xref: /dflybsd-src/contrib/gcc-8.0/gcc/graphds.c (revision 38fd149817dfbff97799f62fcb70be98c4e32523)
1*38fd1498Szrj /* Graph representation and manipulation functions.
2*38fd1498Szrj    Copyright (C) 2007-2018 Free Software Foundation, Inc.
3*38fd1498Szrj 
4*38fd1498Szrj This file is part of GCC.
5*38fd1498Szrj 
6*38fd1498Szrj GCC is free software; you can redistribute it and/or modify it under
7*38fd1498Szrj the terms of the GNU General Public License as published by the Free
8*38fd1498Szrj Software Foundation; either version 3, or (at your option) any later
9*38fd1498Szrj version.
10*38fd1498Szrj 
11*38fd1498Szrj GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12*38fd1498Szrj WARRANTY; without even the implied warranty of MERCHANTABILITY or
13*38fd1498Szrj FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14*38fd1498Szrj for more details.
15*38fd1498Szrj 
16*38fd1498Szrj You should have received a copy of the GNU General Public License
17*38fd1498Szrj along with GCC; see the file COPYING3.  If not see
18*38fd1498Szrj <http://www.gnu.org/licenses/>.  */
19*38fd1498Szrj 
20*38fd1498Szrj #include "config.h"
21*38fd1498Szrj #include "system.h"
22*38fd1498Szrj #include "coretypes.h"
23*38fd1498Szrj #include "bitmap.h"
24*38fd1498Szrj #include "graphds.h"
25*38fd1498Szrj 
26*38fd1498Szrj /* Dumps graph G into F.  */
27*38fd1498Szrj 
28*38fd1498Szrj void
dump_graph(FILE * f,struct graph * g)29*38fd1498Szrj dump_graph (FILE *f, struct graph *g)
30*38fd1498Szrj {
31*38fd1498Szrj   int i;
32*38fd1498Szrj   struct graph_edge *e;
33*38fd1498Szrj 
34*38fd1498Szrj   for (i = 0; i < g->n_vertices; i++)
35*38fd1498Szrj     {
36*38fd1498Szrj       if (!g->vertices[i].pred
37*38fd1498Szrj 	  && !g->vertices[i].succ)
38*38fd1498Szrj 	continue;
39*38fd1498Szrj 
40*38fd1498Szrj       fprintf (f, "%d (%d)\t<-", i, g->vertices[i].component);
41*38fd1498Szrj       for (e = g->vertices[i].pred; e; e = e->pred_next)
42*38fd1498Szrj 	fprintf (f, " %d", e->src);
43*38fd1498Szrj       fprintf (f, "\n");
44*38fd1498Szrj 
45*38fd1498Szrj       fprintf (f, "\t->");
46*38fd1498Szrj       for (e = g->vertices[i].succ; e; e = e->succ_next)
47*38fd1498Szrj 	fprintf (f, " %d", e->dest);
48*38fd1498Szrj       fprintf (f, "\n");
49*38fd1498Szrj     }
50*38fd1498Szrj }
51*38fd1498Szrj 
52*38fd1498Szrj /* Creates a new graph with N_VERTICES vertices.  */
53*38fd1498Szrj 
54*38fd1498Szrj struct graph *
new_graph(int n_vertices)55*38fd1498Szrj new_graph (int n_vertices)
56*38fd1498Szrj {
57*38fd1498Szrj   struct graph *g = XNEW (struct graph);
58*38fd1498Szrj 
59*38fd1498Szrj   gcc_obstack_init (&g->ob);
60*38fd1498Szrj   g->n_vertices = n_vertices;
61*38fd1498Szrj   g->vertices = XOBNEWVEC (&g->ob, struct vertex, n_vertices);
62*38fd1498Szrj   memset (g->vertices, 0, sizeof (struct vertex) * n_vertices);
63*38fd1498Szrj 
64*38fd1498Szrj   return g;
65*38fd1498Szrj }
66*38fd1498Szrj 
67*38fd1498Szrj /* Adds an edge from F to T to graph G.  The new edge is returned.  */
68*38fd1498Szrj 
69*38fd1498Szrj struct graph_edge *
add_edge(struct graph * g,int f,int t)70*38fd1498Szrj add_edge (struct graph *g, int f, int t)
71*38fd1498Szrj {
72*38fd1498Szrj   struct graph_edge *e = XOBNEW (&g->ob, struct graph_edge);
73*38fd1498Szrj   struct vertex *vf = &g->vertices[f], *vt = &g->vertices[t];
74*38fd1498Szrj 
75*38fd1498Szrj   e->src = f;
76*38fd1498Szrj   e->dest = t;
77*38fd1498Szrj 
78*38fd1498Szrj   e->pred_next = vt->pred;
79*38fd1498Szrj   vt->pred = e;
80*38fd1498Szrj 
81*38fd1498Szrj   e->succ_next = vf->succ;
82*38fd1498Szrj   vf->succ = e;
83*38fd1498Szrj 
84*38fd1498Szrj   e->data = NULL;
85*38fd1498Szrj   return e;
86*38fd1498Szrj }
87*38fd1498Szrj 
88*38fd1498Szrj /* Moves all the edges incident with U to V.  */
89*38fd1498Szrj 
90*38fd1498Szrj void
identify_vertices(struct graph * g,int v,int u)91*38fd1498Szrj identify_vertices (struct graph *g, int v, int u)
92*38fd1498Szrj {
93*38fd1498Szrj   struct vertex *vv = &g->vertices[v];
94*38fd1498Szrj   struct vertex *uu = &g->vertices[u];
95*38fd1498Szrj   struct graph_edge *e, *next;
96*38fd1498Szrj 
97*38fd1498Szrj   for (e = uu->succ; e; e = next)
98*38fd1498Szrj     {
99*38fd1498Szrj       next = e->succ_next;
100*38fd1498Szrj 
101*38fd1498Szrj       e->src = v;
102*38fd1498Szrj       e->succ_next = vv->succ;
103*38fd1498Szrj       vv->succ = e;
104*38fd1498Szrj     }
105*38fd1498Szrj   uu->succ = NULL;
106*38fd1498Szrj 
107*38fd1498Szrj   for (e = uu->pred; e; e = next)
108*38fd1498Szrj     {
109*38fd1498Szrj       next = e->pred_next;
110*38fd1498Szrj 
111*38fd1498Szrj       e->dest = v;
112*38fd1498Szrj       e->pred_next = vv->pred;
113*38fd1498Szrj       vv->pred = e;
114*38fd1498Szrj     }
115*38fd1498Szrj   uu->pred = NULL;
116*38fd1498Szrj }
117*38fd1498Szrj 
118*38fd1498Szrj /* Helper function for graphds_dfs.  Returns the source vertex of E, in the
119*38fd1498Szrj    direction given by FORWARD.  */
120*38fd1498Szrj 
121*38fd1498Szrj static inline int
dfs_edge_src(struct graph_edge * e,bool forward)122*38fd1498Szrj dfs_edge_src (struct graph_edge *e, bool forward)
123*38fd1498Szrj {
124*38fd1498Szrj   return forward ? e->src : e->dest;
125*38fd1498Szrj }
126*38fd1498Szrj 
127*38fd1498Szrj /* Helper function for graphds_dfs.  Returns the destination vertex of E, in
128*38fd1498Szrj    the direction given by FORWARD.  */
129*38fd1498Szrj 
130*38fd1498Szrj static inline int
dfs_edge_dest(struct graph_edge * e,bool forward)131*38fd1498Szrj dfs_edge_dest (struct graph_edge *e, bool forward)
132*38fd1498Szrj {
133*38fd1498Szrj   return forward ? e->dest : e->src;
134*38fd1498Szrj }
135*38fd1498Szrj 
136*38fd1498Szrj /* Helper function for graphds_dfs.  Returns the first edge after E (including
137*38fd1498Szrj    E), in the graph direction given by FORWARD, that belongs to SUBGRAPH.  If
138*38fd1498Szrj    SKIP_EDGE_P is not NULL, it points to a callback function.  Edge E will be
139*38fd1498Szrj    skipped if callback function returns true.  */
140*38fd1498Szrj 
141*38fd1498Szrj static inline struct graph_edge *
foll_in_subgraph(struct graph_edge * e,bool forward,bitmap subgraph,skip_edge_callback skip_edge_p)142*38fd1498Szrj foll_in_subgraph (struct graph_edge *e, bool forward, bitmap subgraph,
143*38fd1498Szrj 		  skip_edge_callback skip_edge_p)
144*38fd1498Szrj {
145*38fd1498Szrj   int d;
146*38fd1498Szrj 
147*38fd1498Szrj   if (!e)
148*38fd1498Szrj     return e;
149*38fd1498Szrj 
150*38fd1498Szrj   if (!subgraph && (!skip_edge_p || !skip_edge_p (e)))
151*38fd1498Szrj     return e;
152*38fd1498Szrj 
153*38fd1498Szrj   while (e)
154*38fd1498Szrj     {
155*38fd1498Szrj       d = dfs_edge_dest (e, forward);
156*38fd1498Szrj       /* Return edge if it belongs to subgraph and shouldn't be skipped.  */
157*38fd1498Szrj       if ((!subgraph || bitmap_bit_p (subgraph, d))
158*38fd1498Szrj 	  && (!skip_edge_p || !skip_edge_p (e)))
159*38fd1498Szrj 	return e;
160*38fd1498Szrj 
161*38fd1498Szrj       e = forward ? e->succ_next : e->pred_next;
162*38fd1498Szrj     }
163*38fd1498Szrj 
164*38fd1498Szrj   return e;
165*38fd1498Szrj }
166*38fd1498Szrj 
167*38fd1498Szrj /* Helper function for graphds_dfs.  Select the first edge from V in G, in the
168*38fd1498Szrj    direction given by FORWARD, that belongs to SUBGRAPH.  If SKIP_EDGE_P is not
169*38fd1498Szrj    NULL, it points to a callback function.  Edge E will be skipped if callback
170*38fd1498Szrj    function returns true.  */
171*38fd1498Szrj 
172*38fd1498Szrj static inline struct graph_edge *
dfs_fst_edge(struct graph * g,int v,bool forward,bitmap subgraph,skip_edge_callback skip_edge_p)173*38fd1498Szrj dfs_fst_edge (struct graph *g, int v, bool forward, bitmap subgraph,
174*38fd1498Szrj 	      skip_edge_callback skip_edge_p)
175*38fd1498Szrj {
176*38fd1498Szrj   struct graph_edge *e;
177*38fd1498Szrj 
178*38fd1498Szrj   e = (forward ? g->vertices[v].succ : g->vertices[v].pred);
179*38fd1498Szrj   return foll_in_subgraph (e, forward, subgraph, skip_edge_p);
180*38fd1498Szrj }
181*38fd1498Szrj 
182*38fd1498Szrj /* Helper function for graphds_dfs.  Returns the next edge after E, in the
183*38fd1498Szrj    graph direction given by FORWARD, that belongs to SUBGRAPH.  If SKIP_EDGE_P
184*38fd1498Szrj    is not NULL, it points to a callback function.  Edge E will be skipped if
185*38fd1498Szrj    callback function returns true.  */
186*38fd1498Szrj 
187*38fd1498Szrj static inline struct graph_edge *
dfs_next_edge(struct graph_edge * e,bool forward,bitmap subgraph,skip_edge_callback skip_edge_p)188*38fd1498Szrj dfs_next_edge (struct graph_edge *e, bool forward, bitmap subgraph,
189*38fd1498Szrj 	       skip_edge_callback skip_edge_p)
190*38fd1498Szrj {
191*38fd1498Szrj   return foll_in_subgraph (forward ? e->succ_next : e->pred_next,
192*38fd1498Szrj 			   forward, subgraph, skip_edge_p);
193*38fd1498Szrj }
194*38fd1498Szrj 
195*38fd1498Szrj /* Runs dfs search over vertices of G, from NQ vertices in queue QS.
196*38fd1498Szrj    The vertices in postorder are stored into QT.  If FORWARD is false,
197*38fd1498Szrj    backward dfs is run.  If SUBGRAPH is not NULL, it specifies the
198*38fd1498Szrj    subgraph of G to run DFS on.  Returns the number of the components
199*38fd1498Szrj    of the graph (number of the restarts of DFS).  If SKIP_EDGE_P is not
200*38fd1498Szrj    NULL, it points to a callback function.  Edge E will be skipped if
201*38fd1498Szrj    callback function returns true.  */
202*38fd1498Szrj 
203*38fd1498Szrj int
graphds_dfs(struct graph * g,int * qs,int nq,vec<int> * qt,bool forward,bitmap subgraph,skip_edge_callback skip_edge_p)204*38fd1498Szrj graphds_dfs (struct graph *g, int *qs, int nq, vec<int> *qt,
205*38fd1498Szrj 	     bool forward, bitmap subgraph,
206*38fd1498Szrj 	     skip_edge_callback skip_edge_p)
207*38fd1498Szrj {
208*38fd1498Szrj   int i, tick = 0, v, comp = 0, top;
209*38fd1498Szrj   struct graph_edge *e;
210*38fd1498Szrj   struct graph_edge **stack = XNEWVEC (struct graph_edge *, g->n_vertices);
211*38fd1498Szrj   bitmap_iterator bi;
212*38fd1498Szrj   unsigned av;
213*38fd1498Szrj 
214*38fd1498Szrj   if (subgraph)
215*38fd1498Szrj     {
216*38fd1498Szrj       EXECUTE_IF_SET_IN_BITMAP (subgraph, 0, av, bi)
217*38fd1498Szrj 	{
218*38fd1498Szrj 	  g->vertices[av].component = -1;
219*38fd1498Szrj 	  g->vertices[av].post = -1;
220*38fd1498Szrj 	}
221*38fd1498Szrj     }
222*38fd1498Szrj   else
223*38fd1498Szrj     {
224*38fd1498Szrj       for (i = 0; i < g->n_vertices; i++)
225*38fd1498Szrj 	{
226*38fd1498Szrj 	  g->vertices[i].component = -1;
227*38fd1498Szrj 	  g->vertices[i].post = -1;
228*38fd1498Szrj 	}
229*38fd1498Szrj     }
230*38fd1498Szrj 
231*38fd1498Szrj   for (i = 0; i < nq; i++)
232*38fd1498Szrj     {
233*38fd1498Szrj       v = qs[i];
234*38fd1498Szrj       if (g->vertices[v].post != -1)
235*38fd1498Szrj 	continue;
236*38fd1498Szrj 
237*38fd1498Szrj       g->vertices[v].component = comp++;
238*38fd1498Szrj       e = dfs_fst_edge (g, v, forward, subgraph, skip_edge_p);
239*38fd1498Szrj       top = 0;
240*38fd1498Szrj 
241*38fd1498Szrj       while (1)
242*38fd1498Szrj 	{
243*38fd1498Szrj 	  while (e)
244*38fd1498Szrj 	    {
245*38fd1498Szrj 	      if (g->vertices[dfs_edge_dest (e, forward)].component
246*38fd1498Szrj 		  == -1)
247*38fd1498Szrj 		break;
248*38fd1498Szrj 	      e = dfs_next_edge (e, forward, subgraph, skip_edge_p);
249*38fd1498Szrj 	    }
250*38fd1498Szrj 
251*38fd1498Szrj 	  if (!e)
252*38fd1498Szrj 	    {
253*38fd1498Szrj 	      if (qt)
254*38fd1498Szrj 		qt->safe_push (v);
255*38fd1498Szrj 	      g->vertices[v].post = tick++;
256*38fd1498Szrj 
257*38fd1498Szrj 	      if (!top)
258*38fd1498Szrj 		break;
259*38fd1498Szrj 
260*38fd1498Szrj 	      e = stack[--top];
261*38fd1498Szrj 	      v = dfs_edge_src (e, forward);
262*38fd1498Szrj 	      e = dfs_next_edge (e, forward, subgraph, skip_edge_p);
263*38fd1498Szrj 	      continue;
264*38fd1498Szrj 	    }
265*38fd1498Szrj 
266*38fd1498Szrj 	  stack[top++] = e;
267*38fd1498Szrj 	  v = dfs_edge_dest (e, forward);
268*38fd1498Szrj 	  e = dfs_fst_edge (g, v, forward, subgraph, skip_edge_p);
269*38fd1498Szrj 	  g->vertices[v].component = comp - 1;
270*38fd1498Szrj 	}
271*38fd1498Szrj     }
272*38fd1498Szrj 
273*38fd1498Szrj   free (stack);
274*38fd1498Szrj 
275*38fd1498Szrj   return comp;
276*38fd1498Szrj }
277*38fd1498Szrj 
278*38fd1498Szrj /* Determines the strongly connected components of G, using the algorithm of
279*38fd1498Szrj    Tarjan -- first determine the postorder dfs numbering in reversed graph,
280*38fd1498Szrj    then run the dfs on the original graph in the order given by decreasing
281*38fd1498Szrj    numbers assigned by the previous pass.  If SUBGRAPH is not NULL, it
282*38fd1498Szrj    specifies the subgraph of G whose strongly connected components we want
283*38fd1498Szrj    to determine.  If SKIP_EDGE_P is not NULL, it points to a callback function.
284*38fd1498Szrj    Edge E will be skipped if callback function returns true.
285*38fd1498Szrj 
286*38fd1498Szrj    After running this function, v->component is the number of the strongly
287*38fd1498Szrj    connected component for each vertex of G.  Returns the number of the
288*38fd1498Szrj    sccs of G.  */
289*38fd1498Szrj 
290*38fd1498Szrj int
graphds_scc(struct graph * g,bitmap subgraph,skip_edge_callback skip_edge_p)291*38fd1498Szrj graphds_scc (struct graph *g, bitmap subgraph,
292*38fd1498Szrj 	     skip_edge_callback skip_edge_p)
293*38fd1498Szrj {
294*38fd1498Szrj   int *queue = XNEWVEC (int, g->n_vertices);
295*38fd1498Szrj   vec<int> postorder = vNULL;
296*38fd1498Szrj   int nq, i, comp;
297*38fd1498Szrj   unsigned v;
298*38fd1498Szrj   bitmap_iterator bi;
299*38fd1498Szrj 
300*38fd1498Szrj   if (subgraph)
301*38fd1498Szrj     {
302*38fd1498Szrj       nq = 0;
303*38fd1498Szrj       EXECUTE_IF_SET_IN_BITMAP (subgraph, 0, v, bi)
304*38fd1498Szrj 	{
305*38fd1498Szrj 	  queue[nq++] = v;
306*38fd1498Szrj 	}
307*38fd1498Szrj     }
308*38fd1498Szrj   else
309*38fd1498Szrj     {
310*38fd1498Szrj       for (i = 0; i < g->n_vertices; i++)
311*38fd1498Szrj 	queue[i] = i;
312*38fd1498Szrj       nq = g->n_vertices;
313*38fd1498Szrj     }
314*38fd1498Szrj 
315*38fd1498Szrj   graphds_dfs (g, queue, nq, &postorder, false, subgraph, skip_edge_p);
316*38fd1498Szrj   gcc_assert (postorder.length () == (unsigned) nq);
317*38fd1498Szrj 
318*38fd1498Szrj   for (i = 0; i < nq; i++)
319*38fd1498Szrj     queue[i] = postorder[nq - i - 1];
320*38fd1498Szrj   comp = graphds_dfs (g, queue, nq, NULL, true, subgraph, skip_edge_p);
321*38fd1498Szrj 
322*38fd1498Szrj   free (queue);
323*38fd1498Szrj   postorder.release ();
324*38fd1498Szrj 
325*38fd1498Szrj   return comp;
326*38fd1498Szrj }
327*38fd1498Szrj 
328*38fd1498Szrj /* Runs CALLBACK for all edges in G.  DATA is private data for CALLBACK.  */
329*38fd1498Szrj 
330*38fd1498Szrj void
for_each_edge(struct graph * g,graphds_edge_callback callback,void * data)331*38fd1498Szrj for_each_edge (struct graph *g, graphds_edge_callback callback, void *data)
332*38fd1498Szrj {
333*38fd1498Szrj   struct graph_edge *e;
334*38fd1498Szrj   int i;
335*38fd1498Szrj 
336*38fd1498Szrj   for (i = 0; i < g->n_vertices; i++)
337*38fd1498Szrj     for (e = g->vertices[i].succ; e; e = e->succ_next)
338*38fd1498Szrj       callback (g, e, data);
339*38fd1498Szrj }
340*38fd1498Szrj 
341*38fd1498Szrj /* Releases the memory occupied by G.  */
342*38fd1498Szrj 
343*38fd1498Szrj void
free_graph(struct graph * g)344*38fd1498Szrj free_graph (struct graph *g)
345*38fd1498Szrj {
346*38fd1498Szrj   obstack_free (&g->ob, NULL);
347*38fd1498Szrj   free (g);
348*38fd1498Szrj }
349*38fd1498Szrj 
350*38fd1498Szrj /* Returns the nearest common ancestor of X and Y in tree whose parent
351*38fd1498Szrj    links are given by PARENT.  MARKS is the array used to mark the
352*38fd1498Szrj    vertices of the tree, and MARK is the number currently used as a mark.  */
353*38fd1498Szrj 
354*38fd1498Szrj static int
tree_nca(int x,int y,int * parent,int * marks,int mark)355*38fd1498Szrj tree_nca (int x, int y, int *parent, int *marks, int mark)
356*38fd1498Szrj {
357*38fd1498Szrj   if (x == -1 || x == y)
358*38fd1498Szrj     return y;
359*38fd1498Szrj 
360*38fd1498Szrj   /* We climb with X and Y up the tree, marking the visited nodes.  When
361*38fd1498Szrj      we first arrive to a marked node, it is the common ancestor.  */
362*38fd1498Szrj   marks[x] = mark;
363*38fd1498Szrj   marks[y] = mark;
364*38fd1498Szrj 
365*38fd1498Szrj   while (1)
366*38fd1498Szrj     {
367*38fd1498Szrj       x = parent[x];
368*38fd1498Szrj       if (x == -1)
369*38fd1498Szrj 	break;
370*38fd1498Szrj       if (marks[x] == mark)
371*38fd1498Szrj 	return x;
372*38fd1498Szrj       marks[x] = mark;
373*38fd1498Szrj 
374*38fd1498Szrj       y = parent[y];
375*38fd1498Szrj       if (y == -1)
376*38fd1498Szrj 	break;
377*38fd1498Szrj       if (marks[y] == mark)
378*38fd1498Szrj 	return y;
379*38fd1498Szrj       marks[y] = mark;
380*38fd1498Szrj     }
381*38fd1498Szrj 
382*38fd1498Szrj   /* If we reached the root with one of the vertices, continue
383*38fd1498Szrj      with the other one till we reach the marked part of the
384*38fd1498Szrj      tree.  */
385*38fd1498Szrj   if (x == -1)
386*38fd1498Szrj     {
387*38fd1498Szrj       for (y = parent[y]; marks[y] != mark; y = parent[y])
388*38fd1498Szrj 	continue;
389*38fd1498Szrj 
390*38fd1498Szrj       return y;
391*38fd1498Szrj     }
392*38fd1498Szrj   else
393*38fd1498Szrj     {
394*38fd1498Szrj       for (x = parent[x]; marks[x] != mark; x = parent[x])
395*38fd1498Szrj 	continue;
396*38fd1498Szrj 
397*38fd1498Szrj       return x;
398*38fd1498Szrj     }
399*38fd1498Szrj }
400*38fd1498Szrj 
401*38fd1498Szrj /* Determines the dominance tree of G (stored in the PARENT, SON and BROTHER
402*38fd1498Szrj    arrays), where the entry node is ENTRY.  */
403*38fd1498Szrj 
404*38fd1498Szrj void
graphds_domtree(struct graph * g,int entry,int * parent,int * son,int * brother)405*38fd1498Szrj graphds_domtree (struct graph *g, int entry,
406*38fd1498Szrj 		 int *parent, int *son, int *brother)
407*38fd1498Szrj {
408*38fd1498Szrj   vec<int> postorder = vNULL;
409*38fd1498Szrj   int *marks = XCNEWVEC (int, g->n_vertices);
410*38fd1498Szrj   int mark = 1, i, v, idom;
411*38fd1498Szrj   bool changed = true;
412*38fd1498Szrj   struct graph_edge *e;
413*38fd1498Szrj 
414*38fd1498Szrj   /* We use a slight modification of the standard iterative algorithm, as
415*38fd1498Szrj      described in
416*38fd1498Szrj 
417*38fd1498Szrj      K. D. Cooper, T. J. Harvey and K. Kennedy: A Simple, Fast Dominance
418*38fd1498Szrj 	Algorithm
419*38fd1498Szrj 
420*38fd1498Szrj      sort vertices in reverse postorder
421*38fd1498Szrj      foreach v
422*38fd1498Szrj        dom(v) = everything
423*38fd1498Szrj      dom(entry) = entry;
424*38fd1498Szrj 
425*38fd1498Szrj      while (anything changes)
426*38fd1498Szrj        foreach v
427*38fd1498Szrj          dom(v) = {v} union (intersection of dom(p) over all predecessors of v)
428*38fd1498Szrj 
429*38fd1498Szrj      The sets dom(v) are represented by the parent links in the current version
430*38fd1498Szrj      of the dominance tree.  */
431*38fd1498Szrj 
432*38fd1498Szrj   for (i = 0; i < g->n_vertices; i++)
433*38fd1498Szrj     {
434*38fd1498Szrj       parent[i] = -1;
435*38fd1498Szrj       son[i] = -1;
436*38fd1498Szrj       brother[i] = -1;
437*38fd1498Szrj     }
438*38fd1498Szrj   graphds_dfs (g, &entry, 1, &postorder, true, NULL);
439*38fd1498Szrj   gcc_assert (postorder.length () == (unsigned) g->n_vertices);
440*38fd1498Szrj   gcc_assert (postorder[g->n_vertices - 1] == entry);
441*38fd1498Szrj 
442*38fd1498Szrj   while (changed)
443*38fd1498Szrj     {
444*38fd1498Szrj       changed = false;
445*38fd1498Szrj 
446*38fd1498Szrj       for (i = g->n_vertices - 2; i >= 0; i--)
447*38fd1498Szrj 	{
448*38fd1498Szrj 	  v = postorder[i];
449*38fd1498Szrj 	  idom = -1;
450*38fd1498Szrj 	  for (e = g->vertices[v].pred; e; e = e->pred_next)
451*38fd1498Szrj 	    {
452*38fd1498Szrj 	      if (e->src != entry
453*38fd1498Szrj 		  && parent[e->src] == -1)
454*38fd1498Szrj 		continue;
455*38fd1498Szrj 
456*38fd1498Szrj 	      idom = tree_nca (idom, e->src, parent, marks, mark++);
457*38fd1498Szrj 	    }
458*38fd1498Szrj 
459*38fd1498Szrj 	  if (idom != parent[v])
460*38fd1498Szrj 	    {
461*38fd1498Szrj 	      parent[v] = idom;
462*38fd1498Szrj 	      changed = true;
463*38fd1498Szrj 	    }
464*38fd1498Szrj 	}
465*38fd1498Szrj     }
466*38fd1498Szrj 
467*38fd1498Szrj   free (marks);
468*38fd1498Szrj   postorder.release ();
469*38fd1498Szrj 
470*38fd1498Szrj   for (i = 0; i < g->n_vertices; i++)
471*38fd1498Szrj     if (parent[i] != -1)
472*38fd1498Szrj       {
473*38fd1498Szrj 	brother[i] = son[parent[i]];
474*38fd1498Szrj 	son[parent[i]] = i;
475*38fd1498Szrj       }
476*38fd1498Szrj }
477