xref: /dflybsd-src/contrib/gcc-4.7/libstdc++-v3/include/tr1/hypergeometric.tcc (revision 04febcfb30580676d3e95f58a16c5137ee478b32)
1*e4b17023SJohn Marino // Special functions -*- C++ -*-
2*e4b17023SJohn Marino 
3*e4b17023SJohn Marino // Copyright (C) 2006, 2007, 2008, 2009, 2010
4*e4b17023SJohn Marino // Free Software Foundation, Inc.
5*e4b17023SJohn Marino //
6*e4b17023SJohn Marino // This file is part of the GNU ISO C++ Library.  This library is free
7*e4b17023SJohn Marino // software; you can redistribute it and/or modify it under the
8*e4b17023SJohn Marino // terms of the GNU General Public License as published by the
9*e4b17023SJohn Marino // Free Software Foundation; either version 3, or (at your option)
10*e4b17023SJohn Marino // any later version.
11*e4b17023SJohn Marino //
12*e4b17023SJohn Marino // This library is distributed in the hope that it will be useful,
13*e4b17023SJohn Marino // but WITHOUT ANY WARRANTY; without even the implied warranty of
14*e4b17023SJohn Marino // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15*e4b17023SJohn Marino // GNU General Public License for more details.
16*e4b17023SJohn Marino //
17*e4b17023SJohn Marino // Under Section 7 of GPL version 3, you are granted additional
18*e4b17023SJohn Marino // permissions described in the GCC Runtime Library Exception, version
19*e4b17023SJohn Marino // 3.1, as published by the Free Software Foundation.
20*e4b17023SJohn Marino 
21*e4b17023SJohn Marino // You should have received a copy of the GNU General Public License and
22*e4b17023SJohn Marino // a copy of the GCC Runtime Library Exception along with this program;
23*e4b17023SJohn Marino // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
24*e4b17023SJohn Marino // <http://www.gnu.org/licenses/>.
25*e4b17023SJohn Marino 
26*e4b17023SJohn Marino /** @file tr1/hypergeometric.tcc
27*e4b17023SJohn Marino  *  This is an internal header file, included by other library headers.
28*e4b17023SJohn Marino  *  Do not attempt to use it directly. @headername{tr1/cmath}
29*e4b17023SJohn Marino  */
30*e4b17023SJohn Marino 
31*e4b17023SJohn Marino //
32*e4b17023SJohn Marino // ISO C++ 14882 TR1: 5.2  Special functions
33*e4b17023SJohn Marino //
34*e4b17023SJohn Marino 
35*e4b17023SJohn Marino // Written by Edward Smith-Rowland based:
36*e4b17023SJohn Marino //   (1) Handbook of Mathematical Functions,
37*e4b17023SJohn Marino //       ed. Milton Abramowitz and Irene A. Stegun,
38*e4b17023SJohn Marino //       Dover Publications,
39*e4b17023SJohn Marino //       Section 6, pp. 555-566
40*e4b17023SJohn Marino //   (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl
41*e4b17023SJohn Marino 
42*e4b17023SJohn Marino #ifndef _GLIBCXX_TR1_HYPERGEOMETRIC_TCC
43*e4b17023SJohn Marino #define _GLIBCXX_TR1_HYPERGEOMETRIC_TCC 1
44*e4b17023SJohn Marino 
45*e4b17023SJohn Marino namespace std _GLIBCXX_VISIBILITY(default)
46*e4b17023SJohn Marino {
47*e4b17023SJohn Marino namespace tr1
48*e4b17023SJohn Marino {
49*e4b17023SJohn Marino   // [5.2] Special functions
50*e4b17023SJohn Marino 
51*e4b17023SJohn Marino   // Implementation-space details.
52*e4b17023SJohn Marino   namespace __detail
53*e4b17023SJohn Marino   {
54*e4b17023SJohn Marino   _GLIBCXX_BEGIN_NAMESPACE_VERSION
55*e4b17023SJohn Marino 
56*e4b17023SJohn Marino     /**
57*e4b17023SJohn Marino      *   @brief This routine returns the confluent hypergeometric function
58*e4b17023SJohn Marino      *          by series expansion.
59*e4b17023SJohn Marino      *
60*e4b17023SJohn Marino      *   @f[
61*e4b17023SJohn Marino      *     _1F_1(a;c;x) = \frac{\Gamma(c)}{\Gamma(a)}
62*e4b17023SJohn Marino      *                      \sum_{n=0}^{\infty}
63*e4b17023SJohn Marino      *                      \frac{\Gamma(a+n)}{\Gamma(c+n)}
64*e4b17023SJohn Marino      *                      \frac{x^n}{n!}
65*e4b17023SJohn Marino      *   @f]
66*e4b17023SJohn Marino      *
67*e4b17023SJohn Marino      *   If a and b are integers and a < 0 and either b > 0 or b < a
68*e4b17023SJohn Marino      *   then the series is a polynomial with a finite number of
69*e4b17023SJohn Marino      *   terms.  If b is an integer and b <= 0 the confluent
70*e4b17023SJohn Marino      *   hypergeometric function is undefined.
71*e4b17023SJohn Marino      *
72*e4b17023SJohn Marino      *   @param  __a  The "numerator" parameter.
73*e4b17023SJohn Marino      *   @param  __c  The "denominator" parameter.
74*e4b17023SJohn Marino      *   @param  __x  The argument of the confluent hypergeometric function.
75*e4b17023SJohn Marino      *   @return  The confluent hypergeometric function.
76*e4b17023SJohn Marino      */
77*e4b17023SJohn Marino     template<typename _Tp>
78*e4b17023SJohn Marino     _Tp
__conf_hyperg_series(const _Tp __a,const _Tp __c,const _Tp __x)79*e4b17023SJohn Marino     __conf_hyperg_series(const _Tp __a, const _Tp __c, const _Tp __x)
80*e4b17023SJohn Marino     {
81*e4b17023SJohn Marino       const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
82*e4b17023SJohn Marino 
83*e4b17023SJohn Marino       _Tp __term = _Tp(1);
84*e4b17023SJohn Marino       _Tp __Fac = _Tp(1);
85*e4b17023SJohn Marino       const unsigned int __max_iter = 100000;
86*e4b17023SJohn Marino       unsigned int __i;
87*e4b17023SJohn Marino       for (__i = 0; __i < __max_iter; ++__i)
88*e4b17023SJohn Marino         {
89*e4b17023SJohn Marino           __term *= (__a + _Tp(__i)) * __x
90*e4b17023SJohn Marino                   / ((__c + _Tp(__i)) * _Tp(1 + __i));
91*e4b17023SJohn Marino           if (std::abs(__term) < __eps)
92*e4b17023SJohn Marino             {
93*e4b17023SJohn Marino               break;
94*e4b17023SJohn Marino             }
95*e4b17023SJohn Marino           __Fac += __term;
96*e4b17023SJohn Marino         }
97*e4b17023SJohn Marino       if (__i == __max_iter)
98*e4b17023SJohn Marino         std::__throw_runtime_error(__N("Series failed to converge "
99*e4b17023SJohn Marino                                        "in __conf_hyperg_series."));
100*e4b17023SJohn Marino 
101*e4b17023SJohn Marino       return __Fac;
102*e4b17023SJohn Marino     }
103*e4b17023SJohn Marino 
104*e4b17023SJohn Marino 
105*e4b17023SJohn Marino     /**
106*e4b17023SJohn Marino      *  @brief  Return the hypogeometric function @f$ _2F_1(a,b;c;x) @f$
107*e4b17023SJohn Marino      *          by an iterative procedure described in
108*e4b17023SJohn Marino      *          Luke, Algorithms for the Computation of Mathematical Functions.
109*e4b17023SJohn Marino      *
110*e4b17023SJohn Marino      *  Like the case of the 2F1 rational approximations, these are
111*e4b17023SJohn Marino      *  probably guaranteed to converge for x < 0, barring gross
112*e4b17023SJohn Marino      *  numerical instability in the pre-asymptotic regime.
113*e4b17023SJohn Marino      */
114*e4b17023SJohn Marino     template<typename _Tp>
115*e4b17023SJohn Marino     _Tp
__conf_hyperg_luke(const _Tp __a,const _Tp __c,const _Tp __xin)116*e4b17023SJohn Marino     __conf_hyperg_luke(const _Tp __a, const _Tp __c, const _Tp __xin)
117*e4b17023SJohn Marino     {
118*e4b17023SJohn Marino       const _Tp __big = std::pow(std::numeric_limits<_Tp>::max(), _Tp(0.16L));
119*e4b17023SJohn Marino       const int __nmax = 20000;
120*e4b17023SJohn Marino       const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
121*e4b17023SJohn Marino       const _Tp __x  = -__xin;
122*e4b17023SJohn Marino       const _Tp __x3 = __x * __x * __x;
123*e4b17023SJohn Marino       const _Tp __t0 = __a / __c;
124*e4b17023SJohn Marino       const _Tp __t1 = (__a + _Tp(1)) / (_Tp(2) * __c);
125*e4b17023SJohn Marino       const _Tp __t2 = (__a + _Tp(2)) / (_Tp(2) * (__c + _Tp(1)));
126*e4b17023SJohn Marino       _Tp __F = _Tp(1);
127*e4b17023SJohn Marino       _Tp __prec;
128*e4b17023SJohn Marino 
129*e4b17023SJohn Marino       _Tp __Bnm3 = _Tp(1);
130*e4b17023SJohn Marino       _Tp __Bnm2 = _Tp(1) + __t1 * __x;
131*e4b17023SJohn Marino       _Tp __Bnm1 = _Tp(1) + __t2 * __x * (_Tp(1) + __t1 / _Tp(3) * __x);
132*e4b17023SJohn Marino 
133*e4b17023SJohn Marino       _Tp __Anm3 = _Tp(1);
134*e4b17023SJohn Marino       _Tp __Anm2 = __Bnm2 - __t0 * __x;
135*e4b17023SJohn Marino       _Tp __Anm1 = __Bnm1 - __t0 * (_Tp(1) + __t2 * __x) * __x
136*e4b17023SJohn Marino                  + __t0 * __t1 * (__c / (__c + _Tp(1))) * __x * __x;
137*e4b17023SJohn Marino 
138*e4b17023SJohn Marino       int __n = 3;
139*e4b17023SJohn Marino       while(1)
140*e4b17023SJohn Marino         {
141*e4b17023SJohn Marino           _Tp __npam1 = _Tp(__n - 1) + __a;
142*e4b17023SJohn Marino           _Tp __npcm1 = _Tp(__n - 1) + __c;
143*e4b17023SJohn Marino           _Tp __npam2 = _Tp(__n - 2) + __a;
144*e4b17023SJohn Marino           _Tp __npcm2 = _Tp(__n - 2) + __c;
145*e4b17023SJohn Marino           _Tp __tnm1  = _Tp(2 * __n - 1);
146*e4b17023SJohn Marino           _Tp __tnm3  = _Tp(2 * __n - 3);
147*e4b17023SJohn Marino           _Tp __tnm5  = _Tp(2 * __n - 5);
148*e4b17023SJohn Marino           _Tp __F1 =  (_Tp(__n - 2) - __a) / (_Tp(2) * __tnm3 * __npcm1);
149*e4b17023SJohn Marino           _Tp __F2 =  (_Tp(__n) + __a) * __npam1
150*e4b17023SJohn Marino                    / (_Tp(4) * __tnm1 * __tnm3 * __npcm2 * __npcm1);
151*e4b17023SJohn Marino           _Tp __F3 = -__npam2 * __npam1 * (_Tp(__n - 2) - __a)
152*e4b17023SJohn Marino                    / (_Tp(8) * __tnm3 * __tnm3 * __tnm5
153*e4b17023SJohn Marino                    * (_Tp(__n - 3) + __c) * __npcm2 * __npcm1);
154*e4b17023SJohn Marino           _Tp __E  = -__npam1 * (_Tp(__n - 1) - __c)
155*e4b17023SJohn Marino                    / (_Tp(2) * __tnm3 * __npcm2 * __npcm1);
156*e4b17023SJohn Marino 
157*e4b17023SJohn Marino           _Tp __An = (_Tp(1) + __F1 * __x) * __Anm1
158*e4b17023SJohn Marino                    + (__E + __F2 * __x) * __x * __Anm2 + __F3 * __x3 * __Anm3;
159*e4b17023SJohn Marino           _Tp __Bn = (_Tp(1) + __F1 * __x) * __Bnm1
160*e4b17023SJohn Marino                    + (__E + __F2 * __x) * __x * __Bnm2 + __F3 * __x3 * __Bnm3;
161*e4b17023SJohn Marino           _Tp __r = __An / __Bn;
162*e4b17023SJohn Marino 
163*e4b17023SJohn Marino           __prec = std::abs((__F - __r) / __F);
164*e4b17023SJohn Marino           __F = __r;
165*e4b17023SJohn Marino 
166*e4b17023SJohn Marino           if (__prec < __eps || __n > __nmax)
167*e4b17023SJohn Marino             break;
168*e4b17023SJohn Marino 
169*e4b17023SJohn Marino           if (std::abs(__An) > __big || std::abs(__Bn) > __big)
170*e4b17023SJohn Marino             {
171*e4b17023SJohn Marino               __An   /= __big;
172*e4b17023SJohn Marino               __Bn   /= __big;
173*e4b17023SJohn Marino               __Anm1 /= __big;
174*e4b17023SJohn Marino               __Bnm1 /= __big;
175*e4b17023SJohn Marino               __Anm2 /= __big;
176*e4b17023SJohn Marino               __Bnm2 /= __big;
177*e4b17023SJohn Marino               __Anm3 /= __big;
178*e4b17023SJohn Marino               __Bnm3 /= __big;
179*e4b17023SJohn Marino             }
180*e4b17023SJohn Marino           else if (std::abs(__An) < _Tp(1) / __big
181*e4b17023SJohn Marino                 || std::abs(__Bn) < _Tp(1) / __big)
182*e4b17023SJohn Marino             {
183*e4b17023SJohn Marino               __An   *= __big;
184*e4b17023SJohn Marino               __Bn   *= __big;
185*e4b17023SJohn Marino               __Anm1 *= __big;
186*e4b17023SJohn Marino               __Bnm1 *= __big;
187*e4b17023SJohn Marino               __Anm2 *= __big;
188*e4b17023SJohn Marino               __Bnm2 *= __big;
189*e4b17023SJohn Marino               __Anm3 *= __big;
190*e4b17023SJohn Marino               __Bnm3 *= __big;
191*e4b17023SJohn Marino             }
192*e4b17023SJohn Marino 
193*e4b17023SJohn Marino           ++__n;
194*e4b17023SJohn Marino           __Bnm3 = __Bnm2;
195*e4b17023SJohn Marino           __Bnm2 = __Bnm1;
196*e4b17023SJohn Marino           __Bnm1 = __Bn;
197*e4b17023SJohn Marino           __Anm3 = __Anm2;
198*e4b17023SJohn Marino           __Anm2 = __Anm1;
199*e4b17023SJohn Marino           __Anm1 = __An;
200*e4b17023SJohn Marino         }
201*e4b17023SJohn Marino 
202*e4b17023SJohn Marino       if (__n >= __nmax)
203*e4b17023SJohn Marino         std::__throw_runtime_error(__N("Iteration failed to converge "
204*e4b17023SJohn Marino                                        "in __conf_hyperg_luke."));
205*e4b17023SJohn Marino 
206*e4b17023SJohn Marino       return __F;
207*e4b17023SJohn Marino     }
208*e4b17023SJohn Marino 
209*e4b17023SJohn Marino 
210*e4b17023SJohn Marino     /**
211*e4b17023SJohn Marino      *   @brief  Return the confluent hypogeometric function
212*e4b17023SJohn Marino      *           @f$ _1F_1(a;c;x) @f$.
213*e4b17023SJohn Marino      *
214*e4b17023SJohn Marino      *   @todo  Handle b == nonpositive integer blowup - return NaN.
215*e4b17023SJohn Marino      *
216*e4b17023SJohn Marino      *   @param  __a  The @a numerator parameter.
217*e4b17023SJohn Marino      *   @param  __c  The @a denominator parameter.
218*e4b17023SJohn Marino      *   @param  __x  The argument of the confluent hypergeometric function.
219*e4b17023SJohn Marino      *   @return  The confluent hypergeometric function.
220*e4b17023SJohn Marino      */
221*e4b17023SJohn Marino     template<typename _Tp>
222*e4b17023SJohn Marino     inline _Tp
__conf_hyperg(const _Tp __a,const _Tp __c,const _Tp __x)223*e4b17023SJohn Marino     __conf_hyperg(const _Tp __a, const _Tp __c, const _Tp __x)
224*e4b17023SJohn Marino     {
225*e4b17023SJohn Marino #if _GLIBCXX_USE_C99_MATH_TR1
226*e4b17023SJohn Marino       const _Tp __c_nint = std::tr1::nearbyint(__c);
227*e4b17023SJohn Marino #else
228*e4b17023SJohn Marino       const _Tp __c_nint = static_cast<int>(__c + _Tp(0.5L));
229*e4b17023SJohn Marino #endif
230*e4b17023SJohn Marino       if (__isnan(__a) || __isnan(__c) || __isnan(__x))
231*e4b17023SJohn Marino         return std::numeric_limits<_Tp>::quiet_NaN();
232*e4b17023SJohn Marino       else if (__c_nint == __c && __c_nint <= 0)
233*e4b17023SJohn Marino         return std::numeric_limits<_Tp>::infinity();
234*e4b17023SJohn Marino       else if (__a == _Tp(0))
235*e4b17023SJohn Marino         return _Tp(1);
236*e4b17023SJohn Marino       else if (__c == __a)
237*e4b17023SJohn Marino         return std::exp(__x);
238*e4b17023SJohn Marino       else if (__x < _Tp(0))
239*e4b17023SJohn Marino         return __conf_hyperg_luke(__a, __c, __x);
240*e4b17023SJohn Marino       else
241*e4b17023SJohn Marino         return __conf_hyperg_series(__a, __c, __x);
242*e4b17023SJohn Marino     }
243*e4b17023SJohn Marino 
244*e4b17023SJohn Marino 
245*e4b17023SJohn Marino     /**
246*e4b17023SJohn Marino      *   @brief Return the hypogeometric function @f$ _2F_1(a,b;c;x) @f$
247*e4b17023SJohn Marino      *   by series expansion.
248*e4b17023SJohn Marino      *
249*e4b17023SJohn Marino      *   The hypogeometric function is defined by
250*e4b17023SJohn Marino      *   @f[
251*e4b17023SJohn Marino      *     _2F_1(a,b;c;x) = \frac{\Gamma(c)}{\Gamma(a)\Gamma(b)}
252*e4b17023SJohn Marino      *                      \sum_{n=0}^{\infty}
253*e4b17023SJohn Marino      *                      \frac{\Gamma(a+n)\Gamma(b+n)}{\Gamma(c+n)}
254*e4b17023SJohn Marino      *                      \frac{x^n}{n!}
255*e4b17023SJohn Marino      *   @f]
256*e4b17023SJohn Marino      *
257*e4b17023SJohn Marino      *   This works and it's pretty fast.
258*e4b17023SJohn Marino      *
259*e4b17023SJohn Marino      *   @param  __a  The first @a numerator parameter.
260*e4b17023SJohn Marino      *   @param  __a  The second @a numerator parameter.
261*e4b17023SJohn Marino      *   @param  __c  The @a denominator parameter.
262*e4b17023SJohn Marino      *   @param  __x  The argument of the confluent hypergeometric function.
263*e4b17023SJohn Marino      *   @return  The confluent hypergeometric function.
264*e4b17023SJohn Marino      */
265*e4b17023SJohn Marino     template<typename _Tp>
266*e4b17023SJohn Marino     _Tp
__hyperg_series(const _Tp __a,const _Tp __b,const _Tp __c,const _Tp __x)267*e4b17023SJohn Marino     __hyperg_series(const _Tp __a, const _Tp __b,
268*e4b17023SJohn Marino                     const _Tp __c, const _Tp __x)
269*e4b17023SJohn Marino     {
270*e4b17023SJohn Marino       const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
271*e4b17023SJohn Marino 
272*e4b17023SJohn Marino       _Tp __term = _Tp(1);
273*e4b17023SJohn Marino       _Tp __Fabc = _Tp(1);
274*e4b17023SJohn Marino       const unsigned int __max_iter = 100000;
275*e4b17023SJohn Marino       unsigned int __i;
276*e4b17023SJohn Marino       for (__i = 0; __i < __max_iter; ++__i)
277*e4b17023SJohn Marino         {
278*e4b17023SJohn Marino           __term *= (__a + _Tp(__i)) * (__b + _Tp(__i)) * __x
279*e4b17023SJohn Marino                   / ((__c + _Tp(__i)) * _Tp(1 + __i));
280*e4b17023SJohn Marino           if (std::abs(__term) < __eps)
281*e4b17023SJohn Marino             {
282*e4b17023SJohn Marino               break;
283*e4b17023SJohn Marino             }
284*e4b17023SJohn Marino           __Fabc += __term;
285*e4b17023SJohn Marino         }
286*e4b17023SJohn Marino       if (__i == __max_iter)
287*e4b17023SJohn Marino         std::__throw_runtime_error(__N("Series failed to converge "
288*e4b17023SJohn Marino                                        "in __hyperg_series."));
289*e4b17023SJohn Marino 
290*e4b17023SJohn Marino       return __Fabc;
291*e4b17023SJohn Marino     }
292*e4b17023SJohn Marino 
293*e4b17023SJohn Marino 
294*e4b17023SJohn Marino     /**
295*e4b17023SJohn Marino      *   @brief  Return the hypogeometric function @f$ _2F_1(a,b;c;x) @f$
296*e4b17023SJohn Marino      *           by an iterative procedure described in
297*e4b17023SJohn Marino      *           Luke, Algorithms for the Computation of Mathematical Functions.
298*e4b17023SJohn Marino      */
299*e4b17023SJohn Marino     template<typename _Tp>
300*e4b17023SJohn Marino     _Tp
__hyperg_luke(const _Tp __a,const _Tp __b,const _Tp __c,const _Tp __xin)301*e4b17023SJohn Marino     __hyperg_luke(const _Tp __a, const _Tp __b, const _Tp __c,
302*e4b17023SJohn Marino                   const _Tp __xin)
303*e4b17023SJohn Marino     {
304*e4b17023SJohn Marino       const _Tp __big = std::pow(std::numeric_limits<_Tp>::max(), _Tp(0.16L));
305*e4b17023SJohn Marino       const int __nmax = 20000;
306*e4b17023SJohn Marino       const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
307*e4b17023SJohn Marino       const _Tp __x  = -__xin;
308*e4b17023SJohn Marino       const _Tp __x3 = __x * __x * __x;
309*e4b17023SJohn Marino       const _Tp __t0 = __a * __b / __c;
310*e4b17023SJohn Marino       const _Tp __t1 = (__a + _Tp(1)) * (__b + _Tp(1)) / (_Tp(2) * __c);
311*e4b17023SJohn Marino       const _Tp __t2 = (__a + _Tp(2)) * (__b + _Tp(2))
312*e4b17023SJohn Marino                      / (_Tp(2) * (__c + _Tp(1)));
313*e4b17023SJohn Marino 
314*e4b17023SJohn Marino       _Tp __F = _Tp(1);
315*e4b17023SJohn Marino 
316*e4b17023SJohn Marino       _Tp __Bnm3 = _Tp(1);
317*e4b17023SJohn Marino       _Tp __Bnm2 = _Tp(1) + __t1 * __x;
318*e4b17023SJohn Marino       _Tp __Bnm1 = _Tp(1) + __t2 * __x * (_Tp(1) + __t1 / _Tp(3) * __x);
319*e4b17023SJohn Marino 
320*e4b17023SJohn Marino       _Tp __Anm3 = _Tp(1);
321*e4b17023SJohn Marino       _Tp __Anm2 = __Bnm2 - __t0 * __x;
322*e4b17023SJohn Marino       _Tp __Anm1 = __Bnm1 - __t0 * (_Tp(1) + __t2 * __x) * __x
323*e4b17023SJohn Marino                  + __t0 * __t1 * (__c / (__c + _Tp(1))) * __x * __x;
324*e4b17023SJohn Marino 
325*e4b17023SJohn Marino       int __n = 3;
326*e4b17023SJohn Marino       while (1)
327*e4b17023SJohn Marino         {
328*e4b17023SJohn Marino           const _Tp __npam1 = _Tp(__n - 1) + __a;
329*e4b17023SJohn Marino           const _Tp __npbm1 = _Tp(__n - 1) + __b;
330*e4b17023SJohn Marino           const _Tp __npcm1 = _Tp(__n - 1) + __c;
331*e4b17023SJohn Marino           const _Tp __npam2 = _Tp(__n - 2) + __a;
332*e4b17023SJohn Marino           const _Tp __npbm2 = _Tp(__n - 2) + __b;
333*e4b17023SJohn Marino           const _Tp __npcm2 = _Tp(__n - 2) + __c;
334*e4b17023SJohn Marino           const _Tp __tnm1  = _Tp(2 * __n - 1);
335*e4b17023SJohn Marino           const _Tp __tnm3  = _Tp(2 * __n - 3);
336*e4b17023SJohn Marino           const _Tp __tnm5  = _Tp(2 * __n - 5);
337*e4b17023SJohn Marino           const _Tp __n2 = __n * __n;
338*e4b17023SJohn Marino           const _Tp __F1 = (_Tp(3) * __n2 + (__a + __b - _Tp(6)) * __n
339*e4b17023SJohn Marino                          + _Tp(2) - __a * __b - _Tp(2) * (__a + __b))
340*e4b17023SJohn Marino                          / (_Tp(2) * __tnm3 * __npcm1);
341*e4b17023SJohn Marino           const _Tp __F2 = -(_Tp(3) * __n2 - (__a + __b + _Tp(6)) * __n
342*e4b17023SJohn Marino                          + _Tp(2) - __a * __b) * __npam1 * __npbm1
343*e4b17023SJohn Marino                          / (_Tp(4) * __tnm1 * __tnm3 * __npcm2 * __npcm1);
344*e4b17023SJohn Marino           const _Tp __F3 = (__npam2 * __npam1 * __npbm2 * __npbm1
345*e4b17023SJohn Marino                          * (_Tp(__n - 2) - __a) * (_Tp(__n - 2) - __b))
346*e4b17023SJohn Marino                          / (_Tp(8) * __tnm3 * __tnm3 * __tnm5
347*e4b17023SJohn Marino                          * (_Tp(__n - 3) + __c) * __npcm2 * __npcm1);
348*e4b17023SJohn Marino           const _Tp __E  = -__npam1 * __npbm1 * (_Tp(__n - 1) - __c)
349*e4b17023SJohn Marino                          / (_Tp(2) * __tnm3 * __npcm2 * __npcm1);
350*e4b17023SJohn Marino 
351*e4b17023SJohn Marino           _Tp __An = (_Tp(1) + __F1 * __x) * __Anm1
352*e4b17023SJohn Marino                    + (__E + __F2 * __x) * __x * __Anm2 + __F3 * __x3 * __Anm3;
353*e4b17023SJohn Marino           _Tp __Bn = (_Tp(1) + __F1 * __x) * __Bnm1
354*e4b17023SJohn Marino                    + (__E + __F2 * __x) * __x * __Bnm2 + __F3 * __x3 * __Bnm3;
355*e4b17023SJohn Marino           const _Tp __r = __An / __Bn;
356*e4b17023SJohn Marino 
357*e4b17023SJohn Marino           const _Tp __prec = std::abs((__F - __r) / __F);
358*e4b17023SJohn Marino           __F = __r;
359*e4b17023SJohn Marino 
360*e4b17023SJohn Marino           if (__prec < __eps || __n > __nmax)
361*e4b17023SJohn Marino             break;
362*e4b17023SJohn Marino 
363*e4b17023SJohn Marino           if (std::abs(__An) > __big || std::abs(__Bn) > __big)
364*e4b17023SJohn Marino             {
365*e4b17023SJohn Marino               __An   /= __big;
366*e4b17023SJohn Marino               __Bn   /= __big;
367*e4b17023SJohn Marino               __Anm1 /= __big;
368*e4b17023SJohn Marino               __Bnm1 /= __big;
369*e4b17023SJohn Marino               __Anm2 /= __big;
370*e4b17023SJohn Marino               __Bnm2 /= __big;
371*e4b17023SJohn Marino               __Anm3 /= __big;
372*e4b17023SJohn Marino               __Bnm3 /= __big;
373*e4b17023SJohn Marino             }
374*e4b17023SJohn Marino           else if (std::abs(__An) < _Tp(1) / __big
375*e4b17023SJohn Marino                 || std::abs(__Bn) < _Tp(1) / __big)
376*e4b17023SJohn Marino             {
377*e4b17023SJohn Marino               __An   *= __big;
378*e4b17023SJohn Marino               __Bn   *= __big;
379*e4b17023SJohn Marino               __Anm1 *= __big;
380*e4b17023SJohn Marino               __Bnm1 *= __big;
381*e4b17023SJohn Marino               __Anm2 *= __big;
382*e4b17023SJohn Marino               __Bnm2 *= __big;
383*e4b17023SJohn Marino               __Anm3 *= __big;
384*e4b17023SJohn Marino               __Bnm3 *= __big;
385*e4b17023SJohn Marino             }
386*e4b17023SJohn Marino 
387*e4b17023SJohn Marino           ++__n;
388*e4b17023SJohn Marino           __Bnm3 = __Bnm2;
389*e4b17023SJohn Marino           __Bnm2 = __Bnm1;
390*e4b17023SJohn Marino           __Bnm1 = __Bn;
391*e4b17023SJohn Marino           __Anm3 = __Anm2;
392*e4b17023SJohn Marino           __Anm2 = __Anm1;
393*e4b17023SJohn Marino           __Anm1 = __An;
394*e4b17023SJohn Marino         }
395*e4b17023SJohn Marino 
396*e4b17023SJohn Marino       if (__n >= __nmax)
397*e4b17023SJohn Marino         std::__throw_runtime_error(__N("Iteration failed to converge "
398*e4b17023SJohn Marino                                        "in __hyperg_luke."));
399*e4b17023SJohn Marino 
400*e4b17023SJohn Marino       return __F;
401*e4b17023SJohn Marino     }
402*e4b17023SJohn Marino 
403*e4b17023SJohn Marino 
404*e4b17023SJohn Marino     /**
405*e4b17023SJohn Marino      *  @brief  Return the hypogeometric function @f$ _2F_1(a,b;c;x) @f$
406*e4b17023SJohn Marino      *  by the reflection formulae in Abramowitz & Stegun formula
407*e4b17023SJohn Marino      *  15.3.6 for d = c - a - b not integral and formula 15.3.11 for
408*e4b17023SJohn Marino      *  d = c - a - b integral.  This assumes a, b, c != negative
409*e4b17023SJohn Marino      *  integer.
410*e4b17023SJohn Marino      *
411*e4b17023SJohn Marino      *   The hypogeometric function is defined by
412*e4b17023SJohn Marino      *   @f[
413*e4b17023SJohn Marino      *     _2F_1(a,b;c;x) = \frac{\Gamma(c)}{\Gamma(a)\Gamma(b)}
414*e4b17023SJohn Marino      *                      \sum_{n=0}^{\infty}
415*e4b17023SJohn Marino      *                      \frac{\Gamma(a+n)\Gamma(b+n)}{\Gamma(c+n)}
416*e4b17023SJohn Marino      *                      \frac{x^n}{n!}
417*e4b17023SJohn Marino      *   @f]
418*e4b17023SJohn Marino      *
419*e4b17023SJohn Marino      *   The reflection formula for nonintegral @f$ d = c - a - b @f$ is:
420*e4b17023SJohn Marino      *   @f[
421*e4b17023SJohn Marino      *     _2F_1(a,b;c;x) = \frac{\Gamma(c)\Gamma(d)}{\Gamma(c-a)\Gamma(c-b)}
422*e4b17023SJohn Marino      *                            _2F_1(a,b;1-d;1-x)
423*e4b17023SJohn Marino      *                    + \frac{\Gamma(c)\Gamma(-d)}{\Gamma(a)\Gamma(b)}
424*e4b17023SJohn Marino      *                            _2F_1(c-a,c-b;1+d;1-x)
425*e4b17023SJohn Marino      *   @f]
426*e4b17023SJohn Marino      *
427*e4b17023SJohn Marino      *   The reflection formula for integral @f$ m = c - a - b @f$ is:
428*e4b17023SJohn Marino      *   @f[
429*e4b17023SJohn Marino      *     _2F_1(a,b;a+b+m;x) = \frac{\Gamma(m)\Gamma(a+b+m)}{\Gamma(a+m)\Gamma(b+m)}
430*e4b17023SJohn Marino      *                        \sum_{k=0}^{m-1} \frac{(m+a)_k(m+b)_k}{k!(1-m)_k}
431*e4b17023SJohn Marino      *                      -
432*e4b17023SJohn Marino      *   @f]
433*e4b17023SJohn Marino      */
434*e4b17023SJohn Marino     template<typename _Tp>
435*e4b17023SJohn Marino     _Tp
__hyperg_reflect(const _Tp __a,const _Tp __b,const _Tp __c,const _Tp __x)436*e4b17023SJohn Marino     __hyperg_reflect(const _Tp __a, const _Tp __b, const _Tp __c,
437*e4b17023SJohn Marino                      const _Tp __x)
438*e4b17023SJohn Marino     {
439*e4b17023SJohn Marino       const _Tp __d = __c - __a - __b;
440*e4b17023SJohn Marino       const int __intd  = std::floor(__d + _Tp(0.5L));
441*e4b17023SJohn Marino       const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
442*e4b17023SJohn Marino       const _Tp __toler = _Tp(1000) * __eps;
443*e4b17023SJohn Marino       const _Tp __log_max = std::log(std::numeric_limits<_Tp>::max());
444*e4b17023SJohn Marino       const bool __d_integer = (std::abs(__d - __intd) < __toler);
445*e4b17023SJohn Marino 
446*e4b17023SJohn Marino       if (__d_integer)
447*e4b17023SJohn Marino         {
448*e4b17023SJohn Marino           const _Tp __ln_omx = std::log(_Tp(1) - __x);
449*e4b17023SJohn Marino           const _Tp __ad = std::abs(__d);
450*e4b17023SJohn Marino           _Tp __F1, __F2;
451*e4b17023SJohn Marino 
452*e4b17023SJohn Marino           _Tp __d1, __d2;
453*e4b17023SJohn Marino           if (__d >= _Tp(0))
454*e4b17023SJohn Marino             {
455*e4b17023SJohn Marino               __d1 = __d;
456*e4b17023SJohn Marino               __d2 = _Tp(0);
457*e4b17023SJohn Marino             }
458*e4b17023SJohn Marino           else
459*e4b17023SJohn Marino             {
460*e4b17023SJohn Marino               __d1 = _Tp(0);
461*e4b17023SJohn Marino               __d2 = __d;
462*e4b17023SJohn Marino             }
463*e4b17023SJohn Marino 
464*e4b17023SJohn Marino           const _Tp __lng_c = __log_gamma(__c);
465*e4b17023SJohn Marino 
466*e4b17023SJohn Marino           //  Evaluate F1.
467*e4b17023SJohn Marino           if (__ad < __eps)
468*e4b17023SJohn Marino             {
469*e4b17023SJohn Marino               //  d = c - a - b = 0.
470*e4b17023SJohn Marino               __F1 = _Tp(0);
471*e4b17023SJohn Marino             }
472*e4b17023SJohn Marino           else
473*e4b17023SJohn Marino             {
474*e4b17023SJohn Marino 
475*e4b17023SJohn Marino               bool __ok_d1 = true;
476*e4b17023SJohn Marino               _Tp __lng_ad, __lng_ad1, __lng_bd1;
477*e4b17023SJohn Marino               __try
478*e4b17023SJohn Marino                 {
479*e4b17023SJohn Marino                   __lng_ad = __log_gamma(__ad);
480*e4b17023SJohn Marino                   __lng_ad1 = __log_gamma(__a + __d1);
481*e4b17023SJohn Marino                   __lng_bd1 = __log_gamma(__b + __d1);
482*e4b17023SJohn Marino                 }
483*e4b17023SJohn Marino               __catch(...)
484*e4b17023SJohn Marino                 {
485*e4b17023SJohn Marino                   __ok_d1 = false;
486*e4b17023SJohn Marino                 }
487*e4b17023SJohn Marino 
488*e4b17023SJohn Marino               if (__ok_d1)
489*e4b17023SJohn Marino                 {
490*e4b17023SJohn Marino                   /* Gamma functions in the denominator are ok.
491*e4b17023SJohn Marino                    * Proceed with evaluation.
492*e4b17023SJohn Marino                    */
493*e4b17023SJohn Marino                   _Tp __sum1 = _Tp(1);
494*e4b17023SJohn Marino                   _Tp __term = _Tp(1);
495*e4b17023SJohn Marino                   _Tp __ln_pre1 = __lng_ad + __lng_c + __d2 * __ln_omx
496*e4b17023SJohn Marino                                 - __lng_ad1 - __lng_bd1;
497*e4b17023SJohn Marino 
498*e4b17023SJohn Marino                   /* Do F1 sum.
499*e4b17023SJohn Marino                    */
500*e4b17023SJohn Marino                   for (int __i = 1; __i < __ad; ++__i)
501*e4b17023SJohn Marino                     {
502*e4b17023SJohn Marino                       const int __j = __i - 1;
503*e4b17023SJohn Marino                       __term *= (__a + __d2 + __j) * (__b + __d2 + __j)
504*e4b17023SJohn Marino                               / (_Tp(1) + __d2 + __j) / __i * (_Tp(1) - __x);
505*e4b17023SJohn Marino                       __sum1 += __term;
506*e4b17023SJohn Marino                     }
507*e4b17023SJohn Marino 
508*e4b17023SJohn Marino                   if (__ln_pre1 > __log_max)
509*e4b17023SJohn Marino                     std::__throw_runtime_error(__N("Overflow of gamma functions"
510*e4b17023SJohn Marino                                                    " in __hyperg_luke."));
511*e4b17023SJohn Marino                   else
512*e4b17023SJohn Marino                     __F1 = std::exp(__ln_pre1) * __sum1;
513*e4b17023SJohn Marino                 }
514*e4b17023SJohn Marino               else
515*e4b17023SJohn Marino                 {
516*e4b17023SJohn Marino                   //  Gamma functions in the denominator were not ok.
517*e4b17023SJohn Marino                   //  So the F1 term is zero.
518*e4b17023SJohn Marino                   __F1 = _Tp(0);
519*e4b17023SJohn Marino                 }
520*e4b17023SJohn Marino             } // end F1 evaluation
521*e4b17023SJohn Marino 
522*e4b17023SJohn Marino           // Evaluate F2.
523*e4b17023SJohn Marino           bool __ok_d2 = true;
524*e4b17023SJohn Marino           _Tp __lng_ad2, __lng_bd2;
525*e4b17023SJohn Marino           __try
526*e4b17023SJohn Marino             {
527*e4b17023SJohn Marino               __lng_ad2 = __log_gamma(__a + __d2);
528*e4b17023SJohn Marino               __lng_bd2 = __log_gamma(__b + __d2);
529*e4b17023SJohn Marino             }
530*e4b17023SJohn Marino           __catch(...)
531*e4b17023SJohn Marino             {
532*e4b17023SJohn Marino               __ok_d2 = false;
533*e4b17023SJohn Marino             }
534*e4b17023SJohn Marino 
535*e4b17023SJohn Marino           if (__ok_d2)
536*e4b17023SJohn Marino             {
537*e4b17023SJohn Marino               //  Gamma functions in the denominator are ok.
538*e4b17023SJohn Marino               //  Proceed with evaluation.
539*e4b17023SJohn Marino               const int __maxiter = 2000;
540*e4b17023SJohn Marino               const _Tp __psi_1 = -__numeric_constants<_Tp>::__gamma_e();
541*e4b17023SJohn Marino               const _Tp __psi_1pd = __psi(_Tp(1) + __ad);
542*e4b17023SJohn Marino               const _Tp __psi_apd1 = __psi(__a + __d1);
543*e4b17023SJohn Marino               const _Tp __psi_bpd1 = __psi(__b + __d1);
544*e4b17023SJohn Marino 
545*e4b17023SJohn Marino               _Tp __psi_term = __psi_1 + __psi_1pd - __psi_apd1
546*e4b17023SJohn Marino                              - __psi_bpd1 - __ln_omx;
547*e4b17023SJohn Marino               _Tp __fact = _Tp(1);
548*e4b17023SJohn Marino               _Tp __sum2 = __psi_term;
549*e4b17023SJohn Marino               _Tp __ln_pre2 = __lng_c + __d1 * __ln_omx
550*e4b17023SJohn Marino                             - __lng_ad2 - __lng_bd2;
551*e4b17023SJohn Marino 
552*e4b17023SJohn Marino               // Do F2 sum.
553*e4b17023SJohn Marino               int __j;
554*e4b17023SJohn Marino               for (__j = 1; __j < __maxiter; ++__j)
555*e4b17023SJohn Marino                 {
556*e4b17023SJohn Marino                   //  Values for psi functions use recurrence;
557*e4b17023SJohn Marino                   //  Abramowitz & Stegun 6.3.5
558*e4b17023SJohn Marino                   const _Tp __term1 = _Tp(1) / _Tp(__j)
559*e4b17023SJohn Marino                                     + _Tp(1) / (__ad + __j);
560*e4b17023SJohn Marino                   const _Tp __term2 = _Tp(1) / (__a + __d1 + _Tp(__j - 1))
561*e4b17023SJohn Marino                                     + _Tp(1) / (__b + __d1 + _Tp(__j - 1));
562*e4b17023SJohn Marino                   __psi_term += __term1 - __term2;
563*e4b17023SJohn Marino                   __fact *= (__a + __d1 + _Tp(__j - 1))
564*e4b17023SJohn Marino                           * (__b + __d1 + _Tp(__j - 1))
565*e4b17023SJohn Marino                           / ((__ad + __j) * __j) * (_Tp(1) - __x);
566*e4b17023SJohn Marino                   const _Tp __delta = __fact * __psi_term;
567*e4b17023SJohn Marino                   __sum2 += __delta;
568*e4b17023SJohn Marino                   if (std::abs(__delta) < __eps * std::abs(__sum2))
569*e4b17023SJohn Marino                     break;
570*e4b17023SJohn Marino                 }
571*e4b17023SJohn Marino               if (__j == __maxiter)
572*e4b17023SJohn Marino                 std::__throw_runtime_error(__N("Sum F2 failed to converge "
573*e4b17023SJohn Marino                                                "in __hyperg_reflect"));
574*e4b17023SJohn Marino 
575*e4b17023SJohn Marino               if (__sum2 == _Tp(0))
576*e4b17023SJohn Marino                 __F2 = _Tp(0);
577*e4b17023SJohn Marino               else
578*e4b17023SJohn Marino                 __F2 = std::exp(__ln_pre2) * __sum2;
579*e4b17023SJohn Marino             }
580*e4b17023SJohn Marino           else
581*e4b17023SJohn Marino             {
582*e4b17023SJohn Marino               // Gamma functions in the denominator not ok.
583*e4b17023SJohn Marino               // So the F2 term is zero.
584*e4b17023SJohn Marino               __F2 = _Tp(0);
585*e4b17023SJohn Marino             } // end F2 evaluation
586*e4b17023SJohn Marino 
587*e4b17023SJohn Marino           const _Tp __sgn_2 = (__intd % 2 == 1 ? -_Tp(1) : _Tp(1));
588*e4b17023SJohn Marino           const _Tp __F = __F1 + __sgn_2 * __F2;
589*e4b17023SJohn Marino 
590*e4b17023SJohn Marino           return __F;
591*e4b17023SJohn Marino         }
592*e4b17023SJohn Marino       else
593*e4b17023SJohn Marino         {
594*e4b17023SJohn Marino           //  d = c - a - b not an integer.
595*e4b17023SJohn Marino 
596*e4b17023SJohn Marino           //  These gamma functions appear in the denominator, so we
597*e4b17023SJohn Marino           //  catch their harmless domain errors and set the terms to zero.
598*e4b17023SJohn Marino           bool __ok1 = true;
599*e4b17023SJohn Marino           _Tp __sgn_g1ca = _Tp(0), __ln_g1ca = _Tp(0);
600*e4b17023SJohn Marino           _Tp __sgn_g1cb = _Tp(0), __ln_g1cb = _Tp(0);
601*e4b17023SJohn Marino           __try
602*e4b17023SJohn Marino             {
603*e4b17023SJohn Marino               __sgn_g1ca = __log_gamma_sign(__c - __a);
604*e4b17023SJohn Marino               __ln_g1ca = __log_gamma(__c - __a);
605*e4b17023SJohn Marino               __sgn_g1cb = __log_gamma_sign(__c - __b);
606*e4b17023SJohn Marino               __ln_g1cb = __log_gamma(__c - __b);
607*e4b17023SJohn Marino             }
608*e4b17023SJohn Marino           __catch(...)
609*e4b17023SJohn Marino             {
610*e4b17023SJohn Marino               __ok1 = false;
611*e4b17023SJohn Marino             }
612*e4b17023SJohn Marino 
613*e4b17023SJohn Marino           bool __ok2 = true;
614*e4b17023SJohn Marino           _Tp __sgn_g2a = _Tp(0), __ln_g2a = _Tp(0);
615*e4b17023SJohn Marino           _Tp __sgn_g2b = _Tp(0), __ln_g2b = _Tp(0);
616*e4b17023SJohn Marino           __try
617*e4b17023SJohn Marino             {
618*e4b17023SJohn Marino               __sgn_g2a = __log_gamma_sign(__a);
619*e4b17023SJohn Marino               __ln_g2a = __log_gamma(__a);
620*e4b17023SJohn Marino               __sgn_g2b = __log_gamma_sign(__b);
621*e4b17023SJohn Marino               __ln_g2b = __log_gamma(__b);
622*e4b17023SJohn Marino             }
623*e4b17023SJohn Marino           __catch(...)
624*e4b17023SJohn Marino             {
625*e4b17023SJohn Marino               __ok2 = false;
626*e4b17023SJohn Marino             }
627*e4b17023SJohn Marino 
628*e4b17023SJohn Marino           const _Tp __sgn_gc = __log_gamma_sign(__c);
629*e4b17023SJohn Marino           const _Tp __ln_gc = __log_gamma(__c);
630*e4b17023SJohn Marino           const _Tp __sgn_gd = __log_gamma_sign(__d);
631*e4b17023SJohn Marino           const _Tp __ln_gd = __log_gamma(__d);
632*e4b17023SJohn Marino           const _Tp __sgn_gmd = __log_gamma_sign(-__d);
633*e4b17023SJohn Marino           const _Tp __ln_gmd = __log_gamma(-__d);
634*e4b17023SJohn Marino 
635*e4b17023SJohn Marino           const _Tp __sgn1 = __sgn_gc * __sgn_gd  * __sgn_g1ca * __sgn_g1cb;
636*e4b17023SJohn Marino           const _Tp __sgn2 = __sgn_gc * __sgn_gmd * __sgn_g2a  * __sgn_g2b;
637*e4b17023SJohn Marino 
638*e4b17023SJohn Marino           _Tp __pre1, __pre2;
639*e4b17023SJohn Marino           if (__ok1 && __ok2)
640*e4b17023SJohn Marino             {
641*e4b17023SJohn Marino               _Tp __ln_pre1 = __ln_gc + __ln_gd  - __ln_g1ca - __ln_g1cb;
642*e4b17023SJohn Marino               _Tp __ln_pre2 = __ln_gc + __ln_gmd - __ln_g2a  - __ln_g2b
643*e4b17023SJohn Marino                             + __d * std::log(_Tp(1) - __x);
644*e4b17023SJohn Marino               if (__ln_pre1 < __log_max && __ln_pre2 < __log_max)
645*e4b17023SJohn Marino                 {
646*e4b17023SJohn Marino                   __pre1 = std::exp(__ln_pre1);
647*e4b17023SJohn Marino                   __pre2 = std::exp(__ln_pre2);
648*e4b17023SJohn Marino                   __pre1 *= __sgn1;
649*e4b17023SJohn Marino                   __pre2 *= __sgn2;
650*e4b17023SJohn Marino                 }
651*e4b17023SJohn Marino               else
652*e4b17023SJohn Marino                 {
653*e4b17023SJohn Marino                   std::__throw_runtime_error(__N("Overflow of gamma functions "
654*e4b17023SJohn Marino                                                  "in __hyperg_reflect"));
655*e4b17023SJohn Marino                 }
656*e4b17023SJohn Marino             }
657*e4b17023SJohn Marino           else if (__ok1 && !__ok2)
658*e4b17023SJohn Marino             {
659*e4b17023SJohn Marino               _Tp __ln_pre1 = __ln_gc + __ln_gd - __ln_g1ca - __ln_g1cb;
660*e4b17023SJohn Marino               if (__ln_pre1 < __log_max)
661*e4b17023SJohn Marino                 {
662*e4b17023SJohn Marino                   __pre1 = std::exp(__ln_pre1);
663*e4b17023SJohn Marino                   __pre1 *= __sgn1;
664*e4b17023SJohn Marino                   __pre2 = _Tp(0);
665*e4b17023SJohn Marino                 }
666*e4b17023SJohn Marino               else
667*e4b17023SJohn Marino                 {
668*e4b17023SJohn Marino                   std::__throw_runtime_error(__N("Overflow of gamma functions "
669*e4b17023SJohn Marino                                                  "in __hyperg_reflect"));
670*e4b17023SJohn Marino                 }
671*e4b17023SJohn Marino             }
672*e4b17023SJohn Marino           else if (!__ok1 && __ok2)
673*e4b17023SJohn Marino             {
674*e4b17023SJohn Marino               _Tp __ln_pre2 = __ln_gc + __ln_gmd - __ln_g2a - __ln_g2b
675*e4b17023SJohn Marino                             + __d * std::log(_Tp(1) - __x);
676*e4b17023SJohn Marino               if (__ln_pre2 < __log_max)
677*e4b17023SJohn Marino                 {
678*e4b17023SJohn Marino                   __pre1 = _Tp(0);
679*e4b17023SJohn Marino                   __pre2 = std::exp(__ln_pre2);
680*e4b17023SJohn Marino                   __pre2 *= __sgn2;
681*e4b17023SJohn Marino                 }
682*e4b17023SJohn Marino               else
683*e4b17023SJohn Marino                 {
684*e4b17023SJohn Marino                   std::__throw_runtime_error(__N("Overflow of gamma functions "
685*e4b17023SJohn Marino                                                  "in __hyperg_reflect"));
686*e4b17023SJohn Marino                 }
687*e4b17023SJohn Marino             }
688*e4b17023SJohn Marino           else
689*e4b17023SJohn Marino             {
690*e4b17023SJohn Marino               __pre1 = _Tp(0);
691*e4b17023SJohn Marino               __pre2 = _Tp(0);
692*e4b17023SJohn Marino               std::__throw_runtime_error(__N("Underflow of gamma functions "
693*e4b17023SJohn Marino                                              "in __hyperg_reflect"));
694*e4b17023SJohn Marino             }
695*e4b17023SJohn Marino 
696*e4b17023SJohn Marino           const _Tp __F1 = __hyperg_series(__a, __b, _Tp(1) - __d,
697*e4b17023SJohn Marino                                            _Tp(1) - __x);
698*e4b17023SJohn Marino           const _Tp __F2 = __hyperg_series(__c - __a, __c - __b, _Tp(1) + __d,
699*e4b17023SJohn Marino                                            _Tp(1) - __x);
700*e4b17023SJohn Marino 
701*e4b17023SJohn Marino           const _Tp __F = __pre1 * __F1 + __pre2 * __F2;
702*e4b17023SJohn Marino 
703*e4b17023SJohn Marino           return __F;
704*e4b17023SJohn Marino         }
705*e4b17023SJohn Marino     }
706*e4b17023SJohn Marino 
707*e4b17023SJohn Marino 
708*e4b17023SJohn Marino     /**
709*e4b17023SJohn Marino      *   @brief Return the hypogeometric function @f$ _2F_1(a,b;c;x) @f$.
710*e4b17023SJohn Marino      *
711*e4b17023SJohn Marino      *   The hypogeometric function is defined by
712*e4b17023SJohn Marino      *   @f[
713*e4b17023SJohn Marino      *     _2F_1(a,b;c;x) = \frac{\Gamma(c)}{\Gamma(a)\Gamma(b)}
714*e4b17023SJohn Marino      *                      \sum_{n=0}^{\infty}
715*e4b17023SJohn Marino      *                      \frac{\Gamma(a+n)\Gamma(b+n)}{\Gamma(c+n)}
716*e4b17023SJohn Marino      *                      \frac{x^n}{n!}
717*e4b17023SJohn Marino      *   @f]
718*e4b17023SJohn Marino      *
719*e4b17023SJohn Marino      *   @param  __a  The first @a numerator parameter.
720*e4b17023SJohn Marino      *   @param  __a  The second @a numerator parameter.
721*e4b17023SJohn Marino      *   @param  __c  The @a denominator parameter.
722*e4b17023SJohn Marino      *   @param  __x  The argument of the confluent hypergeometric function.
723*e4b17023SJohn Marino      *   @return  The confluent hypergeometric function.
724*e4b17023SJohn Marino      */
725*e4b17023SJohn Marino     template<typename _Tp>
726*e4b17023SJohn Marino     inline _Tp
__hyperg(const _Tp __a,const _Tp __b,const _Tp __c,const _Tp __x)727*e4b17023SJohn Marino     __hyperg(const _Tp __a, const _Tp __b, const _Tp __c, const _Tp __x)
728*e4b17023SJohn Marino     {
729*e4b17023SJohn Marino #if _GLIBCXX_USE_C99_MATH_TR1
730*e4b17023SJohn Marino       const _Tp __a_nint = std::tr1::nearbyint(__a);
731*e4b17023SJohn Marino       const _Tp __b_nint = std::tr1::nearbyint(__b);
732*e4b17023SJohn Marino       const _Tp __c_nint = std::tr1::nearbyint(__c);
733*e4b17023SJohn Marino #else
734*e4b17023SJohn Marino       const _Tp __a_nint = static_cast<int>(__a + _Tp(0.5L));
735*e4b17023SJohn Marino       const _Tp __b_nint = static_cast<int>(__b + _Tp(0.5L));
736*e4b17023SJohn Marino       const _Tp __c_nint = static_cast<int>(__c + _Tp(0.5L));
737*e4b17023SJohn Marino #endif
738*e4b17023SJohn Marino       const _Tp __toler = _Tp(1000) * std::numeric_limits<_Tp>::epsilon();
739*e4b17023SJohn Marino       if (std::abs(__x) >= _Tp(1))
740*e4b17023SJohn Marino         std::__throw_domain_error(__N("Argument outside unit circle "
741*e4b17023SJohn Marino                                       "in __hyperg."));
742*e4b17023SJohn Marino       else if (__isnan(__a) || __isnan(__b)
743*e4b17023SJohn Marino             || __isnan(__c) || __isnan(__x))
744*e4b17023SJohn Marino         return std::numeric_limits<_Tp>::quiet_NaN();
745*e4b17023SJohn Marino       else if (__c_nint == __c && __c_nint <= _Tp(0))
746*e4b17023SJohn Marino         return std::numeric_limits<_Tp>::infinity();
747*e4b17023SJohn Marino       else if (std::abs(__c - __b) < __toler || std::abs(__c - __a) < __toler)
748*e4b17023SJohn Marino         return std::pow(_Tp(1) - __x, __c - __a - __b);
749*e4b17023SJohn Marino       else if (__a >= _Tp(0) && __b >= _Tp(0) && __c >= _Tp(0)
750*e4b17023SJohn Marino             && __x >= _Tp(0) && __x < _Tp(0.995L))
751*e4b17023SJohn Marino         return __hyperg_series(__a, __b, __c, __x);
752*e4b17023SJohn Marino       else if (std::abs(__a) < _Tp(10) && std::abs(__b) < _Tp(10))
753*e4b17023SJohn Marino         {
754*e4b17023SJohn Marino           //  For integer a and b the hypergeometric function is a
755*e4b17023SJohn Marino           //  finite polynomial.
756*e4b17023SJohn Marino           if (__a < _Tp(0)  &&  std::abs(__a - __a_nint) < __toler)
757*e4b17023SJohn Marino             return __hyperg_series(__a_nint, __b, __c, __x);
758*e4b17023SJohn Marino           else if (__b < _Tp(0)  &&  std::abs(__b - __b_nint) < __toler)
759*e4b17023SJohn Marino             return __hyperg_series(__a, __b_nint, __c, __x);
760*e4b17023SJohn Marino           else if (__x < -_Tp(0.25L))
761*e4b17023SJohn Marino             return __hyperg_luke(__a, __b, __c, __x);
762*e4b17023SJohn Marino           else if (__x < _Tp(0.5L))
763*e4b17023SJohn Marino             return __hyperg_series(__a, __b, __c, __x);
764*e4b17023SJohn Marino           else
765*e4b17023SJohn Marino             if (std::abs(__c) > _Tp(10))
766*e4b17023SJohn Marino               return __hyperg_series(__a, __b, __c, __x);
767*e4b17023SJohn Marino             else
768*e4b17023SJohn Marino               return __hyperg_reflect(__a, __b, __c, __x);
769*e4b17023SJohn Marino         }
770*e4b17023SJohn Marino       else
771*e4b17023SJohn Marino         return __hyperg_luke(__a, __b, __c, __x);
772*e4b17023SJohn Marino     }
773*e4b17023SJohn Marino 
774*e4b17023SJohn Marino   _GLIBCXX_END_NAMESPACE_VERSION
775*e4b17023SJohn Marino   } // namespace std::tr1::__detail
776*e4b17023SJohn Marino }
777*e4b17023SJohn Marino }
778*e4b17023SJohn Marino 
779*e4b17023SJohn Marino #endif // _GLIBCXX_TR1_HYPERGEOMETRIC_TCC
780