xref: /csrg-svn/sys/kern/kern_clock.c (revision 52951)
149594Sbostic /*-
249594Sbostic  * Copyright (c) 1982, 1986, 1991 The Regents of the University of California.
349594Sbostic  * All rights reserved.
423366Smckusick  *
549594Sbostic  * %sccs.include.redist.c%
649594Sbostic  *
7*52951Smckusick  *	@(#)kern_clock.c	7.18 (Berkeley) 03/15/92
823366Smckusick  */
99Sbill 
1017088Sbloom #include "param.h"
1117088Sbloom #include "systm.h"
1229946Skarels #include "dkstat.h"
1317088Sbloom #include "callout.h"
1417088Sbloom #include "kernel.h"
1517088Sbloom #include "proc.h"
1648979Skarels #include "resourcevar.h"
179Sbill 
1847546Skarels #include "machine/cpu.h"
1935406Skarels 
2010291Smckusick #ifdef GPROF
2117088Sbloom #include "gprof.h"
2210291Smckusick #endif
2310291Smckusick 
248124Sroot /*
258124Sroot  * Clock handling routines.
268124Sroot  *
2711392Ssam  * This code is written to operate with two timers which run
2811392Ssam  * independently of each other. The main clock, running at hz
2911392Ssam  * times per second, is used to do scheduling and timeout calculations.
3011392Ssam  * The second timer does resource utilization estimation statistically
3111392Ssam  * based on the state of the machine phz times a second. Both functions
3211392Ssam  * can be performed by a single clock (ie hz == phz), however the
3311392Ssam  * statistics will be much more prone to errors. Ideally a machine
3411392Ssam  * would have separate clocks measuring time spent in user state, system
3511392Ssam  * state, interrupt state, and idle state. These clocks would allow a non-
3611392Ssam  * approximate measure of resource utilization.
378124Sroot  */
381559Sbill 
398124Sroot /*
408124Sroot  * TODO:
4112747Ssam  *	time of day, system/user timing, timeouts, profiling on separate timers
4212747Ssam  *	allocate more timeout table slots when table overflows.
438124Sroot  */
4426265Skarels 
4517007Smckusick /*
4617007Smckusick  * Bump a timeval by a small number of usec's.
4717007Smckusick  */
4817007Smckusick #define BUMPTIME(t, usec) { \
4917007Smckusick 	register struct timeval *tp = (t); \
5017007Smckusick  \
5117007Smckusick 	tp->tv_usec += (usec); \
5217007Smckusick 	if (tp->tv_usec >= 1000000) { \
5317007Smckusick 		tp->tv_usec -= 1000000; \
5417007Smckusick 		tp->tv_sec++; \
5517007Smckusick 	} \
5617007Smckusick }
5717007Smckusick 
588124Sroot /*
5911392Ssam  * The hz hardware interval timer.
6011392Ssam  * We update the events relating to real time.
6111392Ssam  * If this timer is also being used to gather statistics,
6211392Ssam  * we run through the statistics gathering routine as well.
638124Sroot  */
6444774Swilliam hardclock(frame)
6547546Skarels 	clockframe frame;
669Sbill {
672768Swnj 	register struct callout *p1;
6847546Skarels 	register struct proc *p = curproc;
6948979Skarels 	register struct pstats *pstats;
7024524Sbloom 	register int s;
7116172Skarels 	int needsoft = 0;
72*52951Smckusick 	time_t secs;
7328947Skarels 	extern int tickdelta;
7428947Skarels 	extern long timedelta;
759Sbill 
768124Sroot 	/*
778124Sroot 	 * Update real-time timeout queue.
788124Sroot 	 * At front of queue are some number of events which are ``due''.
798124Sroot 	 * The time to these is <= 0 and if negative represents the
808124Sroot 	 * number of ticks which have passed since it was supposed to happen.
818124Sroot 	 * The rest of the q elements (times > 0) are events yet to happen,
828124Sroot 	 * where the time for each is given as a delta from the previous.
838124Sroot 	 * Decrementing just the first of these serves to decrement the time
848124Sroot 	 * to all events.
858124Sroot 	 */
8612747Ssam 	p1 = calltodo.c_next;
8712747Ssam 	while (p1) {
8812747Ssam 		if (--p1->c_time > 0)
8912747Ssam 			break;
9016172Skarels 		needsoft = 1;
9112747Ssam 		if (p1->c_time == 0)
9212747Ssam 			break;
9312747Ssam 		p1 = p1->c_next;
9412747Ssam 	}
95138Sbill 
968124Sroot 	/*
9748979Skarels 	 * Curproc (now in p) is null if no process is running.
9848979Skarels 	 * We assume that curproc is set in user mode!
9948979Skarels 	 */
10048979Skarels 	if (p)
10148979Skarels 		pstats = p->p_stats;
10248979Skarels 	/*
1038124Sroot 	 * Charge the time out based on the mode the cpu is in.
1048124Sroot 	 * Here again we fudge for the lack of proper interval timers
1058124Sroot 	 * assuming that the current state has been around at least
1068124Sroot 	 * one tick.
1078124Sroot 	 */
10847546Skarels 	if (CLKF_USERMODE(&frame)) {
10947546Skarels 		if (pstats->p_prof.pr_scale)
11016172Skarels 			needsoft = 1;
1118124Sroot 		/*
1128124Sroot 		 * CPU was in user state.  Increment
1138124Sroot 		 * user time counter, and process process-virtual time
1149604Ssam 		 * interval timer.
1158124Sroot 		 */
11640674Smarc 		BUMPTIME(&p->p_utime, tick);
11747546Skarels 		if (timerisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) &&
11847546Skarels 		    itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0)
11940674Smarc 			psignal(p, SIGVTALRM);
1209Sbill 	} else {
1218124Sroot 		/*
12224524Sbloom 		 * CPU was in system state.
1238124Sroot 		 */
12448979Skarels 		if (p)
12540674Smarc 			BUMPTIME(&p->p_stime, tick);
1269Sbill 	}
1278097Sroot 
1288124Sroot 	/*
12910388Ssam 	 * If the cpu is currently scheduled to a process, then
13010388Ssam 	 * charge it with resource utilization for a tick, updating
13110388Ssam 	 * statistics which run in (user+system) virtual time,
13210388Ssam 	 * such as the cpu time limit and profiling timers.
13310388Ssam 	 * This assumes that the current process has been running
13410388Ssam 	 * the entire last tick.
13510388Ssam 	 */
13648979Skarels 	if (p) {
137*52951Smckusick 		secs = p->p_utime.tv_sec + p->p_stime.tv_sec + 1;
138*52951Smckusick 		if (secs > p->p_rlimit[RLIMIT_CPU].rlim_cur) {
139*52951Smckusick 			if (secs > p->p_rlimit[RLIMIT_CPU].rlim_max)
140*52951Smckusick 				psignal(p, SIGKILL);
141*52951Smckusick 			else {
142*52951Smckusick 				psignal(p, SIGXCPU);
143*52951Smckusick 				if (p->p_rlimit[RLIMIT_CPU].rlim_cur <
144*52951Smckusick 				    p->p_rlimit[RLIMIT_CPU].rlim_max)
145*52951Smckusick 					p->p_rlimit[RLIMIT_CPU].rlim_cur += 5;
146*52951Smckusick 			}
14710388Ssam 		}
14847546Skarels 		if (timerisset(&pstats->p_timer[ITIMER_PROF].it_value) &&
14947546Skarels 		    itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0)
15040674Smarc 			psignal(p, SIGPROF);
15110388Ssam 
15247546Skarels 		/*
15347546Skarels 		 * We adjust the priority of the current process.
15447546Skarels 		 * The priority of a process gets worse as it accumulates
15547546Skarels 		 * CPU time.  The cpu usage estimator (p_cpu) is increased here
15647546Skarels 		 * and the formula for computing priorities (in kern_synch.c)
15747546Skarels 		 * will compute a different value each time the p_cpu increases
15847546Skarels 		 * by 4.  The cpu usage estimator ramps up quite quickly when
15947546Skarels 		 * the process is running (linearly), and decays away
16047546Skarels 		 * exponentially, * at a rate which is proportionally slower
16147546Skarels 		 * when the system is busy.  The basic principal is that the
16247546Skarels 		 * system will 90% forget that a process used a lot of CPU
16347546Skarels 		 * time in 5*loadav seconds.  This causes the system to favor
16447546Skarels 		 * processes which haven't run much recently, and to
16547546Skarels 		 * round-robin among other processes.
16647546Skarels 		 */
1678097Sroot 		p->p_cpticks++;
1688097Sroot 		if (++p->p_cpu == 0)
1698097Sroot 			p->p_cpu--;
1708124Sroot 		if ((p->p_cpu&3) == 0) {
17147546Skarels 			setpri(p);
1728097Sroot 			if (p->p_pri >= PUSER)
1738097Sroot 				p->p_pri = p->p_usrpri;
1749Sbill 		}
1759Sbill 	}
1768124Sroot 
1778124Sroot 	/*
17811392Ssam 	 * If the alternate clock has not made itself known then
17911392Ssam 	 * we must gather the statistics.
18011392Ssam 	 */
18111392Ssam 	if (phz == 0)
18247546Skarels 		gatherstats(&frame);
18311392Ssam 
18411392Ssam 	/*
1858124Sroot 	 * Increment the time-of-day, and schedule
1868124Sroot 	 * processing of the callouts at a very low cpu priority,
1878124Sroot 	 * so we don't keep the relatively high clock interrupt
1888124Sroot 	 * priority any longer than necessary.
1898124Sroot 	 */
19028828Skarels 	if (timedelta == 0)
19117356Skarels 		BUMPTIME(&time, tick)
19217356Skarels 	else {
19317356Skarels 		register delta;
19417356Skarels 
19528828Skarels 		if (timedelta < 0) {
19628828Skarels 			delta = tick - tickdelta;
19728828Skarels 			timedelta += tickdelta;
19817356Skarels 		} else {
19928828Skarels 			delta = tick + tickdelta;
20028828Skarels 			timedelta -= tickdelta;
20117356Skarels 		}
20217356Skarels 		BUMPTIME(&time, delta);
20317356Skarels 	}
20416525Skarels 	if (needsoft) {
20547546Skarels 		if (CLKF_BASEPRI(&frame)) {
20616525Skarels 			/*
20716525Skarels 			 * Save the overhead of a software interrupt;
20816525Skarels 			 * it will happen as soon as we return, so do it now.
20916525Skarels 			 */
21016525Skarels 			(void) splsoftclock();
21144774Swilliam 			softclock(frame);
21216525Skarels 		} else
21316525Skarels 			setsoftclock();
21416525Skarels 	}
2152442Swnj }
2162442Swnj 
21715191Ssam int	dk_ndrive = DK_NDRIVE;
2188124Sroot /*
21911392Ssam  * Gather statistics on resource utilization.
22011392Ssam  *
22111392Ssam  * We make a gross assumption: that the system has been in the
22211392Ssam  * state it is in (user state, kernel state, interrupt state,
22311392Ssam  * or idle state) for the entire last time interval, and
22411392Ssam  * update statistics accordingly.
22511392Ssam  */
22647546Skarels gatherstats(framep)
22747546Skarels 	clockframe *framep;
22811392Ssam {
22926265Skarels 	register int cpstate, s;
23011392Ssam 
23111392Ssam 	/*
23211392Ssam 	 * Determine what state the cpu is in.
23311392Ssam 	 */
23447546Skarels 	if (CLKF_USERMODE(framep)) {
23511392Ssam 		/*
23611392Ssam 		 * CPU was in user state.
23711392Ssam 		 */
23847546Skarels 		if (curproc->p_nice > NZERO)
23911392Ssam 			cpstate = CP_NICE;
24011392Ssam 		else
24111392Ssam 			cpstate = CP_USER;
24211392Ssam 	} else {
24311392Ssam 		/*
24411392Ssam 		 * CPU was in system state.  If profiling kernel
24524524Sbloom 		 * increment a counter.  If no process is running
24624524Sbloom 		 * then this is a system tick if we were running
24724524Sbloom 		 * at a non-zero IPL (in a driver).  If a process is running,
24824524Sbloom 		 * then we charge it with system time even if we were
24924524Sbloom 		 * at a non-zero IPL, since the system often runs
25024524Sbloom 		 * this way during processing of system calls.
25124524Sbloom 		 * This is approximate, but the lack of true interval
25224524Sbloom 		 * timers makes doing anything else difficult.
25311392Ssam 		 */
25411392Ssam 		cpstate = CP_SYS;
25548979Skarels 		if (curproc == NULL && CLKF_BASEPRI(framep))
25611392Ssam 			cpstate = CP_IDLE;
25711392Ssam #ifdef GPROF
25847546Skarels 		s = CLKF_PC(framep) - s_lowpc;
25911392Ssam 		if (profiling < 2 && s < s_textsize)
26011392Ssam 			kcount[s / (HISTFRACTION * sizeof (*kcount))]++;
26111392Ssam #endif
26211392Ssam 	}
26311392Ssam 	/*
26411392Ssam 	 * We maintain statistics shown by user-level statistics
26511392Ssam 	 * programs:  the amount of time in each cpu state, and
26611392Ssam 	 * the amount of time each of DK_NDRIVE ``drives'' is busy.
26711392Ssam 	 */
26811392Ssam 	cp_time[cpstate]++;
26911392Ssam 	for (s = 0; s < DK_NDRIVE; s++)
27029946Skarels 		if (dk_busy&(1<<s))
27111392Ssam 			dk_time[s]++;
27211392Ssam }
27311392Ssam 
27411392Ssam /*
2758124Sroot  * Software priority level clock interrupt.
2768124Sroot  * Run periodic events from timeout queue.
2778124Sroot  */
2782609Swnj /*ARGSUSED*/
27944774Swilliam softclock(frame)
28047546Skarels 	clockframe frame;
2812442Swnj {
2822442Swnj 
2838097Sroot 	for (;;) {
2848124Sroot 		register struct callout *p1;
2858124Sroot 		register caddr_t arg;
2868124Sroot 		register int (*func)();
2878124Sroot 		register int a, s;
2888124Sroot 
28926265Skarels 		s = splhigh();
2908097Sroot 		if ((p1 = calltodo.c_next) == 0 || p1->c_time > 0) {
2918097Sroot 			splx(s);
2928097Sroot 			break;
2932442Swnj 		}
2948124Sroot 		arg = p1->c_arg; func = p1->c_func; a = p1->c_time;
2958097Sroot 		calltodo.c_next = p1->c_next;
2968097Sroot 		p1->c_next = callfree;
2978097Sroot 		callfree = p1;
2989157Ssam 		splx(s);
2998112Sroot 		(*func)(arg, a);
3002442Swnj 	}
3019604Ssam 	/*
30213127Ssam 	 * If trapped user-mode and profiling, give it
30313127Ssam 	 * a profiling tick.
3049604Ssam 	 */
30547546Skarels 	if (CLKF_USERMODE(&frame)) {
30647546Skarels 		register struct proc *p = curproc;
30713127Ssam 
30847546Skarels 		if (p->p_stats->p_prof.pr_scale)
30947546Skarels 			profile_tick(p, &frame);
31013127Ssam 		/*
31113127Ssam 		 * Check to see if process has accumulated
31213127Ssam 		 * more than 10 minutes of user time.  If so
31313127Ssam 		 * reduce priority to give others a chance.
31413127Ssam 		 */
31547546Skarels 		if (p->p_ucred->cr_uid && p->p_nice == NZERO &&
31640674Smarc 		    p->p_utime.tv_sec > 10 * 60) {
31747546Skarels 			p->p_nice = NZERO + 4;
31847546Skarels 			setpri(p);
31913127Ssam 			p->p_pri = p->p_usrpri;
32013127Ssam 		}
3219604Ssam 	}
3229Sbill }
3239Sbill 
3249Sbill /*
32547546Skarels  * Arrange that (*func)(arg) is called in t/hz seconds.
32612747Ssam  */
32747546Skarels timeout(func, arg, t)
32847546Skarels 	int (*func)();
3292450Swnj 	caddr_t arg;
33012747Ssam 	register int t;
3319Sbill {
3323542Swnj 	register struct callout *p1, *p2, *pnew;
33326265Skarels 	register int s = splhigh();
3349Sbill 
33518282Smckusick 	if (t <= 0)
33612747Ssam 		t = 1;
3373542Swnj 	pnew = callfree;
3383542Swnj 	if (pnew == NULL)
3393542Swnj 		panic("timeout table overflow");
3403542Swnj 	callfree = pnew->c_next;
3413542Swnj 	pnew->c_arg = arg;
34247546Skarels 	pnew->c_func = func;
3433542Swnj 	for (p1 = &calltodo; (p2 = p1->c_next) && p2->c_time < t; p1 = p2)
3449742Ssam 		if (p2->c_time > 0)
3459742Ssam 			t -= p2->c_time;
3463542Swnj 	p1->c_next = pnew;
3473542Swnj 	pnew->c_next = p2;
3483542Swnj 	pnew->c_time = t;
3493542Swnj 	if (p2)
3503542Swnj 		p2->c_time -= t;
3519Sbill 	splx(s);
3529Sbill }
3537305Ssam 
3547305Ssam /*
3557305Ssam  * untimeout is called to remove a function timeout call
3567305Ssam  * from the callout structure.
3577305Ssam  */
35847546Skarels untimeout(func, arg)
35947546Skarels 	int (*func)();
3607305Ssam 	caddr_t arg;
3617305Ssam {
3627305Ssam 	register struct callout *p1, *p2;
3637305Ssam 	register int s;
3647305Ssam 
36526265Skarels 	s = splhigh();
3667305Ssam 	for (p1 = &calltodo; (p2 = p1->c_next) != 0; p1 = p2) {
36747546Skarels 		if (p2->c_func == func && p2->c_arg == arg) {
3688112Sroot 			if (p2->c_next && p2->c_time > 0)
3697305Ssam 				p2->c_next->c_time += p2->c_time;
3707305Ssam 			p1->c_next = p2->c_next;
3717305Ssam 			p2->c_next = callfree;
3727305Ssam 			callfree = p2;
3737305Ssam 			break;
3747305Ssam 		}
3757305Ssam 	}
3767305Ssam 	splx(s);
3777305Ssam }
3788112Sroot 
3798124Sroot /*
3808124Sroot  * Compute number of hz until specified time.
3818124Sroot  * Used to compute third argument to timeout() from an
3828124Sroot  * absolute time.
3838124Sroot  */
3848112Sroot hzto(tv)
3858112Sroot 	struct timeval *tv;
3868112Sroot {
3878124Sroot 	register long ticks;
3888124Sroot 	register long sec;
38926265Skarels 	int s = splhigh();
3908112Sroot 
3918124Sroot 	/*
3928124Sroot 	 * If number of milliseconds will fit in 32 bit arithmetic,
3938124Sroot 	 * then compute number of milliseconds to time and scale to
3948124Sroot 	 * ticks.  Otherwise just compute number of hz in time, rounding
3958124Sroot 	 * times greater than representible to maximum value.
3968124Sroot 	 *
3978124Sroot 	 * Delta times less than 25 days can be computed ``exactly''.
3988124Sroot 	 * Maximum value for any timeout in 10ms ticks is 250 days.
3998124Sroot 	 */
4008124Sroot 	sec = tv->tv_sec - time.tv_sec;
4018124Sroot 	if (sec <= 0x7fffffff / 1000 - 1000)
4028124Sroot 		ticks = ((tv->tv_sec - time.tv_sec) * 1000 +
4038124Sroot 			(tv->tv_usec - time.tv_usec) / 1000) / (tick / 1000);
4048124Sroot 	else if (sec <= 0x7fffffff / hz)
4058124Sroot 		ticks = sec * hz;
4068124Sroot 	else
4078124Sroot 		ticks = 0x7fffffff;
4088112Sroot 	splx(s);
4098112Sroot 	return (ticks);
4108112Sroot }
41152668Smckusick 
41252668Smckusick /*
41352668Smckusick  * Return information about system clocks.
41452668Smckusick  */
41552668Smckusick /* ARGSUSED */
41652668Smckusick kinfo_clockrate(op, where, acopysize, arg, aneeded)
41752668Smckusick 	int op;
41852668Smckusick 	register char *where;
41952668Smckusick 	int *acopysize, arg, *aneeded;
42052668Smckusick {
42152668Smckusick 	int buflen, error;
42252668Smckusick 	struct clockinfo clockinfo;
42352668Smckusick 
42452668Smckusick 	*aneeded = sizeof(clockinfo);
42552668Smckusick 	if (where == NULL)
42652668Smckusick 		return (0);
42752668Smckusick 	/*
42852668Smckusick 	 * Check for enough buffering.
42952668Smckusick 	 */
43052668Smckusick 	buflen = *acopysize;
43152668Smckusick 	if (buflen < sizeof(clockinfo)) {
43252668Smckusick 		*acopysize = 0;
43352668Smckusick 		return (0);
43452668Smckusick 	}
43552668Smckusick 	/*
43652668Smckusick 	 * Copyout clockinfo structure.
43752668Smckusick 	 */
43852668Smckusick 	clockinfo.hz = hz;
43952668Smckusick 	clockinfo.phz = phz;
44052668Smckusick 	clockinfo.tick = tick;
44152668Smckusick 	clockinfo.profhz = profhz;
44252668Smckusick 	if (error = copyout((caddr_t)&clockinfo, where, sizeof(clockinfo)))
44352668Smckusick 		return (error);
44452668Smckusick 	*acopysize = sizeof(clockinfo);
44552668Smckusick 	return (0);
44652668Smckusick }
447