
4172 			.data = action_encap_data->data,
4173 		},
4174 		.data = {},
4175 		.preserve = {},
4176 	};
4177 	header = action_encap_data->data;
4178 	if (mplsoudp_encap_conf.select_vlan)
4179 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN);
4180 	else if (mplsoudp_encap_conf.select_ipv4)
4181 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
4182 	else
4183 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
4184 	memcpy(eth.dst.addr_bytes,
4185 	       mplsoudp_encap_conf.eth_dst, RTE_ETHER_ADDR_LEN);
4186 	memcpy(eth.src.addr_bytes,
4187 	       mplsoudp_encap_conf.eth_src, RTE_ETHER_ADDR_LEN);
4188 	memcpy(header, &eth, sizeof(eth));
4189 	header += sizeof(eth);
4190 	if (mplsoudp_encap_conf.select_vlan) {
4191 		if (mplsoudp_encap_conf.select_ipv4)
4192 			vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
4193 		else
4194 			vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
4195 		memcpy(header, &vlan, sizeof(vlan));
4196 		header += sizeof(vlan);
4197 	}
4198 	if (mplsoudp_encap_conf.select_ipv4) {
4199 		memcpy(header, &ipv4, sizeof(ipv4));
4200 		header += sizeof(ipv4);
4201 	} else {
4202 		memcpy(&ipv6.hdr.src_addr,
4203 		       &mplsoudp_encap_conf.ipv6_src,
4204 		       sizeof(mplsoudp_encap_conf.ipv6_src));
4205 		memcpy(&ipv6.hdr.dst_addr,
4206 		       &mplsoudp_encap_conf.ipv6_dst,
4207 		       sizeof(mplsoudp_encap_conf.ipv6_dst));
4208 		memcpy(header, &ipv6, sizeof(ipv6));
4209 		header += sizeof(ipv6);
4210 	}
4211 	memcpy(header, &udp, sizeof(udp));
4212 	header += sizeof(udp);
4213 	memcpy(mpls.label_tc_s, mplsoudp_encap_conf.label,
4214 	       RTE_DIM(mplsoudp_encap_conf.label));
4215 	mpls.label_tc_s[2] |= 0x1;
4216 	memcpy(header, &mpls, sizeof(mpls));
4217 	header += sizeof(mpls);
4218 	action_encap_data->conf.size = header -
4219 		action_encap_data->data;
4220 	action->conf = &action_encap_data->conf;
4221 	return ret;
4222 }
4223 
4224 /** Parse MPLSOUDP decap action. */
4225 static int
4226 parse_vc_action_mplsoudp_decap(struct context *ctx, const struct token *token,
4227 			       const char *str, unsigned int len,
4228 			       void *buf, unsigned int size)
4229 {
4230 	struct buffer *out = buf;
4231 	struct rte_flow_action *action;
4232 	struct action_raw_decap_data *action_decap_data;
4233 	struct rte_flow_item_eth eth = { .type = 0, };
4234 	struct rte_flow_item_vlan vlan = {.tci = 0};
4235 	struct rte_flow_item_ipv4 ipv4 = {
4236 		.hdr =  {
4237 			.next_proto_id = IPPROTO_UDP,
4238 		},
4239 	};
4240 	struct rte_flow_item_ipv6 ipv6 = {
4241 		.hdr =  {
4242 			.proto = IPPROTO_UDP,
4243 		},
4244 	};
4245 	struct rte_flow_item_udp udp = {
4246 		.hdr = {
4247 			.dst_port = rte_cpu_to_be_16(6635),
4248 		},
4249 	};
4250 	struct rte_flow_item_mpls mpls;
4251 	uint8_t *header;
4252 	int ret;
4253 
4254 	ret = parse_vc(ctx, token, str, len, buf, size);
4255 	if (ret < 0)
4256 		return ret;
4257 	/* Nothing else to do if there is no buffer. */
4258 	if (!out)
4259 		return ret;
4260 	if (!out->args.vc.actions_n)
4261 		return -1;
4262 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
4263 	/* Point to selected object. */
4264 	ctx->object = out->args.vc.data;
4265 	ctx->objmask = NULL;
4266 	/* Copy the headers to the buffer. */
4267 	action_decap_data = ctx->object;
4268 	*action_decap_data = (struct action_raw_decap_data) {
4269 		.conf = (struct rte_flow_action_raw_decap){
4270 			.data = action_decap_data->data,
4271 		},
4272 		.data = {},
4273 	};
4274 	header = action_decap_data->data;
4275 	if (mplsoudp_decap_conf.select_vlan)
4276 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN);
4277 	else if (mplsoudp_encap_conf.select_ipv4)
4278 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
4279 	else
4280 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
4281 	memcpy(eth.dst.addr_bytes,
4282 	       mplsoudp_encap_conf.eth_dst, RTE_ETHER_ADDR_LEN);
4283 	memcpy(eth.src.addr_bytes,
4284 	       mplsoudp_encap_conf.eth_src, RTE_ETHER_ADDR_LEN);
4285 	memcpy(header, &eth, sizeof(eth));
4286 	header += sizeof(eth);
4287 	if (mplsoudp_encap_conf.select_vlan) {
4288 		if (mplsoudp_encap_conf.select_ipv4)
4289 			vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
4290 		else
4291 			vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
4292 		memcpy(header, &vlan, sizeof(vlan));
4293 		header += sizeof(vlan);
4294 	}
4295 	if (mplsoudp_encap_conf.select_ipv4) {
4296 		memcpy(header, &ipv4, sizeof(ipv4));
4297 		header += sizeof(ipv4);
4298 	} else {
4299 		memcpy(header, &ipv6, sizeof(ipv6));
4300 		header += sizeof(ipv6);
4301 	}
4302 	memcpy(header, &udp, sizeof(udp));
4303 	header += sizeof(udp);
4304 	memset(&mpls, 0, sizeof(mpls));
4305 	memcpy(header, &mpls, sizeof(mpls));
4306 	header += sizeof(mpls);
4307 	action_decap_data->conf.size = header -
4308 		action_decap_data->data;
4309 	action->conf = &action_decap_data->conf;
4310 	return ret;
4311 }
4312 
4313 /** Parse tokens for destroy command. */
4314 static int
4315 parse_destroy(struct context *ctx, const struct token *token,
4316 	      const char *str, unsigned int len,
4317 	      void *buf, unsigned int size)
4318 {
4319 	struct buffer *out = buf;
4320 
4321 	/* Token name must match. */
4322 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
4323 		return -1;
4324 	/* Nothing else to do if there is no buffer. */
4325 	if (!out)
4326 		return len;
4327 	if (!out->command) {
4328 		if (ctx->curr != DESTROY)
4329 			return -1;
4330 		if (sizeof(*out) > size)
4331 			return -1;
4332 		out->command = ctx->curr;
4333 		ctx->objdata = 0;
4334 		ctx->object = out;
4335 		ctx->objmask = NULL;
4336 		out->args.destroy.rule =
4337 			(void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
4338 					       sizeof(double));
4339 		return len;
4340 	}
4341 	if (((uint8_t *)(out->args.destroy.rule + out->args.destroy.rule_n) +
4342 	     sizeof(*out->args.destroy.rule)) > (uint8_t *)out + size)
4343 		return -1;
4344 	ctx->objdata = 0;
4345 	ctx->object = out->args.destroy.rule + out->args.destroy.rule_n++;
4346 	ctx->objmask = NULL;
4347 	return len;
4348 }
4349 
4350 /** Parse tokens for flush command. */
4351 static int
4352 parse_flush(struct context *ctx, const struct token *token,
4353 	    const char *str, unsigned int len,
4354 	    void *buf, unsigned int size)
4355 {
4356 	struct buffer *out = buf;
4357 
4358 	/* Token name must match. */
4359 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
4360 		return -1;
4361 	/* Nothing else to do if there is no buffer. */
4362 	if (!out)
4363 		return len;
4364 	if (!out->command) {
4365 		if (ctx->curr != FLUSH)
4366 			return -1;
4367 		if (sizeof(*out) > size)
4368 			return -1;
4369 		out->command = ctx->curr;
4370 		ctx->objdata = 0;
4371 		ctx->object = out;
4372 		ctx->objmask = NULL;
4373 	}
4374 	return len;
4375 }
4376 
4377 /** Parse tokens for query command. */
4378 static int
4379 parse_query(struct context *ctx, const struct token *token,
4380 	    const char *str, unsigned int len,
4381 	    void *buf, unsigned int size)
4382 {
4383 	struct buffer *out = buf;
4384 
4385 	/* Token name must match. */
4386 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
4387 		return -1;
4388 	/* Nothing else to do if there is no buffer. */
4389 	if (!out)
4390 		return len;
4391 	if (!out->command) {
4392 		if (ctx->curr != QUERY)
4393 			return -1;
4394 		if (sizeof(*out) > size)
4395 			return -1;
4396 		out->command = ctx->curr;
4397 		ctx->objdata = 0;
4398 		ctx->object = out;
4399 		ctx->objmask = NULL;
4400 	}
4401 	return len;
4402 }
4403 
4404 /** Parse action names. */
4405 static int
4406 parse_action(struct context *ctx, const struct token *token,
4407 	     const char *str, unsigned int len,
4408 	     void *buf, unsigned int size)
4409 {
4410 	struct buffer *out = buf;
4411 	const struct arg *arg = pop_args(ctx);
4412 	unsigned int i;
4413 
4414 	(void)size;
4415 	/* Argument is expected. */
4416 	if (!arg)
4417 		return -1;
4418 	/* Parse action name. */
4419 	for (i = 0; next_action[i]; ++i) {
4420 		const struct parse_action_priv *priv;
4421 
4422 		token = &token_list[next_action[i]];
4423 		if (strcmp_partial(token->name, str, len))
4424 			continue;
4425 		priv = token->priv;
4426 		if (!priv)
4427 			goto error;
4428 		if (out)
4429 			memcpy((uint8_t *)ctx->object + arg->offset,
4430 			       &priv->type,
4431 			       arg->size);
4432 		return len;
4433 	}
4434 error:
4435 	push_args(ctx, arg);
4436 	return -1;
4437 }
4438 
4439 /** Parse tokens for list command. */
4440 static int
4441 parse_list(struct context *ctx, const struct token *token,
4442 	   const char *str, unsigned int len,
4443 	   void *buf, unsigned int size)
4444 {
4445 	struct buffer *out = buf;
4446 
4447 	/* Token name must match. */
4448 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
4449 		return -1;
4450 	/* Nothing else to do if there is no buffer. */
4451 	if (!out)
4452 		return len;
4453 	if (!out->command) {
4454 		if (ctx->curr != LIST)
4455 			return -1;
4456 		if (sizeof(*out) > size)
4457 			return -1;
4458 		out->command = ctx->curr;
4459 		ctx->objdata = 0;
4460 		ctx->object = out;
4461 		ctx->objmask = NULL;
4462 		out->args.list.group =
4463 			(void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
4464 					       sizeof(double));
4465 		return len;
4466 	}
4467 	if (((uint8_t *)(out->args.list.group + out->args.list.group_n) +
4468 	     sizeof(*out->args.list.group)) > (uint8_t *)out + size)
4469 		return -1;
4470 	ctx->objdata = 0;
4471 	ctx->object = out->args.list.group + out->args.list.group_n++;
4472 	ctx->objmask = NULL;
4473 	return len;
4474 }
4475 
4476 /** Parse tokens for isolate command. */
4477 static int
4478 parse_isolate(struct context *ctx, const struct token *token,
4479 	      const char *str, unsigned int len,
4480 	      void *buf, unsigned int size)
4481 {
4482 	struct buffer *out = buf;
4483 
4484 	/* Token name must match. */
4485 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
4486 		return -1;
4487 	/* Nothing else to do if there is no buffer. */
4488 	if (!out)
4489 		return len;
4490 	if (!out->command) {
4491 		if (ctx->curr != ISOLATE)
4492 			return -1;
4493 		if (sizeof(*out) > size)
4494 			return -1;
4495 		out->command = ctx->curr;
4496 		ctx->objdata = 0;
4497 		ctx->object = out;
4498 		ctx->objmask = NULL;
4499 	}
4500 	return len;
4501 }
4502 
4503 /**
4504  * Parse signed/unsigned integers 8 to 64-bit long.
4505  *
4506  * Last argument (ctx->args) is retrieved to determine integer type and
4507  * storage location.
4508  */
4509 static int
4510 parse_int(struct context *ctx, const struct token *token,
4511 	  const char *str, unsigned int len,
4512 	  void *buf, unsigned int size)
4513 {
4514 	const struct arg *arg = pop_args(ctx);
4515 	uintmax_t u;
4516 	char *end;
4517 
4518 	(void)token;
4519 	/* Argument is expected. */
4520 	if (!arg)
4521 		return -1;
4522 	errno = 0;
4523 	u = arg->sign ?
4524 		(uintmax_t)strtoimax(str, &end, 0) :
4525 		strtoumax(str, &end, 0);
4526 	if (errno || (size_t)(end - str) != len)
4527 		goto error;
4528 	if (arg->bounded &&
4529 	    ((arg->sign && ((intmax_t)u < (intmax_t)arg->min ||
4530 			    (intmax_t)u > (intmax_t)arg->max)) ||
4531 	     (!arg->sign && (u < arg->min || u > arg->max))))
4532 		goto error;
4533 	if (!ctx->object)
4534 		return len;
4535 	if (arg->mask) {
4536 		if (!arg_entry_bf_fill(ctx->object, u, arg) ||
4537 		    !arg_entry_bf_fill(ctx->objmask, -1, arg))
4538 			goto error;
4539 		return len;
4540 	}
4541 	buf = (uint8_t *)ctx->object + arg->offset;
4542 	size = arg->size;
4543 	if (u > RTE_LEN2MASK(size * CHAR_BIT, uint64_t))
4544 		return -1;
4545 objmask:
4546 	switch (size) {
4547 	case sizeof(uint8_t):
4548 		*(uint8_t *)buf = u;
4549 		break;
4550 	case sizeof(uint16_t):
4551 		*(uint16_t *)buf = arg->hton ? rte_cpu_to_be_16(u) : u;
4552 		break;
4553 	case sizeof(uint8_t [3]):
4554 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
4555 		if (!arg->hton) {
4556 			((uint8_t *)buf)[0] = u;
4557 			((uint8_t *)buf)[1] = u >> 8;
4558 			((uint8_t *)buf)[2] = u >> 16;
4559 			break;
4560 		}
4561 #endif
4562 		((uint8_t *)buf)[0] = u >> 16;
4563 		((uint8_t *)buf)[1] = u >> 8;
4564 		((uint8_t *)buf)[2] = u;
4565 		break;
4566 	case sizeof(uint32_t):
4567 		*(uint32_t *)buf = arg->hton ? rte_cpu_to_be_32(u) : u;
4568 		break;
4569 	case sizeof(uint64_t):
4570 		*(uint64_t *)buf = arg->hton ? rte_cpu_to_be_64(u) : u;
4571 		break;
4572 	default:
4573 		goto error;
4574 	}
4575 	if (ctx->objmask && buf != (uint8_t *)ctx->objmask + arg->offset) {
4576 		u = -1;
4577 		buf = (uint8_t *)ctx->objmask + arg->offset;
4578 		goto objmask;
4579 	}
4580 	return len;
4581 error:
4582 	push_args(ctx, arg);
4583 	return -1;
4584 }
4585 
4586 /**
4587  * Parse a string.
4588  *
4589  * Three arguments (ctx->args) are retrieved from the stack to store data,
4590  * its actual length and address (in that order).
4591  */
4592 static int
4593 parse_string(struct context *ctx, const struct token *token,
4594 	     const char *str, unsigned int len,
4595 	     void *buf, unsigned int size)
4596 {
4597 	const struct arg *arg_data = pop_args(ctx);
4598 	const struct arg *arg_len = pop_args(ctx);
4599 	const struct arg *arg_addr = pop_args(ctx);
4600 	char tmp[16]; /* Ought to be enough. */
4601 	int ret;
4602 
4603 	/* Arguments are expected. */
4604 	if (!arg_data)
4605 		return -1;
4606 	if (!arg_len) {
4607 		push_args(ctx, arg_data);
4608 		return -1;
4609 	}
4610 	if (!arg_addr) {
4611 		push_args(ctx, arg_len);
4612 		push_args(ctx, arg_data);
4613 		return -1;
4614 	}
4615 	size = arg_data->size;
4616 	/* Bit-mask fill is not supported. */
4617 	if (arg_data->mask || size < len)
4618 		goto error;
4619 	if (!ctx->object)
4620 		return len;
4621 	/* Let parse_int() fill length information first. */
4622 	ret = snprintf(tmp, sizeof(tmp), "%u", len);
4623 	if (ret < 0)
4624 		goto error;
4625 	push_args(ctx, arg_len);
4626 	ret = parse_int(ctx, token, tmp, ret, NULL, 0);
4627 	if (ret < 0) {
4628 		pop_args(ctx);
4629 		goto error;
4630 	}
4631 	buf = (uint8_t *)ctx->object + arg_data->offset;
4632 	/* Output buffer is not necessarily NUL-terminated. */
4633 	memcpy(buf, str, len);
4634 	memset((uint8_t *)buf + len, 0x00, size - len);
4635 	if (ctx->objmask)
4636 		memset((uint8_t *)ctx->objmask + arg_data->offset, 0xff, len);
4637 	/* Save address if requested. */
4638 	if (arg_addr->size) {
4639 		memcpy((uint8_t *)ctx->object + arg_addr->offset,
4640 		       (void *[]){
4641 			(uint8_t *)ctx->object + arg_data->offset
4642 		       },
4643 		       arg_addr->size);
4644 		if (ctx->objmask)
4645 			memcpy((uint8_t *)ctx->objmask + arg_addr->offset,
4646 			       (void *[]){
4647 				(uint8_t *)ctx->objmask + arg_data->offset
4648 			       },
4649 			       arg_addr->size);
4650 	}
4651 	return len;
4652 error:
4653 	push_args(ctx, arg_addr);
4654 	push_args(ctx, arg_len);
4655 	push_args(ctx, arg_data);
4656 	return -1;
4657 }
4658 
4659 static int
4660 parse_hex_string(const char *src, uint8_t *dst, uint32_t *size)
4661 {
4662 	char *c = NULL;
4663 	uint32_t i, len;
4664 	char tmp[3];
4665 
4666 	/* Check input parameters */
4667 	if ((src == NULL) ||
4668 		(dst == NULL) ||
4669 		(size == NULL) ||
4670 		(*size == 0))
4671 		return -1;
4672 
4673 	/* Convert chars to bytes */
4674 	for (i = 0, len = 0; i < *size; i += 2) {
4675 		snprintf(tmp, 3, "%s", src + i);
4676 		dst[len++] = strtoul(tmp, &c, 16);
4677 		if (*c != 0) {
4678 			len--;
4679 			dst[len] = 0;
4680 			*size = len;
4681 			return -1;
4682 		}
4683 	}
4684 	dst[len] = 0;
4685 	*size = len;
4686 
4687 	return 0;
4688 }
4689 
4690 static int
4691 parse_hex(struct context *ctx, const struct token *token,
4692 		const char *str, unsigned int len,
4693 		void *buf, unsigned int size)
4694 {
4695 	const struct arg *arg_data = pop_args(ctx);
4696 	const struct arg *arg_len = pop_args(ctx);
4697 	const struct arg *arg_addr = pop_args(ctx);
4698 	char tmp[16]; /* Ought to be enough. */
4699 	int ret;
4700 	unsigned int hexlen = len;
4701 	unsigned int length = 256;
4702 	uint8_t hex_tmp[length];
4703 
4704 	/* Arguments are expected. */
4705 	if (!arg_data)
4706 		return -1;
4707 	if (!arg_len) {
4708 		push_args(ctx, arg_data);
4709 		return -1;
4710 	}
4711 	if (!arg_addr) {
4712 		push_args(ctx, arg_len);
4713 		push_args(ctx, arg_data);
4714 		return -1;
4715 	}
4716 	size = arg_data->size;
4717 	/* Bit-mask fill is not supported. */
4718 	if (arg_data->mask)
4719 		goto error;
4720 	if (!ctx->object)
4721 		return len;
4722 
4723 	/* translate bytes string to array. */
4724 	if (str[0] == '0' && ((str[1] == 'x') ||
4725 			(str[1] == 'X'))) {
4726 		str += 2;
4727 		hexlen -= 2;
4728 	}
4729 	if (hexlen > length)
4730 		return -1;
4731 	ret = parse_hex_string(str, hex_tmp, &hexlen);
4732 	if (ret < 0)
4733 		goto error;
4734 	/* Let parse_int() fill length information first. */
4735 	ret = snprintf(tmp, sizeof(tmp), "%u", hexlen);
4736 	if (ret < 0)
4737 		goto error;
4738 	push_args(ctx, arg_len);
4739 	ret = parse_int(ctx, token, tmp, ret, NULL, 0);
4740 	if (ret < 0) {
4741 		pop_args(ctx);
4742 		goto error;
4743 	}
4744 	buf = (uint8_t *)ctx->object + arg_data->offset;
4745 	/* Output buffer is not necessarily NUL-terminated. */
4746 	memcpy(buf, hex_tmp, hexlen);
4747 	memset((uint8_t *)buf + hexlen, 0x00, size - hexlen);
4748 	if (ctx->objmask)
4749 		memset((uint8_t *)ctx->objmask + arg_data->offset,
4750 					0xff, hexlen);
4751 	/* Save address if requested. */
4752 	if (arg_addr->size) {
4753 		memcpy((uint8_t *)ctx->object + arg_addr->offset,
4754 		       (void *[]){
4755 			(uint8_t *)ctx->object + arg_data->offset
4756 		       },
4757 		       arg_addr->size);
4758 		if (ctx->objmask)
4759 			memcpy((uint8_t *)ctx->objmask + arg_addr->offset,
4760 			       (void *[]){
4761 				(uint8_t *)ctx->objmask + arg_data->offset
4762 			       },
4763 			       arg_addr->size);
4764 	}
4765 	return len;
4766 error:
4767 	push_args(ctx, arg_addr);
4768 	push_args(ctx, arg_len);
4769 	push_args(ctx, arg_data);
4770 	return -1;
4771 
4772 }
4773 
4774 /**
4775  * Parse a MAC address.
4776  *
4777  * Last argument (ctx->args) is retrieved to determine storage size and
4778  * location.
4779  */
4780 static int
4781 parse_mac_addr(struct context *ctx, const struct token *token,
4782 	       const char *str, unsigned int len,
4783 	       void *buf, unsigned int size)
4784 {
4785 	const struct arg *arg = pop_args(ctx);
4786 	struct rte_ether_addr tmp;
4787 	int ret;
4788 
4789 	(void)token;
4790 	/* Argument is expected. */
4791 	if (!arg)
4792 		return -1;
4793 	size = arg->size;
4794 	/* Bit-mask fill is not supported. */
4795 	if (arg->mask || size != sizeof(tmp))
4796 		goto error;
4797 	/* Only network endian is supported. */
4798 	if (!arg->hton)
4799 		goto error;
4800 	ret = rte_ether_unformat_addr(str, &tmp);
4801 	if (ret < 0)
4802 		goto error;
4803 	if (!ctx->object)
4804 		return len;
4805 	buf = (uint8_t *)ctx->object + arg->offset;
4806 	memcpy(buf, &tmp, size);
4807 	if (ctx->objmask)
4808 		memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
4809 	return len;
4810 error:
4811 	push_args(ctx, arg);
4812 	return -1;
4813 }
4814 
4815 /**
4816  * Parse an IPv4 address.
4817  *
4818  * Last argument (ctx->args) is retrieved to determine storage size and
4819  * location.
4820  */
4821 static int
4822 parse_ipv4_addr(struct context *ctx, const struct token *token,
4823 		const char *str, unsigned int len,
4824 		void *buf, unsigned int size)
4825 {
4826 	const struct arg *arg = pop_args(ctx);
4827 	char str2[len + 1];
4828 	struct in_addr tmp;
4829 	int ret;
4830 
4831 	/* Argument is expected. */
4832 	if (!arg)
4833 		return -1;
4834 	size = arg->size;
4835 	/* Bit-mask fill is not supported. */
4836 	if (arg->mask || size != sizeof(tmp))
4837 		goto error;
4838 	/* Only network endian is supported. */
4839 	if (!arg->hton)
4840 		goto error;
4841 	memcpy(str2, str, len);
4842 	str2[len] = '\0';
4843 	ret = inet_pton(AF_INET, str2, &tmp);
4844 	if (ret != 1) {
4845 		/* Attempt integer parsing. */
4846 		push_args(ctx, arg);
4847 		return parse_int(ctx, token, str, len, buf, size);
4848 	}
4849 	if (!ctx->object)
4850 		return len;
4851 	buf = (uint8_t *)ctx->object + arg->offset;
4852 	memcpy(buf, &tmp, size);
4853 	if (ctx->objmask)
4854 		memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
4855 	return len;
4856 error:
4857 	push_args(ctx, arg);
4858 	return -1;
4859 }
4860 
4861 /**
4862  * Parse an IPv6 address.
4863  *
4864  * Last argument (ctx->args) is retrieved to determine storage size and
4865  * location.
4866  */
4867 static int
4868 parse_ipv6_addr(struct context *ctx, const struct token *token,
4869 		const char *str, unsigned int len,
4870 		void *buf, unsigned int size)
4871 {
4872 	const struct arg *arg = pop_args(ctx);
4873 	char str2[len + 1];
4874 	struct in6_addr tmp;
4875 	int ret;
4876 
4877 	(void)token;
4878 	/* Argument is expected. */
4879 	if (!arg)
4880 		return -1;
4881 	size = arg->size;
4882 	/* Bit-mask fill is not supported. */
4883 	if (arg->mask || size != sizeof(tmp))
4884 		goto error;
4885 	/* Only network endian is supported. */
4886 	if (!arg->hton)
4887 		goto error;
4888 	memcpy(str2, str, len);
4889 	str2[len] = '\0';
4890 	ret = inet_pton(AF_INET6, str2, &tmp);
4891 	if (ret != 1)
4892 		goto error;
4893 	if (!ctx->object)
4894 		return len;
4895 	buf = (uint8_t *)ctx->object + arg->offset;
4896 	memcpy(buf, &tmp, size);
4897 	if (ctx->objmask)
4898 		memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
4899 	return len;
4900 error:
4901 	push_args(ctx, arg);
4902 	return -1;
4903 }
4904 
4905 /** Boolean values (even indices stand for false). */
4906 static const char *const boolean_name[] = {
4907 	"0", "1",
4908 	"false", "true",
4909 	"no", "yes",
4910 	"N", "Y",
4911 	"off", "on",
4912 	NULL,
4913 };
4914 
4915 /**
4916  * Parse a boolean value.
4917  *
4918  * Last argument (ctx->args) is retrieved to determine storage size and
4919  * location.
4920  */
4921 static int
4922 parse_boolean(struct context *ctx, const struct token *token,
4923 	      const char *str, unsigned int len,
4924 	      void *buf, unsigned int size)
4925 {
4926 	const struct arg *arg = pop_args(ctx);
4927 	unsigned int i;
4928 	int ret;
4929 
4930 	/* Argument is expected. */
4931 	if (!arg)
4932 		return -1;
4933 	for (i = 0; boolean_name[i]; ++i)
4934 		if (!strcmp_partial(boolean_name[i], str, len))
4935 			break;
4936 	/* Process token as integer. */
4937 	if (boolean_name[i])
4938 		str = i & 1 ? "1" : "0";
4939 	push_args(ctx, arg);
4940 	ret = parse_int(ctx, token, str, strlen(str), buf, size);
4941 	return ret > 0 ? (int)len : ret;
4942 }
4943 
4944 /** Parse port and update context. */
4945 static int
4946 parse_port(struct context *ctx, const struct token *token,
4947 	   const char *str, unsigned int len,
4948 	   void *buf, unsigned int size)
4949 {
4950 	struct buffer *out = &(struct buffer){ .port = 0 };
4951 	int ret;
4952 
4953 	if (buf)
4954 		out = buf;
4955 	else {
4956 		ctx->objdata = 0;
4957 		ctx->object = out;
4958 		ctx->objmask = NULL;
4959 		size = sizeof(*out);
4960 	}
4961 	ret = parse_int(ctx, token, str, len, out, size);
4962 	if (ret >= 0)
4963 		ctx->port = out->port;
4964 	if (!buf)
4965 		ctx->object = NULL;
4966 	return ret;
4967 }
4968 
4969 /** No completion. */
4970 static int
4971 comp_none(struct context *ctx, const struct token *token,
4972 	  unsigned int ent, char *buf, unsigned int size)
4973 {
4974 	(void)ctx;
4975 	(void)token;
4976 	(void)ent;
4977 	(void)buf;
4978 	(void)size;
4979 	return 0;
4980 }
4981 
4982 /** Complete boolean values. */
4983 static int
4984 comp_boolean(struct context *ctx, const struct token *token,
4985 	     unsigned int ent, char *buf, unsigned int size)
4986 {
4987 	unsigned int i;
4988 
4989 	(void)ctx;
4990 	(void)token;
4991 	for (i = 0; boolean_name[i]; ++i)
4992 		if (buf && i == ent)
4993 			return strlcpy(buf, boolean_name[i], size);
4994 	if (buf)
4995 		return -1;
4996 	return i;
4997 }
4998 
4999 /** Complete action names. */
5000 static int
5001 comp_action(struct context *ctx, const struct token *token,
5002 	    unsigned int ent, char *buf, unsigned int size)
5003 {
5004 	unsigned int i;
5005 
5006 	(void)ctx;
5007 	(void)token;
5008 	for (i = 0; next_action[i]; ++i)
5009 		if (buf && i == ent)
5010 			return strlcpy(buf, token_list[next_action[i]].name,
5011 				       size);
5012 	if (buf)
5013 		return -1;
5014 	return i;
5015 }
5016 
5017 /** Complete available ports. */
5018 static int
5019 comp_port(struct context *ctx, const struct token *token,
5020 	  unsigned int ent, char *buf, unsigned int size)
5021 {
5022 	unsigned int i = 0;
5023 	portid_t p;
5024 
5025 	(void)ctx;
5026 	(void)token;
5027 	RTE_ETH_FOREACH_DEV(p) {
5028 		if (buf && i == ent)
5029 			return snprintf(buf, size, "%u", p);
5030 		++i;
5031 	}
5032 	if (buf)
5033 		return -1;
5034 	return i;
5035 }
5036 
5037 /** Complete available rule IDs. */
5038 static int
5039 comp_rule_id(struct context *ctx, const struct token *token,
5040 	     unsigned int ent, char *buf, unsigned int size)
5041 {
5042 	unsigned int i = 0;
5043 	struct rte_port *port;
5044 	struct port_flow *pf;
5045 
5046 	(void)token;
5047 	if (port_id_is_invalid(ctx->port, DISABLED_WARN) ||
5048 	    ctx->port == (portid_t)RTE_PORT_ALL)
5049 		return -1;
5050 	port = &ports[ctx->port];
5051 	for (pf = port->flow_list; pf != NULL; pf = pf->next) {
5052 		if (buf && i == ent)
5053 			return snprintf(buf, size, "%u", pf->id);
5054 		++i;
5055 	}
5056 	if (buf)
5057 		return -1;
5058 	return i;
5059 }
5060 
5061 /** Complete type field for RSS action. */
5062 static int
5063 comp_vc_action_rss_type(struct context *ctx, const struct token *token,
5064 			unsigned int ent, char *buf, unsigned int size)
5065 {
5066 	unsigned int i;
5067 
5068 	(void)ctx;
5069 	(void)token;
5070 	for (i = 0; rss_type_table[i].str; ++i)
5071 		;
5072 	if (!buf)
5073 		return i + 1;
5074 	if (ent < i)
5075 		return strlcpy(buf, rss_type_table[ent].str, size);
5076 	if (ent == i)
5077 		return snprintf(buf, size, "end");
5078 	return -1;
5079 }
5080 
5081 /** Complete queue field for RSS action. */
5082 static int
5083 comp_vc_action_rss_queue(struct context *ctx, const struct token *token,
5084 			 unsigned int ent, char *buf, unsigned int size)
5085 {
5086 	(void)ctx;
5087 	(void)token;
5088 	if (!buf)
5089 		return nb_rxq + 1;
5090 	if (ent < nb_rxq)
5091 		return snprintf(buf, size, "%u", ent);
5092 	if (ent == nb_rxq)
5093 		return snprintf(buf, size, "end");
5094 	return -1;
5095 }
5096 
5097 /** Internal context. */
5098 static struct context cmd_flow_context;
5099 
5100 /** Global parser instance (cmdline API). */
5101 cmdline_parse_inst_t cmd_flow;
5102 
5103 /** Initialize context. */
5104 static void
5105 cmd_flow_context_init(struct context *ctx)
5106 {
5107 	/* A full memset() is not necessary. */
5108 	ctx->curr = ZERO;
5109 	ctx->prev = ZERO;
5110 	ctx->next_num = 0;
5111 	ctx->args_num = 0;
5112 	ctx->eol = 0;
5113 	ctx->last = 0;
5114 	ctx->port = 0;
5115 	ctx->objdata = 0;
5116 	ctx->object = NULL;
5117 	ctx->objmask = NULL;
5118 }
5119 
5120 /** Parse a token (cmdline API). */
5121 static int
5122 cmd_flow_parse(cmdline_parse_token_hdr_t *hdr, const char *src, void *result,
5123 	       unsigned int size)
5124 {
5125 	struct context *ctx = &cmd_flow_context;
5126 	const struct token *token;
5127 	const enum index *list;
5128 	int len;
5129 	int i;
5130 
5131 	(void)hdr;
5132 	token = &token_list[ctx->curr];
5133 	/* Check argument length. */
5134 	ctx->eol = 0;
5135 	ctx->last = 1;
5136 	for (len = 0; src[len]; ++len)
5137 		if (src[len] == '#' || isspace(src[len]))
5138 			break;
5139 	if (!len)
5140 		return -1;
5141 	/* Last argument and EOL detection. */
5142 	for (i = len; src[i]; ++i)
5143 		if (src[i] == '#' || src[i] == '\r' || src[i] == '\n')
5144 			break;
5145 		else if (!isspace(src[i])) {
5146 			ctx->last = 0;
5147 			break;
5148 		}
5149 	for (; src[i]; ++i)
5150 		if (src[i] == '\r' || src[i] == '\n') {
5151 			ctx->eol = 1;
5152 			break;
5153 		}
5154 	/* Initialize context if necessary. */
5155 	if (!ctx->next_num) {
5156 		if (!token->next)
5157 			return 0;
5158 		ctx->next[ctx->next_num++] = token->next[0];
5159 	}
5160 	/* Process argument through candidates. */
5161 	ctx->prev = ctx->curr;
5162 	list = ctx->next[ctx->next_num - 1];
5163 	for (i = 0; list[i]; ++i) {
5164 		const struct token *next = &token_list[list[i]];
5165 		int tmp;
5166 
5167 		ctx->curr = list[i];
5168 		if (next->call)
5169 			tmp = next->call(ctx, next, src, len, result, size);
5170 		else
5171 			tmp = parse_default(ctx, next, src, len, result, size);
5172 		if (tmp == -1 || tmp != len)
5173 			continue;
5174 		token = next;
5175 		break;
5176 	}
5177 	if (!list[i])
5178 		return -1;
5179 	--ctx->next_num;
5180 	/* Push subsequent tokens if any. */
5181 	if (token->next)
5182 		for (i = 0; token->next[i]; ++i) {
5183 			if (ctx->next_num == RTE_DIM(ctx->next))
5184 				return -1;
5185 			ctx->next[ctx->next_num++] = token->next[i];
5186 		}
5187 	/* Push arguments if any. */
5188 	if (token->args)
5189 		for (i = 0; token->args[i]; ++i) {
5190 			if (ctx->args_num == RTE_DIM(ctx->args))
5191 				return -1;
5192 			ctx->args[ctx->args_num++] = token->args[i];
5193 		}
5194 	return len;
5195 }
5196 
5197 /** Return number of completion entries (cmdline API). */
5198 static int
5199 cmd_flow_complete_get_nb(cmdline_parse_token_hdr_t *hdr)
5200 {
5201 	struct context *ctx = &cmd_flow_context;
5202 	const struct token *token = &token_list[ctx->curr];
5203 	const enum index *list;
5204 	int i;
5205 
5206 	(void)hdr;
5207 	/* Count number of tokens in current list. */
5208 	if (ctx->next_num)
5209 		list = ctx->next[ctx->next_num - 1];
5210 	else
5211 		list = token->next[0];
5212 	for (i = 0; list[i]; ++i)
5213 		;
5214 	if (!i)
5215 		return 0;
5216 	/*
5217 	 * If there is a single token, use its completion callback, otherwise
5218 	 * return the number of entries.
5219 	 */
5220 	token = &token_list[list[0]];
5221 	if (i == 1 && token->comp) {
5222 		/* Save index for cmd_flow_get_help(). */
5223 		ctx->prev = list[0];
5224 		return token->comp(ctx, token, 0, NULL, 0);
5225 	}
5226 	return i;
5227 }
5228 
5229 /** Return a completion entry (cmdline API). */
5230 static int
5231 cmd_flow_complete_get_elt(cmdline_parse_token_hdr_t *hdr, int index,
5232 			  char *dst, unsigned int size)
5233 {
5234 	struct context *ctx = &cmd_flow_context;
5235 	const struct token *token = &token_list[ctx->curr];
5236 	const enum index *list;
5237 	int i;
5238 
5239 	(void)hdr;
5240 	/* Count number of tokens in current list. */
5241 	if (ctx->next_num)
5242 		list = ctx->next[ctx->next_num - 1];
5243 	else
5244 		list = token->next[0];
5245 	for (i = 0; list[i]; ++i)
5246 		;
5247 	if (!i)
5248 		return -1;
5249 	/* If there is a single token, use its completion callback. */
5250 	token = &token_list[list[0]];
5251 	if (i == 1 && token->comp) {
5252 		/* Save index for cmd_flow_get_help(). */
5253 		ctx->prev = list[0];
5254 		return token->comp(ctx, token, index, dst, size) < 0 ? -1 : 0;
5255 	}
5256 	/* Otherwise make sure the index is valid and use defaults. */
5257 	if (index >= i)
5258 		return -1;
5259 	token = &token_list[list[index]];
5260 	strlcpy(dst, token->name, size);
5261 	/* Save index for cmd_flow_get_help(). */
5262 	ctx->prev = list[index];
5263 	return 0;
5264 }
5265 
5266 /** Populate help strings for current token (cmdline API). */
5267 static int
5268 cmd_flow_get_help(cmdline_parse_token_hdr_t *hdr, char *dst, unsigned int size)
5269 {
5270 	struct context *ctx = &cmd_flow_context;
5271 	const struct token *token = &token_list[ctx->prev];
5272 
5273 	(void)hdr;
5274 	if (!size)
5275 		return -1;
5276 	/* Set token type and update global help with details. */
5277 	strlcpy(dst, (token->type ? token->type : "TOKEN"), size);
5278 	if (token->help)
5279 		cmd_flow.help_str = token->help;
5280 	else
5281 		cmd_flow.help_str = token->name;
5282 	return 0;
5283 }
5284 
5285 /** Token definition template (cmdline API). */
5286 static struct cmdline_token_hdr cmd_flow_token_hdr = {
5287 	.ops = &(struct cmdline_token_ops){
5288 		.parse = cmd_flow_parse,
5289 		.complete_get_nb = cmd_flow_complete_get_nb,
5290 		.complete_get_elt = cmd_flow_complete_get_elt,
5291 		.get_help = cmd_flow_get_help,
5292 	},
5293 	.offset = 0,
5294 };
5295 
5296 /** Populate the next dynamic token. */
5297 static void
5298 cmd_flow_tok(cmdline_parse_token_hdr_t **hdr,
5299 	     cmdline_parse_token_hdr_t **hdr_inst)
5300 {
5301 	struct context *ctx = &cmd_flow_context;
5302 
5303 	/* Always reinitialize context before requesting the first token. */
5304 	if (!(hdr_inst - cmd_flow.tokens))
5305 		cmd_flow_context_init(ctx);
5306 	/* Return NULL when no more tokens are expected. */
5307 	if (!ctx->next_num && ctx->curr) {
5308 		*hdr = NULL;
5309 		return;
5310 	}
5311 	/* Determine if command should end here. */
5312 	if (ctx->eol && ctx->last && ctx->next_num) {
5313 		const enum index *list = ctx->next[ctx->next_num - 1];
5314 		int i;
5315 
5316 		for (i = 0; list[i]; ++i) {
5317 			if (list[i] != END)
5318 				continue;
5319 			*hdr = NULL;
5320 			return;
5321 		}
5322 	}
5323 	*hdr = &cmd_flow_token_hdr;
5324 }
5325 
5326 /** Dispatch parsed buffer to function calls. */
5327 static void
5328 cmd_flow_parsed(const struct buffer *in)
5329 {
5330 	switch (in->command) {
5331 	case VALIDATE:
5332 		port_flow_validate(in->port, &in->args.vc.attr,
5333 				   in->args.vc.pattern, in->args.vc.actions);
5334 		break;
5335 	case CREATE:
5336 		port_flow_create(in->port, &in->args.vc.attr,
5337 				 in->args.vc.pattern, in->args.vc.actions);
5338 		break;
5339 	case DESTROY:
5340 		port_flow_destroy(in->port, in->args.destroy.rule_n,
5341 				  in->args.destroy.rule);
5342 		break;
5343 	case FLUSH:
5344 		port_flow_flush(in->port);
5345 		break;
5346 	case QUERY:
5347 		port_flow_query(in->port, in->args.query.rule,
5348 				&in->args.query.action);
5349 		break;
5350 	case LIST:
5351 		port_flow_list(in->port, in->args.list.group_n,
5352 			       in->args.list.group);
5353 		break;
5354 	case ISOLATE:
5355 		port_flow_isolate(in->port, in->args.isolate.set);
5356 		break;
5357 	default:
5358 		break;
5359 	}
5360 }
5361 
5362 /** Token generator and output processing callback (cmdline API). */
5363 static void
5364 cmd_flow_cb(void *arg0, struct cmdline *cl, void *arg2)
5365 {
5366 	if (cl == NULL)
5367 		cmd_flow_tok(arg0, arg2);
5368 	else
5369 		cmd_flow_parsed(arg0);
5370 }
5371 
5372 /** Global parser instance (cmdline API). */
5373 cmdline_parse_inst_t cmd_flow = {
5374 	.f = cmd_flow_cb,
5375 	.data = NULL, /**< Unused. */
5376 	.help_str = NULL, /**< Updated by cmd_flow_get_help(). */
5377 	.tokens = {
5378 		NULL,
5379 	}, /**< Tokens are returned by cmd_flow_tok(). */
5380 };
5381