134123Sbostic /*
2*61283Sbostic * Copyright (c) 1985, 1993
3*61283Sbostic * The Regents of the University of California. All rights reserved.
434123Sbostic *
542657Sbostic * %sccs.include.redist.c%
624579Szliu */
724579Szliu
824579Szliu #ifndef lint
9*61283Sbostic static char sccsid[] = "@(#)cabs.c 8.1 (Berkeley) 06/04/93";
1034123Sbostic #endif /* not lint */
1124579Szliu
1224579Szliu /* HYPOT(X,Y)
1324579Szliu * RETURN THE SQUARE ROOT OF X^2 + Y^2 WHERE Z=X+iY
1424579Szliu * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS)
1524579Szliu * CODED IN C BY K.C. NG, 11/28/84;
1624579Szliu * REVISED BY K.C. NG, 7/12/85.
1724579Szliu *
1824579Szliu * Required system supported functions :
1924579Szliu * copysign(x,y)
2024579Szliu * finite(x)
2124579Szliu * scalb(x,N)
2224579Szliu * sqrt(x)
2324579Szliu *
2424579Szliu * Method :
2524579Szliu * 1. replace x by |x| and y by |y|, and swap x and
2624579Szliu * y if y > x (hence x is never smaller than y).
2724579Szliu * 2. Hypot(x,y) is computed by:
2824579Szliu * Case I, x/y > 2
2924579Szliu *
3024579Szliu * y
3124579Szliu * hypot = x + -----------------------------
3224579Szliu * 2
3324579Szliu * sqrt ( 1 + [x/y] ) + x/y
3424579Szliu *
3524579Szliu * Case II, x/y <= 2
3624579Szliu * y
3724579Szliu * hypot = x + --------------------------------------------------
3824579Szliu * 2
3924579Szliu * [x/y] - 2
4024579Szliu * (sqrt(2)+1) + (x-y)/y + -----------------------------
4124579Szliu * 2
4224579Szliu * sqrt ( 1 + [x/y] ) + sqrt(2)
4324579Szliu *
4424579Szliu *
4524579Szliu *
4624579Szliu * Special cases:
4724579Szliu * hypot(x,y) is INF if x or y is +INF or -INF; else
4824579Szliu * hypot(x,y) is NAN if x or y is NAN.
4924579Szliu *
5024579Szliu * Accuracy:
5124579Szliu * hypot(x,y) returns the sqrt(x^2+y^2) with error less than 1 ulps (units
5224579Szliu * in the last place). See Kahan's "Interval Arithmetic Options in the
5324579Szliu * Proposed IEEE Floating Point Arithmetic Standard", Interval Mathematics
5424579Szliu * 1980, Edited by Karl L.E. Nickel, pp 99-128. (A faster but less accurate
5524579Szliu * code follows in comments.) In a test run with 500,000 random arguments
5624579Szliu * on a VAX, the maximum observed error was .959 ulps.
5724579Szliu *
5824579Szliu * Constants:
5924579Szliu * The hexadecimal values are the intended ones for the following constants.
6024579Szliu * The decimal values may be used, provided that the compiler will convert
6124579Szliu * from decimal to binary accurately enough to produce the hexadecimal values
6224579Szliu * shown.
6324579Szliu */
6435681Sbostic #include "mathimpl.h"
6524579Szliu
6635681Sbostic vc(r2p1hi, 2.4142135623730950345E0 ,8279,411a,ef32,99fc, 2, .9A827999FCEF32)
6735681Sbostic vc(r2p1lo, 1.4349369327986523769E-17 ,597d,2484,754b,89b3, -55, .84597D89B3754B)
6835681Sbostic vc(sqrt2, 1.4142135623730950622E0 ,04f3,40b5,de65,33f9, 1, .B504F333F9DE65)
6924579Szliu
7035681Sbostic ic(r2p1hi, 2.4142135623730949234E0 , 1, 1.3504F333F9DE6)
7135681Sbostic ic(r2p1lo, 1.2537167179050217666E-16 , -53, 1.21165F626CDD5)
7235681Sbostic ic(sqrt2, 1.4142135623730951455E0 , 0, 1.6A09E667F3BCD)
7335681Sbostic
7435681Sbostic #ifdef vccast
7535681Sbostic #define r2p1hi vccast(r2p1hi)
7635681Sbostic #define r2p1lo vccast(r2p1lo)
7735681Sbostic #define sqrt2 vccast(sqrt2)
7835681Sbostic #endif
7935681Sbostic
8031991Szliu double
8131991Szliu hypot(x,y)
8224579Szliu double x, y;
8324579Szliu {
8435681Sbostic static const double zero=0, one=1,
8524579Szliu small=1.0E-18; /* fl(1+small)==1 */
8635681Sbostic static const ibig=30; /* fl(1+2**(2*ibig))==1 */
8735681Sbostic double t,r;
8835681Sbostic int exp;
8924579Szliu
9024579Szliu if(finite(x))
9124579Szliu if(finite(y))
9224579Szliu {
9324579Szliu x=copysign(x,one);
9424579Szliu y=copysign(y,one);
9524579Szliu if(y > x)
9624579Szliu { t=x; x=y; y=t; }
9724579Szliu if(x == zero) return(zero);
9824579Szliu if(y == zero) return(x);
9924579Szliu exp= logb(x);
10024579Szliu if(exp-(int)logb(y) > ibig )
10124579Szliu /* raise inexact flag and return |x| */
10224579Szliu { one+small; return(x); }
10324579Szliu
10424579Szliu /* start computing sqrt(x^2 + y^2) */
10524579Szliu r=x-y;
10624579Szliu if(r>y) { /* x/y > 2 */
10724579Szliu r=x/y;
10824579Szliu r=r+sqrt(one+r*r); }
10924579Szliu else { /* 1 <= x/y <= 2 */
11024579Szliu r/=y; t=r*(r+2.0);
11124579Szliu r+=t/(sqrt2+sqrt(2.0+t));
11224579Szliu r+=r2p1lo; r+=r2p1hi; }
11324579Szliu
11424579Szliu r=y/r;
11524579Szliu return(x+r);
11624579Szliu
11724579Szliu }
11824579Szliu
11924579Szliu else if(y==y) /* y is +-INF */
12024579Szliu return(copysign(y,one));
12124579Szliu else
12224579Szliu return(y); /* y is NaN and x is finite */
12324579Szliu
12424579Szliu else if(x==x) /* x is +-INF */
12524579Szliu return (copysign(x,one));
12624579Szliu else if(finite(y))
12724579Szliu return(x); /* x is NaN, y is finite */
12831855Szliu #if !defined(vax)&&!defined(tahoe)
12924579Szliu else if(y!=y) return(y); /* x and y is NaN */
13031855Szliu #endif /* !defined(vax)&&!defined(tahoe) */
13124579Szliu else return(copysign(y,one)); /* y is INF */
13224579Szliu }
13324579Szliu
13431991Szliu /* CABS(Z)
13531991Szliu * RETURN THE ABSOLUTE VALUE OF THE COMPLEX NUMBER Z = X + iY
13631991Szliu * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS)
13731991Szliu * CODED IN C BY K.C. NG, 11/28/84.
13831991Szliu * REVISED BY K.C. NG, 7/12/85.
13931991Szliu *
14031991Szliu * Required kernel function :
14131991Szliu * hypot(x,y)
14231991Szliu *
14331991Szliu * Method :
14431991Szliu * cabs(z) = hypot(x,y) .
14531991Szliu */
14631991Szliu
14758565Sralph struct complex { double x, y; };
14858565Sralph
14931991Szliu double
cabs(z)15031991Szliu cabs(z)
15158565Sralph struct complex z;
15231991Szliu {
15331991Szliu return hypot(z.x,z.y);
15431991Szliu }
15531991Szliu
15631991Szliu double
z_abs(z)15731991Szliu z_abs(z)
15858565Sralph struct complex *z;
15931991Szliu {
16031991Szliu return hypot(z->x,z->y);
16131991Szliu }
16231991Szliu
16324579Szliu /* A faster but less accurate version of cabs(x,y) */
16424579Szliu #if 0
16524579Szliu double hypot(x,y)
16624579Szliu double x, y;
16724579Szliu {
16835681Sbostic static const double zero=0, one=1;
16924579Szliu small=1.0E-18; /* fl(1+small)==1 */
17035681Sbostic static const ibig=30; /* fl(1+2**(2*ibig))==1 */
17135681Sbostic double temp;
17235681Sbostic int exp;
17324579Szliu
17424579Szliu if(finite(x))
17524579Szliu if(finite(y))
17624579Szliu {
17724579Szliu x=copysign(x,one);
17824579Szliu y=copysign(y,one);
17924579Szliu if(y > x)
18024579Szliu { temp=x; x=y; y=temp; }
18124579Szliu if(x == zero) return(zero);
18224579Szliu if(y == zero) return(x);
18324579Szliu exp= logb(x);
18424579Szliu x=scalb(x,-exp);
18524579Szliu if(exp-(int)logb(y) > ibig )
18624579Szliu /* raise inexact flag and return |x| */
18724579Szliu { one+small; return(scalb(x,exp)); }
18824579Szliu else y=scalb(y,-exp);
18924579Szliu return(scalb(sqrt(x*x+y*y),exp));
19024579Szliu }
19124579Szliu
19224579Szliu else if(y==y) /* y is +-INF */
19324579Szliu return(copysign(y,one));
19424579Szliu else
19524579Szliu return(y); /* y is NaN and x is finite */
19624579Szliu
19724579Szliu else if(x==x) /* x is +-INF */
19824579Szliu return (copysign(x,one));
19924579Szliu else if(finite(y))
20024579Szliu return(x); /* x is NaN, y is finite */
20124579Szliu else if(y!=y) return(y); /* x and y is NaN */
20224579Szliu else return(copysign(y,one)); /* y is INF */
20324579Szliu }
20424579Szliu #endif
205