xref: /dflybsd-src/contrib/gcc-8.0/libstdc++-v3/include/tr1/hypergeometric.tcc (revision 38fd149817dfbff97799f62fcb70be98c4e32523)
1*38fd1498Szrj // Special functions -*- C++ -*-
2*38fd1498Szrj 
3*38fd1498Szrj // Copyright (C) 2006-2018 Free Software Foundation, Inc.
4*38fd1498Szrj //
5*38fd1498Szrj // This file is part of the GNU ISO C++ Library.  This library is free
6*38fd1498Szrj // software; you can redistribute it and/or modify it under the
7*38fd1498Szrj // terms of the GNU General Public License as published by the
8*38fd1498Szrj // Free Software Foundation; either version 3, or (at your option)
9*38fd1498Szrj // any later version.
10*38fd1498Szrj //
11*38fd1498Szrj // This library is distributed in the hope that it will be useful,
12*38fd1498Szrj // but WITHOUT ANY WARRANTY; without even the implied warranty of
13*38fd1498Szrj // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14*38fd1498Szrj // GNU General Public License for more details.
15*38fd1498Szrj //
16*38fd1498Szrj // Under Section 7 of GPL version 3, you are granted additional
17*38fd1498Szrj // permissions described in the GCC Runtime Library Exception, version
18*38fd1498Szrj // 3.1, as published by the Free Software Foundation.
19*38fd1498Szrj 
20*38fd1498Szrj // You should have received a copy of the GNU General Public License and
21*38fd1498Szrj // a copy of the GCC Runtime Library Exception along with this program;
22*38fd1498Szrj // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
23*38fd1498Szrj // <http://www.gnu.org/licenses/>.
24*38fd1498Szrj 
25*38fd1498Szrj /** @file tr1/hypergeometric.tcc
26*38fd1498Szrj  *  This is an internal header file, included by other library headers.
27*38fd1498Szrj  *  Do not attempt to use it directly. @headername{tr1/cmath}
28*38fd1498Szrj  */
29*38fd1498Szrj 
30*38fd1498Szrj //
31*38fd1498Szrj // ISO C++ 14882 TR1: 5.2  Special functions
32*38fd1498Szrj //
33*38fd1498Szrj 
34*38fd1498Szrj // Written by Edward Smith-Rowland based:
35*38fd1498Szrj //   (1) Handbook of Mathematical Functions,
36*38fd1498Szrj //       ed. Milton Abramowitz and Irene A. Stegun,
37*38fd1498Szrj //       Dover Publications,
38*38fd1498Szrj //       Section 6, pp. 555-566
39*38fd1498Szrj //   (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl
40*38fd1498Szrj 
41*38fd1498Szrj #ifndef _GLIBCXX_TR1_HYPERGEOMETRIC_TCC
42*38fd1498Szrj #define _GLIBCXX_TR1_HYPERGEOMETRIC_TCC 1
43*38fd1498Szrj 
44*38fd1498Szrj namespace std _GLIBCXX_VISIBILITY(default)
45*38fd1498Szrj {
46*38fd1498Szrj _GLIBCXX_BEGIN_NAMESPACE_VERSION
47*38fd1498Szrj 
48*38fd1498Szrj #if _GLIBCXX_USE_STD_SPEC_FUNCS
49*38fd1498Szrj # define _GLIBCXX_MATH_NS ::std
50*38fd1498Szrj #elif defined(_GLIBCXX_TR1_CMATH)
51*38fd1498Szrj namespace tr1
52*38fd1498Szrj {
53*38fd1498Szrj # define _GLIBCXX_MATH_NS ::std::tr1
54*38fd1498Szrj #else
55*38fd1498Szrj # error do not include this header directly, use <cmath> or <tr1/cmath>
56*38fd1498Szrj #endif
57*38fd1498Szrj   // [5.2] Special functions
58*38fd1498Szrj 
59*38fd1498Szrj   // Implementation-space details.
60*38fd1498Szrj   namespace __detail
61*38fd1498Szrj   {
62*38fd1498Szrj     /**
63*38fd1498Szrj      *   @brief This routine returns the confluent hypergeometric function
64*38fd1498Szrj      *          by series expansion.
65*38fd1498Szrj      *
66*38fd1498Szrj      *   @f[
67*38fd1498Szrj      *     _1F_1(a;c;x) = \frac{\Gamma(c)}{\Gamma(a)}
68*38fd1498Szrj      *                      \sum_{n=0}^{\infty}
69*38fd1498Szrj      *                      \frac{\Gamma(a+n)}{\Gamma(c+n)}
70*38fd1498Szrj      *                      \frac{x^n}{n!}
71*38fd1498Szrj      *   @f]
72*38fd1498Szrj      *
73*38fd1498Szrj      *   If a and b are integers and a < 0 and either b > 0 or b < a
74*38fd1498Szrj      *   then the series is a polynomial with a finite number of
75*38fd1498Szrj      *   terms.  If b is an integer and b <= 0 the confluent
76*38fd1498Szrj      *   hypergeometric function is undefined.
77*38fd1498Szrj      *
78*38fd1498Szrj      *   @param  __a  The "numerator" parameter.
79*38fd1498Szrj      *   @param  __c  The "denominator" parameter.
80*38fd1498Szrj      *   @param  __x  The argument of the confluent hypergeometric function.
81*38fd1498Szrj      *   @return  The confluent hypergeometric function.
82*38fd1498Szrj      */
83*38fd1498Szrj     template<typename _Tp>
84*38fd1498Szrj     _Tp
__conf_hyperg_series(_Tp __a,_Tp __c,_Tp __x)85*38fd1498Szrj     __conf_hyperg_series(_Tp __a, _Tp __c, _Tp __x)
86*38fd1498Szrj     {
87*38fd1498Szrj       const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
88*38fd1498Szrj 
89*38fd1498Szrj       _Tp __term = _Tp(1);
90*38fd1498Szrj       _Tp __Fac = _Tp(1);
91*38fd1498Szrj       const unsigned int __max_iter = 100000;
92*38fd1498Szrj       unsigned int __i;
93*38fd1498Szrj       for (__i = 0; __i < __max_iter; ++__i)
94*38fd1498Szrj         {
95*38fd1498Szrj           __term *= (__a + _Tp(__i)) * __x
96*38fd1498Szrj                   / ((__c + _Tp(__i)) * _Tp(1 + __i));
97*38fd1498Szrj           if (std::abs(__term) < __eps)
98*38fd1498Szrj             {
99*38fd1498Szrj               break;
100*38fd1498Szrj             }
101*38fd1498Szrj           __Fac += __term;
102*38fd1498Szrj         }
103*38fd1498Szrj       if (__i == __max_iter)
104*38fd1498Szrj         std::__throw_runtime_error(__N("Series failed to converge "
105*38fd1498Szrj                                        "in __conf_hyperg_series."));
106*38fd1498Szrj 
107*38fd1498Szrj       return __Fac;
108*38fd1498Szrj     }
109*38fd1498Szrj 
110*38fd1498Szrj 
111*38fd1498Szrj     /**
112*38fd1498Szrj      *  @brief  Return the hypogeometric function @f$ _2F_1(a,b;c;x) @f$
113*38fd1498Szrj      *          by an iterative procedure described in
114*38fd1498Szrj      *          Luke, Algorithms for the Computation of Mathematical Functions.
115*38fd1498Szrj      *
116*38fd1498Szrj      *  Like the case of the 2F1 rational approximations, these are
117*38fd1498Szrj      *  probably guaranteed to converge for x < 0, barring gross
118*38fd1498Szrj      *  numerical instability in the pre-asymptotic regime.
119*38fd1498Szrj      */
120*38fd1498Szrj     template<typename _Tp>
121*38fd1498Szrj     _Tp
__conf_hyperg_luke(_Tp __a,_Tp __c,_Tp __xin)122*38fd1498Szrj     __conf_hyperg_luke(_Tp __a, _Tp __c, _Tp __xin)
123*38fd1498Szrj     {
124*38fd1498Szrj       const _Tp __big = std::pow(std::numeric_limits<_Tp>::max(), _Tp(0.16L));
125*38fd1498Szrj       const int __nmax = 20000;
126*38fd1498Szrj       const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
127*38fd1498Szrj       const _Tp __x  = -__xin;
128*38fd1498Szrj       const _Tp __x3 = __x * __x * __x;
129*38fd1498Szrj       const _Tp __t0 = __a / __c;
130*38fd1498Szrj       const _Tp __t1 = (__a + _Tp(1)) / (_Tp(2) * __c);
131*38fd1498Szrj       const _Tp __t2 = (__a + _Tp(2)) / (_Tp(2) * (__c + _Tp(1)));
132*38fd1498Szrj       _Tp __F = _Tp(1);
133*38fd1498Szrj       _Tp __prec;
134*38fd1498Szrj 
135*38fd1498Szrj       _Tp __Bnm3 = _Tp(1);
136*38fd1498Szrj       _Tp __Bnm2 = _Tp(1) + __t1 * __x;
137*38fd1498Szrj       _Tp __Bnm1 = _Tp(1) + __t2 * __x * (_Tp(1) + __t1 / _Tp(3) * __x);
138*38fd1498Szrj 
139*38fd1498Szrj       _Tp __Anm3 = _Tp(1);
140*38fd1498Szrj       _Tp __Anm2 = __Bnm2 - __t0 * __x;
141*38fd1498Szrj       _Tp __Anm1 = __Bnm1 - __t0 * (_Tp(1) + __t2 * __x) * __x
142*38fd1498Szrj                  + __t0 * __t1 * (__c / (__c + _Tp(1))) * __x * __x;
143*38fd1498Szrj 
144*38fd1498Szrj       int __n = 3;
145*38fd1498Szrj       while(1)
146*38fd1498Szrj         {
147*38fd1498Szrj           _Tp __npam1 = _Tp(__n - 1) + __a;
148*38fd1498Szrj           _Tp __npcm1 = _Tp(__n - 1) + __c;
149*38fd1498Szrj           _Tp __npam2 = _Tp(__n - 2) + __a;
150*38fd1498Szrj           _Tp __npcm2 = _Tp(__n - 2) + __c;
151*38fd1498Szrj           _Tp __tnm1  = _Tp(2 * __n - 1);
152*38fd1498Szrj           _Tp __tnm3  = _Tp(2 * __n - 3);
153*38fd1498Szrj           _Tp __tnm5  = _Tp(2 * __n - 5);
154*38fd1498Szrj           _Tp __F1 =  (_Tp(__n - 2) - __a) / (_Tp(2) * __tnm3 * __npcm1);
155*38fd1498Szrj           _Tp __F2 =  (_Tp(__n) + __a) * __npam1
156*38fd1498Szrj                    / (_Tp(4) * __tnm1 * __tnm3 * __npcm2 * __npcm1);
157*38fd1498Szrj           _Tp __F3 = -__npam2 * __npam1 * (_Tp(__n - 2) - __a)
158*38fd1498Szrj                    / (_Tp(8) * __tnm3 * __tnm3 * __tnm5
159*38fd1498Szrj                    * (_Tp(__n - 3) + __c) * __npcm2 * __npcm1);
160*38fd1498Szrj           _Tp __E  = -__npam1 * (_Tp(__n - 1) - __c)
161*38fd1498Szrj                    / (_Tp(2) * __tnm3 * __npcm2 * __npcm1);
162*38fd1498Szrj 
163*38fd1498Szrj           _Tp __An = (_Tp(1) + __F1 * __x) * __Anm1
164*38fd1498Szrj                    + (__E + __F2 * __x) * __x * __Anm2 + __F3 * __x3 * __Anm3;
165*38fd1498Szrj           _Tp __Bn = (_Tp(1) + __F1 * __x) * __Bnm1
166*38fd1498Szrj                    + (__E + __F2 * __x) * __x * __Bnm2 + __F3 * __x3 * __Bnm3;
167*38fd1498Szrj           _Tp __r = __An / __Bn;
168*38fd1498Szrj 
169*38fd1498Szrj           __prec = std::abs((__F - __r) / __F);
170*38fd1498Szrj           __F = __r;
171*38fd1498Szrj 
172*38fd1498Szrj           if (__prec < __eps || __n > __nmax)
173*38fd1498Szrj             break;
174*38fd1498Szrj 
175*38fd1498Szrj           if (std::abs(__An) > __big || std::abs(__Bn) > __big)
176*38fd1498Szrj             {
177*38fd1498Szrj               __An   /= __big;
178*38fd1498Szrj               __Bn   /= __big;
179*38fd1498Szrj               __Anm1 /= __big;
180*38fd1498Szrj               __Bnm1 /= __big;
181*38fd1498Szrj               __Anm2 /= __big;
182*38fd1498Szrj               __Bnm2 /= __big;
183*38fd1498Szrj               __Anm3 /= __big;
184*38fd1498Szrj               __Bnm3 /= __big;
185*38fd1498Szrj             }
186*38fd1498Szrj           else if (std::abs(__An) < _Tp(1) / __big
187*38fd1498Szrj                 || std::abs(__Bn) < _Tp(1) / __big)
188*38fd1498Szrj             {
189*38fd1498Szrj               __An   *= __big;
190*38fd1498Szrj               __Bn   *= __big;
191*38fd1498Szrj               __Anm1 *= __big;
192*38fd1498Szrj               __Bnm1 *= __big;
193*38fd1498Szrj               __Anm2 *= __big;
194*38fd1498Szrj               __Bnm2 *= __big;
195*38fd1498Szrj               __Anm3 *= __big;
196*38fd1498Szrj               __Bnm3 *= __big;
197*38fd1498Szrj             }
198*38fd1498Szrj 
199*38fd1498Szrj           ++__n;
200*38fd1498Szrj           __Bnm3 = __Bnm2;
201*38fd1498Szrj           __Bnm2 = __Bnm1;
202*38fd1498Szrj           __Bnm1 = __Bn;
203*38fd1498Szrj           __Anm3 = __Anm2;
204*38fd1498Szrj           __Anm2 = __Anm1;
205*38fd1498Szrj           __Anm1 = __An;
206*38fd1498Szrj         }
207*38fd1498Szrj 
208*38fd1498Szrj       if (__n >= __nmax)
209*38fd1498Szrj         std::__throw_runtime_error(__N("Iteration failed to converge "
210*38fd1498Szrj                                        "in __conf_hyperg_luke."));
211*38fd1498Szrj 
212*38fd1498Szrj       return __F;
213*38fd1498Szrj     }
214*38fd1498Szrj 
215*38fd1498Szrj 
216*38fd1498Szrj     /**
217*38fd1498Szrj      *   @brief  Return the confluent hypogeometric function
218*38fd1498Szrj      *           @f$ _1F_1(a;c;x) @f$.
219*38fd1498Szrj      *
220*38fd1498Szrj      *   @todo  Handle b == nonpositive integer blowup - return NaN.
221*38fd1498Szrj      *
222*38fd1498Szrj      *   @param  __a  The @a numerator parameter.
223*38fd1498Szrj      *   @param  __c  The @a denominator parameter.
224*38fd1498Szrj      *   @param  __x  The argument of the confluent hypergeometric function.
225*38fd1498Szrj      *   @return  The confluent hypergeometric function.
226*38fd1498Szrj      */
227*38fd1498Szrj     template<typename _Tp>
228*38fd1498Szrj     _Tp
__conf_hyperg(_Tp __a,_Tp __c,_Tp __x)229*38fd1498Szrj     __conf_hyperg(_Tp __a, _Tp __c, _Tp __x)
230*38fd1498Szrj     {
231*38fd1498Szrj #if _GLIBCXX_USE_C99_MATH_TR1
232*38fd1498Szrj       const _Tp __c_nint = _GLIBCXX_MATH_NS::nearbyint(__c);
233*38fd1498Szrj #else
234*38fd1498Szrj       const _Tp __c_nint = static_cast<int>(__c + _Tp(0.5L));
235*38fd1498Szrj #endif
236*38fd1498Szrj       if (__isnan(__a) || __isnan(__c) || __isnan(__x))
237*38fd1498Szrj         return std::numeric_limits<_Tp>::quiet_NaN();
238*38fd1498Szrj       else if (__c_nint == __c && __c_nint <= 0)
239*38fd1498Szrj         return std::numeric_limits<_Tp>::infinity();
240*38fd1498Szrj       else if (__a == _Tp(0))
241*38fd1498Szrj         return _Tp(1);
242*38fd1498Szrj       else if (__c == __a)
243*38fd1498Szrj         return std::exp(__x);
244*38fd1498Szrj       else if (__x < _Tp(0))
245*38fd1498Szrj         return __conf_hyperg_luke(__a, __c, __x);
246*38fd1498Szrj       else
247*38fd1498Szrj         return __conf_hyperg_series(__a, __c, __x);
248*38fd1498Szrj     }
249*38fd1498Szrj 
250*38fd1498Szrj 
251*38fd1498Szrj     /**
252*38fd1498Szrj      *   @brief Return the hypogeometric function @f$ _2F_1(a,b;c;x) @f$
253*38fd1498Szrj      *   by series expansion.
254*38fd1498Szrj      *
255*38fd1498Szrj      *   The hypogeometric function is defined by
256*38fd1498Szrj      *   @f[
257*38fd1498Szrj      *     _2F_1(a,b;c;x) = \frac{\Gamma(c)}{\Gamma(a)\Gamma(b)}
258*38fd1498Szrj      *                      \sum_{n=0}^{\infty}
259*38fd1498Szrj      *                      \frac{\Gamma(a+n)\Gamma(b+n)}{\Gamma(c+n)}
260*38fd1498Szrj      *                      \frac{x^n}{n!}
261*38fd1498Szrj      *   @f]
262*38fd1498Szrj      *
263*38fd1498Szrj      *   This works and it's pretty fast.
264*38fd1498Szrj      *
265*38fd1498Szrj      *   @param  __a  The first @a numerator parameter.
266*38fd1498Szrj      *   @param  __a  The second @a numerator parameter.
267*38fd1498Szrj      *   @param  __c  The @a denominator parameter.
268*38fd1498Szrj      *   @param  __x  The argument of the confluent hypergeometric function.
269*38fd1498Szrj      *   @return  The confluent hypergeometric function.
270*38fd1498Szrj      */
271*38fd1498Szrj     template<typename _Tp>
272*38fd1498Szrj     _Tp
__hyperg_series(_Tp __a,_Tp __b,_Tp __c,_Tp __x)273*38fd1498Szrj     __hyperg_series(_Tp __a, _Tp __b, _Tp __c, _Tp __x)
274*38fd1498Szrj     {
275*38fd1498Szrj       const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
276*38fd1498Szrj 
277*38fd1498Szrj       _Tp __term = _Tp(1);
278*38fd1498Szrj       _Tp __Fabc = _Tp(1);
279*38fd1498Szrj       const unsigned int __max_iter = 100000;
280*38fd1498Szrj       unsigned int __i;
281*38fd1498Szrj       for (__i = 0; __i < __max_iter; ++__i)
282*38fd1498Szrj         {
283*38fd1498Szrj           __term *= (__a + _Tp(__i)) * (__b + _Tp(__i)) * __x
284*38fd1498Szrj                   / ((__c + _Tp(__i)) * _Tp(1 + __i));
285*38fd1498Szrj           if (std::abs(__term) < __eps)
286*38fd1498Szrj             {
287*38fd1498Szrj               break;
288*38fd1498Szrj             }
289*38fd1498Szrj           __Fabc += __term;
290*38fd1498Szrj         }
291*38fd1498Szrj       if (__i == __max_iter)
292*38fd1498Szrj         std::__throw_runtime_error(__N("Series failed to converge "
293*38fd1498Szrj                                        "in __hyperg_series."));
294*38fd1498Szrj 
295*38fd1498Szrj       return __Fabc;
296*38fd1498Szrj     }
297*38fd1498Szrj 
298*38fd1498Szrj 
299*38fd1498Szrj     /**
300*38fd1498Szrj      *   @brief  Return the hypogeometric function @f$ _2F_1(a,b;c;x) @f$
301*38fd1498Szrj      *           by an iterative procedure described in
302*38fd1498Szrj      *           Luke, Algorithms for the Computation of Mathematical Functions.
303*38fd1498Szrj      */
304*38fd1498Szrj     template<typename _Tp>
305*38fd1498Szrj     _Tp
__hyperg_luke(_Tp __a,_Tp __b,_Tp __c,_Tp __xin)306*38fd1498Szrj     __hyperg_luke(_Tp __a, _Tp __b, _Tp __c, _Tp __xin)
307*38fd1498Szrj     {
308*38fd1498Szrj       const _Tp __big = std::pow(std::numeric_limits<_Tp>::max(), _Tp(0.16L));
309*38fd1498Szrj       const int __nmax = 20000;
310*38fd1498Szrj       const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
311*38fd1498Szrj       const _Tp __x  = -__xin;
312*38fd1498Szrj       const _Tp __x3 = __x * __x * __x;
313*38fd1498Szrj       const _Tp __t0 = __a * __b / __c;
314*38fd1498Szrj       const _Tp __t1 = (__a + _Tp(1)) * (__b + _Tp(1)) / (_Tp(2) * __c);
315*38fd1498Szrj       const _Tp __t2 = (__a + _Tp(2)) * (__b + _Tp(2))
316*38fd1498Szrj                      / (_Tp(2) * (__c + _Tp(1)));
317*38fd1498Szrj 
318*38fd1498Szrj       _Tp __F = _Tp(1);
319*38fd1498Szrj 
320*38fd1498Szrj       _Tp __Bnm3 = _Tp(1);
321*38fd1498Szrj       _Tp __Bnm2 = _Tp(1) + __t1 * __x;
322*38fd1498Szrj       _Tp __Bnm1 = _Tp(1) + __t2 * __x * (_Tp(1) + __t1 / _Tp(3) * __x);
323*38fd1498Szrj 
324*38fd1498Szrj       _Tp __Anm3 = _Tp(1);
325*38fd1498Szrj       _Tp __Anm2 = __Bnm2 - __t0 * __x;
326*38fd1498Szrj       _Tp __Anm1 = __Bnm1 - __t0 * (_Tp(1) + __t2 * __x) * __x
327*38fd1498Szrj                  + __t0 * __t1 * (__c / (__c + _Tp(1))) * __x * __x;
328*38fd1498Szrj 
329*38fd1498Szrj       int __n = 3;
330*38fd1498Szrj       while (1)
331*38fd1498Szrj         {
332*38fd1498Szrj           const _Tp __npam1 = _Tp(__n - 1) + __a;
333*38fd1498Szrj           const _Tp __npbm1 = _Tp(__n - 1) + __b;
334*38fd1498Szrj           const _Tp __npcm1 = _Tp(__n - 1) + __c;
335*38fd1498Szrj           const _Tp __npam2 = _Tp(__n - 2) + __a;
336*38fd1498Szrj           const _Tp __npbm2 = _Tp(__n - 2) + __b;
337*38fd1498Szrj           const _Tp __npcm2 = _Tp(__n - 2) + __c;
338*38fd1498Szrj           const _Tp __tnm1  = _Tp(2 * __n - 1);
339*38fd1498Szrj           const _Tp __tnm3  = _Tp(2 * __n - 3);
340*38fd1498Szrj           const _Tp __tnm5  = _Tp(2 * __n - 5);
341*38fd1498Szrj           const _Tp __n2 = __n * __n;
342*38fd1498Szrj           const _Tp __F1 = (_Tp(3) * __n2 + (__a + __b - _Tp(6)) * __n
343*38fd1498Szrj                          + _Tp(2) - __a * __b - _Tp(2) * (__a + __b))
344*38fd1498Szrj                          / (_Tp(2) * __tnm3 * __npcm1);
345*38fd1498Szrj           const _Tp __F2 = -(_Tp(3) * __n2 - (__a + __b + _Tp(6)) * __n
346*38fd1498Szrj                          + _Tp(2) - __a * __b) * __npam1 * __npbm1
347*38fd1498Szrj                          / (_Tp(4) * __tnm1 * __tnm3 * __npcm2 * __npcm1);
348*38fd1498Szrj           const _Tp __F3 = (__npam2 * __npam1 * __npbm2 * __npbm1
349*38fd1498Szrj                          * (_Tp(__n - 2) - __a) * (_Tp(__n - 2) - __b))
350*38fd1498Szrj                          / (_Tp(8) * __tnm3 * __tnm3 * __tnm5
351*38fd1498Szrj                          * (_Tp(__n - 3) + __c) * __npcm2 * __npcm1);
352*38fd1498Szrj           const _Tp __E  = -__npam1 * __npbm1 * (_Tp(__n - 1) - __c)
353*38fd1498Szrj                          / (_Tp(2) * __tnm3 * __npcm2 * __npcm1);
354*38fd1498Szrj 
355*38fd1498Szrj           _Tp __An = (_Tp(1) + __F1 * __x) * __Anm1
356*38fd1498Szrj                    + (__E + __F2 * __x) * __x * __Anm2 + __F3 * __x3 * __Anm3;
357*38fd1498Szrj           _Tp __Bn = (_Tp(1) + __F1 * __x) * __Bnm1
358*38fd1498Szrj                    + (__E + __F2 * __x) * __x * __Bnm2 + __F3 * __x3 * __Bnm3;
359*38fd1498Szrj           const _Tp __r = __An / __Bn;
360*38fd1498Szrj 
361*38fd1498Szrj           const _Tp __prec = std::abs((__F - __r) / __F);
362*38fd1498Szrj           __F = __r;
363*38fd1498Szrj 
364*38fd1498Szrj           if (__prec < __eps || __n > __nmax)
365*38fd1498Szrj             break;
366*38fd1498Szrj 
367*38fd1498Szrj           if (std::abs(__An) > __big || std::abs(__Bn) > __big)
368*38fd1498Szrj             {
369*38fd1498Szrj               __An   /= __big;
370*38fd1498Szrj               __Bn   /= __big;
371*38fd1498Szrj               __Anm1 /= __big;
372*38fd1498Szrj               __Bnm1 /= __big;
373*38fd1498Szrj               __Anm2 /= __big;
374*38fd1498Szrj               __Bnm2 /= __big;
375*38fd1498Szrj               __Anm3 /= __big;
376*38fd1498Szrj               __Bnm3 /= __big;
377*38fd1498Szrj             }
378*38fd1498Szrj           else if (std::abs(__An) < _Tp(1) / __big
379*38fd1498Szrj                 || std::abs(__Bn) < _Tp(1) / __big)
380*38fd1498Szrj             {
381*38fd1498Szrj               __An   *= __big;
382*38fd1498Szrj               __Bn   *= __big;
383*38fd1498Szrj               __Anm1 *= __big;
384*38fd1498Szrj               __Bnm1 *= __big;
385*38fd1498Szrj               __Anm2 *= __big;
386*38fd1498Szrj               __Bnm2 *= __big;
387*38fd1498Szrj               __Anm3 *= __big;
388*38fd1498Szrj               __Bnm3 *= __big;
389*38fd1498Szrj             }
390*38fd1498Szrj 
391*38fd1498Szrj           ++__n;
392*38fd1498Szrj           __Bnm3 = __Bnm2;
393*38fd1498Szrj           __Bnm2 = __Bnm1;
394*38fd1498Szrj           __Bnm1 = __Bn;
395*38fd1498Szrj           __Anm3 = __Anm2;
396*38fd1498Szrj           __Anm2 = __Anm1;
397*38fd1498Szrj           __Anm1 = __An;
398*38fd1498Szrj         }
399*38fd1498Szrj 
400*38fd1498Szrj       if (__n >= __nmax)
401*38fd1498Szrj         std::__throw_runtime_error(__N("Iteration failed to converge "
402*38fd1498Szrj                                        "in __hyperg_luke."));
403*38fd1498Szrj 
404*38fd1498Szrj       return __F;
405*38fd1498Szrj     }
406*38fd1498Szrj 
407*38fd1498Szrj 
408*38fd1498Szrj     /**
409*38fd1498Szrj      *  @brief  Return the hypogeometric function @f$ _2F_1(a,b;c;x) @f$
410*38fd1498Szrj      *  by the reflection formulae in Abramowitz & Stegun formula
411*38fd1498Szrj      *  15.3.6 for d = c - a - b not integral and formula 15.3.11 for
412*38fd1498Szrj      *  d = c - a - b integral.  This assumes a, b, c != negative
413*38fd1498Szrj      *  integer.
414*38fd1498Szrj      *
415*38fd1498Szrj      *   The hypogeometric function is defined by
416*38fd1498Szrj      *   @f[
417*38fd1498Szrj      *     _2F_1(a,b;c;x) = \frac{\Gamma(c)}{\Gamma(a)\Gamma(b)}
418*38fd1498Szrj      *                      \sum_{n=0}^{\infty}
419*38fd1498Szrj      *                      \frac{\Gamma(a+n)\Gamma(b+n)}{\Gamma(c+n)}
420*38fd1498Szrj      *                      \frac{x^n}{n!}
421*38fd1498Szrj      *   @f]
422*38fd1498Szrj      *
423*38fd1498Szrj      *   The reflection formula for nonintegral @f$ d = c - a - b @f$ is:
424*38fd1498Szrj      *   @f[
425*38fd1498Szrj      *     _2F_1(a,b;c;x) = \frac{\Gamma(c)\Gamma(d)}{\Gamma(c-a)\Gamma(c-b)}
426*38fd1498Szrj      *                            _2F_1(a,b;1-d;1-x)
427*38fd1498Szrj      *                    + \frac{\Gamma(c)\Gamma(-d)}{\Gamma(a)\Gamma(b)}
428*38fd1498Szrj      *                            _2F_1(c-a,c-b;1+d;1-x)
429*38fd1498Szrj      *   @f]
430*38fd1498Szrj      *
431*38fd1498Szrj      *   The reflection formula for integral @f$ m = c - a - b @f$ is:
432*38fd1498Szrj      *   @f[
433*38fd1498Szrj      *     _2F_1(a,b;a+b+m;x) = \frac{\Gamma(m)\Gamma(a+b+m)}{\Gamma(a+m)\Gamma(b+m)}
434*38fd1498Szrj      *                        \sum_{k=0}^{m-1} \frac{(m+a)_k(m+b)_k}{k!(1-m)_k}
435*38fd1498Szrj      *                      -
436*38fd1498Szrj      *   @f]
437*38fd1498Szrj      */
438*38fd1498Szrj     template<typename _Tp>
439*38fd1498Szrj     _Tp
__hyperg_reflect(_Tp __a,_Tp __b,_Tp __c,_Tp __x)440*38fd1498Szrj     __hyperg_reflect(_Tp __a, _Tp __b, _Tp __c, _Tp __x)
441*38fd1498Szrj     {
442*38fd1498Szrj       const _Tp __d = __c - __a - __b;
443*38fd1498Szrj       const int __intd  = std::floor(__d + _Tp(0.5L));
444*38fd1498Szrj       const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
445*38fd1498Szrj       const _Tp __toler = _Tp(1000) * __eps;
446*38fd1498Szrj       const _Tp __log_max = std::log(std::numeric_limits<_Tp>::max());
447*38fd1498Szrj       const bool __d_integer = (std::abs(__d - __intd) < __toler);
448*38fd1498Szrj 
449*38fd1498Szrj       if (__d_integer)
450*38fd1498Szrj         {
451*38fd1498Szrj           const _Tp __ln_omx = std::log(_Tp(1) - __x);
452*38fd1498Szrj           const _Tp __ad = std::abs(__d);
453*38fd1498Szrj           _Tp __F1, __F2;
454*38fd1498Szrj 
455*38fd1498Szrj           _Tp __d1, __d2;
456*38fd1498Szrj           if (__d >= _Tp(0))
457*38fd1498Szrj             {
458*38fd1498Szrj               __d1 = __d;
459*38fd1498Szrj               __d2 = _Tp(0);
460*38fd1498Szrj             }
461*38fd1498Szrj           else
462*38fd1498Szrj             {
463*38fd1498Szrj               __d1 = _Tp(0);
464*38fd1498Szrj               __d2 = __d;
465*38fd1498Szrj             }
466*38fd1498Szrj 
467*38fd1498Szrj           const _Tp __lng_c = __log_gamma(__c);
468*38fd1498Szrj 
469*38fd1498Szrj           //  Evaluate F1.
470*38fd1498Szrj           if (__ad < __eps)
471*38fd1498Szrj             {
472*38fd1498Szrj               //  d = c - a - b = 0.
473*38fd1498Szrj               __F1 = _Tp(0);
474*38fd1498Szrj             }
475*38fd1498Szrj           else
476*38fd1498Szrj             {
477*38fd1498Szrj 
478*38fd1498Szrj               bool __ok_d1 = true;
479*38fd1498Szrj               _Tp __lng_ad, __lng_ad1, __lng_bd1;
480*38fd1498Szrj               __try
481*38fd1498Szrj                 {
482*38fd1498Szrj                   __lng_ad = __log_gamma(__ad);
483*38fd1498Szrj                   __lng_ad1 = __log_gamma(__a + __d1);
484*38fd1498Szrj                   __lng_bd1 = __log_gamma(__b + __d1);
485*38fd1498Szrj                 }
486*38fd1498Szrj               __catch(...)
487*38fd1498Szrj                 {
488*38fd1498Szrj                   __ok_d1 = false;
489*38fd1498Szrj                 }
490*38fd1498Szrj 
491*38fd1498Szrj               if (__ok_d1)
492*38fd1498Szrj                 {
493*38fd1498Szrj                   /* Gamma functions in the denominator are ok.
494*38fd1498Szrj                    * Proceed with evaluation.
495*38fd1498Szrj                    */
496*38fd1498Szrj                   _Tp __sum1 = _Tp(1);
497*38fd1498Szrj                   _Tp __term = _Tp(1);
498*38fd1498Szrj                   _Tp __ln_pre1 = __lng_ad + __lng_c + __d2 * __ln_omx
499*38fd1498Szrj                                 - __lng_ad1 - __lng_bd1;
500*38fd1498Szrj 
501*38fd1498Szrj                   /* Do F1 sum.
502*38fd1498Szrj                    */
503*38fd1498Szrj                   for (int __i = 1; __i < __ad; ++__i)
504*38fd1498Szrj                     {
505*38fd1498Szrj                       const int __j = __i - 1;
506*38fd1498Szrj                       __term *= (__a + __d2 + __j) * (__b + __d2 + __j)
507*38fd1498Szrj                               / (_Tp(1) + __d2 + __j) / __i * (_Tp(1) - __x);
508*38fd1498Szrj                       __sum1 += __term;
509*38fd1498Szrj                     }
510*38fd1498Szrj 
511*38fd1498Szrj                   if (__ln_pre1 > __log_max)
512*38fd1498Szrj                     std::__throw_runtime_error(__N("Overflow of gamma functions"
513*38fd1498Szrj                                                    " in __hyperg_luke."));
514*38fd1498Szrj                   else
515*38fd1498Szrj                     __F1 = std::exp(__ln_pre1) * __sum1;
516*38fd1498Szrj                 }
517*38fd1498Szrj               else
518*38fd1498Szrj                 {
519*38fd1498Szrj                   //  Gamma functions in the denominator were not ok.
520*38fd1498Szrj                   //  So the F1 term is zero.
521*38fd1498Szrj                   __F1 = _Tp(0);
522*38fd1498Szrj                 }
523*38fd1498Szrj             } // end F1 evaluation
524*38fd1498Szrj 
525*38fd1498Szrj           // Evaluate F2.
526*38fd1498Szrj           bool __ok_d2 = true;
527*38fd1498Szrj           _Tp __lng_ad2, __lng_bd2;
528*38fd1498Szrj           __try
529*38fd1498Szrj             {
530*38fd1498Szrj               __lng_ad2 = __log_gamma(__a + __d2);
531*38fd1498Szrj               __lng_bd2 = __log_gamma(__b + __d2);
532*38fd1498Szrj             }
533*38fd1498Szrj           __catch(...)
534*38fd1498Szrj             {
535*38fd1498Szrj               __ok_d2 = false;
536*38fd1498Szrj             }
537*38fd1498Szrj 
538*38fd1498Szrj           if (__ok_d2)
539*38fd1498Szrj             {
540*38fd1498Szrj               //  Gamma functions in the denominator are ok.
541*38fd1498Szrj               //  Proceed with evaluation.
542*38fd1498Szrj               const int __maxiter = 2000;
543*38fd1498Szrj               const _Tp __psi_1 = -__numeric_constants<_Tp>::__gamma_e();
544*38fd1498Szrj               const _Tp __psi_1pd = __psi(_Tp(1) + __ad);
545*38fd1498Szrj               const _Tp __psi_apd1 = __psi(__a + __d1);
546*38fd1498Szrj               const _Tp __psi_bpd1 = __psi(__b + __d1);
547*38fd1498Szrj 
548*38fd1498Szrj               _Tp __psi_term = __psi_1 + __psi_1pd - __psi_apd1
549*38fd1498Szrj                              - __psi_bpd1 - __ln_omx;
550*38fd1498Szrj               _Tp __fact = _Tp(1);
551*38fd1498Szrj               _Tp __sum2 = __psi_term;
552*38fd1498Szrj               _Tp __ln_pre2 = __lng_c + __d1 * __ln_omx
553*38fd1498Szrj                             - __lng_ad2 - __lng_bd2;
554*38fd1498Szrj 
555*38fd1498Szrj               // Do F2 sum.
556*38fd1498Szrj               int __j;
557*38fd1498Szrj               for (__j = 1; __j < __maxiter; ++__j)
558*38fd1498Szrj                 {
559*38fd1498Szrj                   //  Values for psi functions use recurrence;
560*38fd1498Szrj                   //  Abramowitz & Stegun 6.3.5
561*38fd1498Szrj                   const _Tp __term1 = _Tp(1) / _Tp(__j)
562*38fd1498Szrj                                     + _Tp(1) / (__ad + __j);
563*38fd1498Szrj                   const _Tp __term2 = _Tp(1) / (__a + __d1 + _Tp(__j - 1))
564*38fd1498Szrj                                     + _Tp(1) / (__b + __d1 + _Tp(__j - 1));
565*38fd1498Szrj                   __psi_term += __term1 - __term2;
566*38fd1498Szrj                   __fact *= (__a + __d1 + _Tp(__j - 1))
567*38fd1498Szrj                           * (__b + __d1 + _Tp(__j - 1))
568*38fd1498Szrj                           / ((__ad + __j) * __j) * (_Tp(1) - __x);
569*38fd1498Szrj                   const _Tp __delta = __fact * __psi_term;
570*38fd1498Szrj                   __sum2 += __delta;
571*38fd1498Szrj                   if (std::abs(__delta) < __eps * std::abs(__sum2))
572*38fd1498Szrj                     break;
573*38fd1498Szrj                 }
574*38fd1498Szrj               if (__j == __maxiter)
575*38fd1498Szrj                 std::__throw_runtime_error(__N("Sum F2 failed to converge "
576*38fd1498Szrj                                                "in __hyperg_reflect"));
577*38fd1498Szrj 
578*38fd1498Szrj               if (__sum2 == _Tp(0))
579*38fd1498Szrj                 __F2 = _Tp(0);
580*38fd1498Szrj               else
581*38fd1498Szrj                 __F2 = std::exp(__ln_pre2) * __sum2;
582*38fd1498Szrj             }
583*38fd1498Szrj           else
584*38fd1498Szrj             {
585*38fd1498Szrj               // Gamma functions in the denominator not ok.
586*38fd1498Szrj               // So the F2 term is zero.
587*38fd1498Szrj               __F2 = _Tp(0);
588*38fd1498Szrj             } // end F2 evaluation
589*38fd1498Szrj 
590*38fd1498Szrj           const _Tp __sgn_2 = (__intd % 2 == 1 ? -_Tp(1) : _Tp(1));
591*38fd1498Szrj           const _Tp __F = __F1 + __sgn_2 * __F2;
592*38fd1498Szrj 
593*38fd1498Szrj           return __F;
594*38fd1498Szrj         }
595*38fd1498Szrj       else
596*38fd1498Szrj         {
597*38fd1498Szrj           //  d = c - a - b not an integer.
598*38fd1498Szrj 
599*38fd1498Szrj           //  These gamma functions appear in the denominator, so we
600*38fd1498Szrj           //  catch their harmless domain errors and set the terms to zero.
601*38fd1498Szrj           bool __ok1 = true;
602*38fd1498Szrj           _Tp __sgn_g1ca = _Tp(0), __ln_g1ca = _Tp(0);
603*38fd1498Szrj           _Tp __sgn_g1cb = _Tp(0), __ln_g1cb = _Tp(0);
604*38fd1498Szrj           __try
605*38fd1498Szrj             {
606*38fd1498Szrj               __sgn_g1ca = __log_gamma_sign(__c - __a);
607*38fd1498Szrj               __ln_g1ca = __log_gamma(__c - __a);
608*38fd1498Szrj               __sgn_g1cb = __log_gamma_sign(__c - __b);
609*38fd1498Szrj               __ln_g1cb = __log_gamma(__c - __b);
610*38fd1498Szrj             }
611*38fd1498Szrj           __catch(...)
612*38fd1498Szrj             {
613*38fd1498Szrj               __ok1 = false;
614*38fd1498Szrj             }
615*38fd1498Szrj 
616*38fd1498Szrj           bool __ok2 = true;
617*38fd1498Szrj           _Tp __sgn_g2a = _Tp(0), __ln_g2a = _Tp(0);
618*38fd1498Szrj           _Tp __sgn_g2b = _Tp(0), __ln_g2b = _Tp(0);
619*38fd1498Szrj           __try
620*38fd1498Szrj             {
621*38fd1498Szrj               __sgn_g2a = __log_gamma_sign(__a);
622*38fd1498Szrj               __ln_g2a = __log_gamma(__a);
623*38fd1498Szrj               __sgn_g2b = __log_gamma_sign(__b);
624*38fd1498Szrj               __ln_g2b = __log_gamma(__b);
625*38fd1498Szrj             }
626*38fd1498Szrj           __catch(...)
627*38fd1498Szrj             {
628*38fd1498Szrj               __ok2 = false;
629*38fd1498Szrj             }
630*38fd1498Szrj 
631*38fd1498Szrj           const _Tp __sgn_gc = __log_gamma_sign(__c);
632*38fd1498Szrj           const _Tp __ln_gc = __log_gamma(__c);
633*38fd1498Szrj           const _Tp __sgn_gd = __log_gamma_sign(__d);
634*38fd1498Szrj           const _Tp __ln_gd = __log_gamma(__d);
635*38fd1498Szrj           const _Tp __sgn_gmd = __log_gamma_sign(-__d);
636*38fd1498Szrj           const _Tp __ln_gmd = __log_gamma(-__d);
637*38fd1498Szrj 
638*38fd1498Szrj           const _Tp __sgn1 = __sgn_gc * __sgn_gd  * __sgn_g1ca * __sgn_g1cb;
639*38fd1498Szrj           const _Tp __sgn2 = __sgn_gc * __sgn_gmd * __sgn_g2a  * __sgn_g2b;
640*38fd1498Szrj 
641*38fd1498Szrj           _Tp __pre1, __pre2;
642*38fd1498Szrj           if (__ok1 && __ok2)
643*38fd1498Szrj             {
644*38fd1498Szrj               _Tp __ln_pre1 = __ln_gc + __ln_gd  - __ln_g1ca - __ln_g1cb;
645*38fd1498Szrj               _Tp __ln_pre2 = __ln_gc + __ln_gmd - __ln_g2a  - __ln_g2b
646*38fd1498Szrj                             + __d * std::log(_Tp(1) - __x);
647*38fd1498Szrj               if (__ln_pre1 < __log_max && __ln_pre2 < __log_max)
648*38fd1498Szrj                 {
649*38fd1498Szrj                   __pre1 = std::exp(__ln_pre1);
650*38fd1498Szrj                   __pre2 = std::exp(__ln_pre2);
651*38fd1498Szrj                   __pre1 *= __sgn1;
652*38fd1498Szrj                   __pre2 *= __sgn2;
653*38fd1498Szrj                 }
654*38fd1498Szrj               else
655*38fd1498Szrj                 {
656*38fd1498Szrj                   std::__throw_runtime_error(__N("Overflow of gamma functions "
657*38fd1498Szrj                                                  "in __hyperg_reflect"));
658*38fd1498Szrj                 }
659*38fd1498Szrj             }
660*38fd1498Szrj           else if (__ok1 && !__ok2)
661*38fd1498Szrj             {
662*38fd1498Szrj               _Tp __ln_pre1 = __ln_gc + __ln_gd - __ln_g1ca - __ln_g1cb;
663*38fd1498Szrj               if (__ln_pre1 < __log_max)
664*38fd1498Szrj                 {
665*38fd1498Szrj                   __pre1 = std::exp(__ln_pre1);
666*38fd1498Szrj                   __pre1 *= __sgn1;
667*38fd1498Szrj                   __pre2 = _Tp(0);
668*38fd1498Szrj                 }
669*38fd1498Szrj               else
670*38fd1498Szrj                 {
671*38fd1498Szrj                   std::__throw_runtime_error(__N("Overflow of gamma functions "
672*38fd1498Szrj                                                  "in __hyperg_reflect"));
673*38fd1498Szrj                 }
674*38fd1498Szrj             }
675*38fd1498Szrj           else if (!__ok1 && __ok2)
676*38fd1498Szrj             {
677*38fd1498Szrj               _Tp __ln_pre2 = __ln_gc + __ln_gmd - __ln_g2a - __ln_g2b
678*38fd1498Szrj                             + __d * std::log(_Tp(1) - __x);
679*38fd1498Szrj               if (__ln_pre2 < __log_max)
680*38fd1498Szrj                 {
681*38fd1498Szrj                   __pre1 = _Tp(0);
682*38fd1498Szrj                   __pre2 = std::exp(__ln_pre2);
683*38fd1498Szrj                   __pre2 *= __sgn2;
684*38fd1498Szrj                 }
685*38fd1498Szrj               else
686*38fd1498Szrj                 {
687*38fd1498Szrj                   std::__throw_runtime_error(__N("Overflow of gamma functions "
688*38fd1498Szrj                                                  "in __hyperg_reflect"));
689*38fd1498Szrj                 }
690*38fd1498Szrj             }
691*38fd1498Szrj           else
692*38fd1498Szrj             {
693*38fd1498Szrj               __pre1 = _Tp(0);
694*38fd1498Szrj               __pre2 = _Tp(0);
695*38fd1498Szrj               std::__throw_runtime_error(__N("Underflow of gamma functions "
696*38fd1498Szrj                                              "in __hyperg_reflect"));
697*38fd1498Szrj             }
698*38fd1498Szrj 
699*38fd1498Szrj           const _Tp __F1 = __hyperg_series(__a, __b, _Tp(1) - __d,
700*38fd1498Szrj                                            _Tp(1) - __x);
701*38fd1498Szrj           const _Tp __F2 = __hyperg_series(__c - __a, __c - __b, _Tp(1) + __d,
702*38fd1498Szrj                                            _Tp(1) - __x);
703*38fd1498Szrj 
704*38fd1498Szrj           const _Tp __F = __pre1 * __F1 + __pre2 * __F2;
705*38fd1498Szrj 
706*38fd1498Szrj           return __F;
707*38fd1498Szrj         }
708*38fd1498Szrj     }
709*38fd1498Szrj 
710*38fd1498Szrj 
711*38fd1498Szrj     /**
712*38fd1498Szrj      *   @brief Return the hypogeometric function @f$ _2F_1(a,b;c;x) @f$.
713*38fd1498Szrj      *
714*38fd1498Szrj      *   The hypogeometric function is defined by
715*38fd1498Szrj      *   @f[
716*38fd1498Szrj      *     _2F_1(a,b;c;x) = \frac{\Gamma(c)}{\Gamma(a)\Gamma(b)}
717*38fd1498Szrj      *                      \sum_{n=0}^{\infty}
718*38fd1498Szrj      *                      \frac{\Gamma(a+n)\Gamma(b+n)}{\Gamma(c+n)}
719*38fd1498Szrj      *                      \frac{x^n}{n!}
720*38fd1498Szrj      *   @f]
721*38fd1498Szrj      *
722*38fd1498Szrj      *   @param  __a  The first @a numerator parameter.
723*38fd1498Szrj      *   @param  __a  The second @a numerator parameter.
724*38fd1498Szrj      *   @param  __c  The @a denominator parameter.
725*38fd1498Szrj      *   @param  __x  The argument of the confluent hypergeometric function.
726*38fd1498Szrj      *   @return  The confluent hypergeometric function.
727*38fd1498Szrj      */
728*38fd1498Szrj     template<typename _Tp>
729*38fd1498Szrj     _Tp
__hyperg(_Tp __a,_Tp __b,_Tp __c,_Tp __x)730*38fd1498Szrj     __hyperg(_Tp __a, _Tp __b, _Tp __c, _Tp __x)
731*38fd1498Szrj     {
732*38fd1498Szrj #if _GLIBCXX_USE_C99_MATH_TR1
733*38fd1498Szrj       const _Tp __a_nint = _GLIBCXX_MATH_NS::nearbyint(__a);
734*38fd1498Szrj       const _Tp __b_nint = _GLIBCXX_MATH_NS::nearbyint(__b);
735*38fd1498Szrj       const _Tp __c_nint = _GLIBCXX_MATH_NS::nearbyint(__c);
736*38fd1498Szrj #else
737*38fd1498Szrj       const _Tp __a_nint = static_cast<int>(__a + _Tp(0.5L));
738*38fd1498Szrj       const _Tp __b_nint = static_cast<int>(__b + _Tp(0.5L));
739*38fd1498Szrj       const _Tp __c_nint = static_cast<int>(__c + _Tp(0.5L));
740*38fd1498Szrj #endif
741*38fd1498Szrj       const _Tp __toler = _Tp(1000) * std::numeric_limits<_Tp>::epsilon();
742*38fd1498Szrj       if (std::abs(__x) >= _Tp(1))
743*38fd1498Szrj         std::__throw_domain_error(__N("Argument outside unit circle "
744*38fd1498Szrj                                       "in __hyperg."));
745*38fd1498Szrj       else if (__isnan(__a) || __isnan(__b)
746*38fd1498Szrj             || __isnan(__c) || __isnan(__x))
747*38fd1498Szrj         return std::numeric_limits<_Tp>::quiet_NaN();
748*38fd1498Szrj       else if (__c_nint == __c && __c_nint <= _Tp(0))
749*38fd1498Szrj         return std::numeric_limits<_Tp>::infinity();
750*38fd1498Szrj       else if (std::abs(__c - __b) < __toler || std::abs(__c - __a) < __toler)
751*38fd1498Szrj         return std::pow(_Tp(1) - __x, __c - __a - __b);
752*38fd1498Szrj       else if (__a >= _Tp(0) && __b >= _Tp(0) && __c >= _Tp(0)
753*38fd1498Szrj             && __x >= _Tp(0) && __x < _Tp(0.995L))
754*38fd1498Szrj         return __hyperg_series(__a, __b, __c, __x);
755*38fd1498Szrj       else if (std::abs(__a) < _Tp(10) && std::abs(__b) < _Tp(10))
756*38fd1498Szrj         {
757*38fd1498Szrj           //  For integer a and b the hypergeometric function is a
758*38fd1498Szrj           //  finite polynomial.
759*38fd1498Szrj           if (__a < _Tp(0)  &&  std::abs(__a - __a_nint) < __toler)
760*38fd1498Szrj             return __hyperg_series(__a_nint, __b, __c, __x);
761*38fd1498Szrj           else if (__b < _Tp(0)  &&  std::abs(__b - __b_nint) < __toler)
762*38fd1498Szrj             return __hyperg_series(__a, __b_nint, __c, __x);
763*38fd1498Szrj           else if (__x < -_Tp(0.25L))
764*38fd1498Szrj             return __hyperg_luke(__a, __b, __c, __x);
765*38fd1498Szrj           else if (__x < _Tp(0.5L))
766*38fd1498Szrj             return __hyperg_series(__a, __b, __c, __x);
767*38fd1498Szrj           else
768*38fd1498Szrj             if (std::abs(__c) > _Tp(10))
769*38fd1498Szrj               return __hyperg_series(__a, __b, __c, __x);
770*38fd1498Szrj             else
771*38fd1498Szrj               return __hyperg_reflect(__a, __b, __c, __x);
772*38fd1498Szrj         }
773*38fd1498Szrj       else
774*38fd1498Szrj         return __hyperg_luke(__a, __b, __c, __x);
775*38fd1498Szrj     }
776*38fd1498Szrj   } // namespace __detail
777*38fd1498Szrj #undef _GLIBCXX_MATH_NS
778*38fd1498Szrj #if ! _GLIBCXX_USE_STD_SPEC_FUNCS && defined(_GLIBCXX_TR1_CMATH)
779*38fd1498Szrj } // namespace tr1
780*38fd1498Szrj #endif
781*38fd1498Szrj 
782*38fd1498Szrj _GLIBCXX_END_NAMESPACE_VERSION
783*38fd1498Szrj }
784*38fd1498Szrj 
785*38fd1498Szrj #endif // _GLIBCXX_TR1_HYPERGEOMETRIC_TCC
786