xref: /dflybsd-src/tools/regression/lib/libm/test-cexp.c (revision 7f8c68295613ce24cc71827cf210cb3d1e3bc69b)
1*7f8c6829SSascha Wildner /*-
2*7f8c6829SSascha Wildner  * Copyright (c) 2008-2011 David Schultz <das@FreeBSD.org>
3*7f8c6829SSascha Wildner  * All rights reserved.
4*7f8c6829SSascha Wildner  *
5*7f8c6829SSascha Wildner  * Redistribution and use in source and binary forms, with or without
6*7f8c6829SSascha Wildner  * modification, are permitted provided that the following conditions
7*7f8c6829SSascha Wildner  * are met:
8*7f8c6829SSascha Wildner  * 1. Redistributions of source code must retain the above copyright
9*7f8c6829SSascha Wildner  *    notice, this list of conditions and the following disclaimer.
10*7f8c6829SSascha Wildner  * 2. Redistributions in binary form must reproduce the above copyright
11*7f8c6829SSascha Wildner  *    notice, this list of conditions and the following disclaimer in the
12*7f8c6829SSascha Wildner  *    documentation and/or other materials provided with the distribution.
13*7f8c6829SSascha Wildner  *
14*7f8c6829SSascha Wildner  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15*7f8c6829SSascha Wildner  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16*7f8c6829SSascha Wildner  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17*7f8c6829SSascha Wildner  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18*7f8c6829SSascha Wildner  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19*7f8c6829SSascha Wildner  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20*7f8c6829SSascha Wildner  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21*7f8c6829SSascha Wildner  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22*7f8c6829SSascha Wildner  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23*7f8c6829SSascha Wildner  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24*7f8c6829SSascha Wildner  * SUCH DAMAGE.
25*7f8c6829SSascha Wildner  *
26*7f8c6829SSascha Wildner  * $FreeBSD: src/tools/regression/lib/msun/test-cexp.c,v 1.3 2013/05/29 00:27:12 svnexp Exp $
27*7f8c6829SSascha Wildner  */
28*7f8c6829SSascha Wildner 
29*7f8c6829SSascha Wildner /*
30*7f8c6829SSascha Wildner  * Tests for corner cases in cexp*().
31*7f8c6829SSascha Wildner  */
32*7f8c6829SSascha Wildner 
33*7f8c6829SSascha Wildner #include <assert.h>
34*7f8c6829SSascha Wildner #include <complex.h>
35*7f8c6829SSascha Wildner #include <fenv.h>
36*7f8c6829SSascha Wildner #include <float.h>
37*7f8c6829SSascha Wildner #include <math.h>
38*7f8c6829SSascha Wildner #include <stdio.h>
39*7f8c6829SSascha Wildner 
40*7f8c6829SSascha Wildner #define	ALL_STD_EXCEPT	(FE_DIVBYZERO | FE_INEXACT | FE_INVALID | \
41*7f8c6829SSascha Wildner 			 FE_OVERFLOW | FE_UNDERFLOW)
42*7f8c6829SSascha Wildner #define	FLT_ULP()	ldexpl(1.0, 1 - FLT_MANT_DIG)
43*7f8c6829SSascha Wildner #define	DBL_ULP()	ldexpl(1.0, 1 - DBL_MANT_DIG)
44*7f8c6829SSascha Wildner #define	LDBL_ULP()	ldexpl(1.0, 1 - LDBL_MANT_DIG)
45*7f8c6829SSascha Wildner 
46*7f8c6829SSascha Wildner #define	N(i)	(sizeof(i) / sizeof((i)[0]))
47*7f8c6829SSascha Wildner 
48*7f8c6829SSascha Wildner #pragma STDC FENV_ACCESS	ON
49*7f8c6829SSascha Wildner #pragma	STDC CX_LIMITED_RANGE	OFF
50*7f8c6829SSascha Wildner 
51*7f8c6829SSascha Wildner /*
52*7f8c6829SSascha Wildner  * XXX gcc implements complex multiplication incorrectly. In
53*7f8c6829SSascha Wildner  * particular, it implements it as if the CX_LIMITED_RANGE pragma
54*7f8c6829SSascha Wildner  * were ON. Consequently, we need this function to form numbers
55*7f8c6829SSascha Wildner  * such as x + INFINITY * I, since gcc evalutes INFINITY * I as
56*7f8c6829SSascha Wildner  * NaN + INFINITY * I.
57*7f8c6829SSascha Wildner  */
58*7f8c6829SSascha Wildner static inline long double complex
cpackl(long double x,long double y)59*7f8c6829SSascha Wildner cpackl(long double x, long double y)
60*7f8c6829SSascha Wildner {
61*7f8c6829SSascha Wildner 	long double complex z;
62*7f8c6829SSascha Wildner 
63*7f8c6829SSascha Wildner 	__real__ z = x;
64*7f8c6829SSascha Wildner 	__imag__ z = y;
65*7f8c6829SSascha Wildner 	return (z);
66*7f8c6829SSascha Wildner }
67*7f8c6829SSascha Wildner 
68*7f8c6829SSascha Wildner /*
69*7f8c6829SSascha Wildner  * Test that a function returns the correct value and sets the
70*7f8c6829SSascha Wildner  * exception flags correctly. The exceptmask specifies which
71*7f8c6829SSascha Wildner  * exceptions we should check. We need to be lenient for several
72*7f8c6829SSascha Wildner  * reasons, but mainly because on some architectures it's impossible
73*7f8c6829SSascha Wildner  * to raise FE_OVERFLOW without raising FE_INEXACT. In some cases,
74*7f8c6829SSascha Wildner  * whether cexp() raises an invalid exception is unspecified.
75*7f8c6829SSascha Wildner  *
76*7f8c6829SSascha Wildner  * These are macros instead of functions so that assert provides more
77*7f8c6829SSascha Wildner  * meaningful error messages.
78*7f8c6829SSascha Wildner  *
79*7f8c6829SSascha Wildner  * XXX The volatile here is to avoid gcc's bogus constant folding and work
80*7f8c6829SSascha Wildner  *     around the lack of support for the FENV_ACCESS pragma.
81*7f8c6829SSascha Wildner  */
82*7f8c6829SSascha Wildner #define	test(func, z, result, exceptmask, excepts, checksign)	do {	\
83*7f8c6829SSascha Wildner 	volatile long double complex _d = z;				\
84*7f8c6829SSascha Wildner 	assert(feclearexcept(FE_ALL_EXCEPT) == 0);			\
85*7f8c6829SSascha Wildner 	assert(cfpequal((func)(_d), (result), (checksign)));		\
86*7f8c6829SSascha Wildner 	assert(((func), fetestexcept(exceptmask) == (excepts)));	\
87*7f8c6829SSascha Wildner } while (0)
88*7f8c6829SSascha Wildner 
89*7f8c6829SSascha Wildner /* Test within a given tolerance. */
90*7f8c6829SSascha Wildner #define	test_tol(func, z, result, tol)				do {	\
91*7f8c6829SSascha Wildner 	volatile long double complex _d = z;				\
92*7f8c6829SSascha Wildner 	assert(cfpequal_tol((func)(_d), (result), (tol)));		\
93*7f8c6829SSascha Wildner } while (0)
94*7f8c6829SSascha Wildner 
95*7f8c6829SSascha Wildner /* Test all the functions that compute cexp(x). */
96*7f8c6829SSascha Wildner #define	testall(x, result, exceptmask, excepts, checksign)	do {	\
97*7f8c6829SSascha Wildner 	test(cexp, x, result, exceptmask, excepts, checksign);		\
98*7f8c6829SSascha Wildner 	test(cexpf, x, result, exceptmask, excepts, checksign);		\
99*7f8c6829SSascha Wildner } while (0)
100*7f8c6829SSascha Wildner 
101*7f8c6829SSascha Wildner /*
102*7f8c6829SSascha Wildner  * Test all the functions that compute cexp(x), within a given tolerance.
103*7f8c6829SSascha Wildner  * The tolerance is specified in ulps.
104*7f8c6829SSascha Wildner  */
105*7f8c6829SSascha Wildner #define	testall_tol(x, result, tol)				do {	\
106*7f8c6829SSascha Wildner 	test_tol(cexp, x, result, tol * DBL_ULP());			\
107*7f8c6829SSascha Wildner 	test_tol(cexpf, x, result, tol * FLT_ULP());			\
108*7f8c6829SSascha Wildner } while (0)
109*7f8c6829SSascha Wildner 
110*7f8c6829SSascha Wildner /* Various finite non-zero numbers to test. */
111*7f8c6829SSascha Wildner static const float finites[] =
112*7f8c6829SSascha Wildner { -42.0e20, -1.0, -1.0e-10, -0.0, 0.0, 1.0e-10, 1.0, 42.0e20 };
113*7f8c6829SSascha Wildner 
114*7f8c6829SSascha Wildner /*
115*7f8c6829SSascha Wildner  * Determine whether x and y are equal, with two special rules:
116*7f8c6829SSascha Wildner  *	+0.0 != -0.0
117*7f8c6829SSascha Wildner  *	 NaN == NaN
118*7f8c6829SSascha Wildner  * If checksign is 0, we compare the absolute values instead.
119*7f8c6829SSascha Wildner  */
120*7f8c6829SSascha Wildner static int
fpequal(long double x,long double y,int checksign)121*7f8c6829SSascha Wildner fpequal(long double x, long double y, int checksign)
122*7f8c6829SSascha Wildner {
123*7f8c6829SSascha Wildner 	if (isnan(x) || isnan(y))
124*7f8c6829SSascha Wildner 		return (1);
125*7f8c6829SSascha Wildner 	if (checksign)
126*7f8c6829SSascha Wildner 		return (x == y && !signbit(x) == !signbit(y));
127*7f8c6829SSascha Wildner 	else
128*7f8c6829SSascha Wildner 		return (fabsl(x) == fabsl(y));
129*7f8c6829SSascha Wildner }
130*7f8c6829SSascha Wildner 
131*7f8c6829SSascha Wildner static int
fpequal_tol(long double x,long double y,long double tol)132*7f8c6829SSascha Wildner fpequal_tol(long double x, long double y, long double tol)
133*7f8c6829SSascha Wildner {
134*7f8c6829SSascha Wildner 	fenv_t env;
135*7f8c6829SSascha Wildner 	int ret;
136*7f8c6829SSascha Wildner 
137*7f8c6829SSascha Wildner 	if (isnan(x) && isnan(y))
138*7f8c6829SSascha Wildner 		return (1);
139*7f8c6829SSascha Wildner 	if (!signbit(x) != !signbit(y))
140*7f8c6829SSascha Wildner 		return (0);
141*7f8c6829SSascha Wildner 	if (x == y)
142*7f8c6829SSascha Wildner 		return (1);
143*7f8c6829SSascha Wildner 	if (tol == 0)
144*7f8c6829SSascha Wildner 		return (0);
145*7f8c6829SSascha Wildner 
146*7f8c6829SSascha Wildner 	/* Hard case: need to check the tolerance. */
147*7f8c6829SSascha Wildner 	feholdexcept(&env);
148*7f8c6829SSascha Wildner 	/*
149*7f8c6829SSascha Wildner 	 * For our purposes here, if y=0, we interpret tol as an absolute
150*7f8c6829SSascha Wildner 	 * tolerance. This is to account for roundoff in the input, e.g.,
151*7f8c6829SSascha Wildner 	 * cos(Pi/2) ~= 0.
152*7f8c6829SSascha Wildner 	 */
153*7f8c6829SSascha Wildner 	if (y == 0.0)
154*7f8c6829SSascha Wildner 		ret = fabsl(x - y) <= fabsl(tol);
155*7f8c6829SSascha Wildner 	else
156*7f8c6829SSascha Wildner 		ret = fabsl(x - y) <= fabsl(y * tol);
157*7f8c6829SSascha Wildner 	fesetenv(&env);
158*7f8c6829SSascha Wildner 	return (ret);
159*7f8c6829SSascha Wildner }
160*7f8c6829SSascha Wildner 
161*7f8c6829SSascha Wildner static int
cfpequal(long double complex x,long double complex y,int checksign)162*7f8c6829SSascha Wildner cfpequal(long double complex x, long double complex y, int checksign)
163*7f8c6829SSascha Wildner {
164*7f8c6829SSascha Wildner 	return (fpequal(creal(x), creal(y), checksign)
165*7f8c6829SSascha Wildner 		&& fpequal(cimag(x), cimag(y), checksign));
166*7f8c6829SSascha Wildner }
167*7f8c6829SSascha Wildner 
168*7f8c6829SSascha Wildner static int
cfpequal_tol(long double complex x,long double complex y,long double tol)169*7f8c6829SSascha Wildner cfpequal_tol(long double complex x, long double complex y, long double tol)
170*7f8c6829SSascha Wildner {
171*7f8c6829SSascha Wildner 	return (fpequal_tol(creal(x), creal(y), tol)
172*7f8c6829SSascha Wildner 		&& fpequal_tol(cimag(x), cimag(y), tol));
173*7f8c6829SSascha Wildner }
174*7f8c6829SSascha Wildner 
175*7f8c6829SSascha Wildner 
176*7f8c6829SSascha Wildner /* Tests for 0 */
177*7f8c6829SSascha Wildner void
test_zero(void)178*7f8c6829SSascha Wildner test_zero(void)
179*7f8c6829SSascha Wildner {
180*7f8c6829SSascha Wildner 
181*7f8c6829SSascha Wildner 	/* cexp(0) = 1, no exceptions raised */
182*7f8c6829SSascha Wildner 	testall(0.0, 1.0, ALL_STD_EXCEPT, 0, 1);
183*7f8c6829SSascha Wildner 	testall(-0.0, 1.0, ALL_STD_EXCEPT, 0, 1);
184*7f8c6829SSascha Wildner 	testall(cpackl(0.0, -0.0), cpackl(1.0, -0.0), ALL_STD_EXCEPT, 0, 1);
185*7f8c6829SSascha Wildner 	testall(cpackl(-0.0, -0.0), cpackl(1.0, -0.0), ALL_STD_EXCEPT, 0, 1);
186*7f8c6829SSascha Wildner }
187*7f8c6829SSascha Wildner 
188*7f8c6829SSascha Wildner /*
189*7f8c6829SSascha Wildner  * Tests for NaN.  The signs of the results are indeterminate unless the
190*7f8c6829SSascha Wildner  * imaginary part is 0.
191*7f8c6829SSascha Wildner  */
192*7f8c6829SSascha Wildner void
test_nan()193*7f8c6829SSascha Wildner test_nan()
194*7f8c6829SSascha Wildner {
195*7f8c6829SSascha Wildner 	int i;
196*7f8c6829SSascha Wildner 
197*7f8c6829SSascha Wildner 	/* cexp(x + NaNi) = NaN + NaNi and optionally raises invalid */
198*7f8c6829SSascha Wildner 	/* cexp(NaN + yi) = NaN + NaNi and optionally raises invalid (|y|>0) */
199*7f8c6829SSascha Wildner 	for (i = 0; i < N(finites); i++) {
200*7f8c6829SSascha Wildner 		testall(cpackl(finites[i], NAN), cpackl(NAN, NAN),
201*7f8c6829SSascha Wildner 			ALL_STD_EXCEPT & ~FE_INVALID, 0, 0);
202*7f8c6829SSascha Wildner 		if (finites[i] == 0.0)
203*7f8c6829SSascha Wildner 			continue;
204*7f8c6829SSascha Wildner 		/* XXX FE_INEXACT shouldn't be raised here */
205*7f8c6829SSascha Wildner 		testall(cpackl(NAN, finites[i]), cpackl(NAN, NAN),
206*7f8c6829SSascha Wildner 			ALL_STD_EXCEPT & ~(FE_INVALID | FE_INEXACT), 0, 0);
207*7f8c6829SSascha Wildner 	}
208*7f8c6829SSascha Wildner 
209*7f8c6829SSascha Wildner 	/* cexp(NaN +- 0i) = NaN +- 0i */
210*7f8c6829SSascha Wildner 	testall(cpackl(NAN, 0.0), cpackl(NAN, 0.0), ALL_STD_EXCEPT, 0, 1);
211*7f8c6829SSascha Wildner 	testall(cpackl(NAN, -0.0), cpackl(NAN, -0.0), ALL_STD_EXCEPT, 0, 1);
212*7f8c6829SSascha Wildner 
213*7f8c6829SSascha Wildner 	/* cexp(inf + NaN i) = inf + nan i */
214*7f8c6829SSascha Wildner 	testall(cpackl(INFINITY, NAN), cpackl(INFINITY, NAN),
215*7f8c6829SSascha Wildner 		ALL_STD_EXCEPT, 0, 0);
216*7f8c6829SSascha Wildner 	/* cexp(-inf + NaN i) = 0 */
217*7f8c6829SSascha Wildner 	testall(cpackl(-INFINITY, NAN), cpackl(0.0, 0.0),
218*7f8c6829SSascha Wildner 		ALL_STD_EXCEPT, 0, 0);
219*7f8c6829SSascha Wildner 	/* cexp(NaN + NaN i) = NaN + NaN i */
220*7f8c6829SSascha Wildner 	testall(cpackl(NAN, NAN), cpackl(NAN, NAN),
221*7f8c6829SSascha Wildner 		ALL_STD_EXCEPT, 0, 0);
222*7f8c6829SSascha Wildner }
223*7f8c6829SSascha Wildner 
224*7f8c6829SSascha Wildner void
test_inf(void)225*7f8c6829SSascha Wildner test_inf(void)
226*7f8c6829SSascha Wildner {
227*7f8c6829SSascha Wildner 	int i;
228*7f8c6829SSascha Wildner 
229*7f8c6829SSascha Wildner 	/* cexp(x + inf i) = NaN + NaNi and raises invalid */
230*7f8c6829SSascha Wildner 	for (i = 0; i < N(finites); i++) {
231*7f8c6829SSascha Wildner 		testall(cpackl(finites[i], INFINITY), cpackl(NAN, NAN),
232*7f8c6829SSascha Wildner 			ALL_STD_EXCEPT, FE_INVALID, 1);
233*7f8c6829SSascha Wildner 	}
234*7f8c6829SSascha Wildner 	/* cexp(-inf + yi) = 0 * (cos(y) + sin(y)i) */
235*7f8c6829SSascha Wildner 		/* XXX shouldn't raise an inexact exception */
236*7f8c6829SSascha Wildner 	testall(cpackl(-INFINITY, M_PI_4), cpackl(0.0, 0.0),
237*7f8c6829SSascha Wildner 			ALL_STD_EXCEPT & ~FE_INEXACT, 0, 1);
238*7f8c6829SSascha Wildner 	testall(cpackl(-INFINITY, 3 * M_PI_4), cpackl(-0.0, 0.0),
239*7f8c6829SSascha Wildner 			ALL_STD_EXCEPT & ~FE_INEXACT, 0, 1);
240*7f8c6829SSascha Wildner 	testall(cpackl(-INFINITY, 5 * M_PI_4), cpackl(-0.0, -0.0),
241*7f8c6829SSascha Wildner 		ALL_STD_EXCEPT & ~FE_INEXACT, 0, 1);
242*7f8c6829SSascha Wildner 	testall(cpackl(-INFINITY, 7 * M_PI_4), cpackl(0.0, -0.0),
243*7f8c6829SSascha Wildner 		ALL_STD_EXCEPT & ~FE_INEXACT, 0, 1);
244*7f8c6829SSascha Wildner 	testall(cpackl(-INFINITY, 0.0), cpackl(0.0, 0.0),
245*7f8c6829SSascha Wildner 		ALL_STD_EXCEPT, 0, 1);
246*7f8c6829SSascha Wildner 	testall(cpackl(-INFINITY, -0.0), cpackl(0.0, -0.0),
247*7f8c6829SSascha Wildner 		ALL_STD_EXCEPT, 0, 1);
248*7f8c6829SSascha Wildner 	/* cexp(inf + yi) = inf * (cos(y) + sin(y)i) (except y=0) */
249*7f8c6829SSascha Wildner 	/* XXX shouldn't raise an inexact exception */
250*7f8c6829SSascha Wildner 	testall(cpackl(INFINITY, M_PI_4), cpackl(INFINITY, INFINITY),
251*7f8c6829SSascha Wildner 		ALL_STD_EXCEPT & ~FE_INEXACT, 0, 1);
252*7f8c6829SSascha Wildner 	testall(cpackl(INFINITY, 3 * M_PI_4), cpackl(-INFINITY, INFINITY),
253*7f8c6829SSascha Wildner 		ALL_STD_EXCEPT & ~FE_INEXACT, 0, 1);
254*7f8c6829SSascha Wildner 	testall(cpackl(INFINITY, 5 * M_PI_4), cpackl(-INFINITY, -INFINITY),
255*7f8c6829SSascha Wildner 		ALL_STD_EXCEPT & ~FE_INEXACT, 0, 1);
256*7f8c6829SSascha Wildner 	testall(cpackl(INFINITY, 7 * M_PI_4), cpackl(INFINITY, -INFINITY),
257*7f8c6829SSascha Wildner 		ALL_STD_EXCEPT & ~FE_INEXACT, 0, 1);
258*7f8c6829SSascha Wildner 	/* cexp(inf + 0i) = inf + 0i */
259*7f8c6829SSascha Wildner 	testall(cpackl(INFINITY, 0.0), cpackl(INFINITY, 0.0),
260*7f8c6829SSascha Wildner 		ALL_STD_EXCEPT, 0, 1);
261*7f8c6829SSascha Wildner 	testall(cpackl(INFINITY, -0.0), cpackl(INFINITY, -0.0),
262*7f8c6829SSascha Wildner 		ALL_STD_EXCEPT, 0, 1);
263*7f8c6829SSascha Wildner }
264*7f8c6829SSascha Wildner 
265*7f8c6829SSascha Wildner void
test_reals(void)266*7f8c6829SSascha Wildner test_reals(void)
267*7f8c6829SSascha Wildner {
268*7f8c6829SSascha Wildner 	int i;
269*7f8c6829SSascha Wildner 
270*7f8c6829SSascha Wildner 	for (i = 0; i < N(finites); i++) {
271*7f8c6829SSascha Wildner 		/* XXX could check exceptions more meticulously */
272*7f8c6829SSascha Wildner 		test(cexp, cpackl(finites[i], 0.0),
273*7f8c6829SSascha Wildner 		     cpackl(exp(finites[i]), 0.0),
274*7f8c6829SSascha Wildner 		     FE_INVALID | FE_DIVBYZERO, 0, 1);
275*7f8c6829SSascha Wildner 		test(cexp, cpackl(finites[i], -0.0),
276*7f8c6829SSascha Wildner 		     cpackl(exp(finites[i]), -0.0),
277*7f8c6829SSascha Wildner 		     FE_INVALID | FE_DIVBYZERO, 0, 1);
278*7f8c6829SSascha Wildner 		test(cexpf, cpackl(finites[i], 0.0),
279*7f8c6829SSascha Wildner 		     cpackl(expf(finites[i]), 0.0),
280*7f8c6829SSascha Wildner 		     FE_INVALID | FE_DIVBYZERO, 0, 1);
281*7f8c6829SSascha Wildner 		test(cexpf, cpackl(finites[i], -0.0),
282*7f8c6829SSascha Wildner 		     cpackl(expf(finites[i]), -0.0),
283*7f8c6829SSascha Wildner 		     FE_INVALID | FE_DIVBYZERO, 0, 1);
284*7f8c6829SSascha Wildner 	}
285*7f8c6829SSascha Wildner }
286*7f8c6829SSascha Wildner 
287*7f8c6829SSascha Wildner void
test_imaginaries(void)288*7f8c6829SSascha Wildner test_imaginaries(void)
289*7f8c6829SSascha Wildner {
290*7f8c6829SSascha Wildner 	int i;
291*7f8c6829SSascha Wildner 
292*7f8c6829SSascha Wildner 	for (i = 0; i < N(finites); i++) {
293*7f8c6829SSascha Wildner 		test(cexp, cpackl(0.0, finites[i]),
294*7f8c6829SSascha Wildner 		     cpackl(cos(finites[i]), sin(finites[i])),
295*7f8c6829SSascha Wildner 		     ALL_STD_EXCEPT & ~FE_INEXACT, 0, 1);
296*7f8c6829SSascha Wildner 		test(cexp, cpackl(-0.0, finites[i]),
297*7f8c6829SSascha Wildner 		     cpackl(cos(finites[i]), sin(finites[i])),
298*7f8c6829SSascha Wildner 		     ALL_STD_EXCEPT & ~FE_INEXACT, 0, 1);
299*7f8c6829SSascha Wildner 		test(cexpf, cpackl(0.0, finites[i]),
300*7f8c6829SSascha Wildner 		     cpackl(cosf(finites[i]), sinf(finites[i])),
301*7f8c6829SSascha Wildner 		     ALL_STD_EXCEPT & ~FE_INEXACT, 0, 1);
302*7f8c6829SSascha Wildner 		test(cexpf, cpackl(-0.0, finites[i]),
303*7f8c6829SSascha Wildner 		     cpackl(cosf(finites[i]), sinf(finites[i])),
304*7f8c6829SSascha Wildner 		     ALL_STD_EXCEPT & ~FE_INEXACT, 0, 1);
305*7f8c6829SSascha Wildner 	}
306*7f8c6829SSascha Wildner }
307*7f8c6829SSascha Wildner 
308*7f8c6829SSascha Wildner void
test_small(void)309*7f8c6829SSascha Wildner test_small(void)
310*7f8c6829SSascha Wildner {
311*7f8c6829SSascha Wildner 	static const double tests[] = {
312*7f8c6829SSascha Wildner 	     /* csqrt(a + bI) = x + yI */
313*7f8c6829SSascha Wildner 	     /* a	b	x			y */
314*7f8c6829SSascha Wildner 		 1.0,	M_PI_4,	M_SQRT2 * 0.5 * M_E,	M_SQRT2 * 0.5 * M_E,
315*7f8c6829SSascha Wildner 		-1.0,	M_PI_4,	M_SQRT2 * 0.5 / M_E,	M_SQRT2 * 0.5 / M_E,
316*7f8c6829SSascha Wildner 		 2.0,	M_PI_2,	0.0,			M_E * M_E,
317*7f8c6829SSascha Wildner 		 M_LN2,	M_PI,	-2.0,			0.0,
318*7f8c6829SSascha Wildner 	};
319*7f8c6829SSascha Wildner 	double a, b;
320*7f8c6829SSascha Wildner 	double x, y;
321*7f8c6829SSascha Wildner 	int i;
322*7f8c6829SSascha Wildner 
323*7f8c6829SSascha Wildner 	for (i = 0; i < N(tests); i += 4) {
324*7f8c6829SSascha Wildner 		a = tests[i];
325*7f8c6829SSascha Wildner 		b = tests[i + 1];
326*7f8c6829SSascha Wildner 		x = tests[i + 2];
327*7f8c6829SSascha Wildner 		y = tests[i + 3];
328*7f8c6829SSascha Wildner 		test_tol(cexp, cpackl(a, b), cpackl(x, y), 3 * DBL_ULP());
329*7f8c6829SSascha Wildner 
330*7f8c6829SSascha Wildner 		/* float doesn't have enough precision to pass these tests */
331*7f8c6829SSascha Wildner 		if (x == 0 || y == 0)
332*7f8c6829SSascha Wildner 			continue;
333*7f8c6829SSascha Wildner 		test_tol(cexpf, cpackl(a, b), cpackl(x, y), 1 * FLT_ULP());
334*7f8c6829SSascha Wildner         }
335*7f8c6829SSascha Wildner }
336*7f8c6829SSascha Wildner 
337*7f8c6829SSascha Wildner /* Test inputs with a real part r that would overflow exp(r). */
338*7f8c6829SSascha Wildner void
test_large(void)339*7f8c6829SSascha Wildner test_large(void)
340*7f8c6829SSascha Wildner {
341*7f8c6829SSascha Wildner 
342*7f8c6829SSascha Wildner 	test_tol(cexp, cpackl(709.79, 0x1p-1074),
343*7f8c6829SSascha Wildner 		 cpackl(INFINITY, 8.94674309915433533273e-16), DBL_ULP());
344*7f8c6829SSascha Wildner 	test_tol(cexp, cpackl(1000, 0x1p-1074),
345*7f8c6829SSascha Wildner 		 cpackl(INFINITY, 9.73344457300016401328e+110), DBL_ULP());
346*7f8c6829SSascha Wildner 	test_tol(cexp, cpackl(1400, 0x1p-1074),
347*7f8c6829SSascha Wildner 		 cpackl(INFINITY, 5.08228858149196559681e+284), DBL_ULP());
348*7f8c6829SSascha Wildner 	test_tol(cexp, cpackl(900, 0x1.23456789abcdep-1020),
349*7f8c6829SSascha Wildner 		 cpackl(INFINITY, 7.42156649354218408074e+83), DBL_ULP());
350*7f8c6829SSascha Wildner 	test_tol(cexp, cpackl(1300, 0x1.23456789abcdep-1020),
351*7f8c6829SSascha Wildner 		 cpackl(INFINITY, 3.87514844965996756704e+257), DBL_ULP());
352*7f8c6829SSascha Wildner 
353*7f8c6829SSascha Wildner 	test_tol(cexpf, cpackl(88.73, 0x1p-149),
354*7f8c6829SSascha Wildner 		 cpackl(INFINITY, 4.80265603e-07), 2 * FLT_ULP());
355*7f8c6829SSascha Wildner 	test_tol(cexpf, cpackl(90, 0x1p-149),
356*7f8c6829SSascha Wildner 		 cpackl(INFINITY, 1.7101492622e-06f), 2 * FLT_ULP());
357*7f8c6829SSascha Wildner 	test_tol(cexpf, cpackl(192, 0x1p-149),
358*7f8c6829SSascha Wildner 		 cpackl(INFINITY, 3.396809344e+38f), 2 * FLT_ULP());
359*7f8c6829SSascha Wildner 	test_tol(cexpf, cpackl(120, 0x1.234568p-120),
360*7f8c6829SSascha Wildner 		 cpackl(INFINITY, 1.1163382522e+16f), 2 * FLT_ULP());
361*7f8c6829SSascha Wildner 	test_tol(cexpf, cpackl(170, 0x1.234568p-120),
362*7f8c6829SSascha Wildner 		 cpackl(INFINITY, 5.7878851079e+37f), 2 * FLT_ULP());
363*7f8c6829SSascha Wildner }
364*7f8c6829SSascha Wildner 
365*7f8c6829SSascha Wildner int
main(int argc,char * argv[])366*7f8c6829SSascha Wildner main(int argc, char *argv[])
367*7f8c6829SSascha Wildner {
368*7f8c6829SSascha Wildner 
369*7f8c6829SSascha Wildner 	printf("1..7\n");
370*7f8c6829SSascha Wildner 
371*7f8c6829SSascha Wildner 	test_zero();
372*7f8c6829SSascha Wildner 	printf("ok 1 - cexp zero\n");
373*7f8c6829SSascha Wildner 
374*7f8c6829SSascha Wildner 	test_nan();
375*7f8c6829SSascha Wildner 	printf("ok 2 - cexp nan\n");
376*7f8c6829SSascha Wildner 
377*7f8c6829SSascha Wildner 	test_inf();
378*7f8c6829SSascha Wildner 	printf("ok 3 - cexp inf\n");
379*7f8c6829SSascha Wildner 
380*7f8c6829SSascha Wildner 	test_reals();
381*7f8c6829SSascha Wildner 	printf("ok 4 - cexp reals\n");
382*7f8c6829SSascha Wildner 
383*7f8c6829SSascha Wildner 	test_imaginaries();
384*7f8c6829SSascha Wildner 	printf("ok 5 - cexp imaginaries\n");
385*7f8c6829SSascha Wildner 
386*7f8c6829SSascha Wildner 	test_small();
387*7f8c6829SSascha Wildner 	printf("ok 6 - cexp small\n");
388*7f8c6829SSascha Wildner 
389*7f8c6829SSascha Wildner 	test_large();
390*7f8c6829SSascha Wildner 	printf("ok 7 - cexp large\n");
391*7f8c6829SSascha Wildner 
392*7f8c6829SSascha Wildner 	return (0);
393*7f8c6829SSascha Wildner }
394