1*8944Sroot /* kern_clock.c 4.43 82/10/30 */ 29Sbill 39Sbill #include "../h/param.h" 49Sbill #include "../h/systm.h" 5329Sbill #include "../h/dk.h" 62768Swnj #include "../h/callout.h" 79Sbill #include "../h/dir.h" 89Sbill #include "../h/user.h" 98028Sroot #include "../h/kernel.h" 109Sbill #include "../h/proc.h" 119Sbill #include "../h/psl.h" 129Sbill #include "../h/vm.h" 139Sbill #include "../h/text.h" 147490Skre #ifdef MUSH 157490Skre #include "../h/quota.h" 167490Skre #include "../h/share.h" 177490Skre #endif 189Sbill 198124Sroot /* 208124Sroot * Clock handling routines. 218124Sroot * 228124Sroot * This code is written for a machine with only one interval timer, 238124Sroot * and does timing and resource utilization estimation statistically 248124Sroot * based on the state of the machine hz times a second. A machine 258124Sroot * with proper clocks (running separately in user state, system state, 268124Sroot * interrupt state and idle state) as well as a time-of-day clock 278124Sroot * would allow a non-approximate implementation. 288124Sroot */ 291559Sbill 308124Sroot /* 318124Sroot * TODO: 328124Sroot * * Keep more accurate statistics by simulating good interval timers. 338124Sroot * * Use the time-of-day clock on the VAX to keep more accurate time 348124Sroot * than is possible by repeated use of the interval timer. 358124Sroot * * Allocate more timeout table slots when table overflows. 368124Sroot */ 379Sbill 388124Sroot /* bump a timeval by a small number of usec's */ 398124Sroot #define bumptime(tp, usec) \ 408124Sroot (tp)->tv_usec += usec; \ 418097Sroot if ((tp)->tv_usec >= 1000000) { \ 428097Sroot (tp)->tv_usec -= 1000000; \ 438097Sroot (tp)->tv_sec++; \ 448097Sroot } 455247Sroot 468124Sroot /* 478124Sroot * The (single) hardware interval timer. 488124Sroot * We update the events relating to real time, and then 498124Sroot * make a gross assumption: that the system has been in the 508124Sroot * state it is in (user state, kernel state, interrupt state, 518124Sroot * or idle state) for the entire last time interval, and 528124Sroot * update statistics accordingly. 538124Sroot */ 542609Swnj /*ARGSUSED*/ 55*8944Sroot #if vax 562442Swnj hardclock(pc, ps) 572450Swnj caddr_t pc; 58*8944Sroot int ps; 599Sbill { 60*8944Sroot #endif 61*8944Sroot #if sun 62*8944Sroot hardclock(regs) 63*8944Sroot struct regs regs; 64*8944Sroot { 65*8944Sroot int ps = regs.r_sr; 66*8944Sroot caddr_t pc = (caddr_t)regs.r_pc; 67*8944Sroot #endif 682768Swnj register struct callout *p1; 698097Sroot register struct proc *p; 702442Swnj register int s, cpstate; 719Sbill 728124Sroot /* 738124Sroot * Update real-time timeout queue. 748124Sroot * At front of queue are some number of events which are ``due''. 758124Sroot * The time to these is <= 0 and if negative represents the 768124Sroot * number of ticks which have passed since it was supposed to happen. 778124Sroot * The rest of the q elements (times > 0) are events yet to happen, 788124Sroot * where the time for each is given as a delta from the previous. 798124Sroot * Decrementing just the first of these serves to decrement the time 808124Sroot * to all events. 818124Sroot */ 823542Swnj for (p1 = calltodo.c_next; p1 && p1->c_time <= 0; p1 = p1->c_next) 838112Sroot --p1->c_time; 843542Swnj if (p1) 858112Sroot --p1->c_time; 86138Sbill 878124Sroot /* 888124Sroot * If the cpu is currently scheduled to a process, then 898124Sroot * charge it with resource utilization for a tick, updating 908124Sroot * statistics which run in (user+system) virtual time, 918124Sroot * such as the cpu time limit and profiling timers. 928124Sroot * This assumes that the current process has been running 938124Sroot * the entire last tick. 948124Sroot */ 959Sbill if (!noproc) { 969Sbill s = u.u_procp->p_rssize; 978097Sroot u.u_ru.ru_idrss += s; u.u_ru.ru_isrss += 0; /* XXX */ 989Sbill if (u.u_procp->p_textp) { 999Sbill register int xrss = u.u_procp->p_textp->x_rssize; 1009Sbill 1019Sbill s += xrss; 1028028Sroot u.u_ru.ru_ixrss += xrss; 1039Sbill } 1048028Sroot if (s > u.u_ru.ru_maxrss) 1058028Sroot u.u_ru.ru_maxrss = s; 1068028Sroot if ((u.u_ru.ru_utime.tv_sec+u.u_ru.ru_stime.tv_sec+1) > 1078028Sroot u.u_rlimit[RLIMIT_CPU].rlim_cur) { 108375Sbill psignal(u.u_procp, SIGXCPU); 1098028Sroot if (u.u_rlimit[RLIMIT_CPU].rlim_cur < 1108028Sroot u.u_rlimit[RLIMIT_CPU].rlim_max) 1118028Sroot u.u_rlimit[RLIMIT_CPU].rlim_cur += 5; 112375Sbill } 1138097Sroot if (timerisset(&u.u_timer[ITIMER_PROF].it_value) && 1148097Sroot itimerdecr(&u.u_timer[ITIMER_PROF], tick) == 0) 1158097Sroot psignal(u.u_procp, SIGPROF); 1169Sbill } 1178097Sroot 1188124Sroot /* 1198124Sroot * Charge the time out based on the mode the cpu is in. 1208124Sroot * Here again we fudge for the lack of proper interval timers 1218124Sroot * assuming that the current state has been around at least 1228124Sroot * one tick. 1238124Sroot */ 1249Sbill if (USERMODE(ps)) { 1258124Sroot /* 1268124Sroot * CPU was in user state. Increment 1278124Sroot * user time counter, and process process-virtual time 1288124Sroot * interval timer. 1298124Sroot */ 1308124Sroot bumptime(&u.u_ru.ru_utime, tick); 1318097Sroot if (timerisset(&u.u_timer[ITIMER_VIRTUAL].it_value) && 1328097Sroot itimerdecr(&u.u_timer[ITIMER_VIRTUAL], tick) == 0) 1338097Sroot psignal(u.u_procp, SIGVTALRM); 1348028Sroot if (u.u_procp->p_nice > NZERO) 135305Sbill cpstate = CP_NICE; 136305Sbill else 137305Sbill cpstate = CP_USER; 1389Sbill } else { 1398124Sroot /* 1408124Sroot * CPU was in system state. If profiling kernel 1418124Sroot * increment a counter. If no process is running 1428124Sroot * then this is a system tick if we were running 1438124Sroot * at a non-zero IPL (in a driver). If a process is running, 1448124Sroot * then we charge it with system time even if we were 1458124Sroot * at a non-zero IPL, since the system often runs 1468124Sroot * this way during processing of system calls. 1478124Sroot * This is approximate, but the lack of true interval 1488124Sroot * timers makes doing anything else difficult. 1498124Sroot */ 1507388Sroot #ifdef GPROF 1517388Sroot int k = pc - s_lowpc; 1527388Sroot if (profiling < 2 && k < s_textsize) 1537388Sroot kcount[k / sizeof (*kcount)]++; 1544968Swnj #endif 155305Sbill cpstate = CP_SYS; 1567315Ssam if (noproc) { 157*8944Sroot if (BASEPRI(ps)) 1587315Ssam cpstate = CP_IDLE; 1598028Sroot } else { 1608124Sroot bumptime(&u.u_ru.ru_stime, tick); 1618028Sroot } 1629Sbill } 1638097Sroot 1648124Sroot /* 1658124Sroot * We maintain statistics shown by user-level statistics 1668124Sroot * programs: the amount of time in each cpu state, and 1678124Sroot * the amount of time each of DK_NDRIVE ``drives'' is busy. 1688124Sroot */ 1691408Sbill cp_time[cpstate]++; 1702442Swnj for (s = 0; s < DK_NDRIVE; s++) 1712442Swnj if (dk_busy&(1<<s)) 1722442Swnj dk_time[s]++; 1738097Sroot 1748124Sroot /* 1758124Sroot * We adjust the priority of the current process. 1768124Sroot * The priority of a process gets worse as it accumulates 1778124Sroot * CPU time. The cpu usage estimator (p_cpu) is increased here 1788124Sroot * and the formula for computing priorities (in kern_synch.c) 1798124Sroot * will compute a different value each time the p_cpu increases 1808124Sroot * by 4. The cpu usage estimator ramps up quite quickly when 1818124Sroot * the process is running (linearly), and decays away exponentially, 1828124Sroot * at a rate which is proportionally slower when the system is 1838124Sroot * busy. The basic principal is that the system will 90% forget 1848124Sroot * that a process used a lot of CPU time in 5*loadav seconds. 1858124Sroot * This causes the system to favor processes which haven't run 1868124Sroot * much recently, and to round-robin among other processes. 1878124Sroot */ 1889Sbill if (!noproc) { 1898097Sroot p = u.u_procp; 1908097Sroot p->p_cpticks++; 1918097Sroot if (++p->p_cpu == 0) 1928097Sroot p->p_cpu--; 1937490Skre #ifdef MUSH 1948097Sroot p->p_quota->q_cost += (p->p_nice > NZERO ? 1958097Sroot (shconsts.sc_tic * ((2*NZERO)-p->p_nice)) / NZERO : 1967490Skre shconsts.sc_tic) * (((int)avenrun[0]+2)/3); 1977490Skre #endif 1988124Sroot if ((p->p_cpu&3) == 0) { 1998097Sroot (void) setpri(p); 2008097Sroot if (p->p_pri >= PUSER) 2018097Sroot p->p_pri = p->p_usrpri; 2029Sbill } 2039Sbill } 2048124Sroot 2058124Sroot /* 2068124Sroot * Increment the time-of-day, and schedule 2078124Sroot * processing of the callouts at a very low cpu priority, 2088124Sroot * so we don't keep the relatively high clock interrupt 2098124Sroot * priority any longer than necessary. 2108124Sroot */ 2118124Sroot bumptime(&time, tick); 2122442Swnj setsoftclock(); 2132442Swnj } 2142442Swnj 2158124Sroot /* 2168124Sroot * Software priority level clock interrupt. 2178124Sroot * Run periodic events from timeout queue. 2188124Sroot */ 2192609Swnj /*ARGSUSED*/ 220*8944Sroot #if vax 2212442Swnj softclock(pc, ps) 2222450Swnj caddr_t pc; 223*8944Sroot int ps; 2242442Swnj { 225*8944Sroot #endif 226*8944Sroot #if sun 227*8944Sroot softclock(sirret, regs) 228*8944Sroot caddr_t sirreg; 229*8944Sroot struct regs regs; 230*8944Sroot { 231*8944Sroot int ps = regs.r_sr; 232*8944Sroot caddr_t pc = (caddr_t)regs.r_pc; 233*8944Sroot #endif 2342442Swnj 2358097Sroot for (;;) { 2368124Sroot register struct callout *p1; 2378124Sroot register caddr_t arg; 2388124Sroot register int (*func)(); 2398124Sroot register int a, s; 2408124Sroot 2418097Sroot s = spl7(); 2428097Sroot if ((p1 = calltodo.c_next) == 0 || p1->c_time > 0) { 2438097Sroot splx(s); 2448097Sroot break; 2452442Swnj } 2468124Sroot arg = p1->c_arg; func = p1->c_func; a = p1->c_time; 2478097Sroot calltodo.c_next = p1->c_next; 2488097Sroot p1->c_next = callfree; 2498097Sroot callfree = p1; 2508097Sroot (void) splx(s); 2518112Sroot (*func)(arg, a); 2522442Swnj } 2539Sbill } 2549Sbill 2559Sbill /* 2568097Sroot * Arrange that (*fun)(arg) is called in tim/hz seconds. 2579Sbill */ 2589Sbill timeout(fun, arg, tim) 2592450Swnj int (*fun)(); 2602450Swnj caddr_t arg; 2618097Sroot int tim; 2629Sbill { 2633542Swnj register struct callout *p1, *p2, *pnew; 2649Sbill register int t; 2659Sbill int s; 2669Sbill 2679Sbill t = tim; 2689Sbill s = spl7(); 2693542Swnj pnew = callfree; 2703542Swnj if (pnew == NULL) 2713542Swnj panic("timeout table overflow"); 2723542Swnj callfree = pnew->c_next; 2733542Swnj pnew->c_arg = arg; 2743542Swnj pnew->c_func = fun; 2753542Swnj for (p1 = &calltodo; (p2 = p1->c_next) && p2->c_time < t; p1 = p2) 2763542Swnj t -= p2->c_time; 2773542Swnj p1->c_next = pnew; 2783542Swnj pnew->c_next = p2; 2793542Swnj pnew->c_time = t; 2803542Swnj if (p2) 2813542Swnj p2->c_time -= t; 2829Sbill splx(s); 2839Sbill } 2847305Ssam 2857305Ssam /* 2867305Ssam * untimeout is called to remove a function timeout call 2877305Ssam * from the callout structure. 2887305Ssam */ 2898097Sroot untimeout(fun, arg) 2907305Ssam int (*fun)(); 2917305Ssam caddr_t arg; 2927305Ssam { 2937305Ssam register struct callout *p1, *p2; 2947305Ssam register int s; 2957305Ssam 2967305Ssam s = spl7(); 2977305Ssam for (p1 = &calltodo; (p2 = p1->c_next) != 0; p1 = p2) { 2987305Ssam if (p2->c_func == fun && p2->c_arg == arg) { 2998112Sroot if (p2->c_next && p2->c_time > 0) 3007305Ssam p2->c_next->c_time += p2->c_time; 3017305Ssam p1->c_next = p2->c_next; 3027305Ssam p2->c_next = callfree; 3037305Ssam callfree = p2; 3047305Ssam break; 3057305Ssam } 3067305Ssam } 3077305Ssam splx(s); 3087305Ssam } 3098112Sroot 3108124Sroot /* 3118124Sroot * Compute number of hz until specified time. 3128124Sroot * Used to compute third argument to timeout() from an 3138124Sroot * absolute time. 3148124Sroot */ 3158112Sroot hzto(tv) 3168112Sroot struct timeval *tv; 3178112Sroot { 3188124Sroot register long ticks; 3198124Sroot register long sec; 3208112Sroot int s = spl7(); 3218112Sroot 3228124Sroot /* 3238124Sroot * If number of milliseconds will fit in 32 bit arithmetic, 3248124Sroot * then compute number of milliseconds to time and scale to 3258124Sroot * ticks. Otherwise just compute number of hz in time, rounding 3268124Sroot * times greater than representible to maximum value. 3278124Sroot * 3288124Sroot * Delta times less than 25 days can be computed ``exactly''. 3298124Sroot * Maximum value for any timeout in 10ms ticks is 250 days. 3308124Sroot */ 3318124Sroot sec = tv->tv_sec - time.tv_sec; 3328124Sroot if (sec <= 0x7fffffff / 1000 - 1000) 3338124Sroot ticks = ((tv->tv_sec - time.tv_sec) * 1000 + 3348124Sroot (tv->tv_usec - time.tv_usec) / 1000) / (tick / 1000); 3358124Sroot else if (sec <= 0x7fffffff / hz) 3368124Sroot ticks = sec * hz; 3378124Sroot else 3388124Sroot ticks = 0x7fffffff; 3398112Sroot splx(s); 3408112Sroot return (ticks); 3418112Sroot } 342