xref: /csrg-svn/lib/libm/common_source/j0.c (revision 64988)
148402Sbostic /*-
261308Sbostic  * Copyright (c) 1992, 1993
361308Sbostic  *	The Regents of the University of California.  All rights reserved.
448402Sbostic  *
557151Sbostic  * %sccs.include.redist.c%
634117Sbostic  */
734117Sbostic 
824597Szliu #ifndef lint
9*64988Smckusick static char sccsid[] = "@(#)j0.c	8.2 (Berkeley) 11/30/93";
1034117Sbostic #endif /* not lint */
1124597Szliu 
1224597Szliu /*
1357151Sbostic  * 16 December 1992
1457151Sbostic  * Minor modifications by Peter McIlroy to adapt non-IEEE architecture.
1557151Sbostic  */
1624597Szliu 
1757151Sbostic /*
1857151Sbostic  * ====================================================
1957151Sbostic  * Copyright (C) 1992 by Sun Microsystems, Inc.
2057151Sbostic  *
2157151Sbostic  * Developed at SunPro, a Sun Microsystems, Inc. business.
2257151Sbostic  * Permission to use, copy, modify, and distribute this
2357151Sbostic  * software is freely granted, provided that this notice
2457151Sbostic  * is preserved.
2557151Sbostic  * ====================================================
2657151Sbostic  *
2757151Sbostic  * ******************* WARNING ********************
2857151Sbostic  * This is an alpha version of SunPro's FDLIBM (Freely
2957151Sbostic  * Distributable Math Library) for IEEE double precision
3057151Sbostic  * arithmetic. FDLIBM is a basic math library written
3157151Sbostic  * in C that runs on machines that conform to IEEE
3257151Sbostic  * Standard 754/854. This alpha version is distributed
3357151Sbostic  * for testing purpose. Those who use this software
3457151Sbostic  * should report any bugs to
3557151Sbostic  *
3657151Sbostic  *		fdlibm-comments@sunpro.eng.sun.com
3757151Sbostic  *
3857151Sbostic  * -- K.C. Ng, Oct 12, 1992
3957151Sbostic  * ************************************************
4057151Sbostic  */
4124597Szliu 
4257151Sbostic /* double j0(double x), y0(double x)
4357151Sbostic  * Bessel function of the first and second kinds of order zero.
4457151Sbostic  * Method -- j0(x):
4557151Sbostic  *	1. For tiny x, we use j0(x) = 1 - x^2/4 + x^4/64 - ...
4657151Sbostic  *	2. Reduce x to |x| since j0(x)=j0(-x),  and
4757151Sbostic  *	   for x in (0,2)
4857151Sbostic  *		j0(x) = 1-z/4+ z^2*R0/S0,  where z = x*x;
4957151Sbostic  *	   (precision:  |j0-1+z/4-z^2R0/S0 |<2**-63.67 )
5057151Sbostic  *	   for x in (2,inf)
5157151Sbostic  * 		j0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)-q0(x)*sin(x0))
5257151Sbostic  * 	   where x0 = x-pi/4. It is better to compute sin(x0),cos(x0)
5357151Sbostic  *	   as follow:
5457151Sbostic  *		cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
5557151Sbostic  *			= 1/sqrt(2) * (cos(x) + sin(x))
5657151Sbostic  *		sin(x0) = sin(x)cos(pi/4)-cos(x)sin(pi/4)
5757151Sbostic  *			= 1/sqrt(2) * (sin(x) - cos(x))
5857151Sbostic  * 	   (To avoid cancellation, use
5957151Sbostic  *		sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
6057151Sbostic  * 	    to compute the worse one.)
6157151Sbostic  *
6257151Sbostic  *	3 Special cases
6357151Sbostic  *		j0(nan)= nan
6457151Sbostic  *		j0(0) = 1
6557151Sbostic  *		j0(inf) = 0
6657151Sbostic  *
6757151Sbostic  * Method -- y0(x):
6857151Sbostic  *	1. For x<2.
6957151Sbostic  *	   Since
7057151Sbostic  *		y0(x) = 2/pi*(j0(x)*(ln(x/2)+Euler) + x^2/4 - ...)
7157151Sbostic  *	   therefore y0(x)-2/pi*j0(x)*ln(x) is an even function.
7257151Sbostic  *	   We use the following function to approximate y0,
7357151Sbostic  *		y0(x) = U(z)/V(z) + (2/pi)*(j0(x)*ln(x)), z= x^2
7457151Sbostic  *	   where
7557151Sbostic  *		U(z) = u0 + u1*z + ... + u6*z^6
7657151Sbostic  *		V(z) = 1  + v1*z + ... + v4*z^4
7757151Sbostic  *	   with absolute approximation error bounded by 2**-72.
7857151Sbostic  *	   Note: For tiny x, U/V = u0 and j0(x)~1, hence
7957151Sbostic  *		y0(tiny) = u0 + (2/pi)*ln(tiny), (choose tiny<2**-27)
8057151Sbostic  *	2. For x>=2.
8157151Sbostic  * 		y0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)+q0(x)*sin(x0))
8257151Sbostic  * 	   where x0 = x-pi/4. It is better to compute sin(x0),cos(x0)
8357151Sbostic  *	   by the method mentioned above.
8457151Sbostic  *	3. Special cases: y0(0)=-inf, y0(x<0)=NaN, y0(inf)=0.
8557151Sbostic  */
8624597Szliu 
8757151Sbostic #include <math.h>
8857151Sbostic #include <float.h>
8957151Sbostic #if defined(vax) || defined(tahoe)
9057151Sbostic #define _IEEE	0
9157151Sbostic #else
9257151Sbostic #define _IEEE	1
9357151Sbostic #define infnan(x) (0.0)
9457151Sbostic #endif
9524597Szliu 
9657151Sbostic static double pzero __P((double)), qzero __P((double));
9724597Szliu 
9857151Sbostic static double
9957151Sbostic huge 	= 1e300,
10057151Sbostic zero    = 0.0,
10157151Sbostic one	= 1.0,
10257151Sbostic invsqrtpi= 5.641895835477562869480794515607725858441e-0001,
10357151Sbostic tpi	= 0.636619772367581343075535053490057448,
10457151Sbostic  		/* R0/S0 on [0, 2.00] */
10557151Sbostic r02 =   1.562499999999999408594634421055018003102e-0002,
10657151Sbostic r03 =  -1.899792942388547334476601771991800712355e-0004,
10757151Sbostic r04 =   1.829540495327006565964161150603950916854e-0006,
10857151Sbostic r05 =  -4.618326885321032060803075217804816988758e-0009,
10957151Sbostic s01 =   1.561910294648900170180789369288114642057e-0002,
11057151Sbostic s02 =   1.169267846633374484918570613449245536323e-0004,
11157151Sbostic s03 =   5.135465502073181376284426245689510134134e-0007,
11257151Sbostic s04 =   1.166140033337900097836930825478674320464e-0009;
11324597Szliu 
11457151Sbostic double
j0(x)11557151Sbostic j0(x)
11657151Sbostic 	double x;
11757151Sbostic {
11857151Sbostic 	double z, s,c,ss,cc,r,u,v;
11924597Szliu 
12057151Sbostic 	if (!finite(x))
12157151Sbostic 		if (_IEEE) return one/(x*x);
12257151Sbostic 		else return (0);
12357151Sbostic 	x = fabs(x);
12457151Sbostic 	if (x >= 2.0) {	/* |x| >= 2.0 */
12557151Sbostic 		s = sin(x);
12657151Sbostic 		c = cos(x);
12757151Sbostic 		ss = s-c;
12857151Sbostic 		cc = s+c;
12957151Sbostic 		if (x < .5 * DBL_MAX) {  /* make sure x+x not overflow */
13057151Sbostic 		    z = -cos(x+x);
13157151Sbostic 		    if ((s*c)<zero) cc = z/ss;
13257151Sbostic 		    else 	    ss = z/cc;
13357151Sbostic 		}
13457151Sbostic 	/*
13557151Sbostic 	 * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
13657151Sbostic 	 * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
13757151Sbostic 	 */
13857151Sbostic 		if (_IEEE && x> 6.80564733841876927e+38) /* 2^129 */
13957151Sbostic 			z = (invsqrtpi*cc)/sqrt(x);
14057151Sbostic 		else {
14157151Sbostic 		    u = pzero(x); v = qzero(x);
14257151Sbostic 		    z = invsqrtpi*(u*cc-v*ss)/sqrt(x);
14357151Sbostic 		}
14457151Sbostic 		return z;
14557151Sbostic 	}
14657151Sbostic 	if (x < 1.220703125e-004) {		   /* |x| < 2**-13 */
14757151Sbostic 	    if (huge+x > one) {			   /* raise inexact if x != 0 */
14857151Sbostic 	        if (x < 7.450580596923828125e-009) /* |x|<2**-27 */
14957151Sbostic 			return one;
15057151Sbostic 	        else return (one - 0.25*x*x);
15157151Sbostic 	    }
15257151Sbostic 	}
15357151Sbostic 	z = x*x;
15457151Sbostic 	r =  z*(r02+z*(r03+z*(r04+z*r05)));
15557151Sbostic 	s =  one+z*(s01+z*(s02+z*(s03+z*s04)));
15657151Sbostic 	if (x < one) {			/* |x| < 1.00 */
15757151Sbostic 	    return (one + z*(-0.25+(r/s)));
15857151Sbostic 	} else {
15957151Sbostic 	    u = 0.5*x;
16057151Sbostic 	    return ((one+u)*(one-u)+z*(r/s));
16157151Sbostic 	}
16257151Sbostic }
16324597Szliu 
16457151Sbostic static double
16557151Sbostic u00 =  -7.380429510868722527422411862872999615628e-0002,
16657151Sbostic u01 =   1.766664525091811069896442906220827182707e-0001,
16757151Sbostic u02 =  -1.381856719455968955440002438182885835344e-0002,
16857151Sbostic u03 =   3.474534320936836562092566861515617053954e-0004,
16957151Sbostic u04 =  -3.814070537243641752631729276103284491172e-0006,
17057151Sbostic u05 =   1.955901370350229170025509706510038090009e-0008,
17157151Sbostic u06 =  -3.982051941321034108350630097330144576337e-0011,
17257151Sbostic v01 =   1.273048348341237002944554656529224780561e-0002,
17357151Sbostic v02 =   7.600686273503532807462101309675806839635e-0005,
17457151Sbostic v03 =   2.591508518404578033173189144579208685163e-0007,
17557151Sbostic v04 =   4.411103113326754838596529339004302243157e-0010;
17624597Szliu 
17757151Sbostic double
y0(x)17857151Sbostic y0(x)
17957151Sbostic 	double x;
18057151Sbostic {
181*64988Smckusick 	double z, s, c, ss, cc, u, v;
18257151Sbostic     /* Y0(NaN) is NaN, y0(-inf) is Nan, y0(inf) is 0  */
18357151Sbostic 	if (!finite(x))
18457151Sbostic 		if (_IEEE)
18557151Sbostic 			return (one/(x+x*x));
18657151Sbostic 		else
18757151Sbostic 			return (0);
18857151Sbostic         if (x == 0)
18957151Sbostic 		if (_IEEE)	return (-one/zero);
19057151Sbostic 		else		return(infnan(-ERANGE));
19157151Sbostic         if (x<0)
19257151Sbostic 		if (_IEEE)	return (zero/zero);
19357151Sbostic 		else		return (infnan(EDOM));
19457151Sbostic         if (x >= 2.00) {	/* |x| >= 2.0 */
19557151Sbostic         /* y0(x) = sqrt(2/(pi*x))*(p0(x)*sin(x0)+q0(x)*cos(x0))
19657151Sbostic          * where x0 = x-pi/4
19757151Sbostic          *      Better formula:
19857151Sbostic          *              cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
19957151Sbostic          *                      =  1/sqrt(2) * (sin(x) + cos(x))
20057151Sbostic          *              sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
20157151Sbostic          *                      =  1/sqrt(2) * (sin(x) - cos(x))
20257151Sbostic          * To avoid cancellation, use
20357151Sbostic          *              sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
20457151Sbostic          * to compute the worse one.
20557151Sbostic          */
20657151Sbostic                 s = sin(x);
20757151Sbostic                 c = cos(x);
20857151Sbostic                 ss = s-c;
20957151Sbostic                 cc = s+c;
21057151Sbostic 	/*
21157151Sbostic 	 * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
21257151Sbostic 	 * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
21357151Sbostic 	 */
21457151Sbostic                 if (x < .5 * DBL_MAX) {  /* make sure x+x not overflow */
21557151Sbostic                     z = -cos(x+x);
21657151Sbostic                     if ((s*c)<zero) cc = z/ss;
21757151Sbostic                     else            ss = z/cc;
21857151Sbostic                 }
21957151Sbostic                 if (_IEEE && x > 6.80564733841876927e+38) /* > 2^129 */
22057151Sbostic 			z = (invsqrtpi*ss)/sqrt(x);
22157151Sbostic                 else {
22257151Sbostic                     u = pzero(x); v = qzero(x);
22357151Sbostic                     z = invsqrtpi*(u*ss+v*cc)/sqrt(x);
22457151Sbostic                 }
22557151Sbostic                 return z;
22657151Sbostic 	}
22757151Sbostic 	if (x <= 7.450580596923828125e-009) {		/* x < 2**-27 */
22857151Sbostic 	    return (u00 + tpi*log(x));
22957151Sbostic 	}
23057151Sbostic 	z = x*x;
23157151Sbostic 	u = u00+z*(u01+z*(u02+z*(u03+z*(u04+z*(u05+z*u06)))));
23257151Sbostic 	v = one+z*(v01+z*(v02+z*(v03+z*v04)));
23357151Sbostic 	return (u/v + tpi*(j0(x)*log(x)));
23457151Sbostic }
23535679Sbostic 
23657151Sbostic /* The asymptotic expansions of pzero is
23757151Sbostic  *	1 - 9/128 s^2 + 11025/98304 s^4 - ...,	where s = 1/x.
23857151Sbostic  * For x >= 2, We approximate pzero by
23957151Sbostic  * 	pzero(x) = 1 + (R/S)
24057151Sbostic  * where  R = pr0 + pr1*s^2 + pr2*s^4 + ... + pr5*s^10
24157151Sbostic  * 	  S = 1 + ps0*s^2 + ... + ps4*s^10
24257151Sbostic  * and
24357151Sbostic  *	| pzero(x)-1-R/S | <= 2  ** ( -60.26)
24457151Sbostic  */
24557151Sbostic static double pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
24657151Sbostic    0.0,
24757151Sbostic   -7.031249999999003994151563066182798210142e-0002,
24857151Sbostic   -8.081670412753498508883963849859423939871e+0000,
24957151Sbostic   -2.570631056797048755890526455854482662510e+0002,
25057151Sbostic   -2.485216410094288379417154382189125598962e+0003,
25157151Sbostic   -5.253043804907295692946647153614119665649e+0003,
25224597Szliu };
25357151Sbostic static double ps8[5] = {
25457151Sbostic    1.165343646196681758075176077627332052048e+0002,
25557151Sbostic    3.833744753641218451213253490882686307027e+0003,
25657151Sbostic    4.059785726484725470626341023967186966531e+0004,
25757151Sbostic    1.167529725643759169416844015694440325519e+0005,
25857151Sbostic    4.762772841467309430100106254805711722972e+0004,
25924597Szliu };
26057151Sbostic 
26157151Sbostic static double pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
26257151Sbostic   -1.141254646918944974922813501362824060117e-0011,
26357151Sbostic   -7.031249408735992804117367183001996028304e-0002,
26457151Sbostic   -4.159610644705877925119684455252125760478e+0000,
26557151Sbostic   -6.767476522651671942610538094335912346253e+0001,
26657151Sbostic   -3.312312996491729755731871867397057689078e+0002,
26757151Sbostic   -3.464333883656048910814187305901796723256e+0002,
26824597Szliu };
26957151Sbostic static double ps5[5] = {
27057151Sbostic    6.075393826923003305967637195319271932944e+0001,
27157151Sbostic    1.051252305957045869801410979087427910437e+0003,
27257151Sbostic    5.978970943338558182743915287887408780344e+0003,
27357151Sbostic    9.625445143577745335793221135208591603029e+0003,
27457151Sbostic    2.406058159229391070820491174867406875471e+0003,
27524597Szliu };
27657151Sbostic 
27757151Sbostic static double pr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
27857151Sbostic   -2.547046017719519317420607587742992297519e-0009,
27957151Sbostic   -7.031196163814817199050629727406231152464e-0002,
28057151Sbostic   -2.409032215495295917537157371488126555072e+0000,
28157151Sbostic   -2.196597747348830936268718293366935843223e+0001,
28257151Sbostic   -5.807917047017375458527187341817239891940e+0001,
28357151Sbostic   -3.144794705948885090518775074177485744176e+0001,
28424597Szliu };
28557151Sbostic static double ps3[5] = {
28657151Sbostic    3.585603380552097167919946472266854507059e+0001,
28757151Sbostic    3.615139830503038919981567245265266294189e+0002,
28857151Sbostic    1.193607837921115243628631691509851364715e+0003,
28957151Sbostic    1.127996798569074250675414186814529958010e+0003,
29057151Sbostic    1.735809308133357510239737333055228118910e+0002,
29124597Szliu };
29257151Sbostic 
29357151Sbostic static double pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
29457151Sbostic   -8.875343330325263874525704514800809730145e-0008,
29557151Sbostic   -7.030309954836247756556445443331044338352e-0002,
29657151Sbostic   -1.450738467809529910662233622603401167409e+0000,
29757151Sbostic   -7.635696138235277739186371273434739292491e+0000,
29857151Sbostic   -1.119316688603567398846655082201614524650e+0001,
29957151Sbostic   -3.233645793513353260006821113608134669030e+0000,
30024597Szliu };
30157151Sbostic static double ps2[5] = {
30257151Sbostic    2.222029975320888079364901247548798910952e+0001,
30357151Sbostic    1.362067942182152109590340823043813120940e+0002,
30457151Sbostic    2.704702786580835044524562897256790293238e+0002,
30557151Sbostic    1.538753942083203315263554770476850028583e+0002,
30657151Sbostic    1.465761769482561965099880599279699314477e+0001,
30724597Szliu };
30824597Szliu 
pzero(x)30957151Sbostic static double pzero(x)
31057151Sbostic 	double x;
31157151Sbostic {
31257151Sbostic 	double *p,*q,z,r,s;
31357151Sbostic 	if (x >= 8.00)			   {p = pr8; q= ps8;}
31457151Sbostic 	else if (x >= 4.54545211791992188) {p = pr5; q= ps5;}
31557151Sbostic 	else if (x >= 2.85714149475097656) {p = pr3; q= ps3;}
31657151Sbostic 	else if (x >= 2.00)		   {p = pr2; q= ps2;}
31757151Sbostic 	z = one/(x*x);
31857151Sbostic 	r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
31957151Sbostic 	s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
32057151Sbostic 	return one+ r/s;
32157151Sbostic }
32257151Sbostic 
32335679Sbostic 
32457151Sbostic /* For x >= 8, the asymptotic expansions of qzero is
32557151Sbostic  *	-1/8 s + 75/1024 s^3 - ..., where s = 1/x.
32657151Sbostic  * We approximate pzero by
32757151Sbostic  * 	qzero(x) = s*(-1.25 + (R/S))
32857151Sbostic  * where  R = qr0 + qr1*s^2 + qr2*s^4 + ... + qr5*s^10
32957151Sbostic  * 	  S = 1 + qs0*s^2 + ... + qs5*s^12
33057151Sbostic  * and
33157151Sbostic  *	| qzero(x)/s +1.25-R/S | <= 2  ** ( -61.22)
33257151Sbostic  */
33357151Sbostic static double qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
33457151Sbostic    0.0,
33557151Sbostic    7.324218749999350414479738504551775297096e-0002,
33657151Sbostic    1.176820646822526933903301695932765232456e+0001,
33757151Sbostic    5.576733802564018422407734683549251364365e+0002,
33857151Sbostic    8.859197207564685717547076568608235802317e+0003,
33957151Sbostic    3.701462677768878501173055581933725704809e+0004,
34057151Sbostic };
34157151Sbostic static double qs8[6] = {
34257151Sbostic    1.637760268956898345680262381842235272369e+0002,
34357151Sbostic    8.098344946564498460163123708054674227492e+0003,
34457151Sbostic    1.425382914191204905277585267143216379136e+0005,
34557151Sbostic    8.033092571195144136565231198526081387047e+0005,
34657151Sbostic    8.405015798190605130722042369969184811488e+0005,
34757151Sbostic   -3.438992935378666373204500729736454421006e+0005,
34857151Sbostic };
34924597Szliu 
35057151Sbostic static double qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
35157151Sbostic    1.840859635945155400568380711372759921179e-0011,
35257151Sbostic    7.324217666126847411304688081129741939255e-0002,
35357151Sbostic    5.835635089620569401157245917610984757296e+0000,
35457151Sbostic    1.351115772864498375785526599119895942361e+0002,
35557151Sbostic    1.027243765961641042977177679021711341529e+0003,
35657151Sbostic    1.989977858646053872589042328678602481924e+0003,
35757151Sbostic };
35857151Sbostic static double qs5[6] = {
35957151Sbostic    8.277661022365377058749454444343415524509e+0001,
36057151Sbostic    2.077814164213929827140178285401017305309e+0003,
36157151Sbostic    1.884728877857180787101956800212453218179e+0004,
36257151Sbostic    5.675111228949473657576693406600265778689e+0004,
36357151Sbostic    3.597675384251145011342454247417399490174e+0004,
36457151Sbostic   -5.354342756019447546671440667961399442388e+0003,
36557151Sbostic };
36624597Szliu 
36757151Sbostic static double qr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
36857151Sbostic    4.377410140897386263955149197672576223054e-0009,
36957151Sbostic    7.324111800429115152536250525131924283018e-0002,
37057151Sbostic    3.344231375161707158666412987337679317358e+0000,
37157151Sbostic    4.262184407454126175974453269277100206290e+0001,
37257151Sbostic    1.708080913405656078640701512007621675724e+0002,
37357151Sbostic    1.667339486966511691019925923456050558293e+0002,
37457151Sbostic };
37557151Sbostic static double qs3[6] = {
37657151Sbostic    4.875887297245871932865584382810260676713e+0001,
37757151Sbostic    7.096892210566060535416958362640184894280e+0002,
37857151Sbostic    3.704148226201113687434290319905207398682e+0003,
37957151Sbostic    6.460425167525689088321109036469797462086e+0003,
38057151Sbostic    2.516333689203689683999196167394889715078e+0003,
38157151Sbostic   -1.492474518361563818275130131510339371048e+0002,
38257151Sbostic };
38324597Szliu 
38457151Sbostic static double qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
38557151Sbostic    1.504444448869832780257436041633206366087e-0007,
38657151Sbostic    7.322342659630792930894554535717104926902e-0002,
38757151Sbostic    1.998191740938159956838594407540292600331e+0000,
38857151Sbostic    1.449560293478857407645853071687125850962e+0001,
38957151Sbostic    3.166623175047815297062638132537957315395e+0001,
39057151Sbostic    1.625270757109292688799540258329430963726e+0001,
39157151Sbostic };
39257151Sbostic static double qs2[6] = {
39357151Sbostic    3.036558483552191922522729838478169383969e+0001,
39457151Sbostic    2.693481186080498724211751445725708524507e+0002,
39557151Sbostic    8.447837575953201460013136756723746023736e+0002,
39657151Sbostic    8.829358451124885811233995083187666981299e+0002,
39757151Sbostic    2.126663885117988324180482985363624996652e+0002,
39857151Sbostic   -5.310954938826669402431816125780738924463e+0000,
39957151Sbostic };
40024597Szliu 
qzero(x)40157151Sbostic static double qzero(x)
40257151Sbostic 	double x;
40357151Sbostic {
40457151Sbostic 	double *p,*q, s,r,z;
40557151Sbostic 	if (x >= 8.00)			   {p = qr8; q= qs8;}
40657151Sbostic 	else if (x >= 4.54545211791992188) {p = qr5; q= qs5;}
40757151Sbostic 	else if (x >= 2.85714149475097656) {p = qr3; q= qs3;}
40857151Sbostic 	else if (x >= 2.00)		   {p = qr2; q= qs2;}
40957151Sbostic 	z = one/(x*x);
41057151Sbostic 	r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
41157151Sbostic 	s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
41257151Sbostic 	return (-.125 + r/s)/x;
41324597Szliu }
414