1*38fd1498Szrj /* Operations on HOST_WIDE_INT.
2*38fd1498Szrj Copyright (C) 1987-2018 Free Software Foundation, Inc.
3*38fd1498Szrj
4*38fd1498Szrj This file is part of GCC.
5*38fd1498Szrj
6*38fd1498Szrj GCC is free software; you can redistribute it and/or modify it under
7*38fd1498Szrj the terms of the GNU General Public License as published by the Free
8*38fd1498Szrj Software Foundation; either version 3, or (at your option) any later
9*38fd1498Szrj version.
10*38fd1498Szrj
11*38fd1498Szrj GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12*38fd1498Szrj WARRANTY; without even the implied warranty of MERCHANTABILITY or
13*38fd1498Szrj FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14*38fd1498Szrj for more details.
15*38fd1498Szrj
16*38fd1498Szrj You should have received a copy of the GNU General Public License
17*38fd1498Szrj along with GCC; see the file COPYING3. If not see
18*38fd1498Szrj <http://www.gnu.org/licenses/>. */
19*38fd1498Szrj
20*38fd1498Szrj #include "config.h"
21*38fd1498Szrj #include "system.h"
22*38fd1498Szrj #include "coretypes.h"
23*38fd1498Szrj
24*38fd1498Szrj #if GCC_VERSION < 3004
25*38fd1498Szrj
26*38fd1498Szrj /* The functions clz_hwi, ctz_hwi, ffs_hwi, floor_log2, ceil_log2,
27*38fd1498Szrj and exact_log2 are defined as inline functions in hwint.h
28*38fd1498Szrj if GCC_VERSION >= 3004.
29*38fd1498Szrj The definitions here are used for older versions of GCC and
30*38fd1498Szrj non-GCC bootstrap compilers. */
31*38fd1498Szrj
32*38fd1498Szrj /* Given X, an unsigned number, return the largest int Y such that 2**Y <= X.
33*38fd1498Szrj If X is 0, return -1. */
34*38fd1498Szrj
35*38fd1498Szrj int
floor_log2(unsigned HOST_WIDE_INT x)36*38fd1498Szrj floor_log2 (unsigned HOST_WIDE_INT x)
37*38fd1498Szrj {
38*38fd1498Szrj int t = 0;
39*38fd1498Szrj
40*38fd1498Szrj if (x == 0)
41*38fd1498Szrj return -1;
42*38fd1498Szrj
43*38fd1498Szrj if (HOST_BITS_PER_WIDE_INT > 64)
44*38fd1498Szrj if (x >= HOST_WIDE_INT_1U << (t + 64))
45*38fd1498Szrj t += 64;
46*38fd1498Szrj if (HOST_BITS_PER_WIDE_INT > 32)
47*38fd1498Szrj if (x >= HOST_WIDE_INT_1U << (t + 32))
48*38fd1498Szrj t += 32;
49*38fd1498Szrj if (x >= HOST_WIDE_INT_1U << (t + 16))
50*38fd1498Szrj t += 16;
51*38fd1498Szrj if (x >= HOST_WIDE_INT_1U << (t + 8))
52*38fd1498Szrj t += 8;
53*38fd1498Szrj if (x >= HOST_WIDE_INT_1U << (t + 4))
54*38fd1498Szrj t += 4;
55*38fd1498Szrj if (x >= HOST_WIDE_INT_1U << (t + 2))
56*38fd1498Szrj t += 2;
57*38fd1498Szrj if (x >= HOST_WIDE_INT_1U << (t + 1))
58*38fd1498Szrj t += 1;
59*38fd1498Szrj
60*38fd1498Szrj return t;
61*38fd1498Szrj }
62*38fd1498Szrj
63*38fd1498Szrj /* Given X, an unsigned number, return the largest Y such that 2**Y >= X. */
64*38fd1498Szrj
65*38fd1498Szrj int
ceil_log2(unsigned HOST_WIDE_INT x)66*38fd1498Szrj ceil_log2 (unsigned HOST_WIDE_INT x)
67*38fd1498Szrj {
68*38fd1498Szrj return floor_log2 (x - 1) + 1;
69*38fd1498Szrj }
70*38fd1498Szrj
71*38fd1498Szrj /* Return the logarithm of X, base 2, considering X unsigned,
72*38fd1498Szrj if X is a power of 2. Otherwise, returns -1. */
73*38fd1498Szrj
74*38fd1498Szrj int
exact_log2(unsigned HOST_WIDE_INT x)75*38fd1498Szrj exact_log2 (unsigned HOST_WIDE_INT x)
76*38fd1498Szrj {
77*38fd1498Szrj if (!pow2p_hwi (x))
78*38fd1498Szrj return -1;
79*38fd1498Szrj return floor_log2 (x);
80*38fd1498Szrj }
81*38fd1498Szrj
82*38fd1498Szrj /* Given X, an unsigned number, return the number of least significant bits
83*38fd1498Szrj that are zero. When X == 0, the result is the word size. */
84*38fd1498Szrj
85*38fd1498Szrj int
ctz_hwi(unsigned HOST_WIDE_INT x)86*38fd1498Szrj ctz_hwi (unsigned HOST_WIDE_INT x)
87*38fd1498Szrj {
88*38fd1498Szrj return x ? floor_log2 (least_bit_hwi (x)) : HOST_BITS_PER_WIDE_INT;
89*38fd1498Szrj }
90*38fd1498Szrj
91*38fd1498Szrj /* Similarly for most significant bits. */
92*38fd1498Szrj
93*38fd1498Szrj int
clz_hwi(unsigned HOST_WIDE_INT x)94*38fd1498Szrj clz_hwi (unsigned HOST_WIDE_INT x)
95*38fd1498Szrj {
96*38fd1498Szrj return HOST_BITS_PER_WIDE_INT - 1 - floor_log2 (x);
97*38fd1498Szrj }
98*38fd1498Szrj
99*38fd1498Szrj /* Similar to ctz_hwi, except that the least significant bit is numbered
100*38fd1498Szrj starting from 1, and X == 0 yields 0. */
101*38fd1498Szrj
102*38fd1498Szrj int
ffs_hwi(unsigned HOST_WIDE_INT x)103*38fd1498Szrj ffs_hwi (unsigned HOST_WIDE_INT x)
104*38fd1498Szrj {
105*38fd1498Szrj return 1 + floor_log2 (least_bit_hwi (x));
106*38fd1498Szrj }
107*38fd1498Szrj
108*38fd1498Szrj /* Return the number of set bits in X. */
109*38fd1498Szrj
110*38fd1498Szrj int
popcount_hwi(unsigned HOST_WIDE_INT x)111*38fd1498Szrj popcount_hwi (unsigned HOST_WIDE_INT x)
112*38fd1498Szrj {
113*38fd1498Szrj int i, ret = 0;
114*38fd1498Szrj size_t bits = sizeof (x) * CHAR_BIT;
115*38fd1498Szrj
116*38fd1498Szrj for (i = 0; i < bits; i += 1)
117*38fd1498Szrj {
118*38fd1498Szrj ret += x & 1;
119*38fd1498Szrj x >>= 1;
120*38fd1498Szrj }
121*38fd1498Szrj
122*38fd1498Szrj return ret;
123*38fd1498Szrj }
124*38fd1498Szrj
125*38fd1498Szrj #endif /* GCC_VERSION < 3004 */
126*38fd1498Szrj
127*38fd1498Szrj
128*38fd1498Szrj /* Compute the greatest common divisor of two numbers A and B using
129*38fd1498Szrj Euclid's algorithm. */
130*38fd1498Szrj
131*38fd1498Szrj HOST_WIDE_INT
gcd(HOST_WIDE_INT a,HOST_WIDE_INT b)132*38fd1498Szrj gcd (HOST_WIDE_INT a, HOST_WIDE_INT b)
133*38fd1498Szrj {
134*38fd1498Szrj HOST_WIDE_INT x, y, z;
135*38fd1498Szrj
136*38fd1498Szrj x = abs_hwi (a);
137*38fd1498Szrj y = abs_hwi (b);
138*38fd1498Szrj
139*38fd1498Szrj while (x > 0)
140*38fd1498Szrj {
141*38fd1498Szrj z = y % x;
142*38fd1498Szrj y = x;
143*38fd1498Szrj x = z;
144*38fd1498Szrj }
145*38fd1498Szrj
146*38fd1498Szrj return y;
147*38fd1498Szrj }
148*38fd1498Szrj
149*38fd1498Szrj /* For X and Y positive integers, return X multiplied by Y and check
150*38fd1498Szrj that the result does not overflow. */
151*38fd1498Szrj
152*38fd1498Szrj HOST_WIDE_INT
pos_mul_hwi(HOST_WIDE_INT x,HOST_WIDE_INT y)153*38fd1498Szrj pos_mul_hwi (HOST_WIDE_INT x, HOST_WIDE_INT y)
154*38fd1498Szrj {
155*38fd1498Szrj if (x != 0)
156*38fd1498Szrj gcc_checking_assert ((HOST_WIDE_INT_MAX) / x >= y);
157*38fd1498Szrj
158*38fd1498Szrj return x * y;
159*38fd1498Szrj }
160*38fd1498Szrj
161*38fd1498Szrj /* Return X multiplied by Y and check that the result does not
162*38fd1498Szrj overflow. */
163*38fd1498Szrj
164*38fd1498Szrj HOST_WIDE_INT
mul_hwi(HOST_WIDE_INT x,HOST_WIDE_INT y)165*38fd1498Szrj mul_hwi (HOST_WIDE_INT x, HOST_WIDE_INT y)
166*38fd1498Szrj {
167*38fd1498Szrj gcc_checking_assert (x != HOST_WIDE_INT_MIN
168*38fd1498Szrj && y != HOST_WIDE_INT_MIN);
169*38fd1498Szrj
170*38fd1498Szrj if (x >= 0)
171*38fd1498Szrj {
172*38fd1498Szrj if (y >= 0)
173*38fd1498Szrj return pos_mul_hwi (x, y);
174*38fd1498Szrj
175*38fd1498Szrj return -pos_mul_hwi (x, -y);
176*38fd1498Szrj }
177*38fd1498Szrj
178*38fd1498Szrj if (y >= 0)
179*38fd1498Szrj return -pos_mul_hwi (-x, y);
180*38fd1498Szrj
181*38fd1498Szrj return pos_mul_hwi (-x, -y);
182*38fd1498Szrj }
183*38fd1498Szrj
184*38fd1498Szrj /* Compute the least common multiple of two numbers A and B . */
185*38fd1498Szrj
186*38fd1498Szrj HOST_WIDE_INT
least_common_multiple(HOST_WIDE_INT a,HOST_WIDE_INT b)187*38fd1498Szrj least_common_multiple (HOST_WIDE_INT a, HOST_WIDE_INT b)
188*38fd1498Szrj {
189*38fd1498Szrj return mul_hwi (abs_hwi (a) / gcd (a, b), abs_hwi (b));
190*38fd1498Szrj }
191