148402Sbostic /*-
261308Sbostic * Copyright (c) 1992, 1993
361308Sbostic * The Regents of the University of California. All rights reserved.
448402Sbostic *
557151Sbostic * %sccs.include.redist.c%
634117Sbostic */
734117Sbostic
824597Szliu #ifndef lint
9*64988Smckusick static char sccsid[] = "@(#)j0.c 8.2 (Berkeley) 11/30/93";
1034117Sbostic #endif /* not lint */
1124597Szliu
1224597Szliu /*
1357151Sbostic * 16 December 1992
1457151Sbostic * Minor modifications by Peter McIlroy to adapt non-IEEE architecture.
1557151Sbostic */
1624597Szliu
1757151Sbostic /*
1857151Sbostic * ====================================================
1957151Sbostic * Copyright (C) 1992 by Sun Microsystems, Inc.
2057151Sbostic *
2157151Sbostic * Developed at SunPro, a Sun Microsystems, Inc. business.
2257151Sbostic * Permission to use, copy, modify, and distribute this
2357151Sbostic * software is freely granted, provided that this notice
2457151Sbostic * is preserved.
2557151Sbostic * ====================================================
2657151Sbostic *
2757151Sbostic * ******************* WARNING ********************
2857151Sbostic * This is an alpha version of SunPro's FDLIBM (Freely
2957151Sbostic * Distributable Math Library) for IEEE double precision
3057151Sbostic * arithmetic. FDLIBM is a basic math library written
3157151Sbostic * in C that runs on machines that conform to IEEE
3257151Sbostic * Standard 754/854. This alpha version is distributed
3357151Sbostic * for testing purpose. Those who use this software
3457151Sbostic * should report any bugs to
3557151Sbostic *
3657151Sbostic * fdlibm-comments@sunpro.eng.sun.com
3757151Sbostic *
3857151Sbostic * -- K.C. Ng, Oct 12, 1992
3957151Sbostic * ************************************************
4057151Sbostic */
4124597Szliu
4257151Sbostic /* double j0(double x), y0(double x)
4357151Sbostic * Bessel function of the first and second kinds of order zero.
4457151Sbostic * Method -- j0(x):
4557151Sbostic * 1. For tiny x, we use j0(x) = 1 - x^2/4 + x^4/64 - ...
4657151Sbostic * 2. Reduce x to |x| since j0(x)=j0(-x), and
4757151Sbostic * for x in (0,2)
4857151Sbostic * j0(x) = 1-z/4+ z^2*R0/S0, where z = x*x;
4957151Sbostic * (precision: |j0-1+z/4-z^2R0/S0 |<2**-63.67 )
5057151Sbostic * for x in (2,inf)
5157151Sbostic * j0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)-q0(x)*sin(x0))
5257151Sbostic * where x0 = x-pi/4. It is better to compute sin(x0),cos(x0)
5357151Sbostic * as follow:
5457151Sbostic * cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
5557151Sbostic * = 1/sqrt(2) * (cos(x) + sin(x))
5657151Sbostic * sin(x0) = sin(x)cos(pi/4)-cos(x)sin(pi/4)
5757151Sbostic * = 1/sqrt(2) * (sin(x) - cos(x))
5857151Sbostic * (To avoid cancellation, use
5957151Sbostic * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
6057151Sbostic * to compute the worse one.)
6157151Sbostic *
6257151Sbostic * 3 Special cases
6357151Sbostic * j0(nan)= nan
6457151Sbostic * j0(0) = 1
6557151Sbostic * j0(inf) = 0
6657151Sbostic *
6757151Sbostic * Method -- y0(x):
6857151Sbostic * 1. For x<2.
6957151Sbostic * Since
7057151Sbostic * y0(x) = 2/pi*(j0(x)*(ln(x/2)+Euler) + x^2/4 - ...)
7157151Sbostic * therefore y0(x)-2/pi*j0(x)*ln(x) is an even function.
7257151Sbostic * We use the following function to approximate y0,
7357151Sbostic * y0(x) = U(z)/V(z) + (2/pi)*(j0(x)*ln(x)), z= x^2
7457151Sbostic * where
7557151Sbostic * U(z) = u0 + u1*z + ... + u6*z^6
7657151Sbostic * V(z) = 1 + v1*z + ... + v4*z^4
7757151Sbostic * with absolute approximation error bounded by 2**-72.
7857151Sbostic * Note: For tiny x, U/V = u0 and j0(x)~1, hence
7957151Sbostic * y0(tiny) = u0 + (2/pi)*ln(tiny), (choose tiny<2**-27)
8057151Sbostic * 2. For x>=2.
8157151Sbostic * y0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)+q0(x)*sin(x0))
8257151Sbostic * where x0 = x-pi/4. It is better to compute sin(x0),cos(x0)
8357151Sbostic * by the method mentioned above.
8457151Sbostic * 3. Special cases: y0(0)=-inf, y0(x<0)=NaN, y0(inf)=0.
8557151Sbostic */
8624597Szliu
8757151Sbostic #include <math.h>
8857151Sbostic #include <float.h>
8957151Sbostic #if defined(vax) || defined(tahoe)
9057151Sbostic #define _IEEE 0
9157151Sbostic #else
9257151Sbostic #define _IEEE 1
9357151Sbostic #define infnan(x) (0.0)
9457151Sbostic #endif
9524597Szliu
9657151Sbostic static double pzero __P((double)), qzero __P((double));
9724597Szliu
9857151Sbostic static double
9957151Sbostic huge = 1e300,
10057151Sbostic zero = 0.0,
10157151Sbostic one = 1.0,
10257151Sbostic invsqrtpi= 5.641895835477562869480794515607725858441e-0001,
10357151Sbostic tpi = 0.636619772367581343075535053490057448,
10457151Sbostic /* R0/S0 on [0, 2.00] */
10557151Sbostic r02 = 1.562499999999999408594634421055018003102e-0002,
10657151Sbostic r03 = -1.899792942388547334476601771991800712355e-0004,
10757151Sbostic r04 = 1.829540495327006565964161150603950916854e-0006,
10857151Sbostic r05 = -4.618326885321032060803075217804816988758e-0009,
10957151Sbostic s01 = 1.561910294648900170180789369288114642057e-0002,
11057151Sbostic s02 = 1.169267846633374484918570613449245536323e-0004,
11157151Sbostic s03 = 5.135465502073181376284426245689510134134e-0007,
11257151Sbostic s04 = 1.166140033337900097836930825478674320464e-0009;
11324597Szliu
11457151Sbostic double
j0(x)11557151Sbostic j0(x)
11657151Sbostic double x;
11757151Sbostic {
11857151Sbostic double z, s,c,ss,cc,r,u,v;
11924597Szliu
12057151Sbostic if (!finite(x))
12157151Sbostic if (_IEEE) return one/(x*x);
12257151Sbostic else return (0);
12357151Sbostic x = fabs(x);
12457151Sbostic if (x >= 2.0) { /* |x| >= 2.0 */
12557151Sbostic s = sin(x);
12657151Sbostic c = cos(x);
12757151Sbostic ss = s-c;
12857151Sbostic cc = s+c;
12957151Sbostic if (x < .5 * DBL_MAX) { /* make sure x+x not overflow */
13057151Sbostic z = -cos(x+x);
13157151Sbostic if ((s*c)<zero) cc = z/ss;
13257151Sbostic else ss = z/cc;
13357151Sbostic }
13457151Sbostic /*
13557151Sbostic * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
13657151Sbostic * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
13757151Sbostic */
13857151Sbostic if (_IEEE && x> 6.80564733841876927e+38) /* 2^129 */
13957151Sbostic z = (invsqrtpi*cc)/sqrt(x);
14057151Sbostic else {
14157151Sbostic u = pzero(x); v = qzero(x);
14257151Sbostic z = invsqrtpi*(u*cc-v*ss)/sqrt(x);
14357151Sbostic }
14457151Sbostic return z;
14557151Sbostic }
14657151Sbostic if (x < 1.220703125e-004) { /* |x| < 2**-13 */
14757151Sbostic if (huge+x > one) { /* raise inexact if x != 0 */
14857151Sbostic if (x < 7.450580596923828125e-009) /* |x|<2**-27 */
14957151Sbostic return one;
15057151Sbostic else return (one - 0.25*x*x);
15157151Sbostic }
15257151Sbostic }
15357151Sbostic z = x*x;
15457151Sbostic r = z*(r02+z*(r03+z*(r04+z*r05)));
15557151Sbostic s = one+z*(s01+z*(s02+z*(s03+z*s04)));
15657151Sbostic if (x < one) { /* |x| < 1.00 */
15757151Sbostic return (one + z*(-0.25+(r/s)));
15857151Sbostic } else {
15957151Sbostic u = 0.5*x;
16057151Sbostic return ((one+u)*(one-u)+z*(r/s));
16157151Sbostic }
16257151Sbostic }
16324597Szliu
16457151Sbostic static double
16557151Sbostic u00 = -7.380429510868722527422411862872999615628e-0002,
16657151Sbostic u01 = 1.766664525091811069896442906220827182707e-0001,
16757151Sbostic u02 = -1.381856719455968955440002438182885835344e-0002,
16857151Sbostic u03 = 3.474534320936836562092566861515617053954e-0004,
16957151Sbostic u04 = -3.814070537243641752631729276103284491172e-0006,
17057151Sbostic u05 = 1.955901370350229170025509706510038090009e-0008,
17157151Sbostic u06 = -3.982051941321034108350630097330144576337e-0011,
17257151Sbostic v01 = 1.273048348341237002944554656529224780561e-0002,
17357151Sbostic v02 = 7.600686273503532807462101309675806839635e-0005,
17457151Sbostic v03 = 2.591508518404578033173189144579208685163e-0007,
17557151Sbostic v04 = 4.411103113326754838596529339004302243157e-0010;
17624597Szliu
17757151Sbostic double
y0(x)17857151Sbostic y0(x)
17957151Sbostic double x;
18057151Sbostic {
181*64988Smckusick double z, s, c, ss, cc, u, v;
18257151Sbostic /* Y0(NaN) is NaN, y0(-inf) is Nan, y0(inf) is 0 */
18357151Sbostic if (!finite(x))
18457151Sbostic if (_IEEE)
18557151Sbostic return (one/(x+x*x));
18657151Sbostic else
18757151Sbostic return (0);
18857151Sbostic if (x == 0)
18957151Sbostic if (_IEEE) return (-one/zero);
19057151Sbostic else return(infnan(-ERANGE));
19157151Sbostic if (x<0)
19257151Sbostic if (_IEEE) return (zero/zero);
19357151Sbostic else return (infnan(EDOM));
19457151Sbostic if (x >= 2.00) { /* |x| >= 2.0 */
19557151Sbostic /* y0(x) = sqrt(2/(pi*x))*(p0(x)*sin(x0)+q0(x)*cos(x0))
19657151Sbostic * where x0 = x-pi/4
19757151Sbostic * Better formula:
19857151Sbostic * cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
19957151Sbostic * = 1/sqrt(2) * (sin(x) + cos(x))
20057151Sbostic * sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
20157151Sbostic * = 1/sqrt(2) * (sin(x) - cos(x))
20257151Sbostic * To avoid cancellation, use
20357151Sbostic * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
20457151Sbostic * to compute the worse one.
20557151Sbostic */
20657151Sbostic s = sin(x);
20757151Sbostic c = cos(x);
20857151Sbostic ss = s-c;
20957151Sbostic cc = s+c;
21057151Sbostic /*
21157151Sbostic * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
21257151Sbostic * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
21357151Sbostic */
21457151Sbostic if (x < .5 * DBL_MAX) { /* make sure x+x not overflow */
21557151Sbostic z = -cos(x+x);
21657151Sbostic if ((s*c)<zero) cc = z/ss;
21757151Sbostic else ss = z/cc;
21857151Sbostic }
21957151Sbostic if (_IEEE && x > 6.80564733841876927e+38) /* > 2^129 */
22057151Sbostic z = (invsqrtpi*ss)/sqrt(x);
22157151Sbostic else {
22257151Sbostic u = pzero(x); v = qzero(x);
22357151Sbostic z = invsqrtpi*(u*ss+v*cc)/sqrt(x);
22457151Sbostic }
22557151Sbostic return z;
22657151Sbostic }
22757151Sbostic if (x <= 7.450580596923828125e-009) { /* x < 2**-27 */
22857151Sbostic return (u00 + tpi*log(x));
22957151Sbostic }
23057151Sbostic z = x*x;
23157151Sbostic u = u00+z*(u01+z*(u02+z*(u03+z*(u04+z*(u05+z*u06)))));
23257151Sbostic v = one+z*(v01+z*(v02+z*(v03+z*v04)));
23357151Sbostic return (u/v + tpi*(j0(x)*log(x)));
23457151Sbostic }
23535679Sbostic
23657151Sbostic /* The asymptotic expansions of pzero is
23757151Sbostic * 1 - 9/128 s^2 + 11025/98304 s^4 - ..., where s = 1/x.
23857151Sbostic * For x >= 2, We approximate pzero by
23957151Sbostic * pzero(x) = 1 + (R/S)
24057151Sbostic * where R = pr0 + pr1*s^2 + pr2*s^4 + ... + pr5*s^10
24157151Sbostic * S = 1 + ps0*s^2 + ... + ps4*s^10
24257151Sbostic * and
24357151Sbostic * | pzero(x)-1-R/S | <= 2 ** ( -60.26)
24457151Sbostic */
24557151Sbostic static double pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
24657151Sbostic 0.0,
24757151Sbostic -7.031249999999003994151563066182798210142e-0002,
24857151Sbostic -8.081670412753498508883963849859423939871e+0000,
24957151Sbostic -2.570631056797048755890526455854482662510e+0002,
25057151Sbostic -2.485216410094288379417154382189125598962e+0003,
25157151Sbostic -5.253043804907295692946647153614119665649e+0003,
25224597Szliu };
25357151Sbostic static double ps8[5] = {
25457151Sbostic 1.165343646196681758075176077627332052048e+0002,
25557151Sbostic 3.833744753641218451213253490882686307027e+0003,
25657151Sbostic 4.059785726484725470626341023967186966531e+0004,
25757151Sbostic 1.167529725643759169416844015694440325519e+0005,
25857151Sbostic 4.762772841467309430100106254805711722972e+0004,
25924597Szliu };
26057151Sbostic
26157151Sbostic static double pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
26257151Sbostic -1.141254646918944974922813501362824060117e-0011,
26357151Sbostic -7.031249408735992804117367183001996028304e-0002,
26457151Sbostic -4.159610644705877925119684455252125760478e+0000,
26557151Sbostic -6.767476522651671942610538094335912346253e+0001,
26657151Sbostic -3.312312996491729755731871867397057689078e+0002,
26757151Sbostic -3.464333883656048910814187305901796723256e+0002,
26824597Szliu };
26957151Sbostic static double ps5[5] = {
27057151Sbostic 6.075393826923003305967637195319271932944e+0001,
27157151Sbostic 1.051252305957045869801410979087427910437e+0003,
27257151Sbostic 5.978970943338558182743915287887408780344e+0003,
27357151Sbostic 9.625445143577745335793221135208591603029e+0003,
27457151Sbostic 2.406058159229391070820491174867406875471e+0003,
27524597Szliu };
27657151Sbostic
27757151Sbostic static double pr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
27857151Sbostic -2.547046017719519317420607587742992297519e-0009,
27957151Sbostic -7.031196163814817199050629727406231152464e-0002,
28057151Sbostic -2.409032215495295917537157371488126555072e+0000,
28157151Sbostic -2.196597747348830936268718293366935843223e+0001,
28257151Sbostic -5.807917047017375458527187341817239891940e+0001,
28357151Sbostic -3.144794705948885090518775074177485744176e+0001,
28424597Szliu };
28557151Sbostic static double ps3[5] = {
28657151Sbostic 3.585603380552097167919946472266854507059e+0001,
28757151Sbostic 3.615139830503038919981567245265266294189e+0002,
28857151Sbostic 1.193607837921115243628631691509851364715e+0003,
28957151Sbostic 1.127996798569074250675414186814529958010e+0003,
29057151Sbostic 1.735809308133357510239737333055228118910e+0002,
29124597Szliu };
29257151Sbostic
29357151Sbostic static double pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
29457151Sbostic -8.875343330325263874525704514800809730145e-0008,
29557151Sbostic -7.030309954836247756556445443331044338352e-0002,
29657151Sbostic -1.450738467809529910662233622603401167409e+0000,
29757151Sbostic -7.635696138235277739186371273434739292491e+0000,
29857151Sbostic -1.119316688603567398846655082201614524650e+0001,
29957151Sbostic -3.233645793513353260006821113608134669030e+0000,
30024597Szliu };
30157151Sbostic static double ps2[5] = {
30257151Sbostic 2.222029975320888079364901247548798910952e+0001,
30357151Sbostic 1.362067942182152109590340823043813120940e+0002,
30457151Sbostic 2.704702786580835044524562897256790293238e+0002,
30557151Sbostic 1.538753942083203315263554770476850028583e+0002,
30657151Sbostic 1.465761769482561965099880599279699314477e+0001,
30724597Szliu };
30824597Szliu
pzero(x)30957151Sbostic static double pzero(x)
31057151Sbostic double x;
31157151Sbostic {
31257151Sbostic double *p,*q,z,r,s;
31357151Sbostic if (x >= 8.00) {p = pr8; q= ps8;}
31457151Sbostic else if (x >= 4.54545211791992188) {p = pr5; q= ps5;}
31557151Sbostic else if (x >= 2.85714149475097656) {p = pr3; q= ps3;}
31657151Sbostic else if (x >= 2.00) {p = pr2; q= ps2;}
31757151Sbostic z = one/(x*x);
31857151Sbostic r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
31957151Sbostic s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
32057151Sbostic return one+ r/s;
32157151Sbostic }
32257151Sbostic
32335679Sbostic
32457151Sbostic /* For x >= 8, the asymptotic expansions of qzero is
32557151Sbostic * -1/8 s + 75/1024 s^3 - ..., where s = 1/x.
32657151Sbostic * We approximate pzero by
32757151Sbostic * qzero(x) = s*(-1.25 + (R/S))
32857151Sbostic * where R = qr0 + qr1*s^2 + qr2*s^4 + ... + qr5*s^10
32957151Sbostic * S = 1 + qs0*s^2 + ... + qs5*s^12
33057151Sbostic * and
33157151Sbostic * | qzero(x)/s +1.25-R/S | <= 2 ** ( -61.22)
33257151Sbostic */
33357151Sbostic static double qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
33457151Sbostic 0.0,
33557151Sbostic 7.324218749999350414479738504551775297096e-0002,
33657151Sbostic 1.176820646822526933903301695932765232456e+0001,
33757151Sbostic 5.576733802564018422407734683549251364365e+0002,
33857151Sbostic 8.859197207564685717547076568608235802317e+0003,
33957151Sbostic 3.701462677768878501173055581933725704809e+0004,
34057151Sbostic };
34157151Sbostic static double qs8[6] = {
34257151Sbostic 1.637760268956898345680262381842235272369e+0002,
34357151Sbostic 8.098344946564498460163123708054674227492e+0003,
34457151Sbostic 1.425382914191204905277585267143216379136e+0005,
34557151Sbostic 8.033092571195144136565231198526081387047e+0005,
34657151Sbostic 8.405015798190605130722042369969184811488e+0005,
34757151Sbostic -3.438992935378666373204500729736454421006e+0005,
34857151Sbostic };
34924597Szliu
35057151Sbostic static double qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
35157151Sbostic 1.840859635945155400568380711372759921179e-0011,
35257151Sbostic 7.324217666126847411304688081129741939255e-0002,
35357151Sbostic 5.835635089620569401157245917610984757296e+0000,
35457151Sbostic 1.351115772864498375785526599119895942361e+0002,
35557151Sbostic 1.027243765961641042977177679021711341529e+0003,
35657151Sbostic 1.989977858646053872589042328678602481924e+0003,
35757151Sbostic };
35857151Sbostic static double qs5[6] = {
35957151Sbostic 8.277661022365377058749454444343415524509e+0001,
36057151Sbostic 2.077814164213929827140178285401017305309e+0003,
36157151Sbostic 1.884728877857180787101956800212453218179e+0004,
36257151Sbostic 5.675111228949473657576693406600265778689e+0004,
36357151Sbostic 3.597675384251145011342454247417399490174e+0004,
36457151Sbostic -5.354342756019447546671440667961399442388e+0003,
36557151Sbostic };
36624597Szliu
36757151Sbostic static double qr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
36857151Sbostic 4.377410140897386263955149197672576223054e-0009,
36957151Sbostic 7.324111800429115152536250525131924283018e-0002,
37057151Sbostic 3.344231375161707158666412987337679317358e+0000,
37157151Sbostic 4.262184407454126175974453269277100206290e+0001,
37257151Sbostic 1.708080913405656078640701512007621675724e+0002,
37357151Sbostic 1.667339486966511691019925923456050558293e+0002,
37457151Sbostic };
37557151Sbostic static double qs3[6] = {
37657151Sbostic 4.875887297245871932865584382810260676713e+0001,
37757151Sbostic 7.096892210566060535416958362640184894280e+0002,
37857151Sbostic 3.704148226201113687434290319905207398682e+0003,
37957151Sbostic 6.460425167525689088321109036469797462086e+0003,
38057151Sbostic 2.516333689203689683999196167394889715078e+0003,
38157151Sbostic -1.492474518361563818275130131510339371048e+0002,
38257151Sbostic };
38324597Szliu
38457151Sbostic static double qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
38557151Sbostic 1.504444448869832780257436041633206366087e-0007,
38657151Sbostic 7.322342659630792930894554535717104926902e-0002,
38757151Sbostic 1.998191740938159956838594407540292600331e+0000,
38857151Sbostic 1.449560293478857407645853071687125850962e+0001,
38957151Sbostic 3.166623175047815297062638132537957315395e+0001,
39057151Sbostic 1.625270757109292688799540258329430963726e+0001,
39157151Sbostic };
39257151Sbostic static double qs2[6] = {
39357151Sbostic 3.036558483552191922522729838478169383969e+0001,
39457151Sbostic 2.693481186080498724211751445725708524507e+0002,
39557151Sbostic 8.447837575953201460013136756723746023736e+0002,
39657151Sbostic 8.829358451124885811233995083187666981299e+0002,
39757151Sbostic 2.126663885117988324180482985363624996652e+0002,
39857151Sbostic -5.310954938826669402431816125780738924463e+0000,
39957151Sbostic };
40024597Szliu
qzero(x)40157151Sbostic static double qzero(x)
40257151Sbostic double x;
40357151Sbostic {
40457151Sbostic double *p,*q, s,r,z;
40557151Sbostic if (x >= 8.00) {p = qr8; q= qs8;}
40657151Sbostic else if (x >= 4.54545211791992188) {p = qr5; q= qs5;}
40757151Sbostic else if (x >= 2.85714149475097656) {p = qr3; q= qs3;}
40857151Sbostic else if (x >= 2.00) {p = qr2; q= qs2;}
40957151Sbostic z = one/(x*x);
41057151Sbostic r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
41157151Sbostic s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
41257151Sbostic return (-.125 + r/s)/x;
41324597Szliu }
414