1*d30dc8cbSJohn Marino /* mpc_norm -- Square of the norm of a complex number.
2*d30dc8cbSJohn Marino
3*d30dc8cbSJohn Marino Copyright (C) 2002, 2005, 2008, 2009, 2010, 2011 INRIA
4*d30dc8cbSJohn Marino
5*d30dc8cbSJohn Marino This file is part of GNU MPC.
6*d30dc8cbSJohn Marino
7*d30dc8cbSJohn Marino GNU MPC is free software; you can redistribute it and/or modify it under
8*d30dc8cbSJohn Marino the terms of the GNU Lesser General Public License as published by the
9*d30dc8cbSJohn Marino Free Software Foundation; either version 3 of the License, or (at your
10*d30dc8cbSJohn Marino option) any later version.
11*d30dc8cbSJohn Marino
12*d30dc8cbSJohn Marino GNU MPC is distributed in the hope that it will be useful, but WITHOUT ANY
13*d30dc8cbSJohn Marino WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
14*d30dc8cbSJohn Marino FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
15*d30dc8cbSJohn Marino more details.
16*d30dc8cbSJohn Marino
17*d30dc8cbSJohn Marino You should have received a copy of the GNU Lesser General Public License
18*d30dc8cbSJohn Marino along with this program. If not, see http://www.gnu.org/licenses/ .
19*d30dc8cbSJohn Marino */
20*d30dc8cbSJohn Marino
21*d30dc8cbSJohn Marino #include <stdio.h> /* for MPC_ASSERT */
22*d30dc8cbSJohn Marino #include "mpc-impl.h"
23*d30dc8cbSJohn Marino
24*d30dc8cbSJohn Marino /* a <- norm(b) = b * conj(b)
25*d30dc8cbSJohn Marino (the rounding mode is mpfr_rnd_t here since we return an mpfr number) */
26*d30dc8cbSJohn Marino int
mpc_norm(mpfr_ptr a,mpc_srcptr b,mpfr_rnd_t rnd)27*d30dc8cbSJohn Marino mpc_norm (mpfr_ptr a, mpc_srcptr b, mpfr_rnd_t rnd)
28*d30dc8cbSJohn Marino {
29*d30dc8cbSJohn Marino int inexact;
30*d30dc8cbSJohn Marino int saved_underflow, saved_overflow;
31*d30dc8cbSJohn Marino
32*d30dc8cbSJohn Marino /* handling of special values; consistent with abs in that
33*d30dc8cbSJohn Marino norm = abs^2; so norm (+-inf, xxx) = norm (xxx, +-inf) = +inf */
34*d30dc8cbSJohn Marino if (!mpc_fin_p (b))
35*d30dc8cbSJohn Marino return mpc_abs (a, b, rnd);
36*d30dc8cbSJohn Marino else if (mpfr_zero_p (mpc_realref (b))) {
37*d30dc8cbSJohn Marino if (mpfr_zero_p (mpc_imagref (b)))
38*d30dc8cbSJohn Marino return mpfr_set_ui (a, 0, rnd); /* +0 */
39*d30dc8cbSJohn Marino else
40*d30dc8cbSJohn Marino return mpfr_sqr (a, mpc_imagref (b), rnd);
41*d30dc8cbSJohn Marino }
42*d30dc8cbSJohn Marino else if (mpfr_zero_p (mpc_imagref (b)))
43*d30dc8cbSJohn Marino return mpfr_sqr (a, mpc_realref (b), rnd); /* Re(b) <> 0 */
44*d30dc8cbSJohn Marino
45*d30dc8cbSJohn Marino else /* everything finite and non-zero */ {
46*d30dc8cbSJohn Marino mpfr_t u, v, res;
47*d30dc8cbSJohn Marino mpfr_prec_t prec, prec_u, prec_v;
48*d30dc8cbSJohn Marino int loops;
49*d30dc8cbSJohn Marino const int max_loops = 2;
50*d30dc8cbSJohn Marino /* switch to exact squarings when loops==max_loops */
51*d30dc8cbSJohn Marino
52*d30dc8cbSJohn Marino prec = mpfr_get_prec (a);
53*d30dc8cbSJohn Marino
54*d30dc8cbSJohn Marino mpfr_init (u);
55*d30dc8cbSJohn Marino mpfr_init (v);
56*d30dc8cbSJohn Marino mpfr_init (res);
57*d30dc8cbSJohn Marino
58*d30dc8cbSJohn Marino /* save the underflow or overflow flags from MPFR */
59*d30dc8cbSJohn Marino saved_underflow = mpfr_underflow_p ();
60*d30dc8cbSJohn Marino saved_overflow = mpfr_overflow_p ();
61*d30dc8cbSJohn Marino
62*d30dc8cbSJohn Marino loops = 0;
63*d30dc8cbSJohn Marino mpfr_clear_underflow ();
64*d30dc8cbSJohn Marino mpfr_clear_overflow ();
65*d30dc8cbSJohn Marino do {
66*d30dc8cbSJohn Marino loops++;
67*d30dc8cbSJohn Marino prec += mpc_ceil_log2 (prec) + 3;
68*d30dc8cbSJohn Marino if (loops >= max_loops) {
69*d30dc8cbSJohn Marino prec_u = 2 * MPC_PREC_RE (b);
70*d30dc8cbSJohn Marino prec_v = 2 * MPC_PREC_IM (b);
71*d30dc8cbSJohn Marino }
72*d30dc8cbSJohn Marino else {
73*d30dc8cbSJohn Marino prec_u = MPC_MIN (prec, 2 * MPC_PREC_RE (b));
74*d30dc8cbSJohn Marino prec_v = MPC_MIN (prec, 2 * MPC_PREC_IM (b));
75*d30dc8cbSJohn Marino }
76*d30dc8cbSJohn Marino
77*d30dc8cbSJohn Marino mpfr_set_prec (u, prec_u);
78*d30dc8cbSJohn Marino mpfr_set_prec (v, prec_v);
79*d30dc8cbSJohn Marino
80*d30dc8cbSJohn Marino inexact = mpfr_sqr (u, mpc_realref(b), GMP_RNDD); /* err <= 1 ulp in prec */
81*d30dc8cbSJohn Marino inexact |= mpfr_sqr (v, mpc_imagref(b), GMP_RNDD); /* err <= 1 ulp in prec */
82*d30dc8cbSJohn Marino
83*d30dc8cbSJohn Marino /* If loops = max_loops, inexact should be 0 here, except in case
84*d30dc8cbSJohn Marino of underflow or overflow.
85*d30dc8cbSJohn Marino If loops < max_loops and inexact is zero, we can exit the
86*d30dc8cbSJohn Marino while-loop since it only remains to add u and v into a. */
87*d30dc8cbSJohn Marino if (inexact) {
88*d30dc8cbSJohn Marino mpfr_set_prec (res, prec);
89*d30dc8cbSJohn Marino mpfr_add (res, u, v, GMP_RNDD); /* err <= 3 ulp in prec */
90*d30dc8cbSJohn Marino }
91*d30dc8cbSJohn Marino
92*d30dc8cbSJohn Marino } while (loops < max_loops && inexact != 0
93*d30dc8cbSJohn Marino && !mpfr_can_round (res, prec - 2, GMP_RNDD, GMP_RNDU,
94*d30dc8cbSJohn Marino mpfr_get_prec (a) + (rnd == GMP_RNDN)));
95*d30dc8cbSJohn Marino
96*d30dc8cbSJohn Marino if (!inexact)
97*d30dc8cbSJohn Marino /* squarings were exact, neither underflow nor overflow */
98*d30dc8cbSJohn Marino inexact = mpfr_add (a, u, v, rnd);
99*d30dc8cbSJohn Marino /* if there was an overflow in Re(b)^2 or Im(b)^2 or their sum,
100*d30dc8cbSJohn Marino since the norm is larger, there is an overflow for the norm */
101*d30dc8cbSJohn Marino else if (mpfr_overflow_p ()) {
102*d30dc8cbSJohn Marino /* replace by "correctly rounded overflow" */
103*d30dc8cbSJohn Marino mpfr_set_ui (a, 1ul, GMP_RNDN);
104*d30dc8cbSJohn Marino inexact = mpfr_mul_2ui (a, a, mpfr_get_emax (), rnd);
105*d30dc8cbSJohn Marino }
106*d30dc8cbSJohn Marino else if (mpfr_underflow_p ()) {
107*d30dc8cbSJohn Marino /* necessarily one of the squarings did underflow (otherwise their
108*d30dc8cbSJohn Marino sum could not underflow), thus one of u, v is zero. */
109*d30dc8cbSJohn Marino mpfr_exp_t emin = mpfr_get_emin ();
110*d30dc8cbSJohn Marino
111*d30dc8cbSJohn Marino /* Now either both u and v are zero, or u is zero and v exact,
112*d30dc8cbSJohn Marino or v is zero and u exact.
113*d30dc8cbSJohn Marino In the latter case, Im(b)^2 < 2^(emin-1).
114*d30dc8cbSJohn Marino If ulp(u) >= 2^(emin+1) and norm(b) is not exactly
115*d30dc8cbSJohn Marino representable at the target precision, then rounding u+Im(b)^2
116*d30dc8cbSJohn Marino is equivalent to rounding u+2^(emin-1).
117*d30dc8cbSJohn Marino For instance, if exp(u)>0 and the target precision is smaller
118*d30dc8cbSJohn Marino than about |emin|, the norm is not representable. To make the
119*d30dc8cbSJohn Marino scaling in the "else" case work without underflow, we test
120*d30dc8cbSJohn Marino whether exp(u) is larger than a small negative number instead.
121*d30dc8cbSJohn Marino The second case is handled analogously. */
122*d30dc8cbSJohn Marino if (!mpfr_zero_p (u)
123*d30dc8cbSJohn Marino && mpfr_get_exp (u) - 2 * (mpfr_exp_t) prec_u > emin
124*d30dc8cbSJohn Marino && mpfr_get_exp (u) > -10) {
125*d30dc8cbSJohn Marino mpfr_set_prec (v, MPFR_PREC_MIN);
126*d30dc8cbSJohn Marino mpfr_set_ui_2exp (v, 1, emin - 1, GMP_RNDZ);
127*d30dc8cbSJohn Marino inexact = mpfr_add (a, u, v, rnd);
128*d30dc8cbSJohn Marino }
129*d30dc8cbSJohn Marino else if (!mpfr_zero_p (v)
130*d30dc8cbSJohn Marino && mpfr_get_exp (v) - 2 * (mpfr_exp_t) prec_v > emin
131*d30dc8cbSJohn Marino && mpfr_get_exp (v) > -10) {
132*d30dc8cbSJohn Marino mpfr_set_prec (u, MPFR_PREC_MIN);
133*d30dc8cbSJohn Marino mpfr_set_ui_2exp (u, 1, emin - 1, GMP_RNDZ);
134*d30dc8cbSJohn Marino inexact = mpfr_add (a, u, v, rnd);
135*d30dc8cbSJohn Marino }
136*d30dc8cbSJohn Marino else {
137*d30dc8cbSJohn Marino unsigned long int scale, exp_re, exp_im;
138*d30dc8cbSJohn Marino int inex_underflow;
139*d30dc8cbSJohn Marino
140*d30dc8cbSJohn Marino /* scale the input to an average exponent close to 0 */
141*d30dc8cbSJohn Marino exp_re = (unsigned long int) (-mpfr_get_exp (mpc_realref (b)));
142*d30dc8cbSJohn Marino exp_im = (unsigned long int) (-mpfr_get_exp (mpc_imagref (b)));
143*d30dc8cbSJohn Marino scale = exp_re / 2 + exp_im / 2 + (exp_re % 2 + exp_im % 2) / 2;
144*d30dc8cbSJohn Marino /* (exp_re + exp_im) / 2, computed in a way avoiding
145*d30dc8cbSJohn Marino integer overflow */
146*d30dc8cbSJohn Marino if (mpfr_zero_p (u)) {
147*d30dc8cbSJohn Marino /* recompute the scaled value exactly */
148*d30dc8cbSJohn Marino mpfr_mul_2ui (u, mpc_realref (b), scale, GMP_RNDN);
149*d30dc8cbSJohn Marino mpfr_sqr (u, u, GMP_RNDN);
150*d30dc8cbSJohn Marino }
151*d30dc8cbSJohn Marino else /* just scale */
152*d30dc8cbSJohn Marino mpfr_mul_2ui (u, u, 2*scale, GMP_RNDN);
153*d30dc8cbSJohn Marino if (mpfr_zero_p (v)) {
154*d30dc8cbSJohn Marino mpfr_mul_2ui (v, mpc_imagref (b), scale, GMP_RNDN);
155*d30dc8cbSJohn Marino mpfr_sqr (v, v, GMP_RNDN);
156*d30dc8cbSJohn Marino }
157*d30dc8cbSJohn Marino else
158*d30dc8cbSJohn Marino mpfr_mul_2ui (v, v, 2*scale, GMP_RNDN);
159*d30dc8cbSJohn Marino
160*d30dc8cbSJohn Marino inexact = mpfr_add (a, u, v, rnd);
161*d30dc8cbSJohn Marino mpfr_clear_underflow ();
162*d30dc8cbSJohn Marino inex_underflow = mpfr_div_2ui (a, a, 2*scale, rnd);
163*d30dc8cbSJohn Marino if (mpfr_underflow_p ())
164*d30dc8cbSJohn Marino inexact = inex_underflow;
165*d30dc8cbSJohn Marino }
166*d30dc8cbSJohn Marino }
167*d30dc8cbSJohn Marino else /* no problems, ternary value due to mpfr_can_round trick */
168*d30dc8cbSJohn Marino inexact = mpfr_set (a, res, rnd);
169*d30dc8cbSJohn Marino
170*d30dc8cbSJohn Marino /* restore underflow and overflow flags from MPFR */
171*d30dc8cbSJohn Marino if (saved_underflow)
172*d30dc8cbSJohn Marino mpfr_set_underflow ();
173*d30dc8cbSJohn Marino if (saved_overflow)
174*d30dc8cbSJohn Marino mpfr_set_overflow ();
175*d30dc8cbSJohn Marino
176*d30dc8cbSJohn Marino mpfr_clear (u);
177*d30dc8cbSJohn Marino mpfr_clear (v);
178*d30dc8cbSJohn Marino mpfr_clear (res);
179*d30dc8cbSJohn Marino }
180*d30dc8cbSJohn Marino
181*d30dc8cbSJohn Marino return inexact;
182*d30dc8cbSJohn Marino }
183