1*a9fa9459Szrj /* sha1.c - Functions to compute SHA1 message digest of files or
2*a9fa9459Szrj memory blocks according to the NIST specification FIPS-180-1.
3*a9fa9459Szrj
4*a9fa9459Szrj Copyright (C) 2000, 2001, 2003, 2004, 2005, 2006, 2008 Free Software
5*a9fa9459Szrj Foundation, Inc.
6*a9fa9459Szrj
7*a9fa9459Szrj This program is free software; you can redistribute it and/or modify it
8*a9fa9459Szrj under the terms of the GNU General Public License as published by the
9*a9fa9459Szrj Free Software Foundation; either version 2, or (at your option) any
10*a9fa9459Szrj later version.
11*a9fa9459Szrj
12*a9fa9459Szrj This program is distributed in the hope that it will be useful,
13*a9fa9459Szrj but WITHOUT ANY WARRANTY; without even the implied warranty of
14*a9fa9459Szrj MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15*a9fa9459Szrj GNU General Public License for more details.
16*a9fa9459Szrj
17*a9fa9459Szrj You should have received a copy of the GNU General Public License
18*a9fa9459Szrj along with this program; if not, write to the Free Software Foundation,
19*a9fa9459Szrj Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */
20*a9fa9459Szrj
21*a9fa9459Szrj /* Written by Scott G. Miller
22*a9fa9459Szrj Credits:
23*a9fa9459Szrj Robert Klep <robert@ilse.nl> -- Expansion function fix
24*a9fa9459Szrj */
25*a9fa9459Szrj
26*a9fa9459Szrj #include <config.h>
27*a9fa9459Szrj
28*a9fa9459Szrj #include "sha1.h"
29*a9fa9459Szrj
30*a9fa9459Szrj #include <stddef.h>
31*a9fa9459Szrj #include <string.h>
32*a9fa9459Szrj
33*a9fa9459Szrj #if USE_UNLOCKED_IO
34*a9fa9459Szrj # include "unlocked-io.h"
35*a9fa9459Szrj #endif
36*a9fa9459Szrj
37*a9fa9459Szrj #ifdef WORDS_BIGENDIAN
38*a9fa9459Szrj # define SWAP(n) (n)
39*a9fa9459Szrj #else
40*a9fa9459Szrj # define SWAP(n) \
41*a9fa9459Szrj (((n) << 24) | (((n) & 0xff00) << 8) | (((n) >> 8) & 0xff00) | ((n) >> 24))
42*a9fa9459Szrj #endif
43*a9fa9459Szrj
44*a9fa9459Szrj #define BLOCKSIZE 4096
45*a9fa9459Szrj #if BLOCKSIZE % 64 != 0
46*a9fa9459Szrj # error "invalid BLOCKSIZE"
47*a9fa9459Szrj #endif
48*a9fa9459Szrj
49*a9fa9459Szrj /* This array contains the bytes used to pad the buffer to the next
50*a9fa9459Szrj 64-byte boundary. (RFC 1321, 3.1: Step 1) */
51*a9fa9459Szrj static const unsigned char fillbuf[64] = { 0x80, 0 /* , 0, 0, ... */ };
52*a9fa9459Szrj
53*a9fa9459Szrj
54*a9fa9459Szrj /* Take a pointer to a 160 bit block of data (five 32 bit ints) and
55*a9fa9459Szrj initialize it to the start constants of the SHA1 algorithm. This
56*a9fa9459Szrj must be called before using hash in the call to sha1_hash. */
57*a9fa9459Szrj void
sha1_init_ctx(struct sha1_ctx * ctx)58*a9fa9459Szrj sha1_init_ctx (struct sha1_ctx *ctx)
59*a9fa9459Szrj {
60*a9fa9459Szrj ctx->A = 0x67452301;
61*a9fa9459Szrj ctx->B = 0xefcdab89;
62*a9fa9459Szrj ctx->C = 0x98badcfe;
63*a9fa9459Szrj ctx->D = 0x10325476;
64*a9fa9459Szrj ctx->E = 0xc3d2e1f0;
65*a9fa9459Szrj
66*a9fa9459Szrj ctx->total[0] = ctx->total[1] = 0;
67*a9fa9459Szrj ctx->buflen = 0;
68*a9fa9459Szrj }
69*a9fa9459Szrj
70*a9fa9459Szrj /* Put result from CTX in first 20 bytes following RESBUF. The result
71*a9fa9459Szrj must be in little endian byte order.
72*a9fa9459Szrj
73*a9fa9459Szrj IMPORTANT: On some systems it is required that RESBUF is correctly
74*a9fa9459Szrj aligned for a 32-bit value. */
75*a9fa9459Szrj void *
sha1_read_ctx(const struct sha1_ctx * ctx,void * resbuf)76*a9fa9459Szrj sha1_read_ctx (const struct sha1_ctx *ctx, void *resbuf)
77*a9fa9459Szrj {
78*a9fa9459Szrj ((sha1_uint32 *) resbuf)[0] = SWAP (ctx->A);
79*a9fa9459Szrj ((sha1_uint32 *) resbuf)[1] = SWAP (ctx->B);
80*a9fa9459Szrj ((sha1_uint32 *) resbuf)[2] = SWAP (ctx->C);
81*a9fa9459Szrj ((sha1_uint32 *) resbuf)[3] = SWAP (ctx->D);
82*a9fa9459Szrj ((sha1_uint32 *) resbuf)[4] = SWAP (ctx->E);
83*a9fa9459Szrj
84*a9fa9459Szrj return resbuf;
85*a9fa9459Szrj }
86*a9fa9459Szrj
87*a9fa9459Szrj /* Process the remaining bytes in the internal buffer and the usual
88*a9fa9459Szrj prolog according to the standard and write the result to RESBUF.
89*a9fa9459Szrj
90*a9fa9459Szrj IMPORTANT: On some systems it is required that RESBUF is correctly
91*a9fa9459Szrj aligned for a 32-bit value. */
92*a9fa9459Szrj void *
sha1_finish_ctx(struct sha1_ctx * ctx,void * resbuf)93*a9fa9459Szrj sha1_finish_ctx (struct sha1_ctx *ctx, void *resbuf)
94*a9fa9459Szrj {
95*a9fa9459Szrj /* Take yet unprocessed bytes into account. */
96*a9fa9459Szrj sha1_uint32 bytes = ctx->buflen;
97*a9fa9459Szrj size_t size = (bytes < 56) ? 64 / 4 : 64 * 2 / 4;
98*a9fa9459Szrj
99*a9fa9459Szrj /* Now count remaining bytes. */
100*a9fa9459Szrj ctx->total[0] += bytes;
101*a9fa9459Szrj if (ctx->total[0] < bytes)
102*a9fa9459Szrj ++ctx->total[1];
103*a9fa9459Szrj
104*a9fa9459Szrj /* Put the 64-bit file length in *bits* at the end of the buffer. */
105*a9fa9459Szrj ctx->buffer[size - 2] = SWAP ((ctx->total[1] << 3) | (ctx->total[0] >> 29));
106*a9fa9459Szrj ctx->buffer[size - 1] = SWAP (ctx->total[0] << 3);
107*a9fa9459Szrj
108*a9fa9459Szrj memcpy (&((char *) ctx->buffer)[bytes], fillbuf, (size - 2) * 4 - bytes);
109*a9fa9459Szrj
110*a9fa9459Szrj /* Process last bytes. */
111*a9fa9459Szrj sha1_process_block (ctx->buffer, size * 4, ctx);
112*a9fa9459Szrj
113*a9fa9459Szrj return sha1_read_ctx (ctx, resbuf);
114*a9fa9459Szrj }
115*a9fa9459Szrj
116*a9fa9459Szrj /* Compute SHA1 message digest for bytes read from STREAM. The
117*a9fa9459Szrj resulting message digest number will be written into the 16 bytes
118*a9fa9459Szrj beginning at RESBLOCK. */
119*a9fa9459Szrj int
sha1_stream(FILE * stream,void * resblock)120*a9fa9459Szrj sha1_stream (FILE *stream, void *resblock)
121*a9fa9459Szrj {
122*a9fa9459Szrj struct sha1_ctx ctx;
123*a9fa9459Szrj char buffer[BLOCKSIZE + 72];
124*a9fa9459Szrj size_t sum;
125*a9fa9459Szrj
126*a9fa9459Szrj /* Initialize the computation context. */
127*a9fa9459Szrj sha1_init_ctx (&ctx);
128*a9fa9459Szrj
129*a9fa9459Szrj /* Iterate over full file contents. */
130*a9fa9459Szrj while (1)
131*a9fa9459Szrj {
132*a9fa9459Szrj /* We read the file in blocks of BLOCKSIZE bytes. One call of the
133*a9fa9459Szrj computation function processes the whole buffer so that with the
134*a9fa9459Szrj next round of the loop another block can be read. */
135*a9fa9459Szrj size_t n;
136*a9fa9459Szrj sum = 0;
137*a9fa9459Szrj
138*a9fa9459Szrj /* Read block. Take care for partial reads. */
139*a9fa9459Szrj while (1)
140*a9fa9459Szrj {
141*a9fa9459Szrj n = fread (buffer + sum, 1, BLOCKSIZE - sum, stream);
142*a9fa9459Szrj
143*a9fa9459Szrj sum += n;
144*a9fa9459Szrj
145*a9fa9459Szrj if (sum == BLOCKSIZE)
146*a9fa9459Szrj break;
147*a9fa9459Szrj
148*a9fa9459Szrj if (n == 0)
149*a9fa9459Szrj {
150*a9fa9459Szrj /* Check for the error flag IFF N == 0, so that we don't
151*a9fa9459Szrj exit the loop after a partial read due to e.g., EAGAIN
152*a9fa9459Szrj or EWOULDBLOCK. */
153*a9fa9459Szrj if (ferror (stream))
154*a9fa9459Szrj return 1;
155*a9fa9459Szrj goto process_partial_block;
156*a9fa9459Szrj }
157*a9fa9459Szrj
158*a9fa9459Szrj /* We've read at least one byte, so ignore errors. But always
159*a9fa9459Szrj check for EOF, since feof may be true even though N > 0.
160*a9fa9459Szrj Otherwise, we could end up calling fread after EOF. */
161*a9fa9459Szrj if (feof (stream))
162*a9fa9459Szrj goto process_partial_block;
163*a9fa9459Szrj }
164*a9fa9459Szrj
165*a9fa9459Szrj /* Process buffer with BLOCKSIZE bytes. Note that
166*a9fa9459Szrj BLOCKSIZE % 64 == 0
167*a9fa9459Szrj */
168*a9fa9459Szrj sha1_process_block (buffer, BLOCKSIZE, &ctx);
169*a9fa9459Szrj }
170*a9fa9459Szrj
171*a9fa9459Szrj process_partial_block:;
172*a9fa9459Szrj
173*a9fa9459Szrj /* Process any remaining bytes. */
174*a9fa9459Szrj if (sum > 0)
175*a9fa9459Szrj sha1_process_bytes (buffer, sum, &ctx);
176*a9fa9459Szrj
177*a9fa9459Szrj /* Construct result in desired memory. */
178*a9fa9459Szrj sha1_finish_ctx (&ctx, resblock);
179*a9fa9459Szrj return 0;
180*a9fa9459Szrj }
181*a9fa9459Szrj
182*a9fa9459Szrj /* Compute SHA1 message digest for LEN bytes beginning at BUFFER. The
183*a9fa9459Szrj result is always in little endian byte order, so that a byte-wise
184*a9fa9459Szrj output yields to the wanted ASCII representation of the message
185*a9fa9459Szrj digest. */
186*a9fa9459Szrj void *
sha1_buffer(const char * buffer,size_t len,void * resblock)187*a9fa9459Szrj sha1_buffer (const char *buffer, size_t len, void *resblock)
188*a9fa9459Szrj {
189*a9fa9459Szrj struct sha1_ctx ctx;
190*a9fa9459Szrj
191*a9fa9459Szrj /* Initialize the computation context. */
192*a9fa9459Szrj sha1_init_ctx (&ctx);
193*a9fa9459Szrj
194*a9fa9459Szrj /* Process whole buffer but last len % 64 bytes. */
195*a9fa9459Szrj sha1_process_bytes (buffer, len, &ctx);
196*a9fa9459Szrj
197*a9fa9459Szrj /* Put result in desired memory area. */
198*a9fa9459Szrj return sha1_finish_ctx (&ctx, resblock);
199*a9fa9459Szrj }
200*a9fa9459Szrj
201*a9fa9459Szrj void
sha1_process_bytes(const void * buffer,size_t len,struct sha1_ctx * ctx)202*a9fa9459Szrj sha1_process_bytes (const void *buffer, size_t len, struct sha1_ctx *ctx)
203*a9fa9459Szrj {
204*a9fa9459Szrj /* When we already have some bits in our internal buffer concatenate
205*a9fa9459Szrj both inputs first. */
206*a9fa9459Szrj if (ctx->buflen != 0)
207*a9fa9459Szrj {
208*a9fa9459Szrj size_t left_over = ctx->buflen;
209*a9fa9459Szrj size_t add = 128 - left_over > len ? len : 128 - left_over;
210*a9fa9459Szrj
211*a9fa9459Szrj memcpy (&((char *) ctx->buffer)[left_over], buffer, add);
212*a9fa9459Szrj ctx->buflen += add;
213*a9fa9459Szrj
214*a9fa9459Szrj if (ctx->buflen > 64)
215*a9fa9459Szrj {
216*a9fa9459Szrj sha1_process_block (ctx->buffer, ctx->buflen & ~63, ctx);
217*a9fa9459Szrj
218*a9fa9459Szrj ctx->buflen &= 63;
219*a9fa9459Szrj /* The regions in the following copy operation cannot overlap. */
220*a9fa9459Szrj memcpy (ctx->buffer,
221*a9fa9459Szrj &((char *) ctx->buffer)[(left_over + add) & ~63],
222*a9fa9459Szrj ctx->buflen);
223*a9fa9459Szrj }
224*a9fa9459Szrj
225*a9fa9459Szrj buffer = (const char *) buffer + add;
226*a9fa9459Szrj len -= add;
227*a9fa9459Szrj }
228*a9fa9459Szrj
229*a9fa9459Szrj /* Process available complete blocks. */
230*a9fa9459Szrj if (len >= 64)
231*a9fa9459Szrj {
232*a9fa9459Szrj #if !_STRING_ARCH_unaligned
233*a9fa9459Szrj # define alignof(type) offsetof (struct { char c; type x; }, x)
234*a9fa9459Szrj # define UNALIGNED_P(p) (((size_t) p) % alignof (sha1_uint32) != 0)
235*a9fa9459Szrj if (UNALIGNED_P (buffer))
236*a9fa9459Szrj while (len > 64)
237*a9fa9459Szrj {
238*a9fa9459Szrj sha1_process_block (memcpy (ctx->buffer, buffer, 64), 64, ctx);
239*a9fa9459Szrj buffer = (const char *) buffer + 64;
240*a9fa9459Szrj len -= 64;
241*a9fa9459Szrj }
242*a9fa9459Szrj else
243*a9fa9459Szrj #endif
244*a9fa9459Szrj {
245*a9fa9459Szrj sha1_process_block (buffer, len & ~63, ctx);
246*a9fa9459Szrj buffer = (const char *) buffer + (len & ~63);
247*a9fa9459Szrj len &= 63;
248*a9fa9459Szrj }
249*a9fa9459Szrj }
250*a9fa9459Szrj
251*a9fa9459Szrj /* Move remaining bytes in internal buffer. */
252*a9fa9459Szrj if (len > 0)
253*a9fa9459Szrj {
254*a9fa9459Szrj size_t left_over = ctx->buflen;
255*a9fa9459Szrj
256*a9fa9459Szrj memcpy (&((char *) ctx->buffer)[left_over], buffer, len);
257*a9fa9459Szrj left_over += len;
258*a9fa9459Szrj if (left_over >= 64)
259*a9fa9459Szrj {
260*a9fa9459Szrj sha1_process_block (ctx->buffer, 64, ctx);
261*a9fa9459Szrj left_over -= 64;
262*a9fa9459Szrj memcpy (ctx->buffer, &ctx->buffer[16], left_over);
263*a9fa9459Szrj }
264*a9fa9459Szrj ctx->buflen = left_over;
265*a9fa9459Szrj }
266*a9fa9459Szrj }
267*a9fa9459Szrj
268*a9fa9459Szrj /* --- Code below is the primary difference between md5.c and sha1.c --- */
269*a9fa9459Szrj
270*a9fa9459Szrj /* SHA1 round constants */
271*a9fa9459Szrj #define K1 0x5a827999
272*a9fa9459Szrj #define K2 0x6ed9eba1
273*a9fa9459Szrj #define K3 0x8f1bbcdc
274*a9fa9459Szrj #define K4 0xca62c1d6
275*a9fa9459Szrj
276*a9fa9459Szrj /* Round functions. Note that F2 is the same as F4. */
277*a9fa9459Szrj #define F1(B,C,D) ( D ^ ( B & ( C ^ D ) ) )
278*a9fa9459Szrj #define F2(B,C,D) (B ^ C ^ D)
279*a9fa9459Szrj #define F3(B,C,D) ( ( B & C ) | ( D & ( B | C ) ) )
280*a9fa9459Szrj #define F4(B,C,D) (B ^ C ^ D)
281*a9fa9459Szrj
282*a9fa9459Szrj /* Process LEN bytes of BUFFER, accumulating context into CTX.
283*a9fa9459Szrj It is assumed that LEN % 64 == 0.
284*a9fa9459Szrj Most of this code comes from GnuPG's cipher/sha1.c. */
285*a9fa9459Szrj
286*a9fa9459Szrj void
sha1_process_block(const void * buffer,size_t len,struct sha1_ctx * ctx)287*a9fa9459Szrj sha1_process_block (const void *buffer, size_t len, struct sha1_ctx *ctx)
288*a9fa9459Szrj {
289*a9fa9459Szrj const sha1_uint32 *words = (const sha1_uint32*) buffer;
290*a9fa9459Szrj size_t nwords = len / sizeof (sha1_uint32);
291*a9fa9459Szrj const sha1_uint32 *endp = words + nwords;
292*a9fa9459Szrj sha1_uint32 x[16];
293*a9fa9459Szrj sha1_uint32 a = ctx->A;
294*a9fa9459Szrj sha1_uint32 b = ctx->B;
295*a9fa9459Szrj sha1_uint32 c = ctx->C;
296*a9fa9459Szrj sha1_uint32 d = ctx->D;
297*a9fa9459Szrj sha1_uint32 e = ctx->E;
298*a9fa9459Szrj
299*a9fa9459Szrj /* First increment the byte count. RFC 1321 specifies the possible
300*a9fa9459Szrj length of the file up to 2^64 bits. Here we only compute the
301*a9fa9459Szrj number of bytes. Do a double word increment. */
302*a9fa9459Szrj ctx->total[0] += len;
303*a9fa9459Szrj ctx->total[1] += ((len >> 31) >> 1) + (ctx->total[0] < len);
304*a9fa9459Szrj
305*a9fa9459Szrj #define rol(x, n) (((x) << (n)) | ((sha1_uint32) (x) >> (32 - (n))))
306*a9fa9459Szrj
307*a9fa9459Szrj #define M(I) ( tm = x[I&0x0f] ^ x[(I-14)&0x0f] \
308*a9fa9459Szrj ^ x[(I-8)&0x0f] ^ x[(I-3)&0x0f] \
309*a9fa9459Szrj , (x[I&0x0f] = rol(tm, 1)) )
310*a9fa9459Szrj
311*a9fa9459Szrj #define R(A,B,C,D,E,F,K,M) do { E += rol( A, 5 ) \
312*a9fa9459Szrj + F( B, C, D ) \
313*a9fa9459Szrj + K \
314*a9fa9459Szrj + M; \
315*a9fa9459Szrj B = rol( B, 30 ); \
316*a9fa9459Szrj } while(0)
317*a9fa9459Szrj
318*a9fa9459Szrj while (words < endp)
319*a9fa9459Szrj {
320*a9fa9459Szrj sha1_uint32 tm;
321*a9fa9459Szrj int t;
322*a9fa9459Szrj for (t = 0; t < 16; t++)
323*a9fa9459Szrj {
324*a9fa9459Szrj x[t] = SWAP (*words);
325*a9fa9459Szrj words++;
326*a9fa9459Szrj }
327*a9fa9459Szrj
328*a9fa9459Szrj R( a, b, c, d, e, F1, K1, x[ 0] );
329*a9fa9459Szrj R( e, a, b, c, d, F1, K1, x[ 1] );
330*a9fa9459Szrj R( d, e, a, b, c, F1, K1, x[ 2] );
331*a9fa9459Szrj R( c, d, e, a, b, F1, K1, x[ 3] );
332*a9fa9459Szrj R( b, c, d, e, a, F1, K1, x[ 4] );
333*a9fa9459Szrj R( a, b, c, d, e, F1, K1, x[ 5] );
334*a9fa9459Szrj R( e, a, b, c, d, F1, K1, x[ 6] );
335*a9fa9459Szrj R( d, e, a, b, c, F1, K1, x[ 7] );
336*a9fa9459Szrj R( c, d, e, a, b, F1, K1, x[ 8] );
337*a9fa9459Szrj R( b, c, d, e, a, F1, K1, x[ 9] );
338*a9fa9459Szrj R( a, b, c, d, e, F1, K1, x[10] );
339*a9fa9459Szrj R( e, a, b, c, d, F1, K1, x[11] );
340*a9fa9459Szrj R( d, e, a, b, c, F1, K1, x[12] );
341*a9fa9459Szrj R( c, d, e, a, b, F1, K1, x[13] );
342*a9fa9459Szrj R( b, c, d, e, a, F1, K1, x[14] );
343*a9fa9459Szrj R( a, b, c, d, e, F1, K1, x[15] );
344*a9fa9459Szrj R( e, a, b, c, d, F1, K1, M(16) );
345*a9fa9459Szrj R( d, e, a, b, c, F1, K1, M(17) );
346*a9fa9459Szrj R( c, d, e, a, b, F1, K1, M(18) );
347*a9fa9459Szrj R( b, c, d, e, a, F1, K1, M(19) );
348*a9fa9459Szrj R( a, b, c, d, e, F2, K2, M(20) );
349*a9fa9459Szrj R( e, a, b, c, d, F2, K2, M(21) );
350*a9fa9459Szrj R( d, e, a, b, c, F2, K2, M(22) );
351*a9fa9459Szrj R( c, d, e, a, b, F2, K2, M(23) );
352*a9fa9459Szrj R( b, c, d, e, a, F2, K2, M(24) );
353*a9fa9459Szrj R( a, b, c, d, e, F2, K2, M(25) );
354*a9fa9459Szrj R( e, a, b, c, d, F2, K2, M(26) );
355*a9fa9459Szrj R( d, e, a, b, c, F2, K2, M(27) );
356*a9fa9459Szrj R( c, d, e, a, b, F2, K2, M(28) );
357*a9fa9459Szrj R( b, c, d, e, a, F2, K2, M(29) );
358*a9fa9459Szrj R( a, b, c, d, e, F2, K2, M(30) );
359*a9fa9459Szrj R( e, a, b, c, d, F2, K2, M(31) );
360*a9fa9459Szrj R( d, e, a, b, c, F2, K2, M(32) );
361*a9fa9459Szrj R( c, d, e, a, b, F2, K2, M(33) );
362*a9fa9459Szrj R( b, c, d, e, a, F2, K2, M(34) );
363*a9fa9459Szrj R( a, b, c, d, e, F2, K2, M(35) );
364*a9fa9459Szrj R( e, a, b, c, d, F2, K2, M(36) );
365*a9fa9459Szrj R( d, e, a, b, c, F2, K2, M(37) );
366*a9fa9459Szrj R( c, d, e, a, b, F2, K2, M(38) );
367*a9fa9459Szrj R( b, c, d, e, a, F2, K2, M(39) );
368*a9fa9459Szrj R( a, b, c, d, e, F3, K3, M(40) );
369*a9fa9459Szrj R( e, a, b, c, d, F3, K3, M(41) );
370*a9fa9459Szrj R( d, e, a, b, c, F3, K3, M(42) );
371*a9fa9459Szrj R( c, d, e, a, b, F3, K3, M(43) );
372*a9fa9459Szrj R( b, c, d, e, a, F3, K3, M(44) );
373*a9fa9459Szrj R( a, b, c, d, e, F3, K3, M(45) );
374*a9fa9459Szrj R( e, a, b, c, d, F3, K3, M(46) );
375*a9fa9459Szrj R( d, e, a, b, c, F3, K3, M(47) );
376*a9fa9459Szrj R( c, d, e, a, b, F3, K3, M(48) );
377*a9fa9459Szrj R( b, c, d, e, a, F3, K3, M(49) );
378*a9fa9459Szrj R( a, b, c, d, e, F3, K3, M(50) );
379*a9fa9459Szrj R( e, a, b, c, d, F3, K3, M(51) );
380*a9fa9459Szrj R( d, e, a, b, c, F3, K3, M(52) );
381*a9fa9459Szrj R( c, d, e, a, b, F3, K3, M(53) );
382*a9fa9459Szrj R( b, c, d, e, a, F3, K3, M(54) );
383*a9fa9459Szrj R( a, b, c, d, e, F3, K3, M(55) );
384*a9fa9459Szrj R( e, a, b, c, d, F3, K3, M(56) );
385*a9fa9459Szrj R( d, e, a, b, c, F3, K3, M(57) );
386*a9fa9459Szrj R( c, d, e, a, b, F3, K3, M(58) );
387*a9fa9459Szrj R( b, c, d, e, a, F3, K3, M(59) );
388*a9fa9459Szrj R( a, b, c, d, e, F4, K4, M(60) );
389*a9fa9459Szrj R( e, a, b, c, d, F4, K4, M(61) );
390*a9fa9459Szrj R( d, e, a, b, c, F4, K4, M(62) );
391*a9fa9459Szrj R( c, d, e, a, b, F4, K4, M(63) );
392*a9fa9459Szrj R( b, c, d, e, a, F4, K4, M(64) );
393*a9fa9459Szrj R( a, b, c, d, e, F4, K4, M(65) );
394*a9fa9459Szrj R( e, a, b, c, d, F4, K4, M(66) );
395*a9fa9459Szrj R( d, e, a, b, c, F4, K4, M(67) );
396*a9fa9459Szrj R( c, d, e, a, b, F4, K4, M(68) );
397*a9fa9459Szrj R( b, c, d, e, a, F4, K4, M(69) );
398*a9fa9459Szrj R( a, b, c, d, e, F4, K4, M(70) );
399*a9fa9459Szrj R( e, a, b, c, d, F4, K4, M(71) );
400*a9fa9459Szrj R( d, e, a, b, c, F4, K4, M(72) );
401*a9fa9459Szrj R( c, d, e, a, b, F4, K4, M(73) );
402*a9fa9459Szrj R( b, c, d, e, a, F4, K4, M(74) );
403*a9fa9459Szrj R( a, b, c, d, e, F4, K4, M(75) );
404*a9fa9459Szrj R( e, a, b, c, d, F4, K4, M(76) );
405*a9fa9459Szrj R( d, e, a, b, c, F4, K4, M(77) );
406*a9fa9459Szrj R( c, d, e, a, b, F4, K4, M(78) );
407*a9fa9459Szrj R( b, c, d, e, a, F4, K4, M(79) );
408*a9fa9459Szrj
409*a9fa9459Szrj a = ctx->A += a;
410*a9fa9459Szrj b = ctx->B += b;
411*a9fa9459Szrj c = ctx->C += c;
412*a9fa9459Szrj d = ctx->D += d;
413*a9fa9459Szrj e = ctx->E += e;
414*a9fa9459Szrj }
415*a9fa9459Szrj }
416