xref: /dflybsd-src/contrib/binutils-2.27/libiberty/hashtab.c (revision e656dc90e3d65d744d534af2f5ea88cf8101ebcf)
1*a9fa9459Szrj /* An expandable hash tables datatype.
2*a9fa9459Szrj    Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2009, 2010
3*a9fa9459Szrj    Free Software Foundation, Inc.
4*a9fa9459Szrj    Contributed by Vladimir Makarov (vmakarov@cygnus.com).
5*a9fa9459Szrj 
6*a9fa9459Szrj This file is part of the libiberty library.
7*a9fa9459Szrj Libiberty is free software; you can redistribute it and/or
8*a9fa9459Szrj modify it under the terms of the GNU Library General Public
9*a9fa9459Szrj License as published by the Free Software Foundation; either
10*a9fa9459Szrj version 2 of the License, or (at your option) any later version.
11*a9fa9459Szrj 
12*a9fa9459Szrj Libiberty is distributed in the hope that it will be useful,
13*a9fa9459Szrj but WITHOUT ANY WARRANTY; without even the implied warranty of
14*a9fa9459Szrj MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15*a9fa9459Szrj Library General Public License for more details.
16*a9fa9459Szrj 
17*a9fa9459Szrj You should have received a copy of the GNU Library General Public
18*a9fa9459Szrj License along with libiberty; see the file COPYING.LIB.  If
19*a9fa9459Szrj not, write to the Free Software Foundation, Inc., 51 Franklin Street - Fifth Floor,
20*a9fa9459Szrj Boston, MA 02110-1301, USA.  */
21*a9fa9459Szrj 
22*a9fa9459Szrj /* This package implements basic hash table functionality.  It is possible
23*a9fa9459Szrj    to search for an entry, create an entry and destroy an entry.
24*a9fa9459Szrj 
25*a9fa9459Szrj    Elements in the table are generic pointers.
26*a9fa9459Szrj 
27*a9fa9459Szrj    The size of the table is not fixed; if the occupancy of the table
28*a9fa9459Szrj    grows too high the hash table will be expanded.
29*a9fa9459Szrj 
30*a9fa9459Szrj    The abstract data implementation is based on generalized Algorithm D
31*a9fa9459Szrj    from Knuth's book "The art of computer programming".  Hash table is
32*a9fa9459Szrj    expanded by creation of new hash table and transferring elements from
33*a9fa9459Szrj    the old table to the new table. */
34*a9fa9459Szrj 
35*a9fa9459Szrj #ifdef HAVE_CONFIG_H
36*a9fa9459Szrj #include "config.h"
37*a9fa9459Szrj #endif
38*a9fa9459Szrj 
39*a9fa9459Szrj #include <sys/types.h>
40*a9fa9459Szrj 
41*a9fa9459Szrj #ifdef HAVE_STDLIB_H
42*a9fa9459Szrj #include <stdlib.h>
43*a9fa9459Szrj #endif
44*a9fa9459Szrj #ifdef HAVE_STRING_H
45*a9fa9459Szrj #include <string.h>
46*a9fa9459Szrj #endif
47*a9fa9459Szrj #ifdef HAVE_MALLOC_H
48*a9fa9459Szrj #include <malloc.h>
49*a9fa9459Szrj #endif
50*a9fa9459Szrj #ifdef HAVE_LIMITS_H
51*a9fa9459Szrj #include <limits.h>
52*a9fa9459Szrj #endif
53*a9fa9459Szrj #ifdef HAVE_INTTYPES_H
54*a9fa9459Szrj #include <inttypes.h>
55*a9fa9459Szrj #endif
56*a9fa9459Szrj #ifdef HAVE_STDINT_H
57*a9fa9459Szrj #include <stdint.h>
58*a9fa9459Szrj #endif
59*a9fa9459Szrj 
60*a9fa9459Szrj #include <stdio.h>
61*a9fa9459Szrj 
62*a9fa9459Szrj #include "libiberty.h"
63*a9fa9459Szrj #include "ansidecl.h"
64*a9fa9459Szrj #include "hashtab.h"
65*a9fa9459Szrj 
66*a9fa9459Szrj #ifndef CHAR_BIT
67*a9fa9459Szrj #define CHAR_BIT 8
68*a9fa9459Szrj #endif
69*a9fa9459Szrj 
70*a9fa9459Szrj static unsigned int higher_prime_index (unsigned long);
71*a9fa9459Szrj static hashval_t htab_mod_1 (hashval_t, hashval_t, hashval_t, int);
72*a9fa9459Szrj static hashval_t htab_mod (hashval_t, htab_t);
73*a9fa9459Szrj static hashval_t htab_mod_m2 (hashval_t, htab_t);
74*a9fa9459Szrj static hashval_t hash_pointer (const void *);
75*a9fa9459Szrj static int eq_pointer (const void *, const void *);
76*a9fa9459Szrj static int htab_expand (htab_t);
77*a9fa9459Szrj static PTR *find_empty_slot_for_expand (htab_t, hashval_t);
78*a9fa9459Szrj 
79*a9fa9459Szrj /* At some point, we could make these be NULL, and modify the
80*a9fa9459Szrj    hash-table routines to handle NULL specially; that would avoid
81*a9fa9459Szrj    function-call overhead for the common case of hashing pointers.  */
82*a9fa9459Szrj htab_hash htab_hash_pointer = hash_pointer;
83*a9fa9459Szrj htab_eq htab_eq_pointer = eq_pointer;
84*a9fa9459Szrj 
85*a9fa9459Szrj /* Table of primes and multiplicative inverses.
86*a9fa9459Szrj 
87*a9fa9459Szrj    Note that these are not minimally reduced inverses.  Unlike when generating
88*a9fa9459Szrj    code to divide by a constant, we want to be able to use the same algorithm
89*a9fa9459Szrj    all the time.  All of these inverses (are implied to) have bit 32 set.
90*a9fa9459Szrj 
91*a9fa9459Szrj    For the record, here's the function that computed the table; it's a
92*a9fa9459Szrj    vastly simplified version of the function of the same name from gcc.  */
93*a9fa9459Szrj 
94*a9fa9459Szrj #if 0
95*a9fa9459Szrj unsigned int
96*a9fa9459Szrj ceil_log2 (unsigned int x)
97*a9fa9459Szrj {
98*a9fa9459Szrj   int i;
99*a9fa9459Szrj   for (i = 31; i >= 0 ; --i)
100*a9fa9459Szrj     if (x > (1u << i))
101*a9fa9459Szrj       return i+1;
102*a9fa9459Szrj   abort ();
103*a9fa9459Szrj }
104*a9fa9459Szrj 
105*a9fa9459Szrj unsigned int
106*a9fa9459Szrj choose_multiplier (unsigned int d, unsigned int *mlp, unsigned char *shiftp)
107*a9fa9459Szrj {
108*a9fa9459Szrj   unsigned long long mhigh;
109*a9fa9459Szrj   double nx;
110*a9fa9459Szrj   int lgup, post_shift;
111*a9fa9459Szrj   int pow, pow2;
112*a9fa9459Szrj   int n = 32, precision = 32;
113*a9fa9459Szrj 
114*a9fa9459Szrj   lgup = ceil_log2 (d);
115*a9fa9459Szrj   pow = n + lgup;
116*a9fa9459Szrj   pow2 = n + lgup - precision;
117*a9fa9459Szrj 
118*a9fa9459Szrj   nx = ldexp (1.0, pow) + ldexp (1.0, pow2);
119*a9fa9459Szrj   mhigh = nx / d;
120*a9fa9459Szrj 
121*a9fa9459Szrj   *shiftp = lgup - 1;
122*a9fa9459Szrj   *mlp = mhigh;
123*a9fa9459Szrj   return mhigh >> 32;
124*a9fa9459Szrj }
125*a9fa9459Szrj #endif
126*a9fa9459Szrj 
127*a9fa9459Szrj struct prime_ent
128*a9fa9459Szrj {
129*a9fa9459Szrj   hashval_t prime;
130*a9fa9459Szrj   hashval_t inv;
131*a9fa9459Szrj   hashval_t inv_m2;	/* inverse of prime-2 */
132*a9fa9459Szrj   hashval_t shift;
133*a9fa9459Szrj };
134*a9fa9459Szrj 
135*a9fa9459Szrj static struct prime_ent const prime_tab[] = {
136*a9fa9459Szrj   {          7, 0x24924925, 0x9999999b, 2 },
137*a9fa9459Szrj   {         13, 0x3b13b13c, 0x745d1747, 3 },
138*a9fa9459Szrj   {         31, 0x08421085, 0x1a7b9612, 4 },
139*a9fa9459Szrj   {         61, 0x0c9714fc, 0x15b1e5f8, 5 },
140*a9fa9459Szrj   {        127, 0x02040811, 0x0624dd30, 6 },
141*a9fa9459Szrj   {        251, 0x05197f7e, 0x073260a5, 7 },
142*a9fa9459Szrj   {        509, 0x01824366, 0x02864fc8, 8 },
143*a9fa9459Szrj   {       1021, 0x00c0906d, 0x014191f7, 9 },
144*a9fa9459Szrj   {       2039, 0x0121456f, 0x0161e69e, 10 },
145*a9fa9459Szrj   {       4093, 0x00300902, 0x00501908, 11 },
146*a9fa9459Szrj   {       8191, 0x00080041, 0x00180241, 12 },
147*a9fa9459Szrj   {      16381, 0x000c0091, 0x00140191, 13 },
148*a9fa9459Szrj   {      32749, 0x002605a5, 0x002a06e6, 14 },
149*a9fa9459Szrj   {      65521, 0x000f00e2, 0x00110122, 15 },
150*a9fa9459Szrj   {     131071, 0x00008001, 0x00018003, 16 },
151*a9fa9459Szrj   {     262139, 0x00014002, 0x0001c004, 17 },
152*a9fa9459Szrj   {     524287, 0x00002001, 0x00006001, 18 },
153*a9fa9459Szrj   {    1048573, 0x00003001, 0x00005001, 19 },
154*a9fa9459Szrj   {    2097143, 0x00004801, 0x00005801, 20 },
155*a9fa9459Szrj   {    4194301, 0x00000c01, 0x00001401, 21 },
156*a9fa9459Szrj   {    8388593, 0x00001e01, 0x00002201, 22 },
157*a9fa9459Szrj   {   16777213, 0x00000301, 0x00000501, 23 },
158*a9fa9459Szrj   {   33554393, 0x00001381, 0x00001481, 24 },
159*a9fa9459Szrj   {   67108859, 0x00000141, 0x000001c1, 25 },
160*a9fa9459Szrj   {  134217689, 0x000004e1, 0x00000521, 26 },
161*a9fa9459Szrj   {  268435399, 0x00000391, 0x000003b1, 27 },
162*a9fa9459Szrj   {  536870909, 0x00000019, 0x00000029, 28 },
163*a9fa9459Szrj   { 1073741789, 0x0000008d, 0x00000095, 29 },
164*a9fa9459Szrj   { 2147483647, 0x00000003, 0x00000007, 30 },
165*a9fa9459Szrj   /* Avoid "decimal constant so large it is unsigned" for 4294967291.  */
166*a9fa9459Szrj   { 0xfffffffb, 0x00000006, 0x00000008, 31 }
167*a9fa9459Szrj };
168*a9fa9459Szrj 
169*a9fa9459Szrj /* The following function returns an index into the above table of the
170*a9fa9459Szrj    nearest prime number which is greater than N, and near a power of two. */
171*a9fa9459Szrj 
172*a9fa9459Szrj static unsigned int
higher_prime_index(unsigned long n)173*a9fa9459Szrj higher_prime_index (unsigned long n)
174*a9fa9459Szrj {
175*a9fa9459Szrj   unsigned int low = 0;
176*a9fa9459Szrj   unsigned int high = sizeof(prime_tab) / sizeof(prime_tab[0]);
177*a9fa9459Szrj 
178*a9fa9459Szrj   while (low != high)
179*a9fa9459Szrj     {
180*a9fa9459Szrj       unsigned int mid = low + (high - low) / 2;
181*a9fa9459Szrj       if (n > prime_tab[mid].prime)
182*a9fa9459Szrj 	low = mid + 1;
183*a9fa9459Szrj       else
184*a9fa9459Szrj 	high = mid;
185*a9fa9459Szrj     }
186*a9fa9459Szrj 
187*a9fa9459Szrj   /* If we've run out of primes, abort.  */
188*a9fa9459Szrj   if (n > prime_tab[low].prime)
189*a9fa9459Szrj     {
190*a9fa9459Szrj       fprintf (stderr, "Cannot find prime bigger than %lu\n", n);
191*a9fa9459Szrj       abort ();
192*a9fa9459Szrj     }
193*a9fa9459Szrj 
194*a9fa9459Szrj   return low;
195*a9fa9459Szrj }
196*a9fa9459Szrj 
197*a9fa9459Szrj /* Returns non-zero if P1 and P2 are equal.  */
198*a9fa9459Szrj 
199*a9fa9459Szrj static int
eq_pointer(const PTR p1,const PTR p2)200*a9fa9459Szrj eq_pointer (const PTR p1, const PTR p2)
201*a9fa9459Szrj {
202*a9fa9459Szrj   return p1 == p2;
203*a9fa9459Szrj }
204*a9fa9459Szrj 
205*a9fa9459Szrj 
206*a9fa9459Szrj /* The parens around the function names in the next two definitions
207*a9fa9459Szrj    are essential in order to prevent macro expansions of the name.
208*a9fa9459Szrj    The bodies, however, are expanded as expected, so they are not
209*a9fa9459Szrj    recursive definitions.  */
210*a9fa9459Szrj 
211*a9fa9459Szrj /* Return the current size of given hash table.  */
212*a9fa9459Szrj 
213*a9fa9459Szrj #define htab_size(htab)  ((htab)->size)
214*a9fa9459Szrj 
size_t(htab_size)215*a9fa9459Szrj size_t
216*a9fa9459Szrj (htab_size) (htab_t htab)
217*a9fa9459Szrj {
218*a9fa9459Szrj   return htab_size (htab);
219*a9fa9459Szrj }
220*a9fa9459Szrj 
221*a9fa9459Szrj /* Return the current number of elements in given hash table. */
222*a9fa9459Szrj 
223*a9fa9459Szrj #define htab_elements(htab)  ((htab)->n_elements - (htab)->n_deleted)
224*a9fa9459Szrj 
size_t(htab_elements)225*a9fa9459Szrj size_t
226*a9fa9459Szrj (htab_elements) (htab_t htab)
227*a9fa9459Szrj {
228*a9fa9459Szrj   return htab_elements (htab);
229*a9fa9459Szrj }
230*a9fa9459Szrj 
231*a9fa9459Szrj /* Return X % Y.  */
232*a9fa9459Szrj 
233*a9fa9459Szrj static inline hashval_t
htab_mod_1(hashval_t x,hashval_t y,hashval_t inv,int shift)234*a9fa9459Szrj htab_mod_1 (hashval_t x, hashval_t y, hashval_t inv, int shift)
235*a9fa9459Szrj {
236*a9fa9459Szrj   /* The multiplicative inverses computed above are for 32-bit types, and
237*a9fa9459Szrj      requires that we be able to compute a highpart multiply.  */
238*a9fa9459Szrj #ifdef UNSIGNED_64BIT_TYPE
239*a9fa9459Szrj   __extension__ typedef UNSIGNED_64BIT_TYPE ull;
240*a9fa9459Szrj   if (sizeof (hashval_t) * CHAR_BIT <= 32)
241*a9fa9459Szrj     {
242*a9fa9459Szrj       hashval_t t1, t2, t3, t4, q, r;
243*a9fa9459Szrj 
244*a9fa9459Szrj       t1 = ((ull)x * inv) >> 32;
245*a9fa9459Szrj       t2 = x - t1;
246*a9fa9459Szrj       t3 = t2 >> 1;
247*a9fa9459Szrj       t4 = t1 + t3;
248*a9fa9459Szrj       q  = t4 >> shift;
249*a9fa9459Szrj       r  = x - (q * y);
250*a9fa9459Szrj 
251*a9fa9459Szrj       return r;
252*a9fa9459Szrj     }
253*a9fa9459Szrj #endif
254*a9fa9459Szrj 
255*a9fa9459Szrj   /* Otherwise just use the native division routines.  */
256*a9fa9459Szrj   return x % y;
257*a9fa9459Szrj }
258*a9fa9459Szrj 
259*a9fa9459Szrj /* Compute the primary hash for HASH given HTAB's current size.  */
260*a9fa9459Szrj 
261*a9fa9459Szrj static inline hashval_t
htab_mod(hashval_t hash,htab_t htab)262*a9fa9459Szrj htab_mod (hashval_t hash, htab_t htab)
263*a9fa9459Szrj {
264*a9fa9459Szrj   const struct prime_ent *p = &prime_tab[htab->size_prime_index];
265*a9fa9459Szrj   return htab_mod_1 (hash, p->prime, p->inv, p->shift);
266*a9fa9459Szrj }
267*a9fa9459Szrj 
268*a9fa9459Szrj /* Compute the secondary hash for HASH given HTAB's current size.  */
269*a9fa9459Szrj 
270*a9fa9459Szrj static inline hashval_t
htab_mod_m2(hashval_t hash,htab_t htab)271*a9fa9459Szrj htab_mod_m2 (hashval_t hash, htab_t htab)
272*a9fa9459Szrj {
273*a9fa9459Szrj   const struct prime_ent *p = &prime_tab[htab->size_prime_index];
274*a9fa9459Szrj   return 1 + htab_mod_1 (hash, p->prime - 2, p->inv_m2, p->shift);
275*a9fa9459Szrj }
276*a9fa9459Szrj 
277*a9fa9459Szrj /* This function creates table with length slightly longer than given
278*a9fa9459Szrj    source length.  Created hash table is initiated as empty (all the
279*a9fa9459Szrj    hash table entries are HTAB_EMPTY_ENTRY).  The function returns the
280*a9fa9459Szrj    created hash table, or NULL if memory allocation fails.  */
281*a9fa9459Szrj 
282*a9fa9459Szrj htab_t
htab_create_alloc(size_t size,htab_hash hash_f,htab_eq eq_f,htab_del del_f,htab_alloc alloc_f,htab_free free_f)283*a9fa9459Szrj htab_create_alloc (size_t size, htab_hash hash_f, htab_eq eq_f,
284*a9fa9459Szrj                    htab_del del_f, htab_alloc alloc_f, htab_free free_f)
285*a9fa9459Szrj {
286*a9fa9459Szrj   return htab_create_typed_alloc (size, hash_f, eq_f, del_f, alloc_f, alloc_f,
287*a9fa9459Szrj 				  free_f);
288*a9fa9459Szrj }
289*a9fa9459Szrj 
290*a9fa9459Szrj /* As above, but uses the variants of ALLOC_F and FREE_F which accept
291*a9fa9459Szrj    an extra argument.  */
292*a9fa9459Szrj 
293*a9fa9459Szrj htab_t
htab_create_alloc_ex(size_t size,htab_hash hash_f,htab_eq eq_f,htab_del del_f,void * alloc_arg,htab_alloc_with_arg alloc_f,htab_free_with_arg free_f)294*a9fa9459Szrj htab_create_alloc_ex (size_t size, htab_hash hash_f, htab_eq eq_f,
295*a9fa9459Szrj 		      htab_del del_f, void *alloc_arg,
296*a9fa9459Szrj 		      htab_alloc_with_arg alloc_f,
297*a9fa9459Szrj 		      htab_free_with_arg free_f)
298*a9fa9459Szrj {
299*a9fa9459Szrj   htab_t result;
300*a9fa9459Szrj   unsigned int size_prime_index;
301*a9fa9459Szrj 
302*a9fa9459Szrj   size_prime_index = higher_prime_index (size);
303*a9fa9459Szrj   size = prime_tab[size_prime_index].prime;
304*a9fa9459Szrj 
305*a9fa9459Szrj   result = (htab_t) (*alloc_f) (alloc_arg, 1, sizeof (struct htab));
306*a9fa9459Szrj   if (result == NULL)
307*a9fa9459Szrj     return NULL;
308*a9fa9459Szrj   result->entries = (PTR *) (*alloc_f) (alloc_arg, size, sizeof (PTR));
309*a9fa9459Szrj   if (result->entries == NULL)
310*a9fa9459Szrj     {
311*a9fa9459Szrj       if (free_f != NULL)
312*a9fa9459Szrj 	(*free_f) (alloc_arg, result);
313*a9fa9459Szrj       return NULL;
314*a9fa9459Szrj     }
315*a9fa9459Szrj   result->size = size;
316*a9fa9459Szrj   result->size_prime_index = size_prime_index;
317*a9fa9459Szrj   result->hash_f = hash_f;
318*a9fa9459Szrj   result->eq_f = eq_f;
319*a9fa9459Szrj   result->del_f = del_f;
320*a9fa9459Szrj   result->alloc_arg = alloc_arg;
321*a9fa9459Szrj   result->alloc_with_arg_f = alloc_f;
322*a9fa9459Szrj   result->free_with_arg_f = free_f;
323*a9fa9459Szrj   return result;
324*a9fa9459Szrj }
325*a9fa9459Szrj 
326*a9fa9459Szrj /*
327*a9fa9459Szrj 
328*a9fa9459Szrj @deftypefn Supplemental htab_t htab_create_typed_alloc (size_t @var{size}, @
329*a9fa9459Szrj htab_hash @var{hash_f}, htab_eq @var{eq_f}, htab_del @var{del_f}, @
330*a9fa9459Szrj htab_alloc @var{alloc_tab_f}, htab_alloc @var{alloc_f}, @
331*a9fa9459Szrj htab_free @var{free_f})
332*a9fa9459Szrj 
333*a9fa9459Szrj This function creates a hash table that uses two different allocators
334*a9fa9459Szrj @var{alloc_tab_f} and @var{alloc_f} to use for allocating the table itself
335*a9fa9459Szrj and its entries respectively.  This is useful when variables of different
336*a9fa9459Szrj types need to be allocated with different allocators.
337*a9fa9459Szrj 
338*a9fa9459Szrj The created hash table is slightly larger than @var{size} and it is
339*a9fa9459Szrj initially empty (all the hash table entries are @code{HTAB_EMPTY_ENTRY}).
340*a9fa9459Szrj The function returns the created hash table, or @code{NULL} if memory
341*a9fa9459Szrj allocation fails.
342*a9fa9459Szrj 
343*a9fa9459Szrj @end deftypefn
344*a9fa9459Szrj 
345*a9fa9459Szrj */
346*a9fa9459Szrj 
347*a9fa9459Szrj htab_t
htab_create_typed_alloc(size_t size,htab_hash hash_f,htab_eq eq_f,htab_del del_f,htab_alloc alloc_tab_f,htab_alloc alloc_f,htab_free free_f)348*a9fa9459Szrj htab_create_typed_alloc (size_t size, htab_hash hash_f, htab_eq eq_f,
349*a9fa9459Szrj 			 htab_del del_f, htab_alloc alloc_tab_f,
350*a9fa9459Szrj 			 htab_alloc alloc_f, htab_free free_f)
351*a9fa9459Szrj {
352*a9fa9459Szrj   htab_t result;
353*a9fa9459Szrj   unsigned int size_prime_index;
354*a9fa9459Szrj 
355*a9fa9459Szrj   size_prime_index = higher_prime_index (size);
356*a9fa9459Szrj   size = prime_tab[size_prime_index].prime;
357*a9fa9459Szrj 
358*a9fa9459Szrj   result = (htab_t) (*alloc_tab_f) (1, sizeof (struct htab));
359*a9fa9459Szrj   if (result == NULL)
360*a9fa9459Szrj     return NULL;
361*a9fa9459Szrj   result->entries = (PTR *) (*alloc_f) (size, sizeof (PTR));
362*a9fa9459Szrj   if (result->entries == NULL)
363*a9fa9459Szrj     {
364*a9fa9459Szrj       if (free_f != NULL)
365*a9fa9459Szrj 	(*free_f) (result);
366*a9fa9459Szrj       return NULL;
367*a9fa9459Szrj     }
368*a9fa9459Szrj   result->size = size;
369*a9fa9459Szrj   result->size_prime_index = size_prime_index;
370*a9fa9459Szrj   result->hash_f = hash_f;
371*a9fa9459Szrj   result->eq_f = eq_f;
372*a9fa9459Szrj   result->del_f = del_f;
373*a9fa9459Szrj   result->alloc_f = alloc_f;
374*a9fa9459Szrj   result->free_f = free_f;
375*a9fa9459Szrj   return result;
376*a9fa9459Szrj }
377*a9fa9459Szrj 
378*a9fa9459Szrj 
379*a9fa9459Szrj /* Update the function pointers and allocation parameter in the htab_t.  */
380*a9fa9459Szrj 
381*a9fa9459Szrj void
htab_set_functions_ex(htab_t htab,htab_hash hash_f,htab_eq eq_f,htab_del del_f,PTR alloc_arg,htab_alloc_with_arg alloc_f,htab_free_with_arg free_f)382*a9fa9459Szrj htab_set_functions_ex (htab_t htab, htab_hash hash_f, htab_eq eq_f,
383*a9fa9459Szrj                        htab_del del_f, PTR alloc_arg,
384*a9fa9459Szrj                        htab_alloc_with_arg alloc_f, htab_free_with_arg free_f)
385*a9fa9459Szrj {
386*a9fa9459Szrj   htab->hash_f = hash_f;
387*a9fa9459Szrj   htab->eq_f = eq_f;
388*a9fa9459Szrj   htab->del_f = del_f;
389*a9fa9459Szrj   htab->alloc_arg = alloc_arg;
390*a9fa9459Szrj   htab->alloc_with_arg_f = alloc_f;
391*a9fa9459Szrj   htab->free_with_arg_f = free_f;
392*a9fa9459Szrj }
393*a9fa9459Szrj 
394*a9fa9459Szrj /* These functions exist solely for backward compatibility.  */
395*a9fa9459Szrj 
396*a9fa9459Szrj #undef htab_create
397*a9fa9459Szrj htab_t
htab_create(size_t size,htab_hash hash_f,htab_eq eq_f,htab_del del_f)398*a9fa9459Szrj htab_create (size_t size, htab_hash hash_f, htab_eq eq_f, htab_del del_f)
399*a9fa9459Szrj {
400*a9fa9459Szrj   return htab_create_alloc (size, hash_f, eq_f, del_f, xcalloc, free);
401*a9fa9459Szrj }
402*a9fa9459Szrj 
403*a9fa9459Szrj htab_t
htab_try_create(size_t size,htab_hash hash_f,htab_eq eq_f,htab_del del_f)404*a9fa9459Szrj htab_try_create (size_t size, htab_hash hash_f, htab_eq eq_f, htab_del del_f)
405*a9fa9459Szrj {
406*a9fa9459Szrj   return htab_create_alloc (size, hash_f, eq_f, del_f, calloc, free);
407*a9fa9459Szrj }
408*a9fa9459Szrj 
409*a9fa9459Szrj /* This function frees all memory allocated for given hash table.
410*a9fa9459Szrj    Naturally the hash table must already exist. */
411*a9fa9459Szrj 
412*a9fa9459Szrj void
htab_delete(htab_t htab)413*a9fa9459Szrj htab_delete (htab_t htab)
414*a9fa9459Szrj {
415*a9fa9459Szrj   size_t size = htab_size (htab);
416*a9fa9459Szrj   PTR *entries = htab->entries;
417*a9fa9459Szrj   int i;
418*a9fa9459Szrj 
419*a9fa9459Szrj   if (htab->del_f)
420*a9fa9459Szrj     for (i = size - 1; i >= 0; i--)
421*a9fa9459Szrj       if (entries[i] != HTAB_EMPTY_ENTRY && entries[i] != HTAB_DELETED_ENTRY)
422*a9fa9459Szrj 	(*htab->del_f) (entries[i]);
423*a9fa9459Szrj 
424*a9fa9459Szrj   if (htab->free_f != NULL)
425*a9fa9459Szrj     {
426*a9fa9459Szrj       (*htab->free_f) (entries);
427*a9fa9459Szrj       (*htab->free_f) (htab);
428*a9fa9459Szrj     }
429*a9fa9459Szrj   else if (htab->free_with_arg_f != NULL)
430*a9fa9459Szrj     {
431*a9fa9459Szrj       (*htab->free_with_arg_f) (htab->alloc_arg, entries);
432*a9fa9459Szrj       (*htab->free_with_arg_f) (htab->alloc_arg, htab);
433*a9fa9459Szrj     }
434*a9fa9459Szrj }
435*a9fa9459Szrj 
436*a9fa9459Szrj /* This function clears all entries in the given hash table.  */
437*a9fa9459Szrj 
438*a9fa9459Szrj void
htab_empty(htab_t htab)439*a9fa9459Szrj htab_empty (htab_t htab)
440*a9fa9459Szrj {
441*a9fa9459Szrj   size_t size = htab_size (htab);
442*a9fa9459Szrj   PTR *entries = htab->entries;
443*a9fa9459Szrj   int i;
444*a9fa9459Szrj 
445*a9fa9459Szrj   if (htab->del_f)
446*a9fa9459Szrj     for (i = size - 1; i >= 0; i--)
447*a9fa9459Szrj       if (entries[i] != HTAB_EMPTY_ENTRY && entries[i] != HTAB_DELETED_ENTRY)
448*a9fa9459Szrj 	(*htab->del_f) (entries[i]);
449*a9fa9459Szrj 
450*a9fa9459Szrj   /* Instead of clearing megabyte, downsize the table.  */
451*a9fa9459Szrj   if (size > 1024*1024 / sizeof (PTR))
452*a9fa9459Szrj     {
453*a9fa9459Szrj       int nindex = higher_prime_index (1024 / sizeof (PTR));
454*a9fa9459Szrj       int nsize = prime_tab[nindex].prime;
455*a9fa9459Szrj 
456*a9fa9459Szrj       if (htab->free_f != NULL)
457*a9fa9459Szrj 	(*htab->free_f) (htab->entries);
458*a9fa9459Szrj       else if (htab->free_with_arg_f != NULL)
459*a9fa9459Szrj 	(*htab->free_with_arg_f) (htab->alloc_arg, htab->entries);
460*a9fa9459Szrj       if (htab->alloc_with_arg_f != NULL)
461*a9fa9459Szrj 	htab->entries = (PTR *) (*htab->alloc_with_arg_f) (htab->alloc_arg, nsize,
462*a9fa9459Szrj 						           sizeof (PTR *));
463*a9fa9459Szrj       else
464*a9fa9459Szrj 	htab->entries = (PTR *) (*htab->alloc_f) (nsize, sizeof (PTR *));
465*a9fa9459Szrj      htab->size = nsize;
466*a9fa9459Szrj      htab->size_prime_index = nindex;
467*a9fa9459Szrj     }
468*a9fa9459Szrj   else
469*a9fa9459Szrj     memset (entries, 0, size * sizeof (PTR));
470*a9fa9459Szrj   htab->n_deleted = 0;
471*a9fa9459Szrj   htab->n_elements = 0;
472*a9fa9459Szrj }
473*a9fa9459Szrj 
474*a9fa9459Szrj /* Similar to htab_find_slot, but without several unwanted side effects:
475*a9fa9459Szrj     - Does not call htab->eq_f when it finds an existing entry.
476*a9fa9459Szrj     - Does not change the count of elements/searches/collisions in the
477*a9fa9459Szrj       hash table.
478*a9fa9459Szrj    This function also assumes there are no deleted entries in the table.
479*a9fa9459Szrj    HASH is the hash value for the element to be inserted.  */
480*a9fa9459Szrj 
481*a9fa9459Szrj static PTR *
find_empty_slot_for_expand(htab_t htab,hashval_t hash)482*a9fa9459Szrj find_empty_slot_for_expand (htab_t htab, hashval_t hash)
483*a9fa9459Szrj {
484*a9fa9459Szrj   hashval_t index = htab_mod (hash, htab);
485*a9fa9459Szrj   size_t size = htab_size (htab);
486*a9fa9459Szrj   PTR *slot = htab->entries + index;
487*a9fa9459Szrj   hashval_t hash2;
488*a9fa9459Szrj 
489*a9fa9459Szrj   if (*slot == HTAB_EMPTY_ENTRY)
490*a9fa9459Szrj     return slot;
491*a9fa9459Szrj   else if (*slot == HTAB_DELETED_ENTRY)
492*a9fa9459Szrj     abort ();
493*a9fa9459Szrj 
494*a9fa9459Szrj   hash2 = htab_mod_m2 (hash, htab);
495*a9fa9459Szrj   for (;;)
496*a9fa9459Szrj     {
497*a9fa9459Szrj       index += hash2;
498*a9fa9459Szrj       if (index >= size)
499*a9fa9459Szrj 	index -= size;
500*a9fa9459Szrj 
501*a9fa9459Szrj       slot = htab->entries + index;
502*a9fa9459Szrj       if (*slot == HTAB_EMPTY_ENTRY)
503*a9fa9459Szrj 	return slot;
504*a9fa9459Szrj       else if (*slot == HTAB_DELETED_ENTRY)
505*a9fa9459Szrj 	abort ();
506*a9fa9459Szrj     }
507*a9fa9459Szrj }
508*a9fa9459Szrj 
509*a9fa9459Szrj /* The following function changes size of memory allocated for the
510*a9fa9459Szrj    entries and repeatedly inserts the table elements.  The occupancy
511*a9fa9459Szrj    of the table after the call will be about 50%.  Naturally the hash
512*a9fa9459Szrj    table must already exist.  Remember also that the place of the
513*a9fa9459Szrj    table entries is changed.  If memory allocation failures are allowed,
514*a9fa9459Szrj    this function will return zero, indicating that the table could not be
515*a9fa9459Szrj    expanded.  If all goes well, it will return a non-zero value.  */
516*a9fa9459Szrj 
517*a9fa9459Szrj static int
htab_expand(htab_t htab)518*a9fa9459Szrj htab_expand (htab_t htab)
519*a9fa9459Szrj {
520*a9fa9459Szrj   PTR *oentries;
521*a9fa9459Szrj   PTR *olimit;
522*a9fa9459Szrj   PTR *p;
523*a9fa9459Szrj   PTR *nentries;
524*a9fa9459Szrj   size_t nsize, osize, elts;
525*a9fa9459Szrj   unsigned int oindex, nindex;
526*a9fa9459Szrj 
527*a9fa9459Szrj   oentries = htab->entries;
528*a9fa9459Szrj   oindex = htab->size_prime_index;
529*a9fa9459Szrj   osize = htab->size;
530*a9fa9459Szrj   olimit = oentries + osize;
531*a9fa9459Szrj   elts = htab_elements (htab);
532*a9fa9459Szrj 
533*a9fa9459Szrj   /* Resize only when table after removal of unused elements is either
534*a9fa9459Szrj      too full or too empty.  */
535*a9fa9459Szrj   if (elts * 2 > osize || (elts * 8 < osize && osize > 32))
536*a9fa9459Szrj     {
537*a9fa9459Szrj       nindex = higher_prime_index (elts * 2);
538*a9fa9459Szrj       nsize = prime_tab[nindex].prime;
539*a9fa9459Szrj     }
540*a9fa9459Szrj   else
541*a9fa9459Szrj     {
542*a9fa9459Szrj       nindex = oindex;
543*a9fa9459Szrj       nsize = osize;
544*a9fa9459Szrj     }
545*a9fa9459Szrj 
546*a9fa9459Szrj   if (htab->alloc_with_arg_f != NULL)
547*a9fa9459Szrj     nentries = (PTR *) (*htab->alloc_with_arg_f) (htab->alloc_arg, nsize,
548*a9fa9459Szrj 						  sizeof (PTR *));
549*a9fa9459Szrj   else
550*a9fa9459Szrj     nentries = (PTR *) (*htab->alloc_f) (nsize, sizeof (PTR *));
551*a9fa9459Szrj   if (nentries == NULL)
552*a9fa9459Szrj     return 0;
553*a9fa9459Szrj   htab->entries = nentries;
554*a9fa9459Szrj   htab->size = nsize;
555*a9fa9459Szrj   htab->size_prime_index = nindex;
556*a9fa9459Szrj   htab->n_elements -= htab->n_deleted;
557*a9fa9459Szrj   htab->n_deleted = 0;
558*a9fa9459Szrj 
559*a9fa9459Szrj   p = oentries;
560*a9fa9459Szrj   do
561*a9fa9459Szrj     {
562*a9fa9459Szrj       PTR x = *p;
563*a9fa9459Szrj 
564*a9fa9459Szrj       if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
565*a9fa9459Szrj 	{
566*a9fa9459Szrj 	  PTR *q = find_empty_slot_for_expand (htab, (*htab->hash_f) (x));
567*a9fa9459Szrj 
568*a9fa9459Szrj 	  *q = x;
569*a9fa9459Szrj 	}
570*a9fa9459Szrj 
571*a9fa9459Szrj       p++;
572*a9fa9459Szrj     }
573*a9fa9459Szrj   while (p < olimit);
574*a9fa9459Szrj 
575*a9fa9459Szrj   if (htab->free_f != NULL)
576*a9fa9459Szrj     (*htab->free_f) (oentries);
577*a9fa9459Szrj   else if (htab->free_with_arg_f != NULL)
578*a9fa9459Szrj     (*htab->free_with_arg_f) (htab->alloc_arg, oentries);
579*a9fa9459Szrj   return 1;
580*a9fa9459Szrj }
581*a9fa9459Szrj 
582*a9fa9459Szrj /* This function searches for a hash table entry equal to the given
583*a9fa9459Szrj    element.  It cannot be used to insert or delete an element.  */
584*a9fa9459Szrj 
585*a9fa9459Szrj PTR
htab_find_with_hash(htab_t htab,const PTR element,hashval_t hash)586*a9fa9459Szrj htab_find_with_hash (htab_t htab, const PTR element, hashval_t hash)
587*a9fa9459Szrj {
588*a9fa9459Szrj   hashval_t index, hash2;
589*a9fa9459Szrj   size_t size;
590*a9fa9459Szrj   PTR entry;
591*a9fa9459Szrj 
592*a9fa9459Szrj   htab->searches++;
593*a9fa9459Szrj   size = htab_size (htab);
594*a9fa9459Szrj   index = htab_mod (hash, htab);
595*a9fa9459Szrj 
596*a9fa9459Szrj   entry = htab->entries[index];
597*a9fa9459Szrj   if (entry == HTAB_EMPTY_ENTRY
598*a9fa9459Szrj       || (entry != HTAB_DELETED_ENTRY && (*htab->eq_f) (entry, element)))
599*a9fa9459Szrj     return entry;
600*a9fa9459Szrj 
601*a9fa9459Szrj   hash2 = htab_mod_m2 (hash, htab);
602*a9fa9459Szrj   for (;;)
603*a9fa9459Szrj     {
604*a9fa9459Szrj       htab->collisions++;
605*a9fa9459Szrj       index += hash2;
606*a9fa9459Szrj       if (index >= size)
607*a9fa9459Szrj 	index -= size;
608*a9fa9459Szrj 
609*a9fa9459Szrj       entry = htab->entries[index];
610*a9fa9459Szrj       if (entry == HTAB_EMPTY_ENTRY
611*a9fa9459Szrj 	  || (entry != HTAB_DELETED_ENTRY && (*htab->eq_f) (entry, element)))
612*a9fa9459Szrj 	return entry;
613*a9fa9459Szrj     }
614*a9fa9459Szrj }
615*a9fa9459Szrj 
616*a9fa9459Szrj /* Like htab_find_slot_with_hash, but compute the hash value from the
617*a9fa9459Szrj    element.  */
618*a9fa9459Szrj 
619*a9fa9459Szrj PTR
htab_find(htab_t htab,const PTR element)620*a9fa9459Szrj htab_find (htab_t htab, const PTR element)
621*a9fa9459Szrj {
622*a9fa9459Szrj   return htab_find_with_hash (htab, element, (*htab->hash_f) (element));
623*a9fa9459Szrj }
624*a9fa9459Szrj 
625*a9fa9459Szrj /* This function searches for a hash table slot containing an entry
626*a9fa9459Szrj    equal to the given element.  To delete an entry, call this with
627*a9fa9459Szrj    insert=NO_INSERT, then call htab_clear_slot on the slot returned
628*a9fa9459Szrj    (possibly after doing some checks).  To insert an entry, call this
629*a9fa9459Szrj    with insert=INSERT, then write the value you want into the returned
630*a9fa9459Szrj    slot.  When inserting an entry, NULL may be returned if memory
631*a9fa9459Szrj    allocation fails.  */
632*a9fa9459Szrj 
633*a9fa9459Szrj PTR *
htab_find_slot_with_hash(htab_t htab,const PTR element,hashval_t hash,enum insert_option insert)634*a9fa9459Szrj htab_find_slot_with_hash (htab_t htab, const PTR element,
635*a9fa9459Szrj                           hashval_t hash, enum insert_option insert)
636*a9fa9459Szrj {
637*a9fa9459Szrj   PTR *first_deleted_slot;
638*a9fa9459Szrj   hashval_t index, hash2;
639*a9fa9459Szrj   size_t size;
640*a9fa9459Szrj   PTR entry;
641*a9fa9459Szrj 
642*a9fa9459Szrj   size = htab_size (htab);
643*a9fa9459Szrj   if (insert == INSERT && size * 3 <= htab->n_elements * 4)
644*a9fa9459Szrj     {
645*a9fa9459Szrj       if (htab_expand (htab) == 0)
646*a9fa9459Szrj 	return NULL;
647*a9fa9459Szrj       size = htab_size (htab);
648*a9fa9459Szrj     }
649*a9fa9459Szrj 
650*a9fa9459Szrj   index = htab_mod (hash, htab);
651*a9fa9459Szrj 
652*a9fa9459Szrj   htab->searches++;
653*a9fa9459Szrj   first_deleted_slot = NULL;
654*a9fa9459Szrj 
655*a9fa9459Szrj   entry = htab->entries[index];
656*a9fa9459Szrj   if (entry == HTAB_EMPTY_ENTRY)
657*a9fa9459Szrj     goto empty_entry;
658*a9fa9459Szrj   else if (entry == HTAB_DELETED_ENTRY)
659*a9fa9459Szrj     first_deleted_slot = &htab->entries[index];
660*a9fa9459Szrj   else if ((*htab->eq_f) (entry, element))
661*a9fa9459Szrj     return &htab->entries[index];
662*a9fa9459Szrj 
663*a9fa9459Szrj   hash2 = htab_mod_m2 (hash, htab);
664*a9fa9459Szrj   for (;;)
665*a9fa9459Szrj     {
666*a9fa9459Szrj       htab->collisions++;
667*a9fa9459Szrj       index += hash2;
668*a9fa9459Szrj       if (index >= size)
669*a9fa9459Szrj 	index -= size;
670*a9fa9459Szrj 
671*a9fa9459Szrj       entry = htab->entries[index];
672*a9fa9459Szrj       if (entry == HTAB_EMPTY_ENTRY)
673*a9fa9459Szrj 	goto empty_entry;
674*a9fa9459Szrj       else if (entry == HTAB_DELETED_ENTRY)
675*a9fa9459Szrj 	{
676*a9fa9459Szrj 	  if (!first_deleted_slot)
677*a9fa9459Szrj 	    first_deleted_slot = &htab->entries[index];
678*a9fa9459Szrj 	}
679*a9fa9459Szrj       else if ((*htab->eq_f) (entry, element))
680*a9fa9459Szrj 	return &htab->entries[index];
681*a9fa9459Szrj     }
682*a9fa9459Szrj 
683*a9fa9459Szrj  empty_entry:
684*a9fa9459Szrj   if (insert == NO_INSERT)
685*a9fa9459Szrj     return NULL;
686*a9fa9459Szrj 
687*a9fa9459Szrj   if (first_deleted_slot)
688*a9fa9459Szrj     {
689*a9fa9459Szrj       htab->n_deleted--;
690*a9fa9459Szrj       *first_deleted_slot = HTAB_EMPTY_ENTRY;
691*a9fa9459Szrj       return first_deleted_slot;
692*a9fa9459Szrj     }
693*a9fa9459Szrj 
694*a9fa9459Szrj   htab->n_elements++;
695*a9fa9459Szrj   return &htab->entries[index];
696*a9fa9459Szrj }
697*a9fa9459Szrj 
698*a9fa9459Szrj /* Like htab_find_slot_with_hash, but compute the hash value from the
699*a9fa9459Szrj    element.  */
700*a9fa9459Szrj 
701*a9fa9459Szrj PTR *
htab_find_slot(htab_t htab,const PTR element,enum insert_option insert)702*a9fa9459Szrj htab_find_slot (htab_t htab, const PTR element, enum insert_option insert)
703*a9fa9459Szrj {
704*a9fa9459Szrj   return htab_find_slot_with_hash (htab, element, (*htab->hash_f) (element),
705*a9fa9459Szrj 				   insert);
706*a9fa9459Szrj }
707*a9fa9459Szrj 
708*a9fa9459Szrj /* This function deletes an element with the given value from hash
709*a9fa9459Szrj    table (the hash is computed from the element).  If there is no matching
710*a9fa9459Szrj    element in the hash table, this function does nothing.  */
711*a9fa9459Szrj 
712*a9fa9459Szrj void
htab_remove_elt(htab_t htab,PTR element)713*a9fa9459Szrj htab_remove_elt (htab_t htab, PTR element)
714*a9fa9459Szrj {
715*a9fa9459Szrj   htab_remove_elt_with_hash (htab, element, (*htab->hash_f) (element));
716*a9fa9459Szrj }
717*a9fa9459Szrj 
718*a9fa9459Szrj 
719*a9fa9459Szrj /* This function deletes an element with the given value from hash
720*a9fa9459Szrj    table.  If there is no matching element in the hash table, this
721*a9fa9459Szrj    function does nothing.  */
722*a9fa9459Szrj 
723*a9fa9459Szrj void
htab_remove_elt_with_hash(htab_t htab,PTR element,hashval_t hash)724*a9fa9459Szrj htab_remove_elt_with_hash (htab_t htab, PTR element, hashval_t hash)
725*a9fa9459Szrj {
726*a9fa9459Szrj   PTR *slot;
727*a9fa9459Szrj 
728*a9fa9459Szrj   slot = htab_find_slot_with_hash (htab, element, hash, NO_INSERT);
729*a9fa9459Szrj   if (*slot == HTAB_EMPTY_ENTRY)
730*a9fa9459Szrj     return;
731*a9fa9459Szrj 
732*a9fa9459Szrj   if (htab->del_f)
733*a9fa9459Szrj     (*htab->del_f) (*slot);
734*a9fa9459Szrj 
735*a9fa9459Szrj   *slot = HTAB_DELETED_ENTRY;
736*a9fa9459Szrj   htab->n_deleted++;
737*a9fa9459Szrj }
738*a9fa9459Szrj 
739*a9fa9459Szrj /* This function clears a specified slot in a hash table.  It is
740*a9fa9459Szrj    useful when you've already done the lookup and don't want to do it
741*a9fa9459Szrj    again.  */
742*a9fa9459Szrj 
743*a9fa9459Szrj void
htab_clear_slot(htab_t htab,PTR * slot)744*a9fa9459Szrj htab_clear_slot (htab_t htab, PTR *slot)
745*a9fa9459Szrj {
746*a9fa9459Szrj   if (slot < htab->entries || slot >= htab->entries + htab_size (htab)
747*a9fa9459Szrj       || *slot == HTAB_EMPTY_ENTRY || *slot == HTAB_DELETED_ENTRY)
748*a9fa9459Szrj     abort ();
749*a9fa9459Szrj 
750*a9fa9459Szrj   if (htab->del_f)
751*a9fa9459Szrj     (*htab->del_f) (*slot);
752*a9fa9459Szrj 
753*a9fa9459Szrj   *slot = HTAB_DELETED_ENTRY;
754*a9fa9459Szrj   htab->n_deleted++;
755*a9fa9459Szrj }
756*a9fa9459Szrj 
757*a9fa9459Szrj /* This function scans over the entire hash table calling
758*a9fa9459Szrj    CALLBACK for each live entry.  If CALLBACK returns false,
759*a9fa9459Szrj    the iteration stops.  INFO is passed as CALLBACK's second
760*a9fa9459Szrj    argument.  */
761*a9fa9459Szrj 
762*a9fa9459Szrj void
htab_traverse_noresize(htab_t htab,htab_trav callback,PTR info)763*a9fa9459Szrj htab_traverse_noresize (htab_t htab, htab_trav callback, PTR info)
764*a9fa9459Szrj {
765*a9fa9459Szrj   PTR *slot;
766*a9fa9459Szrj   PTR *limit;
767*a9fa9459Szrj 
768*a9fa9459Szrj   slot = htab->entries;
769*a9fa9459Szrj   limit = slot + htab_size (htab);
770*a9fa9459Szrj 
771*a9fa9459Szrj   do
772*a9fa9459Szrj     {
773*a9fa9459Szrj       PTR x = *slot;
774*a9fa9459Szrj 
775*a9fa9459Szrj       if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
776*a9fa9459Szrj 	if (!(*callback) (slot, info))
777*a9fa9459Szrj 	  break;
778*a9fa9459Szrj     }
779*a9fa9459Szrj   while (++slot < limit);
780*a9fa9459Szrj }
781*a9fa9459Szrj 
782*a9fa9459Szrj /* Like htab_traverse_noresize, but does resize the table when it is
783*a9fa9459Szrj    too empty to improve effectivity of subsequent calls.  */
784*a9fa9459Szrj 
785*a9fa9459Szrj void
htab_traverse(htab_t htab,htab_trav callback,PTR info)786*a9fa9459Szrj htab_traverse (htab_t htab, htab_trav callback, PTR info)
787*a9fa9459Szrj {
788*a9fa9459Szrj   size_t size = htab_size (htab);
789*a9fa9459Szrj   if (htab_elements (htab) * 8 < size && size > 32)
790*a9fa9459Szrj     htab_expand (htab);
791*a9fa9459Szrj 
792*a9fa9459Szrj   htab_traverse_noresize (htab, callback, info);
793*a9fa9459Szrj }
794*a9fa9459Szrj 
795*a9fa9459Szrj /* Return the fraction of fixed collisions during all work with given
796*a9fa9459Szrj    hash table. */
797*a9fa9459Szrj 
798*a9fa9459Szrj double
htab_collisions(htab_t htab)799*a9fa9459Szrj htab_collisions (htab_t htab)
800*a9fa9459Szrj {
801*a9fa9459Szrj   if (htab->searches == 0)
802*a9fa9459Szrj     return 0.0;
803*a9fa9459Szrj 
804*a9fa9459Szrj   return (double) htab->collisions / (double) htab->searches;
805*a9fa9459Szrj }
806*a9fa9459Szrj 
807*a9fa9459Szrj /* Hash P as a null-terminated string.
808*a9fa9459Szrj 
809*a9fa9459Szrj    Copied from gcc/hashtable.c.  Zack had the following to say with respect
810*a9fa9459Szrj    to applicability, though note that unlike hashtable.c, this hash table
811*a9fa9459Szrj    implementation re-hashes rather than chain buckets.
812*a9fa9459Szrj 
813*a9fa9459Szrj    http://gcc.gnu.org/ml/gcc-patches/2001-08/msg01021.html
814*a9fa9459Szrj    From: Zack Weinberg <zackw@panix.com>
815*a9fa9459Szrj    Date: Fri, 17 Aug 2001 02:15:56 -0400
816*a9fa9459Szrj 
817*a9fa9459Szrj    I got it by extracting all the identifiers from all the source code
818*a9fa9459Szrj    I had lying around in mid-1999, and testing many recurrences of
819*a9fa9459Szrj    the form "H_n = H_{n-1} * K + c_n * L + M" where K, L, M were either
820*a9fa9459Szrj    prime numbers or the appropriate identity.  This was the best one.
821*a9fa9459Szrj    I don't remember exactly what constituted "best", except I was
822*a9fa9459Szrj    looking at bucket-length distributions mostly.
823*a9fa9459Szrj 
824*a9fa9459Szrj    So it should be very good at hashing identifiers, but might not be
825*a9fa9459Szrj    as good at arbitrary strings.
826*a9fa9459Szrj 
827*a9fa9459Szrj    I'll add that it thoroughly trounces the hash functions recommended
828*a9fa9459Szrj    for this use at http://burtleburtle.net/bob/hash/index.html, both
829*a9fa9459Szrj    on speed and bucket distribution.  I haven't tried it against the
830*a9fa9459Szrj    function they just started using for Perl's hashes.  */
831*a9fa9459Szrj 
832*a9fa9459Szrj hashval_t
htab_hash_string(const PTR p)833*a9fa9459Szrj htab_hash_string (const PTR p)
834*a9fa9459Szrj {
835*a9fa9459Szrj   const unsigned char *str = (const unsigned char *) p;
836*a9fa9459Szrj   hashval_t r = 0;
837*a9fa9459Szrj   unsigned char c;
838*a9fa9459Szrj 
839*a9fa9459Szrj   while ((c = *str++) != 0)
840*a9fa9459Szrj     r = r * 67 + c - 113;
841*a9fa9459Szrj 
842*a9fa9459Szrj   return r;
843*a9fa9459Szrj }
844*a9fa9459Szrj 
845*a9fa9459Szrj /* DERIVED FROM:
846*a9fa9459Szrj --------------------------------------------------------------------
847*a9fa9459Szrj lookup2.c, by Bob Jenkins, December 1996, Public Domain.
848*a9fa9459Szrj hash(), hash2(), hash3, and mix() are externally useful functions.
849*a9fa9459Szrj Routines to test the hash are included if SELF_TEST is defined.
850*a9fa9459Szrj You can use this free for any purpose.  It has no warranty.
851*a9fa9459Szrj --------------------------------------------------------------------
852*a9fa9459Szrj */
853*a9fa9459Szrj 
854*a9fa9459Szrj /*
855*a9fa9459Szrj --------------------------------------------------------------------
856*a9fa9459Szrj mix -- mix 3 32-bit values reversibly.
857*a9fa9459Szrj For every delta with one or two bit set, and the deltas of all three
858*a9fa9459Szrj   high bits or all three low bits, whether the original value of a,b,c
859*a9fa9459Szrj   is almost all zero or is uniformly distributed,
860*a9fa9459Szrj * If mix() is run forward or backward, at least 32 bits in a,b,c
861*a9fa9459Szrj   have at least 1/4 probability of changing.
862*a9fa9459Szrj * If mix() is run forward, every bit of c will change between 1/3 and
863*a9fa9459Szrj   2/3 of the time.  (Well, 22/100 and 78/100 for some 2-bit deltas.)
864*a9fa9459Szrj mix() was built out of 36 single-cycle latency instructions in a
865*a9fa9459Szrj   structure that could supported 2x parallelism, like so:
866*a9fa9459Szrj       a -= b;
867*a9fa9459Szrj       a -= c; x = (c>>13);
868*a9fa9459Szrj       b -= c; a ^= x;
869*a9fa9459Szrj       b -= a; x = (a<<8);
870*a9fa9459Szrj       c -= a; b ^= x;
871*a9fa9459Szrj       c -= b; x = (b>>13);
872*a9fa9459Szrj       ...
873*a9fa9459Szrj   Unfortunately, superscalar Pentiums and Sparcs can't take advantage
874*a9fa9459Szrj   of that parallelism.  They've also turned some of those single-cycle
875*a9fa9459Szrj   latency instructions into multi-cycle latency instructions.  Still,
876*a9fa9459Szrj   this is the fastest good hash I could find.  There were about 2^^68
877*a9fa9459Szrj   to choose from.  I only looked at a billion or so.
878*a9fa9459Szrj --------------------------------------------------------------------
879*a9fa9459Szrj */
880*a9fa9459Szrj /* same, but slower, works on systems that might have 8 byte hashval_t's */
881*a9fa9459Szrj #define mix(a,b,c) \
882*a9fa9459Szrj { \
883*a9fa9459Szrj   a -= b; a -= c; a ^= (c>>13); \
884*a9fa9459Szrj   b -= c; b -= a; b ^= (a<< 8); \
885*a9fa9459Szrj   c -= a; c -= b; c ^= ((b&0xffffffff)>>13); \
886*a9fa9459Szrj   a -= b; a -= c; a ^= ((c&0xffffffff)>>12); \
887*a9fa9459Szrj   b -= c; b -= a; b = (b ^ (a<<16)) & 0xffffffff; \
888*a9fa9459Szrj   c -= a; c -= b; c = (c ^ (b>> 5)) & 0xffffffff; \
889*a9fa9459Szrj   a -= b; a -= c; a = (a ^ (c>> 3)) & 0xffffffff; \
890*a9fa9459Szrj   b -= c; b -= a; b = (b ^ (a<<10)) & 0xffffffff; \
891*a9fa9459Szrj   c -= a; c -= b; c = (c ^ (b>>15)) & 0xffffffff; \
892*a9fa9459Szrj }
893*a9fa9459Szrj 
894*a9fa9459Szrj /*
895*a9fa9459Szrj --------------------------------------------------------------------
896*a9fa9459Szrj hash() -- hash a variable-length key into a 32-bit value
897*a9fa9459Szrj   k     : the key (the unaligned variable-length array of bytes)
898*a9fa9459Szrj   len   : the length of the key, counting by bytes
899*a9fa9459Szrj   level : can be any 4-byte value
900*a9fa9459Szrj Returns a 32-bit value.  Every bit of the key affects every bit of
901*a9fa9459Szrj the return value.  Every 1-bit and 2-bit delta achieves avalanche.
902*a9fa9459Szrj About 36+6len instructions.
903*a9fa9459Szrj 
904*a9fa9459Szrj The best hash table sizes are powers of 2.  There is no need to do
905*a9fa9459Szrj mod a prime (mod is sooo slow!).  If you need less than 32 bits,
906*a9fa9459Szrj use a bitmask.  For example, if you need only 10 bits, do
907*a9fa9459Szrj   h = (h & hashmask(10));
908*a9fa9459Szrj In which case, the hash table should have hashsize(10) elements.
909*a9fa9459Szrj 
910*a9fa9459Szrj If you are hashing n strings (ub1 **)k, do it like this:
911*a9fa9459Szrj   for (i=0, h=0; i<n; ++i) h = hash( k[i], len[i], h);
912*a9fa9459Szrj 
913*a9fa9459Szrj By Bob Jenkins, 1996.  bob_jenkins@burtleburtle.net.  You may use this
914*a9fa9459Szrj code any way you wish, private, educational, or commercial.  It's free.
915*a9fa9459Szrj 
916*a9fa9459Szrj See http://burtleburtle.net/bob/hash/evahash.html
917*a9fa9459Szrj Use for hash table lookup, or anything where one collision in 2^32 is
918*a9fa9459Szrj acceptable.  Do NOT use for cryptographic purposes.
919*a9fa9459Szrj --------------------------------------------------------------------
920*a9fa9459Szrj */
921*a9fa9459Szrj 
922*a9fa9459Szrj hashval_t
iterative_hash(const PTR k_in,register size_t length,register hashval_t initval)923*a9fa9459Szrj iterative_hash (const PTR k_in /* the key */,
924*a9fa9459Szrj                 register size_t  length /* the length of the key */,
925*a9fa9459Szrj                 register hashval_t initval /* the previous hash, or
926*a9fa9459Szrj                                               an arbitrary value */)
927*a9fa9459Szrj {
928*a9fa9459Szrj   register const unsigned char *k = (const unsigned char *)k_in;
929*a9fa9459Szrj   register hashval_t a,b,c,len;
930*a9fa9459Szrj 
931*a9fa9459Szrj   /* Set up the internal state */
932*a9fa9459Szrj   len = length;
933*a9fa9459Szrj   a = b = 0x9e3779b9;  /* the golden ratio; an arbitrary value */
934*a9fa9459Szrj   c = initval;           /* the previous hash value */
935*a9fa9459Szrj 
936*a9fa9459Szrj   /*---------------------------------------- handle most of the key */
937*a9fa9459Szrj #ifndef WORDS_BIGENDIAN
938*a9fa9459Szrj   /* On a little-endian machine, if the data is 4-byte aligned we can hash
939*a9fa9459Szrj      by word for better speed.  This gives nondeterministic results on
940*a9fa9459Szrj      big-endian machines.  */
941*a9fa9459Szrj   if (sizeof (hashval_t) == 4 && (((size_t)k)&3) == 0)
942*a9fa9459Szrj     while (len >= 12)    /* aligned */
943*a9fa9459Szrj       {
944*a9fa9459Szrj 	a += *(hashval_t *)(k+0);
945*a9fa9459Szrj 	b += *(hashval_t *)(k+4);
946*a9fa9459Szrj 	c += *(hashval_t *)(k+8);
947*a9fa9459Szrj 	mix(a,b,c);
948*a9fa9459Szrj 	k += 12; len -= 12;
949*a9fa9459Szrj       }
950*a9fa9459Szrj   else /* unaligned */
951*a9fa9459Szrj #endif
952*a9fa9459Szrj     while (len >= 12)
953*a9fa9459Szrj       {
954*a9fa9459Szrj 	a += (k[0] +((hashval_t)k[1]<<8) +((hashval_t)k[2]<<16) +((hashval_t)k[3]<<24));
955*a9fa9459Szrj 	b += (k[4] +((hashval_t)k[5]<<8) +((hashval_t)k[6]<<16) +((hashval_t)k[7]<<24));
956*a9fa9459Szrj 	c += (k[8] +((hashval_t)k[9]<<8) +((hashval_t)k[10]<<16)+((hashval_t)k[11]<<24));
957*a9fa9459Szrj 	mix(a,b,c);
958*a9fa9459Szrj 	k += 12; len -= 12;
959*a9fa9459Szrj       }
960*a9fa9459Szrj 
961*a9fa9459Szrj   /*------------------------------------- handle the last 11 bytes */
962*a9fa9459Szrj   c += length;
963*a9fa9459Szrj   switch(len)              /* all the case statements fall through */
964*a9fa9459Szrj     {
965*a9fa9459Szrj     case 11: c+=((hashval_t)k[10]<<24);
966*a9fa9459Szrj     case 10: c+=((hashval_t)k[9]<<16);
967*a9fa9459Szrj     case 9 : c+=((hashval_t)k[8]<<8);
968*a9fa9459Szrj       /* the first byte of c is reserved for the length */
969*a9fa9459Szrj     case 8 : b+=((hashval_t)k[7]<<24);
970*a9fa9459Szrj     case 7 : b+=((hashval_t)k[6]<<16);
971*a9fa9459Szrj     case 6 : b+=((hashval_t)k[5]<<8);
972*a9fa9459Szrj     case 5 : b+=k[4];
973*a9fa9459Szrj     case 4 : a+=((hashval_t)k[3]<<24);
974*a9fa9459Szrj     case 3 : a+=((hashval_t)k[2]<<16);
975*a9fa9459Szrj     case 2 : a+=((hashval_t)k[1]<<8);
976*a9fa9459Szrj     case 1 : a+=k[0];
977*a9fa9459Szrj       /* case 0: nothing left to add */
978*a9fa9459Szrj     }
979*a9fa9459Szrj   mix(a,b,c);
980*a9fa9459Szrj   /*-------------------------------------------- report the result */
981*a9fa9459Szrj   return c;
982*a9fa9459Szrj }
983*a9fa9459Szrj 
984*a9fa9459Szrj /* Returns a hash code for pointer P. Simplified version of evahash */
985*a9fa9459Szrj 
986*a9fa9459Szrj static hashval_t
hash_pointer(const PTR p)987*a9fa9459Szrj hash_pointer (const PTR p)
988*a9fa9459Szrj {
989*a9fa9459Szrj   intptr_t v = (intptr_t) p;
990*a9fa9459Szrj   unsigned a, b, c;
991*a9fa9459Szrj 
992*a9fa9459Szrj   a = b = 0x9e3779b9;
993*a9fa9459Szrj   a += v >> (sizeof (intptr_t) * CHAR_BIT / 2);
994*a9fa9459Szrj   b += v & (((intptr_t) 1 << (sizeof (intptr_t) * CHAR_BIT / 2)) - 1);
995*a9fa9459Szrj   c = 0x42135234;
996*a9fa9459Szrj   mix (a, b, c);
997*a9fa9459Szrj   return c;
998*a9fa9459Szrj }
999