14a238c70SJohn Marino /* mpfr_exp2 -- power of 2 function 2^y
24a238c70SJohn Marino
3*ab6d115fSJohn Marino Copyright 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013 Free Software Foundation, Inc.
4*ab6d115fSJohn Marino Contributed by the AriC and Caramel projects, INRIA.
54a238c70SJohn Marino
64a238c70SJohn Marino This file is part of the GNU MPFR Library.
74a238c70SJohn Marino
84a238c70SJohn Marino The GNU MPFR Library is free software; you can redistribute it and/or modify
94a238c70SJohn Marino it under the terms of the GNU Lesser General Public License as published by
104a238c70SJohn Marino the Free Software Foundation; either version 3 of the License, or (at your
114a238c70SJohn Marino option) any later version.
124a238c70SJohn Marino
134a238c70SJohn Marino The GNU MPFR Library is distributed in the hope that it will be useful, but
144a238c70SJohn Marino WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
154a238c70SJohn Marino or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
164a238c70SJohn Marino License for more details.
174a238c70SJohn Marino
184a238c70SJohn Marino You should have received a copy of the GNU Lesser General Public License
194a238c70SJohn Marino along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see
204a238c70SJohn Marino http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
214a238c70SJohn Marino 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
224a238c70SJohn Marino
234a238c70SJohn Marino #define MPFR_NEED_LONGLONG_H
244a238c70SJohn Marino #include "mpfr-impl.h"
254a238c70SJohn Marino
264a238c70SJohn Marino /* The computation of y = 2^z is done by *
274a238c70SJohn Marino * y = exp(z*log(2)). The result is exact iff z is an integer. */
284a238c70SJohn Marino
294a238c70SJohn Marino int
mpfr_exp2(mpfr_ptr y,mpfr_srcptr x,mpfr_rnd_t rnd_mode)304a238c70SJohn Marino mpfr_exp2 (mpfr_ptr y, mpfr_srcptr x, mpfr_rnd_t rnd_mode)
314a238c70SJohn Marino {
324a238c70SJohn Marino int inexact;
334a238c70SJohn Marino long xint;
344a238c70SJohn Marino mpfr_t xfrac;
354a238c70SJohn Marino MPFR_SAVE_EXPO_DECL (expo);
364a238c70SJohn Marino
374a238c70SJohn Marino MPFR_LOG_FUNC
384a238c70SJohn Marino (("x[%Pu]=%.*Rg rnd=%d", mpfr_get_prec(x), mpfr_log_prec, x, rnd_mode),
394a238c70SJohn Marino ("y[%Pu]=%.*Rg inexact=%d", mpfr_get_prec(y), mpfr_log_prec, y,
404a238c70SJohn Marino inexact));
414a238c70SJohn Marino
424a238c70SJohn Marino if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x)))
434a238c70SJohn Marino {
444a238c70SJohn Marino if (MPFR_IS_NAN (x))
454a238c70SJohn Marino {
464a238c70SJohn Marino MPFR_SET_NAN (y);
474a238c70SJohn Marino MPFR_RET_NAN;
484a238c70SJohn Marino }
494a238c70SJohn Marino else if (MPFR_IS_INF (x))
504a238c70SJohn Marino {
514a238c70SJohn Marino if (MPFR_IS_POS (x))
524a238c70SJohn Marino MPFR_SET_INF (y);
534a238c70SJohn Marino else
544a238c70SJohn Marino MPFR_SET_ZERO (y);
554a238c70SJohn Marino MPFR_SET_POS (y);
564a238c70SJohn Marino MPFR_RET (0);
574a238c70SJohn Marino }
584a238c70SJohn Marino else /* 2^0 = 1 */
594a238c70SJohn Marino {
604a238c70SJohn Marino MPFR_ASSERTD (MPFR_IS_ZERO(x));
614a238c70SJohn Marino return mpfr_set_ui (y, 1, rnd_mode);
624a238c70SJohn Marino }
634a238c70SJohn Marino }
644a238c70SJohn Marino
654a238c70SJohn Marino /* since the smallest representable non-zero float is 1/2*2^__gmpfr_emin,
664a238c70SJohn Marino if x < __gmpfr_emin - 1, the result is either 1/2*2^__gmpfr_emin or 0 */
674a238c70SJohn Marino MPFR_ASSERTN (MPFR_EMIN_MIN >= LONG_MIN + 2);
684a238c70SJohn Marino if (MPFR_UNLIKELY (mpfr_cmp_si (x, __gmpfr_emin - 1) < 0))
694a238c70SJohn Marino {
704a238c70SJohn Marino mpfr_rnd_t rnd2 = rnd_mode;
714a238c70SJohn Marino /* in round to nearest mode, round to zero when x <= __gmpfr_emin-2 */
724a238c70SJohn Marino if (rnd_mode == MPFR_RNDN &&
734a238c70SJohn Marino mpfr_cmp_si_2exp (x, __gmpfr_emin - 2, 0) <= 0)
744a238c70SJohn Marino rnd2 = MPFR_RNDZ;
754a238c70SJohn Marino return mpfr_underflow (y, rnd2, 1);
764a238c70SJohn Marino }
774a238c70SJohn Marino
784a238c70SJohn Marino MPFR_ASSERTN (MPFR_EMAX_MAX <= LONG_MAX);
794a238c70SJohn Marino if (MPFR_UNLIKELY (mpfr_cmp_si (x, __gmpfr_emax) >= 0))
804a238c70SJohn Marino return mpfr_overflow (y, rnd_mode, 1);
814a238c70SJohn Marino
824a238c70SJohn Marino /* We now know that emin - 1 <= x < emax. */
834a238c70SJohn Marino
844a238c70SJohn Marino MPFR_SAVE_EXPO_MARK (expo);
854a238c70SJohn Marino
864a238c70SJohn Marino /* 2^x = 1 + x*log(2) + O(x^2) for x near zero, and for |x| <= 1 we have
874a238c70SJohn Marino |2^x - 1| <= x < 2^EXP(x). If x > 0 we must round away from 0 (dir=1);
884a238c70SJohn Marino if x < 0 we must round toward 0 (dir=0). */
894a238c70SJohn Marino MPFR_SMALL_INPUT_AFTER_SAVE_EXPO (y, __gmpfr_one, - MPFR_GET_EXP (x), 0,
904a238c70SJohn Marino MPFR_SIGN(x) > 0, rnd_mode, expo, {});
914a238c70SJohn Marino
924a238c70SJohn Marino xint = mpfr_get_si (x, MPFR_RNDZ);
934a238c70SJohn Marino mpfr_init2 (xfrac, MPFR_PREC (x));
944a238c70SJohn Marino mpfr_sub_si (xfrac, x, xint, MPFR_RNDN); /* exact */
954a238c70SJohn Marino
964a238c70SJohn Marino if (MPFR_IS_ZERO (xfrac))
974a238c70SJohn Marino {
984a238c70SJohn Marino mpfr_set_ui (y, 1, MPFR_RNDN);
994a238c70SJohn Marino inexact = 0;
1004a238c70SJohn Marino }
1014a238c70SJohn Marino else
1024a238c70SJohn Marino {
1034a238c70SJohn Marino /* Declaration of the intermediary variable */
1044a238c70SJohn Marino mpfr_t t;
1054a238c70SJohn Marino
1064a238c70SJohn Marino /* Declaration of the size variable */
1074a238c70SJohn Marino mpfr_prec_t Ny = MPFR_PREC(y); /* target precision */
1084a238c70SJohn Marino mpfr_prec_t Nt; /* working precision */
1094a238c70SJohn Marino mpfr_exp_t err; /* error */
1104a238c70SJohn Marino MPFR_ZIV_DECL (loop);
1114a238c70SJohn Marino
1124a238c70SJohn Marino /* compute the precision of intermediary variable */
1134a238c70SJohn Marino /* the optimal number of bits : see algorithms.tex */
1144a238c70SJohn Marino Nt = Ny + 5 + MPFR_INT_CEIL_LOG2 (Ny);
1154a238c70SJohn Marino
1164a238c70SJohn Marino /* initialise of intermediary variable */
1174a238c70SJohn Marino mpfr_init2 (t, Nt);
1184a238c70SJohn Marino
1194a238c70SJohn Marino /* First computation */
1204a238c70SJohn Marino MPFR_ZIV_INIT (loop, Nt);
1214a238c70SJohn Marino for (;;)
1224a238c70SJohn Marino {
1234a238c70SJohn Marino /* compute exp(x*ln(2))*/
1244a238c70SJohn Marino mpfr_const_log2 (t, MPFR_RNDU); /* ln(2) */
1254a238c70SJohn Marino mpfr_mul (t, xfrac, t, MPFR_RNDU); /* xfrac * ln(2) */
1264a238c70SJohn Marino err = Nt - (MPFR_GET_EXP (t) + 2); /* Estimate of the error */
1274a238c70SJohn Marino mpfr_exp (t, t, MPFR_RNDN); /* exp(xfrac * ln(2)) */
1284a238c70SJohn Marino
1294a238c70SJohn Marino if (MPFR_LIKELY (MPFR_CAN_ROUND (t, err, Ny, rnd_mode)))
1304a238c70SJohn Marino break;
1314a238c70SJohn Marino
1324a238c70SJohn Marino /* Actualisation of the precision */
1334a238c70SJohn Marino MPFR_ZIV_NEXT (loop, Nt);
1344a238c70SJohn Marino mpfr_set_prec (t, Nt);
1354a238c70SJohn Marino }
1364a238c70SJohn Marino MPFR_ZIV_FREE (loop);
1374a238c70SJohn Marino
1384a238c70SJohn Marino inexact = mpfr_set (y, t, rnd_mode);
1394a238c70SJohn Marino
1404a238c70SJohn Marino mpfr_clear (t);
1414a238c70SJohn Marino }
1424a238c70SJohn Marino
1434a238c70SJohn Marino mpfr_clear (xfrac);
1444a238c70SJohn Marino mpfr_clear_flags ();
1454a238c70SJohn Marino mpfr_mul_2si (y, y, xint, MPFR_RNDN); /* exact or overflow */
1464a238c70SJohn Marino /* Note: We can have an overflow only when t was rounded up to 2. */
1474a238c70SJohn Marino MPFR_ASSERTD (MPFR_IS_PURE_FP (y) || inexact > 0);
1484a238c70SJohn Marino MPFR_SAVE_EXPO_UPDATE_FLAGS (expo, __gmpfr_flags);
1494a238c70SJohn Marino MPFR_SAVE_EXPO_FREE (expo);
1504a238c70SJohn Marino return mpfr_check_range (y, inexact, rnd_mode);
1514a238c70SJohn Marino }
152