1*38fd1498Szrj // Special functions -*- C++ -*- 2*38fd1498Szrj 3*38fd1498Szrj // Copyright (C) 2006-2018 Free Software Foundation, Inc. 4*38fd1498Szrj // 5*38fd1498Szrj // This file is part of the GNU ISO C++ Library. This library is free 6*38fd1498Szrj // software; you can redistribute it and/or modify it under the 7*38fd1498Szrj // terms of the GNU General Public License as published by the 8*38fd1498Szrj // Free Software Foundation; either version 3, or (at your option) 9*38fd1498Szrj // any later version. 10*38fd1498Szrj // 11*38fd1498Szrj // This library is distributed in the hope that it will be useful, 12*38fd1498Szrj // but WITHOUT ANY WARRANTY; without even the implied warranty of 13*38fd1498Szrj // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14*38fd1498Szrj // GNU General Public License for more details. 15*38fd1498Szrj // 16*38fd1498Szrj // Under Section 7 of GPL version 3, you are granted additional 17*38fd1498Szrj // permissions described in the GCC Runtime Library Exception, version 18*38fd1498Szrj // 3.1, as published by the Free Software Foundation. 19*38fd1498Szrj 20*38fd1498Szrj // You should have received a copy of the GNU General Public License and 21*38fd1498Szrj // a copy of the GCC Runtime Library Exception along with this program; 22*38fd1498Szrj // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see 23*38fd1498Szrj // <http://www.gnu.org/licenses/>. 24*38fd1498Szrj 25*38fd1498Szrj /** @file tr1/hypergeometric.tcc 26*38fd1498Szrj * This is an internal header file, included by other library headers. 27*38fd1498Szrj * Do not attempt to use it directly. @headername{tr1/cmath} 28*38fd1498Szrj */ 29*38fd1498Szrj 30*38fd1498Szrj // 31*38fd1498Szrj // ISO C++ 14882 TR1: 5.2 Special functions 32*38fd1498Szrj // 33*38fd1498Szrj 34*38fd1498Szrj // Written by Edward Smith-Rowland based: 35*38fd1498Szrj // (1) Handbook of Mathematical Functions, 36*38fd1498Szrj // ed. Milton Abramowitz and Irene A. Stegun, 37*38fd1498Szrj // Dover Publications, 38*38fd1498Szrj // Section 6, pp. 555-566 39*38fd1498Szrj // (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl 40*38fd1498Szrj 41*38fd1498Szrj #ifndef _GLIBCXX_TR1_HYPERGEOMETRIC_TCC 42*38fd1498Szrj #define _GLIBCXX_TR1_HYPERGEOMETRIC_TCC 1 43*38fd1498Szrj 44*38fd1498Szrj namespace std _GLIBCXX_VISIBILITY(default) 45*38fd1498Szrj { 46*38fd1498Szrj _GLIBCXX_BEGIN_NAMESPACE_VERSION 47*38fd1498Szrj 48*38fd1498Szrj #if _GLIBCXX_USE_STD_SPEC_FUNCS 49*38fd1498Szrj # define _GLIBCXX_MATH_NS ::std 50*38fd1498Szrj #elif defined(_GLIBCXX_TR1_CMATH) 51*38fd1498Szrj namespace tr1 52*38fd1498Szrj { 53*38fd1498Szrj # define _GLIBCXX_MATH_NS ::std::tr1 54*38fd1498Szrj #else 55*38fd1498Szrj # error do not include this header directly, use <cmath> or <tr1/cmath> 56*38fd1498Szrj #endif 57*38fd1498Szrj // [5.2] Special functions 58*38fd1498Szrj 59*38fd1498Szrj // Implementation-space details. 60*38fd1498Szrj namespace __detail 61*38fd1498Szrj { 62*38fd1498Szrj /** 63*38fd1498Szrj * @brief This routine returns the confluent hypergeometric function 64*38fd1498Szrj * by series expansion. 65*38fd1498Szrj * 66*38fd1498Szrj * @f[ 67*38fd1498Szrj * _1F_1(a;c;x) = \frac{\Gamma(c)}{\Gamma(a)} 68*38fd1498Szrj * \sum_{n=0}^{\infty} 69*38fd1498Szrj * \frac{\Gamma(a+n)}{\Gamma(c+n)} 70*38fd1498Szrj * \frac{x^n}{n!} 71*38fd1498Szrj * @f] 72*38fd1498Szrj * 73*38fd1498Szrj * If a and b are integers and a < 0 and either b > 0 or b < a 74*38fd1498Szrj * then the series is a polynomial with a finite number of 75*38fd1498Szrj * terms. If b is an integer and b <= 0 the confluent 76*38fd1498Szrj * hypergeometric function is undefined. 77*38fd1498Szrj * 78*38fd1498Szrj * @param __a The "numerator" parameter. 79*38fd1498Szrj * @param __c The "denominator" parameter. 80*38fd1498Szrj * @param __x The argument of the confluent hypergeometric function. 81*38fd1498Szrj * @return The confluent hypergeometric function. 82*38fd1498Szrj */ 83*38fd1498Szrj template<typename _Tp> 84*38fd1498Szrj _Tp __conf_hyperg_series(_Tp __a,_Tp __c,_Tp __x)85*38fd1498Szrj __conf_hyperg_series(_Tp __a, _Tp __c, _Tp __x) 86*38fd1498Szrj { 87*38fd1498Szrj const _Tp __eps = std::numeric_limits<_Tp>::epsilon(); 88*38fd1498Szrj 89*38fd1498Szrj _Tp __term = _Tp(1); 90*38fd1498Szrj _Tp __Fac = _Tp(1); 91*38fd1498Szrj const unsigned int __max_iter = 100000; 92*38fd1498Szrj unsigned int __i; 93*38fd1498Szrj for (__i = 0; __i < __max_iter; ++__i) 94*38fd1498Szrj { 95*38fd1498Szrj __term *= (__a + _Tp(__i)) * __x 96*38fd1498Szrj / ((__c + _Tp(__i)) * _Tp(1 + __i)); 97*38fd1498Szrj if (std::abs(__term) < __eps) 98*38fd1498Szrj { 99*38fd1498Szrj break; 100*38fd1498Szrj } 101*38fd1498Szrj __Fac += __term; 102*38fd1498Szrj } 103*38fd1498Szrj if (__i == __max_iter) 104*38fd1498Szrj std::__throw_runtime_error(__N("Series failed to converge " 105*38fd1498Szrj "in __conf_hyperg_series.")); 106*38fd1498Szrj 107*38fd1498Szrj return __Fac; 108*38fd1498Szrj } 109*38fd1498Szrj 110*38fd1498Szrj 111*38fd1498Szrj /** 112*38fd1498Szrj * @brief Return the hypogeometric function @f$ _2F_1(a,b;c;x) @f$ 113*38fd1498Szrj * by an iterative procedure described in 114*38fd1498Szrj * Luke, Algorithms for the Computation of Mathematical Functions. 115*38fd1498Szrj * 116*38fd1498Szrj * Like the case of the 2F1 rational approximations, these are 117*38fd1498Szrj * probably guaranteed to converge for x < 0, barring gross 118*38fd1498Szrj * numerical instability in the pre-asymptotic regime. 119*38fd1498Szrj */ 120*38fd1498Szrj template<typename _Tp> 121*38fd1498Szrj _Tp __conf_hyperg_luke(_Tp __a,_Tp __c,_Tp __xin)122*38fd1498Szrj __conf_hyperg_luke(_Tp __a, _Tp __c, _Tp __xin) 123*38fd1498Szrj { 124*38fd1498Szrj const _Tp __big = std::pow(std::numeric_limits<_Tp>::max(), _Tp(0.16L)); 125*38fd1498Szrj const int __nmax = 20000; 126*38fd1498Szrj const _Tp __eps = std::numeric_limits<_Tp>::epsilon(); 127*38fd1498Szrj const _Tp __x = -__xin; 128*38fd1498Szrj const _Tp __x3 = __x * __x * __x; 129*38fd1498Szrj const _Tp __t0 = __a / __c; 130*38fd1498Szrj const _Tp __t1 = (__a + _Tp(1)) / (_Tp(2) * __c); 131*38fd1498Szrj const _Tp __t2 = (__a + _Tp(2)) / (_Tp(2) * (__c + _Tp(1))); 132*38fd1498Szrj _Tp __F = _Tp(1); 133*38fd1498Szrj _Tp __prec; 134*38fd1498Szrj 135*38fd1498Szrj _Tp __Bnm3 = _Tp(1); 136*38fd1498Szrj _Tp __Bnm2 = _Tp(1) + __t1 * __x; 137*38fd1498Szrj _Tp __Bnm1 = _Tp(1) + __t2 * __x * (_Tp(1) + __t1 / _Tp(3) * __x); 138*38fd1498Szrj 139*38fd1498Szrj _Tp __Anm3 = _Tp(1); 140*38fd1498Szrj _Tp __Anm2 = __Bnm2 - __t0 * __x; 141*38fd1498Szrj _Tp __Anm1 = __Bnm1 - __t0 * (_Tp(1) + __t2 * __x) * __x 142*38fd1498Szrj + __t0 * __t1 * (__c / (__c + _Tp(1))) * __x * __x; 143*38fd1498Szrj 144*38fd1498Szrj int __n = 3; 145*38fd1498Szrj while(1) 146*38fd1498Szrj { 147*38fd1498Szrj _Tp __npam1 = _Tp(__n - 1) + __a; 148*38fd1498Szrj _Tp __npcm1 = _Tp(__n - 1) + __c; 149*38fd1498Szrj _Tp __npam2 = _Tp(__n - 2) + __a; 150*38fd1498Szrj _Tp __npcm2 = _Tp(__n - 2) + __c; 151*38fd1498Szrj _Tp __tnm1 = _Tp(2 * __n - 1); 152*38fd1498Szrj _Tp __tnm3 = _Tp(2 * __n - 3); 153*38fd1498Szrj _Tp __tnm5 = _Tp(2 * __n - 5); 154*38fd1498Szrj _Tp __F1 = (_Tp(__n - 2) - __a) / (_Tp(2) * __tnm3 * __npcm1); 155*38fd1498Szrj _Tp __F2 = (_Tp(__n) + __a) * __npam1 156*38fd1498Szrj / (_Tp(4) * __tnm1 * __tnm3 * __npcm2 * __npcm1); 157*38fd1498Szrj _Tp __F3 = -__npam2 * __npam1 * (_Tp(__n - 2) - __a) 158*38fd1498Szrj / (_Tp(8) * __tnm3 * __tnm3 * __tnm5 159*38fd1498Szrj * (_Tp(__n - 3) + __c) * __npcm2 * __npcm1); 160*38fd1498Szrj _Tp __E = -__npam1 * (_Tp(__n - 1) - __c) 161*38fd1498Szrj / (_Tp(2) * __tnm3 * __npcm2 * __npcm1); 162*38fd1498Szrj 163*38fd1498Szrj _Tp __An = (_Tp(1) + __F1 * __x) * __Anm1 164*38fd1498Szrj + (__E + __F2 * __x) * __x * __Anm2 + __F3 * __x3 * __Anm3; 165*38fd1498Szrj _Tp __Bn = (_Tp(1) + __F1 * __x) * __Bnm1 166*38fd1498Szrj + (__E + __F2 * __x) * __x * __Bnm2 + __F3 * __x3 * __Bnm3; 167*38fd1498Szrj _Tp __r = __An / __Bn; 168*38fd1498Szrj 169*38fd1498Szrj __prec = std::abs((__F - __r) / __F); 170*38fd1498Szrj __F = __r; 171*38fd1498Szrj 172*38fd1498Szrj if (__prec < __eps || __n > __nmax) 173*38fd1498Szrj break; 174*38fd1498Szrj 175*38fd1498Szrj if (std::abs(__An) > __big || std::abs(__Bn) > __big) 176*38fd1498Szrj { 177*38fd1498Szrj __An /= __big; 178*38fd1498Szrj __Bn /= __big; 179*38fd1498Szrj __Anm1 /= __big; 180*38fd1498Szrj __Bnm1 /= __big; 181*38fd1498Szrj __Anm2 /= __big; 182*38fd1498Szrj __Bnm2 /= __big; 183*38fd1498Szrj __Anm3 /= __big; 184*38fd1498Szrj __Bnm3 /= __big; 185*38fd1498Szrj } 186*38fd1498Szrj else if (std::abs(__An) < _Tp(1) / __big 187*38fd1498Szrj || std::abs(__Bn) < _Tp(1) / __big) 188*38fd1498Szrj { 189*38fd1498Szrj __An *= __big; 190*38fd1498Szrj __Bn *= __big; 191*38fd1498Szrj __Anm1 *= __big; 192*38fd1498Szrj __Bnm1 *= __big; 193*38fd1498Szrj __Anm2 *= __big; 194*38fd1498Szrj __Bnm2 *= __big; 195*38fd1498Szrj __Anm3 *= __big; 196*38fd1498Szrj __Bnm3 *= __big; 197*38fd1498Szrj } 198*38fd1498Szrj 199*38fd1498Szrj ++__n; 200*38fd1498Szrj __Bnm3 = __Bnm2; 201*38fd1498Szrj __Bnm2 = __Bnm1; 202*38fd1498Szrj __Bnm1 = __Bn; 203*38fd1498Szrj __Anm3 = __Anm2; 204*38fd1498Szrj __Anm2 = __Anm1; 205*38fd1498Szrj __Anm1 = __An; 206*38fd1498Szrj } 207*38fd1498Szrj 208*38fd1498Szrj if (__n >= __nmax) 209*38fd1498Szrj std::__throw_runtime_error(__N("Iteration failed to converge " 210*38fd1498Szrj "in __conf_hyperg_luke.")); 211*38fd1498Szrj 212*38fd1498Szrj return __F; 213*38fd1498Szrj } 214*38fd1498Szrj 215*38fd1498Szrj 216*38fd1498Szrj /** 217*38fd1498Szrj * @brief Return the confluent hypogeometric function 218*38fd1498Szrj * @f$ _1F_1(a;c;x) @f$. 219*38fd1498Szrj * 220*38fd1498Szrj * @todo Handle b == nonpositive integer blowup - return NaN. 221*38fd1498Szrj * 222*38fd1498Szrj * @param __a The @a numerator parameter. 223*38fd1498Szrj * @param __c The @a denominator parameter. 224*38fd1498Szrj * @param __x The argument of the confluent hypergeometric function. 225*38fd1498Szrj * @return The confluent hypergeometric function. 226*38fd1498Szrj */ 227*38fd1498Szrj template<typename _Tp> 228*38fd1498Szrj _Tp __conf_hyperg(_Tp __a,_Tp __c,_Tp __x)229*38fd1498Szrj __conf_hyperg(_Tp __a, _Tp __c, _Tp __x) 230*38fd1498Szrj { 231*38fd1498Szrj #if _GLIBCXX_USE_C99_MATH_TR1 232*38fd1498Szrj const _Tp __c_nint = _GLIBCXX_MATH_NS::nearbyint(__c); 233*38fd1498Szrj #else 234*38fd1498Szrj const _Tp __c_nint = static_cast<int>(__c + _Tp(0.5L)); 235*38fd1498Szrj #endif 236*38fd1498Szrj if (__isnan(__a) || __isnan(__c) || __isnan(__x)) 237*38fd1498Szrj return std::numeric_limits<_Tp>::quiet_NaN(); 238*38fd1498Szrj else if (__c_nint == __c && __c_nint <= 0) 239*38fd1498Szrj return std::numeric_limits<_Tp>::infinity(); 240*38fd1498Szrj else if (__a == _Tp(0)) 241*38fd1498Szrj return _Tp(1); 242*38fd1498Szrj else if (__c == __a) 243*38fd1498Szrj return std::exp(__x); 244*38fd1498Szrj else if (__x < _Tp(0)) 245*38fd1498Szrj return __conf_hyperg_luke(__a, __c, __x); 246*38fd1498Szrj else 247*38fd1498Szrj return __conf_hyperg_series(__a, __c, __x); 248*38fd1498Szrj } 249*38fd1498Szrj 250*38fd1498Szrj 251*38fd1498Szrj /** 252*38fd1498Szrj * @brief Return the hypogeometric function @f$ _2F_1(a,b;c;x) @f$ 253*38fd1498Szrj * by series expansion. 254*38fd1498Szrj * 255*38fd1498Szrj * The hypogeometric function is defined by 256*38fd1498Szrj * @f[ 257*38fd1498Szrj * _2F_1(a,b;c;x) = \frac{\Gamma(c)}{\Gamma(a)\Gamma(b)} 258*38fd1498Szrj * \sum_{n=0}^{\infty} 259*38fd1498Szrj * \frac{\Gamma(a+n)\Gamma(b+n)}{\Gamma(c+n)} 260*38fd1498Szrj * \frac{x^n}{n!} 261*38fd1498Szrj * @f] 262*38fd1498Szrj * 263*38fd1498Szrj * This works and it's pretty fast. 264*38fd1498Szrj * 265*38fd1498Szrj * @param __a The first @a numerator parameter. 266*38fd1498Szrj * @param __a The second @a numerator parameter. 267*38fd1498Szrj * @param __c The @a denominator parameter. 268*38fd1498Szrj * @param __x The argument of the confluent hypergeometric function. 269*38fd1498Szrj * @return The confluent hypergeometric function. 270*38fd1498Szrj */ 271*38fd1498Szrj template<typename _Tp> 272*38fd1498Szrj _Tp __hyperg_series(_Tp __a,_Tp __b,_Tp __c,_Tp __x)273*38fd1498Szrj __hyperg_series(_Tp __a, _Tp __b, _Tp __c, _Tp __x) 274*38fd1498Szrj { 275*38fd1498Szrj const _Tp __eps = std::numeric_limits<_Tp>::epsilon(); 276*38fd1498Szrj 277*38fd1498Szrj _Tp __term = _Tp(1); 278*38fd1498Szrj _Tp __Fabc = _Tp(1); 279*38fd1498Szrj const unsigned int __max_iter = 100000; 280*38fd1498Szrj unsigned int __i; 281*38fd1498Szrj for (__i = 0; __i < __max_iter; ++__i) 282*38fd1498Szrj { 283*38fd1498Szrj __term *= (__a + _Tp(__i)) * (__b + _Tp(__i)) * __x 284*38fd1498Szrj / ((__c + _Tp(__i)) * _Tp(1 + __i)); 285*38fd1498Szrj if (std::abs(__term) < __eps) 286*38fd1498Szrj { 287*38fd1498Szrj break; 288*38fd1498Szrj } 289*38fd1498Szrj __Fabc += __term; 290*38fd1498Szrj } 291*38fd1498Szrj if (__i == __max_iter) 292*38fd1498Szrj std::__throw_runtime_error(__N("Series failed to converge " 293*38fd1498Szrj "in __hyperg_series.")); 294*38fd1498Szrj 295*38fd1498Szrj return __Fabc; 296*38fd1498Szrj } 297*38fd1498Szrj 298*38fd1498Szrj 299*38fd1498Szrj /** 300*38fd1498Szrj * @brief Return the hypogeometric function @f$ _2F_1(a,b;c;x) @f$ 301*38fd1498Szrj * by an iterative procedure described in 302*38fd1498Szrj * Luke, Algorithms for the Computation of Mathematical Functions. 303*38fd1498Szrj */ 304*38fd1498Szrj template<typename _Tp> 305*38fd1498Szrj _Tp __hyperg_luke(_Tp __a,_Tp __b,_Tp __c,_Tp __xin)306*38fd1498Szrj __hyperg_luke(_Tp __a, _Tp __b, _Tp __c, _Tp __xin) 307*38fd1498Szrj { 308*38fd1498Szrj const _Tp __big = std::pow(std::numeric_limits<_Tp>::max(), _Tp(0.16L)); 309*38fd1498Szrj const int __nmax = 20000; 310*38fd1498Szrj const _Tp __eps = std::numeric_limits<_Tp>::epsilon(); 311*38fd1498Szrj const _Tp __x = -__xin; 312*38fd1498Szrj const _Tp __x3 = __x * __x * __x; 313*38fd1498Szrj const _Tp __t0 = __a * __b / __c; 314*38fd1498Szrj const _Tp __t1 = (__a + _Tp(1)) * (__b + _Tp(1)) / (_Tp(2) * __c); 315*38fd1498Szrj const _Tp __t2 = (__a + _Tp(2)) * (__b + _Tp(2)) 316*38fd1498Szrj / (_Tp(2) * (__c + _Tp(1))); 317*38fd1498Szrj 318*38fd1498Szrj _Tp __F = _Tp(1); 319*38fd1498Szrj 320*38fd1498Szrj _Tp __Bnm3 = _Tp(1); 321*38fd1498Szrj _Tp __Bnm2 = _Tp(1) + __t1 * __x; 322*38fd1498Szrj _Tp __Bnm1 = _Tp(1) + __t2 * __x * (_Tp(1) + __t1 / _Tp(3) * __x); 323*38fd1498Szrj 324*38fd1498Szrj _Tp __Anm3 = _Tp(1); 325*38fd1498Szrj _Tp __Anm2 = __Bnm2 - __t0 * __x; 326*38fd1498Szrj _Tp __Anm1 = __Bnm1 - __t0 * (_Tp(1) + __t2 * __x) * __x 327*38fd1498Szrj + __t0 * __t1 * (__c / (__c + _Tp(1))) * __x * __x; 328*38fd1498Szrj 329*38fd1498Szrj int __n = 3; 330*38fd1498Szrj while (1) 331*38fd1498Szrj { 332*38fd1498Szrj const _Tp __npam1 = _Tp(__n - 1) + __a; 333*38fd1498Szrj const _Tp __npbm1 = _Tp(__n - 1) + __b; 334*38fd1498Szrj const _Tp __npcm1 = _Tp(__n - 1) + __c; 335*38fd1498Szrj const _Tp __npam2 = _Tp(__n - 2) + __a; 336*38fd1498Szrj const _Tp __npbm2 = _Tp(__n - 2) + __b; 337*38fd1498Szrj const _Tp __npcm2 = _Tp(__n - 2) + __c; 338*38fd1498Szrj const _Tp __tnm1 = _Tp(2 * __n - 1); 339*38fd1498Szrj const _Tp __tnm3 = _Tp(2 * __n - 3); 340*38fd1498Szrj const _Tp __tnm5 = _Tp(2 * __n - 5); 341*38fd1498Szrj const _Tp __n2 = __n * __n; 342*38fd1498Szrj const _Tp __F1 = (_Tp(3) * __n2 + (__a + __b - _Tp(6)) * __n 343*38fd1498Szrj + _Tp(2) - __a * __b - _Tp(2) * (__a + __b)) 344*38fd1498Szrj / (_Tp(2) * __tnm3 * __npcm1); 345*38fd1498Szrj const _Tp __F2 = -(_Tp(3) * __n2 - (__a + __b + _Tp(6)) * __n 346*38fd1498Szrj + _Tp(2) - __a * __b) * __npam1 * __npbm1 347*38fd1498Szrj / (_Tp(4) * __tnm1 * __tnm3 * __npcm2 * __npcm1); 348*38fd1498Szrj const _Tp __F3 = (__npam2 * __npam1 * __npbm2 * __npbm1 349*38fd1498Szrj * (_Tp(__n - 2) - __a) * (_Tp(__n - 2) - __b)) 350*38fd1498Szrj / (_Tp(8) * __tnm3 * __tnm3 * __tnm5 351*38fd1498Szrj * (_Tp(__n - 3) + __c) * __npcm2 * __npcm1); 352*38fd1498Szrj const _Tp __E = -__npam1 * __npbm1 * (_Tp(__n - 1) - __c) 353*38fd1498Szrj / (_Tp(2) * __tnm3 * __npcm2 * __npcm1); 354*38fd1498Szrj 355*38fd1498Szrj _Tp __An = (_Tp(1) + __F1 * __x) * __Anm1 356*38fd1498Szrj + (__E + __F2 * __x) * __x * __Anm2 + __F3 * __x3 * __Anm3; 357*38fd1498Szrj _Tp __Bn = (_Tp(1) + __F1 * __x) * __Bnm1 358*38fd1498Szrj + (__E + __F2 * __x) * __x * __Bnm2 + __F3 * __x3 * __Bnm3; 359*38fd1498Szrj const _Tp __r = __An / __Bn; 360*38fd1498Szrj 361*38fd1498Szrj const _Tp __prec = std::abs((__F - __r) / __F); 362*38fd1498Szrj __F = __r; 363*38fd1498Szrj 364*38fd1498Szrj if (__prec < __eps || __n > __nmax) 365*38fd1498Szrj break; 366*38fd1498Szrj 367*38fd1498Szrj if (std::abs(__An) > __big || std::abs(__Bn) > __big) 368*38fd1498Szrj { 369*38fd1498Szrj __An /= __big; 370*38fd1498Szrj __Bn /= __big; 371*38fd1498Szrj __Anm1 /= __big; 372*38fd1498Szrj __Bnm1 /= __big; 373*38fd1498Szrj __Anm2 /= __big; 374*38fd1498Szrj __Bnm2 /= __big; 375*38fd1498Szrj __Anm3 /= __big; 376*38fd1498Szrj __Bnm3 /= __big; 377*38fd1498Szrj } 378*38fd1498Szrj else if (std::abs(__An) < _Tp(1) / __big 379*38fd1498Szrj || std::abs(__Bn) < _Tp(1) / __big) 380*38fd1498Szrj { 381*38fd1498Szrj __An *= __big; 382*38fd1498Szrj __Bn *= __big; 383*38fd1498Szrj __Anm1 *= __big; 384*38fd1498Szrj __Bnm1 *= __big; 385*38fd1498Szrj __Anm2 *= __big; 386*38fd1498Szrj __Bnm2 *= __big; 387*38fd1498Szrj __Anm3 *= __big; 388*38fd1498Szrj __Bnm3 *= __big; 389*38fd1498Szrj } 390*38fd1498Szrj 391*38fd1498Szrj ++__n; 392*38fd1498Szrj __Bnm3 = __Bnm2; 393*38fd1498Szrj __Bnm2 = __Bnm1; 394*38fd1498Szrj __Bnm1 = __Bn; 395*38fd1498Szrj __Anm3 = __Anm2; 396*38fd1498Szrj __Anm2 = __Anm1; 397*38fd1498Szrj __Anm1 = __An; 398*38fd1498Szrj } 399*38fd1498Szrj 400*38fd1498Szrj if (__n >= __nmax) 401*38fd1498Szrj std::__throw_runtime_error(__N("Iteration failed to converge " 402*38fd1498Szrj "in __hyperg_luke.")); 403*38fd1498Szrj 404*38fd1498Szrj return __F; 405*38fd1498Szrj } 406*38fd1498Szrj 407*38fd1498Szrj 408*38fd1498Szrj /** 409*38fd1498Szrj * @brief Return the hypogeometric function @f$ _2F_1(a,b;c;x) @f$ 410*38fd1498Szrj * by the reflection formulae in Abramowitz & Stegun formula 411*38fd1498Szrj * 15.3.6 for d = c - a - b not integral and formula 15.3.11 for 412*38fd1498Szrj * d = c - a - b integral. This assumes a, b, c != negative 413*38fd1498Szrj * integer. 414*38fd1498Szrj * 415*38fd1498Szrj * The hypogeometric function is defined by 416*38fd1498Szrj * @f[ 417*38fd1498Szrj * _2F_1(a,b;c;x) = \frac{\Gamma(c)}{\Gamma(a)\Gamma(b)} 418*38fd1498Szrj * \sum_{n=0}^{\infty} 419*38fd1498Szrj * \frac{\Gamma(a+n)\Gamma(b+n)}{\Gamma(c+n)} 420*38fd1498Szrj * \frac{x^n}{n!} 421*38fd1498Szrj * @f] 422*38fd1498Szrj * 423*38fd1498Szrj * The reflection formula for nonintegral @f$ d = c - a - b @f$ is: 424*38fd1498Szrj * @f[ 425*38fd1498Szrj * _2F_1(a,b;c;x) = \frac{\Gamma(c)\Gamma(d)}{\Gamma(c-a)\Gamma(c-b)} 426*38fd1498Szrj * _2F_1(a,b;1-d;1-x) 427*38fd1498Szrj * + \frac{\Gamma(c)\Gamma(-d)}{\Gamma(a)\Gamma(b)} 428*38fd1498Szrj * _2F_1(c-a,c-b;1+d;1-x) 429*38fd1498Szrj * @f] 430*38fd1498Szrj * 431*38fd1498Szrj * The reflection formula for integral @f$ m = c - a - b @f$ is: 432*38fd1498Szrj * @f[ 433*38fd1498Szrj * _2F_1(a,b;a+b+m;x) = \frac{\Gamma(m)\Gamma(a+b+m)}{\Gamma(a+m)\Gamma(b+m)} 434*38fd1498Szrj * \sum_{k=0}^{m-1} \frac{(m+a)_k(m+b)_k}{k!(1-m)_k} 435*38fd1498Szrj * - 436*38fd1498Szrj * @f] 437*38fd1498Szrj */ 438*38fd1498Szrj template<typename _Tp> 439*38fd1498Szrj _Tp __hyperg_reflect(_Tp __a,_Tp __b,_Tp __c,_Tp __x)440*38fd1498Szrj __hyperg_reflect(_Tp __a, _Tp __b, _Tp __c, _Tp __x) 441*38fd1498Szrj { 442*38fd1498Szrj const _Tp __d = __c - __a - __b; 443*38fd1498Szrj const int __intd = std::floor(__d + _Tp(0.5L)); 444*38fd1498Szrj const _Tp __eps = std::numeric_limits<_Tp>::epsilon(); 445*38fd1498Szrj const _Tp __toler = _Tp(1000) * __eps; 446*38fd1498Szrj const _Tp __log_max = std::log(std::numeric_limits<_Tp>::max()); 447*38fd1498Szrj const bool __d_integer = (std::abs(__d - __intd) < __toler); 448*38fd1498Szrj 449*38fd1498Szrj if (__d_integer) 450*38fd1498Szrj { 451*38fd1498Szrj const _Tp __ln_omx = std::log(_Tp(1) - __x); 452*38fd1498Szrj const _Tp __ad = std::abs(__d); 453*38fd1498Szrj _Tp __F1, __F2; 454*38fd1498Szrj 455*38fd1498Szrj _Tp __d1, __d2; 456*38fd1498Szrj if (__d >= _Tp(0)) 457*38fd1498Szrj { 458*38fd1498Szrj __d1 = __d; 459*38fd1498Szrj __d2 = _Tp(0); 460*38fd1498Szrj } 461*38fd1498Szrj else 462*38fd1498Szrj { 463*38fd1498Szrj __d1 = _Tp(0); 464*38fd1498Szrj __d2 = __d; 465*38fd1498Szrj } 466*38fd1498Szrj 467*38fd1498Szrj const _Tp __lng_c = __log_gamma(__c); 468*38fd1498Szrj 469*38fd1498Szrj // Evaluate F1. 470*38fd1498Szrj if (__ad < __eps) 471*38fd1498Szrj { 472*38fd1498Szrj // d = c - a - b = 0. 473*38fd1498Szrj __F1 = _Tp(0); 474*38fd1498Szrj } 475*38fd1498Szrj else 476*38fd1498Szrj { 477*38fd1498Szrj 478*38fd1498Szrj bool __ok_d1 = true; 479*38fd1498Szrj _Tp __lng_ad, __lng_ad1, __lng_bd1; 480*38fd1498Szrj __try 481*38fd1498Szrj { 482*38fd1498Szrj __lng_ad = __log_gamma(__ad); 483*38fd1498Szrj __lng_ad1 = __log_gamma(__a + __d1); 484*38fd1498Szrj __lng_bd1 = __log_gamma(__b + __d1); 485*38fd1498Szrj } 486*38fd1498Szrj __catch(...) 487*38fd1498Szrj { 488*38fd1498Szrj __ok_d1 = false; 489*38fd1498Szrj } 490*38fd1498Szrj 491*38fd1498Szrj if (__ok_d1) 492*38fd1498Szrj { 493*38fd1498Szrj /* Gamma functions in the denominator are ok. 494*38fd1498Szrj * Proceed with evaluation. 495*38fd1498Szrj */ 496*38fd1498Szrj _Tp __sum1 = _Tp(1); 497*38fd1498Szrj _Tp __term = _Tp(1); 498*38fd1498Szrj _Tp __ln_pre1 = __lng_ad + __lng_c + __d2 * __ln_omx 499*38fd1498Szrj - __lng_ad1 - __lng_bd1; 500*38fd1498Szrj 501*38fd1498Szrj /* Do F1 sum. 502*38fd1498Szrj */ 503*38fd1498Szrj for (int __i = 1; __i < __ad; ++__i) 504*38fd1498Szrj { 505*38fd1498Szrj const int __j = __i - 1; 506*38fd1498Szrj __term *= (__a + __d2 + __j) * (__b + __d2 + __j) 507*38fd1498Szrj / (_Tp(1) + __d2 + __j) / __i * (_Tp(1) - __x); 508*38fd1498Szrj __sum1 += __term; 509*38fd1498Szrj } 510*38fd1498Szrj 511*38fd1498Szrj if (__ln_pre1 > __log_max) 512*38fd1498Szrj std::__throw_runtime_error(__N("Overflow of gamma functions" 513*38fd1498Szrj " in __hyperg_luke.")); 514*38fd1498Szrj else 515*38fd1498Szrj __F1 = std::exp(__ln_pre1) * __sum1; 516*38fd1498Szrj } 517*38fd1498Szrj else 518*38fd1498Szrj { 519*38fd1498Szrj // Gamma functions in the denominator were not ok. 520*38fd1498Szrj // So the F1 term is zero. 521*38fd1498Szrj __F1 = _Tp(0); 522*38fd1498Szrj } 523*38fd1498Szrj } // end F1 evaluation 524*38fd1498Szrj 525*38fd1498Szrj // Evaluate F2. 526*38fd1498Szrj bool __ok_d2 = true; 527*38fd1498Szrj _Tp __lng_ad2, __lng_bd2; 528*38fd1498Szrj __try 529*38fd1498Szrj { 530*38fd1498Szrj __lng_ad2 = __log_gamma(__a + __d2); 531*38fd1498Szrj __lng_bd2 = __log_gamma(__b + __d2); 532*38fd1498Szrj } 533*38fd1498Szrj __catch(...) 534*38fd1498Szrj { 535*38fd1498Szrj __ok_d2 = false; 536*38fd1498Szrj } 537*38fd1498Szrj 538*38fd1498Szrj if (__ok_d2) 539*38fd1498Szrj { 540*38fd1498Szrj // Gamma functions in the denominator are ok. 541*38fd1498Szrj // Proceed with evaluation. 542*38fd1498Szrj const int __maxiter = 2000; 543*38fd1498Szrj const _Tp __psi_1 = -__numeric_constants<_Tp>::__gamma_e(); 544*38fd1498Szrj const _Tp __psi_1pd = __psi(_Tp(1) + __ad); 545*38fd1498Szrj const _Tp __psi_apd1 = __psi(__a + __d1); 546*38fd1498Szrj const _Tp __psi_bpd1 = __psi(__b + __d1); 547*38fd1498Szrj 548*38fd1498Szrj _Tp __psi_term = __psi_1 + __psi_1pd - __psi_apd1 549*38fd1498Szrj - __psi_bpd1 - __ln_omx; 550*38fd1498Szrj _Tp __fact = _Tp(1); 551*38fd1498Szrj _Tp __sum2 = __psi_term; 552*38fd1498Szrj _Tp __ln_pre2 = __lng_c + __d1 * __ln_omx 553*38fd1498Szrj - __lng_ad2 - __lng_bd2; 554*38fd1498Szrj 555*38fd1498Szrj // Do F2 sum. 556*38fd1498Szrj int __j; 557*38fd1498Szrj for (__j = 1; __j < __maxiter; ++__j) 558*38fd1498Szrj { 559*38fd1498Szrj // Values for psi functions use recurrence; 560*38fd1498Szrj // Abramowitz & Stegun 6.3.5 561*38fd1498Szrj const _Tp __term1 = _Tp(1) / _Tp(__j) 562*38fd1498Szrj + _Tp(1) / (__ad + __j); 563*38fd1498Szrj const _Tp __term2 = _Tp(1) / (__a + __d1 + _Tp(__j - 1)) 564*38fd1498Szrj + _Tp(1) / (__b + __d1 + _Tp(__j - 1)); 565*38fd1498Szrj __psi_term += __term1 - __term2; 566*38fd1498Szrj __fact *= (__a + __d1 + _Tp(__j - 1)) 567*38fd1498Szrj * (__b + __d1 + _Tp(__j - 1)) 568*38fd1498Szrj / ((__ad + __j) * __j) * (_Tp(1) - __x); 569*38fd1498Szrj const _Tp __delta = __fact * __psi_term; 570*38fd1498Szrj __sum2 += __delta; 571*38fd1498Szrj if (std::abs(__delta) < __eps * std::abs(__sum2)) 572*38fd1498Szrj break; 573*38fd1498Szrj } 574*38fd1498Szrj if (__j == __maxiter) 575*38fd1498Szrj std::__throw_runtime_error(__N("Sum F2 failed to converge " 576*38fd1498Szrj "in __hyperg_reflect")); 577*38fd1498Szrj 578*38fd1498Szrj if (__sum2 == _Tp(0)) 579*38fd1498Szrj __F2 = _Tp(0); 580*38fd1498Szrj else 581*38fd1498Szrj __F2 = std::exp(__ln_pre2) * __sum2; 582*38fd1498Szrj } 583*38fd1498Szrj else 584*38fd1498Szrj { 585*38fd1498Szrj // Gamma functions in the denominator not ok. 586*38fd1498Szrj // So the F2 term is zero. 587*38fd1498Szrj __F2 = _Tp(0); 588*38fd1498Szrj } // end F2 evaluation 589*38fd1498Szrj 590*38fd1498Szrj const _Tp __sgn_2 = (__intd % 2 == 1 ? -_Tp(1) : _Tp(1)); 591*38fd1498Szrj const _Tp __F = __F1 + __sgn_2 * __F2; 592*38fd1498Szrj 593*38fd1498Szrj return __F; 594*38fd1498Szrj } 595*38fd1498Szrj else 596*38fd1498Szrj { 597*38fd1498Szrj // d = c - a - b not an integer. 598*38fd1498Szrj 599*38fd1498Szrj // These gamma functions appear in the denominator, so we 600*38fd1498Szrj // catch their harmless domain errors and set the terms to zero. 601*38fd1498Szrj bool __ok1 = true; 602*38fd1498Szrj _Tp __sgn_g1ca = _Tp(0), __ln_g1ca = _Tp(0); 603*38fd1498Szrj _Tp __sgn_g1cb = _Tp(0), __ln_g1cb = _Tp(0); 604*38fd1498Szrj __try 605*38fd1498Szrj { 606*38fd1498Szrj __sgn_g1ca = __log_gamma_sign(__c - __a); 607*38fd1498Szrj __ln_g1ca = __log_gamma(__c - __a); 608*38fd1498Szrj __sgn_g1cb = __log_gamma_sign(__c - __b); 609*38fd1498Szrj __ln_g1cb = __log_gamma(__c - __b); 610*38fd1498Szrj } 611*38fd1498Szrj __catch(...) 612*38fd1498Szrj { 613*38fd1498Szrj __ok1 = false; 614*38fd1498Szrj } 615*38fd1498Szrj 616*38fd1498Szrj bool __ok2 = true; 617*38fd1498Szrj _Tp __sgn_g2a = _Tp(0), __ln_g2a = _Tp(0); 618*38fd1498Szrj _Tp __sgn_g2b = _Tp(0), __ln_g2b = _Tp(0); 619*38fd1498Szrj __try 620*38fd1498Szrj { 621*38fd1498Szrj __sgn_g2a = __log_gamma_sign(__a); 622*38fd1498Szrj __ln_g2a = __log_gamma(__a); 623*38fd1498Szrj __sgn_g2b = __log_gamma_sign(__b); 624*38fd1498Szrj __ln_g2b = __log_gamma(__b); 625*38fd1498Szrj } 626*38fd1498Szrj __catch(...) 627*38fd1498Szrj { 628*38fd1498Szrj __ok2 = false; 629*38fd1498Szrj } 630*38fd1498Szrj 631*38fd1498Szrj const _Tp __sgn_gc = __log_gamma_sign(__c); 632*38fd1498Szrj const _Tp __ln_gc = __log_gamma(__c); 633*38fd1498Szrj const _Tp __sgn_gd = __log_gamma_sign(__d); 634*38fd1498Szrj const _Tp __ln_gd = __log_gamma(__d); 635*38fd1498Szrj const _Tp __sgn_gmd = __log_gamma_sign(-__d); 636*38fd1498Szrj const _Tp __ln_gmd = __log_gamma(-__d); 637*38fd1498Szrj 638*38fd1498Szrj const _Tp __sgn1 = __sgn_gc * __sgn_gd * __sgn_g1ca * __sgn_g1cb; 639*38fd1498Szrj const _Tp __sgn2 = __sgn_gc * __sgn_gmd * __sgn_g2a * __sgn_g2b; 640*38fd1498Szrj 641*38fd1498Szrj _Tp __pre1, __pre2; 642*38fd1498Szrj if (__ok1 && __ok2) 643*38fd1498Szrj { 644*38fd1498Szrj _Tp __ln_pre1 = __ln_gc + __ln_gd - __ln_g1ca - __ln_g1cb; 645*38fd1498Szrj _Tp __ln_pre2 = __ln_gc + __ln_gmd - __ln_g2a - __ln_g2b 646*38fd1498Szrj + __d * std::log(_Tp(1) - __x); 647*38fd1498Szrj if (__ln_pre1 < __log_max && __ln_pre2 < __log_max) 648*38fd1498Szrj { 649*38fd1498Szrj __pre1 = std::exp(__ln_pre1); 650*38fd1498Szrj __pre2 = std::exp(__ln_pre2); 651*38fd1498Szrj __pre1 *= __sgn1; 652*38fd1498Szrj __pre2 *= __sgn2; 653*38fd1498Szrj } 654*38fd1498Szrj else 655*38fd1498Szrj { 656*38fd1498Szrj std::__throw_runtime_error(__N("Overflow of gamma functions " 657*38fd1498Szrj "in __hyperg_reflect")); 658*38fd1498Szrj } 659*38fd1498Szrj } 660*38fd1498Szrj else if (__ok1 && !__ok2) 661*38fd1498Szrj { 662*38fd1498Szrj _Tp __ln_pre1 = __ln_gc + __ln_gd - __ln_g1ca - __ln_g1cb; 663*38fd1498Szrj if (__ln_pre1 < __log_max) 664*38fd1498Szrj { 665*38fd1498Szrj __pre1 = std::exp(__ln_pre1); 666*38fd1498Szrj __pre1 *= __sgn1; 667*38fd1498Szrj __pre2 = _Tp(0); 668*38fd1498Szrj } 669*38fd1498Szrj else 670*38fd1498Szrj { 671*38fd1498Szrj std::__throw_runtime_error(__N("Overflow of gamma functions " 672*38fd1498Szrj "in __hyperg_reflect")); 673*38fd1498Szrj } 674*38fd1498Szrj } 675*38fd1498Szrj else if (!__ok1 && __ok2) 676*38fd1498Szrj { 677*38fd1498Szrj _Tp __ln_pre2 = __ln_gc + __ln_gmd - __ln_g2a - __ln_g2b 678*38fd1498Szrj + __d * std::log(_Tp(1) - __x); 679*38fd1498Szrj if (__ln_pre2 < __log_max) 680*38fd1498Szrj { 681*38fd1498Szrj __pre1 = _Tp(0); 682*38fd1498Szrj __pre2 = std::exp(__ln_pre2); 683*38fd1498Szrj __pre2 *= __sgn2; 684*38fd1498Szrj } 685*38fd1498Szrj else 686*38fd1498Szrj { 687*38fd1498Szrj std::__throw_runtime_error(__N("Overflow of gamma functions " 688*38fd1498Szrj "in __hyperg_reflect")); 689*38fd1498Szrj } 690*38fd1498Szrj } 691*38fd1498Szrj else 692*38fd1498Szrj { 693*38fd1498Szrj __pre1 = _Tp(0); 694*38fd1498Szrj __pre2 = _Tp(0); 695*38fd1498Szrj std::__throw_runtime_error(__N("Underflow of gamma functions " 696*38fd1498Szrj "in __hyperg_reflect")); 697*38fd1498Szrj } 698*38fd1498Szrj 699*38fd1498Szrj const _Tp __F1 = __hyperg_series(__a, __b, _Tp(1) - __d, 700*38fd1498Szrj _Tp(1) - __x); 701*38fd1498Szrj const _Tp __F2 = __hyperg_series(__c - __a, __c - __b, _Tp(1) + __d, 702*38fd1498Szrj _Tp(1) - __x); 703*38fd1498Szrj 704*38fd1498Szrj const _Tp __F = __pre1 * __F1 + __pre2 * __F2; 705*38fd1498Szrj 706*38fd1498Szrj return __F; 707*38fd1498Szrj } 708*38fd1498Szrj } 709*38fd1498Szrj 710*38fd1498Szrj 711*38fd1498Szrj /** 712*38fd1498Szrj * @brief Return the hypogeometric function @f$ _2F_1(a,b;c;x) @f$. 713*38fd1498Szrj * 714*38fd1498Szrj * The hypogeometric function is defined by 715*38fd1498Szrj * @f[ 716*38fd1498Szrj * _2F_1(a,b;c;x) = \frac{\Gamma(c)}{\Gamma(a)\Gamma(b)} 717*38fd1498Szrj * \sum_{n=0}^{\infty} 718*38fd1498Szrj * \frac{\Gamma(a+n)\Gamma(b+n)}{\Gamma(c+n)} 719*38fd1498Szrj * \frac{x^n}{n!} 720*38fd1498Szrj * @f] 721*38fd1498Szrj * 722*38fd1498Szrj * @param __a The first @a numerator parameter. 723*38fd1498Szrj * @param __a The second @a numerator parameter. 724*38fd1498Szrj * @param __c The @a denominator parameter. 725*38fd1498Szrj * @param __x The argument of the confluent hypergeometric function. 726*38fd1498Szrj * @return The confluent hypergeometric function. 727*38fd1498Szrj */ 728*38fd1498Szrj template<typename _Tp> 729*38fd1498Szrj _Tp __hyperg(_Tp __a,_Tp __b,_Tp __c,_Tp __x)730*38fd1498Szrj __hyperg(_Tp __a, _Tp __b, _Tp __c, _Tp __x) 731*38fd1498Szrj { 732*38fd1498Szrj #if _GLIBCXX_USE_C99_MATH_TR1 733*38fd1498Szrj const _Tp __a_nint = _GLIBCXX_MATH_NS::nearbyint(__a); 734*38fd1498Szrj const _Tp __b_nint = _GLIBCXX_MATH_NS::nearbyint(__b); 735*38fd1498Szrj const _Tp __c_nint = _GLIBCXX_MATH_NS::nearbyint(__c); 736*38fd1498Szrj #else 737*38fd1498Szrj const _Tp __a_nint = static_cast<int>(__a + _Tp(0.5L)); 738*38fd1498Szrj const _Tp __b_nint = static_cast<int>(__b + _Tp(0.5L)); 739*38fd1498Szrj const _Tp __c_nint = static_cast<int>(__c + _Tp(0.5L)); 740*38fd1498Szrj #endif 741*38fd1498Szrj const _Tp __toler = _Tp(1000) * std::numeric_limits<_Tp>::epsilon(); 742*38fd1498Szrj if (std::abs(__x) >= _Tp(1)) 743*38fd1498Szrj std::__throw_domain_error(__N("Argument outside unit circle " 744*38fd1498Szrj "in __hyperg.")); 745*38fd1498Szrj else if (__isnan(__a) || __isnan(__b) 746*38fd1498Szrj || __isnan(__c) || __isnan(__x)) 747*38fd1498Szrj return std::numeric_limits<_Tp>::quiet_NaN(); 748*38fd1498Szrj else if (__c_nint == __c && __c_nint <= _Tp(0)) 749*38fd1498Szrj return std::numeric_limits<_Tp>::infinity(); 750*38fd1498Szrj else if (std::abs(__c - __b) < __toler || std::abs(__c - __a) < __toler) 751*38fd1498Szrj return std::pow(_Tp(1) - __x, __c - __a - __b); 752*38fd1498Szrj else if (__a >= _Tp(0) && __b >= _Tp(0) && __c >= _Tp(0) 753*38fd1498Szrj && __x >= _Tp(0) && __x < _Tp(0.995L)) 754*38fd1498Szrj return __hyperg_series(__a, __b, __c, __x); 755*38fd1498Szrj else if (std::abs(__a) < _Tp(10) && std::abs(__b) < _Tp(10)) 756*38fd1498Szrj { 757*38fd1498Szrj // For integer a and b the hypergeometric function is a 758*38fd1498Szrj // finite polynomial. 759*38fd1498Szrj if (__a < _Tp(0) && std::abs(__a - __a_nint) < __toler) 760*38fd1498Szrj return __hyperg_series(__a_nint, __b, __c, __x); 761*38fd1498Szrj else if (__b < _Tp(0) && std::abs(__b - __b_nint) < __toler) 762*38fd1498Szrj return __hyperg_series(__a, __b_nint, __c, __x); 763*38fd1498Szrj else if (__x < -_Tp(0.25L)) 764*38fd1498Szrj return __hyperg_luke(__a, __b, __c, __x); 765*38fd1498Szrj else if (__x < _Tp(0.5L)) 766*38fd1498Szrj return __hyperg_series(__a, __b, __c, __x); 767*38fd1498Szrj else 768*38fd1498Szrj if (std::abs(__c) > _Tp(10)) 769*38fd1498Szrj return __hyperg_series(__a, __b, __c, __x); 770*38fd1498Szrj else 771*38fd1498Szrj return __hyperg_reflect(__a, __b, __c, __x); 772*38fd1498Szrj } 773*38fd1498Szrj else 774*38fd1498Szrj return __hyperg_luke(__a, __b, __c, __x); 775*38fd1498Szrj } 776*38fd1498Szrj } // namespace __detail 777*38fd1498Szrj #undef _GLIBCXX_MATH_NS 778*38fd1498Szrj #if ! _GLIBCXX_USE_STD_SPEC_FUNCS && defined(_GLIBCXX_TR1_CMATH) 779*38fd1498Szrj } // namespace tr1 780*38fd1498Szrj #endif 781*38fd1498Szrj 782*38fd1498Szrj _GLIBCXX_END_NAMESPACE_VERSION 783*38fd1498Szrj } 784*38fd1498Szrj 785*38fd1498Szrj #endif // _GLIBCXX_TR1_HYPERGEOMETRIC_TCC 786