xref: /csrg-svn/sys/kern/kern_clock.c (revision 47546)
123366Smckusick /*
2*47546Skarels  * Copyright (c) 1982, 1986, 1991 Regents of the University of California.
323366Smckusick  * All rights reserved.  The Berkeley software License Agreement
423366Smckusick  * specifies the terms and conditions for redistribution.
523366Smckusick  *
6*47546Skarels  *	@(#)kern_clock.c	7.12 (Berkeley) 03/17/91
723366Smckusick  */
89Sbill 
917088Sbloom #include "param.h"
1017088Sbloom #include "systm.h"
1129946Skarels #include "dkstat.h"
1217088Sbloom #include "callout.h"
1344404Skarels #include "user.h"
1417088Sbloom #include "kernel.h"
1517088Sbloom #include "proc.h"
169Sbill 
17*47546Skarels #include "machine/cpu.h"
1835406Skarels 
1910291Smckusick #ifdef GPROF
2017088Sbloom #include "gprof.h"
2110291Smckusick #endif
2210291Smckusick 
238124Sroot /*
248124Sroot  * Clock handling routines.
258124Sroot  *
2611392Ssam  * This code is written to operate with two timers which run
2711392Ssam  * independently of each other. The main clock, running at hz
2811392Ssam  * times per second, is used to do scheduling and timeout calculations.
2911392Ssam  * The second timer does resource utilization estimation statistically
3011392Ssam  * based on the state of the machine phz times a second. Both functions
3111392Ssam  * can be performed by a single clock (ie hz == phz), however the
3211392Ssam  * statistics will be much more prone to errors. Ideally a machine
3311392Ssam  * would have separate clocks measuring time spent in user state, system
3411392Ssam  * state, interrupt state, and idle state. These clocks would allow a non-
3511392Ssam  * approximate measure of resource utilization.
368124Sroot  */
371559Sbill 
388124Sroot /*
398124Sroot  * TODO:
4012747Ssam  *	time of day, system/user timing, timeouts, profiling on separate timers
4112747Ssam  *	allocate more timeout table slots when table overflows.
428124Sroot  */
4326265Skarels 
4417007Smckusick /*
4517007Smckusick  * Bump a timeval by a small number of usec's.
4617007Smckusick  */
4717007Smckusick #define BUMPTIME(t, usec) { \
4817007Smckusick 	register struct timeval *tp = (t); \
4917007Smckusick  \
5017007Smckusick 	tp->tv_usec += (usec); \
5117007Smckusick 	if (tp->tv_usec >= 1000000) { \
5217007Smckusick 		tp->tv_usec -= 1000000; \
5317007Smckusick 		tp->tv_sec++; \
5417007Smckusick 	} \
5517007Smckusick }
5617007Smckusick 
578124Sroot /*
5811392Ssam  * The hz hardware interval timer.
5911392Ssam  * We update the events relating to real time.
6011392Ssam  * If this timer is also being used to gather statistics,
6111392Ssam  * we run through the statistics gathering routine as well.
628124Sroot  */
6344774Swilliam hardclock(frame)
64*47546Skarels 	clockframe frame;
659Sbill {
662768Swnj 	register struct callout *p1;
67*47546Skarels 	register struct proc *p = curproc;
68*47546Skarels 	register struct pstats *pstats = p->p_stats;
6924524Sbloom 	register int s;
7016172Skarels 	int needsoft = 0;
7128947Skarels 	extern int tickdelta;
7228947Skarels 	extern long timedelta;
739Sbill 
748124Sroot 	/*
758124Sroot 	 * Update real-time timeout queue.
768124Sroot 	 * At front of queue are some number of events which are ``due''.
778124Sroot 	 * The time to these is <= 0 and if negative represents the
788124Sroot 	 * number of ticks which have passed since it was supposed to happen.
798124Sroot 	 * The rest of the q elements (times > 0) are events yet to happen,
808124Sroot 	 * where the time for each is given as a delta from the previous.
818124Sroot 	 * Decrementing just the first of these serves to decrement the time
828124Sroot 	 * to all events.
838124Sroot 	 */
8412747Ssam 	p1 = calltodo.c_next;
8512747Ssam 	while (p1) {
8612747Ssam 		if (--p1->c_time > 0)
8712747Ssam 			break;
8816172Skarels 		needsoft = 1;
8912747Ssam 		if (p1->c_time == 0)
9012747Ssam 			break;
9112747Ssam 		p1 = p1->c_next;
9212747Ssam 	}
93138Sbill 
948124Sroot 	/*
958124Sroot 	 * Charge the time out based on the mode the cpu is in.
968124Sroot 	 * Here again we fudge for the lack of proper interval timers
978124Sroot 	 * assuming that the current state has been around at least
988124Sroot 	 * one tick.
998124Sroot 	 */
100*47546Skarels 	if (CLKF_USERMODE(&frame)) {
101*47546Skarels 		if (pstats->p_prof.pr_scale)
10216172Skarels 			needsoft = 1;
1038124Sroot 		/*
1048124Sroot 		 * CPU was in user state.  Increment
1058124Sroot 		 * user time counter, and process process-virtual time
1069604Ssam 		 * interval timer.
1078124Sroot 		 */
10840674Smarc 		BUMPTIME(&p->p_utime, tick);
109*47546Skarels 		if (timerisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) &&
110*47546Skarels 		    itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0)
11140674Smarc 			psignal(p, SIGVTALRM);
1129Sbill 	} else {
1138124Sroot 		/*
11424524Sbloom 		 * CPU was in system state.
1158124Sroot 		 */
11626265Skarels 		if (!noproc)
11740674Smarc 			BUMPTIME(&p->p_stime, tick);
1189Sbill 	}
1198097Sroot 
1208124Sroot 	/*
12110388Ssam 	 * If the cpu is currently scheduled to a process, then
12210388Ssam 	 * charge it with resource utilization for a tick, updating
12310388Ssam 	 * statistics which run in (user+system) virtual time,
12410388Ssam 	 * such as the cpu time limit and profiling timers.
12510388Ssam 	 * This assumes that the current process has been running
12610388Ssam 	 * the entire last tick.
12710388Ssam 	 */
12818585Skarels 	if (noproc == 0) {
12940674Smarc 		if ((p->p_utime.tv_sec+p->p_stime.tv_sec+1) >
130*47546Skarels 		    p->p_rlimit[RLIMIT_CPU].rlim_cur) {
13140674Smarc 			psignal(p, SIGXCPU);
132*47546Skarels 			if (p->p_rlimit[RLIMIT_CPU].rlim_cur <
133*47546Skarels 			    p->p_rlimit[RLIMIT_CPU].rlim_max)
134*47546Skarels 				p->p_rlimit[RLIMIT_CPU].rlim_cur += 5;
13510388Ssam 		}
136*47546Skarels 		if (timerisset(&pstats->p_timer[ITIMER_PROF].it_value) &&
137*47546Skarels 		    itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0)
13840674Smarc 			psignal(p, SIGPROF);
13910388Ssam 
140*47546Skarels 		/*
141*47546Skarels 		 * We adjust the priority of the current process.
142*47546Skarels 		 * The priority of a process gets worse as it accumulates
143*47546Skarels 		 * CPU time.  The cpu usage estimator (p_cpu) is increased here
144*47546Skarels 		 * and the formula for computing priorities (in kern_synch.c)
145*47546Skarels 		 * will compute a different value each time the p_cpu increases
146*47546Skarels 		 * by 4.  The cpu usage estimator ramps up quite quickly when
147*47546Skarels 		 * the process is running (linearly), and decays away
148*47546Skarels 		 * exponentially, * at a rate which is proportionally slower
149*47546Skarels 		 * when the system is busy.  The basic principal is that the
150*47546Skarels 		 * system will 90% forget that a process used a lot of CPU
151*47546Skarels 		 * time in 5*loadav seconds.  This causes the system to favor
152*47546Skarels 		 * processes which haven't run much recently, and to
153*47546Skarels 		 * round-robin among other processes.
154*47546Skarels 		 */
1558097Sroot 		p->p_cpticks++;
1568097Sroot 		if (++p->p_cpu == 0)
1578097Sroot 			p->p_cpu--;
1588124Sroot 		if ((p->p_cpu&3) == 0) {
159*47546Skarels 			setpri(p);
1608097Sroot 			if (p->p_pri >= PUSER)
1618097Sroot 				p->p_pri = p->p_usrpri;
1629Sbill 		}
1639Sbill 	}
1648124Sroot 
1658124Sroot 	/*
16611392Ssam 	 * If the alternate clock has not made itself known then
16711392Ssam 	 * we must gather the statistics.
16811392Ssam 	 */
16911392Ssam 	if (phz == 0)
170*47546Skarels 		gatherstats(&frame);
17111392Ssam 
17211392Ssam 	/*
1738124Sroot 	 * Increment the time-of-day, and schedule
1748124Sroot 	 * processing of the callouts at a very low cpu priority,
1758124Sroot 	 * so we don't keep the relatively high clock interrupt
1768124Sroot 	 * priority any longer than necessary.
1778124Sroot 	 */
17828828Skarels 	if (timedelta == 0)
17917356Skarels 		BUMPTIME(&time, tick)
18017356Skarels 	else {
18117356Skarels 		register delta;
18217356Skarels 
18328828Skarels 		if (timedelta < 0) {
18428828Skarels 			delta = tick - tickdelta;
18528828Skarels 			timedelta += tickdelta;
18617356Skarels 		} else {
18728828Skarels 			delta = tick + tickdelta;
18828828Skarels 			timedelta -= tickdelta;
18917356Skarels 		}
19017356Skarels 		BUMPTIME(&time, delta);
19117356Skarels 	}
19216525Skarels 	if (needsoft) {
193*47546Skarels 		if (CLKF_BASEPRI(&frame)) {
19416525Skarels 			/*
19516525Skarels 			 * Save the overhead of a software interrupt;
19616525Skarels 			 * it will happen as soon as we return, so do it now.
19716525Skarels 			 */
19816525Skarels 			(void) splsoftclock();
19944774Swilliam 			softclock(frame);
20016525Skarels 		} else
20116525Skarels 			setsoftclock();
20216525Skarels 	}
2032442Swnj }
2042442Swnj 
20515191Ssam int	dk_ndrive = DK_NDRIVE;
2068124Sroot /*
20711392Ssam  * Gather statistics on resource utilization.
20811392Ssam  *
20911392Ssam  * We make a gross assumption: that the system has been in the
21011392Ssam  * state it is in (user state, kernel state, interrupt state,
21111392Ssam  * or idle state) for the entire last time interval, and
21211392Ssam  * update statistics accordingly.
21311392Ssam  */
214*47546Skarels gatherstats(framep)
215*47546Skarels 	clockframe *framep;
21611392Ssam {
21726265Skarels 	register int cpstate, s;
21811392Ssam 
21911392Ssam 	/*
22011392Ssam 	 * Determine what state the cpu is in.
22111392Ssam 	 */
222*47546Skarels 	if (CLKF_USERMODE(framep)) {
22311392Ssam 		/*
22411392Ssam 		 * CPU was in user state.
22511392Ssam 		 */
226*47546Skarels 		if (curproc->p_nice > NZERO)
22711392Ssam 			cpstate = CP_NICE;
22811392Ssam 		else
22911392Ssam 			cpstate = CP_USER;
23011392Ssam 	} else {
23111392Ssam 		/*
23211392Ssam 		 * CPU was in system state.  If profiling kernel
23324524Sbloom 		 * increment a counter.  If no process is running
23424524Sbloom 		 * then this is a system tick if we were running
23524524Sbloom 		 * at a non-zero IPL (in a driver).  If a process is running,
23624524Sbloom 		 * then we charge it with system time even if we were
23724524Sbloom 		 * at a non-zero IPL, since the system often runs
23824524Sbloom 		 * this way during processing of system calls.
23924524Sbloom 		 * This is approximate, but the lack of true interval
24024524Sbloom 		 * timers makes doing anything else difficult.
24111392Ssam 		 */
24211392Ssam 		cpstate = CP_SYS;
243*47546Skarels 		if (noproc && CLKF_BASEPRI(framep))
24411392Ssam 			cpstate = CP_IDLE;
24511392Ssam #ifdef GPROF
246*47546Skarels 		s = CLKF_PC(framep) - s_lowpc;
24711392Ssam 		if (profiling < 2 && s < s_textsize)
24811392Ssam 			kcount[s / (HISTFRACTION * sizeof (*kcount))]++;
24911392Ssam #endif
25011392Ssam 	}
25111392Ssam 	/*
25211392Ssam 	 * We maintain statistics shown by user-level statistics
25311392Ssam 	 * programs:  the amount of time in each cpu state, and
25411392Ssam 	 * the amount of time each of DK_NDRIVE ``drives'' is busy.
25511392Ssam 	 */
25611392Ssam 	cp_time[cpstate]++;
25711392Ssam 	for (s = 0; s < DK_NDRIVE; s++)
25829946Skarels 		if (dk_busy&(1<<s))
25911392Ssam 			dk_time[s]++;
26011392Ssam }
26111392Ssam 
26211392Ssam /*
2638124Sroot  * Software priority level clock interrupt.
2648124Sroot  * Run periodic events from timeout queue.
2658124Sroot  */
2662609Swnj /*ARGSUSED*/
26744774Swilliam softclock(frame)
268*47546Skarels 	clockframe frame;
2692442Swnj {
2702442Swnj 
2718097Sroot 	for (;;) {
2728124Sroot 		register struct callout *p1;
2738124Sroot 		register caddr_t arg;
2748124Sroot 		register int (*func)();
2758124Sroot 		register int a, s;
2768124Sroot 
27726265Skarels 		s = splhigh();
2788097Sroot 		if ((p1 = calltodo.c_next) == 0 || p1->c_time > 0) {
2798097Sroot 			splx(s);
2808097Sroot 			break;
2812442Swnj 		}
2828124Sroot 		arg = p1->c_arg; func = p1->c_func; a = p1->c_time;
2838097Sroot 		calltodo.c_next = p1->c_next;
2848097Sroot 		p1->c_next = callfree;
2858097Sroot 		callfree = p1;
2869157Ssam 		splx(s);
2878112Sroot 		(*func)(arg, a);
2882442Swnj 	}
2899604Ssam 	/*
29013127Ssam 	 * If trapped user-mode and profiling, give it
29113127Ssam 	 * a profiling tick.
2929604Ssam 	 */
293*47546Skarels 	if (CLKF_USERMODE(&frame)) {
294*47546Skarels 		register struct proc *p = curproc;
29513127Ssam 
296*47546Skarels 		if (p->p_stats->p_prof.pr_scale)
297*47546Skarels 			profile_tick(p, &frame);
29813127Ssam 		/*
29913127Ssam 		 * Check to see if process has accumulated
30013127Ssam 		 * more than 10 minutes of user time.  If so
30113127Ssam 		 * reduce priority to give others a chance.
30213127Ssam 		 */
303*47546Skarels 		if (p->p_ucred->cr_uid && p->p_nice == NZERO &&
30440674Smarc 		    p->p_utime.tv_sec > 10 * 60) {
305*47546Skarels 			p->p_nice = NZERO + 4;
306*47546Skarels 			setpri(p);
30713127Ssam 			p->p_pri = p->p_usrpri;
30813127Ssam 		}
3099604Ssam 	}
3109Sbill }
3119Sbill 
3129Sbill /*
313*47546Skarels  * Arrange that (*func)(arg) is called in t/hz seconds.
31412747Ssam  */
315*47546Skarels timeout(func, arg, t)
316*47546Skarels 	int (*func)();
3172450Swnj 	caddr_t arg;
31812747Ssam 	register int t;
3199Sbill {
3203542Swnj 	register struct callout *p1, *p2, *pnew;
32126265Skarels 	register int s = splhigh();
3229Sbill 
32318282Smckusick 	if (t <= 0)
32412747Ssam 		t = 1;
3253542Swnj 	pnew = callfree;
3263542Swnj 	if (pnew == NULL)
3273542Swnj 		panic("timeout table overflow");
3283542Swnj 	callfree = pnew->c_next;
3293542Swnj 	pnew->c_arg = arg;
330*47546Skarels 	pnew->c_func = func;
3313542Swnj 	for (p1 = &calltodo; (p2 = p1->c_next) && p2->c_time < t; p1 = p2)
3329742Ssam 		if (p2->c_time > 0)
3339742Ssam 			t -= p2->c_time;
3343542Swnj 	p1->c_next = pnew;
3353542Swnj 	pnew->c_next = p2;
3363542Swnj 	pnew->c_time = t;
3373542Swnj 	if (p2)
3383542Swnj 		p2->c_time -= t;
3399Sbill 	splx(s);
3409Sbill }
3417305Ssam 
3427305Ssam /*
3437305Ssam  * untimeout is called to remove a function timeout call
3447305Ssam  * from the callout structure.
3457305Ssam  */
346*47546Skarels untimeout(func, arg)
347*47546Skarels 	int (*func)();
3487305Ssam 	caddr_t arg;
3497305Ssam {
3507305Ssam 	register struct callout *p1, *p2;
3517305Ssam 	register int s;
3527305Ssam 
35326265Skarels 	s = splhigh();
3547305Ssam 	for (p1 = &calltodo; (p2 = p1->c_next) != 0; p1 = p2) {
355*47546Skarels 		if (p2->c_func == func && p2->c_arg == arg) {
3568112Sroot 			if (p2->c_next && p2->c_time > 0)
3577305Ssam 				p2->c_next->c_time += p2->c_time;
3587305Ssam 			p1->c_next = p2->c_next;
3597305Ssam 			p2->c_next = callfree;
3607305Ssam 			callfree = p2;
3617305Ssam 			break;
3627305Ssam 		}
3637305Ssam 	}
3647305Ssam 	splx(s);
3657305Ssam }
3668112Sroot 
3678124Sroot /*
3688124Sroot  * Compute number of hz until specified time.
3698124Sroot  * Used to compute third argument to timeout() from an
3708124Sroot  * absolute time.
3718124Sroot  */
3728112Sroot hzto(tv)
3738112Sroot 	struct timeval *tv;
3748112Sroot {
3758124Sroot 	register long ticks;
3768124Sroot 	register long sec;
37726265Skarels 	int s = splhigh();
3788112Sroot 
3798124Sroot 	/*
3808124Sroot 	 * If number of milliseconds will fit in 32 bit arithmetic,
3818124Sroot 	 * then compute number of milliseconds to time and scale to
3828124Sroot 	 * ticks.  Otherwise just compute number of hz in time, rounding
3838124Sroot 	 * times greater than representible to maximum value.
3848124Sroot 	 *
3858124Sroot 	 * Delta times less than 25 days can be computed ``exactly''.
3868124Sroot 	 * Maximum value for any timeout in 10ms ticks is 250 days.
3878124Sroot 	 */
3888124Sroot 	sec = tv->tv_sec - time.tv_sec;
3898124Sroot 	if (sec <= 0x7fffffff / 1000 - 1000)
3908124Sroot 		ticks = ((tv->tv_sec - time.tv_sec) * 1000 +
3918124Sroot 			(tv->tv_usec - time.tv_usec) / 1000) / (tick / 1000);
3928124Sroot 	else if (sec <= 0x7fffffff / hz)
3938124Sroot 		ticks = sec * hz;
3948124Sroot 	else
3958124Sroot 		ticks = 0x7fffffff;
3968112Sroot 	splx(s);
3978112Sroot 	return (ticks);
3988112Sroot }
39912747Ssam 
40043402Smckusick /* ARGSUSED */
40143402Smckusick profil(p, uap, retval)
40243402Smckusick 	struct proc *p;
40343402Smckusick 	register struct args {
40412747Ssam 		short	*bufbase;
40512747Ssam 		unsigned bufsize;
40612747Ssam 		unsigned pcoffset;
40712747Ssam 		unsigned pcscale;
40843402Smckusick 	} *uap;
40943402Smckusick 	int *retval;
41043402Smckusick {
411*47546Skarels 	register struct uprof *upp = &p->p_stats->p_prof;
41212747Ssam 
41312747Ssam 	upp->pr_base = uap->bufbase;
41412747Ssam 	upp->pr_size = uap->bufsize;
41512747Ssam 	upp->pr_off = uap->pcoffset;
41612747Ssam 	upp->pr_scale = uap->pcscale;
41744404Skarels 	return (0);
41812747Ssam }
419