xref: /dflybsd-src/contrib/gcc-4.7/gcc/doc/generic.texi (revision 81fc95a5293ee307c688a350a3feb4734aaddbb4)
1e4b17023SJohn Marino@c Copyright (c) 2004, 2005, 2007, 2008, 2010 Free Software Foundation, Inc.
2e4b17023SJohn Marino@c Free Software Foundation, Inc.
3e4b17023SJohn Marino@c This is part of the GCC manual.
4e4b17023SJohn Marino@c For copying conditions, see the file gcc.texi.
5e4b17023SJohn Marino
6e4b17023SJohn Marino@c ---------------------------------------------------------------------
7e4b17023SJohn Marino@c GENERIC
8e4b17023SJohn Marino@c ---------------------------------------------------------------------
9e4b17023SJohn Marino
10e4b17023SJohn Marino@node GENERIC
11e4b17023SJohn Marino@chapter GENERIC
12e4b17023SJohn Marino@cindex GENERIC
13e4b17023SJohn Marino
14e4b17023SJohn MarinoThe purpose of GENERIC is simply to provide a
15e4b17023SJohn Marinolanguage-independent way of representing an entire function in
16e4b17023SJohn Marinotrees.  To this end, it was necessary to add a few new tree codes
17e4b17023SJohn Marinoto the back end, but most everything was already there.  If you
18e4b17023SJohn Marinocan express it with the codes in @code{gcc/tree.def}, it's
19e4b17023SJohn MarinoGENERIC@.
20e4b17023SJohn Marino
21e4b17023SJohn MarinoEarly on, there was a great deal of debate about how to think
22e4b17023SJohn Marinoabout statements in a tree IL@.  In GENERIC, a statement is
23e4b17023SJohn Marinodefined as any expression whose value, if any, is ignored.  A
24e4b17023SJohn Marinostatement will always have @code{TREE_SIDE_EFFECTS} set (or it
25e4b17023SJohn Marinowill be discarded), but a non-statement expression may also have
26e4b17023SJohn Marinoside effects.  A @code{CALL_EXPR}, for instance.
27e4b17023SJohn Marino
28e4b17023SJohn MarinoIt would be possible for some local optimizations to work on the
29e4b17023SJohn MarinoGENERIC form of a function; indeed, the adapted tree inliner
30e4b17023SJohn Marinoworks fine on GENERIC, but the current compiler performs inlining
31e4b17023SJohn Marinoafter lowering to GIMPLE (a restricted form described in the next
32e4b17023SJohn Marinosection). Indeed, currently the frontends perform this lowering
33e4b17023SJohn Marinobefore handing off to @code{tree_rest_of_compilation}, but this
34e4b17023SJohn Marinoseems inelegant.
35e4b17023SJohn Marino
36e4b17023SJohn Marino@menu
37e4b17023SJohn Marino* Deficiencies::                Topics net yet covered in this document.
38e4b17023SJohn Marino* Tree overview::               All about @code{tree}s.
39e4b17023SJohn Marino* Types::                       Fundamental and aggregate types.
40e4b17023SJohn Marino* Declarations::                Type declarations and variables.
41e4b17023SJohn Marino* Attributes::                  Declaration and type attributes.
42e4b17023SJohn Marino* Expressions: Expression trees.            Operating on data.
43e4b17023SJohn Marino* Statements::                  Control flow and related trees.
44e4b17023SJohn Marino* Functions::           	Function bodies, linkage, and other aspects.
45e4b17023SJohn Marino* Language-dependent trees::    Topics and trees specific to language front ends.
46e4b17023SJohn Marino* C and C++ Trees::     	Trees specific to C and C++.
47e4b17023SJohn Marino* Java Trees:: 	                Trees specific to Java.
48e4b17023SJohn Marino@end menu
49e4b17023SJohn Marino
50e4b17023SJohn Marino@c ---------------------------------------------------------------------
51e4b17023SJohn Marino@c Deficiencies
52e4b17023SJohn Marino@c ---------------------------------------------------------------------
53e4b17023SJohn Marino
54e4b17023SJohn Marino@node Deficiencies
55e4b17023SJohn Marino@section Deficiencies
56e4b17023SJohn Marino
57e4b17023SJohn MarinoThere are many places in which this document is incomplet and incorrekt.
58e4b17023SJohn MarinoIt is, as of yet, only @emph{preliminary} documentation.
59e4b17023SJohn Marino
60e4b17023SJohn Marino@c ---------------------------------------------------------------------
61e4b17023SJohn Marino@c Overview
62e4b17023SJohn Marino@c ---------------------------------------------------------------------
63e4b17023SJohn Marino
64e4b17023SJohn Marino@node Tree overview
65e4b17023SJohn Marino@section Overview
66e4b17023SJohn Marino@cindex tree
67e4b17023SJohn Marino@findex TREE_CODE
68e4b17023SJohn Marino
69e4b17023SJohn MarinoThe central data structure used by the internal representation is the
70e4b17023SJohn Marino@code{tree}.  These nodes, while all of the C type @code{tree}, are of
71e4b17023SJohn Marinomany varieties.  A @code{tree} is a pointer type, but the object to
72e4b17023SJohn Marinowhich it points may be of a variety of types.  From this point forward,
73e4b17023SJohn Marinowe will refer to trees in ordinary type, rather than in @code{this
74e4b17023SJohn Marinofont}, except when talking about the actual C type @code{tree}.
75e4b17023SJohn Marino
76e4b17023SJohn MarinoYou can tell what kind of node a particular tree is by using the
77e4b17023SJohn Marino@code{TREE_CODE} macro.  Many, many macros take trees as input and
78e4b17023SJohn Marinoreturn trees as output.  However, most macros require a certain kind of
79e4b17023SJohn Marinotree node as input.  In other words, there is a type-system for trees,
80e4b17023SJohn Marinobut it is not reflected in the C type-system.
81e4b17023SJohn Marino
82e4b17023SJohn MarinoFor safety, it is useful to configure GCC with @option{--enable-checking}.
83e4b17023SJohn MarinoAlthough this results in a significant performance penalty (since all
84e4b17023SJohn Marinotree types are checked at run-time), and is therefore inappropriate in a
85e4b17023SJohn Marinorelease version, it is extremely helpful during the development process.
86e4b17023SJohn Marino
87e4b17023SJohn MarinoMany macros behave as predicates.  Many, although not all, of these
88e4b17023SJohn Marinopredicates end in @samp{_P}.  Do not rely on the result type of these
89e4b17023SJohn Marinomacros being of any particular type.  You may, however, rely on the fact
90e4b17023SJohn Marinothat the type can be compared to @code{0}, so that statements like
91e4b17023SJohn Marino@smallexample
92e4b17023SJohn Marinoif (TEST_P (t) && !TEST_P (y))
93e4b17023SJohn Marino  x = 1;
94e4b17023SJohn Marino@end smallexample
95e4b17023SJohn Marino@noindent
96e4b17023SJohn Marinoand
97e4b17023SJohn Marino@smallexample
98e4b17023SJohn Marinoint i = (TEST_P (t) != 0);
99e4b17023SJohn Marino@end smallexample
100e4b17023SJohn Marino@noindent
101e4b17023SJohn Marinoare legal.  Macros that return @code{int} values now may be changed to
102e4b17023SJohn Marinoreturn @code{tree} values, or other pointers in the future.  Even those
103e4b17023SJohn Marinothat continue to return @code{int} may return multiple nonzero codes
104e4b17023SJohn Marinowhere previously they returned only zero and one.  Therefore, you should
105e4b17023SJohn Marinonot write code like
106e4b17023SJohn Marino@smallexample
107e4b17023SJohn Marinoif (TEST_P (t) == 1)
108e4b17023SJohn Marino@end smallexample
109e4b17023SJohn Marino@noindent
110e4b17023SJohn Marinoas this code is not guaranteed to work correctly in the future.
111e4b17023SJohn Marino
112e4b17023SJohn MarinoYou should not take the address of values returned by the macros or
113e4b17023SJohn Marinofunctions described here.  In particular, no guarantee is given that the
114e4b17023SJohn Marinovalues are lvalues.
115e4b17023SJohn Marino
116e4b17023SJohn MarinoIn general, the names of macros are all in uppercase, while the names of
117e4b17023SJohn Marinofunctions are entirely in lowercase.  There are rare exceptions to this
118e4b17023SJohn Marinorule.  You should assume that any macro or function whose name is made
119e4b17023SJohn Marinoup entirely of uppercase letters may evaluate its arguments more than
120e4b17023SJohn Marinoonce.  You may assume that a macro or function whose name is made up
121e4b17023SJohn Marinoentirely of lowercase letters will evaluate its arguments only once.
122e4b17023SJohn Marino
123e4b17023SJohn MarinoThe @code{error_mark_node} is a special tree.  Its tree code is
124e4b17023SJohn Marino@code{ERROR_MARK}, but since there is only ever one node with that code,
125e4b17023SJohn Marinothe usual practice is to compare the tree against
126e4b17023SJohn Marino@code{error_mark_node}.  (This test is just a test for pointer
127e4b17023SJohn Marinoequality.)  If an error has occurred during front-end processing the
128e4b17023SJohn Marinoflag @code{errorcount} will be set.  If the front end has encountered
129e4b17023SJohn Marinocode it cannot handle, it will issue a message to the user and set
130e4b17023SJohn Marino@code{sorrycount}.  When these flags are set, any macro or function
131e4b17023SJohn Marinowhich normally returns a tree of a particular kind may instead return
132e4b17023SJohn Marinothe @code{error_mark_node}.  Thus, if you intend to do any processing of
133e4b17023SJohn Marinoerroneous code, you must be prepared to deal with the
134e4b17023SJohn Marino@code{error_mark_node}.
135e4b17023SJohn Marino
136e4b17023SJohn MarinoOccasionally, a particular tree slot (like an operand to an expression,
137e4b17023SJohn Marinoor a particular field in a declaration) will be referred to as
138e4b17023SJohn Marino``reserved for the back end''.  These slots are used to store RTL when
139e4b17023SJohn Marinothe tree is converted to RTL for use by the GCC back end.  However, if
140e4b17023SJohn Marinothat process is not taking place (e.g., if the front end is being hooked
141e4b17023SJohn Marinoup to an intelligent editor), then those slots may be used by the
142e4b17023SJohn Marinoback end presently in use.
143e4b17023SJohn Marino
144e4b17023SJohn MarinoIf you encounter situations that do not match this documentation, such
145e4b17023SJohn Marinoas tree nodes of types not mentioned here, or macros documented to
146e4b17023SJohn Marinoreturn entities of a particular kind that instead return entities of
147e4b17023SJohn Marinosome different kind, you have found a bug, either in the front end or in
148e4b17023SJohn Marinothe documentation.  Please report these bugs as you would any other
149e4b17023SJohn Marinobug.
150e4b17023SJohn Marino
151e4b17023SJohn Marino@menu
152e4b17023SJohn Marino* Macros and Functions::Macros and functions that can be used with all trees.
153e4b17023SJohn Marino* Identifiers::         The names of things.
154e4b17023SJohn Marino* Containers::          Lists and vectors.
155e4b17023SJohn Marino@end menu
156e4b17023SJohn Marino
157e4b17023SJohn Marino@c ---------------------------------------------------------------------
158e4b17023SJohn Marino@c Trees
159e4b17023SJohn Marino@c ---------------------------------------------------------------------
160e4b17023SJohn Marino
161e4b17023SJohn Marino@node Macros and Functions
162e4b17023SJohn Marino@subsection Trees
163e4b17023SJohn Marino@cindex tree
164e4b17023SJohn Marino@findex TREE_CHAIN
165e4b17023SJohn Marino@findex TREE_TYPE
166e4b17023SJohn Marino
167e4b17023SJohn MarinoAll GENERIC trees have two fields in common.  First, @code{TREE_CHAIN}
168e4b17023SJohn Marinois a pointer that can be used as a singly-linked list to other trees.
169e4b17023SJohn MarinoThe other is @code{TREE_TYPE}.  Many trees store the type of an
170e4b17023SJohn Marinoexpression or declaration in this field.
171e4b17023SJohn Marino
172e4b17023SJohn MarinoThese are some other functions for handling trees:
173e4b17023SJohn Marino
174e4b17023SJohn Marino@ftable @code
175e4b17023SJohn Marino
176e4b17023SJohn Marino@item tree_size
177e4b17023SJohn MarinoReturn the number of bytes a tree takes.
178e4b17023SJohn Marino
179e4b17023SJohn Marino@item build0
180e4b17023SJohn Marino@itemx build1
181e4b17023SJohn Marino@itemx build2
182e4b17023SJohn Marino@itemx build3
183e4b17023SJohn Marino@itemx build4
184e4b17023SJohn Marino@itemx build5
185e4b17023SJohn Marino@itemx build6
186e4b17023SJohn Marino
187e4b17023SJohn MarinoThese functions build a tree and supply values to put in each
188e4b17023SJohn Marinoparameter.  The basic signature is @samp{@w{code, type, [operands]}}.
189e4b17023SJohn Marino@code{code} is the @code{TREE_CODE}, and @code{type} is a tree
190e4b17023SJohn Marinorepresenting the @code{TREE_TYPE}.  These are followed by the
191e4b17023SJohn Marinooperands, each of which is also a tree.
192e4b17023SJohn Marino
193e4b17023SJohn Marino@end ftable
194e4b17023SJohn Marino
195e4b17023SJohn Marino
196e4b17023SJohn Marino@c ---------------------------------------------------------------------
197e4b17023SJohn Marino@c Identifiers
198e4b17023SJohn Marino@c ---------------------------------------------------------------------
199e4b17023SJohn Marino
200e4b17023SJohn Marino@node Identifiers
201e4b17023SJohn Marino@subsection Identifiers
202e4b17023SJohn Marino@cindex identifier
203e4b17023SJohn Marino@cindex name
204e4b17023SJohn Marino@tindex IDENTIFIER_NODE
205e4b17023SJohn Marino
206e4b17023SJohn MarinoAn @code{IDENTIFIER_NODE} represents a slightly more general concept
207e4b17023SJohn Marinothat the standard C or C++ concept of identifier.  In particular, an
208e4b17023SJohn Marino@code{IDENTIFIER_NODE} may contain a @samp{$}, or other extraordinary
209e4b17023SJohn Marinocharacters.
210e4b17023SJohn Marino
211e4b17023SJohn MarinoThere are never two distinct @code{IDENTIFIER_NODE}s representing the
212e4b17023SJohn Marinosame identifier.  Therefore, you may use pointer equality to compare
213e4b17023SJohn Marino@code{IDENTIFIER_NODE}s, rather than using a routine like
214e4b17023SJohn Marino@code{strcmp}.  Use @code{get_identifier} to obtain the unique
215e4b17023SJohn Marino@code{IDENTIFIER_NODE} for a supplied string.
216e4b17023SJohn Marino
217e4b17023SJohn MarinoYou can use the following macros to access identifiers:
218e4b17023SJohn Marino@ftable @code
219e4b17023SJohn Marino@item IDENTIFIER_POINTER
220e4b17023SJohn MarinoThe string represented by the identifier, represented as a
221e4b17023SJohn Marino@code{char*}.  This string is always @code{NUL}-terminated, and contains
222e4b17023SJohn Marinono embedded @code{NUL} characters.
223e4b17023SJohn Marino
224e4b17023SJohn Marino@item IDENTIFIER_LENGTH
225e4b17023SJohn MarinoThe length of the string returned by @code{IDENTIFIER_POINTER}, not
226e4b17023SJohn Marinoincluding the trailing @code{NUL}.  This value of
227e4b17023SJohn Marino@code{IDENTIFIER_LENGTH (x)} is always the same as @code{strlen
228e4b17023SJohn Marino(IDENTIFIER_POINTER (x))}.
229e4b17023SJohn Marino
230e4b17023SJohn Marino@item IDENTIFIER_OPNAME_P
231e4b17023SJohn MarinoThis predicate holds if the identifier represents the name of an
232e4b17023SJohn Marinooverloaded operator.  In this case, you should not depend on the
233e4b17023SJohn Marinocontents of either the @code{IDENTIFIER_POINTER} or the
234e4b17023SJohn Marino@code{IDENTIFIER_LENGTH}.
235e4b17023SJohn Marino
236e4b17023SJohn Marino@item IDENTIFIER_TYPENAME_P
237e4b17023SJohn MarinoThis predicate holds if the identifier represents the name of a
238e4b17023SJohn Marinouser-defined conversion operator.  In this case, the @code{TREE_TYPE} of
239e4b17023SJohn Marinothe @code{IDENTIFIER_NODE} holds the type to which the conversion
240e4b17023SJohn Marinooperator converts.
241e4b17023SJohn Marino
242e4b17023SJohn Marino@end ftable
243e4b17023SJohn Marino
244e4b17023SJohn Marino@c ---------------------------------------------------------------------
245e4b17023SJohn Marino@c Containers
246e4b17023SJohn Marino@c ---------------------------------------------------------------------
247e4b17023SJohn Marino
248e4b17023SJohn Marino@node Containers
249e4b17023SJohn Marino@subsection Containers
250e4b17023SJohn Marino@cindex container
251e4b17023SJohn Marino@cindex list
252e4b17023SJohn Marino@cindex vector
253e4b17023SJohn Marino@tindex TREE_LIST
254e4b17023SJohn Marino@tindex TREE_VEC
255e4b17023SJohn Marino@findex TREE_PURPOSE
256e4b17023SJohn Marino@findex TREE_VALUE
257e4b17023SJohn Marino@findex TREE_VEC_LENGTH
258e4b17023SJohn Marino@findex TREE_VEC_ELT
259e4b17023SJohn Marino
260e4b17023SJohn MarinoTwo common container data structures can be represented directly with
261e4b17023SJohn Marinotree nodes.  A @code{TREE_LIST} is a singly linked list containing two
262e4b17023SJohn Marinotrees per node.  These are the @code{TREE_PURPOSE} and @code{TREE_VALUE}
263e4b17023SJohn Marinoof each node.  (Often, the @code{TREE_PURPOSE} contains some kind of
264e4b17023SJohn Marinotag, or additional information, while the @code{TREE_VALUE} contains the
265e4b17023SJohn Marinomajority of the payload.  In other cases, the @code{TREE_PURPOSE} is
266e4b17023SJohn Marinosimply @code{NULL_TREE}, while in still others both the
267e4b17023SJohn Marino@code{TREE_PURPOSE} and @code{TREE_VALUE} are of equal stature.)  Given
268e4b17023SJohn Marinoone @code{TREE_LIST} node, the next node is found by following the
269e4b17023SJohn Marino@code{TREE_CHAIN}.  If the @code{TREE_CHAIN} is @code{NULL_TREE}, then
270e4b17023SJohn Marinoyou have reached the end of the list.
271e4b17023SJohn Marino
272e4b17023SJohn MarinoA @code{TREE_VEC} is a simple vector.  The @code{TREE_VEC_LENGTH} is an
273e4b17023SJohn Marinointeger (not a tree) giving the number of nodes in the vector.  The
274e4b17023SJohn Marinonodes themselves are accessed using the @code{TREE_VEC_ELT} macro, which
275e4b17023SJohn Marinotakes two arguments.  The first is the @code{TREE_VEC} in question; the
276e4b17023SJohn Marinosecond is an integer indicating which element in the vector is desired.
277e4b17023SJohn MarinoThe elements are indexed from zero.
278e4b17023SJohn Marino
279e4b17023SJohn Marino@c ---------------------------------------------------------------------
280e4b17023SJohn Marino@c Types
281e4b17023SJohn Marino@c ---------------------------------------------------------------------
282e4b17023SJohn Marino
283e4b17023SJohn Marino@node Types
284e4b17023SJohn Marino@section Types
285e4b17023SJohn Marino@cindex type
286e4b17023SJohn Marino@cindex pointer
287e4b17023SJohn Marino@cindex reference
288e4b17023SJohn Marino@cindex fundamental type
289e4b17023SJohn Marino@cindex array
290e4b17023SJohn Marino@tindex VOID_TYPE
291e4b17023SJohn Marino@tindex INTEGER_TYPE
292e4b17023SJohn Marino@tindex TYPE_MIN_VALUE
293e4b17023SJohn Marino@tindex TYPE_MAX_VALUE
294e4b17023SJohn Marino@tindex REAL_TYPE
295e4b17023SJohn Marino@tindex FIXED_POINT_TYPE
296e4b17023SJohn Marino@tindex COMPLEX_TYPE
297e4b17023SJohn Marino@tindex ENUMERAL_TYPE
298e4b17023SJohn Marino@tindex BOOLEAN_TYPE
299e4b17023SJohn Marino@tindex POINTER_TYPE
300e4b17023SJohn Marino@tindex REFERENCE_TYPE
301e4b17023SJohn Marino@tindex FUNCTION_TYPE
302e4b17023SJohn Marino@tindex METHOD_TYPE
303e4b17023SJohn Marino@tindex ARRAY_TYPE
304e4b17023SJohn Marino@tindex RECORD_TYPE
305e4b17023SJohn Marino@tindex UNION_TYPE
306e4b17023SJohn Marino@tindex UNKNOWN_TYPE
307e4b17023SJohn Marino@tindex OFFSET_TYPE
308e4b17023SJohn Marino@findex TYPE_UNQUALIFIED
309e4b17023SJohn Marino@findex TYPE_QUAL_CONST
310e4b17023SJohn Marino@findex TYPE_QUAL_VOLATILE
311e4b17023SJohn Marino@findex TYPE_QUAL_RESTRICT
312e4b17023SJohn Marino@findex TYPE_MAIN_VARIANT
313e4b17023SJohn Marino@cindex qualified type
314e4b17023SJohn Marino@findex TYPE_SIZE
315e4b17023SJohn Marino@findex TYPE_ALIGN
316e4b17023SJohn Marino@findex TYPE_PRECISION
317e4b17023SJohn Marino@findex TYPE_ARG_TYPES
318e4b17023SJohn Marino@findex TYPE_METHOD_BASETYPE
319e4b17023SJohn Marino@findex TYPE_OFFSET_BASETYPE
320e4b17023SJohn Marino@findex TREE_TYPE
321e4b17023SJohn Marino@findex TYPE_CONTEXT
322e4b17023SJohn Marino@findex TYPE_NAME
323e4b17023SJohn Marino@findex TYPENAME_TYPE_FULLNAME
324e4b17023SJohn Marino@findex TYPE_FIELDS
325e4b17023SJohn Marino@findex TYPE_CANONICAL
326e4b17023SJohn Marino@findex TYPE_STRUCTURAL_EQUALITY_P
327e4b17023SJohn Marino@findex SET_TYPE_STRUCTURAL_EQUALITY
328e4b17023SJohn Marino
329e4b17023SJohn MarinoAll types have corresponding tree nodes.  However, you should not assume
330e4b17023SJohn Marinothat there is exactly one tree node corresponding to each type.  There
331e4b17023SJohn Marinoare often multiple nodes corresponding to the same type.
332e4b17023SJohn Marino
333e4b17023SJohn MarinoFor the most part, different kinds of types have different tree codes.
334e4b17023SJohn Marino(For example, pointer types use a @code{POINTER_TYPE} code while arrays
335e4b17023SJohn Marinouse an @code{ARRAY_TYPE} code.)  However, pointers to member functions
336e4b17023SJohn Marinouse the @code{RECORD_TYPE} code.  Therefore, when writing a
337e4b17023SJohn Marino@code{switch} statement that depends on the code associated with a
338e4b17023SJohn Marinoparticular type, you should take care to handle pointers to member
339e4b17023SJohn Marinofunctions under the @code{RECORD_TYPE} case label.
340e4b17023SJohn Marino
341e4b17023SJohn MarinoThe following functions and macros deal with cv-qualification of types:
342e4b17023SJohn Marino@ftable @code
343e4b17023SJohn Marino@item TYPE_MAIN_VARIANT
344e4b17023SJohn MarinoThis macro returns the unqualified version of a type.  It may be applied
345e4b17023SJohn Marinoto an unqualified type, but it is not always the identity function in
346e4b17023SJohn Marinothat case.
347e4b17023SJohn Marino@end ftable
348e4b17023SJohn Marino
349e4b17023SJohn MarinoA few other macros and functions are usable with all types:
350e4b17023SJohn Marino@ftable @code
351e4b17023SJohn Marino@item TYPE_SIZE
352e4b17023SJohn MarinoThe number of bits required to represent the type, represented as an
353e4b17023SJohn Marino@code{INTEGER_CST}.  For an incomplete type, @code{TYPE_SIZE} will be
354e4b17023SJohn Marino@code{NULL_TREE}.
355e4b17023SJohn Marino
356e4b17023SJohn Marino@item TYPE_ALIGN
357e4b17023SJohn MarinoThe alignment of the type, in bits, represented as an @code{int}.
358e4b17023SJohn Marino
359e4b17023SJohn Marino@item TYPE_NAME
360e4b17023SJohn MarinoThis macro returns a declaration (in the form of a @code{TYPE_DECL}) for
361e4b17023SJohn Marinothe type.  (Note this macro does @emph{not} return an
362e4b17023SJohn Marino@code{IDENTIFIER_NODE}, as you might expect, given its name!)  You can
363e4b17023SJohn Marinolook at the @code{DECL_NAME} of the @code{TYPE_DECL} to obtain the
364e4b17023SJohn Marinoactual name of the type.  The @code{TYPE_NAME} will be @code{NULL_TREE}
365e4b17023SJohn Marinofor a type that is not a built-in type, the result of a typedef, or a
366e4b17023SJohn Marinonamed class type.
367e4b17023SJohn Marino
368e4b17023SJohn Marino@item TYPE_CANONICAL
369e4b17023SJohn MarinoThis macro returns the ``canonical'' type for the given type
370e4b17023SJohn Marinonode. Canonical types are used to improve performance in the C++ and
371e4b17023SJohn MarinoObjective-C++ front ends by allowing efficient comparison between two
372e4b17023SJohn Marinotype nodes in @code{same_type_p}: if the @code{TYPE_CANONICAL} values
373e4b17023SJohn Marinoof the types are equal, the types are equivalent; otherwise, the types
374e4b17023SJohn Marinoare not equivalent. The notion of equivalence for canonical types is
375e4b17023SJohn Marinothe same as the notion of type equivalence in the language itself. For
376e4b17023SJohn Marinoinstance,
377e4b17023SJohn Marino
378e4b17023SJohn MarinoWhen @code{TYPE_CANONICAL} is @code{NULL_TREE}, there is no canonical
379e4b17023SJohn Marinotype for the given type node. In this case, comparison between this
380e4b17023SJohn Marinotype and any other type requires the compiler to perform a deep,
381e4b17023SJohn Marino``structural'' comparison to see if the two type nodes have the same
382e4b17023SJohn Marinoform and properties.
383e4b17023SJohn Marino
384e4b17023SJohn MarinoThe canonical type for a node is always the most fundamental type in
385e4b17023SJohn Marinothe equivalence class of types. For instance, @code{int} is its own
386e4b17023SJohn Marinocanonical type. A typedef @code{I} of @code{int} will have @code{int}
387e4b17023SJohn Marinoas its canonical type. Similarly, @code{I*}@ and a typedef @code{IP}@
388e4b17023SJohn Marino(defined to @code{I*}) will has @code{int*} as their canonical
389e4b17023SJohn Marinotype. When building a new type node, be sure to set
390e4b17023SJohn Marino@code{TYPE_CANONICAL} to the appropriate canonical type. If the new
391e4b17023SJohn Marinotype is a compound type (built from other types), and any of those
392e4b17023SJohn Marinoother types require structural equality, use
393e4b17023SJohn Marino@code{SET_TYPE_STRUCTURAL_EQUALITY} to ensure that the new type also
394e4b17023SJohn Marinorequires structural equality. Finally, if for some reason you cannot
395e4b17023SJohn Marinoguarantee that @code{TYPE_CANONICAL} will point to the canonical type,
396e4b17023SJohn Marinouse @code{SET_TYPE_STRUCTURAL_EQUALITY} to make sure that the new
397e4b17023SJohn Marinotype--and any type constructed based on it--requires structural
398e4b17023SJohn Marinoequality. If you suspect that the canonical type system is
399e4b17023SJohn Marinomiscomparing types, pass @code{--param verify-canonical-types=1} to
400e4b17023SJohn Marinothe compiler or configure with @code{--enable-checking} to force the
401e4b17023SJohn Marinocompiler to verify its canonical-type comparisons against the
402e4b17023SJohn Marinostructural comparisons; the compiler will then print any warnings if
403e4b17023SJohn Marinothe canonical types miscompare.
404e4b17023SJohn Marino
405e4b17023SJohn Marino@item TYPE_STRUCTURAL_EQUALITY_P
406e4b17023SJohn MarinoThis predicate holds when the node requires structural equality
407e4b17023SJohn Marinochecks, e.g., when @code{TYPE_CANONICAL} is @code{NULL_TREE}.
408e4b17023SJohn Marino
409e4b17023SJohn Marino@item SET_TYPE_STRUCTURAL_EQUALITY
410e4b17023SJohn MarinoThis macro states that the type node it is given requires structural
411e4b17023SJohn Marinoequality checks, e.g., it sets @code{TYPE_CANONICAL} to
412e4b17023SJohn Marino@code{NULL_TREE}.
413e4b17023SJohn Marino
414e4b17023SJohn Marino@item same_type_p
415e4b17023SJohn MarinoThis predicate takes two types as input, and holds if they are the same
416e4b17023SJohn Marinotype.  For example, if one type is a @code{typedef} for the other, or
417e4b17023SJohn Marinoboth are @code{typedef}s for the same type.  This predicate also holds if
418e4b17023SJohn Marinothe two trees given as input are simply copies of one another; i.e.,
419e4b17023SJohn Marinothere is no difference between them at the source level, but, for
420e4b17023SJohn Marinowhatever reason, a duplicate has been made in the representation.  You
421e4b17023SJohn Marinoshould never use @code{==} (pointer equality) to compare types; always
422e4b17023SJohn Marinouse @code{same_type_p} instead.
423e4b17023SJohn Marino@end ftable
424e4b17023SJohn Marino
425e4b17023SJohn MarinoDetailed below are the various kinds of types, and the macros that can
426e4b17023SJohn Marinobe used to access them.  Although other kinds of types are used
427e4b17023SJohn Marinoelsewhere in G++, the types described here are the only ones that you
428e4b17023SJohn Marinowill encounter while examining the intermediate representation.
429e4b17023SJohn Marino
430e4b17023SJohn Marino@table @code
431e4b17023SJohn Marino@item VOID_TYPE
432e4b17023SJohn MarinoUsed to represent the @code{void} type.
433e4b17023SJohn Marino
434e4b17023SJohn Marino@item INTEGER_TYPE
435e4b17023SJohn MarinoUsed to represent the various integral types, including @code{char},
436e4b17023SJohn Marino@code{short}, @code{int}, @code{long}, and @code{long long}.  This code
437e4b17023SJohn Marinois not used for enumeration types, nor for the @code{bool} type.
438e4b17023SJohn MarinoThe @code{TYPE_PRECISION} is the number of bits used in
439e4b17023SJohn Marinothe representation, represented as an @code{unsigned int}.  (Note that
440e4b17023SJohn Marinoin the general case this is not the same value as @code{TYPE_SIZE};
441e4b17023SJohn Marinosuppose that there were a 24-bit integer type, but that alignment
442e4b17023SJohn Marinorequirements for the ABI required 32-bit alignment.  Then,
443e4b17023SJohn Marino@code{TYPE_SIZE} would be an @code{INTEGER_CST} for 32, while
444e4b17023SJohn Marino@code{TYPE_PRECISION} would be 24.)  The integer type is unsigned if
445e4b17023SJohn Marino@code{TYPE_UNSIGNED} holds; otherwise, it is signed.
446e4b17023SJohn Marino
447e4b17023SJohn MarinoThe @code{TYPE_MIN_VALUE} is an @code{INTEGER_CST} for the smallest
448e4b17023SJohn Marinointeger that may be represented by this type.  Similarly, the
449e4b17023SJohn Marino@code{TYPE_MAX_VALUE} is an @code{INTEGER_CST} for the largest integer
450e4b17023SJohn Marinothat may be represented by this type.
451e4b17023SJohn Marino
452e4b17023SJohn Marino@item REAL_TYPE
453e4b17023SJohn MarinoUsed to represent the @code{float}, @code{double}, and @code{long
454e4b17023SJohn Marinodouble} types.  The number of bits in the floating-point representation
455e4b17023SJohn Marinois given by @code{TYPE_PRECISION}, as in the @code{INTEGER_TYPE} case.
456e4b17023SJohn Marino
457e4b17023SJohn Marino@item FIXED_POINT_TYPE
458e4b17023SJohn MarinoUsed to represent the @code{short _Fract}, @code{_Fract}, @code{long
459e4b17023SJohn Marino_Fract}, @code{long long _Fract}, @code{short _Accum}, @code{_Accum},
460e4b17023SJohn Marino@code{long _Accum}, and @code{long long _Accum} types.  The number of bits
461e4b17023SJohn Marinoin the fixed-point representation is given by @code{TYPE_PRECISION},
462e4b17023SJohn Marinoas in the @code{INTEGER_TYPE} case.  There may be padding bits, fractional
463e4b17023SJohn Marinobits and integral bits.  The number of fractional bits is given by
464e4b17023SJohn Marino@code{TYPE_FBIT}, and the number of integral bits is given by @code{TYPE_IBIT}.
465e4b17023SJohn MarinoThe fixed-point type is unsigned if @code{TYPE_UNSIGNED} holds; otherwise,
466e4b17023SJohn Marinoit is signed.
467e4b17023SJohn MarinoThe fixed-point type is saturating if @code{TYPE_SATURATING} holds; otherwise,
468e4b17023SJohn Marinoit is not saturating.
469e4b17023SJohn Marino
470e4b17023SJohn Marino@item COMPLEX_TYPE
471e4b17023SJohn MarinoUsed to represent GCC built-in @code{__complex__} data types.  The
472e4b17023SJohn Marino@code{TREE_TYPE} is the type of the real and imaginary parts.
473e4b17023SJohn Marino
474e4b17023SJohn Marino@item ENUMERAL_TYPE
475e4b17023SJohn MarinoUsed to represent an enumeration type.  The @code{TYPE_PRECISION} gives
476e4b17023SJohn Marino(as an @code{int}), the number of bits used to represent the type.  If
477e4b17023SJohn Marinothere are no negative enumeration constants, @code{TYPE_UNSIGNED} will
478e4b17023SJohn Marinohold.  The minimum and maximum enumeration constants may be obtained
479e4b17023SJohn Marinowith @code{TYPE_MIN_VALUE} and @code{TYPE_MAX_VALUE}, respectively; each
480e4b17023SJohn Marinoof these macros returns an @code{INTEGER_CST}.
481e4b17023SJohn Marino
482e4b17023SJohn MarinoThe actual enumeration constants themselves may be obtained by looking
483e4b17023SJohn Marinoat the @code{TYPE_VALUES}.  This macro will return a @code{TREE_LIST},
484e4b17023SJohn Marinocontaining the constants.  The @code{TREE_PURPOSE} of each node will be
485e4b17023SJohn Marinoan @code{IDENTIFIER_NODE} giving the name of the constant; the
486e4b17023SJohn Marino@code{TREE_VALUE} will be an @code{INTEGER_CST} giving the value
487e4b17023SJohn Marinoassigned to that constant.  These constants will appear in the order in
488e4b17023SJohn Marinowhich they were declared.  The @code{TREE_TYPE} of each of these
489e4b17023SJohn Marinoconstants will be the type of enumeration type itself.
490e4b17023SJohn Marino
491e4b17023SJohn Marino@item BOOLEAN_TYPE
492e4b17023SJohn MarinoUsed to represent the @code{bool} type.
493e4b17023SJohn Marino
494e4b17023SJohn Marino@item POINTER_TYPE
495e4b17023SJohn MarinoUsed to represent pointer types, and pointer to data member types.  The
496e4b17023SJohn Marino@code{TREE_TYPE} gives the type to which this type points.
497e4b17023SJohn Marino
498e4b17023SJohn Marino@item REFERENCE_TYPE
499e4b17023SJohn MarinoUsed to represent reference types.  The @code{TREE_TYPE} gives the type
500e4b17023SJohn Marinoto which this type refers.
501e4b17023SJohn Marino
502e4b17023SJohn Marino@item FUNCTION_TYPE
503e4b17023SJohn MarinoUsed to represent the type of non-member functions and of static member
504e4b17023SJohn Marinofunctions.  The @code{TREE_TYPE} gives the return type of the function.
505e4b17023SJohn MarinoThe @code{TYPE_ARG_TYPES} are a @code{TREE_LIST} of the argument types.
506e4b17023SJohn MarinoThe @code{TREE_VALUE} of each node in this list is the type of the
507e4b17023SJohn Marinocorresponding argument; the @code{TREE_PURPOSE} is an expression for the
508e4b17023SJohn Marinodefault argument value, if any.  If the last node in the list is
509e4b17023SJohn Marino@code{void_list_node} (a @code{TREE_LIST} node whose @code{TREE_VALUE}
510e4b17023SJohn Marinois the @code{void_type_node}), then functions of this type do not take
511e4b17023SJohn Marinovariable arguments.  Otherwise, they do take a variable number of
512e4b17023SJohn Marinoarguments.
513e4b17023SJohn Marino
514e4b17023SJohn MarinoNote that in C (but not in C++) a function declared like @code{void f()}
515e4b17023SJohn Marinois an unprototyped function taking a variable number of arguments; the
516e4b17023SJohn Marino@code{TYPE_ARG_TYPES} of such a function will be @code{NULL}.
517e4b17023SJohn Marino
518e4b17023SJohn Marino@item METHOD_TYPE
519e4b17023SJohn MarinoUsed to represent the type of a non-static member function.  Like a
520e4b17023SJohn Marino@code{FUNCTION_TYPE}, the return type is given by the @code{TREE_TYPE}.
521e4b17023SJohn MarinoThe type of @code{*this}, i.e., the class of which functions of this
522e4b17023SJohn Marinotype are a member, is given by the @code{TYPE_METHOD_BASETYPE}.  The
523e4b17023SJohn Marino@code{TYPE_ARG_TYPES} is the parameter list, as for a
524e4b17023SJohn Marino@code{FUNCTION_TYPE}, and includes the @code{this} argument.
525e4b17023SJohn Marino
526e4b17023SJohn Marino@item ARRAY_TYPE
527e4b17023SJohn MarinoUsed to represent array types.  The @code{TREE_TYPE} gives the type of
528e4b17023SJohn Marinothe elements in the array.  If the array-bound is present in the type,
529e4b17023SJohn Marinothe @code{TYPE_DOMAIN} is an @code{INTEGER_TYPE} whose
530e4b17023SJohn Marino@code{TYPE_MIN_VALUE} and @code{TYPE_MAX_VALUE} will be the lower and
531e4b17023SJohn Marinoupper bounds of the array, respectively.  The @code{TYPE_MIN_VALUE} will
532e4b17023SJohn Marinoalways be an @code{INTEGER_CST} for zero, while the
533e4b17023SJohn Marino@code{TYPE_MAX_VALUE} will be one less than the number of elements in
534e4b17023SJohn Marinothe array, i.e., the highest value which may be used to index an element
535e4b17023SJohn Marinoin the array.
536e4b17023SJohn Marino
537e4b17023SJohn Marino@item RECORD_TYPE
538e4b17023SJohn MarinoUsed to represent @code{struct} and @code{class} types, as well as
539e4b17023SJohn Marinopointers to member functions and similar constructs in other languages.
540e4b17023SJohn Marino@code{TYPE_FIELDS} contains the items contained in this type, each of
541e4b17023SJohn Marinowhich can be a @code{FIELD_DECL}, @code{VAR_DECL}, @code{CONST_DECL}, or
542e4b17023SJohn Marino@code{TYPE_DECL}.  You may not make any assumptions about the ordering
543e4b17023SJohn Marinoof the fields in the type or whether one or more of them overlap.
544e4b17023SJohn Marino
545e4b17023SJohn Marino@item UNION_TYPE
546e4b17023SJohn MarinoUsed to represent @code{union} types.  Similar to @code{RECORD_TYPE}
547e4b17023SJohn Marinoexcept that all @code{FIELD_DECL} nodes in @code{TYPE_FIELD} start at
548e4b17023SJohn Marinobit position zero.
549e4b17023SJohn Marino
550e4b17023SJohn Marino@item QUAL_UNION_TYPE
551e4b17023SJohn MarinoUsed to represent part of a variant record in Ada.  Similar to
552e4b17023SJohn Marino@code{UNION_TYPE} except that each @code{FIELD_DECL} has a
553e4b17023SJohn Marino@code{DECL_QUALIFIER} field, which contains a boolean expression that
554e4b17023SJohn Marinoindicates whether the field is present in the object.  The type will only
555e4b17023SJohn Marinohave one field, so each field's @code{DECL_QUALIFIER} is only evaluated
556e4b17023SJohn Marinoif none of the expressions in the previous fields in @code{TYPE_FIELDS}
557e4b17023SJohn Marinoare nonzero.  Normally these expressions will reference a field in the
558e4b17023SJohn Marinoouter object using a @code{PLACEHOLDER_EXPR}.
559e4b17023SJohn Marino
560e4b17023SJohn Marino@item LANG_TYPE
561e4b17023SJohn MarinoThis node is used to represent a language-specific type.  The front
562e4b17023SJohn Marinoend must handle it.
563e4b17023SJohn Marino
564e4b17023SJohn Marino@item OFFSET_TYPE
565e4b17023SJohn MarinoThis node is used to represent a pointer-to-data member.  For a data
566e4b17023SJohn Marinomember @code{X::m} the @code{TYPE_OFFSET_BASETYPE} is @code{X} and the
567e4b17023SJohn Marino@code{TREE_TYPE} is the type of @code{m}.
568e4b17023SJohn Marino
569e4b17023SJohn Marino@end table
570e4b17023SJohn Marino
571e4b17023SJohn MarinoThere are variables whose values represent some of the basic types.
572e4b17023SJohn MarinoThese include:
573e4b17023SJohn Marino@table @code
574e4b17023SJohn Marino@item void_type_node
575e4b17023SJohn MarinoA node for @code{void}.
576e4b17023SJohn Marino
577e4b17023SJohn Marino@item integer_type_node
578e4b17023SJohn MarinoA node for @code{int}.
579e4b17023SJohn Marino
580e4b17023SJohn Marino@item unsigned_type_node.
581e4b17023SJohn MarinoA node for @code{unsigned int}.
582e4b17023SJohn Marino
583e4b17023SJohn Marino@item char_type_node.
584e4b17023SJohn MarinoA node for @code{char}.
585e4b17023SJohn Marino@end table
586e4b17023SJohn Marino@noindent
587e4b17023SJohn MarinoIt may sometimes be useful to compare one of these variables with a type
588e4b17023SJohn Marinoin hand, using @code{same_type_p}.
589e4b17023SJohn Marino
590e4b17023SJohn Marino@c ---------------------------------------------------------------------
591e4b17023SJohn Marino@c Declarations
592e4b17023SJohn Marino@c ---------------------------------------------------------------------
593e4b17023SJohn Marino
594e4b17023SJohn Marino@node Declarations
595e4b17023SJohn Marino@section Declarations
596e4b17023SJohn Marino@cindex declaration
597e4b17023SJohn Marino@cindex variable
598e4b17023SJohn Marino@cindex type declaration
599e4b17023SJohn Marino@tindex LABEL_DECL
600e4b17023SJohn Marino@tindex CONST_DECL
601e4b17023SJohn Marino@tindex TYPE_DECL
602e4b17023SJohn Marino@tindex VAR_DECL
603e4b17023SJohn Marino@tindex PARM_DECL
604e4b17023SJohn Marino@tindex DEBUG_EXPR_DECL
605e4b17023SJohn Marino@tindex FIELD_DECL
606e4b17023SJohn Marino@tindex NAMESPACE_DECL
607e4b17023SJohn Marino@tindex RESULT_DECL
608e4b17023SJohn Marino@tindex TEMPLATE_DECL
609e4b17023SJohn Marino@tindex THUNK_DECL
610e4b17023SJohn Marino@findex THUNK_DELTA
611e4b17023SJohn Marino@findex DECL_INITIAL
612e4b17023SJohn Marino@findex DECL_SIZE
613e4b17023SJohn Marino@findex DECL_ALIGN
614e4b17023SJohn Marino@findex DECL_EXTERNAL
615e4b17023SJohn Marino
616e4b17023SJohn MarinoThis section covers the various kinds of declarations that appear in the
617e4b17023SJohn Marinointernal representation, except for declarations of functions
618e4b17023SJohn Marino(represented by @code{FUNCTION_DECL} nodes), which are described in
619e4b17023SJohn Marino@ref{Functions}.
620e4b17023SJohn Marino
621e4b17023SJohn Marino@menu
622e4b17023SJohn Marino* Working with declarations::  Macros and functions that work on
623e4b17023SJohn Marinodeclarations.
624e4b17023SJohn Marino* Internal structure:: How declaration nodes are represented.
625e4b17023SJohn Marino@end menu
626e4b17023SJohn Marino
627e4b17023SJohn Marino@node Working with declarations
628e4b17023SJohn Marino@subsection Working with declarations
629e4b17023SJohn Marino
630e4b17023SJohn MarinoSome macros can be used with any kind of declaration.  These include:
631e4b17023SJohn Marino@ftable @code
632e4b17023SJohn Marino@item DECL_NAME
633e4b17023SJohn MarinoThis macro returns an @code{IDENTIFIER_NODE} giving the name of the
634e4b17023SJohn Marinoentity.
635e4b17023SJohn Marino
636e4b17023SJohn Marino@item TREE_TYPE
637e4b17023SJohn MarinoThis macro returns the type of the entity declared.
638e4b17023SJohn Marino
639e4b17023SJohn Marino@item EXPR_FILENAME
640e4b17023SJohn MarinoThis macro returns the name of the file in which the entity was
641e4b17023SJohn Marinodeclared, as a @code{char*}.  For an entity declared implicitly by the
642e4b17023SJohn Marinocompiler (like @code{__builtin_memcpy}), this will be the string
643e4b17023SJohn Marino@code{"<internal>"}.
644e4b17023SJohn Marino
645e4b17023SJohn Marino@item EXPR_LINENO
646e4b17023SJohn MarinoThis macro returns the line number at which the entity was declared, as
647e4b17023SJohn Marinoan @code{int}.
648e4b17023SJohn Marino
649e4b17023SJohn Marino@item DECL_ARTIFICIAL
650e4b17023SJohn MarinoThis predicate holds if the declaration was implicitly generated by the
651e4b17023SJohn Marinocompiler.  For example, this predicate will hold of an implicitly
652e4b17023SJohn Marinodeclared member function, or of the @code{TYPE_DECL} implicitly
653e4b17023SJohn Marinogenerated for a class type.  Recall that in C++ code like:
654e4b17023SJohn Marino@smallexample
655e4b17023SJohn Marinostruct S @{@};
656e4b17023SJohn Marino@end smallexample
657e4b17023SJohn Marino@noindent
658e4b17023SJohn Marinois roughly equivalent to C code like:
659e4b17023SJohn Marino@smallexample
660e4b17023SJohn Marinostruct S @{@};
661e4b17023SJohn Marinotypedef struct S S;
662e4b17023SJohn Marino@end smallexample
663e4b17023SJohn MarinoThe implicitly generated @code{typedef} declaration is represented by a
664e4b17023SJohn Marino@code{TYPE_DECL} for which @code{DECL_ARTIFICIAL} holds.
665e4b17023SJohn Marino
666e4b17023SJohn Marino@end ftable
667e4b17023SJohn Marino
668e4b17023SJohn MarinoThe various kinds of declarations include:
669e4b17023SJohn Marino@table @code
670e4b17023SJohn Marino@item LABEL_DECL
671e4b17023SJohn MarinoThese nodes are used to represent labels in function bodies.  For more
672e4b17023SJohn Marinoinformation, see @ref{Functions}.  These nodes only appear in block
673e4b17023SJohn Marinoscopes.
674e4b17023SJohn Marino
675e4b17023SJohn Marino@item CONST_DECL
676e4b17023SJohn MarinoThese nodes are used to represent enumeration constants.  The value of
677e4b17023SJohn Marinothe constant is given by @code{DECL_INITIAL} which will be an
678e4b17023SJohn Marino@code{INTEGER_CST} with the same type as the @code{TREE_TYPE} of the
679e4b17023SJohn Marino@code{CONST_DECL}, i.e., an @code{ENUMERAL_TYPE}.
680e4b17023SJohn Marino
681e4b17023SJohn Marino@item RESULT_DECL
682e4b17023SJohn MarinoThese nodes represent the value returned by a function.  When a value is
683e4b17023SJohn Marinoassigned to a @code{RESULT_DECL}, that indicates that the value should
684e4b17023SJohn Marinobe returned, via bitwise copy, by the function.  You can use
685e4b17023SJohn Marino@code{DECL_SIZE} and @code{DECL_ALIGN} on a @code{RESULT_DECL}, just as
686e4b17023SJohn Marinowith a @code{VAR_DECL}.
687e4b17023SJohn Marino
688e4b17023SJohn Marino@item TYPE_DECL
689e4b17023SJohn MarinoThese nodes represent @code{typedef} declarations.  The @code{TREE_TYPE}
690e4b17023SJohn Marinois the type declared to have the name given by @code{DECL_NAME}.  In
691e4b17023SJohn Marinosome cases, there is no associated name.
692e4b17023SJohn Marino
693e4b17023SJohn Marino@item VAR_DECL
694e4b17023SJohn MarinoThese nodes represent variables with namespace or block scope, as well
695e4b17023SJohn Marinoas static data members.  The @code{DECL_SIZE} and @code{DECL_ALIGN} are
696e4b17023SJohn Marinoanalogous to @code{TYPE_SIZE} and @code{TYPE_ALIGN}.  For a declaration,
697e4b17023SJohn Marinoyou should always use the @code{DECL_SIZE} and @code{DECL_ALIGN} rather
698e4b17023SJohn Marinothan the @code{TYPE_SIZE} and @code{TYPE_ALIGN} given by the
699e4b17023SJohn Marino@code{TREE_TYPE}, since special attributes may have been applied to the
700e4b17023SJohn Marinovariable to give it a particular size and alignment.  You may use the
701e4b17023SJohn Marinopredicates @code{DECL_THIS_STATIC} or @code{DECL_THIS_EXTERN} to test
702e4b17023SJohn Marinowhether the storage class specifiers @code{static} or @code{extern} were
703e4b17023SJohn Marinoused to declare a variable.
704e4b17023SJohn Marino
705e4b17023SJohn MarinoIf this variable is initialized (but does not require a constructor),
706e4b17023SJohn Marinothe @code{DECL_INITIAL} will be an expression for the initializer.  The
707e4b17023SJohn Marinoinitializer should be evaluated, and a bitwise copy into the variable
708e4b17023SJohn Marinoperformed.  If the @code{DECL_INITIAL} is the @code{error_mark_node},
709e4b17023SJohn Marinothere is an initializer, but it is given by an explicit statement later
710e4b17023SJohn Marinoin the code; no bitwise copy is required.
711e4b17023SJohn Marino
712e4b17023SJohn MarinoGCC provides an extension that allows either automatic variables, or
713e4b17023SJohn Marinoglobal variables, to be placed in particular registers.  This extension
714e4b17023SJohn Marinois being used for a particular @code{VAR_DECL} if @code{DECL_REGISTER}
715e4b17023SJohn Marinoholds for the @code{VAR_DECL}, and if @code{DECL_ASSEMBLER_NAME} is not
716e4b17023SJohn Marinoequal to @code{DECL_NAME}.  In that case, @code{DECL_ASSEMBLER_NAME} is
717e4b17023SJohn Marinothe name of the register into which the variable will be placed.
718e4b17023SJohn Marino
719e4b17023SJohn Marino@item PARM_DECL
720e4b17023SJohn MarinoUsed to represent a parameter to a function.  Treat these nodes
721e4b17023SJohn Marinosimilarly to @code{VAR_DECL} nodes.  These nodes only appear in the
722e4b17023SJohn Marino@code{DECL_ARGUMENTS} for a @code{FUNCTION_DECL}.
723e4b17023SJohn Marino
724e4b17023SJohn MarinoThe @code{DECL_ARG_TYPE} for a @code{PARM_DECL} is the type that will
725e4b17023SJohn Marinoactually be used when a value is passed to this function.  It may be a
726e4b17023SJohn Marinowider type than the @code{TREE_TYPE} of the parameter; for example, the
727e4b17023SJohn Marinoordinary type might be @code{short} while the @code{DECL_ARG_TYPE} is
728e4b17023SJohn Marino@code{int}.
729e4b17023SJohn Marino
730e4b17023SJohn Marino@item DEBUG_EXPR_DECL
731e4b17023SJohn MarinoUsed to represent an anonymous debug-information temporary created to
732e4b17023SJohn Marinohold an expression as it is optimized away, so that its value can be
733e4b17023SJohn Marinoreferenced in debug bind statements.
734e4b17023SJohn Marino
735e4b17023SJohn Marino@item FIELD_DECL
736e4b17023SJohn MarinoThese nodes represent non-static data members.  The @code{DECL_SIZE} and
737e4b17023SJohn Marino@code{DECL_ALIGN} behave as for @code{VAR_DECL} nodes.
738e4b17023SJohn MarinoThe position of the field within the parent record is specified by a
739e4b17023SJohn Marinocombination of three attributes.  @code{DECL_FIELD_OFFSET} is the position,
740e4b17023SJohn Marinocounting in bytes, of the @code{DECL_OFFSET_ALIGN}-bit sized word containing
741e4b17023SJohn Marinothe bit of the field closest to the beginning of the structure.
742e4b17023SJohn Marino@code{DECL_FIELD_BIT_OFFSET} is the bit offset of the first bit of the field
743e4b17023SJohn Marinowithin this word; this may be nonzero even for fields that are not bit-fields,
744e4b17023SJohn Marinosince @code{DECL_OFFSET_ALIGN} may be greater than the natural alignment
745e4b17023SJohn Marinoof the field's type.
746e4b17023SJohn Marino
747e4b17023SJohn MarinoIf @code{DECL_C_BIT_FIELD} holds, this field is a bit-field.  In a bit-field,
748e4b17023SJohn Marino@code{DECL_BIT_FIELD_TYPE} also contains the type that was originally
749e4b17023SJohn Marinospecified for it, while DECL_TYPE may be a modified type with lesser precision,
750e4b17023SJohn Marinoaccording to the size of the bit field.
751e4b17023SJohn Marino
752e4b17023SJohn Marino@item NAMESPACE_DECL
753e4b17023SJohn MarinoNamespaces provide a name hierarchy for other declarations.  They
754e4b17023SJohn Marinoappear in the @code{DECL_CONTEXT} of other @code{_DECL} nodes.
755e4b17023SJohn Marino
756e4b17023SJohn Marino@end table
757e4b17023SJohn Marino
758e4b17023SJohn Marino@node Internal structure
759e4b17023SJohn Marino@subsection Internal structure
760e4b17023SJohn Marino
761e4b17023SJohn Marino@code{DECL} nodes are represented internally as a hierarchy of
762e4b17023SJohn Marinostructures.
763e4b17023SJohn Marino
764e4b17023SJohn Marino@menu
765e4b17023SJohn Marino* Current structure hierarchy::  The current DECL node structure
766e4b17023SJohn Marinohierarchy.
767e4b17023SJohn Marino* Adding new DECL node types:: How to add a new DECL node to a
768e4b17023SJohn Marinofrontend.
769e4b17023SJohn Marino@end menu
770e4b17023SJohn Marino
771e4b17023SJohn Marino@node Current structure hierarchy
772e4b17023SJohn Marino@subsubsection Current structure hierarchy
773e4b17023SJohn Marino
774e4b17023SJohn Marino@table @code
775e4b17023SJohn Marino
776e4b17023SJohn Marino@item struct tree_decl_minimal
777e4b17023SJohn MarinoThis is the minimal structure to inherit from in order for common
778e4b17023SJohn Marino@code{DECL} macros to work.  The fields it contains are a unique ID,
779e4b17023SJohn Marinosource location, context, and name.
780e4b17023SJohn Marino
781e4b17023SJohn Marino@item struct tree_decl_common
782e4b17023SJohn MarinoThis structure inherits from @code{struct tree_decl_minimal}.  It
783e4b17023SJohn Marinocontains fields that most @code{DECL} nodes need, such as a field to
784e4b17023SJohn Marinostore alignment, machine mode, size, and attributes.
785e4b17023SJohn Marino
786e4b17023SJohn Marino@item struct tree_field_decl
787e4b17023SJohn MarinoThis structure inherits from @code{struct tree_decl_common}.  It is
788e4b17023SJohn Marinoused to represent @code{FIELD_DECL}.
789e4b17023SJohn Marino
790e4b17023SJohn Marino@item struct tree_label_decl
791e4b17023SJohn MarinoThis structure inherits from @code{struct tree_decl_common}.  It is
792e4b17023SJohn Marinoused to represent @code{LABEL_DECL}.
793e4b17023SJohn Marino
794e4b17023SJohn Marino@item struct tree_translation_unit_decl
795e4b17023SJohn MarinoThis structure inherits from @code{struct tree_decl_common}.  It is
796e4b17023SJohn Marinoused to represent @code{TRANSLATION_UNIT_DECL}.
797e4b17023SJohn Marino
798e4b17023SJohn Marino@item struct tree_decl_with_rtl
799e4b17023SJohn MarinoThis structure inherits from @code{struct tree_decl_common}.  It
800e4b17023SJohn Marinocontains a field to store the low-level RTL associated with a
801e4b17023SJohn Marino@code{DECL} node.
802e4b17023SJohn Marino
803e4b17023SJohn Marino@item struct tree_result_decl
804e4b17023SJohn MarinoThis structure inherits from @code{struct tree_decl_with_rtl}.  It is
805e4b17023SJohn Marinoused to represent @code{RESULT_DECL}.
806e4b17023SJohn Marino
807e4b17023SJohn Marino@item struct tree_const_decl
808e4b17023SJohn MarinoThis structure inherits from @code{struct tree_decl_with_rtl}.  It is
809e4b17023SJohn Marinoused to represent @code{CONST_DECL}.
810e4b17023SJohn Marino
811e4b17023SJohn Marino@item struct tree_parm_decl
812e4b17023SJohn MarinoThis structure inherits from @code{struct tree_decl_with_rtl}.  It is
813e4b17023SJohn Marinoused to represent @code{PARM_DECL}.
814e4b17023SJohn Marino
815e4b17023SJohn Marino@item struct tree_decl_with_vis
816e4b17023SJohn MarinoThis structure inherits from @code{struct tree_decl_with_rtl}.  It
817e4b17023SJohn Marinocontains fields necessary to store visibility information, as well as
818e4b17023SJohn Marinoa section name and assembler name.
819e4b17023SJohn Marino
820e4b17023SJohn Marino@item struct tree_var_decl
821e4b17023SJohn MarinoThis structure inherits from @code{struct tree_decl_with_vis}.  It is
822e4b17023SJohn Marinoused to represent @code{VAR_DECL}.
823e4b17023SJohn Marino
824e4b17023SJohn Marino@item struct tree_function_decl
825e4b17023SJohn MarinoThis structure inherits from @code{struct tree_decl_with_vis}.  It is
826e4b17023SJohn Marinoused to represent @code{FUNCTION_DECL}.
827e4b17023SJohn Marino
828e4b17023SJohn Marino@end table
829e4b17023SJohn Marino@node Adding new DECL node types
830e4b17023SJohn Marino@subsubsection Adding new DECL node types
831e4b17023SJohn Marino
832e4b17023SJohn MarinoAdding a new @code{DECL} tree consists of the following steps
833e4b17023SJohn Marino
834e4b17023SJohn Marino@table @asis
835e4b17023SJohn Marino
836e4b17023SJohn Marino@item Add a new tree code for the @code{DECL} node
837e4b17023SJohn MarinoFor language specific @code{DECL} nodes, there is a @file{.def} file
838e4b17023SJohn Marinoin each frontend directory where the tree code should be added.
839e4b17023SJohn MarinoFor @code{DECL} nodes that are part of the middle-end, the code should
840e4b17023SJohn Marinobe added to @file{tree.def}.
841e4b17023SJohn Marino
842e4b17023SJohn Marino@item Create a new structure type for the @code{DECL} node
843e4b17023SJohn MarinoThese structures should inherit from one of the existing structures in
844e4b17023SJohn Marinothe language hierarchy by using that structure as the first member.
845e4b17023SJohn Marino
846e4b17023SJohn Marino@smallexample
847e4b17023SJohn Marinostruct tree_foo_decl
848e4b17023SJohn Marino@{
849e4b17023SJohn Marino   struct tree_decl_with_vis common;
850e4b17023SJohn Marino@}
851e4b17023SJohn Marino@end smallexample
852e4b17023SJohn Marino
853e4b17023SJohn MarinoWould create a structure name @code{tree_foo_decl} that inherits from
854e4b17023SJohn Marino@code{struct tree_decl_with_vis}.
855e4b17023SJohn Marino
856e4b17023SJohn MarinoFor language specific @code{DECL} nodes, this new structure type
857e4b17023SJohn Marinoshould go in the appropriate @file{.h} file.
858e4b17023SJohn MarinoFor @code{DECL} nodes that are part of the middle-end, the structure
859e4b17023SJohn Marinotype should go in @file{tree.h}.
860e4b17023SJohn Marino
861e4b17023SJohn Marino@item Add a member to the tree structure enumerator for the node
862e4b17023SJohn MarinoFor garbage collection and dynamic checking purposes, each @code{DECL}
863e4b17023SJohn Marinonode structure type is required to have a unique enumerator value
864e4b17023SJohn Marinospecified with it.
865e4b17023SJohn MarinoFor language specific @code{DECL} nodes, this new enumerator value
866e4b17023SJohn Marinoshould go in the appropriate @file{.def} file.
867e4b17023SJohn MarinoFor @code{DECL} nodes that are part of the middle-end, the enumerator
868e4b17023SJohn Marinovalues are specified in @file{treestruct.def}.
869e4b17023SJohn Marino
870e4b17023SJohn Marino@item Update @code{union tree_node}
871e4b17023SJohn MarinoIn order to make your new structure type usable, it must be added to
872e4b17023SJohn Marino@code{union tree_node}.
873e4b17023SJohn MarinoFor language specific @code{DECL} nodes, a new entry should be added
874e4b17023SJohn Marinoto the appropriate @file{.h} file of the form
875e4b17023SJohn Marino@smallexample
876e4b17023SJohn Marino  struct tree_foo_decl GTY ((tag ("TS_VAR_DECL"))) foo_decl;
877e4b17023SJohn Marino@end smallexample
878e4b17023SJohn MarinoFor @code{DECL} nodes that are part of the middle-end, the additional
879e4b17023SJohn Marinomember goes directly into @code{union tree_node} in @file{tree.h}.
880e4b17023SJohn Marino
881e4b17023SJohn Marino@item Update dynamic checking info
882e4b17023SJohn MarinoIn order to be able to check whether accessing a named portion of
883e4b17023SJohn Marino@code{union tree_node} is legal, and whether a certain @code{DECL} node
884e4b17023SJohn Marinocontains one of the enumerated @code{DECL} node structures in the
885e4b17023SJohn Marinohierarchy, a simple lookup table is used.
886e4b17023SJohn MarinoThis lookup table needs to be kept up to date with the tree structure
887e4b17023SJohn Marinohierarchy, or else checking and containment macros will fail
888e4b17023SJohn Marinoinappropriately.
889e4b17023SJohn Marino
890e4b17023SJohn MarinoFor language specific @code{DECL} nodes, their is an @code{init_ts}
891e4b17023SJohn Marinofunction in an appropriate @file{.c} file, which initializes the lookup
892e4b17023SJohn Marinotable.
893e4b17023SJohn MarinoCode setting up the table for new @code{DECL} nodes should be added
894e4b17023SJohn Marinothere.
895e4b17023SJohn MarinoFor each @code{DECL} tree code and enumerator value representing a
896e4b17023SJohn Marinomember of the inheritance  hierarchy, the table should contain 1 if
897e4b17023SJohn Marinothat tree code inherits (directly or indirectly) from that member.
898e4b17023SJohn MarinoThus, a @code{FOO_DECL} node derived from @code{struct decl_with_rtl},
899e4b17023SJohn Marinoand enumerator value @code{TS_FOO_DECL}, would be set up as follows
900e4b17023SJohn Marino@smallexample
901e4b17023SJohn Marinotree_contains_struct[FOO_DECL][TS_FOO_DECL] = 1;
902e4b17023SJohn Marinotree_contains_struct[FOO_DECL][TS_DECL_WRTL] = 1;
903e4b17023SJohn Marinotree_contains_struct[FOO_DECL][TS_DECL_COMMON] = 1;
904e4b17023SJohn Marinotree_contains_struct[FOO_DECL][TS_DECL_MINIMAL] = 1;
905e4b17023SJohn Marino@end smallexample
906e4b17023SJohn Marino
907e4b17023SJohn MarinoFor @code{DECL} nodes that are part of the middle-end, the setup code
908e4b17023SJohn Marinogoes into @file{tree.c}.
909e4b17023SJohn Marino
910e4b17023SJohn Marino@item Add macros to access any new fields and flags
911e4b17023SJohn Marino
912e4b17023SJohn MarinoEach added field or flag should have a macro that is used to access
913e4b17023SJohn Marinoit, that performs appropriate checking to ensure only the right type of
914e4b17023SJohn Marino@code{DECL} nodes access the field.
915e4b17023SJohn Marino
916e4b17023SJohn MarinoThese macros generally take the following form
917e4b17023SJohn Marino@smallexample
918e4b17023SJohn Marino#define FOO_DECL_FIELDNAME(NODE) FOO_DECL_CHECK(NODE)->foo_decl.fieldname
919e4b17023SJohn Marino@end smallexample
920e4b17023SJohn MarinoHowever, if the structure is simply a base class for further
921e4b17023SJohn Marinostructures, something like the following should be used
922e4b17023SJohn Marino@smallexample
923e4b17023SJohn Marino#define BASE_STRUCT_CHECK(T) CONTAINS_STRUCT_CHECK(T, TS_BASE_STRUCT)
924e4b17023SJohn Marino#define BASE_STRUCT_FIELDNAME(NODE) \
925e4b17023SJohn Marino   (BASE_STRUCT_CHECK(NODE)->base_struct.fieldname
926e4b17023SJohn Marino@end smallexample
927e4b17023SJohn Marino
928e4b17023SJohn Marino@end table
929e4b17023SJohn Marino
930e4b17023SJohn Marino
931e4b17023SJohn Marino@c ---------------------------------------------------------------------
932e4b17023SJohn Marino@c Attributes
933e4b17023SJohn Marino@c ---------------------------------------------------------------------
934e4b17023SJohn Marino@node Attributes
935e4b17023SJohn Marino@section Attributes in trees
936e4b17023SJohn Marino@cindex attributes
937e4b17023SJohn Marino
938e4b17023SJohn MarinoAttributes, as specified using the @code{__attribute__} keyword, are
939e4b17023SJohn Marinorepresented internally as a @code{TREE_LIST}.  The @code{TREE_PURPOSE}
940e4b17023SJohn Marinois the name of the attribute, as an @code{IDENTIFIER_NODE}.  The
941e4b17023SJohn Marino@code{TREE_VALUE} is a @code{TREE_LIST} of the arguments of the
942e4b17023SJohn Marinoattribute, if any, or @code{NULL_TREE} if there are no arguments; the
943e4b17023SJohn Marinoarguments are stored as the @code{TREE_VALUE} of successive entries in
944e4b17023SJohn Marinothe list, and may be identifiers or expressions.  The @code{TREE_CHAIN}
945e4b17023SJohn Marinoof the attribute is the next attribute in a list of attributes applying
946e4b17023SJohn Marinoto the same declaration or type, or @code{NULL_TREE} if there are no
947e4b17023SJohn Marinofurther attributes in the list.
948e4b17023SJohn Marino
949e4b17023SJohn MarinoAttributes may be attached to declarations and to types; these
950e4b17023SJohn Marinoattributes may be accessed with the following macros.  All attributes
951e4b17023SJohn Marinoare stored in this way, and many also cause other changes to the
952e4b17023SJohn Marinodeclaration or type or to other internal compiler data structures.
953e4b17023SJohn Marino
954e4b17023SJohn Marino@deftypefn {Tree Macro} tree DECL_ATTRIBUTES (tree @var{decl})
955e4b17023SJohn MarinoThis macro returns the attributes on the declaration @var{decl}.
956e4b17023SJohn Marino@end deftypefn
957e4b17023SJohn Marino
958e4b17023SJohn Marino@deftypefn {Tree Macro} tree TYPE_ATTRIBUTES (tree @var{type})
959e4b17023SJohn MarinoThis macro returns the attributes on the type @var{type}.
960e4b17023SJohn Marino@end deftypefn
961e4b17023SJohn Marino
962e4b17023SJohn Marino
963e4b17023SJohn Marino@c ---------------------------------------------------------------------
964e4b17023SJohn Marino@c Expressions
965e4b17023SJohn Marino@c ---------------------------------------------------------------------
966e4b17023SJohn Marino
967e4b17023SJohn Marino@node Expression trees
968e4b17023SJohn Marino@section Expressions
969e4b17023SJohn Marino@cindex expression
970e4b17023SJohn Marino@findex TREE_TYPE
971e4b17023SJohn Marino@findex TREE_OPERAND
972e4b17023SJohn Marino
973e4b17023SJohn MarinoThe internal representation for expressions is for the most part quite
974e4b17023SJohn Marinostraightforward.  However, there are a few facts that one must bear in
975e4b17023SJohn Marinomind.  In particular, the expression ``tree'' is actually a directed
976e4b17023SJohn Marinoacyclic graph.  (For example there may be many references to the integer
977e4b17023SJohn Marinoconstant zero throughout the source program; many of these will be
978e4b17023SJohn Marinorepresented by the same expression node.)  You should not rely on
979e4b17023SJohn Marinocertain kinds of node being shared, nor should you rely on certain kinds of
980e4b17023SJohn Marinonodes being unshared.
981e4b17023SJohn Marino
982e4b17023SJohn MarinoThe following macros can be used with all expression nodes:
983e4b17023SJohn Marino
984e4b17023SJohn Marino@ftable @code
985e4b17023SJohn Marino@item TREE_TYPE
986e4b17023SJohn MarinoReturns the type of the expression.  This value may not be precisely the
987e4b17023SJohn Marinosame type that would be given the expression in the original program.
988e4b17023SJohn Marino@end ftable
989e4b17023SJohn Marino
990e4b17023SJohn MarinoIn what follows, some nodes that one might expect to always have type
991e4b17023SJohn Marino@code{bool} are documented to have either integral or boolean type.  At
992e4b17023SJohn Marinosome point in the future, the C front end may also make use of this same
993e4b17023SJohn Marinointermediate representation, and at this point these nodes will
994e4b17023SJohn Marinocertainly have integral type.  The previous sentence is not meant to
995e4b17023SJohn Marinoimply that the C++ front end does not or will not give these nodes
996e4b17023SJohn Marinointegral type.
997e4b17023SJohn Marino
998e4b17023SJohn MarinoBelow, we list the various kinds of expression nodes.  Except where
999e4b17023SJohn Marinonoted otherwise, the operands to an expression are accessed using the
1000e4b17023SJohn Marino@code{TREE_OPERAND} macro.  For example, to access the first operand to
1001e4b17023SJohn Marinoa binary plus expression @code{expr}, use:
1002e4b17023SJohn Marino
1003e4b17023SJohn Marino@smallexample
1004e4b17023SJohn MarinoTREE_OPERAND (expr, 0)
1005e4b17023SJohn Marino@end smallexample
1006e4b17023SJohn Marino@noindent
1007e4b17023SJohn Marino
1008e4b17023SJohn MarinoAs this example indicates, the operands are zero-indexed.
1009e4b17023SJohn Marino
1010e4b17023SJohn Marino
1011e4b17023SJohn Marino@menu
1012e4b17023SJohn Marino* Constants: Constant expressions.
1013e4b17023SJohn Marino* Storage References::
1014e4b17023SJohn Marino* Unary and Binary Expressions::
1015e4b17023SJohn Marino* Vectors::
1016e4b17023SJohn Marino@end menu
1017e4b17023SJohn Marino
1018e4b17023SJohn Marino@node Constant expressions
1019e4b17023SJohn Marino@subsection Constant expressions
1020e4b17023SJohn Marino@tindex INTEGER_CST
1021e4b17023SJohn Marino@findex TREE_INT_CST_HIGH
1022e4b17023SJohn Marino@findex TREE_INT_CST_LOW
1023e4b17023SJohn Marino@findex tree_int_cst_lt
1024e4b17023SJohn Marino@findex tree_int_cst_equal
1025e4b17023SJohn Marino@tindex REAL_CST
1026e4b17023SJohn Marino@tindex FIXED_CST
1027e4b17023SJohn Marino@tindex COMPLEX_CST
1028e4b17023SJohn Marino@tindex VECTOR_CST
1029e4b17023SJohn Marino@tindex STRING_CST
1030e4b17023SJohn Marino@findex TREE_STRING_LENGTH
1031e4b17023SJohn Marino@findex TREE_STRING_POINTER
1032e4b17023SJohn Marino
1033e4b17023SJohn MarinoThe table below begins with constants, moves on to unary expressions,
1034e4b17023SJohn Marinothen proceeds to binary expressions, and concludes with various other
1035e4b17023SJohn Marinokinds of expressions:
1036e4b17023SJohn Marino
1037e4b17023SJohn Marino@table @code
1038e4b17023SJohn Marino@item INTEGER_CST
1039e4b17023SJohn MarinoThese nodes represent integer constants.  Note that the type of these
1040e4b17023SJohn Marinoconstants is obtained with @code{TREE_TYPE}; they are not always of type
1041e4b17023SJohn Marino@code{int}.  In particular, @code{char} constants are represented with
1042e4b17023SJohn Marino@code{INTEGER_CST} nodes.  The value of the integer constant @code{e} is
1043e4b17023SJohn Marinogiven by
1044e4b17023SJohn Marino@smallexample
1045e4b17023SJohn Marino((TREE_INT_CST_HIGH (e) << HOST_BITS_PER_WIDE_INT)
1046e4b17023SJohn Marino+ TREE_INST_CST_LOW (e))
1047e4b17023SJohn Marino@end smallexample
1048e4b17023SJohn Marino@noindent
1049e4b17023SJohn MarinoHOST_BITS_PER_WIDE_INT is at least thirty-two on all platforms.  Both
1050e4b17023SJohn Marino@code{TREE_INT_CST_HIGH} and @code{TREE_INT_CST_LOW} return a
1051e4b17023SJohn Marino@code{HOST_WIDE_INT}.  The value of an @code{INTEGER_CST} is interpreted
1052e4b17023SJohn Marinoas a signed or unsigned quantity depending on the type of the constant.
1053e4b17023SJohn MarinoIn general, the expression given above will overflow, so it should not
1054e4b17023SJohn Marinobe used to calculate the value of the constant.
1055e4b17023SJohn Marino
1056e4b17023SJohn MarinoThe variable @code{integer_zero_node} is an integer constant with value
1057e4b17023SJohn Marinozero.  Similarly, @code{integer_one_node} is an integer constant with
1058e4b17023SJohn Marinovalue one.  The @code{size_zero_node} and @code{size_one_node} variables
1059e4b17023SJohn Marinoare analogous, but have type @code{size_t} rather than @code{int}.
1060e4b17023SJohn Marino
1061e4b17023SJohn MarinoThe function @code{tree_int_cst_lt} is a predicate which holds if its
1062e4b17023SJohn Marinofirst argument is less than its second.  Both constants are assumed to
1063e4b17023SJohn Marinohave the same signedness (i.e., either both should be signed or both
1064e4b17023SJohn Marinoshould be unsigned.)  The full width of the constant is used when doing
1065e4b17023SJohn Marinothe comparison; the usual rules about promotions and conversions are
1066e4b17023SJohn Marinoignored.  Similarly, @code{tree_int_cst_equal} holds if the two
1067e4b17023SJohn Marinoconstants are equal.  The @code{tree_int_cst_sgn} function returns the
1068e4b17023SJohn Marinosign of a constant.  The value is @code{1}, @code{0}, or @code{-1}
1069e4b17023SJohn Marinoaccording on whether the constant is greater than, equal to, or less
1070e4b17023SJohn Marinothan zero.  Again, the signedness of the constant's type is taken into
1071e4b17023SJohn Marinoaccount; an unsigned constant is never less than zero, no matter what
1072e4b17023SJohn Marinoits bit-pattern.
1073e4b17023SJohn Marino
1074e4b17023SJohn Marino@item REAL_CST
1075e4b17023SJohn Marino
1076e4b17023SJohn MarinoFIXME: Talk about how to obtain representations of this constant, do
1077e4b17023SJohn Marinocomparisons, and so forth.
1078e4b17023SJohn Marino
1079e4b17023SJohn Marino@item FIXED_CST
1080e4b17023SJohn Marino
1081e4b17023SJohn MarinoThese nodes represent fixed-point constants.  The type of these constants
1082e4b17023SJohn Marinois obtained with @code{TREE_TYPE}.  @code{TREE_FIXED_CST_PTR} points to
1083e4b17023SJohn Marinoa @code{struct fixed_value};  @code{TREE_FIXED_CST} returns the structure
1084e4b17023SJohn Marinoitself.  @code{struct fixed_value} contains @code{data} with the size of two
1085e4b17023SJohn Marino@code{HOST_BITS_PER_WIDE_INT} and @code{mode} as the associated fixed-point
1086e4b17023SJohn Marinomachine mode for @code{data}.
1087e4b17023SJohn Marino
1088e4b17023SJohn Marino@item COMPLEX_CST
1089e4b17023SJohn MarinoThese nodes are used to represent complex number constants, that is a
1090e4b17023SJohn Marino@code{__complex__} whose parts are constant nodes.  The
1091e4b17023SJohn Marino@code{TREE_REALPART} and @code{TREE_IMAGPART} return the real and the
1092e4b17023SJohn Marinoimaginary parts respectively.
1093e4b17023SJohn Marino
1094e4b17023SJohn Marino@item VECTOR_CST
1095e4b17023SJohn MarinoThese nodes are used to represent vector constants, whose parts are
1096e4b17023SJohn Marinoconstant nodes.  Each individual constant node is either an integer or a
1097e4b17023SJohn Marinodouble constant node.  The first operand is a @code{TREE_LIST} of the
1098e4b17023SJohn Marinoconstant nodes and is accessed through @code{TREE_VECTOR_CST_ELTS}.
1099e4b17023SJohn Marino
1100e4b17023SJohn Marino@item STRING_CST
1101e4b17023SJohn MarinoThese nodes represent string-constants.  The @code{TREE_STRING_LENGTH}
1102e4b17023SJohn Marinoreturns the length of the string, as an @code{int}.  The
1103e4b17023SJohn Marino@code{TREE_STRING_POINTER} is a @code{char*} containing the string
1104e4b17023SJohn Marinoitself.  The string may not be @code{NUL}-terminated, and it may contain
1105e4b17023SJohn Marinoembedded @code{NUL} characters.  Therefore, the
1106e4b17023SJohn Marino@code{TREE_STRING_LENGTH} includes the trailing @code{NUL} if it is
1107e4b17023SJohn Marinopresent.
1108e4b17023SJohn Marino
1109e4b17023SJohn MarinoFor wide string constants, the @code{TREE_STRING_LENGTH} is the number
1110e4b17023SJohn Marinoof bytes in the string, and the @code{TREE_STRING_POINTER}
1111e4b17023SJohn Marinopoints to an array of the bytes of the string, as represented on the
1112e4b17023SJohn Marinotarget system (that is, as integers in the target endianness).  Wide and
1113e4b17023SJohn Marinonon-wide string constants are distinguished only by the @code{TREE_TYPE}
1114e4b17023SJohn Marinoof the @code{STRING_CST}.
1115e4b17023SJohn Marino
1116e4b17023SJohn MarinoFIXME: The formats of string constants are not well-defined when the
1117e4b17023SJohn Marinotarget system bytes are not the same width as host system bytes.
1118e4b17023SJohn Marino
1119e4b17023SJohn Marino@end table
1120e4b17023SJohn Marino
1121e4b17023SJohn Marino@node Storage References
1122e4b17023SJohn Marino@subsection References to storage
1123e4b17023SJohn Marino@tindex ADDR_EXPR
1124e4b17023SJohn Marino@tindex INDIRECT_REF
1125e4b17023SJohn Marino@tindex MEM_REF
1126e4b17023SJohn Marino@tindex ARRAY_REF
1127e4b17023SJohn Marino@tindex ARRAY_RANGE_REF
1128e4b17023SJohn Marino@tindex TARGET_MEM_REF
1129e4b17023SJohn Marino@tindex COMPONENT_REF
1130e4b17023SJohn Marino
1131e4b17023SJohn Marino@table @code
1132e4b17023SJohn Marino@item ARRAY_REF
1133e4b17023SJohn MarinoThese nodes represent array accesses.  The first operand is the array;
1134e4b17023SJohn Marinothe second is the index.  To calculate the address of the memory
1135e4b17023SJohn Marinoaccessed, you must scale the index by the size of the type of the array
1136e4b17023SJohn Marinoelements.  The type of these expressions must be the type of a component of
1137e4b17023SJohn Marinothe array.  The third and fourth operands are used after gimplification
1138e4b17023SJohn Marinoto represent the lower bound and component size but should not be used
1139e4b17023SJohn Marinodirectly; call @code{array_ref_low_bound} and @code{array_ref_element_size}
1140e4b17023SJohn Marinoinstead.
1141e4b17023SJohn Marino
1142e4b17023SJohn Marino@item ARRAY_RANGE_REF
1143e4b17023SJohn MarinoThese nodes represent access to a range (or ``slice'') of an array.  The
1144e4b17023SJohn Marinooperands are the same as that for @code{ARRAY_REF} and have the same
1145e4b17023SJohn Marinomeanings.  The type of these expressions must be an array whose component
1146e4b17023SJohn Marinotype is the same as that of the first operand.  The range of that array
1147e4b17023SJohn Marinotype determines the amount of data these expressions access.
1148e4b17023SJohn Marino
1149e4b17023SJohn Marino@item TARGET_MEM_REF
1150e4b17023SJohn MarinoThese nodes represent memory accesses whose address directly map to
1151e4b17023SJohn Marinoan addressing mode of the target architecture.  The first argument
1152e4b17023SJohn Marinois @code{TMR_SYMBOL} and must be a @code{VAR_DECL} of an object with
1153e4b17023SJohn Marinoa fixed address.  The second argument is @code{TMR_BASE} and the
1154e4b17023SJohn Marinothird one is @code{TMR_INDEX}.  The fourth argument is
1155e4b17023SJohn Marino@code{TMR_STEP} and must be an @code{INTEGER_CST}.  The fifth
1156e4b17023SJohn Marinoargument is @code{TMR_OFFSET} and must be an @code{INTEGER_CST}.
1157e4b17023SJohn MarinoAny of the arguments may be NULL if the appropriate component
1158e4b17023SJohn Marinodoes not appear in the address.  Address of the @code{TARGET_MEM_REF}
1159e4b17023SJohn Marinois determined in the following way.
1160e4b17023SJohn Marino
1161e4b17023SJohn Marino@smallexample
1162e4b17023SJohn Marino&TMR_SYMBOL + TMR_BASE + TMR_INDEX * TMR_STEP + TMR_OFFSET
1163e4b17023SJohn Marino@end smallexample
1164e4b17023SJohn Marino
1165e4b17023SJohn MarinoThe sixth argument is the reference to the original memory access, which
1166e4b17023SJohn Marinois preserved for the purposes of the RTL alias analysis.  The seventh
1167e4b17023SJohn Marinoargument is a tag representing the results of tree level alias analysis.
1168e4b17023SJohn Marino
1169e4b17023SJohn Marino@item ADDR_EXPR
1170e4b17023SJohn MarinoThese nodes are used to represent the address of an object.  (These
1171e4b17023SJohn Marinoexpressions will always have pointer or reference type.)  The operand may
1172e4b17023SJohn Marinobe another expression, or it may be a declaration.
1173e4b17023SJohn Marino
1174e4b17023SJohn MarinoAs an extension, GCC allows users to take the address of a label.  In
1175e4b17023SJohn Marinothis case, the operand of the @code{ADDR_EXPR} will be a
1176e4b17023SJohn Marino@code{LABEL_DECL}.  The type of such an expression is @code{void*}.
1177e4b17023SJohn Marino
1178e4b17023SJohn MarinoIf the object addressed is not an lvalue, a temporary is created, and
1179e4b17023SJohn Marinothe address of the temporary is used.
1180e4b17023SJohn Marino
1181e4b17023SJohn Marino@item INDIRECT_REF
1182e4b17023SJohn MarinoThese nodes are used to represent the object pointed to by a pointer.
1183e4b17023SJohn MarinoThe operand is the pointer being dereferenced; it will always have
1184e4b17023SJohn Marinopointer or reference type.
1185e4b17023SJohn Marino
1186e4b17023SJohn Marino@item MEM_REF
1187e4b17023SJohn MarinoThese nodes are used to represent the object pointed to by a pointer
1188e4b17023SJohn Marinooffset by a constant.
1189e4b17023SJohn MarinoThe first operand is the pointer being dereferenced; it will always have
1190e4b17023SJohn Marinopointer or reference type.  The second operand is a pointer constant.
1191e4b17023SJohn MarinoIts type is specifying the type to be used for type-based alias analysis.
1192e4b17023SJohn Marino
1193e4b17023SJohn Marino@item COMPONENT_REF
1194e4b17023SJohn MarinoThese nodes represent non-static data member accesses.  The first
1195e4b17023SJohn Marinooperand is the object (rather than a pointer to it); the second operand
1196e4b17023SJohn Marinois the @code{FIELD_DECL} for the data member.  The third operand represents
1197e4b17023SJohn Marinothe byte offset of the field, but should not be used directly; call
1198e4b17023SJohn Marino@code{component_ref_field_offset} instead.
1199e4b17023SJohn Marino
1200e4b17023SJohn Marino
1201e4b17023SJohn Marino@end table
1202e4b17023SJohn Marino
1203e4b17023SJohn Marino@node Unary and Binary Expressions
1204e4b17023SJohn Marino@subsection Unary and Binary Expressions
1205e4b17023SJohn Marino@tindex NEGATE_EXPR
1206e4b17023SJohn Marino@tindex ABS_EXPR
1207e4b17023SJohn Marino@tindex BIT_NOT_EXPR
1208e4b17023SJohn Marino@tindex TRUTH_NOT_EXPR
1209e4b17023SJohn Marino@tindex PREDECREMENT_EXPR
1210e4b17023SJohn Marino@tindex PREINCREMENT_EXPR
1211e4b17023SJohn Marino@tindex POSTDECREMENT_EXPR
1212e4b17023SJohn Marino@tindex POSTINCREMENT_EXPR
1213e4b17023SJohn Marino@tindex FIX_TRUNC_EXPR
1214e4b17023SJohn Marino@tindex FLOAT_EXPR
1215e4b17023SJohn Marino@tindex COMPLEX_EXPR
1216e4b17023SJohn Marino@tindex CONJ_EXPR
1217e4b17023SJohn Marino@tindex REALPART_EXPR
1218e4b17023SJohn Marino@tindex IMAGPART_EXPR
1219e4b17023SJohn Marino@tindex NON_LVALUE_EXPR
1220e4b17023SJohn Marino@tindex NOP_EXPR
1221e4b17023SJohn Marino@tindex CONVERT_EXPR
1222e4b17023SJohn Marino@tindex FIXED_CONVERT_EXPR
1223e4b17023SJohn Marino@tindex THROW_EXPR
1224e4b17023SJohn Marino@tindex LSHIFT_EXPR
1225e4b17023SJohn Marino@tindex RSHIFT_EXPR
1226e4b17023SJohn Marino@tindex BIT_IOR_EXPR
1227e4b17023SJohn Marino@tindex BIT_XOR_EXPR
1228e4b17023SJohn Marino@tindex BIT_AND_EXPR
1229e4b17023SJohn Marino@tindex TRUTH_ANDIF_EXPR
1230e4b17023SJohn Marino@tindex TRUTH_ORIF_EXPR
1231e4b17023SJohn Marino@tindex TRUTH_AND_EXPR
1232e4b17023SJohn Marino@tindex TRUTH_OR_EXPR
1233e4b17023SJohn Marino@tindex TRUTH_XOR_EXPR
1234e4b17023SJohn Marino@tindex POINTER_PLUS_EXPR
1235e4b17023SJohn Marino@tindex PLUS_EXPR
1236e4b17023SJohn Marino@tindex MINUS_EXPR
1237e4b17023SJohn Marino@tindex MULT_EXPR
1238e4b17023SJohn Marino@tindex RDIV_EXPR
1239e4b17023SJohn Marino@tindex TRUNC_DIV_EXPR
1240e4b17023SJohn Marino@tindex FLOOR_DIV_EXPR
1241e4b17023SJohn Marino@tindex CEIL_DIV_EXPR
1242e4b17023SJohn Marino@tindex ROUND_DIV_EXPR
1243e4b17023SJohn Marino@tindex TRUNC_MOD_EXPR
1244e4b17023SJohn Marino@tindex FLOOR_MOD_EXPR
1245e4b17023SJohn Marino@tindex CEIL_MOD_EXPR
1246e4b17023SJohn Marino@tindex ROUND_MOD_EXPR
1247e4b17023SJohn Marino@tindex EXACT_DIV_EXPR
1248e4b17023SJohn Marino@tindex LT_EXPR
1249e4b17023SJohn Marino@tindex LE_EXPR
1250e4b17023SJohn Marino@tindex GT_EXPR
1251e4b17023SJohn Marino@tindex GE_EXPR
1252e4b17023SJohn Marino@tindex EQ_EXPR
1253e4b17023SJohn Marino@tindex NE_EXPR
1254e4b17023SJohn Marino@tindex ORDERED_EXPR
1255e4b17023SJohn Marino@tindex UNORDERED_EXPR
1256e4b17023SJohn Marino@tindex UNLT_EXPR
1257e4b17023SJohn Marino@tindex UNLE_EXPR
1258e4b17023SJohn Marino@tindex UNGT_EXPR
1259e4b17023SJohn Marino@tindex UNGE_EXPR
1260e4b17023SJohn Marino@tindex UNEQ_EXPR
1261e4b17023SJohn Marino@tindex LTGT_EXPR
1262e4b17023SJohn Marino@tindex MODIFY_EXPR
1263e4b17023SJohn Marino@tindex INIT_EXPR
1264e4b17023SJohn Marino@tindex COMPOUND_EXPR
1265e4b17023SJohn Marino@tindex COND_EXPR
1266e4b17023SJohn Marino@tindex CALL_EXPR
1267e4b17023SJohn Marino@tindex STMT_EXPR
1268e4b17023SJohn Marino@tindex BIND_EXPR
1269e4b17023SJohn Marino@tindex LOOP_EXPR
1270e4b17023SJohn Marino@tindex EXIT_EXPR
1271e4b17023SJohn Marino@tindex CLEANUP_POINT_EXPR
1272e4b17023SJohn Marino@tindex CONSTRUCTOR
1273e4b17023SJohn Marino@tindex COMPOUND_LITERAL_EXPR
1274e4b17023SJohn Marino@tindex SAVE_EXPR
1275e4b17023SJohn Marino@tindex TARGET_EXPR
1276e4b17023SJohn Marino@tindex VA_ARG_EXPR
1277e4b17023SJohn Marino
1278e4b17023SJohn Marino@table @code
1279e4b17023SJohn Marino@item NEGATE_EXPR
1280e4b17023SJohn MarinoThese nodes represent unary negation of the single operand, for both
1281e4b17023SJohn Marinointeger and floating-point types.  The type of negation can be
1282e4b17023SJohn Marinodetermined by looking at the type of the expression.
1283e4b17023SJohn Marino
1284e4b17023SJohn MarinoThe behavior of this operation on signed arithmetic overflow is
1285e4b17023SJohn Marinocontrolled by the @code{flag_wrapv} and @code{flag_trapv} variables.
1286e4b17023SJohn Marino
1287e4b17023SJohn Marino@item ABS_EXPR
1288e4b17023SJohn MarinoThese nodes represent the absolute value of the single operand, for
1289e4b17023SJohn Marinoboth integer and floating-point types.  This is typically used to
1290e4b17023SJohn Marinoimplement the @code{abs}, @code{labs} and @code{llabs} builtins for
1291e4b17023SJohn Marinointeger types, and the @code{fabs}, @code{fabsf} and @code{fabsl}
1292e4b17023SJohn Marinobuiltins for floating point types.  The type of abs operation can
1293e4b17023SJohn Marinobe determined by looking at the type of the expression.
1294e4b17023SJohn Marino
1295e4b17023SJohn MarinoThis node is not used for complex types.  To represent the modulus
1296e4b17023SJohn Marinoor complex abs of a complex value, use the @code{BUILT_IN_CABS},
1297e4b17023SJohn Marino@code{BUILT_IN_CABSF} or @code{BUILT_IN_CABSL} builtins, as used
1298e4b17023SJohn Marinoto implement the C99 @code{cabs}, @code{cabsf} and @code{cabsl}
1299e4b17023SJohn Marinobuilt-in functions.
1300e4b17023SJohn Marino
1301e4b17023SJohn Marino@item BIT_NOT_EXPR
1302e4b17023SJohn MarinoThese nodes represent bitwise complement, and will always have integral
1303e4b17023SJohn Marinotype.  The only operand is the value to be complemented.
1304e4b17023SJohn Marino
1305e4b17023SJohn Marino@item TRUTH_NOT_EXPR
1306e4b17023SJohn MarinoThese nodes represent logical negation, and will always have integral
1307e4b17023SJohn Marino(or boolean) type.  The operand is the value being negated.  The type
1308e4b17023SJohn Marinoof the operand and that of the result are always of @code{BOOLEAN_TYPE}
1309e4b17023SJohn Marinoor @code{INTEGER_TYPE}.
1310e4b17023SJohn Marino
1311e4b17023SJohn Marino@item PREDECREMENT_EXPR
1312e4b17023SJohn Marino@itemx PREINCREMENT_EXPR
1313e4b17023SJohn Marino@itemx POSTDECREMENT_EXPR
1314e4b17023SJohn Marino@itemx POSTINCREMENT_EXPR
1315e4b17023SJohn MarinoThese nodes represent increment and decrement expressions.  The value of
1316e4b17023SJohn Marinothe single operand is computed, and the operand incremented or
1317e4b17023SJohn Marinodecremented.  In the case of @code{PREDECREMENT_EXPR} and
1318e4b17023SJohn Marino@code{PREINCREMENT_EXPR}, the value of the expression is the value
1319e4b17023SJohn Marinoresulting after the increment or decrement; in the case of
1320e4b17023SJohn Marino@code{POSTDECREMENT_EXPR} and @code{POSTINCREMENT_EXPR} is the value
1321e4b17023SJohn Marinobefore the increment or decrement occurs.  The type of the operand, like
1322e4b17023SJohn Marinothat of the result, will be either integral, boolean, or floating-point.
1323e4b17023SJohn Marino
1324e4b17023SJohn Marino@item FIX_TRUNC_EXPR
1325e4b17023SJohn MarinoThese nodes represent conversion of a floating-point value to an
1326e4b17023SJohn Marinointeger.  The single operand will have a floating-point type, while
1327e4b17023SJohn Marinothe complete expression will have an integral (or boolean) type.  The
1328e4b17023SJohn Marinooperand is rounded towards zero.
1329e4b17023SJohn Marino
1330e4b17023SJohn Marino@item FLOAT_EXPR
1331e4b17023SJohn MarinoThese nodes represent conversion of an integral (or boolean) value to a
1332e4b17023SJohn Marinofloating-point value.  The single operand will have integral type, while
1333e4b17023SJohn Marinothe complete expression will have a floating-point type.
1334e4b17023SJohn Marino
1335e4b17023SJohn MarinoFIXME: How is the operand supposed to be rounded?  Is this dependent on
1336e4b17023SJohn Marino@option{-mieee}?
1337e4b17023SJohn Marino
1338e4b17023SJohn Marino@item COMPLEX_EXPR
1339e4b17023SJohn MarinoThese nodes are used to represent complex numbers constructed from two
1340e4b17023SJohn Marinoexpressions of the same (integer or real) type.  The first operand is the
1341e4b17023SJohn Marinoreal part and the second operand is the imaginary part.
1342e4b17023SJohn Marino
1343e4b17023SJohn Marino@item CONJ_EXPR
1344e4b17023SJohn MarinoThese nodes represent the conjugate of their operand.
1345e4b17023SJohn Marino
1346e4b17023SJohn Marino@item REALPART_EXPR
1347e4b17023SJohn Marino@itemx IMAGPART_EXPR
1348e4b17023SJohn MarinoThese nodes represent respectively the real and the imaginary parts
1349e4b17023SJohn Marinoof complex numbers (their sole argument).
1350e4b17023SJohn Marino
1351e4b17023SJohn Marino@item NON_LVALUE_EXPR
1352e4b17023SJohn MarinoThese nodes indicate that their one and only operand is not an lvalue.
1353e4b17023SJohn MarinoA back end can treat these identically to the single operand.
1354e4b17023SJohn Marino
1355e4b17023SJohn Marino@item NOP_EXPR
1356e4b17023SJohn MarinoThese nodes are used to represent conversions that do not require any
1357e4b17023SJohn Marinocode-generation.  For example, conversion of a @code{char*} to an
1358e4b17023SJohn Marino@code{int*} does not require any code be generated; such a conversion is
1359e4b17023SJohn Marinorepresented by a @code{NOP_EXPR}.  The single operand is the expression
1360e4b17023SJohn Marinoto be converted.  The conversion from a pointer to a reference is also
1361e4b17023SJohn Marinorepresented with a @code{NOP_EXPR}.
1362e4b17023SJohn Marino
1363e4b17023SJohn Marino@item CONVERT_EXPR
1364e4b17023SJohn MarinoThese nodes are similar to @code{NOP_EXPR}s, but are used in those
1365e4b17023SJohn Marinosituations where code may need to be generated.  For example, if an
1366e4b17023SJohn Marino@code{int*} is converted to an @code{int} code may need to be generated
1367e4b17023SJohn Marinoon some platforms.  These nodes are never used for C++-specific
1368e4b17023SJohn Marinoconversions, like conversions between pointers to different classes in
1369e4b17023SJohn Marinoan inheritance hierarchy.  Any adjustments that need to be made in such
1370e4b17023SJohn Marinocases are always indicated explicitly.  Similarly, a user-defined
1371e4b17023SJohn Marinoconversion is never represented by a @code{CONVERT_EXPR}; instead, the
1372e4b17023SJohn Marinofunction calls are made explicit.
1373e4b17023SJohn Marino
1374e4b17023SJohn Marino@item FIXED_CONVERT_EXPR
1375e4b17023SJohn MarinoThese nodes are used to represent conversions that involve fixed-point
1376e4b17023SJohn Marinovalues.  For example, from a fixed-point value to another fixed-point value,
1377e4b17023SJohn Marinofrom an integer to a fixed-point value, from a fixed-point value to an
1378e4b17023SJohn Marinointeger, from a floating-point value to a fixed-point value, or from
1379e4b17023SJohn Marinoa fixed-point value to a floating-point value.
1380e4b17023SJohn Marino
1381e4b17023SJohn Marino@item LSHIFT_EXPR
1382e4b17023SJohn Marino@itemx RSHIFT_EXPR
1383e4b17023SJohn MarinoThese nodes represent left and right shifts, respectively.  The first
1384e4b17023SJohn Marinooperand is the value to shift; it will always be of integral type.  The
1385e4b17023SJohn Marinosecond operand is an expression for the number of bits by which to
1386e4b17023SJohn Marinoshift.  Right shift should be treated as arithmetic, i.e., the
1387e4b17023SJohn Marinohigh-order bits should be zero-filled when the expression has unsigned
1388e4b17023SJohn Marinotype and filled with the sign bit when the expression has signed type.
1389e4b17023SJohn MarinoNote that the result is undefined if the second operand is larger
1390e4b17023SJohn Marinothan or equal to the first operand's type size.
1391e4b17023SJohn Marino
1392e4b17023SJohn Marino
1393e4b17023SJohn Marino@item BIT_IOR_EXPR
1394e4b17023SJohn Marino@itemx BIT_XOR_EXPR
1395e4b17023SJohn Marino@itemx BIT_AND_EXPR
1396e4b17023SJohn MarinoThese nodes represent bitwise inclusive or, bitwise exclusive or, and
1397e4b17023SJohn Marinobitwise and, respectively.  Both operands will always have integral
1398e4b17023SJohn Marinotype.
1399e4b17023SJohn Marino
1400e4b17023SJohn Marino@item TRUTH_ANDIF_EXPR
1401e4b17023SJohn Marino@itemx TRUTH_ORIF_EXPR
1402e4b17023SJohn MarinoThese nodes represent logical ``and'' and logical ``or'', respectively.
1403e4b17023SJohn MarinoThese operators are not strict; i.e., the second operand is evaluated
1404e4b17023SJohn Marinoonly if the value of the expression is not determined by evaluation of
1405e4b17023SJohn Marinothe first operand.  The type of the operands and that of the result are
1406e4b17023SJohn Marinoalways of @code{BOOLEAN_TYPE} or @code{INTEGER_TYPE}.
1407e4b17023SJohn Marino
1408e4b17023SJohn Marino@item TRUTH_AND_EXPR
1409e4b17023SJohn Marino@itemx TRUTH_OR_EXPR
1410e4b17023SJohn Marino@itemx TRUTH_XOR_EXPR
1411e4b17023SJohn MarinoThese nodes represent logical and, logical or, and logical exclusive or.
1412e4b17023SJohn MarinoThey are strict; both arguments are always evaluated.  There are no
1413e4b17023SJohn Marinocorresponding operators in C or C++, but the front end will sometimes
1414e4b17023SJohn Marinogenerate these expressions anyhow, if it can tell that strictness does
1415e4b17023SJohn Marinonot matter.  The type of the operands and that of the result are
1416e4b17023SJohn Marinoalways of @code{BOOLEAN_TYPE} or @code{INTEGER_TYPE}.
1417e4b17023SJohn Marino
1418*5ce9237cSJohn Marino@item POINTER_PLUS_EXPR
1419e4b17023SJohn MarinoThis node represents pointer arithmetic.  The first operand is always
1420e4b17023SJohn Marinoa pointer/reference type.  The second operand is always an unsigned
1421e4b17023SJohn Marinointeger type compatible with sizetype.  This is the only binary
1422e4b17023SJohn Marinoarithmetic operand that can operate on pointer types.
1423e4b17023SJohn Marino
1424*5ce9237cSJohn Marino@item PLUS_EXPR
1425e4b17023SJohn Marino@itemx MINUS_EXPR
1426e4b17023SJohn Marino@itemx MULT_EXPR
1427e4b17023SJohn MarinoThese nodes represent various binary arithmetic operations.
1428e4b17023SJohn MarinoRespectively, these operations are addition, subtraction (of the second
1429e4b17023SJohn Marinooperand from the first) and multiplication.  Their operands may have
1430e4b17023SJohn Marinoeither integral or floating type, but there will never be case in which
1431e4b17023SJohn Marinoone operand is of floating type and the other is of integral type.
1432e4b17023SJohn Marino
1433e4b17023SJohn MarinoThe behavior of these operations on signed arithmetic overflow is
1434e4b17023SJohn Marinocontrolled by the @code{flag_wrapv} and @code{flag_trapv} variables.
1435e4b17023SJohn Marino
1436e4b17023SJohn Marino@item RDIV_EXPR
1437e4b17023SJohn MarinoThis node represents a floating point division operation.
1438e4b17023SJohn Marino
1439e4b17023SJohn Marino@item TRUNC_DIV_EXPR
1440e4b17023SJohn Marino@itemx FLOOR_DIV_EXPR
1441e4b17023SJohn Marino@itemx CEIL_DIV_EXPR
1442e4b17023SJohn Marino@itemx ROUND_DIV_EXPR
1443e4b17023SJohn MarinoThese nodes represent integer division operations that return an integer
1444e4b17023SJohn Marinoresult.  @code{TRUNC_DIV_EXPR} rounds towards zero, @code{FLOOR_DIV_EXPR}
1445e4b17023SJohn Marinorounds towards negative infinity, @code{CEIL_DIV_EXPR} rounds towards
1446e4b17023SJohn Marinopositive infinity and @code{ROUND_DIV_EXPR} rounds to the closest integer.
1447e4b17023SJohn MarinoInteger division in C and C++ is truncating, i.e.@: @code{TRUNC_DIV_EXPR}.
1448e4b17023SJohn Marino
1449e4b17023SJohn MarinoThe behavior of these operations on signed arithmetic overflow, when
1450e4b17023SJohn Marinodividing the minimum signed integer by minus one, is controlled by the
1451e4b17023SJohn Marino@code{flag_wrapv} and @code{flag_trapv} variables.
1452e4b17023SJohn Marino
1453e4b17023SJohn Marino@item TRUNC_MOD_EXPR
1454e4b17023SJohn Marino@itemx FLOOR_MOD_EXPR
1455e4b17023SJohn Marino@itemx CEIL_MOD_EXPR
1456e4b17023SJohn Marino@itemx ROUND_MOD_EXPR
1457e4b17023SJohn MarinoThese nodes represent the integer remainder or modulus operation.
1458e4b17023SJohn MarinoThe integer modulus of two operands @code{a} and @code{b} is
1459e4b17023SJohn Marinodefined as @code{a - (a/b)*b} where the division calculated using
1460e4b17023SJohn Marinothe corresponding division operator.  Hence for @code{TRUNC_MOD_EXPR}
1461e4b17023SJohn Marinothis definition assumes division using truncation towards zero, i.e.@:
1462e4b17023SJohn Marino@code{TRUNC_DIV_EXPR}.  Integer remainder in C and C++ uses truncating
1463e4b17023SJohn Marinodivision, i.e.@: @code{TRUNC_MOD_EXPR}.
1464e4b17023SJohn Marino
1465e4b17023SJohn Marino@item EXACT_DIV_EXPR
1466e4b17023SJohn MarinoThe @code{EXACT_DIV_EXPR} code is used to represent integer divisions where
1467e4b17023SJohn Marinothe numerator is known to be an exact multiple of the denominator.  This
1468e4b17023SJohn Marinoallows the backend to choose between the faster of @code{TRUNC_DIV_EXPR},
1469e4b17023SJohn Marino@code{CEIL_DIV_EXPR} and @code{FLOOR_DIV_EXPR} for the current target.
1470e4b17023SJohn Marino
1471e4b17023SJohn Marino@item LT_EXPR
1472e4b17023SJohn Marino@itemx LE_EXPR
1473e4b17023SJohn Marino@itemx GT_EXPR
1474e4b17023SJohn Marino@itemx GE_EXPR
1475e4b17023SJohn Marino@itemx EQ_EXPR
1476e4b17023SJohn Marino@itemx NE_EXPR
1477e4b17023SJohn MarinoThese nodes represent the less than, less than or equal to, greater
1478e4b17023SJohn Marinothan, greater than or equal to, equal, and not equal comparison
1479e4b17023SJohn Marinooperators.  The first and second operand with either be both of integral
1480e4b17023SJohn Marinotype or both of floating type.  The result type of these expressions
1481e4b17023SJohn Marinowill always be of integral or boolean type.  These operations return
1482e4b17023SJohn Marinothe result type's zero value for false, and the result type's one value
1483e4b17023SJohn Marinofor true.
1484e4b17023SJohn Marino
1485e4b17023SJohn MarinoFor floating point comparisons, if we honor IEEE NaNs and either operand
1486e4b17023SJohn Marinois NaN, then @code{NE_EXPR} always returns true and the remaining operators
1487e4b17023SJohn Marinoalways return false.  On some targets, comparisons against an IEEE NaN,
1488e4b17023SJohn Marinoother than equality and inequality, may generate a floating point exception.
1489e4b17023SJohn Marino
1490e4b17023SJohn Marino@item ORDERED_EXPR
1491e4b17023SJohn Marino@itemx UNORDERED_EXPR
1492e4b17023SJohn MarinoThese nodes represent non-trapping ordered and unordered comparison
1493e4b17023SJohn Marinooperators.  These operations take two floating point operands and
1494e4b17023SJohn Marinodetermine whether they are ordered or unordered relative to each other.
1495e4b17023SJohn MarinoIf either operand is an IEEE NaN, their comparison is defined to be
1496e4b17023SJohn Marinounordered, otherwise the comparison is defined to be ordered.  The
1497e4b17023SJohn Marinoresult type of these expressions will always be of integral or boolean
1498e4b17023SJohn Marinotype.  These operations return the result type's zero value for false,
1499e4b17023SJohn Marinoand the result type's one value for true.
1500e4b17023SJohn Marino
1501e4b17023SJohn Marino@item UNLT_EXPR
1502e4b17023SJohn Marino@itemx UNLE_EXPR
1503e4b17023SJohn Marino@itemx UNGT_EXPR
1504e4b17023SJohn Marino@itemx UNGE_EXPR
1505e4b17023SJohn Marino@itemx UNEQ_EXPR
1506e4b17023SJohn Marino@itemx LTGT_EXPR
1507e4b17023SJohn MarinoThese nodes represent the unordered comparison operators.
1508e4b17023SJohn MarinoThese operations take two floating point operands and determine whether
1509e4b17023SJohn Marinothe operands are unordered or are less than, less than or equal to,
1510e4b17023SJohn Marinogreater than, greater than or equal to, or equal respectively.  For
1511e4b17023SJohn Marinoexample, @code{UNLT_EXPR} returns true if either operand is an IEEE
1512e4b17023SJohn MarinoNaN or the first operand is less than the second.  With the possible
1513e4b17023SJohn Marinoexception of @code{LTGT_EXPR}, all of these operations are guaranteed
1514e4b17023SJohn Marinonot to generate a floating point exception.  The result
1515e4b17023SJohn Marinotype of these expressions will always be of integral or boolean type.
1516e4b17023SJohn MarinoThese operations return the result type's zero value for false,
1517e4b17023SJohn Marinoand the result type's one value for true.
1518e4b17023SJohn Marino
1519e4b17023SJohn Marino@item MODIFY_EXPR
1520e4b17023SJohn MarinoThese nodes represent assignment.  The left-hand side is the first
1521e4b17023SJohn Marinooperand; the right-hand side is the second operand.  The left-hand side
1522e4b17023SJohn Marinowill be a @code{VAR_DECL}, @code{INDIRECT_REF}, @code{COMPONENT_REF}, or
1523e4b17023SJohn Marinoother lvalue.
1524e4b17023SJohn Marino
1525e4b17023SJohn MarinoThese nodes are used to represent not only assignment with @samp{=} but
1526e4b17023SJohn Marinoalso compound assignments (like @samp{+=}), by reduction to @samp{=}
1527e4b17023SJohn Marinoassignment.  In other words, the representation for @samp{i += 3} looks
1528e4b17023SJohn Marinojust like that for @samp{i = i + 3}.
1529e4b17023SJohn Marino
1530e4b17023SJohn Marino@item INIT_EXPR
1531e4b17023SJohn MarinoThese nodes are just like @code{MODIFY_EXPR}, but are used only when a
1532e4b17023SJohn Marinovariable is initialized, rather than assigned to subsequently.  This
1533e4b17023SJohn Marinomeans that we can assume that the target of the initialization is not
1534e4b17023SJohn Marinoused in computing its own value; any reference to the lhs in computing
1535e4b17023SJohn Marinothe rhs is undefined.
1536e4b17023SJohn Marino
1537e4b17023SJohn Marino@item COMPOUND_EXPR
1538e4b17023SJohn MarinoThese nodes represent comma-expressions.  The first operand is an
1539e4b17023SJohn Marinoexpression whose value is computed and thrown away prior to the
1540e4b17023SJohn Marinoevaluation of the second operand.  The value of the entire expression is
1541e4b17023SJohn Marinothe value of the second operand.
1542e4b17023SJohn Marino
1543e4b17023SJohn Marino@item COND_EXPR
1544e4b17023SJohn MarinoThese nodes represent @code{?:} expressions.  The first operand
1545e4b17023SJohn Marinois of boolean or integral type.  If it evaluates to a nonzero value,
1546e4b17023SJohn Marinothe second operand should be evaluated, and returned as the value of the
1547e4b17023SJohn Marinoexpression.  Otherwise, the third operand is evaluated, and returned as
1548e4b17023SJohn Marinothe value of the expression.
1549e4b17023SJohn Marino
1550e4b17023SJohn MarinoThe second operand must have the same type as the entire expression,
1551e4b17023SJohn Marinounless it unconditionally throws an exception or calls a noreturn
1552e4b17023SJohn Marinofunction, in which case it should have void type.  The same constraints
1553e4b17023SJohn Marinoapply to the third operand.  This allows array bounds checks to be
1554e4b17023SJohn Marinorepresented conveniently as @code{(i >= 0 && i < 10) ? i : abort()}.
1555e4b17023SJohn Marino
1556e4b17023SJohn MarinoAs a GNU extension, the C language front-ends allow the second
1557e4b17023SJohn Marinooperand of the @code{?:} operator may be omitted in the source.
1558e4b17023SJohn MarinoFor example, @code{x ? : 3} is equivalent to @code{x ? x : 3},
1559e4b17023SJohn Marinoassuming that @code{x} is an expression without side-effects.
1560e4b17023SJohn MarinoIn the tree representation, however, the second operand is always
1561e4b17023SJohn Marinopresent, possibly protected by @code{SAVE_EXPR} if the first
1562e4b17023SJohn Marinoargument does cause side-effects.
1563e4b17023SJohn Marino
1564e4b17023SJohn Marino@item CALL_EXPR
1565e4b17023SJohn MarinoThese nodes are used to represent calls to functions, including
1566e4b17023SJohn Marinonon-static member functions.  @code{CALL_EXPR}s are implemented as
1567e4b17023SJohn Marinoexpression nodes with a variable number of operands.  Rather than using
1568e4b17023SJohn Marino@code{TREE_OPERAND} to extract them, it is preferable to use the
1569e4b17023SJohn Marinospecialized accessor macros and functions that operate specifically on
1570e4b17023SJohn Marino@code{CALL_EXPR} nodes.
1571e4b17023SJohn Marino
1572e4b17023SJohn Marino@code{CALL_EXPR_FN} returns a pointer to the
1573e4b17023SJohn Marinofunction to call; it is always an expression whose type is a
1574e4b17023SJohn Marino@code{POINTER_TYPE}.
1575e4b17023SJohn Marino
1576e4b17023SJohn MarinoThe number of arguments to the call is returned by @code{call_expr_nargs},
1577e4b17023SJohn Marinowhile the arguments themselves can be accessed with the @code{CALL_EXPR_ARG}
1578e4b17023SJohn Marinomacro.  The arguments are zero-indexed and numbered left-to-right.
1579e4b17023SJohn MarinoYou can iterate over the arguments using @code{FOR_EACH_CALL_EXPR_ARG}, as in:
1580e4b17023SJohn Marino
1581e4b17023SJohn Marino@smallexample
1582e4b17023SJohn Marinotree call, arg;
1583e4b17023SJohn Marinocall_expr_arg_iterator iter;
1584e4b17023SJohn MarinoFOR_EACH_CALL_EXPR_ARG (arg, iter, call)
1585e4b17023SJohn Marino  /* arg is bound to successive arguments of call.  */
1586e4b17023SJohn Marino  @dots{};
1587e4b17023SJohn Marino@end smallexample
1588e4b17023SJohn Marino
1589e4b17023SJohn MarinoFor non-static
1590e4b17023SJohn Marinomember functions, there will be an operand corresponding to the
1591e4b17023SJohn Marino@code{this} pointer.  There will always be expressions corresponding to
1592e4b17023SJohn Marinoall of the arguments, even if the function is declared with default
1593e4b17023SJohn Marinoarguments and some arguments are not explicitly provided at the call
1594e4b17023SJohn Marinosites.
1595e4b17023SJohn Marino
1596e4b17023SJohn Marino@code{CALL_EXPR}s also have a @code{CALL_EXPR_STATIC_CHAIN} operand that
1597e4b17023SJohn Marinois used to implement nested functions.  This operand is otherwise null.
1598e4b17023SJohn Marino
1599e4b17023SJohn Marino@item CLEANUP_POINT_EXPR
1600e4b17023SJohn MarinoThese nodes represent full-expressions.  The single operand is an
1601e4b17023SJohn Marinoexpression to evaluate.  Any destructor calls engendered by the creation
1602e4b17023SJohn Marinoof temporaries during the evaluation of that expression should be
1603e4b17023SJohn Marinoperformed immediately after the expression is evaluated.
1604e4b17023SJohn Marino
1605e4b17023SJohn Marino@item CONSTRUCTOR
1606e4b17023SJohn MarinoThese nodes represent the brace-enclosed initializers for a structure or
1607e4b17023SJohn Marinoarray.  The first operand is reserved for use by the back end.  The
1608e4b17023SJohn Marinosecond operand is a @code{TREE_LIST}.  If the @code{TREE_TYPE} of the
1609e4b17023SJohn Marino@code{CONSTRUCTOR} is a @code{RECORD_TYPE} or @code{UNION_TYPE}, then
1610e4b17023SJohn Marinothe @code{TREE_PURPOSE} of each node in the @code{TREE_LIST} will be a
1611e4b17023SJohn Marino@code{FIELD_DECL} and the @code{TREE_VALUE} of each node will be the
1612e4b17023SJohn Marinoexpression used to initialize that field.
1613e4b17023SJohn Marino
1614e4b17023SJohn MarinoIf the @code{TREE_TYPE} of the @code{CONSTRUCTOR} is an
1615e4b17023SJohn Marino@code{ARRAY_TYPE}, then the @code{TREE_PURPOSE} of each element in the
1616e4b17023SJohn Marino@code{TREE_LIST} will be an @code{INTEGER_CST} or a @code{RANGE_EXPR} of
1617e4b17023SJohn Marinotwo @code{INTEGER_CST}s.  A single @code{INTEGER_CST} indicates which
1618e4b17023SJohn Marinoelement of the array (indexed from zero) is being assigned to.  A
1619e4b17023SJohn Marino@code{RANGE_EXPR} indicates an inclusive range of elements to
1620e4b17023SJohn Marinoinitialize.  In both cases the @code{TREE_VALUE} is the corresponding
1621e4b17023SJohn Marinoinitializer.  It is re-evaluated for each element of a
1622e4b17023SJohn Marino@code{RANGE_EXPR}.  If the @code{TREE_PURPOSE} is @code{NULL_TREE}, then
1623e4b17023SJohn Marinothe initializer is for the next available array element.
1624e4b17023SJohn Marino
1625e4b17023SJohn MarinoIn the front end, you should not depend on the fields appearing in any
1626e4b17023SJohn Marinoparticular order.  However, in the middle end, fields must appear in
1627e4b17023SJohn Marinodeclaration order.  You should not assume that all fields will be
1628e4b17023SJohn Marinorepresented.  Unrepresented fields will be set to zero.
1629e4b17023SJohn Marino
1630e4b17023SJohn Marino@item COMPOUND_LITERAL_EXPR
1631e4b17023SJohn Marino@findex COMPOUND_LITERAL_EXPR_DECL_EXPR
1632e4b17023SJohn Marino@findex COMPOUND_LITERAL_EXPR_DECL
1633e4b17023SJohn MarinoThese nodes represent ISO C99 compound literals.  The
1634e4b17023SJohn Marino@code{COMPOUND_LITERAL_EXPR_DECL_EXPR} is a @code{DECL_EXPR}
1635e4b17023SJohn Marinocontaining an anonymous @code{VAR_DECL} for
1636e4b17023SJohn Marinothe unnamed object represented by the compound literal; the
1637e4b17023SJohn Marino@code{DECL_INITIAL} of that @code{VAR_DECL} is a @code{CONSTRUCTOR}
1638e4b17023SJohn Marinorepresenting the brace-enclosed list of initializers in the compound
1639e4b17023SJohn Marinoliteral.  That anonymous @code{VAR_DECL} can also be accessed directly
1640e4b17023SJohn Marinoby the @code{COMPOUND_LITERAL_EXPR_DECL} macro.
1641e4b17023SJohn Marino
1642e4b17023SJohn Marino@item SAVE_EXPR
1643e4b17023SJohn Marino
1644e4b17023SJohn MarinoA @code{SAVE_EXPR} represents an expression (possibly involving
1645e4b17023SJohn Marinoside-effects) that is used more than once.  The side-effects should
1646e4b17023SJohn Marinooccur only the first time the expression is evaluated.  Subsequent uses
1647e4b17023SJohn Marinoshould just reuse the computed value.  The first operand to the
1648e4b17023SJohn Marino@code{SAVE_EXPR} is the expression to evaluate.  The side-effects should
1649e4b17023SJohn Marinobe executed where the @code{SAVE_EXPR} is first encountered in a
1650e4b17023SJohn Marinodepth-first preorder traversal of the expression tree.
1651e4b17023SJohn Marino
1652e4b17023SJohn Marino@item TARGET_EXPR
1653e4b17023SJohn MarinoA @code{TARGET_EXPR} represents a temporary object.  The first operand
1654e4b17023SJohn Marinois a @code{VAR_DECL} for the temporary variable.  The second operand is
1655e4b17023SJohn Marinothe initializer for the temporary.  The initializer is evaluated and,
1656e4b17023SJohn Marinoif non-void, copied (bitwise) into the temporary.  If the initializer
1657e4b17023SJohn Marinois void, that means that it will perform the initialization itself.
1658e4b17023SJohn Marino
1659e4b17023SJohn MarinoOften, a @code{TARGET_EXPR} occurs on the right-hand side of an
1660e4b17023SJohn Marinoassignment, or as the second operand to a comma-expression which is
1661e4b17023SJohn Marinoitself the right-hand side of an assignment, etc.  In this case, we say
1662e4b17023SJohn Marinothat the @code{TARGET_EXPR} is ``normal''; otherwise, we say it is
1663e4b17023SJohn Marino``orphaned''.  For a normal @code{TARGET_EXPR} the temporary variable
1664e4b17023SJohn Marinoshould be treated as an alias for the left-hand side of the assignment,
1665e4b17023SJohn Marinorather than as a new temporary variable.
1666e4b17023SJohn Marino
1667e4b17023SJohn MarinoThe third operand to the @code{TARGET_EXPR}, if present, is a
1668e4b17023SJohn Marinocleanup-expression (i.e., destructor call) for the temporary.  If this
1669e4b17023SJohn Marinoexpression is orphaned, then this expression must be executed when the
1670e4b17023SJohn Marinostatement containing this expression is complete.  These cleanups must
1671e4b17023SJohn Marinoalways be executed in the order opposite to that in which they were
1672e4b17023SJohn Marinoencountered.  Note that if a temporary is created on one branch of a
1673e4b17023SJohn Marinoconditional operator (i.e., in the second or third operand to a
1674e4b17023SJohn Marino@code{COND_EXPR}), the cleanup must be run only if that branch is
1675e4b17023SJohn Marinoactually executed.
1676e4b17023SJohn Marino
1677e4b17023SJohn Marino@item VA_ARG_EXPR
1678e4b17023SJohn MarinoThis node is used to implement support for the C/C++ variable argument-list
1679e4b17023SJohn Marinomechanism.  It represents expressions like @code{va_arg (ap, type)}.
1680e4b17023SJohn MarinoIts @code{TREE_TYPE} yields the tree representation for @code{type} and
1681e4b17023SJohn Marinoits sole argument yields the representation for @code{ap}.
1682e4b17023SJohn Marino
1683e4b17023SJohn Marino@end table
1684e4b17023SJohn Marino
1685e4b17023SJohn Marino@node Vectors
1686e4b17023SJohn Marino@subsection Vectors
1687e4b17023SJohn Marino@tindex VEC_LSHIFT_EXPR
1688e4b17023SJohn Marino@tindex VEC_RSHIFT_EXPR
1689e4b17023SJohn Marino@tindex VEC_WIDEN_MULT_HI_EXPR
1690e4b17023SJohn Marino@tindex VEC_WIDEN_MULT_LO_EXPR
1691e4b17023SJohn Marino@tindex VEC_UNPACK_HI_EXPR
1692e4b17023SJohn Marino@tindex VEC_UNPACK_LO_EXPR
1693e4b17023SJohn Marino@tindex VEC_UNPACK_FLOAT_HI_EXPR
1694e4b17023SJohn Marino@tindex VEC_UNPACK_FLOAT_LO_EXPR
1695e4b17023SJohn Marino@tindex VEC_PACK_TRUNC_EXPR
1696e4b17023SJohn Marino@tindex VEC_PACK_SAT_EXPR
1697e4b17023SJohn Marino@tindex VEC_PACK_FIX_TRUNC_EXPR
1698e4b17023SJohn Marino
1699e4b17023SJohn Marino@table @code
1700e4b17023SJohn Marino@item VEC_LSHIFT_EXPR
1701e4b17023SJohn Marino@itemx VEC_RSHIFT_EXPR
1702e4b17023SJohn MarinoThese nodes represent whole vector left and right shifts, respectively.
1703e4b17023SJohn MarinoThe first operand is the vector to shift; it will always be of vector type.
1704e4b17023SJohn MarinoThe second operand is an expression for the number of bits by which to
1705e4b17023SJohn Marinoshift.  Note that the result is undefined if the second operand is larger
1706e4b17023SJohn Marinothan or equal to the first operand's type size.
1707e4b17023SJohn Marino
1708e4b17023SJohn Marino@item VEC_WIDEN_MULT_HI_EXPR
1709e4b17023SJohn Marino@itemx VEC_WIDEN_MULT_LO_EXPR
1710e4b17023SJohn MarinoThese nodes represent widening vector multiplication of the high and low
1711e4b17023SJohn Marinoparts of the two input vectors, respectively.  Their operands are vectors
1712e4b17023SJohn Marinothat contain the same number of elements (@code{N}) of the same integral type.
1713e4b17023SJohn MarinoThe result is a vector that contains half as many elements, of an integral type
1714e4b17023SJohn Marinowhose size is twice as wide.  In the case of @code{VEC_WIDEN_MULT_HI_EXPR} the
1715e4b17023SJohn Marinohigh @code{N/2} elements of the two vector are multiplied to produce the
1716e4b17023SJohn Marinovector of @code{N/2} products. In the case of @code{VEC_WIDEN_MULT_LO_EXPR} the
1717e4b17023SJohn Marinolow @code{N/2} elements of the two vector are multiplied to produce the
1718e4b17023SJohn Marinovector of @code{N/2} products.
1719e4b17023SJohn Marino
1720e4b17023SJohn Marino@item VEC_UNPACK_HI_EXPR
1721e4b17023SJohn Marino@itemx VEC_UNPACK_LO_EXPR
1722e4b17023SJohn MarinoThese nodes represent unpacking of the high and low parts of the input vector,
1723e4b17023SJohn Marinorespectively.  The single operand is a vector that contains @code{N} elements
1724e4b17023SJohn Marinoof the same integral or floating point type.  The result is a vector
1725e4b17023SJohn Marinothat contains half as many elements, of an integral or floating point type
1726e4b17023SJohn Marinowhose size is twice as wide.  In the case of @code{VEC_UNPACK_HI_EXPR} the
1727e4b17023SJohn Marinohigh @code{N/2} elements of the vector are extracted and widened (promoted).
1728e4b17023SJohn MarinoIn the case of @code{VEC_UNPACK_LO_EXPR} the low @code{N/2} elements of the
1729e4b17023SJohn Marinovector are extracted and widened (promoted).
1730e4b17023SJohn Marino
1731e4b17023SJohn Marino@item VEC_UNPACK_FLOAT_HI_EXPR
1732e4b17023SJohn Marino@itemx VEC_UNPACK_FLOAT_LO_EXPR
1733e4b17023SJohn MarinoThese nodes represent unpacking of the high and low parts of the input vector,
1734e4b17023SJohn Marinowhere the values are converted from fixed point to floating point.  The
1735e4b17023SJohn Marinosingle operand is a vector that contains @code{N} elements of the same
1736e4b17023SJohn Marinointegral type.  The result is a vector that contains half as many elements
1737e4b17023SJohn Marinoof a floating point type whose size is twice as wide.  In the case of
1738e4b17023SJohn Marino@code{VEC_UNPACK_HI_EXPR} the high @code{N/2} elements of the vector are
1739e4b17023SJohn Marinoextracted, converted and widened.  In the case of @code{VEC_UNPACK_LO_EXPR}
1740e4b17023SJohn Marinothe low @code{N/2} elements of the vector are extracted, converted and widened.
1741e4b17023SJohn Marino
1742e4b17023SJohn Marino@item VEC_PACK_TRUNC_EXPR
1743e4b17023SJohn MarinoThis node represents packing of truncated elements of the two input vectors
1744e4b17023SJohn Marinointo the output vector.  Input operands are vectors that contain the same
1745e4b17023SJohn Marinonumber of elements of the same integral or floating point type.  The result
1746e4b17023SJohn Marinois a vector that contains twice as many elements of an integral or floating
1747e4b17023SJohn Marinopoint type whose size is half as wide. The elements of the two vectors are
1748e4b17023SJohn Marinodemoted and merged (concatenated) to form the output vector.
1749e4b17023SJohn Marino
1750e4b17023SJohn Marino@item VEC_PACK_SAT_EXPR
1751e4b17023SJohn MarinoThis node represents packing of elements of the two input vectors into the
1752e4b17023SJohn Marinooutput vector using saturation.  Input operands are vectors that contain
1753e4b17023SJohn Marinothe same number of elements of the same integral type.  The result is a
1754e4b17023SJohn Marinovector that contains twice as many elements of an integral type whose size
1755e4b17023SJohn Marinois half as wide.  The elements of the two vectors are demoted and merged
1756e4b17023SJohn Marino(concatenated) to form the output vector.
1757e4b17023SJohn Marino
1758e4b17023SJohn Marino@item VEC_PACK_FIX_TRUNC_EXPR
1759e4b17023SJohn MarinoThis node represents packing of elements of the two input vectors into the
1760e4b17023SJohn Marinooutput vector, where the values are converted from floating point
1761e4b17023SJohn Marinoto fixed point.  Input operands are vectors that contain the same number
1762e4b17023SJohn Marinoof elements of a floating point type.  The result is a vector that contains
1763e4b17023SJohn Marinotwice as many elements of an integral type whose size is half as wide.  The
1764e4b17023SJohn Marinoelements of the two vectors are merged (concatenated) to form the output
1765e4b17023SJohn Marinovector.
1766e4b17023SJohn Marino@end table
1767e4b17023SJohn Marino
1768e4b17023SJohn Marino
1769e4b17023SJohn Marino@c ---------------------------------------------------------------------
1770e4b17023SJohn Marino@c Statements
1771e4b17023SJohn Marino@c ---------------------------------------------------------------------
1772e4b17023SJohn Marino
1773e4b17023SJohn Marino@node Statements
1774e4b17023SJohn Marino@section Statements
1775e4b17023SJohn Marino@cindex Statements
1776e4b17023SJohn Marino
1777e4b17023SJohn MarinoMost statements in GIMPLE are assignment statements, represented by
1778e4b17023SJohn Marino@code{GIMPLE_ASSIGN}.  No other C expressions can appear at statement level;
1779e4b17023SJohn Marinoa reference to a volatile object is converted into a
1780e4b17023SJohn Marino@code{GIMPLE_ASSIGN}.
1781e4b17023SJohn Marino
1782e4b17023SJohn MarinoThere are also several varieties of complex statements.
1783e4b17023SJohn Marino
1784e4b17023SJohn Marino@menu
1785e4b17023SJohn Marino* Basic Statements::
1786e4b17023SJohn Marino* Blocks::
1787e4b17023SJohn Marino* Statement Sequences::
1788e4b17023SJohn Marino* Empty Statements::
1789e4b17023SJohn Marino* Jumps::
1790e4b17023SJohn Marino* Cleanups::
1791e4b17023SJohn Marino* OpenMP::
1792e4b17023SJohn Marino@end menu
1793e4b17023SJohn Marino
1794e4b17023SJohn Marino@node Basic Statements
1795e4b17023SJohn Marino@subsection Basic Statements
1796e4b17023SJohn Marino@cindex Basic Statements
1797e4b17023SJohn Marino
1798e4b17023SJohn Marino@table @code
1799e4b17023SJohn Marino@item ASM_EXPR
1800e4b17023SJohn Marino
1801e4b17023SJohn MarinoUsed to represent an inline assembly statement.  For an inline assembly
1802e4b17023SJohn Marinostatement like:
1803e4b17023SJohn Marino@smallexample
1804e4b17023SJohn Marinoasm ("mov x, y");
1805e4b17023SJohn Marino@end smallexample
1806e4b17023SJohn MarinoThe @code{ASM_STRING} macro will return a @code{STRING_CST} node for
1807e4b17023SJohn Marino@code{"mov x, y"}.  If the original statement made use of the
1808e4b17023SJohn Marinoextended-assembly syntax, then @code{ASM_OUTPUTS},
1809e4b17023SJohn Marino@code{ASM_INPUTS}, and @code{ASM_CLOBBERS} will be the outputs, inputs,
1810e4b17023SJohn Marinoand clobbers for the statement, represented as @code{STRING_CST} nodes.
1811e4b17023SJohn MarinoThe extended-assembly syntax looks like:
1812e4b17023SJohn Marino@smallexample
1813e4b17023SJohn Marinoasm ("fsinx %1,%0" : "=f" (result) : "f" (angle));
1814e4b17023SJohn Marino@end smallexample
1815e4b17023SJohn MarinoThe first string is the @code{ASM_STRING}, containing the instruction
1816e4b17023SJohn Marinotemplate.  The next two strings are the output and inputs, respectively;
1817e4b17023SJohn Marinothis statement has no clobbers.  As this example indicates, ``plain''
1818e4b17023SJohn Marinoassembly statements are merely a special case of extended assembly
1819e4b17023SJohn Marinostatements; they have no cv-qualifiers, outputs, inputs, or clobbers.
1820e4b17023SJohn MarinoAll of the strings will be @code{NUL}-terminated, and will contain no
1821e4b17023SJohn Marinoembedded @code{NUL}-characters.
1822e4b17023SJohn Marino
1823e4b17023SJohn MarinoIf the assembly statement is declared @code{volatile}, or if the
1824e4b17023SJohn Marinostatement was not an extended assembly statement, and is therefore
1825e4b17023SJohn Marinoimplicitly volatile, then the predicate @code{ASM_VOLATILE_P} will hold
1826e4b17023SJohn Marinoof the @code{ASM_EXPR}.
1827e4b17023SJohn Marino
1828e4b17023SJohn Marino@item DECL_EXPR
1829e4b17023SJohn Marino
1830e4b17023SJohn MarinoUsed to represent a local declaration.  The @code{DECL_EXPR_DECL} macro
1831e4b17023SJohn Marinocan be used to obtain the entity declared.  This declaration may be a
1832e4b17023SJohn Marino@code{LABEL_DECL}, indicating that the label declared is a local label.
1833e4b17023SJohn Marino(As an extension, GCC allows the declaration of labels with scope.)  In
1834e4b17023SJohn MarinoC, this declaration may be a @code{FUNCTION_DECL}, indicating the
1835e4b17023SJohn Marinouse of the GCC nested function extension.  For more information,
1836e4b17023SJohn Marino@pxref{Functions}.
1837e4b17023SJohn Marino
1838e4b17023SJohn Marino@item LABEL_EXPR
1839e4b17023SJohn Marino
1840e4b17023SJohn MarinoUsed to represent a label.  The @code{LABEL_DECL} declared by this
1841e4b17023SJohn Marinostatement can be obtained with the @code{LABEL_EXPR_LABEL} macro.  The
1842e4b17023SJohn Marino@code{IDENTIFIER_NODE} giving the name of the label can be obtained from
1843e4b17023SJohn Marinothe @code{LABEL_DECL} with @code{DECL_NAME}.
1844e4b17023SJohn Marino
1845e4b17023SJohn Marino@item GOTO_EXPR
1846e4b17023SJohn Marino
1847e4b17023SJohn MarinoUsed to represent a @code{goto} statement.  The @code{GOTO_DESTINATION} will
1848e4b17023SJohn Marinousually be a @code{LABEL_DECL}.  However, if the ``computed goto'' extension
1849e4b17023SJohn Marinohas been used, the @code{GOTO_DESTINATION} will be an arbitrary expression
1850e4b17023SJohn Marinoindicating the destination.  This expression will always have pointer type.
1851e4b17023SJohn Marino
1852e4b17023SJohn Marino@item RETURN_EXPR
1853e4b17023SJohn Marino
1854e4b17023SJohn MarinoUsed to represent a @code{return} statement.  Operand 0 represents the
1855e4b17023SJohn Marinovalue to return.  It should either be the @code{RESULT_DECL} for the
1856e4b17023SJohn Marinocontaining function, or a @code{MODIFY_EXPR} or @code{INIT_EXPR}
1857e4b17023SJohn Marinosetting the function's @code{RESULT_DECL}.  It will be
1858e4b17023SJohn Marino@code{NULL_TREE} if the statement was just
1859e4b17023SJohn Marino@smallexample
1860e4b17023SJohn Marinoreturn;
1861e4b17023SJohn Marino@end smallexample
1862e4b17023SJohn Marino
1863e4b17023SJohn Marino@item LOOP_EXPR
1864e4b17023SJohn MarinoThese nodes represent ``infinite'' loops.  The @code{LOOP_EXPR_BODY}
1865e4b17023SJohn Marinorepresents the body of the loop.  It should be executed forever, unless
1866e4b17023SJohn Marinoan @code{EXIT_EXPR} is encountered.
1867e4b17023SJohn Marino
1868e4b17023SJohn Marino@item EXIT_EXPR
1869e4b17023SJohn MarinoThese nodes represent conditional exits from the nearest enclosing
1870e4b17023SJohn Marino@code{LOOP_EXPR}.  The single operand is the condition; if it is
1871e4b17023SJohn Marinononzero, then the loop should be exited.  An @code{EXIT_EXPR} will only
1872e4b17023SJohn Marinoappear within a @code{LOOP_EXPR}.
1873e4b17023SJohn Marino
1874e4b17023SJohn Marino@item SWITCH_STMT
1875e4b17023SJohn Marino
1876e4b17023SJohn MarinoUsed to represent a @code{switch} statement.  The @code{SWITCH_STMT_COND}
1877e4b17023SJohn Marinois the expression on which the switch is occurring.  See the documentation
1878e4b17023SJohn Marinofor an @code{IF_STMT} for more information on the representation used
1879e4b17023SJohn Marinofor the condition.  The @code{SWITCH_STMT_BODY} is the body of the switch
1880e4b17023SJohn Marinostatement.   The @code{SWITCH_STMT_TYPE} is the original type of switch
1881e4b17023SJohn Marinoexpression as given in the source, before any compiler conversions.
1882e4b17023SJohn Marino
1883e4b17023SJohn Marino@item CASE_LABEL_EXPR
1884e4b17023SJohn Marino
1885e4b17023SJohn MarinoUse to represent a @code{case} label, range of @code{case} labels, or a
1886e4b17023SJohn Marino@code{default} label.  If @code{CASE_LOW} is @code{NULL_TREE}, then this is a
1887e4b17023SJohn Marino@code{default} label.  Otherwise, if @code{CASE_HIGH} is @code{NULL_TREE}, then
1888e4b17023SJohn Marinothis is an ordinary @code{case} label.  In this case, @code{CASE_LOW} is
1889e4b17023SJohn Marinoan expression giving the value of the label.  Both @code{CASE_LOW} and
1890e4b17023SJohn Marino@code{CASE_HIGH} are @code{INTEGER_CST} nodes.  These values will have
1891e4b17023SJohn Marinothe same type as the condition expression in the switch statement.
1892e4b17023SJohn Marino
1893e4b17023SJohn MarinoOtherwise, if both @code{CASE_LOW} and @code{CASE_HIGH} are defined, the
1894e4b17023SJohn Marinostatement is a range of case labels.  Such statements originate with the
1895e4b17023SJohn Marinoextension that allows users to write things of the form:
1896e4b17023SJohn Marino@smallexample
1897e4b17023SJohn Marinocase 2 ... 5:
1898e4b17023SJohn Marino@end smallexample
1899e4b17023SJohn MarinoThe first value will be @code{CASE_LOW}, while the second will be
1900e4b17023SJohn Marino@code{CASE_HIGH}.
1901e4b17023SJohn Marino
1902e4b17023SJohn Marino@end table
1903e4b17023SJohn Marino
1904e4b17023SJohn Marino
1905e4b17023SJohn Marino@node Blocks
1906e4b17023SJohn Marino@subsection Blocks
1907e4b17023SJohn Marino@cindex Blocks
1908e4b17023SJohn Marino
1909e4b17023SJohn MarinoBlock scopes and the variables they declare in GENERIC are
1910e4b17023SJohn Marinoexpressed using the @code{BIND_EXPR} code, which in previous
1911e4b17023SJohn Marinoversions of GCC was primarily used for the C statement-expression
1912e4b17023SJohn Marinoextension.
1913e4b17023SJohn Marino
1914e4b17023SJohn MarinoVariables in a block are collected into @code{BIND_EXPR_VARS} in
1915e4b17023SJohn Marinodeclaration order through their @code{TREE_CHAIN} field.  Any runtime
1916e4b17023SJohn Marinoinitialization is moved out of @code{DECL_INITIAL} and into a
1917e4b17023SJohn Marinostatement in the controlled block.  When gimplifying from C or C++,
1918e4b17023SJohn Marinothis initialization replaces the @code{DECL_STMT}.  These variables
1919e4b17023SJohn Marinowill never require cleanups.  The scope of these variables is just the
1920e4b17023SJohn Marinobody
1921e4b17023SJohn Marino
1922e4b17023SJohn MarinoVariable-length arrays (VLAs) complicate this process, as their
1923e4b17023SJohn Marinosize often refers to variables initialized earlier in the block.
1924e4b17023SJohn MarinoTo handle this, we currently split the block at that point, and
1925e4b17023SJohn Marinomove the VLA into a new, inner @code{BIND_EXPR}.  This strategy
1926e4b17023SJohn Marinomay change in the future.
1927e4b17023SJohn Marino
1928e4b17023SJohn MarinoA C++ program will usually contain more @code{BIND_EXPR}s than
1929e4b17023SJohn Marinothere are syntactic blocks in the source code, since several C++
1930e4b17023SJohn Marinoconstructs have implicit scopes associated with them.  On the
1931e4b17023SJohn Marinoother hand, although the C++ front end uses pseudo-scopes to
1932e4b17023SJohn Marinohandle cleanups for objects with destructors, these don't
1933e4b17023SJohn Marinotranslate into the GIMPLE form; multiple declarations at the same
1934e4b17023SJohn Marinolevel use the same @code{BIND_EXPR}.
1935e4b17023SJohn Marino
1936e4b17023SJohn Marino@node Statement Sequences
1937e4b17023SJohn Marino@subsection Statement Sequences
1938e4b17023SJohn Marino@cindex Statement Sequences
1939e4b17023SJohn Marino
1940e4b17023SJohn MarinoMultiple statements at the same nesting level are collected into
1941e4b17023SJohn Marinoa @code{STATEMENT_LIST}.  Statement lists are modified and
1942e4b17023SJohn Marinotraversed using the interface in @samp{tree-iterator.h}.
1943e4b17023SJohn Marino
1944e4b17023SJohn Marino@node Empty Statements
1945e4b17023SJohn Marino@subsection Empty Statements
1946e4b17023SJohn Marino@cindex Empty Statements
1947e4b17023SJohn Marino
1948e4b17023SJohn MarinoWhenever possible, statements with no effect are discarded.  But
1949e4b17023SJohn Marinoif they are nested within another construct which cannot be
1950e4b17023SJohn Marinodiscarded for some reason, they are instead replaced with an
1951e4b17023SJohn Marinoempty statement, generated by @code{build_empty_stmt}.
1952e4b17023SJohn MarinoInitially, all empty statements were shared, after the pattern of
1953e4b17023SJohn Marinothe Java front end, but this caused a lot of trouble in practice.
1954e4b17023SJohn Marino
1955e4b17023SJohn MarinoAn empty statement is represented as @code{(void)0}.
1956e4b17023SJohn Marino
1957e4b17023SJohn Marino@node Jumps
1958e4b17023SJohn Marino@subsection Jumps
1959e4b17023SJohn Marino@cindex Jumps
1960e4b17023SJohn Marino
1961e4b17023SJohn MarinoOther jumps are expressed by either @code{GOTO_EXPR} or
1962e4b17023SJohn Marino@code{RETURN_EXPR}.
1963e4b17023SJohn Marino
1964e4b17023SJohn MarinoThe operand of a @code{GOTO_EXPR} must be either a label or a
1965e4b17023SJohn Marinovariable containing the address to jump to.
1966e4b17023SJohn Marino
1967e4b17023SJohn MarinoThe operand of a @code{RETURN_EXPR} is either @code{NULL_TREE},
1968e4b17023SJohn Marino@code{RESULT_DECL}, or a @code{MODIFY_EXPR} which sets the return
1969e4b17023SJohn Marinovalue.  It would be nice to move the @code{MODIFY_EXPR} into a
1970e4b17023SJohn Marinoseparate statement, but the special return semantics in
1971e4b17023SJohn Marino@code{expand_return} make that difficult.  It may still happen in
1972e4b17023SJohn Marinothe future, perhaps by moving most of that logic into
1973e4b17023SJohn Marino@code{expand_assignment}.
1974e4b17023SJohn Marino
1975e4b17023SJohn Marino@node Cleanups
1976e4b17023SJohn Marino@subsection Cleanups
1977e4b17023SJohn Marino@cindex Cleanups
1978e4b17023SJohn Marino
1979e4b17023SJohn MarinoDestructors for local C++ objects and similar dynamic cleanups are
1980e4b17023SJohn Marinorepresented in GIMPLE by a @code{TRY_FINALLY_EXPR}.
1981e4b17023SJohn Marino@code{TRY_FINALLY_EXPR} has two operands, both of which are a sequence
1982e4b17023SJohn Marinoof statements to execute.  The first sequence is executed.  When it
1983e4b17023SJohn Marinocompletes the second sequence is executed.
1984e4b17023SJohn Marino
1985e4b17023SJohn MarinoThe first sequence may complete in the following ways:
1986e4b17023SJohn Marino
1987e4b17023SJohn Marino@enumerate
1988e4b17023SJohn Marino
1989e4b17023SJohn Marino@item Execute the last statement in the sequence and fall off the
1990e4b17023SJohn Marinoend.
1991e4b17023SJohn Marino
1992e4b17023SJohn Marino@item Execute a goto statement (@code{GOTO_EXPR}) to an ordinary
1993e4b17023SJohn Marinolabel outside the sequence.
1994e4b17023SJohn Marino
1995e4b17023SJohn Marino@item Execute a return statement (@code{RETURN_EXPR}).
1996e4b17023SJohn Marino
1997e4b17023SJohn Marino@item Throw an exception.  This is currently not explicitly represented in
1998e4b17023SJohn MarinoGIMPLE.
1999e4b17023SJohn Marino
2000e4b17023SJohn Marino@end enumerate
2001e4b17023SJohn Marino
2002e4b17023SJohn MarinoThe second sequence is not executed if the first sequence completes by
2003e4b17023SJohn Marinocalling @code{setjmp} or @code{exit} or any other function that does
2004e4b17023SJohn Marinonot return.  The second sequence is also not executed if the first
2005e4b17023SJohn Marinosequence completes via a non-local goto or a computed goto (in general
2006e4b17023SJohn Marinothe compiler does not know whether such a goto statement exits the
2007e4b17023SJohn Marinofirst sequence or not, so we assume that it doesn't).
2008e4b17023SJohn Marino
2009e4b17023SJohn MarinoAfter the second sequence is executed, if it completes normally by
2010e4b17023SJohn Marinofalling off the end, execution continues wherever the first sequence
2011e4b17023SJohn Marinowould have continued, by falling off the end, or doing a goto, etc.
2012e4b17023SJohn Marino
2013e4b17023SJohn Marino@code{TRY_FINALLY_EXPR} complicates the flow graph, since the cleanup
2014e4b17023SJohn Marinoneeds to appear on every edge out of the controlled block; this
2015e4b17023SJohn Marinoreduces the freedom to move code across these edges.  Therefore, the
2016e4b17023SJohn MarinoEH lowering pass which runs before most of the optimization passes
2017e4b17023SJohn Marinoeliminates these expressions by explicitly adding the cleanup to each
2018e4b17023SJohn Marinoedge.  Rethrowing the exception is represented using @code{RESX_EXPR}.
2019e4b17023SJohn Marino
2020e4b17023SJohn Marino@node OpenMP
2021e4b17023SJohn Marino@subsection OpenMP
2022e4b17023SJohn Marino@tindex OMP_PARALLEL
2023e4b17023SJohn Marino@tindex OMP_FOR
2024e4b17023SJohn Marino@tindex OMP_SECTIONS
2025e4b17023SJohn Marino@tindex OMP_SINGLE
2026e4b17023SJohn Marino@tindex OMP_SECTION
2027e4b17023SJohn Marino@tindex OMP_MASTER
2028e4b17023SJohn Marino@tindex OMP_ORDERED
2029e4b17023SJohn Marino@tindex OMP_CRITICAL
2030e4b17023SJohn Marino@tindex OMP_RETURN
2031e4b17023SJohn Marino@tindex OMP_CONTINUE
2032e4b17023SJohn Marino@tindex OMP_ATOMIC
2033e4b17023SJohn Marino@tindex OMP_CLAUSE
2034e4b17023SJohn Marino
2035e4b17023SJohn MarinoAll the statements starting with @code{OMP_} represent directives and
2036e4b17023SJohn Marinoclauses used by the OpenMP API @w{@uref{http://www.openmp.org/}}.
2037e4b17023SJohn Marino
2038e4b17023SJohn Marino@table @code
2039e4b17023SJohn Marino@item OMP_PARALLEL
2040e4b17023SJohn Marino
2041e4b17023SJohn MarinoRepresents @code{#pragma omp parallel [clause1 @dots{} clauseN]}. It
2042e4b17023SJohn Marinohas four operands:
2043e4b17023SJohn Marino
2044e4b17023SJohn MarinoOperand @code{OMP_PARALLEL_BODY} is valid while in GENERIC and
2045e4b17023SJohn MarinoHigh GIMPLE forms.  It contains the body of code to be executed
2046e4b17023SJohn Marinoby all the threads.  During GIMPLE lowering, this operand becomes
2047e4b17023SJohn Marino@code{NULL} and the body is emitted linearly after
2048e4b17023SJohn Marino@code{OMP_PARALLEL}.
2049e4b17023SJohn Marino
2050e4b17023SJohn MarinoOperand @code{OMP_PARALLEL_CLAUSES} is the list of clauses
2051e4b17023SJohn Marinoassociated with the directive.
2052e4b17023SJohn Marino
2053e4b17023SJohn MarinoOperand @code{OMP_PARALLEL_FN} is created by
2054e4b17023SJohn Marino@code{pass_lower_omp}, it contains the @code{FUNCTION_DECL}
2055e4b17023SJohn Marinofor the function that will contain the body of the parallel
2056e4b17023SJohn Marinoregion.
2057e4b17023SJohn Marino
2058e4b17023SJohn MarinoOperand @code{OMP_PARALLEL_DATA_ARG} is also created by
2059e4b17023SJohn Marino@code{pass_lower_omp}. If there are shared variables to be
2060e4b17023SJohn Marinocommunicated to the children threads, this operand will contain
2061e4b17023SJohn Marinothe @code{VAR_DECL} that contains all the shared values and
2062e4b17023SJohn Marinovariables.
2063e4b17023SJohn Marino
2064e4b17023SJohn Marino@item OMP_FOR
2065e4b17023SJohn Marino
2066e4b17023SJohn MarinoRepresents @code{#pragma omp for [clause1 @dots{} clauseN]}.  It
2067e4b17023SJohn Marinohas 5 operands:
2068e4b17023SJohn Marino
2069e4b17023SJohn MarinoOperand @code{OMP_FOR_BODY} contains the loop body.
2070e4b17023SJohn Marino
2071e4b17023SJohn MarinoOperand @code{OMP_FOR_CLAUSES} is the list of clauses
2072e4b17023SJohn Marinoassociated with the directive.
2073e4b17023SJohn Marino
2074e4b17023SJohn MarinoOperand @code{OMP_FOR_INIT} is the loop initialization code of
2075e4b17023SJohn Marinothe form @code{VAR = N1}.
2076e4b17023SJohn Marino
2077e4b17023SJohn MarinoOperand @code{OMP_FOR_COND} is the loop conditional expression
2078e4b17023SJohn Marinoof the form @code{VAR @{<,>,<=,>=@} N2}.
2079e4b17023SJohn Marino
2080e4b17023SJohn MarinoOperand @code{OMP_FOR_INCR} is the loop index increment of the
2081e4b17023SJohn Marinoform @code{VAR @{+=,-=@} INCR}.
2082e4b17023SJohn Marino
2083e4b17023SJohn MarinoOperand @code{OMP_FOR_PRE_BODY} contains side-effect code from
2084e4b17023SJohn Marinooperands @code{OMP_FOR_INIT}, @code{OMP_FOR_COND} and
2085e4b17023SJohn Marino@code{OMP_FOR_INC}.  These side-effects are part of the
2086e4b17023SJohn Marino@code{OMP_FOR} block but must be evaluated before the start of
2087e4b17023SJohn Marinoloop body.
2088e4b17023SJohn Marino
2089e4b17023SJohn MarinoThe loop index variable @code{VAR} must be a signed integer variable,
2090e4b17023SJohn Marinowhich is implicitly private to each thread.  Bounds
2091e4b17023SJohn Marino@code{N1} and @code{N2} and the increment expression
2092e4b17023SJohn Marino@code{INCR} are required to be loop invariant integer
2093e4b17023SJohn Marinoexpressions that are evaluated without any synchronization. The
2094e4b17023SJohn Marinoevaluation order, frequency of evaluation and side-effects are
2095e4b17023SJohn Marinounspecified by the standard.
2096e4b17023SJohn Marino
2097e4b17023SJohn Marino@item OMP_SECTIONS
2098e4b17023SJohn Marino
2099e4b17023SJohn MarinoRepresents @code{#pragma omp sections [clause1 @dots{} clauseN]}.
2100e4b17023SJohn Marino
2101e4b17023SJohn MarinoOperand @code{OMP_SECTIONS_BODY} contains the sections body,
2102e4b17023SJohn Marinowhich in turn contains a set of @code{OMP_SECTION} nodes for
2103e4b17023SJohn Marinoeach of the concurrent sections delimited by @code{#pragma omp
2104e4b17023SJohn Marinosection}.
2105e4b17023SJohn Marino
2106e4b17023SJohn MarinoOperand @code{OMP_SECTIONS_CLAUSES} is the list of clauses
2107e4b17023SJohn Marinoassociated with the directive.
2108e4b17023SJohn Marino
2109e4b17023SJohn Marino@item OMP_SECTION
2110e4b17023SJohn Marino
2111e4b17023SJohn MarinoSection delimiter for @code{OMP_SECTIONS}.
2112e4b17023SJohn Marino
2113e4b17023SJohn Marino@item OMP_SINGLE
2114e4b17023SJohn Marino
2115e4b17023SJohn MarinoRepresents @code{#pragma omp single}.
2116e4b17023SJohn Marino
2117e4b17023SJohn MarinoOperand @code{OMP_SINGLE_BODY} contains the body of code to be
2118e4b17023SJohn Marinoexecuted by a single thread.
2119e4b17023SJohn Marino
2120e4b17023SJohn MarinoOperand @code{OMP_SINGLE_CLAUSES} is the list of clauses
2121e4b17023SJohn Marinoassociated with the directive.
2122e4b17023SJohn Marino
2123e4b17023SJohn Marino@item OMP_MASTER
2124e4b17023SJohn Marino
2125e4b17023SJohn MarinoRepresents @code{#pragma omp master}.
2126e4b17023SJohn Marino
2127e4b17023SJohn MarinoOperand @code{OMP_MASTER_BODY} contains the body of code to be
2128e4b17023SJohn Marinoexecuted by the master thread.
2129e4b17023SJohn Marino
2130e4b17023SJohn Marino@item OMP_ORDERED
2131e4b17023SJohn Marino
2132e4b17023SJohn MarinoRepresents @code{#pragma omp ordered}.
2133e4b17023SJohn Marino
2134e4b17023SJohn MarinoOperand @code{OMP_ORDERED_BODY} contains the body of code to be
2135e4b17023SJohn Marinoexecuted in the sequential order dictated by the loop index
2136e4b17023SJohn Marinovariable.
2137e4b17023SJohn Marino
2138e4b17023SJohn Marino@item OMP_CRITICAL
2139e4b17023SJohn Marino
2140e4b17023SJohn MarinoRepresents @code{#pragma omp critical [name]}.
2141e4b17023SJohn Marino
2142e4b17023SJohn MarinoOperand @code{OMP_CRITICAL_BODY} is the critical section.
2143e4b17023SJohn Marino
2144e4b17023SJohn MarinoOperand @code{OMP_CRITICAL_NAME} is an optional identifier to
2145e4b17023SJohn Marinolabel the critical section.
2146e4b17023SJohn Marino
2147e4b17023SJohn Marino@item OMP_RETURN
2148e4b17023SJohn Marino
2149e4b17023SJohn MarinoThis does not represent any OpenMP directive, it is an artificial
2150e4b17023SJohn Marinomarker to indicate the end of the body of an OpenMP@. It is used
2151e4b17023SJohn Marinoby the flow graph (@code{tree-cfg.c}) and OpenMP region
2152e4b17023SJohn Marinobuilding code (@code{omp-low.c}).
2153e4b17023SJohn Marino
2154e4b17023SJohn Marino@item OMP_CONTINUE
2155e4b17023SJohn Marino
2156e4b17023SJohn MarinoSimilarly, this instruction does not represent an OpenMP
2157e4b17023SJohn Marinodirective, it is used by @code{OMP_FOR} and
2158e4b17023SJohn Marino@code{OMP_SECTIONS} to mark the place where the code needs to
2159e4b17023SJohn Marinoloop to the next iteration (in the case of @code{OMP_FOR}) or
2160e4b17023SJohn Marinothe next section (in the case of @code{OMP_SECTIONS}).
2161e4b17023SJohn Marino
2162e4b17023SJohn MarinoIn some cases, @code{OMP_CONTINUE} is placed right before
2163e4b17023SJohn Marino@code{OMP_RETURN}.  But if there are cleanups that need to
2164e4b17023SJohn Marinooccur right after the looping body, it will be emitted between
2165e4b17023SJohn Marino@code{OMP_CONTINUE} and @code{OMP_RETURN}.
2166e4b17023SJohn Marino
2167e4b17023SJohn Marino@item OMP_ATOMIC
2168e4b17023SJohn Marino
2169e4b17023SJohn MarinoRepresents @code{#pragma omp atomic}.
2170e4b17023SJohn Marino
2171e4b17023SJohn MarinoOperand 0 is the address at which the atomic operation is to be
2172e4b17023SJohn Marinoperformed.
2173e4b17023SJohn Marino
2174e4b17023SJohn MarinoOperand 1 is the expression to evaluate.  The gimplifier tries
2175e4b17023SJohn Marinothree alternative code generation strategies.  Whenever possible,
2176e4b17023SJohn Marinoan atomic update built-in is used.  If that fails, a
2177e4b17023SJohn Marinocompare-and-swap loop is attempted.  If that also fails, a
2178e4b17023SJohn Marinoregular critical section around the expression is used.
2179e4b17023SJohn Marino
2180e4b17023SJohn Marino@item OMP_CLAUSE
2181e4b17023SJohn Marino
2182e4b17023SJohn MarinoRepresents clauses associated with one of the @code{OMP_} directives.
2183e4b17023SJohn MarinoClauses are represented by separate sub-codes defined in
2184e4b17023SJohn Marino@file{tree.h}.  Clauses codes can be one of:
2185e4b17023SJohn Marino@code{OMP_CLAUSE_PRIVATE}, @code{OMP_CLAUSE_SHARED},
2186e4b17023SJohn Marino@code{OMP_CLAUSE_FIRSTPRIVATE},
2187e4b17023SJohn Marino@code{OMP_CLAUSE_LASTPRIVATE}, @code{OMP_CLAUSE_COPYIN},
2188e4b17023SJohn Marino@code{OMP_CLAUSE_COPYPRIVATE}, @code{OMP_CLAUSE_IF},
2189e4b17023SJohn Marino@code{OMP_CLAUSE_NUM_THREADS}, @code{OMP_CLAUSE_SCHEDULE},
2190e4b17023SJohn Marino@code{OMP_CLAUSE_NOWAIT}, @code{OMP_CLAUSE_ORDERED},
2191e4b17023SJohn Marino@code{OMP_CLAUSE_DEFAULT}, @code{OMP_CLAUSE_REDUCTION},
2192e4b17023SJohn Marino@code{OMP_CLAUSE_COLLAPSE}, @code{OMP_CLAUSE_UNTIED},
2193e4b17023SJohn Marino@code{OMP_CLAUSE_FINAL}, and @code{OMP_CLAUSE_MERGEABLE}.  Each code
2194e4b17023SJohn Marinorepresents the corresponding OpenMP clause.
2195e4b17023SJohn Marino
2196e4b17023SJohn MarinoClauses associated with the same directive are chained together
2197e4b17023SJohn Marinovia @code{OMP_CLAUSE_CHAIN}. Those clauses that accept a list
2198e4b17023SJohn Marinoof variables are restricted to exactly one, accessed with
2199e4b17023SJohn Marino@code{OMP_CLAUSE_VAR}.  Therefore, multiple variables under the
2200e4b17023SJohn Marinosame clause @code{C} need to be represented as multiple @code{C} clauses
2201e4b17023SJohn Marinochained together.  This facilitates adding new clauses during
2202e4b17023SJohn Marinocompilation.
2203e4b17023SJohn Marino
2204e4b17023SJohn Marino@end table
2205e4b17023SJohn Marino
2206e4b17023SJohn Marino@c ---------------------------------------------------------------------
2207e4b17023SJohn Marino@c Functions
2208e4b17023SJohn Marino@c ---------------------------------------------------------------------
2209e4b17023SJohn Marino
2210e4b17023SJohn Marino@node Functions
2211e4b17023SJohn Marino@section Functions
2212e4b17023SJohn Marino@cindex function
2213e4b17023SJohn Marino@tindex FUNCTION_DECL
2214e4b17023SJohn Marino
2215e4b17023SJohn MarinoA function is represented by a @code{FUNCTION_DECL} node.  It stores
2216e4b17023SJohn Marinothe basic pieces of the function such as body, parameters, and return
2217e4b17023SJohn Marinotype as well as information on the surrounding context, visibility,
2218e4b17023SJohn Marinoand linkage.
2219e4b17023SJohn Marino
2220e4b17023SJohn Marino@menu
2221e4b17023SJohn Marino* Function Basics::     Function names, body, and parameters.
2222e4b17023SJohn Marino* Function Properties:: Context, linkage, etc.
2223e4b17023SJohn Marino@end menu
2224e4b17023SJohn Marino
2225e4b17023SJohn Marino@c ---------------------------------------------------------------------
2226e4b17023SJohn Marino@c Function Basics
2227e4b17023SJohn Marino@c ---------------------------------------------------------------------
2228e4b17023SJohn Marino
2229e4b17023SJohn Marino@node Function Basics
2230e4b17023SJohn Marino@subsection Function Basics
2231e4b17023SJohn Marino@findex DECL_NAME
2232e4b17023SJohn Marino@findex DECL_ASSEMBLER_NAME
2233e4b17023SJohn Marino@findex TREE_PUBLIC
2234e4b17023SJohn Marino@findex DECL_ARTIFICIAL
2235e4b17023SJohn Marino@findex DECL_FUNCTION_SPECIFIC_TARGET
2236e4b17023SJohn Marino@findex DECL_FUNCTION_SPECIFIC_OPTIMIZATION
2237e4b17023SJohn Marino
2238e4b17023SJohn MarinoA function has four core parts: the name, the parameters, the result,
2239e4b17023SJohn Marinoand the body.  The following macros and functions access these parts
2240e4b17023SJohn Marinoof a @code{FUNCTION_DECL} as well as other basic features:
2241e4b17023SJohn Marino@ftable @code
2242e4b17023SJohn Marino@item DECL_NAME
2243e4b17023SJohn MarinoThis macro returns the unqualified name of the function, as an
2244e4b17023SJohn Marino@code{IDENTIFIER_NODE}.  For an instantiation of a function template,
2245e4b17023SJohn Marinothe @code{DECL_NAME} is the unqualified name of the template, not
2246e4b17023SJohn Marinosomething like @code{f<int>}.  The value of @code{DECL_NAME} is
2247e4b17023SJohn Marinoundefined when used on a constructor, destructor, overloaded operator,
2248e4b17023SJohn Marinoor type-conversion operator, or any function that is implicitly
2249e4b17023SJohn Marinogenerated by the compiler.  See below for macros that can be used to
2250e4b17023SJohn Marinodistinguish these cases.
2251e4b17023SJohn Marino
2252e4b17023SJohn Marino@item DECL_ASSEMBLER_NAME
2253e4b17023SJohn MarinoThis macro returns the mangled name of the function, also an
2254e4b17023SJohn Marino@code{IDENTIFIER_NODE}.  This name does not contain leading underscores
2255e4b17023SJohn Marinoon systems that prefix all identifiers with underscores.  The mangled
2256e4b17023SJohn Marinoname is computed in the same way on all platforms; if special processing
2257e4b17023SJohn Marinois required to deal with the object file format used on a particular
2258e4b17023SJohn Marinoplatform, it is the responsibility of the back end to perform those
2259e4b17023SJohn Marinomodifications.  (Of course, the back end should not modify
2260e4b17023SJohn Marino@code{DECL_ASSEMBLER_NAME} itself.)
2261e4b17023SJohn Marino
2262e4b17023SJohn MarinoUsing @code{DECL_ASSEMBLER_NAME} will cause additional memory to be
2263e4b17023SJohn Marinoallocated (for the mangled name of the entity) so it should be used
2264e4b17023SJohn Marinoonly when emitting assembly code.  It should not be used within the
2265e4b17023SJohn Marinooptimizers to determine whether or not two declarations are the same,
2266e4b17023SJohn Marinoeven though some of the existing optimizers do use it in that way.
2267e4b17023SJohn MarinoThese uses will be removed over time.
2268e4b17023SJohn Marino
2269e4b17023SJohn Marino@item DECL_ARGUMENTS
2270e4b17023SJohn MarinoThis macro returns the @code{PARM_DECL} for the first argument to the
2271e4b17023SJohn Marinofunction.  Subsequent @code{PARM_DECL} nodes can be obtained by
2272e4b17023SJohn Marinofollowing the @code{TREE_CHAIN} links.
2273e4b17023SJohn Marino
2274e4b17023SJohn Marino@item DECL_RESULT
2275e4b17023SJohn MarinoThis macro returns the @code{RESULT_DECL} for the function.
2276e4b17023SJohn Marino
2277e4b17023SJohn Marino@item DECL_SAVED_TREE
2278e4b17023SJohn MarinoThis macro returns the complete body of the function.
2279e4b17023SJohn Marino
2280e4b17023SJohn Marino@item TREE_TYPE
2281e4b17023SJohn MarinoThis macro returns the @code{FUNCTION_TYPE} or @code{METHOD_TYPE} for
2282e4b17023SJohn Marinothe function.
2283e4b17023SJohn Marino
2284e4b17023SJohn Marino@item DECL_INITIAL
2285e4b17023SJohn MarinoA function that has a definition in the current translation unit will
2286e4b17023SJohn Marinohave a non-@code{NULL} @code{DECL_INITIAL}.  However, back ends should not make
2287e4b17023SJohn Marinouse of the particular value given by @code{DECL_INITIAL}.
2288e4b17023SJohn Marino
2289e4b17023SJohn MarinoIt should contain a tree of @code{BLOCK} nodes that mirrors the scopes
2290e4b17023SJohn Marinothat variables are bound in the function.  Each block contains a list
2291e4b17023SJohn Marinoof decls declared in a basic block, a pointer to a chain of blocks at
2292e4b17023SJohn Marinothe next lower scope level, then a pointer to the next block at the
2293e4b17023SJohn Marinosame level and a backpointer to the parent @code{BLOCK} or
2294e4b17023SJohn Marino@code{FUNCTION_DECL}.  So given a function as follows:
2295e4b17023SJohn Marino
2296e4b17023SJohn Marino@smallexample
2297e4b17023SJohn Marinovoid foo()
2298e4b17023SJohn Marino@{
2299e4b17023SJohn Marino  int a;
2300e4b17023SJohn Marino  @{
2301e4b17023SJohn Marino    int b;
2302e4b17023SJohn Marino  @}
2303e4b17023SJohn Marino  int c;
2304e4b17023SJohn Marino@}
2305e4b17023SJohn Marino@end smallexample
2306e4b17023SJohn Marino
2307e4b17023SJohn Marinoyou would get the following:
2308e4b17023SJohn Marino
2309e4b17023SJohn Marino@smallexample
2310e4b17023SJohn Marinotree foo = FUNCTION_DECL;
2311e4b17023SJohn Marinotree decl_a = VAR_DECL;
2312e4b17023SJohn Marinotree decl_b = VAR_DECL;
2313e4b17023SJohn Marinotree decl_c = VAR_DECL;
2314e4b17023SJohn Marinotree block_a = BLOCK;
2315e4b17023SJohn Marinotree block_b = BLOCK;
2316e4b17023SJohn Marinotree block_c = BLOCK;
2317e4b17023SJohn MarinoBLOCK_VARS(block_a) = decl_a;
2318e4b17023SJohn MarinoBLOCK_SUBBLOCKS(block_a) = block_b;
2319e4b17023SJohn MarinoBLOCK_CHAIN(block_a) = block_c;
2320e4b17023SJohn MarinoBLOCK_SUPERCONTEXT(block_a) = foo;
2321e4b17023SJohn MarinoBLOCK_VARS(block_b) = decl_b;
2322e4b17023SJohn MarinoBLOCK_SUPERCONTEXT(block_b) = block_a;
2323e4b17023SJohn MarinoBLOCK_VARS(block_c) = decl_c;
2324e4b17023SJohn MarinoBLOCK_SUPERCONTEXT(block_c) = foo;
2325e4b17023SJohn MarinoDECL_INITIAL(foo) = block_a;
2326e4b17023SJohn Marino@end smallexample
2327e4b17023SJohn Marino
2328e4b17023SJohn Marino@end ftable
2329e4b17023SJohn Marino
2330e4b17023SJohn Marino@c ---------------------------------------------------------------------
2331e4b17023SJohn Marino@c Function Properties
2332e4b17023SJohn Marino@c ---------------------------------------------------------------------
2333e4b17023SJohn Marino
2334e4b17023SJohn Marino@node Function Properties
2335e4b17023SJohn Marino@subsection Function Properties
2336e4b17023SJohn Marino@cindex function properties
2337e4b17023SJohn Marino@cindex statements
2338e4b17023SJohn Marino
2339e4b17023SJohn MarinoTo determine the scope of a function, you can use the
2340e4b17023SJohn Marino@code{DECL_CONTEXT} macro.  This macro will return the class
2341e4b17023SJohn Marino(either a @code{RECORD_TYPE} or a @code{UNION_TYPE}) or namespace (a
2342e4b17023SJohn Marino@code{NAMESPACE_DECL}) of which the function is a member.  For a virtual
2343e4b17023SJohn Marinofunction, this macro returns the class in which the function was
2344e4b17023SJohn Marinoactually defined, not the base class in which the virtual declaration
2345e4b17023SJohn Marinooccurred.
2346e4b17023SJohn Marino
2347e4b17023SJohn MarinoIn C, the @code{DECL_CONTEXT} for a function maybe another function.
2348e4b17023SJohn MarinoThis representation indicates that the GNU nested function extension
2349e4b17023SJohn Marinois in use.  For details on the semantics of nested functions, see the
2350e4b17023SJohn MarinoGCC Manual.  The nested function can refer to local variables in its
2351e4b17023SJohn Marinocontaining function.  Such references are not explicitly marked in the
2352e4b17023SJohn Marinotree structure; back ends must look at the @code{DECL_CONTEXT} for the
2353e4b17023SJohn Marinoreferenced @code{VAR_DECL}.  If the @code{DECL_CONTEXT} for the
2354e4b17023SJohn Marinoreferenced @code{VAR_DECL} is not the same as the function currently
2355e4b17023SJohn Marinobeing processed, and neither @code{DECL_EXTERNAL} nor
2356e4b17023SJohn Marino@code{TREE_STATIC} hold, then the reference is to a local variable in
2357e4b17023SJohn Marinoa containing function, and the back end must take appropriate action.
2358e4b17023SJohn Marino
2359e4b17023SJohn Marino@ftable @code
2360e4b17023SJohn Marino@item DECL_EXTERNAL
2361e4b17023SJohn MarinoThis predicate holds if the function is undefined.
2362e4b17023SJohn Marino
2363e4b17023SJohn Marino@item TREE_PUBLIC
2364e4b17023SJohn MarinoThis predicate holds if the function has external linkage.
2365e4b17023SJohn Marino
2366e4b17023SJohn Marino@item TREE_STATIC
2367e4b17023SJohn MarinoThis predicate holds if the function has been defined.
2368e4b17023SJohn Marino
2369e4b17023SJohn Marino@item TREE_THIS_VOLATILE
2370e4b17023SJohn MarinoThis predicate holds if the function does not return normally.
2371e4b17023SJohn Marino
2372e4b17023SJohn Marino@item TREE_READONLY
2373e4b17023SJohn MarinoThis predicate holds if the function can only read its arguments.
2374e4b17023SJohn Marino
2375e4b17023SJohn Marino@item DECL_PURE_P
2376e4b17023SJohn MarinoThis predicate holds if the function can only read its arguments, but
2377e4b17023SJohn Marinomay also read global memory.
2378e4b17023SJohn Marino
2379e4b17023SJohn Marino@item DECL_VIRTUAL_P
2380e4b17023SJohn MarinoThis predicate holds if the function is virtual.
2381e4b17023SJohn Marino
2382e4b17023SJohn Marino@item DECL_ARTIFICIAL
2383e4b17023SJohn MarinoThis macro holds if the function was implicitly generated by the
2384e4b17023SJohn Marinocompiler, rather than explicitly declared.  In addition to implicitly
2385e4b17023SJohn Marinogenerated class member functions, this macro holds for the special
2386e4b17023SJohn Marinofunctions created to implement static initialization and destruction, to
2387e4b17023SJohn Marinocompute run-time type information, and so forth.
2388e4b17023SJohn Marino
2389e4b17023SJohn Marino@item DECL_FUNCTION_SPECIFIC_TARGET
2390e4b17023SJohn MarinoThis macro returns a tree node that holds the target options that are
2391e4b17023SJohn Marinoto be used to compile this particular function or @code{NULL_TREE} if
2392e4b17023SJohn Marinothe function is to be compiled with the target options specified on
2393e4b17023SJohn Marinothe command line.
2394e4b17023SJohn Marino
2395e4b17023SJohn Marino@item DECL_FUNCTION_SPECIFIC_OPTIMIZATION
2396e4b17023SJohn MarinoThis macro returns a tree node that holds the optimization options
2397e4b17023SJohn Marinothat are to be used to compile this particular function or
2398e4b17023SJohn Marino@code{NULL_TREE} if the function is to be compiled with the
2399e4b17023SJohn Marinooptimization options specified on the command line.
2400e4b17023SJohn Marino
2401e4b17023SJohn Marino@end ftable
2402e4b17023SJohn Marino
2403e4b17023SJohn Marino@c ---------------------------------------------------------------------
2404e4b17023SJohn Marino@c Language-dependent trees
2405e4b17023SJohn Marino@c ---------------------------------------------------------------------
2406e4b17023SJohn Marino
2407e4b17023SJohn Marino@node Language-dependent trees
2408e4b17023SJohn Marino@section Language-dependent trees
2409e4b17023SJohn Marino@cindex language-dependent trees
2410e4b17023SJohn Marino
2411e4b17023SJohn MarinoFront ends may wish to keep some state associated with various GENERIC
2412e4b17023SJohn Marinotrees while parsing.  To support this, trees provide a set of flags
2413e4b17023SJohn Marinothat may be used by the front end.  They are accessed using
2414e4b17023SJohn Marino@code{TREE_LANG_FLAG_n} where @samp{n} is currently 0 through 6.
2415e4b17023SJohn Marino
2416e4b17023SJohn MarinoIf necessary, a front end can use some language-dependent tree
2417e4b17023SJohn Marinocodes in its GENERIC representation, so long as it provides a
2418e4b17023SJohn Marinohook for converting them to GIMPLE and doesn't expect them to
2419e4b17023SJohn Marinowork with any (hypothetical) optimizers that run before the
2420e4b17023SJohn Marinoconversion to GIMPLE@. The intermediate representation used while
2421e4b17023SJohn Marinoparsing C and C++ looks very little like GENERIC, but the C and
2422e4b17023SJohn MarinoC++ gimplifier hooks are perfectly happy to take it as input and
2423e4b17023SJohn Marinospit out GIMPLE@.
2424e4b17023SJohn Marino
2425e4b17023SJohn Marino
2426e4b17023SJohn Marino
2427e4b17023SJohn Marino@node C and C++ Trees
2428e4b17023SJohn Marino@section C and C++ Trees
2429e4b17023SJohn Marino
2430e4b17023SJohn MarinoThis section documents the internal representation used by GCC to
2431e4b17023SJohn Marinorepresent C and C++ source programs.  When presented with a C or C++
2432e4b17023SJohn Marinosource program, GCC parses the program, performs semantic analysis
2433e4b17023SJohn Marino(including the generation of error messages), and then produces the
2434e4b17023SJohn Marinointernal representation described here.  This representation contains a
2435e4b17023SJohn Marinocomplete representation for the entire translation unit provided as
2436e4b17023SJohn Marinoinput to the front end.  This representation is then typically processed
2437e4b17023SJohn Marinoby a code-generator in order to produce machine code, but could also be
2438e4b17023SJohn Marinoused in the creation of source browsers, intelligent editors, automatic
2439e4b17023SJohn Marinodocumentation generators, interpreters, and any other programs needing
2440e4b17023SJohn Marinothe ability to process C or C++ code.
2441e4b17023SJohn Marino
2442e4b17023SJohn MarinoThis section explains the internal representation.  In particular, it
2443e4b17023SJohn Marinodocuments the internal representation for C and C++ source
2444e4b17023SJohn Marinoconstructs, and the macros, functions, and variables that can be used to
2445e4b17023SJohn Marinoaccess these constructs.  The C++ representation is largely a superset
2446e4b17023SJohn Marinoof the representation used in the C front end.  There is only one
2447e4b17023SJohn Marinoconstruct used in C that does not appear in the C++ front end and that
2448e4b17023SJohn Marinois the GNU ``nested function'' extension.  Many of the macros documented
2449e4b17023SJohn Marinohere do not apply in C because the corresponding language constructs do
2450e4b17023SJohn Marinonot appear in C@.
2451e4b17023SJohn Marino
2452e4b17023SJohn MarinoThe C and C++ front ends generate a mix of GENERIC trees and ones
2453e4b17023SJohn Marinospecific to C and C++.  These language-specific trees are higher-level
2454e4b17023SJohn Marinoconstructs than the ones in GENERIC to make the parser's job easier.
2455e4b17023SJohn MarinoThis section describes those trees that aren't part of GENERIC as well
2456e4b17023SJohn Marinoas aspects of GENERIC trees that are treated in a language-specific
2457e4b17023SJohn Marinomanner.
2458e4b17023SJohn Marino
2459e4b17023SJohn MarinoIf you are developing a ``back end'', be it is a code-generator or some
2460e4b17023SJohn Marinoother tool, that uses this representation, you may occasionally find
2461e4b17023SJohn Marinothat you need to ask questions not easily answered by the functions and
2462e4b17023SJohn Marinomacros available here.  If that situation occurs, it is quite likely
2463e4b17023SJohn Marinothat GCC already supports the functionality you desire, but that the
2464e4b17023SJohn Marinointerface is simply not documented here.  In that case, you should ask
2465e4b17023SJohn Marinothe GCC maintainers (via mail to @email{gcc@@gcc.gnu.org}) about
2466e4b17023SJohn Marinodocumenting the functionality you require.  Similarly, if you find
2467e4b17023SJohn Marinoyourself writing functions that do not deal directly with your back end,
2468e4b17023SJohn Marinobut instead might be useful to other people using the GCC front end, you
2469e4b17023SJohn Marinoshould submit your patches for inclusion in GCC@.
2470e4b17023SJohn Marino
2471e4b17023SJohn Marino@menu
2472e4b17023SJohn Marino* Types for C++::               Fundamental and aggregate types.
2473e4b17023SJohn Marino* Namespaces::                  Namespaces.
2474e4b17023SJohn Marino* Classes::                     Classes.
2475e4b17023SJohn Marino* Functions for C++::           Overloading and accessors for C++.
2476e4b17023SJohn Marino* Statements for C++::          Statements specific to C and C++.
2477e4b17023SJohn Marino* C++ Expressions::    From @code{typeid} to @code{throw}.
2478e4b17023SJohn Marino@end menu
2479e4b17023SJohn Marino
2480e4b17023SJohn Marino@node Types for C++
2481e4b17023SJohn Marino@subsection Types for C++
2482e4b17023SJohn Marino@tindex UNKNOWN_TYPE
2483e4b17023SJohn Marino@tindex TYPENAME_TYPE
2484e4b17023SJohn Marino@tindex TYPEOF_TYPE
2485e4b17023SJohn Marino@findex cp_type_quals
2486e4b17023SJohn Marino@findex TYPE_UNQUALIFIED
2487e4b17023SJohn Marino@findex TYPE_QUAL_CONST
2488e4b17023SJohn Marino@findex TYPE_QUAL_VOLATILE
2489e4b17023SJohn Marino@findex TYPE_QUAL_RESTRICT
2490e4b17023SJohn Marino@findex TYPE_MAIN_VARIANT
2491e4b17023SJohn Marino@cindex qualified type
2492e4b17023SJohn Marino@findex TYPE_SIZE
2493e4b17023SJohn Marino@findex TYPE_ALIGN
2494e4b17023SJohn Marino@findex TYPE_PRECISION
2495e4b17023SJohn Marino@findex TYPE_ARG_TYPES
2496e4b17023SJohn Marino@findex TYPE_METHOD_BASETYPE
2497e4b17023SJohn Marino@findex TYPE_PTRMEM_P
2498e4b17023SJohn Marino@findex TYPE_OFFSET_BASETYPE
2499e4b17023SJohn Marino@findex TREE_TYPE
2500e4b17023SJohn Marino@findex TYPE_CONTEXT
2501e4b17023SJohn Marino@findex TYPE_NAME
2502e4b17023SJohn Marino@findex TYPENAME_TYPE_FULLNAME
2503e4b17023SJohn Marino@findex TYPE_FIELDS
2504e4b17023SJohn Marino@findex TYPE_PTROBV_P
2505e4b17023SJohn Marino
2506e4b17023SJohn MarinoIn C++, an array type is not qualified; rather the type of the array
2507e4b17023SJohn Marinoelements is qualified.  This situation is reflected in the intermediate
2508e4b17023SJohn Marinorepresentation.  The macros described here will always examine the
2509e4b17023SJohn Marinoqualification of the underlying element type when applied to an array
2510e4b17023SJohn Marinotype.  (If the element type is itself an array, then the recursion
2511e4b17023SJohn Marinocontinues until a non-array type is found, and the qualification of this
2512e4b17023SJohn Marinotype is examined.)  So, for example, @code{CP_TYPE_CONST_P} will hold of
2513e4b17023SJohn Marinothe type @code{const int ()[7]}, denoting an array of seven @code{int}s.
2514e4b17023SJohn Marino
2515e4b17023SJohn MarinoThe following functions and macros deal with cv-qualification of types:
2516e4b17023SJohn Marino@ftable @code
2517e4b17023SJohn Marino@item cp_type_quals
2518e4b17023SJohn MarinoThis function returns the set of type qualifiers applied to this type.
2519e4b17023SJohn MarinoThis value is @code{TYPE_UNQUALIFIED} if no qualifiers have been
2520e4b17023SJohn Marinoapplied.  The @code{TYPE_QUAL_CONST} bit is set if the type is
2521e4b17023SJohn Marino@code{const}-qualified.  The @code{TYPE_QUAL_VOLATILE} bit is set if the
2522e4b17023SJohn Marinotype is @code{volatile}-qualified.  The @code{TYPE_QUAL_RESTRICT} bit is
2523e4b17023SJohn Marinoset if the type is @code{restrict}-qualified.
2524e4b17023SJohn Marino
2525e4b17023SJohn Marino@item CP_TYPE_CONST_P
2526e4b17023SJohn MarinoThis macro holds if the type is @code{const}-qualified.
2527e4b17023SJohn Marino
2528e4b17023SJohn Marino@item CP_TYPE_VOLATILE_P
2529e4b17023SJohn MarinoThis macro holds if the type is @code{volatile}-qualified.
2530e4b17023SJohn Marino
2531e4b17023SJohn Marino@item CP_TYPE_RESTRICT_P
2532e4b17023SJohn MarinoThis macro holds if the type is @code{restrict}-qualified.
2533e4b17023SJohn Marino
2534e4b17023SJohn Marino@item CP_TYPE_CONST_NON_VOLATILE_P
2535e4b17023SJohn MarinoThis predicate holds for a type that is @code{const}-qualified, but
2536e4b17023SJohn Marino@emph{not} @code{volatile}-qualified; other cv-qualifiers are ignored as
2537e4b17023SJohn Marinowell: only the @code{const}-ness is tested.
2538e4b17023SJohn Marino
2539e4b17023SJohn Marino@end ftable
2540e4b17023SJohn Marino
2541e4b17023SJohn MarinoA few other macros and functions are usable with all types:
2542e4b17023SJohn Marino@ftable @code
2543e4b17023SJohn Marino@item TYPE_SIZE
2544e4b17023SJohn MarinoThe number of bits required to represent the type, represented as an
2545e4b17023SJohn Marino@code{INTEGER_CST}.  For an incomplete type, @code{TYPE_SIZE} will be
2546e4b17023SJohn Marino@code{NULL_TREE}.
2547e4b17023SJohn Marino
2548e4b17023SJohn Marino@item TYPE_ALIGN
2549e4b17023SJohn MarinoThe alignment of the type, in bits, represented as an @code{int}.
2550e4b17023SJohn Marino
2551e4b17023SJohn Marino@item TYPE_NAME
2552e4b17023SJohn MarinoThis macro returns a declaration (in the form of a @code{TYPE_DECL}) for
2553e4b17023SJohn Marinothe type.  (Note this macro does @emph{not} return an
2554e4b17023SJohn Marino@code{IDENTIFIER_NODE}, as you might expect, given its name!)  You can
2555e4b17023SJohn Marinolook at the @code{DECL_NAME} of the @code{TYPE_DECL} to obtain the
2556e4b17023SJohn Marinoactual name of the type.  The @code{TYPE_NAME} will be @code{NULL_TREE}
2557e4b17023SJohn Marinofor a type that is not a built-in type, the result of a typedef, or a
2558e4b17023SJohn Marinonamed class type.
2559e4b17023SJohn Marino
2560e4b17023SJohn Marino@item CP_INTEGRAL_TYPE
2561e4b17023SJohn MarinoThis predicate holds if the type is an integral type.  Notice that in
2562e4b17023SJohn MarinoC++, enumerations are @emph{not} integral types.
2563e4b17023SJohn Marino
2564e4b17023SJohn Marino@item ARITHMETIC_TYPE_P
2565e4b17023SJohn MarinoThis predicate holds if the type is an integral type (in the C++ sense)
2566e4b17023SJohn Marinoor a floating point type.
2567e4b17023SJohn Marino
2568e4b17023SJohn Marino@item CLASS_TYPE_P
2569e4b17023SJohn MarinoThis predicate holds for a class-type.
2570e4b17023SJohn Marino
2571e4b17023SJohn Marino@item TYPE_BUILT_IN
2572e4b17023SJohn MarinoThis predicate holds for a built-in type.
2573e4b17023SJohn Marino
2574e4b17023SJohn Marino@item TYPE_PTRMEM_P
2575e4b17023SJohn MarinoThis predicate holds if the type is a pointer to data member.
2576e4b17023SJohn Marino
2577e4b17023SJohn Marino@item TYPE_PTR_P
2578e4b17023SJohn MarinoThis predicate holds if the type is a pointer type, and the pointee is
2579e4b17023SJohn Marinonot a data member.
2580e4b17023SJohn Marino
2581e4b17023SJohn Marino@item TYPE_PTRFN_P
2582e4b17023SJohn MarinoThis predicate holds for a pointer to function type.
2583e4b17023SJohn Marino
2584e4b17023SJohn Marino@item TYPE_PTROB_P
2585e4b17023SJohn MarinoThis predicate holds for a pointer to object type.  Note however that it
2586e4b17023SJohn Marinodoes not hold for the generic pointer to object type @code{void *}.  You
2587e4b17023SJohn Marinomay use @code{TYPE_PTROBV_P} to test for a pointer to object type as
2588e4b17023SJohn Marinowell as @code{void *}.
2589e4b17023SJohn Marino
2590e4b17023SJohn Marino@end ftable
2591e4b17023SJohn Marino
2592e4b17023SJohn MarinoThe table below describes types specific to C and C++ as well as
2593e4b17023SJohn Marinolanguage-dependent info about GENERIC types.
2594e4b17023SJohn Marino
2595e4b17023SJohn Marino@table @code
2596e4b17023SJohn Marino
2597e4b17023SJohn Marino@item POINTER_TYPE
2598e4b17023SJohn MarinoUsed to represent pointer types, and pointer to data member types.  If
2599e4b17023SJohn Marino@code{TREE_TYPE}
2600e4b17023SJohn Marinois a pointer to data member type, then @code{TYPE_PTRMEM_P} will hold.
2601e4b17023SJohn MarinoFor a pointer to data member type of the form @samp{T X::*},
2602e4b17023SJohn Marino@code{TYPE_PTRMEM_CLASS_TYPE} will be the type @code{X}, while
2603e4b17023SJohn Marino@code{TYPE_PTRMEM_POINTED_TO_TYPE} will be the type @code{T}.
2604e4b17023SJohn Marino
2605e4b17023SJohn Marino@item RECORD_TYPE
2606e4b17023SJohn MarinoUsed to represent @code{struct} and @code{class} types in C and C++.  If
2607e4b17023SJohn Marino@code{TYPE_PTRMEMFUNC_P} holds, then this type is a pointer-to-member
2608e4b17023SJohn Marinotype.  In that case, the @code{TYPE_PTRMEMFUNC_FN_TYPE} is a
2609e4b17023SJohn Marino@code{POINTER_TYPE} pointing to a @code{METHOD_TYPE}.  The
2610e4b17023SJohn Marino@code{METHOD_TYPE} is the type of a function pointed to by the
2611e4b17023SJohn Marinopointer-to-member function.  If @code{TYPE_PTRMEMFUNC_P} does not hold,
2612e4b17023SJohn Marinothis type is a class type.  For more information, @pxref{Classes}.
2613e4b17023SJohn Marino
2614e4b17023SJohn Marino@item UNKNOWN_TYPE
2615e4b17023SJohn MarinoThis node is used to represent a type the knowledge of which is
2616e4b17023SJohn Marinoinsufficient for a sound processing.
2617e4b17023SJohn Marino
2618e4b17023SJohn Marino@item TYPENAME_TYPE
2619e4b17023SJohn MarinoUsed to represent a construct of the form @code{typename T::A}.  The
2620e4b17023SJohn Marino@code{TYPE_CONTEXT} is @code{T}; the @code{TYPE_NAME} is an
2621e4b17023SJohn Marino@code{IDENTIFIER_NODE} for @code{A}.  If the type is specified via a
2622e4b17023SJohn Marinotemplate-id, then @code{TYPENAME_TYPE_FULLNAME} yields a
2623e4b17023SJohn Marino@code{TEMPLATE_ID_EXPR}.  The @code{TREE_TYPE} is non-@code{NULL} if the
2624e4b17023SJohn Marinonode is implicitly generated in support for the implicit typename
2625e4b17023SJohn Marinoextension; in which case the @code{TREE_TYPE} is a type node for the
2626e4b17023SJohn Marinobase-class.
2627e4b17023SJohn Marino
2628e4b17023SJohn Marino@item TYPEOF_TYPE
2629e4b17023SJohn MarinoUsed to represent the @code{__typeof__} extension.  The
2630e4b17023SJohn Marino@code{TYPE_FIELDS} is the expression the type of which is being
2631e4b17023SJohn Marinorepresented.
2632e4b17023SJohn Marino
2633e4b17023SJohn Marino@end table
2634e4b17023SJohn Marino
2635e4b17023SJohn Marino
2636e4b17023SJohn Marino@c ---------------------------------------------------------------------
2637e4b17023SJohn Marino@c Namespaces
2638e4b17023SJohn Marino@c ---------------------------------------------------------------------
2639e4b17023SJohn Marino
2640e4b17023SJohn Marino@node Namespaces
2641e4b17023SJohn Marino@subsection Namespaces
2642e4b17023SJohn Marino@cindex namespace, scope
2643e4b17023SJohn Marino@tindex NAMESPACE_DECL
2644e4b17023SJohn Marino
2645e4b17023SJohn MarinoThe root of the entire intermediate representation is the variable
2646e4b17023SJohn Marino@code{global_namespace}.  This is the namespace specified with @code{::}
2647e4b17023SJohn Marinoin C++ source code.  All other namespaces, types, variables, functions,
2648e4b17023SJohn Marinoand so forth can be found starting with this namespace.
2649e4b17023SJohn Marino
2650e4b17023SJohn MarinoHowever, except for the fact that it is distinguished as the root of the
2651e4b17023SJohn Marinorepresentation, the global namespace is no different from any other
2652e4b17023SJohn Marinonamespace.  Thus, in what follows, we describe namespaces generally,
2653e4b17023SJohn Marinorather than the global namespace in particular.
2654e4b17023SJohn Marino
2655e4b17023SJohn MarinoA namespace is represented by a @code{NAMESPACE_DECL} node.
2656e4b17023SJohn Marino
2657e4b17023SJohn MarinoThe following macros and functions can be used on a @code{NAMESPACE_DECL}:
2658e4b17023SJohn Marino
2659e4b17023SJohn Marino@ftable @code
2660e4b17023SJohn Marino@item DECL_NAME
2661e4b17023SJohn MarinoThis macro is used to obtain the @code{IDENTIFIER_NODE} corresponding to
2662e4b17023SJohn Marinothe unqualified name of the name of the namespace (@pxref{Identifiers}).
2663e4b17023SJohn MarinoThe name of the global namespace is @samp{::}, even though in C++ the
2664e4b17023SJohn Marinoglobal namespace is unnamed.  However, you should use comparison with
2665e4b17023SJohn Marino@code{global_namespace}, rather than @code{DECL_NAME} to determine
2666e4b17023SJohn Marinowhether or not a namespace is the global one.  An unnamed namespace
2667e4b17023SJohn Marinowill have a @code{DECL_NAME} equal to @code{anonymous_namespace_name}.
2668e4b17023SJohn MarinoWithin a single translation unit, all unnamed namespaces will have the
2669e4b17023SJohn Marinosame name.
2670e4b17023SJohn Marino
2671e4b17023SJohn Marino@item DECL_CONTEXT
2672e4b17023SJohn MarinoThis macro returns the enclosing namespace.  The @code{DECL_CONTEXT} for
2673e4b17023SJohn Marinothe @code{global_namespace} is @code{NULL_TREE}.
2674e4b17023SJohn Marino
2675e4b17023SJohn Marino@item DECL_NAMESPACE_ALIAS
2676e4b17023SJohn MarinoIf this declaration is for a namespace alias, then
2677e4b17023SJohn Marino@code{DECL_NAMESPACE_ALIAS} is the namespace for which this one is an
2678e4b17023SJohn Marinoalias.
2679e4b17023SJohn Marino
2680e4b17023SJohn MarinoDo not attempt to use @code{cp_namespace_decls} for a namespace which is
2681e4b17023SJohn Marinoan alias.  Instead, follow @code{DECL_NAMESPACE_ALIAS} links until you
2682e4b17023SJohn Marinoreach an ordinary, non-alias, namespace, and call
2683e4b17023SJohn Marino@code{cp_namespace_decls} there.
2684e4b17023SJohn Marino
2685e4b17023SJohn Marino@item DECL_NAMESPACE_STD_P
2686e4b17023SJohn MarinoThis predicate holds if the namespace is the special @code{::std}
2687e4b17023SJohn Marinonamespace.
2688e4b17023SJohn Marino
2689e4b17023SJohn Marino@item cp_namespace_decls
2690e4b17023SJohn MarinoThis function will return the declarations contained in the namespace,
2691e4b17023SJohn Marinoincluding types, overloaded functions, other namespaces, and so forth.
2692e4b17023SJohn MarinoIf there are no declarations, this function will return
2693e4b17023SJohn Marino@code{NULL_TREE}.  The declarations are connected through their
2694e4b17023SJohn Marino@code{TREE_CHAIN} fields.
2695e4b17023SJohn Marino
2696e4b17023SJohn MarinoAlthough most entries on this list will be declarations,
2697e4b17023SJohn Marino@code{TREE_LIST} nodes may also appear.  In this case, the
2698e4b17023SJohn Marino@code{TREE_VALUE} will be an @code{OVERLOAD}.  The value of the
2699e4b17023SJohn Marino@code{TREE_PURPOSE} is unspecified; back ends should ignore this value.
2700e4b17023SJohn MarinoAs with the other kinds of declarations returned by
2701e4b17023SJohn Marino@code{cp_namespace_decls}, the @code{TREE_CHAIN} will point to the next
2702e4b17023SJohn Marinodeclaration in this list.
2703e4b17023SJohn Marino
2704e4b17023SJohn MarinoFor more information on the kinds of declarations that can occur on this
2705e4b17023SJohn Marinolist, @xref{Declarations}.  Some declarations will not appear on this
2706e4b17023SJohn Marinolist.  In particular, no @code{FIELD_DECL}, @code{LABEL_DECL}, or
2707e4b17023SJohn Marino@code{PARM_DECL} nodes will appear here.
2708e4b17023SJohn Marino
2709e4b17023SJohn MarinoThis function cannot be used with namespaces that have
2710e4b17023SJohn Marino@code{DECL_NAMESPACE_ALIAS} set.
2711e4b17023SJohn Marino
2712e4b17023SJohn Marino@end ftable
2713e4b17023SJohn Marino
2714e4b17023SJohn Marino@c ---------------------------------------------------------------------
2715e4b17023SJohn Marino@c Classes
2716e4b17023SJohn Marino@c ---------------------------------------------------------------------
2717e4b17023SJohn Marino
2718e4b17023SJohn Marino@node Classes
2719e4b17023SJohn Marino@subsection Classes
2720e4b17023SJohn Marino@cindex class, scope
2721e4b17023SJohn Marino@tindex RECORD_TYPE
2722e4b17023SJohn Marino@tindex UNION_TYPE
2723e4b17023SJohn Marino@findex CLASSTYPE_DECLARED_CLASS
2724e4b17023SJohn Marino@findex TYPE_BINFO
2725e4b17023SJohn Marino@findex BINFO_TYPE
2726e4b17023SJohn Marino@findex TYPE_FIELDS
2727e4b17023SJohn Marino@findex TYPE_VFIELD
2728e4b17023SJohn Marino@findex TYPE_METHODS
2729e4b17023SJohn Marino
2730e4b17023SJohn MarinoBesides namespaces, the other high-level scoping construct in C++ is the
2731e4b17023SJohn Marinoclass.  (Throughout this manual the term @dfn{class} is used to mean the
2732e4b17023SJohn Marinotypes referred to in the ANSI/ISO C++ Standard as classes; these include
2733e4b17023SJohn Marinotypes defined with the @code{class}, @code{struct}, and @code{union}
2734e4b17023SJohn Marinokeywords.)
2735e4b17023SJohn Marino
2736e4b17023SJohn MarinoA class type is represented by either a @code{RECORD_TYPE} or a
2737e4b17023SJohn Marino@code{UNION_TYPE}.  A class declared with the @code{union} tag is
2738e4b17023SJohn Marinorepresented by a @code{UNION_TYPE}, while classes declared with either
2739e4b17023SJohn Marinothe @code{struct} or the @code{class} tag are represented by
2740e4b17023SJohn Marino@code{RECORD_TYPE}s.  You can use the @code{CLASSTYPE_DECLARED_CLASS}
2741e4b17023SJohn Marinomacro to discern whether or not a particular type is a @code{class} as
2742e4b17023SJohn Marinoopposed to a @code{struct}.  This macro will be true only for classes
2743e4b17023SJohn Marinodeclared with the @code{class} tag.
2744e4b17023SJohn Marino
2745e4b17023SJohn MarinoAlmost all non-function members are available on the @code{TYPE_FIELDS}
2746e4b17023SJohn Marinolist.  Given one member, the next can be found by following the
2747e4b17023SJohn Marino@code{TREE_CHAIN}.  You should not depend in any way on the order in
2748e4b17023SJohn Marinowhich fields appear on this list.  All nodes on this list will be
2749e4b17023SJohn Marino@samp{DECL} nodes.  A @code{FIELD_DECL} is used to represent a non-static
2750e4b17023SJohn Marinodata member, a @code{VAR_DECL} is used to represent a static data
2751e4b17023SJohn Marinomember, and a @code{TYPE_DECL} is used to represent a type.  Note that
2752e4b17023SJohn Marinothe @code{CONST_DECL} for an enumeration constant will appear on this
2753e4b17023SJohn Marinolist, if the enumeration type was declared in the class.  (Of course,
2754e4b17023SJohn Marinothe @code{TYPE_DECL} for the enumeration type will appear here as well.)
2755e4b17023SJohn MarinoThere are no entries for base classes on this list.  In particular,
2756e4b17023SJohn Marinothere is no @code{FIELD_DECL} for the ``base-class portion'' of an
2757e4b17023SJohn Marinoobject.
2758e4b17023SJohn Marino
2759e4b17023SJohn MarinoThe @code{TYPE_VFIELD} is a compiler-generated field used to point to
2760e4b17023SJohn Marinovirtual function tables.  It may or may not appear on the
2761e4b17023SJohn Marino@code{TYPE_FIELDS} list.  However, back ends should handle the
2762e4b17023SJohn Marino@code{TYPE_VFIELD} just like all the entries on the @code{TYPE_FIELDS}
2763e4b17023SJohn Marinolist.
2764e4b17023SJohn Marino
2765e4b17023SJohn MarinoThe function members are available on the @code{TYPE_METHODS} list.
2766e4b17023SJohn MarinoAgain, subsequent members are found by following the @code{TREE_CHAIN}
2767e4b17023SJohn Marinofield.  If a function is overloaded, each of the overloaded functions
2768e4b17023SJohn Marinoappears; no @code{OVERLOAD} nodes appear on the @code{TYPE_METHODS}
2769e4b17023SJohn Marinolist.  Implicitly declared functions (including default constructors,
2770e4b17023SJohn Marinocopy constructors, assignment operators, and destructors) will appear on
2771e4b17023SJohn Marinothis list as well.
2772e4b17023SJohn Marino
2773e4b17023SJohn MarinoEvery class has an associated @dfn{binfo}, which can be obtained with
2774e4b17023SJohn Marino@code{TYPE_BINFO}.  Binfos are used to represent base-classes.  The
2775e4b17023SJohn Marinobinfo given by @code{TYPE_BINFO} is the degenerate case, whereby every
2776e4b17023SJohn Marinoclass is considered to be its own base-class.  The base binfos for a
2777e4b17023SJohn Marinoparticular binfo are held in a vector, whose length is obtained with
2778e4b17023SJohn Marino@code{BINFO_N_BASE_BINFOS}.  The base binfos themselves are obtained
2779e4b17023SJohn Marinowith @code{BINFO_BASE_BINFO} and @code{BINFO_BASE_ITERATE}.  To add a
2780e4b17023SJohn Marinonew binfo, use @code{BINFO_BASE_APPEND}.  The vector of base binfos can
2781e4b17023SJohn Marinobe obtained with @code{BINFO_BASE_BINFOS}, but normally you do not need
2782e4b17023SJohn Marinoto use that.  The class type associated with a binfo is given by
2783e4b17023SJohn Marino@code{BINFO_TYPE}.  It is not always the case that @code{BINFO_TYPE
2784e4b17023SJohn Marino(TYPE_BINFO (x))}, because of typedefs and qualified types.  Neither is
2785e4b17023SJohn Marinoit the case that @code{TYPE_BINFO (BINFO_TYPE (y))} is the same binfo as
2786e4b17023SJohn Marino@code{y}.  The reason is that if @code{y} is a binfo representing a
2787e4b17023SJohn Marinobase-class @code{B} of a derived class @code{D}, then @code{BINFO_TYPE
2788e4b17023SJohn Marino(y)} will be @code{B}, and @code{TYPE_BINFO (BINFO_TYPE (y))} will be
2789e4b17023SJohn Marino@code{B} as its own base-class, rather than as a base-class of @code{D}.
2790e4b17023SJohn Marino
2791e4b17023SJohn MarinoThe access to a base type can be found with @code{BINFO_BASE_ACCESS}.
2792e4b17023SJohn MarinoThis will produce @code{access_public_node}, @code{access_private_node}
2793e4b17023SJohn Marinoor @code{access_protected_node}.  If bases are always public,
2794e4b17023SJohn Marino@code{BINFO_BASE_ACCESSES} may be @code{NULL}.
2795e4b17023SJohn Marino
2796e4b17023SJohn Marino@code{BINFO_VIRTUAL_P} is used to specify whether the binfo is inherited
2797e4b17023SJohn Marinovirtually or not.  The other flags, @code{BINFO_MARKED_P} and
2798e4b17023SJohn Marino@code{BINFO_FLAG_1} to @code{BINFO_FLAG_6} can be used for language
2799e4b17023SJohn Marinospecific use.
2800e4b17023SJohn Marino
2801e4b17023SJohn MarinoThe following macros can be used on a tree node representing a class-type.
2802e4b17023SJohn Marino
2803e4b17023SJohn Marino@ftable @code
2804e4b17023SJohn Marino@item LOCAL_CLASS_P
2805e4b17023SJohn MarinoThis predicate holds if the class is local class @emph{i.e.}@: declared
2806e4b17023SJohn Marinoinside a function body.
2807e4b17023SJohn Marino
2808e4b17023SJohn Marino@item TYPE_POLYMORPHIC_P
2809e4b17023SJohn MarinoThis predicate holds if the class has at least one virtual function
2810e4b17023SJohn Marino(declared or inherited).
2811e4b17023SJohn Marino
2812e4b17023SJohn Marino@item TYPE_HAS_DEFAULT_CONSTRUCTOR
2813e4b17023SJohn MarinoThis predicate holds whenever its argument represents a class-type with
2814e4b17023SJohn Marinodefault constructor.
2815e4b17023SJohn Marino
2816e4b17023SJohn Marino@item CLASSTYPE_HAS_MUTABLE
2817e4b17023SJohn Marino@itemx TYPE_HAS_MUTABLE_P
2818e4b17023SJohn MarinoThese predicates hold for a class-type having a mutable data member.
2819e4b17023SJohn Marino
2820e4b17023SJohn Marino@item CLASSTYPE_NON_POD_P
2821e4b17023SJohn MarinoThis predicate holds only for class-types that are not PODs.
2822e4b17023SJohn Marino
2823e4b17023SJohn Marino@item TYPE_HAS_NEW_OPERATOR
2824e4b17023SJohn MarinoThis predicate holds for a class-type that defines
2825e4b17023SJohn Marino@code{operator new}.
2826e4b17023SJohn Marino
2827e4b17023SJohn Marino@item TYPE_HAS_ARRAY_NEW_OPERATOR
2828e4b17023SJohn MarinoThis predicate holds for a class-type for which
2829e4b17023SJohn Marino@code{operator new[]} is defined.
2830e4b17023SJohn Marino
2831e4b17023SJohn Marino@item TYPE_OVERLOADS_CALL_EXPR
2832e4b17023SJohn MarinoThis predicate holds for class-type for which the function call
2833e4b17023SJohn Marino@code{operator()} is overloaded.
2834e4b17023SJohn Marino
2835e4b17023SJohn Marino@item TYPE_OVERLOADS_ARRAY_REF
2836e4b17023SJohn MarinoThis predicate holds for a class-type that overloads
2837e4b17023SJohn Marino@code{operator[]}
2838e4b17023SJohn Marino
2839e4b17023SJohn Marino@item TYPE_OVERLOADS_ARROW
2840e4b17023SJohn MarinoThis predicate holds for a class-type for which @code{operator->} is
2841e4b17023SJohn Marinooverloaded.
2842e4b17023SJohn Marino
2843e4b17023SJohn Marino@end ftable
2844e4b17023SJohn Marino
2845e4b17023SJohn Marino@node Functions for C++
2846e4b17023SJohn Marino@subsection Functions for C++
2847e4b17023SJohn Marino@cindex function
2848e4b17023SJohn Marino@tindex FUNCTION_DECL
2849e4b17023SJohn Marino@tindex OVERLOAD
2850e4b17023SJohn Marino@findex OVL_CURRENT
2851e4b17023SJohn Marino@findex OVL_NEXT
2852e4b17023SJohn Marino
2853e4b17023SJohn MarinoA function is represented by a @code{FUNCTION_DECL} node.  A set of
2854e4b17023SJohn Marinooverloaded functions is sometimes represented by an @code{OVERLOAD} node.
2855e4b17023SJohn Marino
2856e4b17023SJohn MarinoAn @code{OVERLOAD} node is not a declaration, so none of the
2857e4b17023SJohn Marino@samp{DECL_} macros should be used on an @code{OVERLOAD}.  An
2858e4b17023SJohn Marino@code{OVERLOAD} node is similar to a @code{TREE_LIST}.  Use
2859e4b17023SJohn Marino@code{OVL_CURRENT} to get the function associated with an
2860e4b17023SJohn Marino@code{OVERLOAD} node; use @code{OVL_NEXT} to get the next
2861e4b17023SJohn Marino@code{OVERLOAD} node in the list of overloaded functions.  The macros
2862e4b17023SJohn Marino@code{OVL_CURRENT} and @code{OVL_NEXT} are actually polymorphic; you can
2863e4b17023SJohn Marinouse them to work with @code{FUNCTION_DECL} nodes as well as with
2864e4b17023SJohn Marinooverloads.  In the case of a @code{FUNCTION_DECL}, @code{OVL_CURRENT}
2865e4b17023SJohn Marinowill always return the function itself, and @code{OVL_NEXT} will always
2866e4b17023SJohn Marinobe @code{NULL_TREE}.
2867e4b17023SJohn Marino
2868e4b17023SJohn MarinoTo determine the scope of a function, you can use the
2869e4b17023SJohn Marino@code{DECL_CONTEXT} macro.  This macro will return the class
2870e4b17023SJohn Marino(either a @code{RECORD_TYPE} or a @code{UNION_TYPE}) or namespace (a
2871e4b17023SJohn Marino@code{NAMESPACE_DECL}) of which the function is a member.  For a virtual
2872e4b17023SJohn Marinofunction, this macro returns the class in which the function was
2873e4b17023SJohn Marinoactually defined, not the base class in which the virtual declaration
2874e4b17023SJohn Marinooccurred.
2875e4b17023SJohn Marino
2876e4b17023SJohn MarinoIf a friend function is defined in a class scope, the
2877e4b17023SJohn Marino@code{DECL_FRIEND_CONTEXT} macro can be used to determine the class in
2878e4b17023SJohn Marinowhich it was defined.  For example, in
2879e4b17023SJohn Marino@smallexample
2880e4b17023SJohn Marinoclass C @{ friend void f() @{@} @};
2881e4b17023SJohn Marino@end smallexample
2882e4b17023SJohn Marino@noindent
2883e4b17023SJohn Marinothe @code{DECL_CONTEXT} for @code{f} will be the
2884e4b17023SJohn Marino@code{global_namespace}, but the @code{DECL_FRIEND_CONTEXT} will be the
2885e4b17023SJohn Marino@code{RECORD_TYPE} for @code{C}.
2886e4b17023SJohn Marino
2887e4b17023SJohn Marino
2888e4b17023SJohn MarinoThe following macros and functions can be used on a @code{FUNCTION_DECL}:
2889e4b17023SJohn Marino@ftable @code
2890e4b17023SJohn Marino@item DECL_MAIN_P
2891e4b17023SJohn MarinoThis predicate holds for a function that is the program entry point
2892e4b17023SJohn Marino@code{::code}.
2893e4b17023SJohn Marino
2894e4b17023SJohn Marino@item DECL_LOCAL_FUNCTION_P
2895e4b17023SJohn MarinoThis predicate holds if the function was declared at block scope, even
2896e4b17023SJohn Marinothough it has a global scope.
2897e4b17023SJohn Marino
2898e4b17023SJohn Marino@item DECL_ANTICIPATED
2899e4b17023SJohn MarinoThis predicate holds if the function is a built-in function but its
2900e4b17023SJohn Marinoprototype is not yet explicitly declared.
2901e4b17023SJohn Marino
2902e4b17023SJohn Marino@item DECL_EXTERN_C_FUNCTION_P
2903e4b17023SJohn MarinoThis predicate holds if the function is declared as an
2904e4b17023SJohn Marino`@code{extern "C"}' function.
2905e4b17023SJohn Marino
2906e4b17023SJohn Marino@item DECL_LINKONCE_P
2907e4b17023SJohn MarinoThis macro holds if multiple copies of this function may be emitted in
2908e4b17023SJohn Marinovarious translation units.  It is the responsibility of the linker to
2909e4b17023SJohn Marinomerge the various copies.  Template instantiations are the most common
2910e4b17023SJohn Marinoexample of functions for which @code{DECL_LINKONCE_P} holds; G++
2911e4b17023SJohn Marinoinstantiates needed templates in all translation units which require them,
2912e4b17023SJohn Marinoand then relies on the linker to remove duplicate instantiations.
2913e4b17023SJohn Marino
2914e4b17023SJohn MarinoFIXME: This macro is not yet implemented.
2915e4b17023SJohn Marino
2916e4b17023SJohn Marino@item DECL_FUNCTION_MEMBER_P
2917e4b17023SJohn MarinoThis macro holds if the function is a member of a class, rather than a
2918e4b17023SJohn Marinomember of a namespace.
2919e4b17023SJohn Marino
2920e4b17023SJohn Marino@item DECL_STATIC_FUNCTION_P
2921e4b17023SJohn MarinoThis predicate holds if the function a static member function.
2922e4b17023SJohn Marino
2923e4b17023SJohn Marino@item DECL_NONSTATIC_MEMBER_FUNCTION_P
2924e4b17023SJohn MarinoThis macro holds for a non-static member function.
2925e4b17023SJohn Marino
2926e4b17023SJohn Marino@item DECL_CONST_MEMFUNC_P
2927e4b17023SJohn MarinoThis predicate holds for a @code{const}-member function.
2928e4b17023SJohn Marino
2929e4b17023SJohn Marino@item DECL_VOLATILE_MEMFUNC_P
2930e4b17023SJohn MarinoThis predicate holds for a @code{volatile}-member function.
2931e4b17023SJohn Marino
2932e4b17023SJohn Marino@item DECL_CONSTRUCTOR_P
2933e4b17023SJohn MarinoThis macro holds if the function is a constructor.
2934e4b17023SJohn Marino
2935e4b17023SJohn Marino@item DECL_NONCONVERTING_P
2936e4b17023SJohn MarinoThis predicate holds if the constructor is a non-converting constructor.
2937e4b17023SJohn Marino
2938e4b17023SJohn Marino@item DECL_COMPLETE_CONSTRUCTOR_P
2939e4b17023SJohn MarinoThis predicate holds for a function which is a constructor for an object
2940e4b17023SJohn Marinoof a complete type.
2941e4b17023SJohn Marino
2942e4b17023SJohn Marino@item DECL_BASE_CONSTRUCTOR_P
2943e4b17023SJohn MarinoThis predicate holds for a function which is a constructor for a base
2944e4b17023SJohn Marinoclass sub-object.
2945e4b17023SJohn Marino
2946e4b17023SJohn Marino@item DECL_COPY_CONSTRUCTOR_P
2947e4b17023SJohn MarinoThis predicate holds for a function which is a copy-constructor.
2948e4b17023SJohn Marino
2949e4b17023SJohn Marino@item DECL_DESTRUCTOR_P
2950e4b17023SJohn MarinoThis macro holds if the function is a destructor.
2951e4b17023SJohn Marino
2952e4b17023SJohn Marino@item DECL_COMPLETE_DESTRUCTOR_P
2953e4b17023SJohn MarinoThis predicate holds if the function is the destructor for an object a
2954e4b17023SJohn Marinocomplete type.
2955e4b17023SJohn Marino
2956e4b17023SJohn Marino@item DECL_OVERLOADED_OPERATOR_P
2957e4b17023SJohn MarinoThis macro holds if the function is an overloaded operator.
2958e4b17023SJohn Marino
2959e4b17023SJohn Marino@item DECL_CONV_FN_P
2960e4b17023SJohn MarinoThis macro holds if the function is a type-conversion operator.
2961e4b17023SJohn Marino
2962e4b17023SJohn Marino@item DECL_GLOBAL_CTOR_P
2963e4b17023SJohn MarinoThis predicate holds if the function is a file-scope initialization
2964e4b17023SJohn Marinofunction.
2965e4b17023SJohn Marino
2966e4b17023SJohn Marino@item DECL_GLOBAL_DTOR_P
2967e4b17023SJohn MarinoThis predicate holds if the function is a file-scope finalization
2968e4b17023SJohn Marinofunction.
2969e4b17023SJohn Marino
2970e4b17023SJohn Marino@item DECL_THUNK_P
2971e4b17023SJohn MarinoThis predicate holds if the function is a thunk.
2972e4b17023SJohn Marino
2973e4b17023SJohn MarinoThese functions represent stub code that adjusts the @code{this} pointer
2974e4b17023SJohn Marinoand then jumps to another function.  When the jumped-to function
2975e4b17023SJohn Marinoreturns, control is transferred directly to the caller, without
2976e4b17023SJohn Marinoreturning to the thunk.  The first parameter to the thunk is always the
2977e4b17023SJohn Marino@code{this} pointer; the thunk should add @code{THUNK_DELTA} to this
2978e4b17023SJohn Marinovalue.  (The @code{THUNK_DELTA} is an @code{int}, not an
2979e4b17023SJohn Marino@code{INTEGER_CST}.)
2980e4b17023SJohn Marino
2981e4b17023SJohn MarinoThen, if @code{THUNK_VCALL_OFFSET} (an @code{INTEGER_CST}) is nonzero
2982e4b17023SJohn Marinothe adjusted @code{this} pointer must be adjusted again.  The complete
2983e4b17023SJohn Marinocalculation is given by the following pseudo-code:
2984e4b17023SJohn Marino
2985e4b17023SJohn Marino@smallexample
2986e4b17023SJohn Marinothis += THUNK_DELTA
2987e4b17023SJohn Marinoif (THUNK_VCALL_OFFSET)
2988e4b17023SJohn Marino  this += (*((ptrdiff_t **) this))[THUNK_VCALL_OFFSET]
2989e4b17023SJohn Marino@end smallexample
2990e4b17023SJohn Marino
2991e4b17023SJohn MarinoFinally, the thunk should jump to the location given
2992e4b17023SJohn Marinoby @code{DECL_INITIAL}; this will always be an expression for the
2993e4b17023SJohn Marinoaddress of a function.
2994e4b17023SJohn Marino
2995e4b17023SJohn Marino@item DECL_NON_THUNK_FUNCTION_P
2996e4b17023SJohn MarinoThis predicate holds if the function is @emph{not} a thunk function.
2997e4b17023SJohn Marino
2998e4b17023SJohn Marino@item GLOBAL_INIT_PRIORITY
2999e4b17023SJohn MarinoIf either @code{DECL_GLOBAL_CTOR_P} or @code{DECL_GLOBAL_DTOR_P} holds,
3000e4b17023SJohn Marinothen this gives the initialization priority for the function.  The
3001e4b17023SJohn Marinolinker will arrange that all functions for which
3002e4b17023SJohn Marino@code{DECL_GLOBAL_CTOR_P} holds are run in increasing order of priority
3003e4b17023SJohn Marinobefore @code{main} is called.  When the program exits, all functions for
3004e4b17023SJohn Marinowhich @code{DECL_GLOBAL_DTOR_P} holds are run in the reverse order.
3005e4b17023SJohn Marino
3006e4b17023SJohn Marino@item TYPE_RAISES_EXCEPTIONS
3007e4b17023SJohn MarinoThis macro returns the list of exceptions that a (member-)function can
3008e4b17023SJohn Marinoraise.  The returned list, if non @code{NULL}, is comprised of nodes
3009e4b17023SJohn Marinowhose @code{TREE_VALUE} represents a type.
3010e4b17023SJohn Marino
3011e4b17023SJohn Marino@item TYPE_NOTHROW_P
3012e4b17023SJohn MarinoThis predicate holds when the exception-specification of its arguments
3013e4b17023SJohn Marinois of the form `@code{()}'.
3014e4b17023SJohn Marino
3015e4b17023SJohn Marino@item DECL_ARRAY_DELETE_OPERATOR_P
3016e4b17023SJohn MarinoThis predicate holds if the function an overloaded
3017e4b17023SJohn Marino@code{operator delete[]}.
3018e4b17023SJohn Marino
3019e4b17023SJohn Marino@end ftable
3020e4b17023SJohn Marino
3021e4b17023SJohn Marino@c ---------------------------------------------------------------------
3022e4b17023SJohn Marino@c Function Bodies
3023e4b17023SJohn Marino@c ---------------------------------------------------------------------
3024e4b17023SJohn Marino
3025e4b17023SJohn Marino@node Statements for C++
3026e4b17023SJohn Marino@subsection Statements for C++
3027e4b17023SJohn Marino@cindex statements
3028e4b17023SJohn Marino@tindex BREAK_STMT
3029e4b17023SJohn Marino@tindex CLEANUP_STMT
3030e4b17023SJohn Marino@findex CLEANUP_DECL
3031e4b17023SJohn Marino@findex CLEANUP_EXPR
3032e4b17023SJohn Marino@tindex CONTINUE_STMT
3033e4b17023SJohn Marino@tindex DECL_STMT
3034e4b17023SJohn Marino@findex DECL_STMT_DECL
3035e4b17023SJohn Marino@tindex DO_STMT
3036e4b17023SJohn Marino@findex DO_BODY
3037e4b17023SJohn Marino@findex DO_COND
3038e4b17023SJohn Marino@tindex EMPTY_CLASS_EXPR
3039e4b17023SJohn Marino@tindex EXPR_STMT
3040e4b17023SJohn Marino@findex EXPR_STMT_EXPR
3041e4b17023SJohn Marino@tindex FOR_STMT
3042e4b17023SJohn Marino@findex FOR_INIT_STMT
3043e4b17023SJohn Marino@findex FOR_COND
3044e4b17023SJohn Marino@findex FOR_EXPR
3045e4b17023SJohn Marino@findex FOR_BODY
3046e4b17023SJohn Marino@tindex HANDLER
3047e4b17023SJohn Marino@tindex IF_STMT
3048e4b17023SJohn Marino@findex IF_COND
3049e4b17023SJohn Marino@findex THEN_CLAUSE
3050e4b17023SJohn Marino@findex ELSE_CLAUSE
3051e4b17023SJohn Marino@tindex RETURN_STMT
3052e4b17023SJohn Marino@findex RETURN_EXPR
3053e4b17023SJohn Marino@tindex SUBOBJECT
3054e4b17023SJohn Marino@findex SUBOBJECT_CLEANUP
3055e4b17023SJohn Marino@tindex SWITCH_STMT
3056e4b17023SJohn Marino@findex SWITCH_COND
3057e4b17023SJohn Marino@findex SWITCH_BODY
3058e4b17023SJohn Marino@tindex TRY_BLOCK
3059e4b17023SJohn Marino@findex TRY_STMTS
3060e4b17023SJohn Marino@findex TRY_HANDLERS
3061e4b17023SJohn Marino@findex HANDLER_PARMS
3062e4b17023SJohn Marino@findex HANDLER_BODY
3063e4b17023SJohn Marino@findex USING_STMT
3064e4b17023SJohn Marino@tindex WHILE_STMT
3065e4b17023SJohn Marino@findex WHILE_BODY
3066e4b17023SJohn Marino@findex WHILE_COND
3067e4b17023SJohn Marino
3068e4b17023SJohn MarinoA function that has a definition in the current translation unit will
3069e4b17023SJohn Marinohave a non-@code{NULL} @code{DECL_INITIAL}.  However, back ends should not make
3070e4b17023SJohn Marinouse of the particular value given by @code{DECL_INITIAL}.
3071e4b17023SJohn Marino
3072e4b17023SJohn MarinoThe @code{DECL_SAVED_TREE} macro will give the complete body of the
3073e4b17023SJohn Marinofunction.
3074e4b17023SJohn Marino
3075e4b17023SJohn Marino@subsubsection Statements
3076e4b17023SJohn Marino
3077e4b17023SJohn MarinoThere are tree nodes corresponding to all of the source-level
3078e4b17023SJohn Marinostatement constructs, used within the C and C++ frontends.  These are
3079e4b17023SJohn Marinoenumerated here, together with a list of the various macros that can
3080e4b17023SJohn Marinobe used to obtain information about them.  There are a few macros that
3081e4b17023SJohn Marinocan be used with all statements:
3082e4b17023SJohn Marino
3083e4b17023SJohn Marino@ftable @code
3084e4b17023SJohn Marino@item STMT_IS_FULL_EXPR_P
3085e4b17023SJohn MarinoIn C++, statements normally constitute ``full expressions''; temporaries
3086e4b17023SJohn Marinocreated during a statement are destroyed when the statement is complete.
3087e4b17023SJohn MarinoHowever, G++ sometimes represents expressions by statements; these
3088e4b17023SJohn Marinostatements will not have @code{STMT_IS_FULL_EXPR_P} set.  Temporaries
3089e4b17023SJohn Marinocreated during such statements should be destroyed when the innermost
3090e4b17023SJohn Marinoenclosing statement with @code{STMT_IS_FULL_EXPR_P} set is exited.
3091e4b17023SJohn Marino
3092e4b17023SJohn Marino@end ftable
3093e4b17023SJohn Marino
3094e4b17023SJohn MarinoHere is the list of the various statement nodes, and the macros used to
3095e4b17023SJohn Marinoaccess them.  This documentation describes the use of these nodes in
3096e4b17023SJohn Marinonon-template functions (including instantiations of template functions).
3097e4b17023SJohn MarinoIn template functions, the same nodes are used, but sometimes in
3098e4b17023SJohn Marinoslightly different ways.
3099e4b17023SJohn Marino
3100e4b17023SJohn MarinoMany of the statements have substatements.  For example, a @code{while}
3101e4b17023SJohn Marinoloop will have a body, which is itself a statement.  If the substatement
3102e4b17023SJohn Marinois @code{NULL_TREE}, it is considered equivalent to a statement
3103e4b17023SJohn Marinoconsisting of a single @code{;}, i.e., an expression statement in which
3104e4b17023SJohn Marinothe expression has been omitted.  A substatement may in fact be a list
3105e4b17023SJohn Marinoof statements, connected via their @code{TREE_CHAIN}s.  So, you should
3106e4b17023SJohn Marinoalways process the statement tree by looping over substatements, like
3107e4b17023SJohn Marinothis:
3108e4b17023SJohn Marino@smallexample
3109e4b17023SJohn Marinovoid process_stmt (stmt)
3110e4b17023SJohn Marino     tree stmt;
3111e4b17023SJohn Marino@{
3112e4b17023SJohn Marino  while (stmt)
3113e4b17023SJohn Marino    @{
3114e4b17023SJohn Marino      switch (TREE_CODE (stmt))
3115e4b17023SJohn Marino        @{
3116e4b17023SJohn Marino        case IF_STMT:
3117e4b17023SJohn Marino          process_stmt (THEN_CLAUSE (stmt));
3118e4b17023SJohn Marino          /* @r{More processing here.}  */
3119e4b17023SJohn Marino          break;
3120e4b17023SJohn Marino
3121e4b17023SJohn Marino        @dots{}
3122e4b17023SJohn Marino        @}
3123e4b17023SJohn Marino
3124e4b17023SJohn Marino      stmt = TREE_CHAIN (stmt);
3125e4b17023SJohn Marino    @}
3126e4b17023SJohn Marino@}
3127e4b17023SJohn Marino@end smallexample
3128e4b17023SJohn MarinoIn other words, while the @code{then} clause of an @code{if} statement
3129e4b17023SJohn Marinoin C++ can be only one statement (although that one statement may be a
3130e4b17023SJohn Marinocompound statement), the intermediate representation will sometimes use
3131e4b17023SJohn Marinoseveral statements chained together.
3132e4b17023SJohn Marino
3133e4b17023SJohn Marino@table @code
3134e4b17023SJohn Marino@item BREAK_STMT
3135e4b17023SJohn Marino
3136e4b17023SJohn MarinoUsed to represent a @code{break} statement.  There are no additional
3137e4b17023SJohn Marinofields.
3138e4b17023SJohn Marino
3139e4b17023SJohn Marino@item CLEANUP_STMT
3140e4b17023SJohn Marino
3141e4b17023SJohn MarinoUsed to represent an action that should take place upon exit from the
3142e4b17023SJohn Marinoenclosing scope.  Typically, these actions are calls to destructors for
3143e4b17023SJohn Marinolocal objects, but back ends cannot rely on this fact.  If these nodes
3144e4b17023SJohn Marinoare in fact representing such destructors, @code{CLEANUP_DECL} will be
3145e4b17023SJohn Marinothe @code{VAR_DECL} destroyed.  Otherwise, @code{CLEANUP_DECL} will be
3146e4b17023SJohn Marino@code{NULL_TREE}.  In any case, the @code{CLEANUP_EXPR} is the
3147e4b17023SJohn Marinoexpression to execute.  The cleanups executed on exit from a scope
3148e4b17023SJohn Marinoshould be run in the reverse order of the order in which the associated
3149e4b17023SJohn Marino@code{CLEANUP_STMT}s were encountered.
3150e4b17023SJohn Marino
3151e4b17023SJohn Marino@item CONTINUE_STMT
3152e4b17023SJohn Marino
3153e4b17023SJohn MarinoUsed to represent a @code{continue} statement.  There are no additional
3154e4b17023SJohn Marinofields.
3155e4b17023SJohn Marino
3156e4b17023SJohn Marino@item CTOR_STMT
3157e4b17023SJohn Marino
3158e4b17023SJohn MarinoUsed to mark the beginning (if @code{CTOR_BEGIN_P} holds) or end (if
3159e4b17023SJohn Marino@code{CTOR_END_P} holds of the main body of a constructor.  See also
3160e4b17023SJohn Marino@code{SUBOBJECT} for more information on how to use these nodes.
3161e4b17023SJohn Marino
3162e4b17023SJohn Marino@item DO_STMT
3163e4b17023SJohn Marino
3164e4b17023SJohn MarinoUsed to represent a @code{do} loop.  The body of the loop is given by
3165e4b17023SJohn Marino@code{DO_BODY} while the termination condition for the loop is given by
3166e4b17023SJohn Marino@code{DO_COND}.  The condition for a @code{do}-statement is always an
3167e4b17023SJohn Marinoexpression.
3168e4b17023SJohn Marino
3169e4b17023SJohn Marino@item EMPTY_CLASS_EXPR
3170e4b17023SJohn Marino
3171e4b17023SJohn MarinoUsed to represent a temporary object of a class with no data whose
3172e4b17023SJohn Marinoaddress is never taken.  (All such objects are interchangeable.)  The
3173e4b17023SJohn Marino@code{TREE_TYPE} represents the type of the object.
3174e4b17023SJohn Marino
3175e4b17023SJohn Marino@item EXPR_STMT
3176e4b17023SJohn Marino
3177e4b17023SJohn MarinoUsed to represent an expression statement.  Use @code{EXPR_STMT_EXPR} to
3178e4b17023SJohn Marinoobtain the expression.
3179e4b17023SJohn Marino
3180e4b17023SJohn Marino@item FOR_STMT
3181e4b17023SJohn Marino
3182e4b17023SJohn MarinoUsed to represent a @code{for} statement.  The @code{FOR_INIT_STMT} is
3183e4b17023SJohn Marinothe initialization statement for the loop.  The @code{FOR_COND} is the
3184e4b17023SJohn Marinotermination condition.  The @code{FOR_EXPR} is the expression executed
3185e4b17023SJohn Marinoright before the @code{FOR_COND} on each loop iteration; often, this
3186e4b17023SJohn Marinoexpression increments a counter.  The body of the loop is given by
3187e4b17023SJohn Marino@code{FOR_BODY}.  Note that @code{FOR_INIT_STMT} and @code{FOR_BODY}
3188e4b17023SJohn Marinoreturn statements, while @code{FOR_COND} and @code{FOR_EXPR} return
3189e4b17023SJohn Marinoexpressions.
3190e4b17023SJohn Marino
3191e4b17023SJohn Marino@item HANDLER
3192e4b17023SJohn Marino
3193e4b17023SJohn MarinoUsed to represent a C++ @code{catch} block.  The @code{HANDLER_TYPE}
3194e4b17023SJohn Marinois the type of exception that will be caught by this handler; it is
3195e4b17023SJohn Marinoequal (by pointer equality) to @code{NULL} if this handler is for all
3196e4b17023SJohn Marinotypes.  @code{HANDLER_PARMS} is the @code{DECL_STMT} for the catch
3197e4b17023SJohn Marinoparameter, and @code{HANDLER_BODY} is the code for the block itself.
3198e4b17023SJohn Marino
3199e4b17023SJohn Marino@item IF_STMT
3200e4b17023SJohn Marino
3201e4b17023SJohn MarinoUsed to represent an @code{if} statement.  The @code{IF_COND} is the
3202e4b17023SJohn Marinoexpression.
3203e4b17023SJohn Marino
3204e4b17023SJohn MarinoIf the condition is a @code{TREE_LIST}, then the @code{TREE_PURPOSE} is
3205e4b17023SJohn Marinoa statement (usually a @code{DECL_STMT}).  Each time the condition is
3206e4b17023SJohn Marinoevaluated, the statement should be executed.  Then, the
3207e4b17023SJohn Marino@code{TREE_VALUE} should be used as the conditional expression itself.
3208e4b17023SJohn MarinoThis representation is used to handle C++ code like this:
3209e4b17023SJohn Marino
3210e4b17023SJohn MarinoC++ distinguishes between this and @code{COND_EXPR} for handling templates.
3211e4b17023SJohn Marino
3212e4b17023SJohn Marino@smallexample
3213e4b17023SJohn Marinoif (int i = 7) @dots{}
3214e4b17023SJohn Marino@end smallexample
3215e4b17023SJohn Marino
3216e4b17023SJohn Marinowhere there is a new local variable (or variables) declared within the
3217e4b17023SJohn Marinocondition.
3218e4b17023SJohn Marino
3219e4b17023SJohn MarinoThe @code{THEN_CLAUSE} represents the statement given by the @code{then}
3220e4b17023SJohn Marinocondition, while the @code{ELSE_CLAUSE} represents the statement given
3221e4b17023SJohn Marinoby the @code{else} condition.
3222e4b17023SJohn Marino
3223e4b17023SJohn Marino@item SUBOBJECT
3224e4b17023SJohn Marino
3225e4b17023SJohn MarinoIn a constructor, these nodes are used to mark the point at which a
3226e4b17023SJohn Marinosubobject of @code{this} is fully constructed.  If, after this point, an
3227e4b17023SJohn Marinoexception is thrown before a @code{CTOR_STMT} with @code{CTOR_END_P} set
3228e4b17023SJohn Marinois encountered, the @code{SUBOBJECT_CLEANUP} must be executed.  The
3229e4b17023SJohn Marinocleanups must be executed in the reverse order in which they appear.
3230e4b17023SJohn Marino
3231e4b17023SJohn Marino@item SWITCH_STMT
3232e4b17023SJohn Marino
3233e4b17023SJohn MarinoUsed to represent a @code{switch} statement.  The @code{SWITCH_STMT_COND}
3234e4b17023SJohn Marinois the expression on which the switch is occurring.  See the documentation
3235e4b17023SJohn Marinofor an @code{IF_STMT} for more information on the representation used
3236e4b17023SJohn Marinofor the condition.  The @code{SWITCH_STMT_BODY} is the body of the switch
3237e4b17023SJohn Marinostatement.   The @code{SWITCH_STMT_TYPE} is the original type of switch
3238e4b17023SJohn Marinoexpression as given in the source, before any compiler conversions.
3239e4b17023SJohn Marino
3240e4b17023SJohn Marino@item TRY_BLOCK
3241e4b17023SJohn MarinoUsed to represent a @code{try} block.  The body of the try block is
3242e4b17023SJohn Marinogiven by @code{TRY_STMTS}.  Each of the catch blocks is a @code{HANDLER}
3243e4b17023SJohn Marinonode.  The first handler is given by @code{TRY_HANDLERS}.  Subsequent
3244e4b17023SJohn Marinohandlers are obtained by following the @code{TREE_CHAIN} link from one
3245e4b17023SJohn Marinohandler to the next.  The body of the handler is given by
3246e4b17023SJohn Marino@code{HANDLER_BODY}.
3247e4b17023SJohn Marino
3248e4b17023SJohn MarinoIf @code{CLEANUP_P} holds of the @code{TRY_BLOCK}, then the
3249e4b17023SJohn Marino@code{TRY_HANDLERS} will not be a @code{HANDLER} node.  Instead, it will
3250e4b17023SJohn Marinobe an expression that should be executed if an exception is thrown in
3251e4b17023SJohn Marinothe try block.  It must rethrow the exception after executing that code.
3252e4b17023SJohn MarinoAnd, if an exception is thrown while the expression is executing,
3253e4b17023SJohn Marino@code{terminate} must be called.
3254e4b17023SJohn Marino
3255e4b17023SJohn Marino@item USING_STMT
3256e4b17023SJohn MarinoUsed to represent a @code{using} directive.  The namespace is given by
3257e4b17023SJohn Marino@code{USING_STMT_NAMESPACE}, which will be a NAMESPACE_DECL@.  This node
3258e4b17023SJohn Marinois needed inside template functions, to implement using directives
3259e4b17023SJohn Marinoduring instantiation.
3260e4b17023SJohn Marino
3261e4b17023SJohn Marino@item WHILE_STMT
3262e4b17023SJohn Marino
3263e4b17023SJohn MarinoUsed to represent a @code{while} loop.  The @code{WHILE_COND} is the
3264e4b17023SJohn Marinotermination condition for the loop.  See the documentation for an
3265e4b17023SJohn Marino@code{IF_STMT} for more information on the representation used for the
3266e4b17023SJohn Marinocondition.
3267e4b17023SJohn Marino
3268e4b17023SJohn MarinoThe @code{WHILE_BODY} is the body of the loop.
3269e4b17023SJohn Marino
3270e4b17023SJohn Marino@end table
3271e4b17023SJohn Marino
3272e4b17023SJohn Marino@node C++ Expressions
3273e4b17023SJohn Marino@subsection C++ Expressions
3274e4b17023SJohn Marino
3275e4b17023SJohn MarinoThis section describes expressions specific to the C and C++ front
3276e4b17023SJohn Marinoends.
3277e4b17023SJohn Marino
3278e4b17023SJohn Marino@table @code
3279e4b17023SJohn Marino@item TYPEID_EXPR
3280e4b17023SJohn Marino
3281e4b17023SJohn MarinoUsed to represent a @code{typeid} expression.
3282e4b17023SJohn Marino
3283e4b17023SJohn Marino@item NEW_EXPR
3284e4b17023SJohn Marino@itemx VEC_NEW_EXPR
3285e4b17023SJohn Marino
3286e4b17023SJohn MarinoUsed to represent a call to @code{new} and @code{new[]} respectively.
3287e4b17023SJohn Marino
3288e4b17023SJohn Marino@item DELETE_EXPR
3289e4b17023SJohn Marino@itemx VEC_DELETE_EXPR
3290e4b17023SJohn Marino
3291e4b17023SJohn MarinoUsed to represent a call to @code{delete} and @code{delete[]} respectively.
3292e4b17023SJohn Marino
3293e4b17023SJohn Marino@item MEMBER_REF
3294e4b17023SJohn Marino
3295e4b17023SJohn MarinoRepresents a reference to a member of a class.
3296e4b17023SJohn Marino
3297e4b17023SJohn Marino@item THROW_EXPR
3298e4b17023SJohn Marino
3299e4b17023SJohn MarinoRepresents an instance of @code{throw} in the program.  Operand 0,
3300e4b17023SJohn Marinowhich is the expression to throw, may be @code{NULL_TREE}.
3301e4b17023SJohn Marino
3302e4b17023SJohn Marino
3303e4b17023SJohn Marino@item AGGR_INIT_EXPR
3304e4b17023SJohn MarinoAn @code{AGGR_INIT_EXPR} represents the initialization as the return
3305e4b17023SJohn Marinovalue of a function call, or as the result of a constructor.  An
3306e4b17023SJohn Marino@code{AGGR_INIT_EXPR} will only appear as a full-expression, or as the
3307e4b17023SJohn Marinosecond operand of a @code{TARGET_EXPR}.  @code{AGGR_INIT_EXPR}s have
3308e4b17023SJohn Marinoa representation similar to that of @code{CALL_EXPR}s.  You can use
3309e4b17023SJohn Marinothe @code{AGGR_INIT_EXPR_FN} and @code{AGGR_INIT_EXPR_ARG} macros to access
3310e4b17023SJohn Marinothe function to call and the arguments to pass.
3311e4b17023SJohn Marino
3312e4b17023SJohn MarinoIf @code{AGGR_INIT_VIA_CTOR_P} holds of the @code{AGGR_INIT_EXPR}, then
3313e4b17023SJohn Marinothe initialization is via a constructor call.  The address of the
3314e4b17023SJohn Marino@code{AGGR_INIT_EXPR_SLOT} operand, which is always a @code{VAR_DECL},
3315e4b17023SJohn Marinois taken, and this value replaces the first argument in the argument
3316e4b17023SJohn Marinolist.
3317e4b17023SJohn Marino
3318e4b17023SJohn MarinoIn either case, the expression is void.
3319e4b17023SJohn Marino
3320e4b17023SJohn Marino
3321e4b17023SJohn Marino@end table
3322e4b17023SJohn Marino
3323e4b17023SJohn Marino
3324e4b17023SJohn Marino@node Java Trees
3325e4b17023SJohn Marino@section Java Trees
3326