xref: /csrg-svn/sys/kern/kern_clock.c (revision 24524)
123366Smckusick /*
223366Smckusick  * Copyright (c) 1982 Regents of the University of California.
323366Smckusick  * All rights reserved.  The Berkeley software License Agreement
423366Smckusick  * specifies the terms and conditions for redistribution.
523366Smckusick  *
6*24524Sbloom  *	@(#)kern_clock.c	6.14 (Berkeley) 09/04/85
723366Smckusick  */
89Sbill 
99751Ssam #include "../machine/reg.h"
109751Ssam #include "../machine/psl.h"
119751Ssam 
1217088Sbloom #include "param.h"
1317088Sbloom #include "systm.h"
1417088Sbloom #include "dk.h"
1517088Sbloom #include "callout.h"
1617088Sbloom #include "dir.h"
1717088Sbloom #include "user.h"
1817088Sbloom #include "kernel.h"
1917088Sbloom #include "proc.h"
2017088Sbloom #include "vm.h"
2117088Sbloom #include "text.h"
229Sbill 
239751Ssam #ifdef vax
249751Ssam #include "../vax/mtpr.h"
259751Ssam #endif
269751Ssam 
2710291Smckusick #ifdef GPROF
2817088Sbloom #include "gprof.h"
2910291Smckusick #endif
3010291Smckusick 
318124Sroot /*
328124Sroot  * Clock handling routines.
338124Sroot  *
3411392Ssam  * This code is written to operate with two timers which run
3511392Ssam  * independently of each other. The main clock, running at hz
3611392Ssam  * times per second, is used to do scheduling and timeout calculations.
3711392Ssam  * The second timer does resource utilization estimation statistically
3811392Ssam  * based on the state of the machine phz times a second. Both functions
3911392Ssam  * can be performed by a single clock (ie hz == phz), however the
4011392Ssam  * statistics will be much more prone to errors. Ideally a machine
4111392Ssam  * would have separate clocks measuring time spent in user state, system
4211392Ssam  * state, interrupt state, and idle state. These clocks would allow a non-
4311392Ssam  * approximate measure of resource utilization.
448124Sroot  */
451559Sbill 
468124Sroot /*
478124Sroot  * TODO:
4812747Ssam  *	time of day, system/user timing, timeouts, profiling on separate timers
4912747Ssam  *	allocate more timeout table slots when table overflows.
508124Sroot  */
5117007Smckusick #ifdef notdef
5217007Smckusick /*
5317007Smckusick  * Bump a timeval by a small number of usec's.
5417007Smckusick  */
5517007Smckusick bumptime(tp, usec)
5617007Smckusick 	register struct timeval *tp;
5717007Smckusick 	int usec;
5817007Smckusick {
599Sbill 
6017007Smckusick 	tp->tv_usec += usec;
6117007Smckusick 	if (tp->tv_usec >= 1000000) {
6217007Smckusick 		tp->tv_usec -= 1000000;
6317007Smckusick 		tp->tv_sec++;
6417007Smckusick 	}
6517007Smckusick }
6617007Smckusick #endif notdef
6717007Smckusick #define BUMPTIME(t, usec) { \
6817007Smckusick 	register struct timeval *tp = (t); \
6917007Smckusick  \
7017007Smckusick 	tp->tv_usec += (usec); \
7117007Smckusick 	if (tp->tv_usec >= 1000000) { \
7217007Smckusick 		tp->tv_usec -= 1000000; \
7317007Smckusick 		tp->tv_sec++; \
7417007Smckusick 	} \
7517007Smckusick }
7617007Smckusick 
778124Sroot /*
7811392Ssam  * The hz hardware interval timer.
7911392Ssam  * We update the events relating to real time.
8011392Ssam  * If this timer is also being used to gather statistics,
8111392Ssam  * we run through the statistics gathering routine as well.
828124Sroot  */
832609Swnj /*ARGSUSED*/
842442Swnj hardclock(pc, ps)
852450Swnj 	caddr_t pc;
868944Sroot 	int ps;
879Sbill {
882768Swnj 	register struct callout *p1;
898097Sroot 	register struct proc *p;
90*24524Sbloom 	register int s;
9116172Skarels 	int needsoft = 0;
9217356Skarels 	extern int adjtimedelta, tickadj;
939Sbill 
948124Sroot 	/*
958124Sroot 	 * Update real-time timeout queue.
968124Sroot 	 * At front of queue are some number of events which are ``due''.
978124Sroot 	 * The time to these is <= 0 and if negative represents the
988124Sroot 	 * number of ticks which have passed since it was supposed to happen.
998124Sroot 	 * The rest of the q elements (times > 0) are events yet to happen,
1008124Sroot 	 * where the time for each is given as a delta from the previous.
1018124Sroot 	 * Decrementing just the first of these serves to decrement the time
1028124Sroot 	 * to all events.
1038124Sroot 	 */
10412747Ssam 	p1 = calltodo.c_next;
10512747Ssam 	while (p1) {
10612747Ssam 		if (--p1->c_time > 0)
10712747Ssam 			break;
10816172Skarels 		needsoft = 1;
10912747Ssam 		if (p1->c_time == 0)
11012747Ssam 			break;
11112747Ssam 		p1 = p1->c_next;
11212747Ssam 	}
113138Sbill 
1148124Sroot 	/*
1158124Sroot 	 * Charge the time out based on the mode the cpu is in.
1168124Sroot 	 * Here again we fudge for the lack of proper interval timers
1178124Sroot 	 * assuming that the current state has been around at least
1188124Sroot 	 * one tick.
1198124Sroot 	 */
1209Sbill 	if (USERMODE(ps)) {
12116172Skarels 		if (u.u_prof.pr_scale)
12216172Skarels 			needsoft = 1;
1238124Sroot 		/*
1248124Sroot 		 * CPU was in user state.  Increment
1258124Sroot 		 * user time counter, and process process-virtual time
1269604Ssam 		 * interval timer.
1278124Sroot 		 */
12817007Smckusick 		BUMPTIME(&u.u_ru.ru_utime, tick);
1298097Sroot 		if (timerisset(&u.u_timer[ITIMER_VIRTUAL].it_value) &&
1308097Sroot 		    itimerdecr(&u.u_timer[ITIMER_VIRTUAL], tick) == 0)
1318097Sroot 			psignal(u.u_procp, SIGVTALRM);
1329Sbill 	} else {
1338124Sroot 		/*
134*24524Sbloom 		 * CPU was in system state.
1358124Sroot 		 */
136*24524Sbloom 		if (! noproc) {
13717007Smckusick 			BUMPTIME(&u.u_ru.ru_stime, tick);
1388028Sroot 		}
1399Sbill 	}
1408097Sroot 
1418124Sroot 	/*
14210388Ssam 	 * If the cpu is currently scheduled to a process, then
14310388Ssam 	 * charge it with resource utilization for a tick, updating
14410388Ssam 	 * statistics which run in (user+system) virtual time,
14510388Ssam 	 * such as the cpu time limit and profiling timers.
14610388Ssam 	 * This assumes that the current process has been running
14710388Ssam 	 * the entire last tick.
14810388Ssam 	 */
14918585Skarels 	if (noproc == 0) {
15010388Ssam 		if ((u.u_ru.ru_utime.tv_sec+u.u_ru.ru_stime.tv_sec+1) >
15110388Ssam 		    u.u_rlimit[RLIMIT_CPU].rlim_cur) {
15210388Ssam 			psignal(u.u_procp, SIGXCPU);
15310388Ssam 			if (u.u_rlimit[RLIMIT_CPU].rlim_cur <
15410388Ssam 			    u.u_rlimit[RLIMIT_CPU].rlim_max)
15510388Ssam 				u.u_rlimit[RLIMIT_CPU].rlim_cur += 5;
15610388Ssam 		}
15710388Ssam 		if (timerisset(&u.u_timer[ITIMER_PROF].it_value) &&
15810388Ssam 		    itimerdecr(&u.u_timer[ITIMER_PROF], tick) == 0)
15910388Ssam 			psignal(u.u_procp, SIGPROF);
16010388Ssam 		s = u.u_procp->p_rssize;
16110388Ssam 		u.u_ru.ru_idrss += s; u.u_ru.ru_isrss += 0;	/* XXX */
16210388Ssam 		if (u.u_procp->p_textp) {
16310388Ssam 			register int xrss = u.u_procp->p_textp->x_rssize;
16410388Ssam 
16510388Ssam 			s += xrss;
16610388Ssam 			u.u_ru.ru_ixrss += xrss;
16710388Ssam 		}
16810388Ssam 		if (s > u.u_ru.ru_maxrss)
16910388Ssam 			u.u_ru.ru_maxrss = s;
17010388Ssam 	}
17110388Ssam 
17210388Ssam 	/*
1738124Sroot 	 * We adjust the priority of the current process.
1748124Sroot 	 * The priority of a process gets worse as it accumulates
1758124Sroot 	 * CPU time.  The cpu usage estimator (p_cpu) is increased here
1768124Sroot 	 * and the formula for computing priorities (in kern_synch.c)
1778124Sroot 	 * will compute a different value each time the p_cpu increases
1788124Sroot 	 * by 4.  The cpu usage estimator ramps up quite quickly when
1798124Sroot 	 * the process is running (linearly), and decays away exponentially,
1808124Sroot 	 * at a rate which is proportionally slower when the system is
1818124Sroot 	 * busy.  The basic principal is that the system will 90% forget
1828124Sroot 	 * that a process used a lot of CPU time in 5*loadav seconds.
1838124Sroot 	 * This causes the system to favor processes which haven't run
1848124Sroot 	 * much recently, and to round-robin among other processes.
1858124Sroot 	 */
1869Sbill 	if (!noproc) {
1878097Sroot 		p = u.u_procp;
1888097Sroot 		p->p_cpticks++;
1898097Sroot 		if (++p->p_cpu == 0)
1908097Sroot 			p->p_cpu--;
1918124Sroot 		if ((p->p_cpu&3) == 0) {
1928097Sroot 			(void) setpri(p);
1938097Sroot 			if (p->p_pri >= PUSER)
1948097Sroot 				p->p_pri = p->p_usrpri;
1959Sbill 		}
1969Sbill 	}
1978124Sroot 
1988124Sroot 	/*
19911392Ssam 	 * If the alternate clock has not made itself known then
20011392Ssam 	 * we must gather the statistics.
20111392Ssam 	 */
20211392Ssam 	if (phz == 0)
20311392Ssam 		gatherstats(pc, ps);
20411392Ssam 
20511392Ssam 	/*
2068124Sroot 	 * Increment the time-of-day, and schedule
2078124Sroot 	 * processing of the callouts at a very low cpu priority,
2088124Sroot 	 * so we don't keep the relatively high clock interrupt
2098124Sroot 	 * priority any longer than necessary.
2108124Sroot 	 */
21117356Skarels 	if (adjtimedelta == 0)
21217356Skarels 		BUMPTIME(&time, tick)
21317356Skarels 	else {
21417356Skarels 		register delta;
21517356Skarels 
21617356Skarels 		if (adjtimedelta < 0) {
21717356Skarels 			delta = tick - tickadj;
21817356Skarels 			adjtimedelta += tickadj;
21917356Skarels 		} else {
22017356Skarels 			delta = tick + tickadj;
22117356Skarels 			adjtimedelta -= tickadj;
22217356Skarels 		}
22317356Skarels 		BUMPTIME(&time, delta);
22417356Skarels 	}
22516525Skarels 	if (needsoft) {
22616525Skarels 		if (BASEPRI(ps)) {
22716525Skarels 			/*
22816525Skarels 			 * Save the overhead of a software interrupt;
22916525Skarels 			 * it will happen as soon as we return, so do it now.
23016525Skarels 			 */
23116525Skarels 			(void) splsoftclock();
23216525Skarels 			softclock(pc, ps);
23316525Skarels 		} else
23416525Skarels 			setsoftclock();
23516525Skarels 	}
2362442Swnj }
2372442Swnj 
23815191Ssam int	dk_ndrive = DK_NDRIVE;
2398124Sroot /*
24011392Ssam  * Gather statistics on resource utilization.
24111392Ssam  *
24211392Ssam  * We make a gross assumption: that the system has been in the
24311392Ssam  * state it is in (user state, kernel state, interrupt state,
24411392Ssam  * or idle state) for the entire last time interval, and
24511392Ssam  * update statistics accordingly.
24611392Ssam  */
24712747Ssam /*ARGSUSED*/
24811392Ssam gatherstats(pc, ps)
24911392Ssam 	caddr_t pc;
25011392Ssam 	int ps;
25111392Ssam {
25211392Ssam 	int cpstate, s;
25311392Ssam 
25411392Ssam 	/*
25511392Ssam 	 * Determine what state the cpu is in.
25611392Ssam 	 */
25711392Ssam 	if (USERMODE(ps)) {
25811392Ssam 		/*
25911392Ssam 		 * CPU was in user state.
26011392Ssam 		 */
26111392Ssam 		if (u.u_procp->p_nice > NZERO)
26211392Ssam 			cpstate = CP_NICE;
26311392Ssam 		else
26411392Ssam 			cpstate = CP_USER;
26511392Ssam 	} else {
26611392Ssam 		/*
26711392Ssam 		 * CPU was in system state.  If profiling kernel
268*24524Sbloom 		 * increment a counter.  If no process is running
269*24524Sbloom 		 * then this is a system tick if we were running
270*24524Sbloom 		 * at a non-zero IPL (in a driver).  If a process is running,
271*24524Sbloom 		 * then we charge it with system time even if we were
272*24524Sbloom 		 * at a non-zero IPL, since the system often runs
273*24524Sbloom 		 * this way during processing of system calls.
274*24524Sbloom 		 * This is approximate, but the lack of true interval
275*24524Sbloom 		 * timers makes doing anything else difficult.
27611392Ssam 		 */
27711392Ssam 		cpstate = CP_SYS;
27811392Ssam 		if (noproc && BASEPRI(ps))
27911392Ssam 			cpstate = CP_IDLE;
28011392Ssam #ifdef GPROF
28111392Ssam 		s = pc - s_lowpc;
28211392Ssam 		if (profiling < 2 && s < s_textsize)
28311392Ssam 			kcount[s / (HISTFRACTION * sizeof (*kcount))]++;
28411392Ssam #endif
28511392Ssam 	}
28611392Ssam 	/*
28711392Ssam 	 * We maintain statistics shown by user-level statistics
28811392Ssam 	 * programs:  the amount of time in each cpu state, and
28911392Ssam 	 * the amount of time each of DK_NDRIVE ``drives'' is busy.
29011392Ssam 	 */
29111392Ssam 	cp_time[cpstate]++;
29211392Ssam 	for (s = 0; s < DK_NDRIVE; s++)
29311392Ssam 		if (dk_busy&(1<<s))
29411392Ssam 			dk_time[s]++;
29511392Ssam }
29611392Ssam 
29711392Ssam /*
2988124Sroot  * Software priority level clock interrupt.
2998124Sroot  * Run periodic events from timeout queue.
3008124Sroot  */
3012609Swnj /*ARGSUSED*/
3022442Swnj softclock(pc, ps)
3032450Swnj 	caddr_t pc;
3048944Sroot 	int ps;
3052442Swnj {
3062442Swnj 
3078097Sroot 	for (;;) {
3088124Sroot 		register struct callout *p1;
3098124Sroot 		register caddr_t arg;
3108124Sroot 		register int (*func)();
3118124Sroot 		register int a, s;
3128124Sroot 
3138097Sroot 		s = spl7();
3148097Sroot 		if ((p1 = calltodo.c_next) == 0 || p1->c_time > 0) {
3158097Sroot 			splx(s);
3168097Sroot 			break;
3172442Swnj 		}
3188124Sroot 		arg = p1->c_arg; func = p1->c_func; a = p1->c_time;
3198097Sroot 		calltodo.c_next = p1->c_next;
3208097Sroot 		p1->c_next = callfree;
3218097Sroot 		callfree = p1;
3229157Ssam 		splx(s);
3238112Sroot 		(*func)(arg, a);
3242442Swnj 	}
3259604Ssam 	/*
32613127Ssam 	 * If trapped user-mode and profiling, give it
32713127Ssam 	 * a profiling tick.
3289604Ssam 	 */
32913127Ssam 	if (USERMODE(ps)) {
33013127Ssam 		register struct proc *p = u.u_procp;
33113127Ssam 
33213127Ssam 		if (u.u_prof.pr_scale) {
33313127Ssam 			p->p_flag |= SOWEUPC;
33413127Ssam 			aston();
33513127Ssam 		}
33613127Ssam 		/*
33713127Ssam 		 * Check to see if process has accumulated
33813127Ssam 		 * more than 10 minutes of user time.  If so
33913127Ssam 		 * reduce priority to give others a chance.
34013127Ssam 		 */
34113127Ssam 		if (p->p_uid && p->p_nice == NZERO &&
34213127Ssam 		    u.u_ru.ru_utime.tv_sec > 10 * 60) {
34313127Ssam 			p->p_nice = NZERO+4;
34413127Ssam 			(void) setpri(p);
34513127Ssam 			p->p_pri = p->p_usrpri;
34613127Ssam 		}
3479604Ssam 	}
3489Sbill }
3499Sbill 
3509Sbill /*
35112747Ssam  * Arrange that (*fun)(arg) is called in t/hz seconds.
35212747Ssam  */
35312747Ssam timeout(fun, arg, t)
3542450Swnj 	int (*fun)();
3552450Swnj 	caddr_t arg;
35612747Ssam 	register int t;
3579Sbill {
3583542Swnj 	register struct callout *p1, *p2, *pnew;
35912747Ssam 	register int s = spl7();
3609Sbill 
36118282Smckusick 	if (t <= 0)
36212747Ssam 		t = 1;
3633542Swnj 	pnew = callfree;
3643542Swnj 	if (pnew == NULL)
3653542Swnj 		panic("timeout table overflow");
3663542Swnj 	callfree = pnew->c_next;
3673542Swnj 	pnew->c_arg = arg;
3683542Swnj 	pnew->c_func = fun;
3693542Swnj 	for (p1 = &calltodo; (p2 = p1->c_next) && p2->c_time < t; p1 = p2)
3709742Ssam 		if (p2->c_time > 0)
3719742Ssam 			t -= p2->c_time;
3723542Swnj 	p1->c_next = pnew;
3733542Swnj 	pnew->c_next = p2;
3743542Swnj 	pnew->c_time = t;
3753542Swnj 	if (p2)
3763542Swnj 		p2->c_time -= t;
3779Sbill 	splx(s);
3789Sbill }
3797305Ssam 
3807305Ssam /*
3817305Ssam  * untimeout is called to remove a function timeout call
3827305Ssam  * from the callout structure.
3837305Ssam  */
3848097Sroot untimeout(fun, arg)
3857305Ssam 	int (*fun)();
3867305Ssam 	caddr_t arg;
3877305Ssam {
3887305Ssam 	register struct callout *p1, *p2;
3897305Ssam 	register int s;
3907305Ssam 
3917305Ssam 	s = spl7();
3927305Ssam 	for (p1 = &calltodo; (p2 = p1->c_next) != 0; p1 = p2) {
3937305Ssam 		if (p2->c_func == fun && p2->c_arg == arg) {
3948112Sroot 			if (p2->c_next && p2->c_time > 0)
3957305Ssam 				p2->c_next->c_time += p2->c_time;
3967305Ssam 			p1->c_next = p2->c_next;
3977305Ssam 			p2->c_next = callfree;
3987305Ssam 			callfree = p2;
3997305Ssam 			break;
4007305Ssam 		}
4017305Ssam 	}
4027305Ssam 	splx(s);
4037305Ssam }
4048112Sroot 
4058124Sroot /*
4068124Sroot  * Compute number of hz until specified time.
4078124Sroot  * Used to compute third argument to timeout() from an
4088124Sroot  * absolute time.
4098124Sroot  */
4108112Sroot hzto(tv)
4118112Sroot 	struct timeval *tv;
4128112Sroot {
4138124Sroot 	register long ticks;
4148124Sroot 	register long sec;
4158112Sroot 	int s = spl7();
4168112Sroot 
4178124Sroot 	/*
4188124Sroot 	 * If number of milliseconds will fit in 32 bit arithmetic,
4198124Sroot 	 * then compute number of milliseconds to time and scale to
4208124Sroot 	 * ticks.  Otherwise just compute number of hz in time, rounding
4218124Sroot 	 * times greater than representible to maximum value.
4228124Sroot 	 *
4238124Sroot 	 * Delta times less than 25 days can be computed ``exactly''.
4248124Sroot 	 * Maximum value for any timeout in 10ms ticks is 250 days.
4258124Sroot 	 */
4268124Sroot 	sec = tv->tv_sec - time.tv_sec;
4278124Sroot 	if (sec <= 0x7fffffff / 1000 - 1000)
4288124Sroot 		ticks = ((tv->tv_sec - time.tv_sec) * 1000 +
4298124Sroot 			(tv->tv_usec - time.tv_usec) / 1000) / (tick / 1000);
4308124Sroot 	else if (sec <= 0x7fffffff / hz)
4318124Sroot 		ticks = sec * hz;
4328124Sroot 	else
4338124Sroot 		ticks = 0x7fffffff;
4348112Sroot 	splx(s);
4358112Sroot 	return (ticks);
4368112Sroot }
43712747Ssam 
43812747Ssam profil()
43912747Ssam {
44012747Ssam 	register struct a {
44112747Ssam 		short	*bufbase;
44212747Ssam 		unsigned bufsize;
44312747Ssam 		unsigned pcoffset;
44412747Ssam 		unsigned pcscale;
44512747Ssam 	} *uap = (struct a *)u.u_ap;
44612747Ssam 	register struct uprof *upp = &u.u_prof;
44712747Ssam 
44812747Ssam 	upp->pr_base = uap->bufbase;
44912747Ssam 	upp->pr_size = uap->bufsize;
45012747Ssam 	upp->pr_off = uap->pcoffset;
45112747Ssam 	upp->pr_scale = uap->pcscale;
45212747Ssam }
45312747Ssam 
45412747Ssam opause()
45512747Ssam {
45612747Ssam 
45712747Ssam 	for (;;)
45812747Ssam 		sleep((caddr_t)&u, PSLEP);
45912747Ssam }
460