155113Storek /*
2*63319Sbostic * Copyright (c) 1992, 1993
3*63319Sbostic * The Regents of the University of California. All rights reserved.
455113Storek *
555113Storek * This software was developed by the Computer Systems Engineering group
655113Storek * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
755113Storek * contributed to Berkeley.
855113Storek *
955500Sbostic * All advertising materials mentioning features or use of this software
1055500Sbostic * must display the following acknowledgement:
1155500Sbostic * This product includes software developed by the University of
1259195Storek * California, Lawrence Berkeley Laboratory.
1355500Sbostic *
1455113Storek * %sccs.include.redist.c%
1555113Storek *
16*63319Sbostic * @(#)fpu_explode.c 8.1 (Berkeley) 06/11/93
1755113Storek *
1859195Storek * from: $Header: fpu_explode.c,v 1.3 92/11/26 01:39:48 torek Exp $
1955113Storek */
2055113Storek
2155113Storek /*
2255113Storek * FPU subroutines: `explode' the machine's `packed binary' format numbers
2355113Storek * into our internal format.
2455113Storek */
2555113Storek
2656537Sbostic #include <sys/types.h>
2755113Storek
2856537Sbostic #include <machine/ieee.h>
2956537Sbostic #include <machine/instr.h>
3056537Sbostic #include <machine/reg.h>
3155113Storek
3256537Sbostic #include <sparc/fpu/fpu_arith.h>
3356537Sbostic #include <sparc/fpu/fpu_emu.h>
3455113Storek
3555113Storek /*
3655113Storek * N.B.: in all of the following, we assume the FP format is
3755113Storek *
3855113Storek * ---------------------------
3955113Storek * | s | exponent | fraction |
4055113Storek * ---------------------------
4155113Storek *
4255113Storek * (which represents -1**s * 1.fraction * 2**exponent), so that the
4355113Storek * sign bit is way at the top (bit 31), the exponent is next, and
4455113Storek * then the remaining bits mark the fraction. A zero exponent means
4555113Storek * zero or denormalized (0.fraction rather than 1.fraction), and the
4655113Storek * maximum possible exponent, 2bias+1, signals inf (fraction==0) or NaN.
4755113Storek *
4855113Storek * Since the sign bit is always the topmost bit---this holds even for
4955113Storek * integers---we set that outside all the *tof functions. Each function
5055113Storek * returns the class code for the new number (but note that we use
5155113Storek * FPC_QNAN for all NaNs; fpu_explode will fix this if appropriate).
5255113Storek */
5355113Storek
5455113Storek /*
5555113Storek * int -> fpn.
5655113Storek */
5755113Storek int
fpu_itof(fp,i)5855113Storek fpu_itof(fp, i)
5955113Storek register struct fpn *fp;
6055113Storek register u_int i;
6155113Storek {
6255113Storek
6355113Storek if (i == 0)
6455113Storek return (FPC_ZERO);
6555113Storek /*
6655113Storek * The value FP_1 represents 2^FP_LG, so set the exponent
6755113Storek * there and let normalization fix it up. Convert negative
6855113Storek * numbers to sign-and-magnitude. Note that this relies on
6955113Storek * fpu_norm()'s handling of `supernormals'; see fpu_subr.c.
7055113Storek */
7155113Storek fp->fp_exp = FP_LG;
7255113Storek fp->fp_mant[0] = (int)i < 0 ? -i : i;
7355113Storek fp->fp_mant[1] = 0;
7455113Storek fp->fp_mant[2] = 0;
7555113Storek fp->fp_mant[3] = 0;
7655113Storek fpu_norm(fp);
7755113Storek return (FPC_NUM);
7855113Storek }
7955113Storek
8055113Storek #define mask(nbits) ((1 << (nbits)) - 1)
8155113Storek
8255113Storek /*
8355113Storek * All external floating formats convert to internal in the same manner,
8455113Storek * as defined here. Note that only normals get an implied 1.0 inserted.
8555113Storek */
8655113Storek #define FP_TOF(exp, expbias, allfrac, f0, f1, f2, f3) \
8755113Storek if (exp == 0) { \
8855113Storek if (allfrac == 0) \
8955113Storek return (FPC_ZERO); \
9055113Storek fp->fp_exp = 1 - expbias; \
9155113Storek fp->fp_mant[0] = f0; \
9255113Storek fp->fp_mant[1] = f1; \
9355113Storek fp->fp_mant[2] = f2; \
9455113Storek fp->fp_mant[3] = f3; \
9555113Storek fpu_norm(fp); \
9655113Storek return (FPC_NUM); \
9755113Storek } \
9855113Storek if (exp == (2 * expbias + 1)) { \
9955113Storek if (allfrac == 0) \
10055113Storek return (FPC_INF); \
10155113Storek fp->fp_mant[0] = f0; \
10255113Storek fp->fp_mant[1] = f1; \
10355113Storek fp->fp_mant[2] = f2; \
10455113Storek fp->fp_mant[3] = f3; \
10555113Storek return (FPC_QNAN); \
10655113Storek } \
10755113Storek fp->fp_exp = exp - expbias; \
10855113Storek fp->fp_mant[0] = FP_1 | f0; \
10955113Storek fp->fp_mant[1] = f1; \
11055113Storek fp->fp_mant[2] = f2; \
11155113Storek fp->fp_mant[3] = f3; \
11255113Storek return (FPC_NUM)
11355113Storek
11455113Storek /*
11555113Storek * 32-bit single precision -> fpn.
11655113Storek * We assume a single occupies at most (64-FP_LG) bits in the internal
11755113Storek * format: i.e., needs at most fp_mant[0] and fp_mant[1].
11855113Storek */
11955113Storek int
fpu_stof(fp,i)12055113Storek fpu_stof(fp, i)
12155113Storek register struct fpn *fp;
12255113Storek register u_int i;
12355113Storek {
12455113Storek register int exp;
12555113Storek register u_int frac, f0, f1;
12655113Storek #define SNG_SHIFT (SNG_FRACBITS - FP_LG)
12755113Storek
12855113Storek exp = (i >> (32 - 1 - SNG_EXPBITS)) & mask(SNG_EXPBITS);
12955113Storek frac = i & mask(SNG_FRACBITS);
13055113Storek f0 = frac >> SNG_SHIFT;
13155113Storek f1 = frac << (32 - SNG_SHIFT);
13255113Storek FP_TOF(exp, SNG_EXP_BIAS, frac, f0, f1, 0, 0);
13355113Storek }
13455113Storek
13555113Storek /*
13655113Storek * 64-bit double -> fpn.
13755113Storek * We assume this uses at most (96-FP_LG) bits.
13855113Storek */
13955113Storek int
fpu_dtof(fp,i,j)14055113Storek fpu_dtof(fp, i, j)
14155113Storek register struct fpn *fp;
14255113Storek register u_int i, j;
14355113Storek {
14455113Storek register int exp;
14555113Storek register u_int frac, f0, f1, f2;
14655113Storek #define DBL_SHIFT (DBL_FRACBITS - 32 - FP_LG)
14755113Storek
14855113Storek exp = (i >> (32 - 1 - DBL_EXPBITS)) & mask(DBL_EXPBITS);
14955113Storek frac = i & mask(DBL_FRACBITS - 32);
15055113Storek f0 = frac >> DBL_SHIFT;
15155113Storek f1 = (frac << (32 - DBL_SHIFT)) | (j >> DBL_SHIFT);
15255113Storek f2 = j << (32 - DBL_SHIFT);
15355113Storek frac |= j;
15455113Storek FP_TOF(exp, DBL_EXP_BIAS, frac, f0, f1, f2, 0);
15555113Storek }
15655113Storek
15755113Storek /*
15855113Storek * 128-bit extended -> fpn.
15955113Storek */
16055113Storek int
fpu_xtof(fp,i,j,k,l)16155113Storek fpu_xtof(fp, i, j, k, l)
16255113Storek register struct fpn *fp;
16355113Storek register u_int i, j, k, l;
16455113Storek {
16555113Storek register int exp;
16655113Storek register u_int frac, f0, f1, f2, f3;
16755113Storek #define EXT_SHIFT (-(EXT_FRACBITS - 3 * 32 - FP_LG)) /* left shift! */
16855113Storek
16955113Storek /*
17055113Storek * Note that ext and fpn `line up', hence no shifting needed.
17155113Storek */
17255113Storek exp = (i >> (32 - 1 - EXT_EXPBITS)) & mask(EXT_EXPBITS);
17355113Storek frac = i & mask(EXT_FRACBITS - 3 * 32);
17455113Storek f0 = (frac << EXT_SHIFT) | (j >> (32 - EXT_SHIFT));
17555113Storek f1 = (j << EXT_SHIFT) | (k >> (32 - EXT_SHIFT));
17655113Storek f2 = (k << EXT_SHIFT) | (l >> (32 - EXT_SHIFT));
17755113Storek f3 = l << EXT_SHIFT;
17855113Storek frac |= j | k | l;
17955113Storek FP_TOF(exp, EXT_EXP_BIAS, frac, f0, f1, f2, f3);
18055113Storek }
18155113Storek
18255113Storek /*
18355113Storek * Explode the contents of a register / regpair / regquad.
18455113Storek * If the input is a signalling NaN, an NV (invalid) exception
18555113Storek * will be set. (Note that nothing but NV can occur until ALU
18655113Storek * operations are performed.)
18755113Storek */
18855113Storek void
fpu_explode(fe,fp,type,reg)18955113Storek fpu_explode(fe, fp, type, reg)
19055113Storek register struct fpemu *fe;
19155113Storek register struct fpn *fp;
19255113Storek int type, reg;
19355113Storek {
19455113Storek register u_int s, *space;
19555113Storek
19655113Storek space = &fe->fe_fpstate->fs_regs[reg];
19755113Storek s = space[0];
19855113Storek fp->fp_sign = s >> 31;
19955113Storek fp->fp_sticky = 0;
20055113Storek switch (type) {
20155113Storek
20255113Storek case FTYPE_INT:
20355113Storek s = fpu_itof(fp, s);
20455113Storek break;
20555113Storek
20655113Storek case FTYPE_SNG:
20755113Storek s = fpu_stof(fp, s);
20855113Storek break;
20955113Storek
21055113Storek case FTYPE_DBL:
21155113Storek s = fpu_dtof(fp, s, space[1]);
21255113Storek break;
21355113Storek
21455113Storek case FTYPE_EXT:
21555113Storek s = fpu_xtof(fp, s, space[1], space[2], space[3]);
21655113Storek break;
21755113Storek
21855113Storek default:
21955113Storek panic("fpu_explode");
22055113Storek }
22155113Storek if (s == FPC_QNAN && (fp->fp_mant[0] & FP_QUIETBIT) == 0) {
22255113Storek /*
22355113Storek * Input is a signalling NaN. All operations that return
22455113Storek * an input NaN operand put it through a ``NaN conversion'',
22555113Storek * which basically just means ``turn on the quiet bit''.
22655113Storek * We do this here so that all NaNs internally look quiet
22755113Storek * (we can tell signalling ones by their class).
22855113Storek */
22955113Storek fp->fp_mant[0] |= FP_QUIETBIT;
23055113Storek fe->fe_cx = FSR_NV; /* assert invalid operand */
23155113Storek s = FPC_SNAN;
23255113Storek }
23355113Storek fp->fp_class = s;
23455113Storek }
235