xref: /csrg-svn/sys/sparc/fpu/fpu_mul.c (revision 63319)
155114Storek /*
2*63319Sbostic  * Copyright (c) 1992, 1993
3*63319Sbostic  *	The Regents of the University of California.  All rights reserved.
455114Storek  *
555114Storek  * This software was developed by the Computer Systems Engineering group
655114Storek  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
755114Storek  * contributed to Berkeley.
855114Storek  *
955500Sbostic  * All advertising materials mentioning features or use of this software
1055500Sbostic  * must display the following acknowledgement:
1155500Sbostic  *	This product includes software developed by the University of
1259195Storek  *	California, Lawrence Berkeley Laboratory.
1355500Sbostic  *
1455114Storek  * %sccs.include.redist.c%
1555114Storek  *
16*63319Sbostic  *	@(#)fpu_mul.c	8.1 (Berkeley) 06/11/93
1755114Storek  *
1859195Storek  * from: $Header: fpu_mul.c,v 1.3 92/11/26 01:39:50 torek Exp $
1955114Storek  */
2055114Storek 
2155114Storek /*
2255114Storek  * Perform an FPU multiply (return x * y).
2355114Storek  */
2455114Storek 
2556537Sbostic #include <sys/types.h>
2655114Storek 
2756537Sbostic #include <machine/reg.h>
2855114Storek 
2956537Sbostic #include <sparc/fpu/fpu_arith.h>
3056537Sbostic #include <sparc/fpu/fpu_emu.h>
3155114Storek 
3255114Storek /*
3355114Storek  * The multiplication algorithm for normal numbers is as follows:
3455114Storek  *
3555114Storek  * The fraction of the product is built in the usual stepwise fashion.
3655114Storek  * Each step consists of shifting the accumulator right one bit
3755114Storek  * (maintaining any guard bits) and, if the next bit in y is set,
3855114Storek  * adding the multiplicand (x) to the accumulator.  Then, in any case,
3955114Storek  * we advance one bit leftward in y.  Algorithmically:
4055114Storek  *
4155114Storek  *	A = 0;
4255114Storek  *	for (bit = 0; bit < FP_NMANT; bit++) {
4355114Storek  *		sticky |= A & 1, A >>= 1;
4455114Storek  *		if (Y & (1 << bit))
4555114Storek  *			A += X;
4655114Storek  *	}
4755114Storek  *
4855114Storek  * (X and Y here represent the mantissas of x and y respectively.)
4955114Storek  * The resultant accumulator (A) is the product's mantissa.  It may
5055114Storek  * be as large as 11.11111... in binary and hence may need to be
5155114Storek  * shifted right, but at most one bit.
5255114Storek  *
5355114Storek  * Since we do not have efficient multiword arithmetic, we code the
5455114Storek  * accumulator as four separate words, just like any other mantissa.
5555114Storek  * We use local `register' variables in the hope that this is faster
5655114Storek  * than memory.  We keep x->fp_mant in locals for the same reason.
5755114Storek  *
5855114Storek  * In the algorithm above, the bits in y are inspected one at a time.
5955114Storek  * We will pick them up 32 at a time and then deal with those 32, one
6055114Storek  * at a time.  Note, however, that we know several things about y:
6155114Storek  *
6255114Storek  *    - the guard and round bits at the bottom are sure to be zero;
6355114Storek  *
6455114Storek  *    - often many low bits are zero (y is often from a single or double
6555114Storek  *	precision source);
6655114Storek  *
6755114Storek  *    - bit FP_NMANT-1 is set, and FP_1*2 fits in a word.
6855114Storek  *
6955114Storek  * We can also test for 32-zero-bits swiftly.  In this case, the center
7055114Storek  * part of the loop---setting sticky, shifting A, and not adding---will
7155114Storek  * run 32 times without adding X to A.  We can do a 32-bit shift faster
7255114Storek  * by simply moving words.  Since zeros are common, we optimize this case.
7355114Storek  * Furthermore, since A is initially zero, we can omit the shift as well
7455114Storek  * until we reach a nonzero word.
7555114Storek  */
7655114Storek struct fpn *
fpu_mul(fe)7755114Storek fpu_mul(fe)
7855114Storek 	register struct fpemu *fe;
7955114Storek {
8055114Storek 	register struct fpn *x = &fe->fe_f1, *y = &fe->fe_f2;
8155114Storek 	register u_int a3, a2, a1, a0, x3, x2, x1, x0, bit, m;
8255114Storek 	register int sticky;
8355114Storek 	FPU_DECL_CARRY
8455114Storek 
8555114Storek 	/*
8655114Storek 	 * Put the `heavier' operand on the right (see fpu_emu.h).
8755114Storek 	 * Then we will have one of the following cases, taken in the
8855114Storek 	 * following order:
8955114Storek 	 *
9055114Storek 	 *  - y = NaN.  Implied: if only one is a signalling NaN, y is.
9155114Storek 	 *	The result is y.
9255114Storek 	 *  - y = Inf.  Implied: x != NaN (is 0, number, or Inf: the NaN
9355114Storek 	 *    case was taken care of earlier).
9455114Storek 	 *	If x = 0, the result is NaN.  Otherwise the result
9555114Storek 	 *	is y, with its sign reversed if x is negative.
9655114Storek 	 *  - x = 0.  Implied: y is 0 or number.
9755114Storek 	 *	The result is 0 (with XORed sign as usual).
9855114Storek 	 *  - other.  Implied: both x and y are numbers.
9955114Storek 	 *	The result is x * y (XOR sign, multiply bits, add exponents).
10055114Storek 	 */
10155114Storek 	ORDER(x, y);
10255114Storek 	if (ISNAN(y)) {
10355114Storek 		y->fp_sign ^= x->fp_sign;
10455114Storek 		return (y);
10555114Storek 	}
10655114Storek 	if (ISINF(y)) {
10755114Storek 		if (ISZERO(x))
10855114Storek 			return (fpu_newnan(fe));
10955114Storek 		y->fp_sign ^= x->fp_sign;
11055114Storek 		return (y);
11155114Storek 	}
11255114Storek 	if (ISZERO(x)) {
11355114Storek 		x->fp_sign ^= y->fp_sign;
11455114Storek 		return (x);
11555114Storek 	}
11655114Storek 
11755114Storek 	/*
11855114Storek 	 * Setup.  In the code below, the mask `m' will hold the current
11955114Storek 	 * mantissa byte from y.  The variable `bit' denotes the bit
12055114Storek 	 * within m.  We also define some macros to deal with everything.
12155114Storek 	 */
12255114Storek 	x3 = x->fp_mant[3];
12355114Storek 	x2 = x->fp_mant[2];
12455114Storek 	x1 = x->fp_mant[1];
12555114Storek 	x0 = x->fp_mant[0];
12655114Storek 	sticky = a3 = a2 = a1 = a0 = 0;
12755114Storek 
12855114Storek #define	ADD	/* A += X */ \
12955114Storek 	FPU_ADDS(a3, a3, x3); \
13055114Storek 	FPU_ADDCS(a2, a2, x2); \
13155114Storek 	FPU_ADDCS(a1, a1, x1); \
13255114Storek 	FPU_ADDC(a0, a0, x0)
13355114Storek 
13455114Storek #define	SHR1	/* A >>= 1, with sticky */ \
13555114Storek 	sticky |= a3 & 1, a3 = (a3 >> 1) | (a2 << 31), \
13655114Storek 	a2 = (a2 >> 1) | (a1 << 31), a1 = (a1 >> 1) | (a0 << 31), a0 >>= 1
13755114Storek 
13855114Storek #define	SHR32	/* A >>= 32, with sticky */ \
13955114Storek 	sticky |= a3, a3 = a2, a2 = a1, a1 = a0, a0 = 0
14055114Storek 
14155114Storek #define	STEP	/* each 1-bit step of the multiplication */ \
14255114Storek 	SHR1; if (bit & m) { ADD; }; bit <<= 1
14355114Storek 
14455114Storek 	/*
14555114Storek 	 * We are ready to begin.  The multiply loop runs once for each
14655114Storek 	 * of the four 32-bit words.  Some words, however, are special.
14755114Storek 	 * As noted above, the low order bits of Y are often zero.  Even
14855114Storek 	 * if not, the first loop can certainly skip the guard bits.
14955114Storek 	 * The last word of y has its highest 1-bit in position FP_NMANT-1,
15055114Storek 	 * so we stop the loop when we move past that bit.
15155114Storek 	 */
15255114Storek 	if ((m = y->fp_mant[3]) == 0) {
15355114Storek 		/* SHR32; */			/* unneeded since A==0 */
15455114Storek 	} else {
15555114Storek 		bit = 1 << FP_NG;
15655114Storek 		do {
15755114Storek 			STEP;
15855114Storek 		} while (bit != 0);
15955114Storek 	}
16055114Storek 	if ((m = y->fp_mant[2]) == 0) {
16155114Storek 		SHR32;
16255114Storek 	} else {
16355114Storek 		bit = 1;
16455114Storek 		do {
16555114Storek 			STEP;
16655114Storek 		} while (bit != 0);
16755114Storek 	}
16855114Storek 	if ((m = y->fp_mant[1]) == 0) {
16955114Storek 		SHR32;
17055114Storek 	} else {
17155114Storek 		bit = 1;
17255114Storek 		do {
17355114Storek 			STEP;
17455114Storek 		} while (bit != 0);
17555114Storek 	}
17655114Storek 	m = y->fp_mant[0];		/* definitely != 0 */
17755114Storek 	bit = 1;
17855114Storek 	do {
17955114Storek 		STEP;
18055114Storek 	} while (bit <= m);
18155114Storek 
18255114Storek 	/*
18355114Storek 	 * Done with mantissa calculation.  Get exponent and handle
18455114Storek 	 * 11.111...1 case, then put result in place.  We reuse x since
18555114Storek 	 * it already has the right class (FP_NUM).
18655114Storek 	 */
18755114Storek 	m = x->fp_exp + y->fp_exp;
18855114Storek 	if (a0 >= FP_2) {
18955114Storek 		SHR1;
19055114Storek 		m++;
19155114Storek 	}
19255114Storek 	x->fp_sign ^= y->fp_sign;
19355114Storek 	x->fp_exp = m;
19455114Storek 	x->fp_sticky = sticky;
19555114Storek 	x->fp_mant[3] = a3;
19655114Storek 	x->fp_mant[2] = a2;
19755114Storek 	x->fp_mant[1] = a1;
19855114Storek 	x->fp_mant[0] = a0;
19955114Storek 	return (x);
20055114Storek }
201