1*e4b17023SJohn Marino /* Data references and dependences detectors.
2*e4b17023SJohn Marino Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
3*e4b17023SJohn Marino Free Software Foundation, Inc.
4*e4b17023SJohn Marino Contributed by Sebastian Pop <pop@cri.ensmp.fr>
5*e4b17023SJohn Marino
6*e4b17023SJohn Marino This file is part of GCC.
7*e4b17023SJohn Marino
8*e4b17023SJohn Marino GCC is free software; you can redistribute it and/or modify it under
9*e4b17023SJohn Marino the terms of the GNU General Public License as published by the Free
10*e4b17023SJohn Marino Software Foundation; either version 3, or (at your option) any later
11*e4b17023SJohn Marino version.
12*e4b17023SJohn Marino
13*e4b17023SJohn Marino GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14*e4b17023SJohn Marino WARRANTY; without even the implied warranty of MERCHANTABILITY or
15*e4b17023SJohn Marino FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16*e4b17023SJohn Marino for more details.
17*e4b17023SJohn Marino
18*e4b17023SJohn Marino You should have received a copy of the GNU General Public License
19*e4b17023SJohn Marino along with GCC; see the file COPYING3. If not see
20*e4b17023SJohn Marino <http://www.gnu.org/licenses/>. */
21*e4b17023SJohn Marino
22*e4b17023SJohn Marino #ifndef GCC_TREE_DATA_REF_H
23*e4b17023SJohn Marino #define GCC_TREE_DATA_REF_H
24*e4b17023SJohn Marino
25*e4b17023SJohn Marino #include "graphds.h"
26*e4b17023SJohn Marino #include "omega.h"
27*e4b17023SJohn Marino #include "tree-chrec.h"
28*e4b17023SJohn Marino
29*e4b17023SJohn Marino /*
30*e4b17023SJohn Marino innermost_loop_behavior describes the evolution of the address of the memory
31*e4b17023SJohn Marino reference in the innermost enclosing loop. The address is expressed as
32*e4b17023SJohn Marino BASE + STEP * # of iteration, and base is further decomposed as the base
33*e4b17023SJohn Marino pointer (BASE_ADDRESS), loop invariant offset (OFFSET) and
34*e4b17023SJohn Marino constant offset (INIT). Examples, in loop nest
35*e4b17023SJohn Marino
36*e4b17023SJohn Marino for (i = 0; i < 100; i++)
37*e4b17023SJohn Marino for (j = 3; j < 100; j++)
38*e4b17023SJohn Marino
39*e4b17023SJohn Marino Example 1 Example 2
40*e4b17023SJohn Marino data-ref a[j].b[i][j] *(p + x + 16B + 4B * j)
41*e4b17023SJohn Marino
42*e4b17023SJohn Marino
43*e4b17023SJohn Marino innermost_loop_behavior
44*e4b17023SJohn Marino base_address &a p
45*e4b17023SJohn Marino offset i * D_i x
46*e4b17023SJohn Marino init 3 * D_j + offsetof (b) 28
47*e4b17023SJohn Marino step D_j 4
48*e4b17023SJohn Marino
49*e4b17023SJohn Marino */
50*e4b17023SJohn Marino struct innermost_loop_behavior
51*e4b17023SJohn Marino {
52*e4b17023SJohn Marino tree base_address;
53*e4b17023SJohn Marino tree offset;
54*e4b17023SJohn Marino tree init;
55*e4b17023SJohn Marino tree step;
56*e4b17023SJohn Marino
57*e4b17023SJohn Marino /* Alignment information. ALIGNED_TO is set to the largest power of two
58*e4b17023SJohn Marino that divides OFFSET. */
59*e4b17023SJohn Marino tree aligned_to;
60*e4b17023SJohn Marino };
61*e4b17023SJohn Marino
62*e4b17023SJohn Marino /* Describes the evolutions of indices of the memory reference. The indices
63*e4b17023SJohn Marino are indices of the ARRAY_REFs, indexes in artificial dimensions
64*e4b17023SJohn Marino added for member selection of records and the operands of MEM_REFs.
65*e4b17023SJohn Marino BASE_OBJECT is the part of the reference that is loop-invariant
66*e4b17023SJohn Marino (note that this reference does not have to cover the whole object
67*e4b17023SJohn Marino being accessed, in which case UNCONSTRAINED_BASE is set; hence it is
68*e4b17023SJohn Marino not recommended to use BASE_OBJECT in any code generation).
69*e4b17023SJohn Marino For the examples above,
70*e4b17023SJohn Marino
71*e4b17023SJohn Marino base_object: a *(p + x + 4B * j_0)
72*e4b17023SJohn Marino indices: {j_0, +, 1}_2 {16, +, 4}_2
73*e4b17023SJohn Marino 4
74*e4b17023SJohn Marino {i_0, +, 1}_1
75*e4b17023SJohn Marino {j_0, +, 1}_2
76*e4b17023SJohn Marino */
77*e4b17023SJohn Marino
78*e4b17023SJohn Marino struct indices
79*e4b17023SJohn Marino {
80*e4b17023SJohn Marino /* The object. */
81*e4b17023SJohn Marino tree base_object;
82*e4b17023SJohn Marino
83*e4b17023SJohn Marino /* A list of chrecs. Access functions of the indices. */
84*e4b17023SJohn Marino VEC(tree,heap) *access_fns;
85*e4b17023SJohn Marino
86*e4b17023SJohn Marino /* Whether BASE_OBJECT is an access representing the whole object
87*e4b17023SJohn Marino or whether the access could not be constrained. */
88*e4b17023SJohn Marino bool unconstrained_base;
89*e4b17023SJohn Marino };
90*e4b17023SJohn Marino
91*e4b17023SJohn Marino struct dr_alias
92*e4b17023SJohn Marino {
93*e4b17023SJohn Marino /* The alias information that should be used for new pointers to this
94*e4b17023SJohn Marino location. */
95*e4b17023SJohn Marino struct ptr_info_def *ptr_info;
96*e4b17023SJohn Marino };
97*e4b17023SJohn Marino
98*e4b17023SJohn Marino /* An integer vector. A vector formally consists of an element of a vector
99*e4b17023SJohn Marino space. A vector space is a set that is closed under vector addition
100*e4b17023SJohn Marino and scalar multiplication. In this vector space, an element is a list of
101*e4b17023SJohn Marino integers. */
102*e4b17023SJohn Marino typedef int *lambda_vector;
103*e4b17023SJohn Marino DEF_VEC_P(lambda_vector);
104*e4b17023SJohn Marino DEF_VEC_ALLOC_P(lambda_vector,heap);
105*e4b17023SJohn Marino DEF_VEC_ALLOC_P(lambda_vector,gc);
106*e4b17023SJohn Marino
107*e4b17023SJohn Marino /* An integer matrix. A matrix consists of m vectors of length n (IE
108*e4b17023SJohn Marino all vectors are the same length). */
109*e4b17023SJohn Marino typedef lambda_vector *lambda_matrix;
110*e4b17023SJohn Marino
111*e4b17023SJohn Marino /* Each vector of the access matrix represents a linear access
112*e4b17023SJohn Marino function for a subscript. First elements correspond to the
113*e4b17023SJohn Marino leftmost indices, ie. for a[i][j] the first vector corresponds to
114*e4b17023SJohn Marino the subscript in "i". The elements of a vector are relative to
115*e4b17023SJohn Marino the loop nests in which the data reference is considered,
116*e4b17023SJohn Marino i.e. the vector is relative to the SCoP that provides the context
117*e4b17023SJohn Marino in which this data reference occurs.
118*e4b17023SJohn Marino
119*e4b17023SJohn Marino For example, in
120*e4b17023SJohn Marino
121*e4b17023SJohn Marino | loop_1
122*e4b17023SJohn Marino | loop_2
123*e4b17023SJohn Marino | a[i+3][2*j+n-1]
124*e4b17023SJohn Marino
125*e4b17023SJohn Marino if "i" varies in loop_1 and "j" varies in loop_2, the access
126*e4b17023SJohn Marino matrix with respect to the loop nest {loop_1, loop_2} is:
127*e4b17023SJohn Marino
128*e4b17023SJohn Marino | loop_1 loop_2 param_n cst
129*e4b17023SJohn Marino | 1 0 0 3
130*e4b17023SJohn Marino | 0 2 1 -1
131*e4b17023SJohn Marino
132*e4b17023SJohn Marino whereas the access matrix with respect to loop_2 considers "i" as
133*e4b17023SJohn Marino a parameter:
134*e4b17023SJohn Marino
135*e4b17023SJohn Marino | loop_2 param_i param_n cst
136*e4b17023SJohn Marino | 0 1 0 3
137*e4b17023SJohn Marino | 2 0 1 -1
138*e4b17023SJohn Marino */
139*e4b17023SJohn Marino struct access_matrix
140*e4b17023SJohn Marino {
141*e4b17023SJohn Marino VEC (loop_p, heap) *loop_nest;
142*e4b17023SJohn Marino int nb_induction_vars;
143*e4b17023SJohn Marino VEC (tree, heap) *parameters;
144*e4b17023SJohn Marino VEC (lambda_vector, gc) *matrix;
145*e4b17023SJohn Marino };
146*e4b17023SJohn Marino
147*e4b17023SJohn Marino #define AM_LOOP_NEST(M) (M)->loop_nest
148*e4b17023SJohn Marino #define AM_NB_INDUCTION_VARS(M) (M)->nb_induction_vars
149*e4b17023SJohn Marino #define AM_PARAMETERS(M) (M)->parameters
150*e4b17023SJohn Marino #define AM_MATRIX(M) (M)->matrix
151*e4b17023SJohn Marino #define AM_NB_PARAMETERS(M) (VEC_length (tree, AM_PARAMETERS(M)))
152*e4b17023SJohn Marino #define AM_CONST_COLUMN_INDEX(M) (AM_NB_INDUCTION_VARS (M) + AM_NB_PARAMETERS (M))
153*e4b17023SJohn Marino #define AM_NB_COLUMNS(M) (AM_NB_INDUCTION_VARS (M) + AM_NB_PARAMETERS (M) + 1)
154*e4b17023SJohn Marino #define AM_GET_SUBSCRIPT_ACCESS_VECTOR(M, I) VEC_index (lambda_vector, AM_MATRIX (M), I)
155*e4b17023SJohn Marino #define AM_GET_ACCESS_MATRIX_ELEMENT(M, I, J) AM_GET_SUBSCRIPT_ACCESS_VECTOR (M, I)[J]
156*e4b17023SJohn Marino
157*e4b17023SJohn Marino /* Return the column in the access matrix of LOOP_NUM. */
158*e4b17023SJohn Marino
159*e4b17023SJohn Marino static inline int
am_vector_index_for_loop(struct access_matrix * access_matrix,int loop_num)160*e4b17023SJohn Marino am_vector_index_for_loop (struct access_matrix *access_matrix, int loop_num)
161*e4b17023SJohn Marino {
162*e4b17023SJohn Marino int i;
163*e4b17023SJohn Marino loop_p l;
164*e4b17023SJohn Marino
165*e4b17023SJohn Marino for (i = 0; VEC_iterate (loop_p, AM_LOOP_NEST (access_matrix), i, l); i++)
166*e4b17023SJohn Marino if (l->num == loop_num)
167*e4b17023SJohn Marino return i;
168*e4b17023SJohn Marino
169*e4b17023SJohn Marino gcc_unreachable();
170*e4b17023SJohn Marino }
171*e4b17023SJohn Marino
172*e4b17023SJohn Marino int access_matrix_get_index_for_parameter (tree, struct access_matrix *);
173*e4b17023SJohn Marino
174*e4b17023SJohn Marino struct data_reference
175*e4b17023SJohn Marino {
176*e4b17023SJohn Marino /* A pointer to the statement that contains this DR. */
177*e4b17023SJohn Marino gimple stmt;
178*e4b17023SJohn Marino
179*e4b17023SJohn Marino /* A pointer to the memory reference. */
180*e4b17023SJohn Marino tree ref;
181*e4b17023SJohn Marino
182*e4b17023SJohn Marino /* Auxiliary info specific to a pass. */
183*e4b17023SJohn Marino void *aux;
184*e4b17023SJohn Marino
185*e4b17023SJohn Marino /* True when the data reference is in RHS of a stmt. */
186*e4b17023SJohn Marino bool is_read;
187*e4b17023SJohn Marino
188*e4b17023SJohn Marino /* Behavior of the memory reference in the innermost loop. */
189*e4b17023SJohn Marino struct innermost_loop_behavior innermost;
190*e4b17023SJohn Marino
191*e4b17023SJohn Marino /* Subscripts of this data reference. */
192*e4b17023SJohn Marino struct indices indices;
193*e4b17023SJohn Marino
194*e4b17023SJohn Marino /* Alias information for the data reference. */
195*e4b17023SJohn Marino struct dr_alias alias;
196*e4b17023SJohn Marino
197*e4b17023SJohn Marino /* Matrix representation for the data access functions. */
198*e4b17023SJohn Marino struct access_matrix *access_matrix;
199*e4b17023SJohn Marino };
200*e4b17023SJohn Marino
201*e4b17023SJohn Marino #define DR_STMT(DR) (DR)->stmt
202*e4b17023SJohn Marino #define DR_REF(DR) (DR)->ref
203*e4b17023SJohn Marino #define DR_BASE_OBJECT(DR) (DR)->indices.base_object
204*e4b17023SJohn Marino #define DR_UNCONSTRAINED_BASE(DR) (DR)->indices.unconstrained_base
205*e4b17023SJohn Marino #define DR_ACCESS_FNS(DR) (DR)->indices.access_fns
206*e4b17023SJohn Marino #define DR_ACCESS_FN(DR, I) VEC_index (tree, DR_ACCESS_FNS (DR), I)
207*e4b17023SJohn Marino #define DR_NUM_DIMENSIONS(DR) VEC_length (tree, DR_ACCESS_FNS (DR))
208*e4b17023SJohn Marino #define DR_IS_READ(DR) (DR)->is_read
209*e4b17023SJohn Marino #define DR_IS_WRITE(DR) (!DR_IS_READ (DR))
210*e4b17023SJohn Marino #define DR_BASE_ADDRESS(DR) (DR)->innermost.base_address
211*e4b17023SJohn Marino #define DR_OFFSET(DR) (DR)->innermost.offset
212*e4b17023SJohn Marino #define DR_INIT(DR) (DR)->innermost.init
213*e4b17023SJohn Marino #define DR_STEP(DR) (DR)->innermost.step
214*e4b17023SJohn Marino #define DR_PTR_INFO(DR) (DR)->alias.ptr_info
215*e4b17023SJohn Marino #define DR_ALIGNED_TO(DR) (DR)->innermost.aligned_to
216*e4b17023SJohn Marino #define DR_ACCESS_MATRIX(DR) (DR)->access_matrix
217*e4b17023SJohn Marino
218*e4b17023SJohn Marino typedef struct data_reference *data_reference_p;
219*e4b17023SJohn Marino DEF_VEC_P(data_reference_p);
220*e4b17023SJohn Marino DEF_VEC_ALLOC_P (data_reference_p, heap);
221*e4b17023SJohn Marino
222*e4b17023SJohn Marino enum data_dependence_direction {
223*e4b17023SJohn Marino dir_positive,
224*e4b17023SJohn Marino dir_negative,
225*e4b17023SJohn Marino dir_equal,
226*e4b17023SJohn Marino dir_positive_or_negative,
227*e4b17023SJohn Marino dir_positive_or_equal,
228*e4b17023SJohn Marino dir_negative_or_equal,
229*e4b17023SJohn Marino dir_star,
230*e4b17023SJohn Marino dir_independent
231*e4b17023SJohn Marino };
232*e4b17023SJohn Marino
233*e4b17023SJohn Marino /* The description of the grid of iterations that overlap. At most
234*e4b17023SJohn Marino two loops are considered at the same time just now, hence at most
235*e4b17023SJohn Marino two functions are needed. For each of the functions, we store
236*e4b17023SJohn Marino the vector of coefficients, f[0] + x * f[1] + y * f[2] + ...,
237*e4b17023SJohn Marino where x, y, ... are variables. */
238*e4b17023SJohn Marino
239*e4b17023SJohn Marino #define MAX_DIM 2
240*e4b17023SJohn Marino
241*e4b17023SJohn Marino /* Special values of N. */
242*e4b17023SJohn Marino #define NO_DEPENDENCE 0
243*e4b17023SJohn Marino #define NOT_KNOWN (MAX_DIM + 1)
244*e4b17023SJohn Marino #define CF_NONTRIVIAL_P(CF) ((CF)->n != NO_DEPENDENCE && (CF)->n != NOT_KNOWN)
245*e4b17023SJohn Marino #define CF_NOT_KNOWN_P(CF) ((CF)->n == NOT_KNOWN)
246*e4b17023SJohn Marino #define CF_NO_DEPENDENCE_P(CF) ((CF)->n == NO_DEPENDENCE)
247*e4b17023SJohn Marino
248*e4b17023SJohn Marino typedef VEC (tree, heap) *affine_fn;
249*e4b17023SJohn Marino
250*e4b17023SJohn Marino typedef struct
251*e4b17023SJohn Marino {
252*e4b17023SJohn Marino unsigned n;
253*e4b17023SJohn Marino affine_fn fns[MAX_DIM];
254*e4b17023SJohn Marino } conflict_function;
255*e4b17023SJohn Marino
256*e4b17023SJohn Marino /* What is a subscript? Given two array accesses a subscript is the
257*e4b17023SJohn Marino tuple composed of the access functions for a given dimension.
258*e4b17023SJohn Marino Example: Given A[f1][f2][f3] and B[g1][g2][g3], there are three
259*e4b17023SJohn Marino subscripts: (f1, g1), (f2, g2), (f3, g3). These three subscripts
260*e4b17023SJohn Marino are stored in the data_dependence_relation structure under the form
261*e4b17023SJohn Marino of an array of subscripts. */
262*e4b17023SJohn Marino
263*e4b17023SJohn Marino struct subscript
264*e4b17023SJohn Marino {
265*e4b17023SJohn Marino /* A description of the iterations for which the elements are
266*e4b17023SJohn Marino accessed twice. */
267*e4b17023SJohn Marino conflict_function *conflicting_iterations_in_a;
268*e4b17023SJohn Marino conflict_function *conflicting_iterations_in_b;
269*e4b17023SJohn Marino
270*e4b17023SJohn Marino /* This field stores the information about the iteration domain
271*e4b17023SJohn Marino validity of the dependence relation. */
272*e4b17023SJohn Marino tree last_conflict;
273*e4b17023SJohn Marino
274*e4b17023SJohn Marino /* Distance from the iteration that access a conflicting element in
275*e4b17023SJohn Marino A to the iteration that access this same conflicting element in
276*e4b17023SJohn Marino B. The distance is a tree scalar expression, i.e. a constant or a
277*e4b17023SJohn Marino symbolic expression, but certainly not a chrec function. */
278*e4b17023SJohn Marino tree distance;
279*e4b17023SJohn Marino };
280*e4b17023SJohn Marino
281*e4b17023SJohn Marino typedef struct subscript *subscript_p;
282*e4b17023SJohn Marino DEF_VEC_P(subscript_p);
283*e4b17023SJohn Marino DEF_VEC_ALLOC_P (subscript_p, heap);
284*e4b17023SJohn Marino
285*e4b17023SJohn Marino #define SUB_CONFLICTS_IN_A(SUB) SUB->conflicting_iterations_in_a
286*e4b17023SJohn Marino #define SUB_CONFLICTS_IN_B(SUB) SUB->conflicting_iterations_in_b
287*e4b17023SJohn Marino #define SUB_LAST_CONFLICT(SUB) SUB->last_conflict
288*e4b17023SJohn Marino #define SUB_DISTANCE(SUB) SUB->distance
289*e4b17023SJohn Marino
290*e4b17023SJohn Marino /* A data_dependence_relation represents a relation between two
291*e4b17023SJohn Marino data_references A and B. */
292*e4b17023SJohn Marino
293*e4b17023SJohn Marino struct data_dependence_relation
294*e4b17023SJohn Marino {
295*e4b17023SJohn Marino
296*e4b17023SJohn Marino struct data_reference *a;
297*e4b17023SJohn Marino struct data_reference *b;
298*e4b17023SJohn Marino
299*e4b17023SJohn Marino /* A "yes/no/maybe" field for the dependence relation:
300*e4b17023SJohn Marino
301*e4b17023SJohn Marino - when "ARE_DEPENDENT == NULL_TREE", there exist a dependence
302*e4b17023SJohn Marino relation between A and B, and the description of this relation
303*e4b17023SJohn Marino is given in the SUBSCRIPTS array,
304*e4b17023SJohn Marino
305*e4b17023SJohn Marino - when "ARE_DEPENDENT == chrec_known", there is no dependence and
306*e4b17023SJohn Marino SUBSCRIPTS is empty,
307*e4b17023SJohn Marino
308*e4b17023SJohn Marino - when "ARE_DEPENDENT == chrec_dont_know", there may be a dependence,
309*e4b17023SJohn Marino but the analyzer cannot be more specific. */
310*e4b17023SJohn Marino tree are_dependent;
311*e4b17023SJohn Marino
312*e4b17023SJohn Marino /* For each subscript in the dependence test, there is an element in
313*e4b17023SJohn Marino this array. This is the attribute that labels the edge A->B of
314*e4b17023SJohn Marino the data_dependence_relation. */
315*e4b17023SJohn Marino VEC (subscript_p, heap) *subscripts;
316*e4b17023SJohn Marino
317*e4b17023SJohn Marino /* The analyzed loop nest. */
318*e4b17023SJohn Marino VEC (loop_p, heap) *loop_nest;
319*e4b17023SJohn Marino
320*e4b17023SJohn Marino /* The classic direction vector. */
321*e4b17023SJohn Marino VEC (lambda_vector, heap) *dir_vects;
322*e4b17023SJohn Marino
323*e4b17023SJohn Marino /* The classic distance vector. */
324*e4b17023SJohn Marino VEC (lambda_vector, heap) *dist_vects;
325*e4b17023SJohn Marino
326*e4b17023SJohn Marino /* An index in loop_nest for the innermost loop that varies for
327*e4b17023SJohn Marino this data dependence relation. */
328*e4b17023SJohn Marino unsigned inner_loop;
329*e4b17023SJohn Marino
330*e4b17023SJohn Marino /* Is the dependence reversed with respect to the lexicographic order? */
331*e4b17023SJohn Marino bool reversed_p;
332*e4b17023SJohn Marino
333*e4b17023SJohn Marino /* When the dependence relation is affine, it can be represented by
334*e4b17023SJohn Marino a distance vector. */
335*e4b17023SJohn Marino bool affine_p;
336*e4b17023SJohn Marino
337*e4b17023SJohn Marino /* Set to true when the dependence relation is on the same data
338*e4b17023SJohn Marino access. */
339*e4b17023SJohn Marino bool self_reference_p;
340*e4b17023SJohn Marino };
341*e4b17023SJohn Marino
342*e4b17023SJohn Marino typedef struct data_dependence_relation *ddr_p;
343*e4b17023SJohn Marino DEF_VEC_P(ddr_p);
344*e4b17023SJohn Marino DEF_VEC_ALLOC_P(ddr_p,heap);
345*e4b17023SJohn Marino
346*e4b17023SJohn Marino #define DDR_A(DDR) DDR->a
347*e4b17023SJohn Marino #define DDR_B(DDR) DDR->b
348*e4b17023SJohn Marino #define DDR_AFFINE_P(DDR) DDR->affine_p
349*e4b17023SJohn Marino #define DDR_ARE_DEPENDENT(DDR) DDR->are_dependent
350*e4b17023SJohn Marino #define DDR_SUBSCRIPTS(DDR) DDR->subscripts
351*e4b17023SJohn Marino #define DDR_SUBSCRIPT(DDR, I) VEC_index (subscript_p, DDR_SUBSCRIPTS (DDR), I)
352*e4b17023SJohn Marino #define DDR_NUM_SUBSCRIPTS(DDR) VEC_length (subscript_p, DDR_SUBSCRIPTS (DDR))
353*e4b17023SJohn Marino
354*e4b17023SJohn Marino #define DDR_LOOP_NEST(DDR) DDR->loop_nest
355*e4b17023SJohn Marino /* The size of the direction/distance vectors: the number of loops in
356*e4b17023SJohn Marino the loop nest. */
357*e4b17023SJohn Marino #define DDR_NB_LOOPS(DDR) (VEC_length (loop_p, DDR_LOOP_NEST (DDR)))
358*e4b17023SJohn Marino #define DDR_INNER_LOOP(DDR) DDR->inner_loop
359*e4b17023SJohn Marino #define DDR_SELF_REFERENCE(DDR) DDR->self_reference_p
360*e4b17023SJohn Marino
361*e4b17023SJohn Marino #define DDR_DIST_VECTS(DDR) ((DDR)->dist_vects)
362*e4b17023SJohn Marino #define DDR_DIR_VECTS(DDR) ((DDR)->dir_vects)
363*e4b17023SJohn Marino #define DDR_NUM_DIST_VECTS(DDR) \
364*e4b17023SJohn Marino (VEC_length (lambda_vector, DDR_DIST_VECTS (DDR)))
365*e4b17023SJohn Marino #define DDR_NUM_DIR_VECTS(DDR) \
366*e4b17023SJohn Marino (VEC_length (lambda_vector, DDR_DIR_VECTS (DDR)))
367*e4b17023SJohn Marino #define DDR_DIR_VECT(DDR, I) \
368*e4b17023SJohn Marino VEC_index (lambda_vector, DDR_DIR_VECTS (DDR), I)
369*e4b17023SJohn Marino #define DDR_DIST_VECT(DDR, I) \
370*e4b17023SJohn Marino VEC_index (lambda_vector, DDR_DIST_VECTS (DDR), I)
371*e4b17023SJohn Marino #define DDR_REVERSED_P(DDR) DDR->reversed_p
372*e4b17023SJohn Marino
373*e4b17023SJohn Marino
374*e4b17023SJohn Marino
375*e4b17023SJohn Marino /* Describes a location of a memory reference. */
376*e4b17023SJohn Marino
377*e4b17023SJohn Marino typedef struct data_ref_loc_d
378*e4b17023SJohn Marino {
379*e4b17023SJohn Marino /* Position of the memory reference. */
380*e4b17023SJohn Marino tree *pos;
381*e4b17023SJohn Marino
382*e4b17023SJohn Marino /* True if the memory reference is read. */
383*e4b17023SJohn Marino bool is_read;
384*e4b17023SJohn Marino } data_ref_loc;
385*e4b17023SJohn Marino
386*e4b17023SJohn Marino DEF_VEC_O (data_ref_loc);
387*e4b17023SJohn Marino DEF_VEC_ALLOC_O (data_ref_loc, heap);
388*e4b17023SJohn Marino
389*e4b17023SJohn Marino bool get_references_in_stmt (gimple, VEC (data_ref_loc, heap) **);
390*e4b17023SJohn Marino bool dr_analyze_innermost (struct data_reference *, struct loop *);
391*e4b17023SJohn Marino extern bool compute_data_dependences_for_loop (struct loop *, bool,
392*e4b17023SJohn Marino VEC (loop_p, heap) **,
393*e4b17023SJohn Marino VEC (data_reference_p, heap) **,
394*e4b17023SJohn Marino VEC (ddr_p, heap) **);
395*e4b17023SJohn Marino extern bool compute_data_dependences_for_bb (basic_block, bool,
396*e4b17023SJohn Marino VEC (data_reference_p, heap) **,
397*e4b17023SJohn Marino VEC (ddr_p, heap) **);
398*e4b17023SJohn Marino extern void print_direction_vector (FILE *, lambda_vector, int);
399*e4b17023SJohn Marino extern void print_dir_vectors (FILE *, VEC (lambda_vector, heap) *, int);
400*e4b17023SJohn Marino extern void print_dist_vectors (FILE *, VEC (lambda_vector, heap) *, int);
401*e4b17023SJohn Marino extern void dump_subscript (FILE *, struct subscript *);
402*e4b17023SJohn Marino extern void dump_ddrs (FILE *, VEC (ddr_p, heap) *);
403*e4b17023SJohn Marino extern void dump_dist_dir_vectors (FILE *, VEC (ddr_p, heap) *);
404*e4b17023SJohn Marino extern void dump_data_reference (FILE *, struct data_reference *);
405*e4b17023SJohn Marino extern void debug_data_reference (struct data_reference *);
406*e4b17023SJohn Marino extern void dump_data_references (FILE *, VEC (data_reference_p, heap) *);
407*e4b17023SJohn Marino extern void debug_data_references (VEC (data_reference_p, heap) *);
408*e4b17023SJohn Marino extern void debug_data_dependence_relation (struct data_dependence_relation *);
409*e4b17023SJohn Marino extern void dump_data_dependence_relation (FILE *,
410*e4b17023SJohn Marino struct data_dependence_relation *);
411*e4b17023SJohn Marino extern void dump_data_dependence_relations (FILE *, VEC (ddr_p, heap) *);
412*e4b17023SJohn Marino extern void debug_data_dependence_relations (VEC (ddr_p, heap) *);
413*e4b17023SJohn Marino extern void dump_data_dependence_direction (FILE *,
414*e4b17023SJohn Marino enum data_dependence_direction);
415*e4b17023SJohn Marino extern void free_dependence_relation (struct data_dependence_relation *);
416*e4b17023SJohn Marino extern void free_dependence_relations (VEC (ddr_p, heap) *);
417*e4b17023SJohn Marino extern void free_data_ref (data_reference_p);
418*e4b17023SJohn Marino extern void free_data_refs (VEC (data_reference_p, heap) *);
419*e4b17023SJohn Marino extern bool find_data_references_in_stmt (struct loop *, gimple,
420*e4b17023SJohn Marino VEC (data_reference_p, heap) **);
421*e4b17023SJohn Marino extern bool graphite_find_data_references_in_stmt (loop_p, loop_p, gimple,
422*e4b17023SJohn Marino VEC (data_reference_p, heap) **);
423*e4b17023SJohn Marino struct data_reference *create_data_ref (loop_p, loop_p, tree, gimple, bool);
424*e4b17023SJohn Marino extern bool find_loop_nest (struct loop *, VEC (loop_p, heap) **);
425*e4b17023SJohn Marino extern struct data_dependence_relation *initialize_data_dependence_relation
426*e4b17023SJohn Marino (struct data_reference *, struct data_reference *, VEC (loop_p, heap) *);
427*e4b17023SJohn Marino extern void compute_self_dependence (struct data_dependence_relation *);
428*e4b17023SJohn Marino extern bool compute_all_dependences (VEC (data_reference_p, heap) *,
429*e4b17023SJohn Marino VEC (ddr_p, heap) **, VEC (loop_p, heap) *,
430*e4b17023SJohn Marino bool);
431*e4b17023SJohn Marino extern tree find_data_references_in_bb (struct loop *, basic_block,
432*e4b17023SJohn Marino VEC (data_reference_p, heap) **);
433*e4b17023SJohn Marino
434*e4b17023SJohn Marino extern void create_rdg_vertices (struct graph *, VEC (gimple, heap) *);
435*e4b17023SJohn Marino extern bool dr_may_alias_p (const struct data_reference *,
436*e4b17023SJohn Marino const struct data_reference *, bool);
437*e4b17023SJohn Marino extern bool dr_equal_offsets_p (struct data_reference *,
438*e4b17023SJohn Marino struct data_reference *);
439*e4b17023SJohn Marino
440*e4b17023SJohn Marino
441*e4b17023SJohn Marino /* Return true when the base objects of data references A and B are
442*e4b17023SJohn Marino the same memory object. */
443*e4b17023SJohn Marino
444*e4b17023SJohn Marino static inline bool
same_data_refs_base_objects(data_reference_p a,data_reference_p b)445*e4b17023SJohn Marino same_data_refs_base_objects (data_reference_p a, data_reference_p b)
446*e4b17023SJohn Marino {
447*e4b17023SJohn Marino return DR_NUM_DIMENSIONS (a) == DR_NUM_DIMENSIONS (b)
448*e4b17023SJohn Marino && operand_equal_p (DR_BASE_OBJECT (a), DR_BASE_OBJECT (b), 0);
449*e4b17023SJohn Marino }
450*e4b17023SJohn Marino
451*e4b17023SJohn Marino /* Return true when the data references A and B are accessing the same
452*e4b17023SJohn Marino memory object with the same access functions. */
453*e4b17023SJohn Marino
454*e4b17023SJohn Marino static inline bool
same_data_refs(data_reference_p a,data_reference_p b)455*e4b17023SJohn Marino same_data_refs (data_reference_p a, data_reference_p b)
456*e4b17023SJohn Marino {
457*e4b17023SJohn Marino unsigned int i;
458*e4b17023SJohn Marino
459*e4b17023SJohn Marino /* The references are exactly the same. */
460*e4b17023SJohn Marino if (operand_equal_p (DR_REF (a), DR_REF (b), 0))
461*e4b17023SJohn Marino return true;
462*e4b17023SJohn Marino
463*e4b17023SJohn Marino if (!same_data_refs_base_objects (a, b))
464*e4b17023SJohn Marino return false;
465*e4b17023SJohn Marino
466*e4b17023SJohn Marino for (i = 0; i < DR_NUM_DIMENSIONS (a); i++)
467*e4b17023SJohn Marino if (!eq_evolutions_p (DR_ACCESS_FN (a, i), DR_ACCESS_FN (b, i)))
468*e4b17023SJohn Marino return false;
469*e4b17023SJohn Marino
470*e4b17023SJohn Marino return true;
471*e4b17023SJohn Marino }
472*e4b17023SJohn Marino
473*e4b17023SJohn Marino /* Return true when the DDR contains two data references that have the
474*e4b17023SJohn Marino same access functions. */
475*e4b17023SJohn Marino
476*e4b17023SJohn Marino static inline bool
same_access_functions(const struct data_dependence_relation * ddr)477*e4b17023SJohn Marino same_access_functions (const struct data_dependence_relation *ddr)
478*e4b17023SJohn Marino {
479*e4b17023SJohn Marino unsigned i;
480*e4b17023SJohn Marino
481*e4b17023SJohn Marino for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
482*e4b17023SJohn Marino if (!eq_evolutions_p (DR_ACCESS_FN (DDR_A (ddr), i),
483*e4b17023SJohn Marino DR_ACCESS_FN (DDR_B (ddr), i)))
484*e4b17023SJohn Marino return false;
485*e4b17023SJohn Marino
486*e4b17023SJohn Marino return true;
487*e4b17023SJohn Marino }
488*e4b17023SJohn Marino
489*e4b17023SJohn Marino /* Return true when DDR is an anti-dependence relation. */
490*e4b17023SJohn Marino
491*e4b17023SJohn Marino static inline bool
ddr_is_anti_dependent(ddr_p ddr)492*e4b17023SJohn Marino ddr_is_anti_dependent (ddr_p ddr)
493*e4b17023SJohn Marino {
494*e4b17023SJohn Marino return (DDR_ARE_DEPENDENT (ddr) == NULL_TREE
495*e4b17023SJohn Marino && DR_IS_READ (DDR_A (ddr))
496*e4b17023SJohn Marino && DR_IS_WRITE (DDR_B (ddr))
497*e4b17023SJohn Marino && !same_access_functions (ddr));
498*e4b17023SJohn Marino }
499*e4b17023SJohn Marino
500*e4b17023SJohn Marino /* Return true when DEPENDENCE_RELATIONS contains an anti-dependence. */
501*e4b17023SJohn Marino
502*e4b17023SJohn Marino static inline bool
ddrs_have_anti_deps(VEC (ddr_p,heap)* dependence_relations)503*e4b17023SJohn Marino ddrs_have_anti_deps (VEC (ddr_p, heap) *dependence_relations)
504*e4b17023SJohn Marino {
505*e4b17023SJohn Marino unsigned i;
506*e4b17023SJohn Marino ddr_p ddr;
507*e4b17023SJohn Marino
508*e4b17023SJohn Marino for (i = 0; VEC_iterate (ddr_p, dependence_relations, i, ddr); i++)
509*e4b17023SJohn Marino if (ddr_is_anti_dependent (ddr))
510*e4b17023SJohn Marino return true;
511*e4b17023SJohn Marino
512*e4b17023SJohn Marino return false;
513*e4b17023SJohn Marino }
514*e4b17023SJohn Marino
515*e4b17023SJohn Marino /* Returns the dependence level for a vector DIST of size LENGTH.
516*e4b17023SJohn Marino LEVEL = 0 means a lexicographic dependence, i.e. a dependence due
517*e4b17023SJohn Marino to the sequence of statements, not carried by any loop. */
518*e4b17023SJohn Marino
519*e4b17023SJohn Marino static inline unsigned
dependence_level(lambda_vector dist_vect,int length)520*e4b17023SJohn Marino dependence_level (lambda_vector dist_vect, int length)
521*e4b17023SJohn Marino {
522*e4b17023SJohn Marino int i;
523*e4b17023SJohn Marino
524*e4b17023SJohn Marino for (i = 0; i < length; i++)
525*e4b17023SJohn Marino if (dist_vect[i] != 0)
526*e4b17023SJohn Marino return i + 1;
527*e4b17023SJohn Marino
528*e4b17023SJohn Marino return 0;
529*e4b17023SJohn Marino }
530*e4b17023SJohn Marino
531*e4b17023SJohn Marino /* Return the dependence level for the DDR relation. */
532*e4b17023SJohn Marino
533*e4b17023SJohn Marino static inline unsigned
ddr_dependence_level(ddr_p ddr)534*e4b17023SJohn Marino ddr_dependence_level (ddr_p ddr)
535*e4b17023SJohn Marino {
536*e4b17023SJohn Marino unsigned vector;
537*e4b17023SJohn Marino unsigned level = 0;
538*e4b17023SJohn Marino
539*e4b17023SJohn Marino if (DDR_DIST_VECTS (ddr))
540*e4b17023SJohn Marino level = dependence_level (DDR_DIST_VECT (ddr, 0), DDR_NB_LOOPS (ddr));
541*e4b17023SJohn Marino
542*e4b17023SJohn Marino for (vector = 1; vector < DDR_NUM_DIST_VECTS (ddr); vector++)
543*e4b17023SJohn Marino level = MIN (level, dependence_level (DDR_DIST_VECT (ddr, vector),
544*e4b17023SJohn Marino DDR_NB_LOOPS (ddr)));
545*e4b17023SJohn Marino return level;
546*e4b17023SJohn Marino }
547*e4b17023SJohn Marino
548*e4b17023SJohn Marino
549*e4b17023SJohn Marino
550*e4b17023SJohn Marino /* A Reduced Dependence Graph (RDG) vertex representing a statement. */
551*e4b17023SJohn Marino typedef struct rdg_vertex
552*e4b17023SJohn Marino {
553*e4b17023SJohn Marino /* The statement represented by this vertex. */
554*e4b17023SJohn Marino gimple stmt;
555*e4b17023SJohn Marino
556*e4b17023SJohn Marino /* True when the statement contains a write to memory. */
557*e4b17023SJohn Marino bool has_mem_write;
558*e4b17023SJohn Marino
559*e4b17023SJohn Marino /* True when the statement contains a read from memory. */
560*e4b17023SJohn Marino bool has_mem_reads;
561*e4b17023SJohn Marino } *rdg_vertex_p;
562*e4b17023SJohn Marino
563*e4b17023SJohn Marino #define RDGV_STMT(V) ((struct rdg_vertex *) ((V)->data))->stmt
564*e4b17023SJohn Marino #define RDGV_HAS_MEM_WRITE(V) ((struct rdg_vertex *) ((V)->data))->has_mem_write
565*e4b17023SJohn Marino #define RDGV_HAS_MEM_READS(V) ((struct rdg_vertex *) ((V)->data))->has_mem_reads
566*e4b17023SJohn Marino #define RDG_STMT(RDG, I) RDGV_STMT (&(RDG->vertices[I]))
567*e4b17023SJohn Marino #define RDG_MEM_WRITE_STMT(RDG, I) RDGV_HAS_MEM_WRITE (&(RDG->vertices[I]))
568*e4b17023SJohn Marino #define RDG_MEM_READS_STMT(RDG, I) RDGV_HAS_MEM_READS (&(RDG->vertices[I]))
569*e4b17023SJohn Marino
570*e4b17023SJohn Marino void dump_rdg_vertex (FILE *, struct graph *, int);
571*e4b17023SJohn Marino void debug_rdg_vertex (struct graph *, int);
572*e4b17023SJohn Marino void dump_rdg_component (FILE *, struct graph *, int, bitmap);
573*e4b17023SJohn Marino void debug_rdg_component (struct graph *, int);
574*e4b17023SJohn Marino void dump_rdg (FILE *, struct graph *);
575*e4b17023SJohn Marino void debug_rdg (struct graph *);
576*e4b17023SJohn Marino int rdg_vertex_for_stmt (struct graph *, gimple);
577*e4b17023SJohn Marino
578*e4b17023SJohn Marino /* Data dependence type. */
579*e4b17023SJohn Marino
580*e4b17023SJohn Marino enum rdg_dep_type
581*e4b17023SJohn Marino {
582*e4b17023SJohn Marino /* Read After Write (RAW). */
583*e4b17023SJohn Marino flow_dd = 'f',
584*e4b17023SJohn Marino
585*e4b17023SJohn Marino /* Write After Read (WAR). */
586*e4b17023SJohn Marino anti_dd = 'a',
587*e4b17023SJohn Marino
588*e4b17023SJohn Marino /* Write After Write (WAW). */
589*e4b17023SJohn Marino output_dd = 'o',
590*e4b17023SJohn Marino
591*e4b17023SJohn Marino /* Read After Read (RAR). */
592*e4b17023SJohn Marino input_dd = 'i'
593*e4b17023SJohn Marino };
594*e4b17023SJohn Marino
595*e4b17023SJohn Marino /* Dependence information attached to an edge of the RDG. */
596*e4b17023SJohn Marino
597*e4b17023SJohn Marino typedef struct rdg_edge
598*e4b17023SJohn Marino {
599*e4b17023SJohn Marino /* Type of the dependence. */
600*e4b17023SJohn Marino enum rdg_dep_type type;
601*e4b17023SJohn Marino
602*e4b17023SJohn Marino /* Levels of the dependence: the depth of the loops that carry the
603*e4b17023SJohn Marino dependence. */
604*e4b17023SJohn Marino unsigned level;
605*e4b17023SJohn Marino
606*e4b17023SJohn Marino /* Dependence relation between data dependences, NULL when one of
607*e4b17023SJohn Marino the vertices is a scalar. */
608*e4b17023SJohn Marino ddr_p relation;
609*e4b17023SJohn Marino } *rdg_edge_p;
610*e4b17023SJohn Marino
611*e4b17023SJohn Marino #define RDGE_TYPE(E) ((struct rdg_edge *) ((E)->data))->type
612*e4b17023SJohn Marino #define RDGE_LEVEL(E) ((struct rdg_edge *) ((E)->data))->level
613*e4b17023SJohn Marino #define RDGE_RELATION(E) ((struct rdg_edge *) ((E)->data))->relation
614*e4b17023SJohn Marino
615*e4b17023SJohn Marino struct graph *build_rdg (struct loop *,
616*e4b17023SJohn Marino VEC (loop_p, heap) **,
617*e4b17023SJohn Marino VEC (ddr_p, heap) **,
618*e4b17023SJohn Marino VEC (data_reference_p, heap) **);
619*e4b17023SJohn Marino struct graph *build_empty_rdg (int);
620*e4b17023SJohn Marino void free_rdg (struct graph *);
621*e4b17023SJohn Marino
622*e4b17023SJohn Marino /* Return the index of the variable VAR in the LOOP_NEST array. */
623*e4b17023SJohn Marino
624*e4b17023SJohn Marino static inline int
index_in_loop_nest(int var,VEC (loop_p,heap)* loop_nest)625*e4b17023SJohn Marino index_in_loop_nest (int var, VEC (loop_p, heap) *loop_nest)
626*e4b17023SJohn Marino {
627*e4b17023SJohn Marino struct loop *loopi;
628*e4b17023SJohn Marino int var_index;
629*e4b17023SJohn Marino
630*e4b17023SJohn Marino for (var_index = 0; VEC_iterate (loop_p, loop_nest, var_index, loopi);
631*e4b17023SJohn Marino var_index++)
632*e4b17023SJohn Marino if (loopi->num == var)
633*e4b17023SJohn Marino break;
634*e4b17023SJohn Marino
635*e4b17023SJohn Marino return var_index;
636*e4b17023SJohn Marino }
637*e4b17023SJohn Marino
638*e4b17023SJohn Marino void stores_from_loop (struct loop *, VEC (gimple, heap) **);
639*e4b17023SJohn Marino void stores_zero_from_loop (struct loop *, VEC (gimple, heap) **);
640*e4b17023SJohn Marino void remove_similar_memory_refs (VEC (gimple, heap) **);
641*e4b17023SJohn Marino bool rdg_defs_used_in_other_loops_p (struct graph *, int);
642*e4b17023SJohn Marino bool have_similar_memory_accesses (gimple, gimple);
643*e4b17023SJohn Marino bool stmt_with_adjacent_zero_store_dr_p (gimple);
644*e4b17023SJohn Marino
645*e4b17023SJohn Marino /* Returns true when STRIDE is equal in absolute value to the size of
646*e4b17023SJohn Marino the unit type of TYPE. */
647*e4b17023SJohn Marino
648*e4b17023SJohn Marino static inline bool
stride_of_unit_type_p(tree stride,tree type)649*e4b17023SJohn Marino stride_of_unit_type_p (tree stride, tree type)
650*e4b17023SJohn Marino {
651*e4b17023SJohn Marino return tree_int_cst_equal (fold_unary (ABS_EXPR, TREE_TYPE (stride),
652*e4b17023SJohn Marino stride),
653*e4b17023SJohn Marino TYPE_SIZE_UNIT (type));
654*e4b17023SJohn Marino }
655*e4b17023SJohn Marino
656*e4b17023SJohn Marino /* Determines whether RDG vertices V1 and V2 access to similar memory
657*e4b17023SJohn Marino locations, in which case they have to be in the same partition. */
658*e4b17023SJohn Marino
659*e4b17023SJohn Marino static inline bool
rdg_has_similar_memory_accesses(struct graph * rdg,int v1,int v2)660*e4b17023SJohn Marino rdg_has_similar_memory_accesses (struct graph *rdg, int v1, int v2)
661*e4b17023SJohn Marino {
662*e4b17023SJohn Marino return have_similar_memory_accesses (RDG_STMT (rdg, v1),
663*e4b17023SJohn Marino RDG_STMT (rdg, v2));
664*e4b17023SJohn Marino }
665*e4b17023SJohn Marino
666*e4b17023SJohn Marino /* In tree-data-ref.c */
667*e4b17023SJohn Marino void split_constant_offset (tree , tree *, tree *);
668*e4b17023SJohn Marino
669*e4b17023SJohn Marino /* Strongly connected components of the reduced data dependence graph. */
670*e4b17023SJohn Marino
671*e4b17023SJohn Marino typedef struct rdg_component
672*e4b17023SJohn Marino {
673*e4b17023SJohn Marino int num;
674*e4b17023SJohn Marino VEC (int, heap) *vertices;
675*e4b17023SJohn Marino } *rdgc;
676*e4b17023SJohn Marino
677*e4b17023SJohn Marino DEF_VEC_P (rdgc);
678*e4b17023SJohn Marino DEF_VEC_ALLOC_P (rdgc, heap);
679*e4b17023SJohn Marino
680*e4b17023SJohn Marino DEF_VEC_P (bitmap);
681*e4b17023SJohn Marino DEF_VEC_ALLOC_P (bitmap, heap);
682*e4b17023SJohn Marino
683*e4b17023SJohn Marino /* Compute the greatest common divisor of a VECTOR of SIZE numbers. */
684*e4b17023SJohn Marino
685*e4b17023SJohn Marino static inline int
lambda_vector_gcd(lambda_vector vector,int size)686*e4b17023SJohn Marino lambda_vector_gcd (lambda_vector vector, int size)
687*e4b17023SJohn Marino {
688*e4b17023SJohn Marino int i;
689*e4b17023SJohn Marino int gcd1 = 0;
690*e4b17023SJohn Marino
691*e4b17023SJohn Marino if (size > 0)
692*e4b17023SJohn Marino {
693*e4b17023SJohn Marino gcd1 = vector[0];
694*e4b17023SJohn Marino for (i = 1; i < size; i++)
695*e4b17023SJohn Marino gcd1 = gcd (gcd1, vector[i]);
696*e4b17023SJohn Marino }
697*e4b17023SJohn Marino return gcd1;
698*e4b17023SJohn Marino }
699*e4b17023SJohn Marino
700*e4b17023SJohn Marino /* Allocate a new vector of given SIZE. */
701*e4b17023SJohn Marino
702*e4b17023SJohn Marino static inline lambda_vector
lambda_vector_new(int size)703*e4b17023SJohn Marino lambda_vector_new (int size)
704*e4b17023SJohn Marino {
705*e4b17023SJohn Marino return (lambda_vector) ggc_alloc_cleared_atomic (sizeof (int) * size);
706*e4b17023SJohn Marino }
707*e4b17023SJohn Marino
708*e4b17023SJohn Marino /* Clear out vector VEC1 of length SIZE. */
709*e4b17023SJohn Marino
710*e4b17023SJohn Marino static inline void
lambda_vector_clear(lambda_vector vec1,int size)711*e4b17023SJohn Marino lambda_vector_clear (lambda_vector vec1, int size)
712*e4b17023SJohn Marino {
713*e4b17023SJohn Marino memset (vec1, 0, size * sizeof (*vec1));
714*e4b17023SJohn Marino }
715*e4b17023SJohn Marino
716*e4b17023SJohn Marino /* Returns true when the vector V is lexicographically positive, in
717*e4b17023SJohn Marino other words, when the first nonzero element is positive. */
718*e4b17023SJohn Marino
719*e4b17023SJohn Marino static inline bool
lambda_vector_lexico_pos(lambda_vector v,unsigned n)720*e4b17023SJohn Marino lambda_vector_lexico_pos (lambda_vector v,
721*e4b17023SJohn Marino unsigned n)
722*e4b17023SJohn Marino {
723*e4b17023SJohn Marino unsigned i;
724*e4b17023SJohn Marino for (i = 0; i < n; i++)
725*e4b17023SJohn Marino {
726*e4b17023SJohn Marino if (v[i] == 0)
727*e4b17023SJohn Marino continue;
728*e4b17023SJohn Marino if (v[i] < 0)
729*e4b17023SJohn Marino return false;
730*e4b17023SJohn Marino if (v[i] > 0)
731*e4b17023SJohn Marino return true;
732*e4b17023SJohn Marino }
733*e4b17023SJohn Marino return true;
734*e4b17023SJohn Marino }
735*e4b17023SJohn Marino
736*e4b17023SJohn Marino /* Return true if vector VEC1 of length SIZE is the zero vector. */
737*e4b17023SJohn Marino
738*e4b17023SJohn Marino static inline bool
lambda_vector_zerop(lambda_vector vec1,int size)739*e4b17023SJohn Marino lambda_vector_zerop (lambda_vector vec1, int size)
740*e4b17023SJohn Marino {
741*e4b17023SJohn Marino int i;
742*e4b17023SJohn Marino for (i = 0; i < size; i++)
743*e4b17023SJohn Marino if (vec1[i] != 0)
744*e4b17023SJohn Marino return false;
745*e4b17023SJohn Marino return true;
746*e4b17023SJohn Marino }
747*e4b17023SJohn Marino
748*e4b17023SJohn Marino /* Allocate a matrix of M rows x N cols. */
749*e4b17023SJohn Marino
750*e4b17023SJohn Marino static inline lambda_matrix
lambda_matrix_new(int m,int n,struct obstack * lambda_obstack)751*e4b17023SJohn Marino lambda_matrix_new (int m, int n, struct obstack *lambda_obstack)
752*e4b17023SJohn Marino {
753*e4b17023SJohn Marino lambda_matrix mat;
754*e4b17023SJohn Marino int i;
755*e4b17023SJohn Marino
756*e4b17023SJohn Marino mat = (lambda_matrix) obstack_alloc (lambda_obstack,
757*e4b17023SJohn Marino sizeof (lambda_vector *) * m);
758*e4b17023SJohn Marino
759*e4b17023SJohn Marino for (i = 0; i < m; i++)
760*e4b17023SJohn Marino mat[i] = lambda_vector_new (n);
761*e4b17023SJohn Marino
762*e4b17023SJohn Marino return mat;
763*e4b17023SJohn Marino }
764*e4b17023SJohn Marino
765*e4b17023SJohn Marino #endif /* GCC_TREE_DATA_REF_H */
766