xref: /dflybsd-src/contrib/openbsd_libm/src/ld80/s_expm1l.c (revision 4382f29d99a100bd77a81697c2f699c11f6a472a)
1*05a0b428SJohn Marino /*	$OpenBSD: s_expm1l.c,v 1.2 2011/07/20 21:02:51 martynas Exp $	*/
2*05a0b428SJohn Marino 
3*05a0b428SJohn Marino /*
4*05a0b428SJohn Marino  * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
5*05a0b428SJohn Marino  *
6*05a0b428SJohn Marino  * Permission to use, copy, modify, and distribute this software for any
7*05a0b428SJohn Marino  * purpose with or without fee is hereby granted, provided that the above
8*05a0b428SJohn Marino  * copyright notice and this permission notice appear in all copies.
9*05a0b428SJohn Marino  *
10*05a0b428SJohn Marino  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11*05a0b428SJohn Marino  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12*05a0b428SJohn Marino  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13*05a0b428SJohn Marino  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14*05a0b428SJohn Marino  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15*05a0b428SJohn Marino  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16*05a0b428SJohn Marino  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17*05a0b428SJohn Marino  */
18*05a0b428SJohn Marino 
19*05a0b428SJohn Marino /*							expm1l.c
20*05a0b428SJohn Marino  *
21*05a0b428SJohn Marino  *	Exponential function, minus 1
22*05a0b428SJohn Marino  *      Long double precision
23*05a0b428SJohn Marino  *
24*05a0b428SJohn Marino  *
25*05a0b428SJohn Marino  * SYNOPSIS:
26*05a0b428SJohn Marino  *
27*05a0b428SJohn Marino  * long double x, y, expm1l();
28*05a0b428SJohn Marino  *
29*05a0b428SJohn Marino  * y = expm1l( x );
30*05a0b428SJohn Marino  *
31*05a0b428SJohn Marino  *
32*05a0b428SJohn Marino  *
33*05a0b428SJohn Marino  * DESCRIPTION:
34*05a0b428SJohn Marino  *
35*05a0b428SJohn Marino  * Returns e (2.71828...) raised to the x power, minus 1.
36*05a0b428SJohn Marino  *
37*05a0b428SJohn Marino  * Range reduction is accomplished by separating the argument
38*05a0b428SJohn Marino  * into an integer k and fraction f such that
39*05a0b428SJohn Marino  *
40*05a0b428SJohn Marino  *     x    k  f
41*05a0b428SJohn Marino  *    e  = 2  e.
42*05a0b428SJohn Marino  *
43*05a0b428SJohn Marino  * An expansion x + .5 x^2 + x^3 R(x) approximates exp(f) - 1
44*05a0b428SJohn Marino  * in the basic range [-0.5 ln 2, 0.5 ln 2].
45*05a0b428SJohn Marino  *
46*05a0b428SJohn Marino  *
47*05a0b428SJohn Marino  * ACCURACY:
48*05a0b428SJohn Marino  *
49*05a0b428SJohn Marino  *                      Relative error:
50*05a0b428SJohn Marino  * arithmetic   domain     # trials      peak         rms
51*05a0b428SJohn Marino  *    IEEE    -45,+MAXLOG   200,000     1.2e-19     2.5e-20
52*05a0b428SJohn Marino  *
53*05a0b428SJohn Marino  * ERROR MESSAGES:
54*05a0b428SJohn Marino  *
55*05a0b428SJohn Marino  *   message         condition      value returned
56*05a0b428SJohn Marino  * expm1l overflow   x > MAXLOG         MAXNUM
57*05a0b428SJohn Marino  *
58*05a0b428SJohn Marino  */
59*05a0b428SJohn Marino 
60*05a0b428SJohn Marino #include <math.h>
61*05a0b428SJohn Marino 
62*05a0b428SJohn Marino static const long double MAXLOGL = 1.1356523406294143949492E4L;
63*05a0b428SJohn Marino 
64*05a0b428SJohn Marino /* exp(x) - 1 = x + 0.5 x^2 + x^3 P(x)/Q(x)
65*05a0b428SJohn Marino    -.5 ln 2  <  x  <  .5 ln 2
66*05a0b428SJohn Marino    Theoretical peak relative error = 3.4e-22  */
67*05a0b428SJohn Marino 
68*05a0b428SJohn Marino static const long double
69*05a0b428SJohn Marino   P0 = -1.586135578666346600772998894928250240826E4L,
70*05a0b428SJohn Marino   P1 =  2.642771505685952966904660652518429479531E3L,
71*05a0b428SJohn Marino   P2 = -3.423199068835684263987132888286791620673E2L,
72*05a0b428SJohn Marino   P3 =  1.800826371455042224581246202420972737840E1L,
73*05a0b428SJohn Marino   P4 = -5.238523121205561042771939008061958820811E-1L,
74*05a0b428SJohn Marino 
75*05a0b428SJohn Marino   Q0 = -9.516813471998079611319047060563358064497E4L,
76*05a0b428SJohn Marino   Q1 =  3.964866271411091674556850458227710004570E4L,
77*05a0b428SJohn Marino   Q2 = -7.207678383830091850230366618190187434796E3L,
78*05a0b428SJohn Marino   Q3 =  7.206038318724600171970199625081491823079E2L,
79*05a0b428SJohn Marino   Q4 = -4.002027679107076077238836622982900945173E1L,
80*05a0b428SJohn Marino   /* Q5 = 1.000000000000000000000000000000000000000E0 */
81*05a0b428SJohn Marino 
82*05a0b428SJohn Marino /* C1 + C2 = ln 2 */
83*05a0b428SJohn Marino C1 = 6.93145751953125E-1L,
84*05a0b428SJohn Marino C2 = 1.428606820309417232121458176568075500134E-6L,
85*05a0b428SJohn Marino /* ln 2^-65 */
86*05a0b428SJohn Marino minarg = -4.5054566736396445112120088E1L;
87*05a0b428SJohn Marino static const long double huge = 0x1p10000L;
88*05a0b428SJohn Marino 
89*05a0b428SJohn Marino long double
expm1l(long double x)90*05a0b428SJohn Marino expm1l(long double x)
91*05a0b428SJohn Marino {
92*05a0b428SJohn Marino long double px, qx, xx;
93*05a0b428SJohn Marino int k;
94*05a0b428SJohn Marino 
95*05a0b428SJohn Marino /* Overflow.  */
96*05a0b428SJohn Marino if (x > MAXLOGL)
97*05a0b428SJohn Marino   return (huge*huge);	/* overflow */
98*05a0b428SJohn Marino 
99*05a0b428SJohn Marino if (x == 0.0)
100*05a0b428SJohn Marino   return x;
101*05a0b428SJohn Marino 
102*05a0b428SJohn Marino /* Minimum value.  */
103*05a0b428SJohn Marino if (x < minarg)
104*05a0b428SJohn Marino   return -1.0L;
105*05a0b428SJohn Marino 
106*05a0b428SJohn Marino xx = C1 + C2;
107*05a0b428SJohn Marino 
108*05a0b428SJohn Marino /* Express x = ln 2 (k + remainder), remainder not exceeding 1/2. */
109*05a0b428SJohn Marino px = floorl (0.5 + x / xx);
110*05a0b428SJohn Marino k = px;
111*05a0b428SJohn Marino /* remainder times ln 2 */
112*05a0b428SJohn Marino x -= px * C1;
113*05a0b428SJohn Marino x -= px * C2;
114*05a0b428SJohn Marino 
115*05a0b428SJohn Marino /* Approximate exp(remainder ln 2).  */
116*05a0b428SJohn Marino px = (((( P4 * x
117*05a0b428SJohn Marino 	 + P3) * x
118*05a0b428SJohn Marino 	+ P2) * x
119*05a0b428SJohn Marino        + P1) * x
120*05a0b428SJohn Marino       + P0) * x;
121*05a0b428SJohn Marino 
122*05a0b428SJohn Marino qx = (((( x
123*05a0b428SJohn Marino 	 + Q4) * x
124*05a0b428SJohn Marino 	+ Q3) * x
125*05a0b428SJohn Marino        + Q2) * x
126*05a0b428SJohn Marino       + Q1) * x
127*05a0b428SJohn Marino      + Q0;
128*05a0b428SJohn Marino 
129*05a0b428SJohn Marino xx = x * x;
130*05a0b428SJohn Marino qx = x + (0.5 * xx + xx * px / qx);
131*05a0b428SJohn Marino 
132*05a0b428SJohn Marino /* exp(x) = exp(k ln 2) exp(remainder ln 2) = 2^k exp(remainder ln 2).
133*05a0b428SJohn Marino    We have qx = exp(remainder ln 2) - 1, so
134*05a0b428SJohn Marino    exp(x) - 1  =  2^k (qx + 1) - 1  =  2^k qx + 2^k - 1.  */
135*05a0b428SJohn Marino px = ldexpl(1.0L, k);
136*05a0b428SJohn Marino x = px * qx + (px - 1.0);
137*05a0b428SJohn Marino return x;
138*05a0b428SJohn Marino }
139