xref: /dflybsd-src/contrib/gcc-4.7/gcc/tree-data-ref.h (revision 04febcfb30580676d3e95f58a16c5137ee478b32)
1*e4b17023SJohn Marino /* Data references and dependences detectors.
2*e4b17023SJohn Marino    Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
3*e4b17023SJohn Marino    Free Software Foundation, Inc.
4*e4b17023SJohn Marino    Contributed by Sebastian Pop <pop@cri.ensmp.fr>
5*e4b17023SJohn Marino 
6*e4b17023SJohn Marino This file is part of GCC.
7*e4b17023SJohn Marino 
8*e4b17023SJohn Marino GCC is free software; you can redistribute it and/or modify it under
9*e4b17023SJohn Marino the terms of the GNU General Public License as published by the Free
10*e4b17023SJohn Marino Software Foundation; either version 3, or (at your option) any later
11*e4b17023SJohn Marino version.
12*e4b17023SJohn Marino 
13*e4b17023SJohn Marino GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14*e4b17023SJohn Marino WARRANTY; without even the implied warranty of MERCHANTABILITY or
15*e4b17023SJohn Marino FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16*e4b17023SJohn Marino for more details.
17*e4b17023SJohn Marino 
18*e4b17023SJohn Marino You should have received a copy of the GNU General Public License
19*e4b17023SJohn Marino along with GCC; see the file COPYING3.  If not see
20*e4b17023SJohn Marino <http://www.gnu.org/licenses/>.  */
21*e4b17023SJohn Marino 
22*e4b17023SJohn Marino #ifndef GCC_TREE_DATA_REF_H
23*e4b17023SJohn Marino #define GCC_TREE_DATA_REF_H
24*e4b17023SJohn Marino 
25*e4b17023SJohn Marino #include "graphds.h"
26*e4b17023SJohn Marino #include "omega.h"
27*e4b17023SJohn Marino #include "tree-chrec.h"
28*e4b17023SJohn Marino 
29*e4b17023SJohn Marino /*
30*e4b17023SJohn Marino   innermost_loop_behavior describes the evolution of the address of the memory
31*e4b17023SJohn Marino   reference in the innermost enclosing loop.  The address is expressed as
32*e4b17023SJohn Marino   BASE + STEP * # of iteration, and base is further decomposed as the base
33*e4b17023SJohn Marino   pointer (BASE_ADDRESS),  loop invariant offset (OFFSET) and
34*e4b17023SJohn Marino   constant offset (INIT).  Examples, in loop nest
35*e4b17023SJohn Marino 
36*e4b17023SJohn Marino   for (i = 0; i < 100; i++)
37*e4b17023SJohn Marino     for (j = 3; j < 100; j++)
38*e4b17023SJohn Marino 
39*e4b17023SJohn Marino                        Example 1                      Example 2
40*e4b17023SJohn Marino       data-ref         a[j].b[i][j]                   *(p + x + 16B + 4B * j)
41*e4b17023SJohn Marino 
42*e4b17023SJohn Marino 
43*e4b17023SJohn Marino   innermost_loop_behavior
44*e4b17023SJohn Marino       base_address     &a                             p
45*e4b17023SJohn Marino       offset           i * D_i			      x
46*e4b17023SJohn Marino       init             3 * D_j + offsetof (b)         28
47*e4b17023SJohn Marino       step             D_j                            4
48*e4b17023SJohn Marino 
49*e4b17023SJohn Marino   */
50*e4b17023SJohn Marino struct innermost_loop_behavior
51*e4b17023SJohn Marino {
52*e4b17023SJohn Marino   tree base_address;
53*e4b17023SJohn Marino   tree offset;
54*e4b17023SJohn Marino   tree init;
55*e4b17023SJohn Marino   tree step;
56*e4b17023SJohn Marino 
57*e4b17023SJohn Marino   /* Alignment information.  ALIGNED_TO is set to the largest power of two
58*e4b17023SJohn Marino      that divides OFFSET.  */
59*e4b17023SJohn Marino   tree aligned_to;
60*e4b17023SJohn Marino };
61*e4b17023SJohn Marino 
62*e4b17023SJohn Marino /* Describes the evolutions of indices of the memory reference.  The indices
63*e4b17023SJohn Marino    are indices of the ARRAY_REFs, indexes in artificial dimensions
64*e4b17023SJohn Marino    added for member selection of records and the operands of MEM_REFs.
65*e4b17023SJohn Marino    BASE_OBJECT is the part of the reference that is loop-invariant
66*e4b17023SJohn Marino    (note that this reference does not have to cover the whole object
67*e4b17023SJohn Marino    being accessed, in which case UNCONSTRAINED_BASE is set; hence it is
68*e4b17023SJohn Marino    not recommended to use BASE_OBJECT in any code generation).
69*e4b17023SJohn Marino    For the examples above,
70*e4b17023SJohn Marino 
71*e4b17023SJohn Marino    base_object:        a                              *(p + x + 4B * j_0)
72*e4b17023SJohn Marino    indices:            {j_0, +, 1}_2                  {16, +, 4}_2
73*e4b17023SJohn Marino 		       4
74*e4b17023SJohn Marino 		       {i_0, +, 1}_1
75*e4b17023SJohn Marino 		       {j_0, +, 1}_2
76*e4b17023SJohn Marino */
77*e4b17023SJohn Marino 
78*e4b17023SJohn Marino struct indices
79*e4b17023SJohn Marino {
80*e4b17023SJohn Marino   /* The object.  */
81*e4b17023SJohn Marino   tree base_object;
82*e4b17023SJohn Marino 
83*e4b17023SJohn Marino   /* A list of chrecs.  Access functions of the indices.  */
84*e4b17023SJohn Marino   VEC(tree,heap) *access_fns;
85*e4b17023SJohn Marino 
86*e4b17023SJohn Marino   /* Whether BASE_OBJECT is an access representing the whole object
87*e4b17023SJohn Marino      or whether the access could not be constrained.  */
88*e4b17023SJohn Marino   bool unconstrained_base;
89*e4b17023SJohn Marino };
90*e4b17023SJohn Marino 
91*e4b17023SJohn Marino struct dr_alias
92*e4b17023SJohn Marino {
93*e4b17023SJohn Marino   /* The alias information that should be used for new pointers to this
94*e4b17023SJohn Marino      location.  */
95*e4b17023SJohn Marino   struct ptr_info_def *ptr_info;
96*e4b17023SJohn Marino };
97*e4b17023SJohn Marino 
98*e4b17023SJohn Marino /* An integer vector.  A vector formally consists of an element of a vector
99*e4b17023SJohn Marino    space. A vector space is a set that is closed under vector addition
100*e4b17023SJohn Marino    and scalar multiplication.  In this vector space, an element is a list of
101*e4b17023SJohn Marino    integers.  */
102*e4b17023SJohn Marino typedef int *lambda_vector;
103*e4b17023SJohn Marino DEF_VEC_P(lambda_vector);
104*e4b17023SJohn Marino DEF_VEC_ALLOC_P(lambda_vector,heap);
105*e4b17023SJohn Marino DEF_VEC_ALLOC_P(lambda_vector,gc);
106*e4b17023SJohn Marino 
107*e4b17023SJohn Marino /* An integer matrix.  A matrix consists of m vectors of length n (IE
108*e4b17023SJohn Marino    all vectors are the same length).  */
109*e4b17023SJohn Marino typedef lambda_vector *lambda_matrix;
110*e4b17023SJohn Marino 
111*e4b17023SJohn Marino /* Each vector of the access matrix represents a linear access
112*e4b17023SJohn Marino    function for a subscript.  First elements correspond to the
113*e4b17023SJohn Marino    leftmost indices, ie. for a[i][j] the first vector corresponds to
114*e4b17023SJohn Marino    the subscript in "i".  The elements of a vector are relative to
115*e4b17023SJohn Marino    the loop nests in which the data reference is considered,
116*e4b17023SJohn Marino    i.e. the vector is relative to the SCoP that provides the context
117*e4b17023SJohn Marino    in which this data reference occurs.
118*e4b17023SJohn Marino 
119*e4b17023SJohn Marino    For example, in
120*e4b17023SJohn Marino 
121*e4b17023SJohn Marino    | loop_1
122*e4b17023SJohn Marino    |    loop_2
123*e4b17023SJohn Marino    |      a[i+3][2*j+n-1]
124*e4b17023SJohn Marino 
125*e4b17023SJohn Marino    if "i" varies in loop_1 and "j" varies in loop_2, the access
126*e4b17023SJohn Marino    matrix with respect to the loop nest {loop_1, loop_2} is:
127*e4b17023SJohn Marino 
128*e4b17023SJohn Marino    | loop_1  loop_2  param_n  cst
129*e4b17023SJohn Marino    |   1       0        0      3
130*e4b17023SJohn Marino    |   0       2        1     -1
131*e4b17023SJohn Marino 
132*e4b17023SJohn Marino    whereas the access matrix with respect to loop_2 considers "i" as
133*e4b17023SJohn Marino    a parameter:
134*e4b17023SJohn Marino 
135*e4b17023SJohn Marino    | loop_2  param_i  param_n  cst
136*e4b17023SJohn Marino    |   0       1         0      3
137*e4b17023SJohn Marino    |   2       0         1     -1
138*e4b17023SJohn Marino */
139*e4b17023SJohn Marino struct access_matrix
140*e4b17023SJohn Marino {
141*e4b17023SJohn Marino   VEC (loop_p, heap) *loop_nest;
142*e4b17023SJohn Marino   int nb_induction_vars;
143*e4b17023SJohn Marino   VEC (tree, heap) *parameters;
144*e4b17023SJohn Marino   VEC (lambda_vector, gc) *matrix;
145*e4b17023SJohn Marino };
146*e4b17023SJohn Marino 
147*e4b17023SJohn Marino #define AM_LOOP_NEST(M) (M)->loop_nest
148*e4b17023SJohn Marino #define AM_NB_INDUCTION_VARS(M) (M)->nb_induction_vars
149*e4b17023SJohn Marino #define AM_PARAMETERS(M) (M)->parameters
150*e4b17023SJohn Marino #define AM_MATRIX(M) (M)->matrix
151*e4b17023SJohn Marino #define AM_NB_PARAMETERS(M) (VEC_length (tree, AM_PARAMETERS(M)))
152*e4b17023SJohn Marino #define AM_CONST_COLUMN_INDEX(M) (AM_NB_INDUCTION_VARS (M) + AM_NB_PARAMETERS (M))
153*e4b17023SJohn Marino #define AM_NB_COLUMNS(M) (AM_NB_INDUCTION_VARS (M) + AM_NB_PARAMETERS (M) + 1)
154*e4b17023SJohn Marino #define AM_GET_SUBSCRIPT_ACCESS_VECTOR(M, I) VEC_index (lambda_vector, AM_MATRIX (M), I)
155*e4b17023SJohn Marino #define AM_GET_ACCESS_MATRIX_ELEMENT(M, I, J) AM_GET_SUBSCRIPT_ACCESS_VECTOR (M, I)[J]
156*e4b17023SJohn Marino 
157*e4b17023SJohn Marino /* Return the column in the access matrix of LOOP_NUM.  */
158*e4b17023SJohn Marino 
159*e4b17023SJohn Marino static inline int
am_vector_index_for_loop(struct access_matrix * access_matrix,int loop_num)160*e4b17023SJohn Marino am_vector_index_for_loop (struct access_matrix *access_matrix, int loop_num)
161*e4b17023SJohn Marino {
162*e4b17023SJohn Marino   int i;
163*e4b17023SJohn Marino   loop_p l;
164*e4b17023SJohn Marino 
165*e4b17023SJohn Marino   for (i = 0; VEC_iterate (loop_p, AM_LOOP_NEST (access_matrix), i, l); i++)
166*e4b17023SJohn Marino     if (l->num == loop_num)
167*e4b17023SJohn Marino       return i;
168*e4b17023SJohn Marino 
169*e4b17023SJohn Marino   gcc_unreachable();
170*e4b17023SJohn Marino }
171*e4b17023SJohn Marino 
172*e4b17023SJohn Marino int access_matrix_get_index_for_parameter (tree, struct access_matrix *);
173*e4b17023SJohn Marino 
174*e4b17023SJohn Marino struct data_reference
175*e4b17023SJohn Marino {
176*e4b17023SJohn Marino   /* A pointer to the statement that contains this DR.  */
177*e4b17023SJohn Marino   gimple stmt;
178*e4b17023SJohn Marino 
179*e4b17023SJohn Marino   /* A pointer to the memory reference.  */
180*e4b17023SJohn Marino   tree ref;
181*e4b17023SJohn Marino 
182*e4b17023SJohn Marino   /* Auxiliary info specific to a pass.  */
183*e4b17023SJohn Marino   void *aux;
184*e4b17023SJohn Marino 
185*e4b17023SJohn Marino   /* True when the data reference is in RHS of a stmt.  */
186*e4b17023SJohn Marino   bool is_read;
187*e4b17023SJohn Marino 
188*e4b17023SJohn Marino   /* Behavior of the memory reference in the innermost loop.  */
189*e4b17023SJohn Marino   struct innermost_loop_behavior innermost;
190*e4b17023SJohn Marino 
191*e4b17023SJohn Marino   /* Subscripts of this data reference.  */
192*e4b17023SJohn Marino   struct indices indices;
193*e4b17023SJohn Marino 
194*e4b17023SJohn Marino   /* Alias information for the data reference.  */
195*e4b17023SJohn Marino   struct dr_alias alias;
196*e4b17023SJohn Marino 
197*e4b17023SJohn Marino   /* Matrix representation for the data access functions.  */
198*e4b17023SJohn Marino   struct access_matrix *access_matrix;
199*e4b17023SJohn Marino };
200*e4b17023SJohn Marino 
201*e4b17023SJohn Marino #define DR_STMT(DR)                (DR)->stmt
202*e4b17023SJohn Marino #define DR_REF(DR)                 (DR)->ref
203*e4b17023SJohn Marino #define DR_BASE_OBJECT(DR)         (DR)->indices.base_object
204*e4b17023SJohn Marino #define DR_UNCONSTRAINED_BASE(DR)  (DR)->indices.unconstrained_base
205*e4b17023SJohn Marino #define DR_ACCESS_FNS(DR)	   (DR)->indices.access_fns
206*e4b17023SJohn Marino #define DR_ACCESS_FN(DR, I)        VEC_index (tree, DR_ACCESS_FNS (DR), I)
207*e4b17023SJohn Marino #define DR_NUM_DIMENSIONS(DR)      VEC_length (tree, DR_ACCESS_FNS (DR))
208*e4b17023SJohn Marino #define DR_IS_READ(DR)             (DR)->is_read
209*e4b17023SJohn Marino #define DR_IS_WRITE(DR)            (!DR_IS_READ (DR))
210*e4b17023SJohn Marino #define DR_BASE_ADDRESS(DR)        (DR)->innermost.base_address
211*e4b17023SJohn Marino #define DR_OFFSET(DR)              (DR)->innermost.offset
212*e4b17023SJohn Marino #define DR_INIT(DR)                (DR)->innermost.init
213*e4b17023SJohn Marino #define DR_STEP(DR)                (DR)->innermost.step
214*e4b17023SJohn Marino #define DR_PTR_INFO(DR)            (DR)->alias.ptr_info
215*e4b17023SJohn Marino #define DR_ALIGNED_TO(DR)          (DR)->innermost.aligned_to
216*e4b17023SJohn Marino #define DR_ACCESS_MATRIX(DR)       (DR)->access_matrix
217*e4b17023SJohn Marino 
218*e4b17023SJohn Marino typedef struct data_reference *data_reference_p;
219*e4b17023SJohn Marino DEF_VEC_P(data_reference_p);
220*e4b17023SJohn Marino DEF_VEC_ALLOC_P (data_reference_p, heap);
221*e4b17023SJohn Marino 
222*e4b17023SJohn Marino enum data_dependence_direction {
223*e4b17023SJohn Marino   dir_positive,
224*e4b17023SJohn Marino   dir_negative,
225*e4b17023SJohn Marino   dir_equal,
226*e4b17023SJohn Marino   dir_positive_or_negative,
227*e4b17023SJohn Marino   dir_positive_or_equal,
228*e4b17023SJohn Marino   dir_negative_or_equal,
229*e4b17023SJohn Marino   dir_star,
230*e4b17023SJohn Marino   dir_independent
231*e4b17023SJohn Marino };
232*e4b17023SJohn Marino 
233*e4b17023SJohn Marino /* The description of the grid of iterations that overlap.  At most
234*e4b17023SJohn Marino    two loops are considered at the same time just now, hence at most
235*e4b17023SJohn Marino    two functions are needed.  For each of the functions, we store
236*e4b17023SJohn Marino    the vector of coefficients, f[0] + x * f[1] + y * f[2] + ...,
237*e4b17023SJohn Marino    where x, y, ... are variables.  */
238*e4b17023SJohn Marino 
239*e4b17023SJohn Marino #define MAX_DIM 2
240*e4b17023SJohn Marino 
241*e4b17023SJohn Marino /* Special values of N.  */
242*e4b17023SJohn Marino #define NO_DEPENDENCE 0
243*e4b17023SJohn Marino #define NOT_KNOWN (MAX_DIM + 1)
244*e4b17023SJohn Marino #define CF_NONTRIVIAL_P(CF) ((CF)->n != NO_DEPENDENCE && (CF)->n != NOT_KNOWN)
245*e4b17023SJohn Marino #define CF_NOT_KNOWN_P(CF) ((CF)->n == NOT_KNOWN)
246*e4b17023SJohn Marino #define CF_NO_DEPENDENCE_P(CF) ((CF)->n == NO_DEPENDENCE)
247*e4b17023SJohn Marino 
248*e4b17023SJohn Marino typedef VEC (tree, heap) *affine_fn;
249*e4b17023SJohn Marino 
250*e4b17023SJohn Marino typedef struct
251*e4b17023SJohn Marino {
252*e4b17023SJohn Marino   unsigned n;
253*e4b17023SJohn Marino   affine_fn fns[MAX_DIM];
254*e4b17023SJohn Marino } conflict_function;
255*e4b17023SJohn Marino 
256*e4b17023SJohn Marino /* What is a subscript?  Given two array accesses a subscript is the
257*e4b17023SJohn Marino    tuple composed of the access functions for a given dimension.
258*e4b17023SJohn Marino    Example: Given A[f1][f2][f3] and B[g1][g2][g3], there are three
259*e4b17023SJohn Marino    subscripts: (f1, g1), (f2, g2), (f3, g3).  These three subscripts
260*e4b17023SJohn Marino    are stored in the data_dependence_relation structure under the form
261*e4b17023SJohn Marino    of an array of subscripts.  */
262*e4b17023SJohn Marino 
263*e4b17023SJohn Marino struct subscript
264*e4b17023SJohn Marino {
265*e4b17023SJohn Marino   /* A description of the iterations for which the elements are
266*e4b17023SJohn Marino      accessed twice.  */
267*e4b17023SJohn Marino   conflict_function *conflicting_iterations_in_a;
268*e4b17023SJohn Marino   conflict_function *conflicting_iterations_in_b;
269*e4b17023SJohn Marino 
270*e4b17023SJohn Marino   /* This field stores the information about the iteration domain
271*e4b17023SJohn Marino      validity of the dependence relation.  */
272*e4b17023SJohn Marino   tree last_conflict;
273*e4b17023SJohn Marino 
274*e4b17023SJohn Marino   /* Distance from the iteration that access a conflicting element in
275*e4b17023SJohn Marino      A to the iteration that access this same conflicting element in
276*e4b17023SJohn Marino      B.  The distance is a tree scalar expression, i.e. a constant or a
277*e4b17023SJohn Marino      symbolic expression, but certainly not a chrec function.  */
278*e4b17023SJohn Marino   tree distance;
279*e4b17023SJohn Marino };
280*e4b17023SJohn Marino 
281*e4b17023SJohn Marino typedef struct subscript *subscript_p;
282*e4b17023SJohn Marino DEF_VEC_P(subscript_p);
283*e4b17023SJohn Marino DEF_VEC_ALLOC_P (subscript_p, heap);
284*e4b17023SJohn Marino 
285*e4b17023SJohn Marino #define SUB_CONFLICTS_IN_A(SUB) SUB->conflicting_iterations_in_a
286*e4b17023SJohn Marino #define SUB_CONFLICTS_IN_B(SUB) SUB->conflicting_iterations_in_b
287*e4b17023SJohn Marino #define SUB_LAST_CONFLICT(SUB) SUB->last_conflict
288*e4b17023SJohn Marino #define SUB_DISTANCE(SUB) SUB->distance
289*e4b17023SJohn Marino 
290*e4b17023SJohn Marino /* A data_dependence_relation represents a relation between two
291*e4b17023SJohn Marino    data_references A and B.  */
292*e4b17023SJohn Marino 
293*e4b17023SJohn Marino struct data_dependence_relation
294*e4b17023SJohn Marino {
295*e4b17023SJohn Marino 
296*e4b17023SJohn Marino   struct data_reference *a;
297*e4b17023SJohn Marino   struct data_reference *b;
298*e4b17023SJohn Marino 
299*e4b17023SJohn Marino   /* A "yes/no/maybe" field for the dependence relation:
300*e4b17023SJohn Marino 
301*e4b17023SJohn Marino      - when "ARE_DEPENDENT == NULL_TREE", there exist a dependence
302*e4b17023SJohn Marino        relation between A and B, and the description of this relation
303*e4b17023SJohn Marino        is given in the SUBSCRIPTS array,
304*e4b17023SJohn Marino 
305*e4b17023SJohn Marino      - when "ARE_DEPENDENT == chrec_known", there is no dependence and
306*e4b17023SJohn Marino        SUBSCRIPTS is empty,
307*e4b17023SJohn Marino 
308*e4b17023SJohn Marino      - when "ARE_DEPENDENT == chrec_dont_know", there may be a dependence,
309*e4b17023SJohn Marino        but the analyzer cannot be more specific.  */
310*e4b17023SJohn Marino   tree are_dependent;
311*e4b17023SJohn Marino 
312*e4b17023SJohn Marino   /* For each subscript in the dependence test, there is an element in
313*e4b17023SJohn Marino      this array.  This is the attribute that labels the edge A->B of
314*e4b17023SJohn Marino      the data_dependence_relation.  */
315*e4b17023SJohn Marino   VEC (subscript_p, heap) *subscripts;
316*e4b17023SJohn Marino 
317*e4b17023SJohn Marino   /* The analyzed loop nest.  */
318*e4b17023SJohn Marino   VEC (loop_p, heap) *loop_nest;
319*e4b17023SJohn Marino 
320*e4b17023SJohn Marino   /* The classic direction vector.  */
321*e4b17023SJohn Marino   VEC (lambda_vector, heap) *dir_vects;
322*e4b17023SJohn Marino 
323*e4b17023SJohn Marino   /* The classic distance vector.  */
324*e4b17023SJohn Marino   VEC (lambda_vector, heap) *dist_vects;
325*e4b17023SJohn Marino 
326*e4b17023SJohn Marino   /* An index in loop_nest for the innermost loop that varies for
327*e4b17023SJohn Marino      this data dependence relation.  */
328*e4b17023SJohn Marino   unsigned inner_loop;
329*e4b17023SJohn Marino 
330*e4b17023SJohn Marino   /* Is the dependence reversed with respect to the lexicographic order?  */
331*e4b17023SJohn Marino   bool reversed_p;
332*e4b17023SJohn Marino 
333*e4b17023SJohn Marino   /* When the dependence relation is affine, it can be represented by
334*e4b17023SJohn Marino      a distance vector.  */
335*e4b17023SJohn Marino   bool affine_p;
336*e4b17023SJohn Marino 
337*e4b17023SJohn Marino   /* Set to true when the dependence relation is on the same data
338*e4b17023SJohn Marino      access.  */
339*e4b17023SJohn Marino   bool self_reference_p;
340*e4b17023SJohn Marino };
341*e4b17023SJohn Marino 
342*e4b17023SJohn Marino typedef struct data_dependence_relation *ddr_p;
343*e4b17023SJohn Marino DEF_VEC_P(ddr_p);
344*e4b17023SJohn Marino DEF_VEC_ALLOC_P(ddr_p,heap);
345*e4b17023SJohn Marino 
346*e4b17023SJohn Marino #define DDR_A(DDR) DDR->a
347*e4b17023SJohn Marino #define DDR_B(DDR) DDR->b
348*e4b17023SJohn Marino #define DDR_AFFINE_P(DDR) DDR->affine_p
349*e4b17023SJohn Marino #define DDR_ARE_DEPENDENT(DDR) DDR->are_dependent
350*e4b17023SJohn Marino #define DDR_SUBSCRIPTS(DDR) DDR->subscripts
351*e4b17023SJohn Marino #define DDR_SUBSCRIPT(DDR, I) VEC_index (subscript_p, DDR_SUBSCRIPTS (DDR), I)
352*e4b17023SJohn Marino #define DDR_NUM_SUBSCRIPTS(DDR) VEC_length (subscript_p, DDR_SUBSCRIPTS (DDR))
353*e4b17023SJohn Marino 
354*e4b17023SJohn Marino #define DDR_LOOP_NEST(DDR) DDR->loop_nest
355*e4b17023SJohn Marino /* The size of the direction/distance vectors: the number of loops in
356*e4b17023SJohn Marino    the loop nest.  */
357*e4b17023SJohn Marino #define DDR_NB_LOOPS(DDR) (VEC_length (loop_p, DDR_LOOP_NEST (DDR)))
358*e4b17023SJohn Marino #define DDR_INNER_LOOP(DDR) DDR->inner_loop
359*e4b17023SJohn Marino #define DDR_SELF_REFERENCE(DDR) DDR->self_reference_p
360*e4b17023SJohn Marino 
361*e4b17023SJohn Marino #define DDR_DIST_VECTS(DDR) ((DDR)->dist_vects)
362*e4b17023SJohn Marino #define DDR_DIR_VECTS(DDR) ((DDR)->dir_vects)
363*e4b17023SJohn Marino #define DDR_NUM_DIST_VECTS(DDR) \
364*e4b17023SJohn Marino   (VEC_length (lambda_vector, DDR_DIST_VECTS (DDR)))
365*e4b17023SJohn Marino #define DDR_NUM_DIR_VECTS(DDR) \
366*e4b17023SJohn Marino   (VEC_length (lambda_vector, DDR_DIR_VECTS (DDR)))
367*e4b17023SJohn Marino #define DDR_DIR_VECT(DDR, I) \
368*e4b17023SJohn Marino   VEC_index (lambda_vector, DDR_DIR_VECTS (DDR), I)
369*e4b17023SJohn Marino #define DDR_DIST_VECT(DDR, I) \
370*e4b17023SJohn Marino   VEC_index (lambda_vector, DDR_DIST_VECTS (DDR), I)
371*e4b17023SJohn Marino #define DDR_REVERSED_P(DDR) DDR->reversed_p
372*e4b17023SJohn Marino 
373*e4b17023SJohn Marino 
374*e4b17023SJohn Marino 
375*e4b17023SJohn Marino /* Describes a location of a memory reference.  */
376*e4b17023SJohn Marino 
377*e4b17023SJohn Marino typedef struct data_ref_loc_d
378*e4b17023SJohn Marino {
379*e4b17023SJohn Marino   /* Position of the memory reference.  */
380*e4b17023SJohn Marino   tree *pos;
381*e4b17023SJohn Marino 
382*e4b17023SJohn Marino   /* True if the memory reference is read.  */
383*e4b17023SJohn Marino   bool is_read;
384*e4b17023SJohn Marino } data_ref_loc;
385*e4b17023SJohn Marino 
386*e4b17023SJohn Marino DEF_VEC_O (data_ref_loc);
387*e4b17023SJohn Marino DEF_VEC_ALLOC_O (data_ref_loc, heap);
388*e4b17023SJohn Marino 
389*e4b17023SJohn Marino bool get_references_in_stmt (gimple, VEC (data_ref_loc, heap) **);
390*e4b17023SJohn Marino bool dr_analyze_innermost (struct data_reference *, struct loop *);
391*e4b17023SJohn Marino extern bool compute_data_dependences_for_loop (struct loop *, bool,
392*e4b17023SJohn Marino 					       VEC (loop_p, heap) **,
393*e4b17023SJohn Marino 					       VEC (data_reference_p, heap) **,
394*e4b17023SJohn Marino 					       VEC (ddr_p, heap) **);
395*e4b17023SJohn Marino extern bool compute_data_dependences_for_bb (basic_block, bool,
396*e4b17023SJohn Marino                                              VEC (data_reference_p, heap) **,
397*e4b17023SJohn Marino                                              VEC (ddr_p, heap) **);
398*e4b17023SJohn Marino extern void print_direction_vector (FILE *, lambda_vector, int);
399*e4b17023SJohn Marino extern void print_dir_vectors (FILE *, VEC (lambda_vector, heap) *, int);
400*e4b17023SJohn Marino extern void print_dist_vectors (FILE *, VEC (lambda_vector, heap) *, int);
401*e4b17023SJohn Marino extern void dump_subscript (FILE *, struct subscript *);
402*e4b17023SJohn Marino extern void dump_ddrs (FILE *, VEC (ddr_p, heap) *);
403*e4b17023SJohn Marino extern void dump_dist_dir_vectors (FILE *, VEC (ddr_p, heap) *);
404*e4b17023SJohn Marino extern void dump_data_reference (FILE *, struct data_reference *);
405*e4b17023SJohn Marino extern void debug_data_reference (struct data_reference *);
406*e4b17023SJohn Marino extern void dump_data_references (FILE *, VEC (data_reference_p, heap) *);
407*e4b17023SJohn Marino extern void debug_data_references (VEC (data_reference_p, heap) *);
408*e4b17023SJohn Marino extern void debug_data_dependence_relation (struct data_dependence_relation *);
409*e4b17023SJohn Marino extern void dump_data_dependence_relation (FILE *,
410*e4b17023SJohn Marino 					   struct data_dependence_relation *);
411*e4b17023SJohn Marino extern void dump_data_dependence_relations (FILE *, VEC (ddr_p, heap) *);
412*e4b17023SJohn Marino extern void debug_data_dependence_relations (VEC (ddr_p, heap) *);
413*e4b17023SJohn Marino extern void dump_data_dependence_direction (FILE *,
414*e4b17023SJohn Marino 					    enum data_dependence_direction);
415*e4b17023SJohn Marino extern void free_dependence_relation (struct data_dependence_relation *);
416*e4b17023SJohn Marino extern void free_dependence_relations (VEC (ddr_p, heap) *);
417*e4b17023SJohn Marino extern void free_data_ref (data_reference_p);
418*e4b17023SJohn Marino extern void free_data_refs (VEC (data_reference_p, heap) *);
419*e4b17023SJohn Marino extern bool find_data_references_in_stmt (struct loop *, gimple,
420*e4b17023SJohn Marino 					  VEC (data_reference_p, heap) **);
421*e4b17023SJohn Marino extern bool graphite_find_data_references_in_stmt (loop_p, loop_p, gimple,
422*e4b17023SJohn Marino 						   VEC (data_reference_p, heap) **);
423*e4b17023SJohn Marino struct data_reference *create_data_ref (loop_p, loop_p, tree, gimple, bool);
424*e4b17023SJohn Marino extern bool find_loop_nest (struct loop *, VEC (loop_p, heap) **);
425*e4b17023SJohn Marino extern struct data_dependence_relation *initialize_data_dependence_relation
426*e4b17023SJohn Marino      (struct data_reference *, struct data_reference *, VEC (loop_p, heap) *);
427*e4b17023SJohn Marino extern void compute_self_dependence (struct data_dependence_relation *);
428*e4b17023SJohn Marino extern bool compute_all_dependences (VEC (data_reference_p, heap) *,
429*e4b17023SJohn Marino 				     VEC (ddr_p, heap) **, VEC (loop_p, heap) *,
430*e4b17023SJohn Marino 				     bool);
431*e4b17023SJohn Marino extern tree find_data_references_in_bb (struct loop *, basic_block,
432*e4b17023SJohn Marino                                         VEC (data_reference_p, heap) **);
433*e4b17023SJohn Marino 
434*e4b17023SJohn Marino extern void create_rdg_vertices (struct graph *, VEC (gimple, heap) *);
435*e4b17023SJohn Marino extern bool dr_may_alias_p (const struct data_reference *,
436*e4b17023SJohn Marino 			    const struct data_reference *, bool);
437*e4b17023SJohn Marino extern bool dr_equal_offsets_p (struct data_reference *,
438*e4b17023SJohn Marino                                 struct data_reference *);
439*e4b17023SJohn Marino 
440*e4b17023SJohn Marino 
441*e4b17023SJohn Marino /* Return true when the base objects of data references A and B are
442*e4b17023SJohn Marino    the same memory object.  */
443*e4b17023SJohn Marino 
444*e4b17023SJohn Marino static inline bool
same_data_refs_base_objects(data_reference_p a,data_reference_p b)445*e4b17023SJohn Marino same_data_refs_base_objects (data_reference_p a, data_reference_p b)
446*e4b17023SJohn Marino {
447*e4b17023SJohn Marino   return DR_NUM_DIMENSIONS (a) == DR_NUM_DIMENSIONS (b)
448*e4b17023SJohn Marino     && operand_equal_p (DR_BASE_OBJECT (a), DR_BASE_OBJECT (b), 0);
449*e4b17023SJohn Marino }
450*e4b17023SJohn Marino 
451*e4b17023SJohn Marino /* Return true when the data references A and B are accessing the same
452*e4b17023SJohn Marino    memory object with the same access functions.  */
453*e4b17023SJohn Marino 
454*e4b17023SJohn Marino static inline bool
same_data_refs(data_reference_p a,data_reference_p b)455*e4b17023SJohn Marino same_data_refs (data_reference_p a, data_reference_p b)
456*e4b17023SJohn Marino {
457*e4b17023SJohn Marino   unsigned int i;
458*e4b17023SJohn Marino 
459*e4b17023SJohn Marino   /* The references are exactly the same.  */
460*e4b17023SJohn Marino   if (operand_equal_p (DR_REF (a), DR_REF (b), 0))
461*e4b17023SJohn Marino     return true;
462*e4b17023SJohn Marino 
463*e4b17023SJohn Marino   if (!same_data_refs_base_objects (a, b))
464*e4b17023SJohn Marino     return false;
465*e4b17023SJohn Marino 
466*e4b17023SJohn Marino   for (i = 0; i < DR_NUM_DIMENSIONS (a); i++)
467*e4b17023SJohn Marino     if (!eq_evolutions_p (DR_ACCESS_FN (a, i), DR_ACCESS_FN (b, i)))
468*e4b17023SJohn Marino       return false;
469*e4b17023SJohn Marino 
470*e4b17023SJohn Marino   return true;
471*e4b17023SJohn Marino }
472*e4b17023SJohn Marino 
473*e4b17023SJohn Marino /* Return true when the DDR contains two data references that have the
474*e4b17023SJohn Marino    same access functions.  */
475*e4b17023SJohn Marino 
476*e4b17023SJohn Marino static inline bool
same_access_functions(const struct data_dependence_relation * ddr)477*e4b17023SJohn Marino same_access_functions (const struct data_dependence_relation *ddr)
478*e4b17023SJohn Marino {
479*e4b17023SJohn Marino   unsigned i;
480*e4b17023SJohn Marino 
481*e4b17023SJohn Marino   for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
482*e4b17023SJohn Marino     if (!eq_evolutions_p (DR_ACCESS_FN (DDR_A (ddr), i),
483*e4b17023SJohn Marino 			  DR_ACCESS_FN (DDR_B (ddr), i)))
484*e4b17023SJohn Marino       return false;
485*e4b17023SJohn Marino 
486*e4b17023SJohn Marino   return true;
487*e4b17023SJohn Marino }
488*e4b17023SJohn Marino 
489*e4b17023SJohn Marino /* Return true when DDR is an anti-dependence relation.  */
490*e4b17023SJohn Marino 
491*e4b17023SJohn Marino static inline bool
ddr_is_anti_dependent(ddr_p ddr)492*e4b17023SJohn Marino ddr_is_anti_dependent (ddr_p ddr)
493*e4b17023SJohn Marino {
494*e4b17023SJohn Marino   return (DDR_ARE_DEPENDENT (ddr) == NULL_TREE
495*e4b17023SJohn Marino 	  && DR_IS_READ (DDR_A (ddr))
496*e4b17023SJohn Marino 	  && DR_IS_WRITE (DDR_B (ddr))
497*e4b17023SJohn Marino 	  && !same_access_functions (ddr));
498*e4b17023SJohn Marino }
499*e4b17023SJohn Marino 
500*e4b17023SJohn Marino /* Return true when DEPENDENCE_RELATIONS contains an anti-dependence.  */
501*e4b17023SJohn Marino 
502*e4b17023SJohn Marino static inline bool
ddrs_have_anti_deps(VEC (ddr_p,heap)* dependence_relations)503*e4b17023SJohn Marino ddrs_have_anti_deps (VEC (ddr_p, heap) *dependence_relations)
504*e4b17023SJohn Marino {
505*e4b17023SJohn Marino   unsigned i;
506*e4b17023SJohn Marino   ddr_p ddr;
507*e4b17023SJohn Marino 
508*e4b17023SJohn Marino   for (i = 0; VEC_iterate (ddr_p, dependence_relations, i, ddr); i++)
509*e4b17023SJohn Marino     if (ddr_is_anti_dependent (ddr))
510*e4b17023SJohn Marino       return true;
511*e4b17023SJohn Marino 
512*e4b17023SJohn Marino   return false;
513*e4b17023SJohn Marino }
514*e4b17023SJohn Marino 
515*e4b17023SJohn Marino /* Returns the dependence level for a vector DIST of size LENGTH.
516*e4b17023SJohn Marino    LEVEL = 0 means a lexicographic dependence, i.e. a dependence due
517*e4b17023SJohn Marino    to the sequence of statements, not carried by any loop.  */
518*e4b17023SJohn Marino 
519*e4b17023SJohn Marino static inline unsigned
dependence_level(lambda_vector dist_vect,int length)520*e4b17023SJohn Marino dependence_level (lambda_vector dist_vect, int length)
521*e4b17023SJohn Marino {
522*e4b17023SJohn Marino   int i;
523*e4b17023SJohn Marino 
524*e4b17023SJohn Marino   for (i = 0; i < length; i++)
525*e4b17023SJohn Marino     if (dist_vect[i] != 0)
526*e4b17023SJohn Marino       return i + 1;
527*e4b17023SJohn Marino 
528*e4b17023SJohn Marino   return 0;
529*e4b17023SJohn Marino }
530*e4b17023SJohn Marino 
531*e4b17023SJohn Marino /* Return the dependence level for the DDR relation.  */
532*e4b17023SJohn Marino 
533*e4b17023SJohn Marino static inline unsigned
ddr_dependence_level(ddr_p ddr)534*e4b17023SJohn Marino ddr_dependence_level (ddr_p ddr)
535*e4b17023SJohn Marino {
536*e4b17023SJohn Marino   unsigned vector;
537*e4b17023SJohn Marino   unsigned level = 0;
538*e4b17023SJohn Marino 
539*e4b17023SJohn Marino   if (DDR_DIST_VECTS (ddr))
540*e4b17023SJohn Marino     level = dependence_level (DDR_DIST_VECT (ddr, 0), DDR_NB_LOOPS (ddr));
541*e4b17023SJohn Marino 
542*e4b17023SJohn Marino   for (vector = 1; vector < DDR_NUM_DIST_VECTS (ddr); vector++)
543*e4b17023SJohn Marino     level = MIN (level, dependence_level (DDR_DIST_VECT (ddr, vector),
544*e4b17023SJohn Marino 					  DDR_NB_LOOPS (ddr)));
545*e4b17023SJohn Marino   return level;
546*e4b17023SJohn Marino }
547*e4b17023SJohn Marino 
548*e4b17023SJohn Marino 
549*e4b17023SJohn Marino 
550*e4b17023SJohn Marino /* A Reduced Dependence Graph (RDG) vertex representing a statement.  */
551*e4b17023SJohn Marino typedef struct rdg_vertex
552*e4b17023SJohn Marino {
553*e4b17023SJohn Marino   /* The statement represented by this vertex.  */
554*e4b17023SJohn Marino   gimple stmt;
555*e4b17023SJohn Marino 
556*e4b17023SJohn Marino   /* True when the statement contains a write to memory.  */
557*e4b17023SJohn Marino   bool has_mem_write;
558*e4b17023SJohn Marino 
559*e4b17023SJohn Marino   /* True when the statement contains a read from memory.  */
560*e4b17023SJohn Marino   bool has_mem_reads;
561*e4b17023SJohn Marino } *rdg_vertex_p;
562*e4b17023SJohn Marino 
563*e4b17023SJohn Marino #define RDGV_STMT(V)     ((struct rdg_vertex *) ((V)->data))->stmt
564*e4b17023SJohn Marino #define RDGV_HAS_MEM_WRITE(V) ((struct rdg_vertex *) ((V)->data))->has_mem_write
565*e4b17023SJohn Marino #define RDGV_HAS_MEM_READS(V) ((struct rdg_vertex *) ((V)->data))->has_mem_reads
566*e4b17023SJohn Marino #define RDG_STMT(RDG, I) RDGV_STMT (&(RDG->vertices[I]))
567*e4b17023SJohn Marino #define RDG_MEM_WRITE_STMT(RDG, I) RDGV_HAS_MEM_WRITE (&(RDG->vertices[I]))
568*e4b17023SJohn Marino #define RDG_MEM_READS_STMT(RDG, I) RDGV_HAS_MEM_READS (&(RDG->vertices[I]))
569*e4b17023SJohn Marino 
570*e4b17023SJohn Marino void dump_rdg_vertex (FILE *, struct graph *, int);
571*e4b17023SJohn Marino void debug_rdg_vertex (struct graph *, int);
572*e4b17023SJohn Marino void dump_rdg_component (FILE *, struct graph *, int, bitmap);
573*e4b17023SJohn Marino void debug_rdg_component (struct graph *, int);
574*e4b17023SJohn Marino void dump_rdg (FILE *, struct graph *);
575*e4b17023SJohn Marino void debug_rdg (struct graph *);
576*e4b17023SJohn Marino int rdg_vertex_for_stmt (struct graph *, gimple);
577*e4b17023SJohn Marino 
578*e4b17023SJohn Marino /* Data dependence type.  */
579*e4b17023SJohn Marino 
580*e4b17023SJohn Marino enum rdg_dep_type
581*e4b17023SJohn Marino {
582*e4b17023SJohn Marino   /* Read After Write (RAW).  */
583*e4b17023SJohn Marino   flow_dd = 'f',
584*e4b17023SJohn Marino 
585*e4b17023SJohn Marino   /* Write After Read (WAR).  */
586*e4b17023SJohn Marino   anti_dd = 'a',
587*e4b17023SJohn Marino 
588*e4b17023SJohn Marino   /* Write After Write (WAW).  */
589*e4b17023SJohn Marino   output_dd = 'o',
590*e4b17023SJohn Marino 
591*e4b17023SJohn Marino   /* Read After Read (RAR).  */
592*e4b17023SJohn Marino   input_dd = 'i'
593*e4b17023SJohn Marino };
594*e4b17023SJohn Marino 
595*e4b17023SJohn Marino /* Dependence information attached to an edge of the RDG.  */
596*e4b17023SJohn Marino 
597*e4b17023SJohn Marino typedef struct rdg_edge
598*e4b17023SJohn Marino {
599*e4b17023SJohn Marino   /* Type of the dependence.  */
600*e4b17023SJohn Marino   enum rdg_dep_type type;
601*e4b17023SJohn Marino 
602*e4b17023SJohn Marino   /* Levels of the dependence: the depth of the loops that carry the
603*e4b17023SJohn Marino      dependence.  */
604*e4b17023SJohn Marino   unsigned level;
605*e4b17023SJohn Marino 
606*e4b17023SJohn Marino   /* Dependence relation between data dependences, NULL when one of
607*e4b17023SJohn Marino      the vertices is a scalar.  */
608*e4b17023SJohn Marino   ddr_p relation;
609*e4b17023SJohn Marino } *rdg_edge_p;
610*e4b17023SJohn Marino 
611*e4b17023SJohn Marino #define RDGE_TYPE(E)        ((struct rdg_edge *) ((E)->data))->type
612*e4b17023SJohn Marino #define RDGE_LEVEL(E)       ((struct rdg_edge *) ((E)->data))->level
613*e4b17023SJohn Marino #define RDGE_RELATION(E)    ((struct rdg_edge *) ((E)->data))->relation
614*e4b17023SJohn Marino 
615*e4b17023SJohn Marino struct graph *build_rdg (struct loop *,
616*e4b17023SJohn Marino 			 VEC (loop_p, heap) **,
617*e4b17023SJohn Marino 			 VEC (ddr_p, heap) **,
618*e4b17023SJohn Marino 			 VEC (data_reference_p, heap) **);
619*e4b17023SJohn Marino struct graph *build_empty_rdg (int);
620*e4b17023SJohn Marino void free_rdg (struct graph *);
621*e4b17023SJohn Marino 
622*e4b17023SJohn Marino /* Return the index of the variable VAR in the LOOP_NEST array.  */
623*e4b17023SJohn Marino 
624*e4b17023SJohn Marino static inline int
index_in_loop_nest(int var,VEC (loop_p,heap)* loop_nest)625*e4b17023SJohn Marino index_in_loop_nest (int var, VEC (loop_p, heap) *loop_nest)
626*e4b17023SJohn Marino {
627*e4b17023SJohn Marino   struct loop *loopi;
628*e4b17023SJohn Marino   int var_index;
629*e4b17023SJohn Marino 
630*e4b17023SJohn Marino   for (var_index = 0; VEC_iterate (loop_p, loop_nest, var_index, loopi);
631*e4b17023SJohn Marino        var_index++)
632*e4b17023SJohn Marino     if (loopi->num == var)
633*e4b17023SJohn Marino       break;
634*e4b17023SJohn Marino 
635*e4b17023SJohn Marino   return var_index;
636*e4b17023SJohn Marino }
637*e4b17023SJohn Marino 
638*e4b17023SJohn Marino void stores_from_loop (struct loop *, VEC (gimple, heap) **);
639*e4b17023SJohn Marino void stores_zero_from_loop (struct loop *, VEC (gimple, heap) **);
640*e4b17023SJohn Marino void remove_similar_memory_refs (VEC (gimple, heap) **);
641*e4b17023SJohn Marino bool rdg_defs_used_in_other_loops_p (struct graph *, int);
642*e4b17023SJohn Marino bool have_similar_memory_accesses (gimple, gimple);
643*e4b17023SJohn Marino bool stmt_with_adjacent_zero_store_dr_p (gimple);
644*e4b17023SJohn Marino 
645*e4b17023SJohn Marino /* Returns true when STRIDE is equal in absolute value to the size of
646*e4b17023SJohn Marino    the unit type of TYPE.  */
647*e4b17023SJohn Marino 
648*e4b17023SJohn Marino static inline bool
stride_of_unit_type_p(tree stride,tree type)649*e4b17023SJohn Marino stride_of_unit_type_p (tree stride, tree type)
650*e4b17023SJohn Marino {
651*e4b17023SJohn Marino   return tree_int_cst_equal (fold_unary (ABS_EXPR, TREE_TYPE (stride),
652*e4b17023SJohn Marino 					 stride),
653*e4b17023SJohn Marino 			     TYPE_SIZE_UNIT (type));
654*e4b17023SJohn Marino }
655*e4b17023SJohn Marino 
656*e4b17023SJohn Marino /* Determines whether RDG vertices V1 and V2 access to similar memory
657*e4b17023SJohn Marino    locations, in which case they have to be in the same partition.  */
658*e4b17023SJohn Marino 
659*e4b17023SJohn Marino static inline bool
rdg_has_similar_memory_accesses(struct graph * rdg,int v1,int v2)660*e4b17023SJohn Marino rdg_has_similar_memory_accesses (struct graph *rdg, int v1, int v2)
661*e4b17023SJohn Marino {
662*e4b17023SJohn Marino   return have_similar_memory_accesses (RDG_STMT (rdg, v1),
663*e4b17023SJohn Marino 				       RDG_STMT (rdg, v2));
664*e4b17023SJohn Marino }
665*e4b17023SJohn Marino 
666*e4b17023SJohn Marino /* In tree-data-ref.c  */
667*e4b17023SJohn Marino void split_constant_offset (tree , tree *, tree *);
668*e4b17023SJohn Marino 
669*e4b17023SJohn Marino /* Strongly connected components of the reduced data dependence graph.  */
670*e4b17023SJohn Marino 
671*e4b17023SJohn Marino typedef struct rdg_component
672*e4b17023SJohn Marino {
673*e4b17023SJohn Marino   int num;
674*e4b17023SJohn Marino   VEC (int, heap) *vertices;
675*e4b17023SJohn Marino } *rdgc;
676*e4b17023SJohn Marino 
677*e4b17023SJohn Marino DEF_VEC_P (rdgc);
678*e4b17023SJohn Marino DEF_VEC_ALLOC_P (rdgc, heap);
679*e4b17023SJohn Marino 
680*e4b17023SJohn Marino DEF_VEC_P (bitmap);
681*e4b17023SJohn Marino DEF_VEC_ALLOC_P (bitmap, heap);
682*e4b17023SJohn Marino 
683*e4b17023SJohn Marino /* Compute the greatest common divisor of a VECTOR of SIZE numbers.  */
684*e4b17023SJohn Marino 
685*e4b17023SJohn Marino static inline int
lambda_vector_gcd(lambda_vector vector,int size)686*e4b17023SJohn Marino lambda_vector_gcd (lambda_vector vector, int size)
687*e4b17023SJohn Marino {
688*e4b17023SJohn Marino   int i;
689*e4b17023SJohn Marino   int gcd1 = 0;
690*e4b17023SJohn Marino 
691*e4b17023SJohn Marino   if (size > 0)
692*e4b17023SJohn Marino     {
693*e4b17023SJohn Marino       gcd1 = vector[0];
694*e4b17023SJohn Marino       for (i = 1; i < size; i++)
695*e4b17023SJohn Marino 	gcd1 = gcd (gcd1, vector[i]);
696*e4b17023SJohn Marino     }
697*e4b17023SJohn Marino   return gcd1;
698*e4b17023SJohn Marino }
699*e4b17023SJohn Marino 
700*e4b17023SJohn Marino /* Allocate a new vector of given SIZE.  */
701*e4b17023SJohn Marino 
702*e4b17023SJohn Marino static inline lambda_vector
lambda_vector_new(int size)703*e4b17023SJohn Marino lambda_vector_new (int size)
704*e4b17023SJohn Marino {
705*e4b17023SJohn Marino   return (lambda_vector) ggc_alloc_cleared_atomic (sizeof (int) * size);
706*e4b17023SJohn Marino }
707*e4b17023SJohn Marino 
708*e4b17023SJohn Marino /* Clear out vector VEC1 of length SIZE.  */
709*e4b17023SJohn Marino 
710*e4b17023SJohn Marino static inline void
lambda_vector_clear(lambda_vector vec1,int size)711*e4b17023SJohn Marino lambda_vector_clear (lambda_vector vec1, int size)
712*e4b17023SJohn Marino {
713*e4b17023SJohn Marino   memset (vec1, 0, size * sizeof (*vec1));
714*e4b17023SJohn Marino }
715*e4b17023SJohn Marino 
716*e4b17023SJohn Marino /* Returns true when the vector V is lexicographically positive, in
717*e4b17023SJohn Marino    other words, when the first nonzero element is positive.  */
718*e4b17023SJohn Marino 
719*e4b17023SJohn Marino static inline bool
lambda_vector_lexico_pos(lambda_vector v,unsigned n)720*e4b17023SJohn Marino lambda_vector_lexico_pos (lambda_vector v,
721*e4b17023SJohn Marino 			  unsigned n)
722*e4b17023SJohn Marino {
723*e4b17023SJohn Marino   unsigned i;
724*e4b17023SJohn Marino   for (i = 0; i < n; i++)
725*e4b17023SJohn Marino     {
726*e4b17023SJohn Marino       if (v[i] == 0)
727*e4b17023SJohn Marino 	continue;
728*e4b17023SJohn Marino       if (v[i] < 0)
729*e4b17023SJohn Marino 	return false;
730*e4b17023SJohn Marino       if (v[i] > 0)
731*e4b17023SJohn Marino 	return true;
732*e4b17023SJohn Marino     }
733*e4b17023SJohn Marino   return true;
734*e4b17023SJohn Marino }
735*e4b17023SJohn Marino 
736*e4b17023SJohn Marino /* Return true if vector VEC1 of length SIZE is the zero vector.  */
737*e4b17023SJohn Marino 
738*e4b17023SJohn Marino static inline bool
lambda_vector_zerop(lambda_vector vec1,int size)739*e4b17023SJohn Marino lambda_vector_zerop (lambda_vector vec1, int size)
740*e4b17023SJohn Marino {
741*e4b17023SJohn Marino   int i;
742*e4b17023SJohn Marino   for (i = 0; i < size; i++)
743*e4b17023SJohn Marino     if (vec1[i] != 0)
744*e4b17023SJohn Marino       return false;
745*e4b17023SJohn Marino   return true;
746*e4b17023SJohn Marino }
747*e4b17023SJohn Marino 
748*e4b17023SJohn Marino /* Allocate a matrix of M rows x  N cols.  */
749*e4b17023SJohn Marino 
750*e4b17023SJohn Marino static inline lambda_matrix
lambda_matrix_new(int m,int n,struct obstack * lambda_obstack)751*e4b17023SJohn Marino lambda_matrix_new (int m, int n, struct obstack *lambda_obstack)
752*e4b17023SJohn Marino {
753*e4b17023SJohn Marino   lambda_matrix mat;
754*e4b17023SJohn Marino   int i;
755*e4b17023SJohn Marino 
756*e4b17023SJohn Marino   mat = (lambda_matrix) obstack_alloc (lambda_obstack,
757*e4b17023SJohn Marino 				       sizeof (lambda_vector *) * m);
758*e4b17023SJohn Marino 
759*e4b17023SJohn Marino   for (i = 0; i < m; i++)
760*e4b17023SJohn Marino     mat[i] = lambda_vector_new (n);
761*e4b17023SJohn Marino 
762*e4b17023SJohn Marino   return mat;
763*e4b17023SJohn Marino }
764*e4b17023SJohn Marino 
765*e4b17023SJohn Marino #endif  /* GCC_TREE_DATA_REF_H  */
766