123366Smckusick /* 229086Smckusick * Copyright (c) 1982, 1986 Regents of the University of California. 323366Smckusick * All rights reserved. The Berkeley software License Agreement 423366Smckusick * specifies the terms and conditions for redistribution. 523366Smckusick * 6*40674Smarc * @(#)kern_clock.c 7.6 (Berkeley) 04/02/90 723366Smckusick */ 89Sbill 917088Sbloom #include "param.h" 1017088Sbloom #include "systm.h" 1129946Skarels #include "dkstat.h" 1217088Sbloom #include "callout.h" 1317088Sbloom #include "user.h" 1417088Sbloom #include "kernel.h" 1517088Sbloom #include "proc.h" 1617088Sbloom #include "vm.h" 1717088Sbloom #include "text.h" 189Sbill 1937493Smckusick #include "machine/reg.h" 2037493Smckusick #include "machine/psl.h" 2135406Skarels 2229946Skarels #if defined(vax) || defined(tahoe) 2337493Smckusick #include "machine/mtpr.h" 2437493Smckusick #include "machine/clock.h" 259751Ssam #endif 269751Ssam 2710291Smckusick #ifdef GPROF 2817088Sbloom #include "gprof.h" 2910291Smckusick #endif 3010291Smckusick 318124Sroot /* 328124Sroot * Clock handling routines. 338124Sroot * 3411392Ssam * This code is written to operate with two timers which run 3511392Ssam * independently of each other. The main clock, running at hz 3611392Ssam * times per second, is used to do scheduling and timeout calculations. 3711392Ssam * The second timer does resource utilization estimation statistically 3811392Ssam * based on the state of the machine phz times a second. Both functions 3911392Ssam * can be performed by a single clock (ie hz == phz), however the 4011392Ssam * statistics will be much more prone to errors. Ideally a machine 4111392Ssam * would have separate clocks measuring time spent in user state, system 4211392Ssam * state, interrupt state, and idle state. These clocks would allow a non- 4311392Ssam * approximate measure of resource utilization. 448124Sroot */ 451559Sbill 468124Sroot /* 478124Sroot * TODO: 4812747Ssam * time of day, system/user timing, timeouts, profiling on separate timers 4912747Ssam * allocate more timeout table slots when table overflows. 508124Sroot */ 5126265Skarels 5217007Smckusick /* 5317007Smckusick * Bump a timeval by a small number of usec's. 5417007Smckusick */ 5517007Smckusick #define BUMPTIME(t, usec) { \ 5617007Smckusick register struct timeval *tp = (t); \ 5717007Smckusick \ 5817007Smckusick tp->tv_usec += (usec); \ 5917007Smckusick if (tp->tv_usec >= 1000000) { \ 6017007Smckusick tp->tv_usec -= 1000000; \ 6117007Smckusick tp->tv_sec++; \ 6217007Smckusick } \ 6317007Smckusick } 6417007Smckusick 658124Sroot /* 6611392Ssam * The hz hardware interval timer. 6711392Ssam * We update the events relating to real time. 6811392Ssam * If this timer is also being used to gather statistics, 6911392Ssam * we run through the statistics gathering routine as well. 708124Sroot */ 712609Swnj /*ARGSUSED*/ 722442Swnj hardclock(pc, ps) 732450Swnj caddr_t pc; 748944Sroot int ps; 759Sbill { 762768Swnj register struct callout *p1; 77*40674Smarc register struct proc *p = u.u_procp; 7824524Sbloom register int s; 7916172Skarels int needsoft = 0; 8028947Skarels extern int tickdelta; 8128947Skarels extern long timedelta; 829Sbill 838124Sroot /* 848124Sroot * Update real-time timeout queue. 858124Sroot * At front of queue are some number of events which are ``due''. 868124Sroot * The time to these is <= 0 and if negative represents the 878124Sroot * number of ticks which have passed since it was supposed to happen. 888124Sroot * The rest of the q elements (times > 0) are events yet to happen, 898124Sroot * where the time for each is given as a delta from the previous. 908124Sroot * Decrementing just the first of these serves to decrement the time 918124Sroot * to all events. 928124Sroot */ 9312747Ssam p1 = calltodo.c_next; 9412747Ssam while (p1) { 9512747Ssam if (--p1->c_time > 0) 9612747Ssam break; 9716172Skarels needsoft = 1; 9812747Ssam if (p1->c_time == 0) 9912747Ssam break; 10012747Ssam p1 = p1->c_next; 10112747Ssam } 102138Sbill 1038124Sroot /* 1048124Sroot * Charge the time out based on the mode the cpu is in. 1058124Sroot * Here again we fudge for the lack of proper interval timers 1068124Sroot * assuming that the current state has been around at least 1078124Sroot * one tick. 1088124Sroot */ 1099Sbill if (USERMODE(ps)) { 11016172Skarels if (u.u_prof.pr_scale) 11116172Skarels needsoft = 1; 1128124Sroot /* 1138124Sroot * CPU was in user state. Increment 1148124Sroot * user time counter, and process process-virtual time 1159604Ssam * interval timer. 1168124Sroot */ 117*40674Smarc BUMPTIME(&p->p_utime, tick); 1188097Sroot if (timerisset(&u.u_timer[ITIMER_VIRTUAL].it_value) && 1198097Sroot itimerdecr(&u.u_timer[ITIMER_VIRTUAL], tick) == 0) 120*40674Smarc psignal(p, SIGVTALRM); 1219Sbill } else { 1228124Sroot /* 12324524Sbloom * CPU was in system state. 1248124Sroot */ 12526265Skarels if (!noproc) 126*40674Smarc BUMPTIME(&p->p_stime, tick); 1279Sbill } 1288097Sroot 1298124Sroot /* 13010388Ssam * If the cpu is currently scheduled to a process, then 13110388Ssam * charge it with resource utilization for a tick, updating 13210388Ssam * statistics which run in (user+system) virtual time, 13310388Ssam * such as the cpu time limit and profiling timers. 13410388Ssam * This assumes that the current process has been running 13510388Ssam * the entire last tick. 13610388Ssam */ 13718585Skarels if (noproc == 0) { 138*40674Smarc if ((p->p_utime.tv_sec+p->p_stime.tv_sec+1) > 13910388Ssam u.u_rlimit[RLIMIT_CPU].rlim_cur) { 140*40674Smarc psignal(p, SIGXCPU); 14110388Ssam if (u.u_rlimit[RLIMIT_CPU].rlim_cur < 14210388Ssam u.u_rlimit[RLIMIT_CPU].rlim_max) 14310388Ssam u.u_rlimit[RLIMIT_CPU].rlim_cur += 5; 14410388Ssam } 14510388Ssam if (timerisset(&u.u_timer[ITIMER_PROF].it_value) && 14610388Ssam itimerdecr(&u.u_timer[ITIMER_PROF], tick) == 0) 147*40674Smarc psignal(p, SIGPROF); 148*40674Smarc s = p->p_rssize; 14926265Skarels u.u_ru.ru_idrss += s; 15026265Skarels #ifdef notdef 15126265Skarels u.u_ru.ru_isrss += 0; /* XXX (haven't got this) */ 15226265Skarels #endif 153*40674Smarc if (p->p_textp) { 154*40674Smarc register int xrss = p->p_textp->x_rssize; 15510388Ssam 15610388Ssam s += xrss; 15710388Ssam u.u_ru.ru_ixrss += xrss; 15810388Ssam } 15910388Ssam if (s > u.u_ru.ru_maxrss) 16010388Ssam u.u_ru.ru_maxrss = s; 16110388Ssam } 16210388Ssam 16310388Ssam /* 1648124Sroot * We adjust the priority of the current process. 1658124Sroot * The priority of a process gets worse as it accumulates 1668124Sroot * CPU time. The cpu usage estimator (p_cpu) is increased here 1678124Sroot * and the formula for computing priorities (in kern_synch.c) 1688124Sroot * will compute a different value each time the p_cpu increases 1698124Sroot * by 4. The cpu usage estimator ramps up quite quickly when 1708124Sroot * the process is running (linearly), and decays away exponentially, 1718124Sroot * at a rate which is proportionally slower when the system is 1728124Sroot * busy. The basic principal is that the system will 90% forget 1738124Sroot * that a process used a lot of CPU time in 5*loadav seconds. 1748124Sroot * This causes the system to favor processes which haven't run 1758124Sroot * much recently, and to round-robin among other processes. 1768124Sroot */ 1779Sbill if (!noproc) { 1788097Sroot p->p_cpticks++; 1798097Sroot if (++p->p_cpu == 0) 1808097Sroot p->p_cpu--; 1818124Sroot if ((p->p_cpu&3) == 0) { 1828097Sroot (void) setpri(p); 1838097Sroot if (p->p_pri >= PUSER) 1848097Sroot p->p_pri = p->p_usrpri; 1859Sbill } 1869Sbill } 1878124Sroot 1888124Sroot /* 18911392Ssam * If the alternate clock has not made itself known then 19011392Ssam * we must gather the statistics. 19111392Ssam */ 19211392Ssam if (phz == 0) 19311392Ssam gatherstats(pc, ps); 19411392Ssam 19511392Ssam /* 1968124Sroot * Increment the time-of-day, and schedule 1978124Sroot * processing of the callouts at a very low cpu priority, 1988124Sroot * so we don't keep the relatively high clock interrupt 1998124Sroot * priority any longer than necessary. 2008124Sroot */ 20128828Skarels if (timedelta == 0) 20217356Skarels BUMPTIME(&time, tick) 20317356Skarels else { 20417356Skarels register delta; 20517356Skarels 20628828Skarels if (timedelta < 0) { 20728828Skarels delta = tick - tickdelta; 20828828Skarels timedelta += tickdelta; 20917356Skarels } else { 21028828Skarels delta = tick + tickdelta; 21128828Skarels timedelta -= tickdelta; 21217356Skarels } 21317356Skarels BUMPTIME(&time, delta); 21417356Skarels } 21516525Skarels if (needsoft) { 21616525Skarels if (BASEPRI(ps)) { 21716525Skarels /* 21816525Skarels * Save the overhead of a software interrupt; 21916525Skarels * it will happen as soon as we return, so do it now. 22016525Skarels */ 22116525Skarels (void) splsoftclock(); 22216525Skarels softclock(pc, ps); 22316525Skarels } else 22416525Skarels setsoftclock(); 22516525Skarels } 2262442Swnj } 2272442Swnj 22815191Ssam int dk_ndrive = DK_NDRIVE; 2298124Sroot /* 23011392Ssam * Gather statistics on resource utilization. 23111392Ssam * 23211392Ssam * We make a gross assumption: that the system has been in the 23311392Ssam * state it is in (user state, kernel state, interrupt state, 23411392Ssam * or idle state) for the entire last time interval, and 23511392Ssam * update statistics accordingly. 23611392Ssam */ 23712747Ssam /*ARGSUSED*/ 23811392Ssam gatherstats(pc, ps) 23911392Ssam caddr_t pc; 24011392Ssam int ps; 24111392Ssam { 24226265Skarels register int cpstate, s; 24311392Ssam 24411392Ssam /* 24511392Ssam * Determine what state the cpu is in. 24611392Ssam */ 24711392Ssam if (USERMODE(ps)) { 24811392Ssam /* 24911392Ssam * CPU was in user state. 25011392Ssam */ 25111392Ssam if (u.u_procp->p_nice > NZERO) 25211392Ssam cpstate = CP_NICE; 25311392Ssam else 25411392Ssam cpstate = CP_USER; 25511392Ssam } else { 25611392Ssam /* 25711392Ssam * CPU was in system state. If profiling kernel 25824524Sbloom * increment a counter. If no process is running 25924524Sbloom * then this is a system tick if we were running 26024524Sbloom * at a non-zero IPL (in a driver). If a process is running, 26124524Sbloom * then we charge it with system time even if we were 26224524Sbloom * at a non-zero IPL, since the system often runs 26324524Sbloom * this way during processing of system calls. 26424524Sbloom * This is approximate, but the lack of true interval 26524524Sbloom * timers makes doing anything else difficult. 26611392Ssam */ 26711392Ssam cpstate = CP_SYS; 26811392Ssam if (noproc && BASEPRI(ps)) 26911392Ssam cpstate = CP_IDLE; 27011392Ssam #ifdef GPROF 27111392Ssam s = pc - s_lowpc; 27211392Ssam if (profiling < 2 && s < s_textsize) 27311392Ssam kcount[s / (HISTFRACTION * sizeof (*kcount))]++; 27411392Ssam #endif 27511392Ssam } 27611392Ssam /* 27711392Ssam * We maintain statistics shown by user-level statistics 27811392Ssam * programs: the amount of time in each cpu state, and 27911392Ssam * the amount of time each of DK_NDRIVE ``drives'' is busy. 28011392Ssam */ 28111392Ssam cp_time[cpstate]++; 28211392Ssam for (s = 0; s < DK_NDRIVE; s++) 28329946Skarels if (dk_busy&(1<<s)) 28411392Ssam dk_time[s]++; 28511392Ssam } 28611392Ssam 28711392Ssam /* 2888124Sroot * Software priority level clock interrupt. 2898124Sroot * Run periodic events from timeout queue. 2908124Sroot */ 2912609Swnj /*ARGSUSED*/ 2922442Swnj softclock(pc, ps) 2932450Swnj caddr_t pc; 2948944Sroot int ps; 2952442Swnj { 2962442Swnj 2978097Sroot for (;;) { 2988124Sroot register struct callout *p1; 2998124Sroot register caddr_t arg; 3008124Sroot register int (*func)(); 3018124Sroot register int a, s; 3028124Sroot 30326265Skarels s = splhigh(); 3048097Sroot if ((p1 = calltodo.c_next) == 0 || p1->c_time > 0) { 3058097Sroot splx(s); 3068097Sroot break; 3072442Swnj } 3088124Sroot arg = p1->c_arg; func = p1->c_func; a = p1->c_time; 3098097Sroot calltodo.c_next = p1->c_next; 3108097Sroot p1->c_next = callfree; 3118097Sroot callfree = p1; 3129157Ssam splx(s); 3138112Sroot (*func)(arg, a); 3142442Swnj } 3159604Ssam /* 31613127Ssam * If trapped user-mode and profiling, give it 31713127Ssam * a profiling tick. 3189604Ssam */ 31913127Ssam if (USERMODE(ps)) { 32013127Ssam register struct proc *p = u.u_procp; 32113127Ssam 32213127Ssam if (u.u_prof.pr_scale) { 32313127Ssam p->p_flag |= SOWEUPC; 32413127Ssam aston(); 32513127Ssam } 32613127Ssam /* 32713127Ssam * Check to see if process has accumulated 32813127Ssam * more than 10 minutes of user time. If so 32913127Ssam * reduce priority to give others a chance. 33013127Ssam */ 33113127Ssam if (p->p_uid && p->p_nice == NZERO && 332*40674Smarc p->p_utime.tv_sec > 10 * 60) { 33313127Ssam p->p_nice = NZERO+4; 33413127Ssam (void) setpri(p); 33513127Ssam p->p_pri = p->p_usrpri; 33613127Ssam } 3379604Ssam } 3389Sbill } 3399Sbill 3409Sbill /* 34112747Ssam * Arrange that (*fun)(arg) is called in t/hz seconds. 34212747Ssam */ 34312747Ssam timeout(fun, arg, t) 3442450Swnj int (*fun)(); 3452450Swnj caddr_t arg; 34612747Ssam register int t; 3479Sbill { 3483542Swnj register struct callout *p1, *p2, *pnew; 34926265Skarels register int s = splhigh(); 3509Sbill 35118282Smckusick if (t <= 0) 35212747Ssam t = 1; 3533542Swnj pnew = callfree; 3543542Swnj if (pnew == NULL) 3553542Swnj panic("timeout table overflow"); 3563542Swnj callfree = pnew->c_next; 3573542Swnj pnew->c_arg = arg; 3583542Swnj pnew->c_func = fun; 3593542Swnj for (p1 = &calltodo; (p2 = p1->c_next) && p2->c_time < t; p1 = p2) 3609742Ssam if (p2->c_time > 0) 3619742Ssam t -= p2->c_time; 3623542Swnj p1->c_next = pnew; 3633542Swnj pnew->c_next = p2; 3643542Swnj pnew->c_time = t; 3653542Swnj if (p2) 3663542Swnj p2->c_time -= t; 3679Sbill splx(s); 3689Sbill } 3697305Ssam 3707305Ssam /* 3717305Ssam * untimeout is called to remove a function timeout call 3727305Ssam * from the callout structure. 3737305Ssam */ 3748097Sroot untimeout(fun, arg) 3757305Ssam int (*fun)(); 3767305Ssam caddr_t arg; 3777305Ssam { 3787305Ssam register struct callout *p1, *p2; 3797305Ssam register int s; 3807305Ssam 38126265Skarels s = splhigh(); 3827305Ssam for (p1 = &calltodo; (p2 = p1->c_next) != 0; p1 = p2) { 3837305Ssam if (p2->c_func == fun && p2->c_arg == arg) { 3848112Sroot if (p2->c_next && p2->c_time > 0) 3857305Ssam p2->c_next->c_time += p2->c_time; 3867305Ssam p1->c_next = p2->c_next; 3877305Ssam p2->c_next = callfree; 3887305Ssam callfree = p2; 3897305Ssam break; 3907305Ssam } 3917305Ssam } 3927305Ssam splx(s); 3937305Ssam } 3948112Sroot 3958124Sroot /* 3968124Sroot * Compute number of hz until specified time. 3978124Sroot * Used to compute third argument to timeout() from an 3988124Sroot * absolute time. 3998124Sroot */ 4008112Sroot hzto(tv) 4018112Sroot struct timeval *tv; 4028112Sroot { 4038124Sroot register long ticks; 4048124Sroot register long sec; 40526265Skarels int s = splhigh(); 4068112Sroot 4078124Sroot /* 4088124Sroot * If number of milliseconds will fit in 32 bit arithmetic, 4098124Sroot * then compute number of milliseconds to time and scale to 4108124Sroot * ticks. Otherwise just compute number of hz in time, rounding 4118124Sroot * times greater than representible to maximum value. 4128124Sroot * 4138124Sroot * Delta times less than 25 days can be computed ``exactly''. 4148124Sroot * Maximum value for any timeout in 10ms ticks is 250 days. 4158124Sroot */ 4168124Sroot sec = tv->tv_sec - time.tv_sec; 4178124Sroot if (sec <= 0x7fffffff / 1000 - 1000) 4188124Sroot ticks = ((tv->tv_sec - time.tv_sec) * 1000 + 4198124Sroot (tv->tv_usec - time.tv_usec) / 1000) / (tick / 1000); 4208124Sroot else if (sec <= 0x7fffffff / hz) 4218124Sroot ticks = sec * hz; 4228124Sroot else 4238124Sroot ticks = 0x7fffffff; 4248112Sroot splx(s); 4258112Sroot return (ticks); 4268112Sroot } 42712747Ssam 42812747Ssam profil() 42912747Ssam { 43012747Ssam register struct a { 43112747Ssam short *bufbase; 43212747Ssam unsigned bufsize; 43312747Ssam unsigned pcoffset; 43412747Ssam unsigned pcscale; 43512747Ssam } *uap = (struct a *)u.u_ap; 43612747Ssam register struct uprof *upp = &u.u_prof; 43712747Ssam 43812747Ssam upp->pr_base = uap->bufbase; 43912747Ssam upp->pr_size = uap->bufsize; 44012747Ssam upp->pr_off = uap->pcoffset; 44112747Ssam upp->pr_scale = uap->pcscale; 44212747Ssam } 443