xref: /csrg-svn/lib/libm/common_source/log.c (revision 57442)
134126Sbostic /*
256955Sbostic  * Copyright (c) 1992 Regents of the University of California.
334126Sbostic  * All rights reserved.
434126Sbostic  *
542657Sbostic  * %sccs.include.redist.c%
624601Szliu  */
724601Szliu 
824601Szliu #ifndef lint
9*57442Sbostic static char sccsid[] = "@(#)log.c	5.10 (Berkeley) 01/10/93";
1034126Sbostic #endif /* not lint */
1124601Szliu 
1256955Sbostic #include <math.h>
1356955Sbostic #include <errno.h>
1456955Sbostic 
1557158Smcilroy #include "mathimpl.h"
1656955Sbostic 
1756955Sbostic /* Table-driven natural logarithm.
1824601Szliu  *
1956955Sbostic  * This code was derived, with minor modifications, from:
2056955Sbostic  *	Peter Tang, "Table-Driven Implementation of the
2156955Sbostic  *	Logarithm in IEEE Floating-Point arithmetic." ACM Trans.
2256955Sbostic  *	Math Software, vol 16. no 4, pp 378-400, Dec 1990).
2324601Szliu  *
2456955Sbostic  * Calculates log(2^m*F*(1+f/F)), |f/j| <= 1/256,
2556955Sbostic  * where F = j/128 for j an integer in [0, 128].
2624601Szliu  *
2756955Sbostic  * log(2^m) = log2_hi*m + log2_tail*m
2856955Sbostic  * since m is an integer, the dominant term is exact.
2956955Sbostic  * m has at most 10 digits (for subnormal numbers),
3056955Sbostic  * and log2_hi has 11 trailing zero bits.
3124601Szliu  *
3256955Sbostic  * log(F) = logF_hi[j] + logF_lo[j] is in tabular form in log_table.h
3356955Sbostic  * logF_hi[] + 512 is exact.
3424601Szliu  *
3556955Sbostic  * log(1+f/F) = 2*f/(2*F + f) + 1/12 * (2*f/(2*F + f))**3 + ...
3656955Sbostic  * the leading term is calculated to extra precision in two
3756955Sbostic  * parts, the larger of which adds exactly to the dominant
3856955Sbostic  * m and F terms.
3956955Sbostic  * There are two cases:
4056955Sbostic  *	1. when m, j are non-zero (m | j), use absolute
4156955Sbostic  *	   precision for the leading term.
4256955Sbostic  *	2. when m = j = 0, |1-x| < 1/256, and log(x) ~= (x-1).
4356955Sbostic  *	   In this case, use a relative precision of 24 bits.
4456955Sbostic  * (This is done differently in the original paper)
4524601Szliu  *
4624601Szliu  * Special cases:
4756955Sbostic  *	0	return signalling -Inf
4856955Sbostic  *	neg	return signalling NaN
4956955Sbostic  *	+Inf	return +Inf
5056955Sbostic */
5124601Szliu 
5256955Sbostic #if defined(vax) || defined(tahoe)
5357156Smcilroy #define _IEEE		0
5457156Smcilroy #define TRUNC(x)	x = (double) (float) (x)
5556955Sbostic #else
56*57442Sbostic #define _IEEE		1
5757156Smcilroy #define endian		(((*(int *) &one)) ? 1 : 0)
5857156Smcilroy #define TRUNC(x)	*(((int *) &x) + endian) &= 0xf8000000
5957156Smcilroy #define infnan(x)	0.0
6056955Sbostic #endif
6124601Szliu 
62*57442Sbostic #define N 128
63*57442Sbostic 
64*57442Sbostic /* Table of log(Fj) = logF_head[j] + logF_tail[j], for Fj = 1+j/128.
65*57442Sbostic  * Used for generation of extend precision logarithms.
66*57442Sbostic  * The constant 35184372088832 is 2^45, so the divide is exact.
67*57442Sbostic  * It ensures correct reading of logF_head, even for inaccurate
68*57442Sbostic  * decimal-to-binary conversion routines.  (Everybody gets the
69*57442Sbostic  * right answer for integers less than 2^53.)
70*57442Sbostic  * Values for log(F) were generated using error < 10^-57 absolute
71*57442Sbostic  * with the bc -l package.
72*57442Sbostic */
73*57442Sbostic double	A1 = 	  .08333333333333178827;
74*57442Sbostic double	A2 = 	  .01250000000377174923;
75*57442Sbostic double	A3 =	 .002232139987919447809;
76*57442Sbostic double	A4 =	.0004348877777076145742;
77*57442Sbostic 
78*57442Sbostic double logF_head[N+1] = {
79*57442Sbostic 	0.,
80*57442Sbostic 	.007782140442060381246,
81*57442Sbostic 	.015504186535963526694,
82*57442Sbostic 	.023167059281547608406,
83*57442Sbostic 	.030771658666765233647,
84*57442Sbostic 	.038318864302141264488,
85*57442Sbostic 	.045809536031242714670,
86*57442Sbostic 	.053244514518837604555,
87*57442Sbostic 	.060624621816486978786,
88*57442Sbostic 	.067950661908525944454,
89*57442Sbostic 	.075223421237524235039,
90*57442Sbostic 	.082443669210988446138,
91*57442Sbostic 	.089612158689760690322,
92*57442Sbostic 	.096729626458454731618,
93*57442Sbostic 	.103796793681567578460,
94*57442Sbostic 	.110814366340264314203,
95*57442Sbostic 	.117783035656430001836,
96*57442Sbostic 	.124703478501032805070,
97*57442Sbostic 	.131576357788617315236,
98*57442Sbostic 	.138402322859292326029,
99*57442Sbostic 	.145182009844575077295,
100*57442Sbostic 	.151916042025732167530,
101*57442Sbostic 	.158605030176659056451,
102*57442Sbostic 	.165249572895390883786,
103*57442Sbostic 	.171850256926518341060,
104*57442Sbostic 	.178407657472689606947,
105*57442Sbostic 	.184922338493834104156,
106*57442Sbostic 	.191394852999565046047,
107*57442Sbostic 	.197825743329758552135,
108*57442Sbostic 	.204215541428766300668,
109*57442Sbostic 	.210564769107350002741,
110*57442Sbostic 	.216873938300523150246,
111*57442Sbostic 	.223143551314024080056,
112*57442Sbostic 	.229374101064877322642,
113*57442Sbostic 	.235566071312860003672,
114*57442Sbostic 	.241719936886966024758,
115*57442Sbostic 	.247836163904594286577,
116*57442Sbostic 	.253915209980732470285,
117*57442Sbostic 	.259957524436686071567,
118*57442Sbostic 	.265963548496984003577,
119*57442Sbostic 	.271933715484010463114,
120*57442Sbostic 	.277868451003087102435,
121*57442Sbostic 	.283768173130738432519,
122*57442Sbostic 	.289633292582948342896,
123*57442Sbostic 	.295464212893421063199,
124*57442Sbostic 	.301261330578199704177,
125*57442Sbostic 	.307025035294827830512,
126*57442Sbostic 	.312755710004239517729,
127*57442Sbostic 	.318453731118097493890,
128*57442Sbostic 	.324119468654316733591,
129*57442Sbostic 	.329753286372579168528,
130*57442Sbostic 	.335355541920762334484,
131*57442Sbostic 	.340926586970454081892,
132*57442Sbostic 	.346466767346100823488,
133*57442Sbostic 	.351976423156884266063,
134*57442Sbostic 	.357455888922231679316,
135*57442Sbostic 	.362905493689140712376,
136*57442Sbostic 	.368325561158599157352,
137*57442Sbostic 	.373716409793814818840,
138*57442Sbostic 	.379078352934811846353,
139*57442Sbostic 	.384411698910298582632,
140*57442Sbostic 	.389716751140440464951,
141*57442Sbostic 	.394993808240542421117,
142*57442Sbostic 	.400243164127459749579,
143*57442Sbostic 	.405465108107819105498,
144*57442Sbostic 	.410659924985338875558,
145*57442Sbostic 	.415827895143593195825,
146*57442Sbostic 	.420969294644237379543,
147*57442Sbostic 	.426084395310681429691,
148*57442Sbostic 	.431173464818130014464,
149*57442Sbostic 	.436236766774527495726,
150*57442Sbostic 	.441274560805140936281,
151*57442Sbostic 	.446287102628048160113,
152*57442Sbostic 	.451274644139630254358,
153*57442Sbostic 	.456237433481874177232,
154*57442Sbostic 	.461175715122408291790,
155*57442Sbostic 	.466089729924533457960,
156*57442Sbostic 	.470979715219073113985,
157*57442Sbostic 	.475845904869856894947,
158*57442Sbostic 	.480688529345570714212,
159*57442Sbostic 	.485507815781602403149,
160*57442Sbostic 	.490303988045525329653,
161*57442Sbostic 	.495077266798034543171,
162*57442Sbostic 	.499827869556611403822,
163*57442Sbostic 	.504556010751912253908,
164*57442Sbostic 	.509261901790523552335,
165*57442Sbostic 	.513945751101346104405,
166*57442Sbostic 	.518607764208354637958,
167*57442Sbostic 	.523248143765158602036,
168*57442Sbostic 	.527867089620485785417,
169*57442Sbostic 	.532464798869114019908,
170*57442Sbostic 	.537041465897345915436,
171*57442Sbostic 	.541597282432121573947,
172*57442Sbostic 	.546132437597407260909,
173*57442Sbostic 	.550647117952394182793,
174*57442Sbostic 	.555141507540611200965,
175*57442Sbostic 	.559615787935399566777,
176*57442Sbostic 	.564070138285387656651,
177*57442Sbostic 	.568504735352689749561,
178*57442Sbostic 	.572919753562018740922,
179*57442Sbostic 	.577315365035246941260,
180*57442Sbostic 	.581691739635061821900,
181*57442Sbostic 	.586049045003164792433,
182*57442Sbostic 	.590387446602107957005,
183*57442Sbostic 	.594707107746216934174,
184*57442Sbostic 	.599008189645246602594,
185*57442Sbostic 	.603290851438941899687,
186*57442Sbostic 	.607555250224322662688,
187*57442Sbostic 	.611801541106615331955,
188*57442Sbostic 	.616029877215623855590,
189*57442Sbostic 	.620240409751204424537,
190*57442Sbostic 	.624433288012369303032,
191*57442Sbostic 	.628608659422752680256,
192*57442Sbostic 	.632766669570628437213,
193*57442Sbostic 	.636907462236194987781,
194*57442Sbostic 	.641031179420679109171,
195*57442Sbostic 	.645137961373620782978,
196*57442Sbostic 	.649227946625615004450,
197*57442Sbostic 	.653301272011958644725,
198*57442Sbostic 	.657358072709030238911,
199*57442Sbostic 	.661398482245203922502,
200*57442Sbostic 	.665422632544505177065,
201*57442Sbostic 	.669430653942981734871,
202*57442Sbostic 	.673422675212350441142,
203*57442Sbostic 	.677398823590920073911,
204*57442Sbostic 	.681359224807238206267,
205*57442Sbostic 	.685304003098281100392,
206*57442Sbostic 	.689233281238557538017,
207*57442Sbostic 	.693147180560117703862
208*57442Sbostic };
209*57442Sbostic 
210*57442Sbostic double logF_tail[N+1] = {
211*57442Sbostic 	0.,
212*57442Sbostic 	-.00000000000000543229938420049,
213*57442Sbostic 	 .00000000000000172745674997061,
214*57442Sbostic 	-.00000000000001323017818229233,
215*57442Sbostic 	-.00000000000001154527628289872,
216*57442Sbostic 	-.00000000000000466529469958300,
217*57442Sbostic 	 .00000000000005148849572685810,
218*57442Sbostic 	-.00000000000002532168943117445,
219*57442Sbostic 	-.00000000000005213620639136504,
220*57442Sbostic 	-.00000000000001819506003016881,
221*57442Sbostic 	 .00000000000006329065958724544,
222*57442Sbostic 	 .00000000000008614512936087814,
223*57442Sbostic 	-.00000000000007355770219435028,
224*57442Sbostic 	 .00000000000009638067658552277,
225*57442Sbostic 	 .00000000000007598636597194141,
226*57442Sbostic 	 .00000000000002579999128306990,
227*57442Sbostic 	-.00000000000004654729747598444,
228*57442Sbostic 	-.00000000000007556920687451336,
229*57442Sbostic 	 .00000000000010195735223708472,
230*57442Sbostic 	-.00000000000017319034406422306,
231*57442Sbostic 	-.00000000000007718001336828098,
232*57442Sbostic 	 .00000000000010980754099855238,
233*57442Sbostic 	-.00000000000002047235780046195,
234*57442Sbostic 	-.00000000000008372091099235912,
235*57442Sbostic 	 .00000000000014088127937111135,
236*57442Sbostic 	 .00000000000012869017157588257,
237*57442Sbostic 	 .00000000000017788850778198106,
238*57442Sbostic 	 .00000000000006440856150696891,
239*57442Sbostic 	 .00000000000016132822667240822,
240*57442Sbostic 	-.00000000000007540916511956188,
241*57442Sbostic 	-.00000000000000036507188831790,
242*57442Sbostic 	 .00000000000009120937249914984,
243*57442Sbostic 	 .00000000000018567570959796010,
244*57442Sbostic 	-.00000000000003149265065191483,
245*57442Sbostic 	-.00000000000009309459495196889,
246*57442Sbostic 	 .00000000000017914338601329117,
247*57442Sbostic 	-.00000000000001302979717330866,
248*57442Sbostic 	 .00000000000023097385217586939,
249*57442Sbostic 	 .00000000000023999540484211737,
250*57442Sbostic 	 .00000000000015393776174455408,
251*57442Sbostic 	-.00000000000036870428315837678,
252*57442Sbostic 	 .00000000000036920375082080089,
253*57442Sbostic 	-.00000000000009383417223663699,
254*57442Sbostic 	 .00000000000009433398189512690,
255*57442Sbostic 	 .00000000000041481318704258568,
256*57442Sbostic 	-.00000000000003792316480209314,
257*57442Sbostic 	 .00000000000008403156304792424,
258*57442Sbostic 	-.00000000000034262934348285429,
259*57442Sbostic 	 .00000000000043712191957429145,
260*57442Sbostic 	-.00000000000010475750058776541,
261*57442Sbostic 	-.00000000000011118671389559323,
262*57442Sbostic 	 .00000000000037549577257259853,
263*57442Sbostic 	 .00000000000013912841212197565,
264*57442Sbostic 	 .00000000000010775743037572640,
265*57442Sbostic 	 .00000000000029391859187648000,
266*57442Sbostic 	-.00000000000042790509060060774,
267*57442Sbostic 	 .00000000000022774076114039555,
268*57442Sbostic 	 .00000000000010849569622967912,
269*57442Sbostic 	-.00000000000023073801945705758,
270*57442Sbostic 	 .00000000000015761203773969435,
271*57442Sbostic 	 .00000000000003345710269544082,
272*57442Sbostic 	-.00000000000041525158063436123,
273*57442Sbostic 	 .00000000000032655698896907146,
274*57442Sbostic 	-.00000000000044704265010452446,
275*57442Sbostic 	 .00000000000034527647952039772,
276*57442Sbostic 	-.00000000000007048962392109746,
277*57442Sbostic 	 .00000000000011776978751369214,
278*57442Sbostic 	-.00000000000010774341461609578,
279*57442Sbostic 	 .00000000000021863343293215910,
280*57442Sbostic 	 .00000000000024132639491333131,
281*57442Sbostic 	 .00000000000039057462209830700,
282*57442Sbostic 	-.00000000000026570679203560751,
283*57442Sbostic 	 .00000000000037135141919592021,
284*57442Sbostic 	-.00000000000017166921336082431,
285*57442Sbostic 	-.00000000000028658285157914353,
286*57442Sbostic 	-.00000000000023812542263446809,
287*57442Sbostic 	 .00000000000006576659768580062,
288*57442Sbostic 	-.00000000000028210143846181267,
289*57442Sbostic 	 .00000000000010701931762114254,
290*57442Sbostic 	 .00000000000018119346366441110,
291*57442Sbostic 	 .00000000000009840465278232627,
292*57442Sbostic 	-.00000000000033149150282752542,
293*57442Sbostic 	-.00000000000018302857356041668,
294*57442Sbostic 	-.00000000000016207400156744949,
295*57442Sbostic 	 .00000000000048303314949553201,
296*57442Sbostic 	-.00000000000071560553172382115,
297*57442Sbostic 	 .00000000000088821239518571855,
298*57442Sbostic 	-.00000000000030900580513238244,
299*57442Sbostic 	-.00000000000061076551972851496,
300*57442Sbostic 	 .00000000000035659969663347830,
301*57442Sbostic 	 .00000000000035782396591276383,
302*57442Sbostic 	-.00000000000046226087001544578,
303*57442Sbostic 	 .00000000000062279762917225156,
304*57442Sbostic 	 .00000000000072838947272065741,
305*57442Sbostic 	 .00000000000026809646615211673,
306*57442Sbostic 	-.00000000000010960825046059278,
307*57442Sbostic 	 .00000000000002311949383800537,
308*57442Sbostic 	-.00000000000058469058005299247,
309*57442Sbostic 	-.00000000000002103748251144494,
310*57442Sbostic 	-.00000000000023323182945587408,
311*57442Sbostic 	-.00000000000042333694288141916,
312*57442Sbostic 	-.00000000000043933937969737844,
313*57442Sbostic 	 .00000000000041341647073835565,
314*57442Sbostic 	 .00000000000006841763641591466,
315*57442Sbostic 	 .00000000000047585534004430641,
316*57442Sbostic 	 .00000000000083679678674757695,
317*57442Sbostic 	-.00000000000085763734646658640,
318*57442Sbostic 	 .00000000000021913281229340092,
319*57442Sbostic 	-.00000000000062242842536431148,
320*57442Sbostic 	-.00000000000010983594325438430,
321*57442Sbostic 	 .00000000000065310431377633651,
322*57442Sbostic 	-.00000000000047580199021710769,
323*57442Sbostic 	-.00000000000037854251265457040,
324*57442Sbostic 	 .00000000000040939233218678664,
325*57442Sbostic 	 .00000000000087424383914858291,
326*57442Sbostic 	 .00000000000025218188456842882,
327*57442Sbostic 	-.00000000000003608131360422557,
328*57442Sbostic 	-.00000000000050518555924280902,
329*57442Sbostic 	 .00000000000078699403323355317,
330*57442Sbostic 	-.00000000000067020876961949060,
331*57442Sbostic 	 .00000000000016108575753932458,
332*57442Sbostic 	 .00000000000058527188436251509,
333*57442Sbostic 	-.00000000000035246757297904791,
334*57442Sbostic 	-.00000000000018372084495629058,
335*57442Sbostic 	 .00000000000088606689813494916,
336*57442Sbostic 	 .00000000000066486268071468700,
337*57442Sbostic 	 .00000000000063831615170646519,
338*57442Sbostic 	 .00000000000025144230728376072,
339*57442Sbostic 	-.00000000000017239444525614834
340*57442Sbostic };
341*57442Sbostic 
34256955Sbostic double
34356955Sbostic #ifdef _ANSI_SOURCE
34456955Sbostic log(double x)
34556955Sbostic #else
34656955Sbostic log(x) double x;
34756955Sbostic #endif
34856955Sbostic {
34956955Sbostic 	int m, j;
35056955Sbostic 	double F, f, g, q, u, u2, v, zero = 0.0, one = 1.0;
35156955Sbostic 	double logb(), ldexp();
35256955Sbostic 	volatile double u1;
35335679Sbostic 
35456955Sbostic 	/* Catch special cases */
35556955Sbostic 	if (x <= 0)
35656955Sbostic 		if (_IEEE && x == zero)	/* log(0) = -Inf */
35756955Sbostic 			return (-one/zero);
35856955Sbostic 		else if (_IEEE)		/* log(neg) = NaN */
35956955Sbostic 			return (zero/zero);
36056955Sbostic 		else if (x == zero)	/* NOT REACHED IF _IEEE */
36156955Sbostic 			return (infnan(-ERANGE));
36256955Sbostic 		else
36356955Sbostic 			return (infnan(EDOM));
36456955Sbostic 	else if (!finite(x))
36556955Sbostic 		if (_IEEE)		/* x = NaN, Inf */
36656955Sbostic 			return (x+x);
36756955Sbostic 		else
36856955Sbostic 			return (infnan(ERANGE));
36956955Sbostic 
37056955Sbostic 	/* Argument reduction: 1 <= g < 2; x/2^m = g;	*/
37156955Sbostic 	/* y = F*(1 + f/F) for |f| <= 2^-8		*/
37235679Sbostic 
37356955Sbostic 	m = logb(x);
37456955Sbostic 	g = ldexp(x, -m);
37556955Sbostic 	if (_IEEE && m == -1022) {
37656955Sbostic 		j = logb(g), m += j;
37756955Sbostic 		g = ldexp(g, -j);
37856955Sbostic 	}
37956955Sbostic 	j = N*(g-1) + .5;
38056955Sbostic 	F = (1.0/N) * j + 1;	/* F*128 is an integer in [128, 512] */
38156955Sbostic 	f = g - F;
38235679Sbostic 
38356955Sbostic 	/* Approximate expansion for log(1+f/F) ~= u + q */
38456955Sbostic 	g = 1/(2*F+f);
38556955Sbostic 	u = 2*f*g;
38656955Sbostic 	v = u*u;
38756955Sbostic 	q = u*v*(A1 + v*(A2 + v*(A3 + v*A4)));
38835679Sbostic 
38956955Sbostic     /* case 1: u1 = u rounded to 2^-43 absolute.  Since u < 2^-8,
39056955Sbostic      * 	       u1 has at most 35 bits, and F*u1 is exact, as F has < 8 bits.
39156955Sbostic      *         It also adds exactly to |m*log2_hi + log_F_head[j] | < 750
39256955Sbostic     */
39356955Sbostic 	if (m | j)
39456955Sbostic 		u1 = u + 513, u1 -= 513;
39524601Szliu 
39656955Sbostic     /* case 2:	|1-x| < 1/256. The m- and j- dependent terms are zero;
39756955Sbostic      * 		u1 = u to 24 bits.
39856955Sbostic     */
39956955Sbostic 	else
40056955Sbostic 		u1 = u, TRUNC(u1);
40156955Sbostic 	u2 = (2.0*(f - F*u1) - u1*f) * g;
40256955Sbostic 			/* u1 + u2 = 2f/(2F+f) to extra precision.	*/
40324601Szliu 
40456955Sbostic 	/* log(x) = log(2^m*F*(1+f/F)) =				*/
40556955Sbostic 	/* (m*log2_hi+logF_head[j]+u1) + (m*log2_lo+logF_tail[j]+q);	*/
40656955Sbostic 	/* (exact) + (tiny)						*/
40724601Szliu 
40856955Sbostic 	u1 += m*logF_head[N] + logF_head[j];		/* exact */
40956955Sbostic 	u2 = (u2 + logF_tail[j]) + q;			/* tiny */
41056955Sbostic 	u2 += logF_tail[N]*m;
41156955Sbostic 	return (u1 + u2);
41256955Sbostic }
41324601Szliu 
414*57442Sbostic /*
415*57442Sbostic  * Extra precision variant, returning struct {double a, b;};
416*57442Sbostic  * log(x) = a+b to 63 bits, with a is rounded to 26 bits.
41756955Sbostic  */
41856955Sbostic struct Double
41956955Sbostic #ifdef _ANSI_SOURCE
42056955Sbostic log__D(double x)
42156955Sbostic #else
42256955Sbostic log__D(x) double x;
42356955Sbostic #endif
42456955Sbostic {
42556955Sbostic 	int m, j;
426*57442Sbostic 	double F, f, g, q, u, v, u2, one = 1.0;
42756955Sbostic 	double logb(), ldexp();
42856955Sbostic 	volatile double u1;
42956955Sbostic 	struct Double r;
43024601Szliu 
43156955Sbostic 	/* Argument reduction: 1 <= g < 2; x/2^m = g;	*/
43256955Sbostic 	/* y = F*(1 + f/F) for |f| <= 2^-8		*/
43324601Szliu 
43456955Sbostic 	m = logb(x);
43556955Sbostic 	g = ldexp(x, -m);
43656955Sbostic 	if (_IEEE && m == -1022) {
43756955Sbostic 		j = logb(g), m += j;
43856955Sbostic 		g = ldexp(g, -j);
43924601Szliu 	}
44056955Sbostic 	j = N*(g-1) + .5;
44156955Sbostic 	F = (1.0/N) * j + 1;
44256955Sbostic 	f = g - F;
44324601Szliu 
44456955Sbostic 	g = 1/(2*F+f);
44556955Sbostic 	u = 2*f*g;
44656955Sbostic 	v = u*u;
44756955Sbostic 	q = u*v*(A1 + v*(A2 + v*(A3 + v*A4)));
44856955Sbostic 	if (m | j)
44956955Sbostic 		u1 = u + 513, u1 -= 513;
45056955Sbostic 	else
45156955Sbostic 		u1 = u, TRUNC(u1);
45256955Sbostic 	u2 = (2.0*(f - F*u1) - u1*f) * g;
45324601Szliu 
45456955Sbostic 	u1 += m*logF_head[N] + logF_head[j];
45524601Szliu 
45656955Sbostic 	u2 +=  logF_tail[j]; u2 += q;
45756955Sbostic 	u2 += logF_tail[N]*m;
45856955Sbostic 	r.a = u1 + u2;			/* Only difference is here */
45956955Sbostic 	TRUNC(r.a);
46056955Sbostic 	r.b = (u1 - r.a) + u2;
46156955Sbostic 	return (r);
46224601Szliu }
463