xref: /csrg-svn/sys/kern/kern_clock.c (revision 13127)
1*13127Ssam /*	kern_clock.c	4.56	83/06/14	*/
29Sbill 
39751Ssam #include "../machine/reg.h"
49751Ssam #include "../machine/psl.h"
59751Ssam 
69Sbill #include "../h/param.h"
79Sbill #include "../h/systm.h"
8329Sbill #include "../h/dk.h"
92768Swnj #include "../h/callout.h"
109Sbill #include "../h/dir.h"
119Sbill #include "../h/user.h"
128028Sroot #include "../h/kernel.h"
139Sbill #include "../h/proc.h"
149Sbill #include "../h/vm.h"
159Sbill #include "../h/text.h"
169Sbill 
179751Ssam #ifdef vax
189751Ssam #include "../vax/mtpr.h"
199751Ssam #endif
209751Ssam 
2110291Smckusick #ifdef GPROF
2210291Smckusick #include "../h/gprof.h"
2310291Smckusick #endif
2410291Smckusick 
258124Sroot /*
268124Sroot  * Clock handling routines.
278124Sroot  *
2811392Ssam  * This code is written to operate with two timers which run
2911392Ssam  * independently of each other. The main clock, running at hz
3011392Ssam  * times per second, is used to do scheduling and timeout calculations.
3111392Ssam  * The second timer does resource utilization estimation statistically
3211392Ssam  * based on the state of the machine phz times a second. Both functions
3311392Ssam  * can be performed by a single clock (ie hz == phz), however the
3411392Ssam  * statistics will be much more prone to errors. Ideally a machine
3511392Ssam  * would have separate clocks measuring time spent in user state, system
3611392Ssam  * state, interrupt state, and idle state. These clocks would allow a non-
3711392Ssam  * approximate measure of resource utilization.
388124Sroot  */
391559Sbill 
408124Sroot /*
418124Sroot  * TODO:
4212747Ssam  *	time of day, system/user timing, timeouts, profiling on separate timers
4312747Ssam  *	allocate more timeout table slots when table overflows.
448124Sroot  */
459Sbill 
468124Sroot /*
4711392Ssam  * The hz hardware interval timer.
4811392Ssam  * We update the events relating to real time.
4911392Ssam  * If this timer is also being used to gather statistics,
5011392Ssam  * we run through the statistics gathering routine as well.
518124Sroot  */
522609Swnj /*ARGSUSED*/
538965Sroot #ifdef vax
542442Swnj hardclock(pc, ps)
552450Swnj 	caddr_t pc;
568944Sroot 	int ps;
579Sbill {
588944Sroot #endif
598965Sroot #ifdef sun
608944Sroot hardclock(regs)
618944Sroot 	struct regs regs;
628944Sroot {
6312747Ssam #define	ps	regs.r_sr
6412747Ssam #define	pc	(caddr_t)regs.r_pc
658944Sroot #endif
662768Swnj 	register struct callout *p1;
678097Sroot 	register struct proc *p;
682442Swnj 	register int s, cpstate;
6912747Ssam 	int needsoft = 0;
709Sbill 
718124Sroot 	/*
728124Sroot 	 * Update real-time timeout queue.
738124Sroot 	 * At front of queue are some number of events which are ``due''.
748124Sroot 	 * The time to these is <= 0 and if negative represents the
758124Sroot 	 * number of ticks which have passed since it was supposed to happen.
768124Sroot 	 * The rest of the q elements (times > 0) are events yet to happen,
778124Sroot 	 * where the time for each is given as a delta from the previous.
788124Sroot 	 * Decrementing just the first of these serves to decrement the time
798124Sroot 	 * to all events.
808124Sroot 	 */
8112747Ssam 	p1 = calltodo.c_next;
8212747Ssam 	while (p1) {
8312747Ssam 		if (--p1->c_time > 0)
8412747Ssam 			break;
8512747Ssam 		needsoft = 1;
8612747Ssam 		if (p1->c_time == 0)
8712747Ssam 			break;
8812747Ssam 		p1 = p1->c_next;
8912747Ssam 	}
90138Sbill 
918124Sroot 	/*
928124Sroot 	 * Charge the time out based on the mode the cpu is in.
938124Sroot 	 * Here again we fudge for the lack of proper interval timers
948124Sroot 	 * assuming that the current state has been around at least
958124Sroot 	 * one tick.
968124Sroot 	 */
979Sbill 	if (USERMODE(ps)) {
9812747Ssam #ifdef sun
9912747Ssam 		u.u_ar0 = &regs.r_r0;	/* aston needs ar0 */
10012747Ssam #endif
10112747Ssam 		if (u.u_prof.pr_scale)
10212747Ssam 			needsoft = 1;
1038124Sroot 		/*
1048124Sroot 		 * CPU was in user state.  Increment
1058124Sroot 		 * user time counter, and process process-virtual time
1069604Ssam 		 * interval timer.
1078124Sroot 		 */
1088124Sroot 		bumptime(&u.u_ru.ru_utime, tick);
1098097Sroot 		if (timerisset(&u.u_timer[ITIMER_VIRTUAL].it_value) &&
1108097Sroot 		    itimerdecr(&u.u_timer[ITIMER_VIRTUAL], tick) == 0)
1118097Sroot 			psignal(u.u_procp, SIGVTALRM);
1128028Sroot 		if (u.u_procp->p_nice > NZERO)
113305Sbill 			cpstate = CP_NICE;
114305Sbill 		else
115305Sbill 			cpstate = CP_USER;
1169Sbill 	} else {
1178124Sroot 		/*
1188124Sroot 		 * CPU was in system state.  If profiling kernel
1198124Sroot 		 * increment a counter.  If no process is running
1208124Sroot 		 * then this is a system tick if we were running
1218124Sroot 		 * at a non-zero IPL (in a driver).  If a process is running,
1228124Sroot 		 * then we charge it with system time even if we were
1238124Sroot 		 * at a non-zero IPL, since the system often runs
1248124Sroot 		 * this way during processing of system calls.
1258124Sroot 		 * This is approximate, but the lack of true interval
1268124Sroot 		 * timers makes doing anything else difficult.
1278124Sroot 		 */
128305Sbill 		cpstate = CP_SYS;
1297315Ssam 		if (noproc) {
1308944Sroot 			if (BASEPRI(ps))
1317315Ssam 				cpstate = CP_IDLE;
1328028Sroot 		} else {
1338124Sroot 			bumptime(&u.u_ru.ru_stime, tick);
1348028Sroot 		}
1359Sbill 	}
1368097Sroot 
1378124Sroot 	/*
13810388Ssam 	 * If the cpu is currently scheduled to a process, then
13910388Ssam 	 * charge it with resource utilization for a tick, updating
14010388Ssam 	 * statistics which run in (user+system) virtual time,
14110388Ssam 	 * such as the cpu time limit and profiling timers.
14210388Ssam 	 * This assumes that the current process has been running
14310388Ssam 	 * the entire last tick.
14410388Ssam 	 */
14510388Ssam 	if (noproc == 0 && cpstate != CP_IDLE) {
14610388Ssam 		if ((u.u_ru.ru_utime.tv_sec+u.u_ru.ru_stime.tv_sec+1) >
14710388Ssam 		    u.u_rlimit[RLIMIT_CPU].rlim_cur) {
14810388Ssam 			psignal(u.u_procp, SIGXCPU);
14910388Ssam 			if (u.u_rlimit[RLIMIT_CPU].rlim_cur <
15010388Ssam 			    u.u_rlimit[RLIMIT_CPU].rlim_max)
15110388Ssam 				u.u_rlimit[RLIMIT_CPU].rlim_cur += 5;
15210388Ssam 		}
15310388Ssam 		if (timerisset(&u.u_timer[ITIMER_PROF].it_value) &&
15410388Ssam 		    itimerdecr(&u.u_timer[ITIMER_PROF], tick) == 0)
15510388Ssam 			psignal(u.u_procp, SIGPROF);
15610388Ssam 		s = u.u_procp->p_rssize;
15710388Ssam 		u.u_ru.ru_idrss += s; u.u_ru.ru_isrss += 0;	/* XXX */
15810388Ssam 		if (u.u_procp->p_textp) {
15910388Ssam 			register int xrss = u.u_procp->p_textp->x_rssize;
16010388Ssam 
16110388Ssam 			s += xrss;
16210388Ssam 			u.u_ru.ru_ixrss += xrss;
16310388Ssam 		}
16410388Ssam 		if (s > u.u_ru.ru_maxrss)
16510388Ssam 			u.u_ru.ru_maxrss = s;
16610388Ssam 	}
16710388Ssam 
16810388Ssam 	/*
1698124Sroot 	 * We adjust the priority of the current process.
1708124Sroot 	 * The priority of a process gets worse as it accumulates
1718124Sroot 	 * CPU time.  The cpu usage estimator (p_cpu) is increased here
1728124Sroot 	 * and the formula for computing priorities (in kern_synch.c)
1738124Sroot 	 * will compute a different value each time the p_cpu increases
1748124Sroot 	 * by 4.  The cpu usage estimator ramps up quite quickly when
1758124Sroot 	 * the process is running (linearly), and decays away exponentially,
1768124Sroot 	 * at a rate which is proportionally slower when the system is
1778124Sroot 	 * busy.  The basic principal is that the system will 90% forget
1788124Sroot 	 * that a process used a lot of CPU time in 5*loadav seconds.
1798124Sroot 	 * This causes the system to favor processes which haven't run
1808124Sroot 	 * much recently, and to round-robin among other processes.
1818124Sroot 	 */
1829Sbill 	if (!noproc) {
1838097Sroot 		p = u.u_procp;
1848097Sroot 		p->p_cpticks++;
1858097Sroot 		if (++p->p_cpu == 0)
1868097Sroot 			p->p_cpu--;
1878124Sroot 		if ((p->p_cpu&3) == 0) {
1888097Sroot 			(void) setpri(p);
1898097Sroot 			if (p->p_pri >= PUSER)
1908097Sroot 				p->p_pri = p->p_usrpri;
1919Sbill 		}
1929Sbill 	}
1938124Sroot 
1948124Sroot 	/*
19511392Ssam 	 * If the alternate clock has not made itself known then
19611392Ssam 	 * we must gather the statistics.
19711392Ssam 	 */
19811392Ssam 	if (phz == 0)
19911392Ssam 		gatherstats(pc, ps);
20011392Ssam 
20111392Ssam 	/*
2028124Sroot 	 * Increment the time-of-day, and schedule
2038124Sroot 	 * processing of the callouts at a very low cpu priority,
2048124Sroot 	 * so we don't keep the relatively high clock interrupt
2058124Sroot 	 * priority any longer than necessary.
2068124Sroot 	 */
2078124Sroot 	bumptime(&time, tick);
20812747Ssam 	if (needsoft)
20912747Ssam 		setsoftclock();
2102442Swnj }
21112747Ssam #ifdef sun
21212747Ssam #undef pc
21312747Ssam #undef ps
21412747Ssam #endif
2152442Swnj 
2168124Sroot /*
21711392Ssam  * Gather statistics on resource utilization.
21811392Ssam  *
21911392Ssam  * We make a gross assumption: that the system has been in the
22011392Ssam  * state it is in (user state, kernel state, interrupt state,
22111392Ssam  * or idle state) for the entire last time interval, and
22211392Ssam  * update statistics accordingly.
22311392Ssam  */
22412747Ssam /*ARGSUSED*/
22511392Ssam gatherstats(pc, ps)
22611392Ssam 	caddr_t pc;
22711392Ssam 	int ps;
22811392Ssam {
22911392Ssam 	int cpstate, s;
23011392Ssam 
23111392Ssam 	/*
23211392Ssam 	 * Determine what state the cpu is in.
23311392Ssam 	 */
23411392Ssam 	if (USERMODE(ps)) {
23511392Ssam 		/*
23611392Ssam 		 * CPU was in user state.
23711392Ssam 		 */
23811392Ssam 		if (u.u_procp->p_nice > NZERO)
23911392Ssam 			cpstate = CP_NICE;
24011392Ssam 		else
24111392Ssam 			cpstate = CP_USER;
24211392Ssam 	} else {
24311392Ssam 		/*
24411392Ssam 		 * CPU was in system state.  If profiling kernel
24511392Ssam 		 * increment a counter.
24611392Ssam 		 */
24711392Ssam 		cpstate = CP_SYS;
24811392Ssam 		if (noproc && BASEPRI(ps))
24911392Ssam 			cpstate = CP_IDLE;
25011392Ssam #ifdef GPROF
25111392Ssam 		s = pc - s_lowpc;
25211392Ssam 		if (profiling < 2 && s < s_textsize)
25311392Ssam 			kcount[s / (HISTFRACTION * sizeof (*kcount))]++;
25411392Ssam #endif
25511392Ssam 	}
25611392Ssam 	/*
25711392Ssam 	 * We maintain statistics shown by user-level statistics
25811392Ssam 	 * programs:  the amount of time in each cpu state, and
25911392Ssam 	 * the amount of time each of DK_NDRIVE ``drives'' is busy.
26011392Ssam 	 */
26111392Ssam 	cp_time[cpstate]++;
26211392Ssam 	for (s = 0; s < DK_NDRIVE; s++)
26311392Ssam 		if (dk_busy&(1<<s))
26411392Ssam 			dk_time[s]++;
26511392Ssam }
26611392Ssam 
26711392Ssam /*
2688124Sroot  * Software priority level clock interrupt.
2698124Sroot  * Run periodic events from timeout queue.
2708124Sroot  */
2712609Swnj /*ARGSUSED*/
2728965Sroot #ifdef vax
2732442Swnj softclock(pc, ps)
2742450Swnj 	caddr_t pc;
2758944Sroot 	int ps;
2762442Swnj {
2778944Sroot #endif
2788965Sroot #ifdef sun
2799751Ssam softclock()
2808944Sroot {
28112747Ssam #define	pc	(caddr_t)u.u_ar0[PC]
28212747Ssam #define	ps	u.u_ar0[PS]
2838944Sroot #endif
2842442Swnj 
2858097Sroot 	for (;;) {
2868124Sroot 		register struct callout *p1;
2878124Sroot 		register caddr_t arg;
2888124Sroot 		register int (*func)();
2898124Sroot 		register int a, s;
2908124Sroot 
2918097Sroot 		s = spl7();
2928097Sroot 		if ((p1 = calltodo.c_next) == 0 || p1->c_time > 0) {
2938097Sroot 			splx(s);
2948097Sroot 			break;
2952442Swnj 		}
2968124Sroot 		arg = p1->c_arg; func = p1->c_func; a = p1->c_time;
2978097Sroot 		calltodo.c_next = p1->c_next;
2988097Sroot 		p1->c_next = callfree;
2998097Sroot 		callfree = p1;
3009157Ssam 		splx(s);
3018112Sroot 		(*func)(arg, a);
3022442Swnj 	}
3039604Ssam 	/*
304*13127Ssam 	 * If trapped user-mode and profiling, give it
305*13127Ssam 	 * a profiling tick.
3069604Ssam 	 */
307*13127Ssam 	if (USERMODE(ps)) {
308*13127Ssam 		register struct proc *p = u.u_procp;
309*13127Ssam 
310*13127Ssam 		if (u.u_prof.pr_scale) {
311*13127Ssam 			p->p_flag |= SOWEUPC;
312*13127Ssam 			aston();
313*13127Ssam 		}
314*13127Ssam #ifdef vax
315*13127Ssam 		/*
316*13127Ssam 		 * Check to see if process has accumulated
317*13127Ssam 		 * more than 10 minutes of user time.  If so
318*13127Ssam 		 * reduce priority to give others a chance.
319*13127Ssam 		 */
320*13127Ssam 		if (p->p_uid && p->p_nice == NZERO &&
321*13127Ssam 		    u.u_ru.ru_utime.tv_sec > 10 * 60) {
322*13127Ssam 			p->p_nice = NZERO+4;
323*13127Ssam 			(void) setpri(p);
324*13127Ssam 			p->p_pri = p->p_usrpri;
325*13127Ssam 		}
326*13127Ssam #endif
3279604Ssam 	}
3289Sbill }
3299Sbill 
3309Sbill /*
33112747Ssam  * Bump a timeval by a small number of usec's.
3329Sbill  */
33312747Ssam bumptime(tp, usec)
33412747Ssam 	register struct timeval *tp;
33512747Ssam 	int usec;
33612747Ssam {
33712747Ssam 
33812747Ssam 	tp->tv_usec += usec;
33912747Ssam 	if (tp->tv_usec >= 1000000) {
34012747Ssam 		tp->tv_usec -= 1000000;
34112747Ssam 		tp->tv_sec++;
34212747Ssam 	}
34312747Ssam }
34412747Ssam 
34512747Ssam /*
34612747Ssam  * Arrange that (*fun)(arg) is called in t/hz seconds.
34712747Ssam  */
34812747Ssam timeout(fun, arg, t)
3492450Swnj 	int (*fun)();
3502450Swnj 	caddr_t arg;
35112747Ssam 	register int t;
3529Sbill {
3533542Swnj 	register struct callout *p1, *p2, *pnew;
35412747Ssam 	register int s = spl7();
3559Sbill 
35612747Ssam 	if (t == 0)
35712747Ssam 		t = 1;
3583542Swnj 	pnew = callfree;
3593542Swnj 	if (pnew == NULL)
3603542Swnj 		panic("timeout table overflow");
3613542Swnj 	callfree = pnew->c_next;
3623542Swnj 	pnew->c_arg = arg;
3633542Swnj 	pnew->c_func = fun;
3643542Swnj 	for (p1 = &calltodo; (p2 = p1->c_next) && p2->c_time < t; p1 = p2)
3659742Ssam 		if (p2->c_time > 0)
3669742Ssam 			t -= p2->c_time;
3673542Swnj 	p1->c_next = pnew;
3683542Swnj 	pnew->c_next = p2;
3693542Swnj 	pnew->c_time = t;
3703542Swnj 	if (p2)
3713542Swnj 		p2->c_time -= t;
3729Sbill 	splx(s);
3739Sbill }
3747305Ssam 
3757305Ssam /*
3767305Ssam  * untimeout is called to remove a function timeout call
3777305Ssam  * from the callout structure.
3787305Ssam  */
3798097Sroot untimeout(fun, arg)
3807305Ssam 	int (*fun)();
3817305Ssam 	caddr_t arg;
3827305Ssam {
3837305Ssam 	register struct callout *p1, *p2;
3847305Ssam 	register int s;
3857305Ssam 
3867305Ssam 	s = spl7();
3877305Ssam 	for (p1 = &calltodo; (p2 = p1->c_next) != 0; p1 = p2) {
3887305Ssam 		if (p2->c_func == fun && p2->c_arg == arg) {
3898112Sroot 			if (p2->c_next && p2->c_time > 0)
3907305Ssam 				p2->c_next->c_time += p2->c_time;
3917305Ssam 			p1->c_next = p2->c_next;
3927305Ssam 			p2->c_next = callfree;
3937305Ssam 			callfree = p2;
3947305Ssam 			break;
3957305Ssam 		}
3967305Ssam 	}
3977305Ssam 	splx(s);
3987305Ssam }
3998112Sroot 
4008124Sroot /*
4018124Sroot  * Compute number of hz until specified time.
4028124Sroot  * Used to compute third argument to timeout() from an
4038124Sroot  * absolute time.
4048124Sroot  */
4058112Sroot hzto(tv)
4068112Sroot 	struct timeval *tv;
4078112Sroot {
4088124Sroot 	register long ticks;
4098124Sroot 	register long sec;
4108112Sroot 	int s = spl7();
4118112Sroot 
4128124Sroot 	/*
4138124Sroot 	 * If number of milliseconds will fit in 32 bit arithmetic,
4148124Sroot 	 * then compute number of milliseconds to time and scale to
4158124Sroot 	 * ticks.  Otherwise just compute number of hz in time, rounding
4168124Sroot 	 * times greater than representible to maximum value.
4178124Sroot 	 *
4188124Sroot 	 * Delta times less than 25 days can be computed ``exactly''.
4198124Sroot 	 * Maximum value for any timeout in 10ms ticks is 250 days.
4208124Sroot 	 */
4218124Sroot 	sec = tv->tv_sec - time.tv_sec;
4228124Sroot 	if (sec <= 0x7fffffff / 1000 - 1000)
4238124Sroot 		ticks = ((tv->tv_sec - time.tv_sec) * 1000 +
4248124Sroot 			(tv->tv_usec - time.tv_usec) / 1000) / (tick / 1000);
4258124Sroot 	else if (sec <= 0x7fffffff / hz)
4268124Sroot 		ticks = sec * hz;
4278124Sroot 	else
4288124Sroot 		ticks = 0x7fffffff;
4298112Sroot 	splx(s);
4308112Sroot 	return (ticks);
4318112Sroot }
43212747Ssam 
43312747Ssam profil()
43412747Ssam {
43512747Ssam 	register struct a {
43612747Ssam 		short	*bufbase;
43712747Ssam 		unsigned bufsize;
43812747Ssam 		unsigned pcoffset;
43912747Ssam 		unsigned pcscale;
44012747Ssam 	} *uap = (struct a *)u.u_ap;
44112747Ssam 	register struct uprof *upp = &u.u_prof;
44212747Ssam 
44312747Ssam 	upp->pr_base = uap->bufbase;
44412747Ssam 	upp->pr_size = uap->bufsize;
44512747Ssam 	upp->pr_off = uap->pcoffset;
44612747Ssam 	upp->pr_scale = uap->pcscale;
44712747Ssam }
44812747Ssam 
44912747Ssam opause()
45012747Ssam {
45112747Ssam 
45212747Ssam 	for (;;)
45312747Ssam 		sleep((caddr_t)&u, PSLEP);
45412747Ssam }
455