xref: /csrg-svn/lib/libm/common_source/jn.c (revision 64991)
148402Sbostic /*-
261308Sbostic  * Copyright (c) 1992, 1993
361308Sbostic  *	The Regents of the University of California.  All rights reserved.
448402Sbostic  *
557151Sbostic  * %sccs.include.redist.c%
634119Sbostic  */
734119Sbostic 
824599Szliu #ifndef lint
9*64991Smckusick static char sccsid[] = "@(#)jn.c	8.2 (Berkeley) 11/30/93";
1034119Sbostic #endif /* not lint */
1124599Szliu 
1224599Szliu /*
1357151Sbostic  * 16 December 1992
1457151Sbostic  * Minor modifications by Peter McIlroy to adapt non-IEEE architecture.
1557151Sbostic  */
1624599Szliu 
1757151Sbostic /*
1857151Sbostic  * ====================================================
1957151Sbostic  * Copyright (C) 1992 by Sun Microsystems, Inc.
2057151Sbostic  *
2157151Sbostic  * Developed at SunPro, a Sun Microsystems, Inc. business.
2257151Sbostic  * Permission to use, copy, modify, and distribute this
2357151Sbostic  * software is freely granted, provided that this notice
2457151Sbostic  * is preserved.
2557151Sbostic  * ====================================================
2657151Sbostic  *
2757151Sbostic  * ******************* WARNING ********************
2857151Sbostic  * This is an alpha version of SunPro's FDLIBM (Freely
2957151Sbostic  * Distributable Math Library) for IEEE double precision
3057151Sbostic  * arithmetic. FDLIBM is a basic math library written
3157151Sbostic  * in C that runs on machines that conform to IEEE
3257151Sbostic  * Standard 754/854. This alpha version is distributed
3357151Sbostic  * for testing purpose. Those who use this software
3457151Sbostic  * should report any bugs to
3557151Sbostic  *
3657151Sbostic  *		fdlibm-comments@sunpro.eng.sun.com
3757151Sbostic  *
3857151Sbostic  * -- K.C. Ng, Oct 12, 1992
3957151Sbostic  * ************************************************
4057151Sbostic  */
4124599Szliu 
4257151Sbostic /*
4357151Sbostic  * jn(int n, double x), yn(int n, double x)
4457151Sbostic  * floating point Bessel's function of the 1st and 2nd kind
4557151Sbostic  * of order n
4657151Sbostic  *
4757151Sbostic  * Special cases:
4857151Sbostic  *	y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
4957151Sbostic  *	y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
5057151Sbostic  * Note 2. About jn(n,x), yn(n,x)
5157151Sbostic  *	For n=0, j0(x) is called,
5257151Sbostic  *	for n=1, j1(x) is called,
5357151Sbostic  *	for n<x, forward recursion us used starting
5457151Sbostic  *	from values of j0(x) and j1(x).
5557151Sbostic  *	for n>x, a continued fraction approximation to
5657151Sbostic  *	j(n,x)/j(n-1,x) is evaluated and then backward
5757151Sbostic  *	recursion is used starting from a supposed value
5857151Sbostic  *	for j(n,x). The resulting value of j(0,x) is
5957151Sbostic  *	compared with the actual value to correct the
6057151Sbostic  *	supposed value of j(n,x).
6157151Sbostic  *
6257151Sbostic  *	yn(n,x) is similar in all respects, except
6357151Sbostic  *	that forward recursion is used for all
6457151Sbostic  *	values of n>1.
6557151Sbostic  *
6657151Sbostic  */
6724599Szliu 
6857151Sbostic #include <math.h>
6957151Sbostic #include <float.h>
7057151Sbostic #include <errno.h>
7124599Szliu 
7257151Sbostic #if defined(vax) || defined(tahoe)
7357151Sbostic #define _IEEE	0
7457151Sbostic #else
7557151Sbostic #define _IEEE	1
7657151Sbostic #define infnan(x) (0.0)
7757151Sbostic #endif
7824599Szliu 
7957151Sbostic static double
8057151Sbostic invsqrtpi= 5.641895835477562869480794515607725858441e-0001,
8157151Sbostic two  = 2.0,
8257151Sbostic zero = 0.0,
8357151Sbostic one  = 1.0;
8424599Szliu 
jn(n,x)8557151Sbostic double jn(n,x)
8657151Sbostic 	int n; double x;
8757151Sbostic {
8857151Sbostic 	int i, sgn;
8924599Szliu 	double a, b, temp;
9057151Sbostic 	double z, w;
9124599Szliu 
9257151Sbostic     /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
9357151Sbostic      * Thus, J(-n,x) = J(n,-x)
9457151Sbostic      */
9557151Sbostic     /* if J(n,NaN) is NaN */
9657151Sbostic 	if (_IEEE && isnan(x)) return x+x;
9757151Sbostic 	if (n<0){
9824599Szliu 		n = -n;
9924599Szliu 		x = -x;
10024599Szliu 	}
10157151Sbostic 	if (n==0) return(j0(x));
10257151Sbostic 	if (n==1) return(j1(x));
10357151Sbostic 	sgn = (n&1)&(x < zero);		/* even n -- 0, odd n -- sign(x) */
10457151Sbostic 	x = fabs(x);
10557151Sbostic 	if (x == 0 || !finite (x)) 	/* if x is 0 or inf */
10657151Sbostic 	    b = zero;
10757151Sbostic 	else if ((double) n <= x) {
10857151Sbostic 			/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
10957151Sbostic 	    if (_IEEE && x >= 8.148143905337944345e+090) {
11057151Sbostic 					/* x >= 2**302 */
11157151Sbostic     /* (x >> n**2)
11257151Sbostic      *	    Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
11357151Sbostic      *	    Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
11457151Sbostic      *	    Let s=sin(x), c=cos(x),
11557151Sbostic      *		xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
11657151Sbostic      *
11757151Sbostic      *		   n	sin(xn)*sqt2	cos(xn)*sqt2
11857151Sbostic      *		----------------------------------
11957151Sbostic      *		   0	 s-c		 c+s
12057151Sbostic      *		   1	-s-c 		-c+s
12157151Sbostic      *		   2	-s+c		-c-s
12257151Sbostic      *		   3	 s+c		 c-s
12357151Sbostic      */
12457151Sbostic 		switch(n&3) {
12557151Sbostic 		    case 0: temp =  cos(x)+sin(x); break;
12657151Sbostic 		    case 1: temp = -cos(x)+sin(x); break;
12757151Sbostic 		    case 2: temp = -cos(x)-sin(x); break;
12857151Sbostic 		    case 3: temp =  cos(x)-sin(x); break;
12957151Sbostic 		}
13057151Sbostic 		b = invsqrtpi*temp/sqrt(x);
13157151Sbostic 	    } else {
13257151Sbostic 	        a = j0(x);
13357151Sbostic 	        b = j1(x);
13457151Sbostic 	        for(i=1;i<n;i++){
13557151Sbostic 		    temp = b;
13657151Sbostic 		    b = b*((double)(i+i)/x) - a; /* avoid underflow */
13757151Sbostic 		    a = temp;
13857151Sbostic 	        }
13957151Sbostic 	    }
14057151Sbostic 	} else {
14157151Sbostic 	    if (x < 1.86264514923095703125e-009) { /* x < 2**-29 */
14257151Sbostic     /* x is tiny, return the first Taylor expansion of J(n,x)
14357151Sbostic      * J(n,x) = 1/n!*(x/2)^n  - ...
14457151Sbostic      */
14557151Sbostic 		if (n > 33)	/* underflow */
14657151Sbostic 		    b = zero;
14757151Sbostic 		else {
14857151Sbostic 		    temp = x*0.5; b = temp;
14957151Sbostic 		    for (a=one,i=2;i<=n;i++) {
15057151Sbostic 			a *= (double)i;		/* a = n! */
15157151Sbostic 			b *= temp;		/* b = (x/2)^n */
15257151Sbostic 		    }
15357151Sbostic 		    b = b/a;
15457151Sbostic 		}
15557151Sbostic 	    } else {
15657151Sbostic 		/* use backward recurrence */
15757151Sbostic 		/* 			x      x^2      x^2
15857151Sbostic 		 *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
15957151Sbostic 		 *			2n  - 2(n+1) - 2(n+2)
16057151Sbostic 		 *
16157151Sbostic 		 * 			1      1        1
16257151Sbostic 		 *  (for large x)   =  ----  ------   ------   .....
16357151Sbostic 		 *			2n   2(n+1)   2(n+2)
16457151Sbostic 		 *			-- - ------ - ------ -
16557151Sbostic 		 *			 x     x         x
16657151Sbostic 		 *
16757151Sbostic 		 * Let w = 2n/x and h=2/x, then the above quotient
16857151Sbostic 		 * is equal to the continued fraction:
16957151Sbostic 		 *		    1
17057151Sbostic 		 *	= -----------------------
17157151Sbostic 		 *		       1
17257151Sbostic 		 *	   w - -----------------
17357151Sbostic 		 *			  1
17457151Sbostic 		 * 	        w+h - ---------
17557151Sbostic 		 *		       w+2h - ...
17657151Sbostic 		 *
17757151Sbostic 		 * To determine how many terms needed, let
17857151Sbostic 		 * Q(0) = w, Q(1) = w(w+h) - 1,
17957151Sbostic 		 * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
18057151Sbostic 		 * When Q(k) > 1e4	good for single
18157151Sbostic 		 * When Q(k) > 1e9	good for double
18257151Sbostic 		 * When Q(k) > 1e17	good for quadruple
18357151Sbostic 		 */
18457151Sbostic 	    /* determine k */
18557151Sbostic 		double t,v;
18657151Sbostic 		double q0,q1,h,tmp; int k,m;
18757151Sbostic 		w  = (n+n)/(double)x; h = 2.0/(double)x;
18857151Sbostic 		q0 = w;  z = w+h; q1 = w*z - 1.0; k=1;
18957151Sbostic 		while (q1<1.0e9) {
19057151Sbostic 			k += 1; z += h;
19157151Sbostic 			tmp = z*q1 - q0;
19257151Sbostic 			q0 = q1;
19357151Sbostic 			q1 = tmp;
19457151Sbostic 		}
19557151Sbostic 		m = n+n;
19657151Sbostic 		for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t);
19757151Sbostic 		a = t;
19857151Sbostic 		b = one;
19957151Sbostic 		/*  estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
20057151Sbostic 		 *  Hence, if n*(log(2n/x)) > ...
20157151Sbostic 		 *  single 8.8722839355e+01
20257151Sbostic 		 *  double 7.09782712893383973096e+02
20357151Sbostic 		 *  long double 1.1356523406294143949491931077970765006170e+04
20457151Sbostic 		 *  then recurrent value may overflow and the result will
20557151Sbostic 		 *  likely underflow to zero
20657151Sbostic 		 */
20757151Sbostic 		tmp = n;
20857151Sbostic 		v = two/x;
20957151Sbostic 		tmp = tmp*log(fabs(v*tmp));
21057151Sbostic 	    	for (i=n-1;i>0;i--){
21157151Sbostic 		        temp = b;
21257151Sbostic 		        b = ((i+i)/x)*b - a;
21357151Sbostic 		        a = temp;
21457151Sbostic 		    /* scale b to avoid spurious overflow */
21557151Sbostic #			if defined(vax) || defined(tahoe)
21657151Sbostic #				define BMAX 1e13
21757151Sbostic #			else
21857151Sbostic #				define BMAX 1e100
21957151Sbostic #			endif /* defined(vax) || defined(tahoe) */
22057151Sbostic 			if (b > BMAX) {
22157151Sbostic 				a /= b;
22257151Sbostic 				t /= b;
22357151Sbostic 				b = one;
22457151Sbostic 			}
22557151Sbostic 		}
22657151Sbostic 	    	b = (t*j0(x)/b);
22757151Sbostic 	    }
22824599Szliu 	}
22957151Sbostic 	return ((sgn == 1) ? -b : b);
23024599Szliu }
yn(n,x)23157151Sbostic double yn(n,x)
23257151Sbostic 	int n; double x;
23357151Sbostic {
23457151Sbostic 	int i, sign;
23524599Szliu 	double a, b, temp;
23624599Szliu 
23757151Sbostic     /* Y(n,NaN), Y(n, x < 0) is NaN */
23857151Sbostic 	if (x <= 0 || (_IEEE && x != x))
23957151Sbostic 		if (_IEEE && x < 0) return zero/zero;
24057151Sbostic 		else if (x < 0)     return (infnan(EDOM));
24157151Sbostic 		else if (_IEEE)     return -one/zero;
24257151Sbostic 		else		    return(infnan(-ERANGE));
24357151Sbostic 	else if (!finite(x)) return(0);
24424599Szliu 	sign = 1;
24557151Sbostic 	if (n<0){
24624599Szliu 		n = -n;
24757151Sbostic 		sign = 1 - ((n&1)<<2);
24824599Szliu 	}
24957151Sbostic 	if (n == 0) return(y0(x));
25057151Sbostic 	if (n == 1) return(sign*y1(x));
25157151Sbostic 	if(_IEEE && x >= 8.148143905337944345e+090) { /* x > 2**302 */
25257151Sbostic     /* (x >> n**2)
25357151Sbostic      *	    Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
25457151Sbostic      *	    Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
25557151Sbostic      *	    Let s=sin(x), c=cos(x),
25657151Sbostic      *		xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
25757151Sbostic      *
25857151Sbostic      *		   n	sin(xn)*sqt2	cos(xn)*sqt2
25957151Sbostic      *		----------------------------------
26057151Sbostic      *		   0	 s-c		 c+s
26157151Sbostic      *		   1	-s-c 		-c+s
26257151Sbostic      *		   2	-s+c		-c-s
26357151Sbostic      *		   3	 s+c		 c-s
26457151Sbostic      */
26557151Sbostic 		switch (n&3) {
26657151Sbostic 		    case 0: temp =  sin(x)-cos(x); break;
26757151Sbostic 		    case 1: temp = -sin(x)-cos(x); break;
26857151Sbostic 		    case 2: temp = -sin(x)+cos(x); break;
26957151Sbostic 		    case 3: temp =  sin(x)+cos(x); break;
27057151Sbostic 		}
27157151Sbostic 		b = invsqrtpi*temp/sqrt(x);
27257151Sbostic 	} else {
27357151Sbostic 	    a = y0(x);
27457151Sbostic 	    b = y1(x);
27557151Sbostic 	/* quit if b is -inf */
27657151Sbostic 	    for (i = 1; i < n && !finite(b); i++){
27724599Szliu 		temp = b;
27857151Sbostic 		b = ((double)(i+i)/x)*b - a;
27924599Szliu 		a = temp;
28057151Sbostic 	    }
28124599Szliu 	}
28257151Sbostic 	if (!_IEEE && !finite(b))
28357151Sbostic 		return (infnan(-sign * ERANGE));
28457151Sbostic 	return ((sign > 0) ? b : -b);
28524599Szliu }
286