xref: /csrg-svn/lib/libm/common_source/log1p.c (revision 26893)
1 /*
2  * Copyright (c) 1985 Regents of the University of California.
3  *
4  * Use and reproduction of this software are granted  in  accordance  with
5  * the terms and conditions specified in  the  Berkeley  Software  License
6  * Agreement (in particular, this entails acknowledgement of the programs'
7  * source, and inclusion of this notice) with the additional understanding
8  * that  all  recipients  should regard themselves as participants  in  an
9  * ongoing  research  project and hence should  feel  obligated  to report
10  * their  experiences (good or bad) with these elementary function  codes,
11  * using "sendbug 4bsd-bugs@BERKELEY", to the authors.
12  */
13 
14 #ifndef lint
15 static char sccsid[] =
16 "@(#)log1p.c	1.3 (Berkeley) 8/21/85; 1.3 (ucb.elefunt) 03/16/86";
17 #endif not lint
18 
19 /* LOG1P(x)
20  * RETURN THE LOGARITHM OF 1+x
21  * DOUBLE PRECISION (VAX D FORMAT 56 bits, IEEE DOUBLE 53 BITS)
22  * CODED IN C BY K.C. NG, 1/19/85;
23  * REVISED BY K.C. NG on 2/6/85, 3/7/85, 3/24/85, 4/16/85.
24  *
25  * Required system supported functions:
26  *	scalb(x,n)
27  *	copysign(x,y)
28  *	logb(x)
29  *	finite(x)
30  *
31  * Required kernel function:
32  *	log__L(z)
33  *
34  * Method :
35  *	1. Argument Reduction: find k and f such that
36  *			1+x  = 2^k * (1+f),
37  *	   where  sqrt(2)/2 < 1+f < sqrt(2) .
38  *
39  *	2. Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
40  *		 = 2s + 2/3 s**3 + 2/5 s**5 + .....,
41  *	   log(1+f) is computed by
42  *
43  *	     		log(1+f) = 2s + s*log__L(s*s)
44  *	   where
45  *		log__L(z) = z*(L1 + z*(L2 + z*(... (L6 + z*L7)...)))
46  *
47  *	   See log__L() for the values of the coefficients.
48  *
49  *	3. Finally,  log(1+x) = k*ln2 + log(1+f).
50  *
51  *	Remarks 1. In step 3 n*ln2 will be stored in two floating point numbers
52  *		   n*ln2hi + n*ln2lo, where ln2hi is chosen such that the last
53  *		   20 bits (for VAX D format), or the last 21 bits ( for IEEE
54  *		   double) is 0. This ensures n*ln2hi is exactly representable.
55  *		2. In step 1, f may not be representable. A correction term c
56  *	 	   for f is computed. It follows that the correction term for
57  *		   f - t (the leading term of log(1+f) in step 2) is c-c*x. We
58  *		   add this correction term to n*ln2lo to attenuate the error.
59  *
60  *
61  * Special cases:
62  *	log1p(x) is NaN with signal if x < -1; log1p(NaN) is NaN with no signal;
63  *	log1p(INF) is +INF; log1p(-1) is -INF with signal;
64  *	only log1p(0)=0 is exact for finite argument.
65  *
66  * Accuracy:
67  *	log1p(x) returns the exact log(1+x) nearly rounded. In a test run
68  *	with 1,536,000 random arguments on a VAX, the maximum observed
69  *	error was .846 ulps (units in the last place).
70  *
71  * Constants:
72  * The hexadecimal values are the intended ones for the following constants.
73  * The decimal values may be used, provided that the compiler will convert
74  * from decimal to binary accurately enough to produce the hexadecimal values
75  * shown.
76  */
77 
78 #ifdef VAX	/* VAX D format */
79 #include <errno.h>
80 
81 /* static double */
82 /* ln2hi  =  6.9314718055829871446E-1    , Hex  2^  0   *  .B17217F7D00000 */
83 /* ln2lo  =  1.6465949582897081279E-12   , Hex  2^-39   *  .E7BCD5E4F1D9CC */
84 /* sqrt2  =  1.4142135623730950622E0     ; Hex  2^  1   *  .B504F333F9DE65 */
85 static long     ln2hix[] = { 0x72174031, 0x0000f7d0};
86 static long     ln2lox[] = { 0xbcd52ce7, 0xd9cce4f1};
87 static long     sqrt2x[] = { 0x04f340b5, 0xde6533f9};
88 #define    ln2hi    (*(double*)ln2hix)
89 #define    ln2lo    (*(double*)ln2lox)
90 #define    sqrt2    (*(double*)sqrt2x)
91 #else	/* IEEE double */
92 static double
93 ln2hi  =  6.9314718036912381649E-1    , /*Hex  2^ -1   *  1.62E42FEE00000 */
94 ln2lo  =  1.9082149292705877000E-10   , /*Hex  2^-33   *  1.A39EF35793C76 */
95 sqrt2  =  1.4142135623730951455E0     ; /*Hex  2^  0   *  1.6A09E667F3BCD */
96 #endif
97 
98 double log1p(x)
99 double x;
100 {
101 	static double zero=0.0, negone= -1.0, one=1.0,
102 		      half=1.0/2.0, small=1.0E-20;   /* 1+small == 1 */
103 	double logb(),copysign(),scalb(),log__L(),z,s,t,c;
104 	int k,finite();
105 
106 #ifndef VAX
107 	if(x!=x) return(x);	/* x is NaN */
108 #endif
109 
110 	if(finite(x)) {
111 	   if( x > negone ) {
112 
113 	   /* argument reduction */
114 	      if(copysign(x,one)<small) return(x);
115 	      k=logb(one+x); z=scalb(x,-k); t=scalb(one,-k);
116 	      if(z+t >= sqrt2 )
117 		  { k += 1 ; z *= half; t *= half; }
118 	      t += negone; x = z + t;
119 	      c = (t-x)+z ;		/* correction term for x */
120 
121  	   /* compute log(1+x)  */
122               s = x/(2+x); t = x*x*half;
123 	      c += (k*ln2lo-c*x);
124 	      z = c+s*(t+log__L(s*s));
125 	      x += (z - t) ;
126 
127 	      return(k*ln2hi+x);
128 	   }
129 	/* end of if (x > negone) */
130 
131 	    else {
132 #ifdef VAX
133 		extern double infnan();
134 		if ( x == negone )
135 		    return (infnan(-ERANGE));	/* -INF */
136 		else
137 		    return (infnan(EDOM));	/* NaN */
138 #else	/* IEEE double */
139 		/* x = -1, return -INF with signal */
140 		if ( x == negone ) return( negone/zero );
141 
142 		/* negative argument for log, return NaN with signal */
143 	        else return ( zero / zero );
144 #endif
145 	    }
146 	}
147     /* end of if (finite(x)) */
148 
149     /* log(-INF) is NaN */
150 	else if(x<0)
151 	     return(zero/zero);
152 
153     /* log(+INF) is INF */
154 	else return(x);
155 }
156