155113Storek /* 255113Storek * Copyright (c) 1992 The Regents of the University of California. 355113Storek * All rights reserved. 455113Storek * 555113Storek * This software was developed by the Computer Systems Engineering group 655113Storek * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and 755113Storek * contributed to Berkeley. 855113Storek * 9*55500Sbostic * All advertising materials mentioning features or use of this software 10*55500Sbostic * must display the following acknowledgement: 11*55500Sbostic * This product includes software developed by the University of 12*55500Sbostic * California, Lawrence Berkeley Laboratories. 13*55500Sbostic * 1455113Storek * %sccs.include.redist.c% 1555113Storek * 16*55500Sbostic * @(#)fpu_implode.c 7.2 (Berkeley) 07/21/92 1755113Storek * 1855113Storek * from: $Header: fpu_implode.c,v 1.4 92/06/17 05:41:33 torek Exp $ 1955113Storek */ 2055113Storek 2155113Storek /* 2255113Storek * FPU subroutines: `implode' internal format numbers into the machine's 2355113Storek * `packed binary' format. 2455113Storek */ 2555113Storek 2655113Storek #include "sys/types.h" 2755113Storek 2855113Storek #include "machine/ieee.h" 2955113Storek #include "machine/instr.h" 3055113Storek #include "machine/reg.h" 3155113Storek 3255113Storek #include "fpu_arith.h" 3355113Storek #include "fpu_emu.h" 3455113Storek 3555113Storek /* 3655113Storek * Round a number (algorithm from Motorola MC68882 manual, modified for 3755113Storek * our internal format). Set inexact exception if rounding is required. 3855113Storek * Return true iff we rounded up. 3955113Storek * 4055113Storek * After rounding, we discard the guard and round bits by shifting right 4155113Storek * 2 bits (a la fpu_shr(), but we do not bother with fp->fp_sticky). 4255113Storek * This saves effort later. 4355113Storek * 4455113Storek * Note that we may leave the value 2.0 in fp->fp_mant; it is the caller's 4555113Storek * responsibility to fix this if necessary. 4655113Storek */ 4755113Storek static int 4855113Storek round(register struct fpemu *fe, register struct fpn *fp) 4955113Storek { 5055113Storek register u_int m0, m1, m2, m3; 5155113Storek register int gr, s, ret; 5255113Storek 5355113Storek m0 = fp->fp_mant[0]; 5455113Storek m1 = fp->fp_mant[1]; 5555113Storek m2 = fp->fp_mant[2]; 5655113Storek m3 = fp->fp_mant[3]; 5755113Storek gr = m3 & 3; 5855113Storek s = fp->fp_sticky; 5955113Storek 6055113Storek /* mant >>= FP_NG */ 6155113Storek m3 = (m3 >> FP_NG) | (m2 << (32 - FP_NG)); 6255113Storek m2 = (m2 >> FP_NG) | (m1 << (32 - FP_NG)); 6355113Storek m1 = (m1 >> FP_NG) | (m0 << (32 - FP_NG)); 6455113Storek m0 >>= FP_NG; 6555113Storek 6655113Storek if ((gr | s) == 0) /* result is exact: no rounding needed */ 6755113Storek goto rounddown; 6855113Storek 6955113Storek fe->fe_cx |= FSR_NX; /* inexact */ 7055113Storek 7155113Storek /* Go to rounddown to round down; break to round up. */ 7255113Storek switch ((fe->fe_fsr >> FSR_RD_SHIFT) & FSR_RD_MASK) { 7355113Storek 7455113Storek case FSR_RD_RN: 7555113Storek default: 7655113Storek /* 7755113Storek * Round only if guard is set (gr & 2). If guard is set, 7855113Storek * but round & sticky both clear, then we want to round 7955113Storek * but have a tie, so round to even, i.e., add 1 iff odd. 8055113Storek */ 8155113Storek if ((gr & 2) == 0) 8255113Storek goto rounddown; 8355113Storek if ((gr & 1) || fp->fp_sticky || (m3 & 1)) 8455113Storek break; 8555113Storek goto rounddown; 8655113Storek 8755113Storek case FSR_RD_RZ: 8855113Storek /* Round towards zero, i.e., down. */ 8955113Storek goto rounddown; 9055113Storek 9155113Storek case FSR_RD_RM: 9255113Storek /* Round towards -Inf: up if negative, down if positive. */ 9355113Storek if (fp->fp_sign) 9455113Storek break; 9555113Storek goto rounddown; 9655113Storek 9755113Storek case FSR_RD_RP: 9855113Storek /* Round towards +Inf: up if positive, down otherwise. */ 9955113Storek if (!fp->fp_sign) 10055113Storek break; 10155113Storek goto rounddown; 10255113Storek } 10355113Storek 10455113Storek /* Bump low bit of mantissa, with carry. */ 10555113Storek #ifdef sparc /* ``cheating'' (left out FPU_DECL_CARRY; know this is faster) */ 10655113Storek FPU_ADDS(m3, m3, 1); 10755113Storek FPU_ADDCS(m2, m2, 0); 10855113Storek FPU_ADDCS(m1, m1, 0); 10955113Storek FPU_ADDC(m0, m0, 0); 11055113Storek #else 11155113Storek if (++m3 == 0 && ++m2 == 0 && ++m1 == 0) 11255113Storek m0++; 11355113Storek #endif 11455113Storek fp->fp_mant[0] = m0; 11555113Storek fp->fp_mant[1] = m1; 11655113Storek fp->fp_mant[2] = m2; 11755113Storek fp->fp_mant[3] = m3; 11855113Storek return (1); 11955113Storek 12055113Storek rounddown: 12155113Storek fp->fp_mant[0] = m0; 12255113Storek fp->fp_mant[1] = m1; 12355113Storek fp->fp_mant[2] = m2; 12455113Storek fp->fp_mant[3] = m3; 12555113Storek return (0); 12655113Storek } 12755113Storek 12855113Storek /* 12955113Storek * For overflow: return true if overflow is to go to +/-Inf, according 13055113Storek * to the sign of the overflowing result. If false, overflow is to go 13155113Storek * to the largest magnitude value instead. 13255113Storek */ 13355113Storek static int 13455113Storek toinf(struct fpemu *fe, int sign) 13555113Storek { 13655113Storek int inf; 13755113Storek 13855113Storek /* look at rounding direction */ 13955113Storek switch ((fe->fe_fsr >> FSR_RD_SHIFT) & FSR_RD_MASK) { 14055113Storek 14155113Storek default: 14255113Storek case FSR_RD_RN: /* the nearest value is always Inf */ 14355113Storek inf = 1; 14455113Storek break; 14555113Storek 14655113Storek case FSR_RD_RZ: /* toward 0 => never towards Inf */ 14755113Storek inf = 0; 14855113Storek break; 14955113Storek 15055113Storek case FSR_RD_RP: /* toward +Inf iff positive */ 15155113Storek inf = sign == 0; 15255113Storek break; 15355113Storek 15455113Storek case FSR_RD_RM: /* toward -Inf iff negative */ 15555113Storek inf = sign; 15655113Storek break; 15755113Storek } 15855113Storek return (inf); 15955113Storek } 16055113Storek 16155113Storek /* 16255113Storek * fpn -> int (int value returned as return value). 16355113Storek * 16455113Storek * N.B.: this conversion always rounds towards zero (this is a peculiarity 16555113Storek * of the SPARC instruction set). 16655113Storek */ 16755113Storek u_int 16855113Storek fpu_ftoi(fe, fp) 16955113Storek struct fpemu *fe; 17055113Storek register struct fpn *fp; 17155113Storek { 17255113Storek register u_int i; 17355113Storek register int sign, exp; 17455113Storek 17555113Storek sign = fp->fp_sign; 17655113Storek switch (fp->fp_class) { 17755113Storek 17855113Storek case FPC_ZERO: 17955113Storek return (0); 18055113Storek 18155113Storek case FPC_NUM: 18255113Storek /* 18355113Storek * If exp >= 2^32, overflow. Otherwise shift value right 18455113Storek * into last mantissa word (this will not exceed 0xffffffff), 18555113Storek * shifting any guard and round bits out into the sticky 18655113Storek * bit. Then ``round'' towards zero, i.e., just set an 18755113Storek * inexact exception if sticky is set (see round()). 18855113Storek * If the result is > 0x80000000, or is positive and equals 18955113Storek * 0x80000000, overflow; otherwise the last fraction word 19055113Storek * is the result. 19155113Storek */ 19255113Storek if ((exp = fp->fp_exp) >= 32) 19355113Storek break; 19455113Storek /* NB: the following includes exp < 0 cases */ 19555113Storek if (fpu_shr(fp, FP_NMANT - 1 - exp) != 0) 19655113Storek fe->fe_cx |= FSR_NX; 19755113Storek i = fp->fp_mant[3]; 19855113Storek if (i >= ((u_int)0x80000000 + sign)) 19955113Storek break; 20055113Storek return (sign ? -i : i); 20155113Storek 20255113Storek default: /* Inf, qNaN, sNaN */ 20355113Storek break; 20455113Storek } 20555113Storek /* overflow: replace any inexact exception with invalid */ 20655113Storek fe->fe_cx = (fe->fe_cx & ~FSR_NX) | FSR_NV; 20755113Storek return (0x7fffffff + sign); 20855113Storek } 20955113Storek 21055113Storek /* 21155113Storek * fpn -> single (32 bit single returned as return value). 21255113Storek * We assume <= 29 bits in a single-precision fraction (1.f part). 21355113Storek */ 21455113Storek u_int 21555113Storek fpu_ftos(fe, fp) 21655113Storek struct fpemu *fe; 21755113Storek register struct fpn *fp; 21855113Storek { 21955113Storek register u_int sign = fp->fp_sign << 31; 22055113Storek register int exp; 22155113Storek 22255113Storek #define SNG_EXP(e) ((e) << SNG_FRACBITS) /* makes e an exponent */ 22355113Storek #define SNG_MASK (SNG_EXP(1) - 1) /* mask for fraction */ 22455113Storek 22555113Storek /* Take care of non-numbers first. */ 22655113Storek if (ISNAN(fp)) { 22755113Storek /* 22855113Storek * Preserve upper bits of NaN, per SPARC V8 appendix N. 22955113Storek * Note that fp->fp_mant[0] has the quiet bit set, 23055113Storek * even if it is classified as a signalling NaN. 23155113Storek */ 23255113Storek (void) fpu_shr(fp, FP_NMANT - 1 - SNG_FRACBITS); 23355113Storek exp = SNG_EXP_INFNAN; 23455113Storek goto done; 23555113Storek } 23655113Storek if (ISINF(fp)) 23755113Storek return (sign | SNG_EXP(SNG_EXP_INFNAN)); 23855113Storek if (ISZERO(fp)) 23955113Storek return (sign); 24055113Storek 24155113Storek /* 24255113Storek * Normals (including subnormals). Drop all the fraction bits 24355113Storek * (including the explicit ``implied'' 1 bit) down into the 24455113Storek * single-precision range. If the number is subnormal, move 24555113Storek * the ``implied'' 1 into the explicit range as well, and shift 24655113Storek * right to introduce leading zeroes. Rounding then acts 24755113Storek * differently for normals and subnormals: the largest subnormal 24855113Storek * may round to the smallest normal (1.0 x 2^minexp), or may 24955113Storek * remain subnormal. In the latter case, signal an underflow 25055113Storek * if the result was inexact or if underflow traps are enabled. 25155113Storek * 25255113Storek * Rounding a normal, on the other hand, always produces another 25355113Storek * normal (although either way the result might be too big for 25455113Storek * single precision, and cause an overflow). If rounding a 25555113Storek * normal produces 2.0 in the fraction, we need not adjust that 25655113Storek * fraction at all, since both 1.0 and 2.0 are zero under the 25755113Storek * fraction mask. 25855113Storek * 25955113Storek * Note that the guard and round bits vanish from the number after 26055113Storek * rounding. 26155113Storek */ 26255113Storek if ((exp = fp->fp_exp + SNG_EXP_BIAS) <= 0) { /* subnormal */ 26355113Storek /* -NG for g,r; -SNG_FRACBITS-exp for fraction */ 26455113Storek (void) fpu_shr(fp, FP_NMANT - FP_NG - SNG_FRACBITS - exp); 26555113Storek if (round(fe, fp) && fp->fp_mant[3] == SNG_EXP(1)) 26655113Storek return (sign | SNG_EXP(1) | 0); 26755113Storek if ((fe->fe_cx & FSR_NX) || 26855113Storek (fe->fe_fsr & (FSR_UF << FSR_TEM_SHIFT))) 26955113Storek fe->fe_cx |= FSR_UF; 27055113Storek return (sign | SNG_EXP(0) | fp->fp_mant[3]); 27155113Storek } 27255113Storek /* -FP_NG for g,r; -1 for implied 1; -SNG_FRACBITS for fraction */ 27355113Storek (void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - SNG_FRACBITS); 27455113Storek #ifdef DIAGNOSTIC 27555113Storek if ((fp->fp_mant[3] & SNG_EXP(1 << FP_NG)) == 0) 27655113Storek panic("fpu_ftos"); 27755113Storek #endif 27855113Storek if (round(fe, fp) && fp->fp_mant[3] == SNG_EXP(2)) 27955113Storek exp++; 28055113Storek if (exp >= SNG_EXP_INFNAN) { 28155113Storek /* overflow to inf or to max single */ 28255113Storek fe->fe_cx |= FSR_OF | FSR_NX; 28355113Storek if (toinf(fe, sign)) 28455113Storek return (sign | SNG_EXP(SNG_EXP_INFNAN)); 28555113Storek return (sign | SNG_EXP(SNG_EXP_INFNAN - 1) | SNG_MASK); 28655113Storek } 28755113Storek done: 28855113Storek /* phew, made it */ 28955113Storek return (sign | SNG_EXP(exp) | (fp->fp_mant[3] & SNG_MASK)); 29055113Storek } 29155113Storek 29255113Storek /* 29355113Storek * fpn -> double (32 bit high-order result returned; 32-bit low order result 29455113Storek * left in res[1]). Assumes <= 61 bits in double precision fraction. 29555113Storek * 29655113Storek * This code mimics fpu_ftos; see it for comments. 29755113Storek */ 29855113Storek u_int 29955113Storek fpu_ftod(fe, fp, res) 30055113Storek struct fpemu *fe; 30155113Storek register struct fpn *fp; 30255113Storek u_int *res; 30355113Storek { 30455113Storek register u_int sign = fp->fp_sign << 31; 30555113Storek register int exp; 30655113Storek 30755113Storek #define DBL_EXP(e) ((e) << (DBL_FRACBITS & 31)) 30855113Storek #define DBL_MASK (DBL_EXP(1) - 1) 30955113Storek 31055113Storek if (ISNAN(fp)) { 31155113Storek (void) fpu_shr(fp, FP_NMANT - 1 - DBL_FRACBITS); 31255113Storek exp = DBL_EXP_INFNAN; 31355113Storek goto done; 31455113Storek } 31555113Storek if (ISINF(fp)) { 31655113Storek sign |= DBL_EXP(DBL_EXP_INFNAN); 31755113Storek goto zero; 31855113Storek } 31955113Storek if (ISZERO(fp)) { 32055113Storek zero: res[1] = 0; 32155113Storek return (sign); 32255113Storek } 32355113Storek 32455113Storek if ((exp = fp->fp_exp + DBL_EXP_BIAS) <= 0) { 32555113Storek (void) fpu_shr(fp, FP_NMANT - FP_NG - DBL_FRACBITS - exp); 32655113Storek if (round(fe, fp) && fp->fp_mant[2] == DBL_EXP(1)) { 32755113Storek res[1] = 0; 32855113Storek return (sign | DBL_EXP(1) | 0); 32955113Storek } 33055113Storek if ((fe->fe_cx & FSR_NX) || 33155113Storek (fe->fe_fsr & (FSR_UF << FSR_TEM_SHIFT))) 33255113Storek fe->fe_cx |= FSR_UF; 33355113Storek exp = 0; 33455113Storek goto done; 33555113Storek } 33655113Storek (void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - DBL_FRACBITS); 33755113Storek if (round(fe, fp) && fp->fp_mant[2] == DBL_EXP(2)) 33855113Storek exp++; 33955113Storek if (exp >= DBL_EXP_INFNAN) { 34055113Storek fe->fe_cx |= FSR_OF | FSR_NX; 34155113Storek if (toinf(fe, sign)) { 34255113Storek res[1] = 0; 34355113Storek return (sign | DBL_EXP(DBL_EXP_INFNAN) | 0); 34455113Storek } 34555113Storek res[1] = ~0; 34655113Storek return (sign | DBL_EXP(DBL_EXP_INFNAN) | DBL_MASK); 34755113Storek } 34855113Storek done: 34955113Storek res[1] = fp->fp_mant[3]; 35055113Storek return (sign | DBL_EXP(exp) | (fp->fp_mant[2] & DBL_MASK)); 35155113Storek } 35255113Storek 35355113Storek /* 35455113Storek * fpn -> extended (32 bit high-order result returned; low-order fraction 35555113Storek * words left in res[1]..res[3]). Like ftod, which is like ftos ... but 35655113Storek * our internal format *is* extended precision, plus 2 bits for guard/round, 35755113Storek * so we can avoid a small bit of work. 35855113Storek */ 35955113Storek u_int 36055113Storek fpu_ftox(fe, fp, res) 36155113Storek struct fpemu *fe; 36255113Storek register struct fpn *fp; 36355113Storek u_int *res; 36455113Storek { 36555113Storek register u_int sign = fp->fp_sign << 31; 36655113Storek register int exp; 36755113Storek 36855113Storek #define EXT_EXP(e) ((e) << (EXT_FRACBITS & 31)) 36955113Storek #define EXT_MASK (EXT_EXP(1) - 1) 37055113Storek 37155113Storek if (ISNAN(fp)) { 37255113Storek (void) fpu_shr(fp, 2); /* since we are not rounding */ 37355113Storek exp = EXT_EXP_INFNAN; 37455113Storek goto done; 37555113Storek } 37655113Storek if (ISINF(fp)) { 37755113Storek sign |= EXT_EXP(EXT_EXP_INFNAN); 37855113Storek goto zero; 37955113Storek } 38055113Storek if (ISZERO(fp)) { 38155113Storek zero: res[1] = res[2] = res[3] = 0; 38255113Storek return (sign); 38355113Storek } 38455113Storek 38555113Storek if ((exp = fp->fp_exp + EXT_EXP_BIAS) <= 0) { 38655113Storek (void) fpu_shr(fp, FP_NMANT - FP_NG - EXT_FRACBITS - exp); 38755113Storek if (round(fe, fp) && fp->fp_mant[0] == EXT_EXP(1)) { 38855113Storek res[1] = res[2] = res[3] = 0; 38955113Storek return (sign | EXT_EXP(1) | 0); 39055113Storek } 39155113Storek if ((fe->fe_cx & FSR_NX) || 39255113Storek (fe->fe_fsr & (FSR_UF << FSR_TEM_SHIFT))) 39355113Storek fe->fe_cx |= FSR_UF; 39455113Storek exp = 0; 39555113Storek goto done; 39655113Storek } 39755113Storek /* Since internal == extended, no need to shift here. */ 39855113Storek if (round(fe, fp) && fp->fp_mant[0] == EXT_EXP(2)) 39955113Storek exp++; 40055113Storek if (exp >= EXT_EXP_INFNAN) { 40155113Storek fe->fe_cx |= FSR_OF | FSR_NX; 40255113Storek if (toinf(fe, sign)) { 40355113Storek res[1] = res[2] = res[3] = 0; 40455113Storek return (sign | EXT_EXP(EXT_EXP_INFNAN) | 0); 40555113Storek } 40655113Storek res[1] = res[2] = res[3] = ~0; 40755113Storek return (sign | EXT_EXP(EXT_EXP_INFNAN) | EXT_MASK); 40855113Storek } 40955113Storek done: 41055113Storek res[1] = fp->fp_mant[1]; 41155113Storek res[2] = fp->fp_mant[2]; 41255113Storek res[3] = fp->fp_mant[3]; 41355113Storek return (sign | EXT_EXP(exp) | (fp->fp_mant[0] & EXT_MASK)); 41455113Storek } 41555113Storek 41655113Storek /* 41755113Storek * Implode an fpn, writing the result into the given space. 41855113Storek */ 41955113Storek void 42055113Storek fpu_implode(fe, fp, type, space) 42155113Storek struct fpemu *fe; 42255113Storek register struct fpn *fp; 42355113Storek int type; 42455113Storek register u_int *space; 42555113Storek { 42655113Storek 42755113Storek switch (type) { 42855113Storek 42955113Storek case FTYPE_INT: 43055113Storek space[0] = fpu_ftoi(fe, fp); 43155113Storek break; 43255113Storek 43355113Storek case FTYPE_SNG: 43455113Storek space[0] = fpu_ftos(fe, fp); 43555113Storek break; 43655113Storek 43755113Storek case FTYPE_DBL: 43855113Storek space[0] = fpu_ftod(fe, fp, space); 43955113Storek break; 44055113Storek 44155113Storek case FTYPE_EXT: 44255113Storek /* funky rounding precision options ?? */ 44355113Storek space[0] = fpu_ftox(fe, fp, space); 44455113Storek break; 44555113Storek 44655113Storek default: 44755113Storek panic("fpu_implode"); 44855113Storek } 44955113Storek } 450