xref: /csrg-svn/old/libm/libm/tanh.c (revision 24349)
121035Smiriam /*
221035Smiriam  * Copyright (c) 1985 Regents of the University of California.
321035Smiriam  *
421035Smiriam  * Use and reproduction of this software are granted  in  accordance  with
521035Smiriam  * the terms and conditions specified in  the  Berkeley  Software  License
621035Smiriam  * Agreement (in particular, this entails acknowledgement of the programs'
721035Smiriam  * source, and inclusion of this notice) with the additional understanding
821035Smiriam  * that  all  recipients  should regard themselves as participants  in  an
921035Smiriam  * ongoing  research  project and hence should  feel  obligated  to report
1021035Smiriam  * their  experiences (good or bad) with these elementary function  codes,
1121035Smiriam  * using "sendbug 4bsd-bugs@BERKELEY", to the authors.
1221035Smiriam  */
139942Ssam 
1421035Smiriam #ifndef lint
15*24349Smiriam static char sccsid[] = "@(#)tanh.c	4.3 (Berkeley) 08/21/85";
1621035Smiriam #endif not lint
179942Ssam 
1821035Smiriam /* TANH(X)
1921035Smiriam  * RETURN THE HYPERBOLIC TANGENT OF X
2021035Smiriam  * DOUBLE PRECISION (VAX D FORMAT 56 BITS, IEEE DOUBLE 53 BITS)
2121035Smiriam  * CODED IN C BY K.C. NG, 1/8/85;
2221035Smiriam  * REVISED BY K.C. NG on 2/8/85, 2/11/85, 3/7/85, 3/24/85.
2321035Smiriam  *
2421035Smiriam  * Required system supported functions :
2521035Smiriam  *	copysign(x,y)
2621035Smiriam  *	finite(x)
2721035Smiriam  *
2821035Smiriam  * Required kernel function:
29*24349Smiriam  *	expm1(x)	...exp(x)-1
3021035Smiriam  *
3121035Smiriam  * Method :
3221035Smiriam  *	1. reduce x to non-negative by tanh(-x) = - tanh(x).
33*24349Smiriam  *	2.
34*24349Smiriam  *	    0      <  x <=  1.e-10 :  tanh(x) := x
35*24349Smiriam  *					          -expm1(-2x)
36*24349Smiriam  *	    1.e-10 <  x <=  1      :  tanh(x) := --------------
37*24349Smiriam  *					         expm1(-2x) + 2
38*24349Smiriam  *							  2
39*24349Smiriam  *	    1      <= x <=  22.0   :  tanh(x) := 1 -  ---------------
40*24349Smiriam  *						      expm1(2x) + 2
41*24349Smiriam  *	    22.0   <  x <= INF     :  tanh(x) := 1.
4221035Smiriam  *
43*24349Smiriam  *	Note: 22 was chosen so that fl(1.0+2/(expm1(2*22)+2)) == 1.
4421035Smiriam  *
4521035Smiriam  * Special cases:
46*24349Smiriam  *	tanh(NaN) is NaN;
4721035Smiriam  *	only tanh(0)=0 is exact for finite argument.
4821035Smiriam  *
4921035Smiriam  * Accuracy:
5021035Smiriam  *	tanh(x) returns the exact hyperbolic tangent of x nealy rounded.
5121035Smiriam  *	In a test run with 1,024,000 random arguments on a VAX, the maximum
5221035Smiriam  *	observed error was 2.22 ulps (units in the last place).
5321035Smiriam  */
549942Ssam 
tanh(x)5521035Smiriam double tanh(x)
5621035Smiriam double x;
579942Ssam {
58*24349Smiriam 	static double one=1.0, two=2.0, small = 1.0e-10, big = 1.0e10;
59*24349Smiriam 	double expm1(), t, copysign(), sign;
6021035Smiriam 	int finite();
619942Ssam 
62*24349Smiriam #ifndef VAX
63*24349Smiriam 	if(x!=x) return(x);	/* x is NaN */
64*24349Smiriam #endif
659942Ssam 
6621035Smiriam 	sign=copysign(one,x);
6721035Smiriam 	x=copysign(x,one);
6821035Smiriam 	if(x < 22.0)
6921035Smiriam 	    if( x > one )
70*24349Smiriam 		return(copysign(one-two/(expm1(x+x)+two),sign));
71*24349Smiriam 	    else if ( x > small )
72*24349Smiriam 		{t= -expm1(-(x+x)); return(copysign(t/(two-t),sign));}
73*24349Smiriam 	    else		/* raise the INEXACT flag for non-zero x */
74*24349Smiriam 		{big+x; return(copysign(x,sign));}
7521035Smiriam 	else if(finite(x))
76*24349Smiriam 	    return (sign+1.0E-37); /* raise the INEXACT flag */
7721035Smiriam 	else
7821035Smiriam 	    return(sign);	/* x is +- INF */
799942Ssam }
80